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Abstract

Prostate cancer is the second most common cancer in men. Two-thirds of the cases are
diagnosed in developed countries and France is ranked third in incidence rate. Low-dose-
rate (LDR) brachytherapy is a widely used treatment option. During LDR brachytherapy,
radioactive seeds are implanted permanently in the prostate in order to deliver a therapeutic
dose locally in the cancerous region while sparing the tissues and organs at risk (OARs).
Despite its high success rate (75% to 91%), the side-effects (sexual and urinary problems)
remain high.

The dose delivered to the tumor depends on the implantation positions of the seeds, which
implies that treatment planning is essential. Clinical inverse planning systems automatically
provide optimal implantation positions. However, this prediction is based on a simplified
dosimetric model where the human body is considered an infinite volume of water. When
tissue heterogeneity is not considered, the expected dose differs from the actual administered
dose. The dose received by 90% of the prostate volume (D90) may be overestimated up to 7%
and may be associated with malignant recurrence.

Another important factor that induces treatment errors is the occurrence of prostate edema
during brachytherapy that involves a volumetric change of the organ. Edema can lead to a
significant underestimation of the D90, for example, by 13.6% for a volumetric change of
20%. Moreover, the magnitude of edema varies considerably (10% to 96%) between patients.
Today the exact mechanism of edema formation remains unknown. Changes in edema lead to
significant uncontrolled degradation of treatment planning and therefore to the actual dose that
the patient receives, resulting in overdose of the OARs and increased chance of side-effects.

To solve the first major limit of the treatment planning presented here, namely the calculation
of dose, we propose an inverse planning system based on Monte Carlo (MC) dosimetry.
GPU-accelerated dosimetry is combined with a fast simulated annealing method. The cost
function of the optimization uses directly the dose volume histograms so that the found solution
perfectly matches the dosimetric criteria, which is not the case for current systems used in
clinical routine. Our method provides precise and automatic prediction of optimal implantation
positions according to a personalized dosimetry in clinically compatible time. The treatment
plans obtained from the proposed method were evaluated with a database of clinical treatment
plans of 18 patients. The method proposed in this thesis makes it possible to obtain a treatment
plan in barely a minute, with results that satisfies all the dosimetric criteria of the treatment.

In order to answer the second limit of a precise planning, that related to prostate edema, we
propose a biomechanical model based on the finite element method (FEM) in order to estimate
the effect of the tissue elastic parameters on the characteristics of the edema. We show that
the large variation in edema as well as the varying half-life are correlated with changes in the
elastic properties of the prostate. Variations in the characteristics of edema are studied with a
database of 15 patients. To account for the impact of edema in dosimetry, we propose a dynamic
dosimetry scheme. A prostate volume resampling algorithm allows to consider the volumetric
changes associated with edema during the MC dosimetry. Dynamic dosimetry with edema
shows consistent results with previous studies in the literature. That is, the underestimation of
the dose due to edema. For example, for a magnitude of edema of 20%, the prostate dose D90

and the urethra D10 are 13.6% and 10.6%, respectively.
To conclude, we propose in this thesis a system of inverse treatment for prostate brachyther-

apy which takes into account a precise personalization of the dosimetry but also of the edema



of the prostate. This work can also be used in other clinical contexts, such as high-dose-rate
brachytherapy, but also be adapted to treat other organs. In the future, our work will focus on
the study and the ability to adapt the proposed prostate biomechanical model to each patient
using elastic measurements via prostate elastography. Due to the inherent limitations of FEM,
the incorporation of the biomechanical model of edema into the treatment planning system is
costly in computation time. An alternative method would be to propose a new meshless model
to improve the simulation of edema during intraoperative planning.

Keywords: prostate, brachytherapy, inverse planning, edema, biomechanics



Resumé

Le cancer de la prostate est le deuxième cancer le plus fréquent chez les hommes. Les deux
tiers des cas sont diagnostiqués dans les pays développés et la France occupe le troisième
rang du taux d’incidence. La curiethérapie bas-débit dose (LDR) est une option de traitement
largement utilisée. Au cours de la curiethérapie LDR, des graines radioactives sont implantées
en permanence dans la prostate afin de délivrer une dose thérapeutique de façon locale dans
la zone cancéreuse tout en épargnant les tissus et les organes voisins à risque (OAR). Malgré
son taux de réussite élevé (75% à 91%), les effets secondaires (problèmes sexuels et urinaires)
restent élevés.

La dose délivrée à la tumeur dépend des positions d’implantation des graines, ce qui
implique que la planification du traitement est essentiel. Les systèmes cliniques de planification
inverse fournissent automatiquement les positions d’implantation optimale. Cependant, cette
prédiction est basée sur un modèle dosimétrique simplifié où le corps humain est considéré
comme un volume d’eau infini. Lorsque l’hétérogénéité des tissus n’est pas considérée, la dose
prévue diffère de la dose administrée réelle. La dose reçue par les 90% du volume de prostate
(D90) peut être surestimée jusqu’à 7% et peut être associée à une récidive maligne.

Un autre facteur important qui induit des erreurs de traitement est l’apparition d’un œdème
de la prostate pendant par la curiethérapie impliquant un changement volumétrique de l’organe.
L’œdème peut entraîner une sous-estimation significative du D90 par exemple il de 13.6% pour
un changement volumétrique de 20%. De plus, la proportion de cet œdème varie considérable-
ment (10% à 96%) entre les patients. Aujourd’hui le mécanisme exact de l’apparition de cet
œdème reste inconnu. Les variations de l’œdème entraînent une dégradation incontrôlée signi-
ficative de la planification du traitement et donc de la dose réelle donnée au patient entraînant
un surdosage des OAR et des effets secondaires.

Pour résoudre la première limite majeures de la planification du traitement présentée ici, à
savoir le calcul de dosimétrie, nous proposons un système de planification inverse basé sur une
dosimétrie Monte Carlo (MC). Une dosimétrie MC accélérée par GPU est combinée avec une
méthode d’optimisation par recuit simulé rapide. La fonction de cout de l’optimisation utilise
directement l’histogramme de volume de dose pour que la solution trouvé colle parfaitement
aux critères dosimétriques, ce qui n’est aujourd’hui pas le cas avec les systèmes utilisés en
routine clinique. Notre méthode fournis une prédiction précise et automatique des positions
d’implantation optimale en fonction d’une dosimétriques personnalisées, le tout dans un temps
cliniquement compatible. L’évaluation des plans de traitement obtenues on été évaluée avec
une base de données de traitements cliniques de 18 patients. La méthode proposée dans cette
thèse permet d’obtenir un plan de traitement en à peine une minute, avec des résultats qui
satisfait tous les critères dosimétriques du traitement.

Pour répondre à la deuxième limite d’une planification précise, celle liée à l’œdème de
la prostate, nous proposons un modèle biomécanique basé sur la méthode des éléments finis
(FEM) afin d’estimer l’effet élastiques des tissues qui joue sur les caractéristiques de l’œdème.
Nous démontrons que la grande variation de l’œdème ainsi que la demi-vie de dégonflement
sont corrélées avec les variations des propriétés élastiques de la prostate. Les variations des
caractéristiques de l’œdème sont étudiées via une base de données de 15 patients. Pour tenir
compte de l’impact de l’œdème dans la dosimétrie, nous proposons un système dynamique
de dosimétrie MC. Un algorithme de ré-échantillonnage du volume de la prostate permet de
prendre en compte les changements volumétriques associés à l’œdème dans la dosimétrie



MC. La dosimétrie dynamique avec l’œdème montre des résultats cohérents avec des études
précédentes dans la littérature. A savoir qu’il y a une sous-estimation de la dose à cause de
l’œdème. Par exemple, pour une amplitude d’œdème de 20%, la dose à la prostate D90 et de
l’urètre D10 sont de 13.6% et 10.6%, respectivement.

Pour conclure nous proposons dans cette thèse un système de traitement inverse pour la
curiethérapie prostate qui tient compte d’une personnalisation précise de la dosimétrie mais
également de l’œdème de la prostate. Ces travaux peuvent également être utilisés dans d’autres
contextes cliniques, tel que la curiethérapie haut-débit, mais également être adapté pour traiter
d’autres organes. Dans le futur, nos travaux porteront sur l’étude et la capacité de person-
naliser le modèle biomécanique de la prostate proposé à chaque patient en utilisant des mesures
d’élasticité via l’élastographie de la prostate. En raison des limitations inhérentes à la FEM,
l’incorporation du modèle biomécanique de l’œdème dans le système de planification du traite-
ment est coûteuse en temps de calcul. Une méthode alternative, serait de proposer un nouveau
modèle sans maillage afin d’améliorer la simulation de l’œdème pendant la planification intra-
opératoire.

Mots clé: prostate, curiethérapie, planification inverse, œdème, biomécanique
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CHAPTER

1
BACKGROUND

Background information on prostate anatomy and prostate cancer will be described in this
chapter. An overview of the risk factors controlling prostate cancer occurrence, the clas-

sification and screening methodologies for early detection, and cancer staging will be given.
Following, available options for the treatment of prostate cancer will be demonstrated with ad-
ditional focus on current low-dose-rate (LDR) brachytherapy limitations. Finally, the objective
of this thesis, which aims in the optimization of LDR brachytherapy, will be illustrated in detail.
By the end of this chapter, the reader is expected to have a broad view of prostate cancer and to
be able to follow effortlessly the developments of the following chapters for the improvement of
LDR brachytherapy delivery. More specific theoretical aspects of the following developments
will be given in the following chapters.

Des informations générales sur le cancer de la prostate ainsi que l’anatomie de la prostate
seront décrites dans ce chapitre. Un aperçu des facteurs de risque qui contrôlent l’apparition

du cancer de la prostate, la classification et les méthodes de dépistage précoce et la mesure de
son évolution seront donnés. Enfin, l’objectif de cette thèse, qui vise à optimiser la curiethérapie
bas-débit dose de la prostate sera présenté en détail. À la fin de ce chapitre, le lecteur devrait
avoir une vision large du cancer de la prostate et pouvoir suivre facilement les développements
des chapitres suivants. Des aspects théoriques plus spécifiques des développements durant
cette thèse, seront présentés dans les chapitres suivants.

“All achievements, all earned

riches, have their beginning in an

idea."

— Napoleon Hill
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1.2 Prostate cancer

Prostate cancer is the most common type of cancer diagnosed in western countries and the
second most lethal among men. In France, prostate cancer is the most common type of cancer
in the male population. In 2012, 56841 new cases of prostate cancer and 8876 deaths were
estimated [INCF, 2016].

While prostate cancer (PCa) is a leading cause of cancer death, the vast majority of men
that will receive treatment will survive the disease and ultimately will die from other causes.
The probability for a man to be diagnosed with prostate cancer, during his lifetime, is 16.6%.
Among prostate cancer patients, few will proceed to treatment interventions, as many tumors
will remain idle throughout the patient’s life. Approximately, less than 20% of all prostate
cancer patients will die from this disease. Nevertheless, prostate cancer patients who survive
the disease may well suffer from disease relapse or treatment-related complications during their
lifetime.

The aggressiveness of prostate cancer can be quite variable, ranging from localized idle
tumors without any symptoms to widely metastatic treatment-resistant tumors. Therefore,
understanding the risk factors of the disease and classifying accurately the prostate cancer
types is essential for early detection and successful treatment of the disease.

1.2.1 Risk factors

Prostate cancer risk factors’ evaluation is challenging due to the lack of extensive epidemiolog-
ical studies. Current insight in PCa risk factors is obtained from several large, well-controlled,
case studies and a few cohort studies.

PCa is one of the most age-dependent cancers. It is rare to occur before the age of 50,
while the occurrence possibility increases exponentially thereafter. After age, the strongest
risk factors for PCa, identified from case-control studies, are having a family history of PCa,
and having a high dietary fat intake. Additionally, changes in plasma levels of key hormones
and associated molecules or naturally occurring variants in genes (polymorphisms) might alter
PCa risk. Likewise, dietary factors may affect PCa risk [Masko, Allott, and Freedland, 2013].

The causes of PCa still remain unclear, and extending our understanding on them is critical
for the improvement of disease prevention. Eventually, PCa risk factors assessment is an open
field of research.

1.2.2 Classification

Prostate cancer classification is indispensable for prognosis and therapy guidance. The treat-
ment is suitably adjusted based on the PCa classification grade. The modified Gleason score
(GS) system of the International Society of Urological Pathology (ISUP) 2005 is the recom-
mended prostate cancer grade system. In biopsy, GS is the Gleason grade of the most extensive
plus the highest pattern, regardless its extent. However, in radical prostatectomy (RP) a pattern
comprising ≤5% of the cancer volume is not included in the GS, but its proportion should be
reported separately if it is of grade 4 or 5.

The 2014 ISUP Gleason Grading Conference on Gleason Grading of Prostate Cancer
[Epstein et al., 2016] adopted the concept of grade groups of PCa to align PCa grading with the
grading of other carcinomas, eliminate the anomaly that the most highly differentiated PCas
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have a GS 6, and highlight the clinical differences between GS 7 (3 + 4) and 7 (4 + 3) (see
Table 1.1).

Table 1.1 – International Society of Urological Pathology 2014 grade groups

Gleason score Grade group
≤ 6(3 + 3 or 3 + 2 or 2 + 3 or 2 + 2) 1
7(3 + 4) 2
7(4 + 3) 3
8(4 + 4 or 3 + 5 or 5 + 3) 4
9 − 10 5

It is advisable grade groups to be reported in addition to the overall or global Gleason score of
a prostate biopsy or radical prostatectomy.

1.2.3 Screening and early detection

Screening aims in the early detection of cancer before the appearance of symptoms. PCa
screening is based on the measurement of the level of PSA found in the blood. PSA is a
glycoprotein enzyme produced by the epithelial cells of the prostate. Its role is the liquefaction
of semen in order sperm to move freely. Elevated PSA level in serum may indicate cancer,
benign prostatic hypertrophy, prostatitis, and other non-malignant conditions.

Screening based on PSA identifies additional cases of PCa but its effect on PCa-specific
mortality is not yet clear. No statistically significant effect on PCa-specific screening is found
in most trials, with many of them presenting conflicting findings [Schroder et al., 2009 and
Andriole et al., 2009]. The ERSPC trial found an association of PSA screening with a 20%
relative reduction in risk for PCa-specific death in a prespecified subgroup of men aged from
55 to 69 years [Schroder et al., 2009], whereas the PLCO trial found no effect [Andriole et al.,
2009]. In addition, screening is associated with overdiagnosis and overtreatment, leading many
organizations to caution against routine population screening. PSA-based screening is linked
with detection of more prostate cancers, poor PCa-specific mortality reduction, and harms
related to false-positive test results [Chou et al., 2011].

In order to maintain the potential benefit of early PCa detection while decreasing the risk of
overtreatment, the link between diagnosis and active treatment should be broken by following
specific screening guidelines [Mottet et al., 2016].

1.2.4 Staging

The stage, or in other words the extent, of prostate cancer is a critical factor during prognosis
and treatment approach selection. PCa staging is based on results derived from the prostate
biopsy, the PSA level in the serum at the time of diagnosis, and any other related exam. The
purpose of a staging system is the characterization of the cancer spread. The most common
PCa staging system is the American Joint Committee on Cancer (AJCC) TNM system.

The TNM staging system is based on 3 category groups (T, N, and M) and additionally the
PSA level at the diagnosis time plus the prostate biopsy Gleason score. T categories refer to the
extent of the primary tumor and range from T0 to T4. The categories N describe the spread of
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12 Chapter 1. Background

cancer to nearby lymph nodes. NX corresponds to no lymph nodes assessment, N0 to no spread
in lymph nodes and N1 to spread in lymph nodes. Finally, the categories M are describing the
extent of metastasis in other parts of the body, with M0 referring to no metastasis occurrence
other than in the nearby lymph nodes and M1 signifying metastasis beyond the nearby lymph
nodes. T and M categories are subdivided into further subcategories for more detailed stage
characterization.

The TNM staging system categories are summarized in Table 1.2. A complete overview of
these staging categories can be found in [Ohori, Wheeler, and Scardino, 1994].

Table 1.2 – American Joint Committee on Cancer (AJCC) TNM staging system

Stages T N M
Stage 0 Tisa N0 M0

Stage I
T1 N0 M0
T2 N0 M0

Stage II
T3 N0 M0
T4 N0 M0

Stage III
T1, T2 N1 or N2 M0
T3, T4 N1 or N2 M0

Stage IV Any T Any N M1
a Defines carcinoma in situ.

PCa cancer stages can be derived by several combinations of the T, N, and M categories.

1.3 Prostate cancer treatment

Nowadays various therapeutic options are available for the treatment of prostate cancer with
regard to its stage. Among these options more common are the active surveillance, radical
prostatectomy, chemotherapy, external beam radiotherapy, and transperineal brachytherapy
(low/high-dose-rate).

Therefore, therapeutic management of PCa has become more complex. Patients with low-
risk PCa (PSA < 10 ng/ml and biopsy Gleason score 6 and cT1c-cT2a) or with intermediate-
risk PCa (PSA 10.1-20 ng/ml or biopsy Gleason score 7 or cT2b-c) should be counseled by an
interdisciplinary group consisted of an urologist and a radiation oncologist, to discuss possible
treatment options. Patients with high-risk PCa (PSA < 20 ng/ml or biopsy Gleason score 8-10
or cT3a) should be counseled by a multidisciplinary tumor board.

Among the available treatment options, it is not possible to specify which is superior over
the other due to the lack of randomized controlled trials in this field. However, based on the
available literature, some recommendations can be made.

1.3.1 Active surveillance

Active surveillance (AS) must not be confused with watchful waiting. The latter is based
on a delayed symptomatic non-curative treatment on patients who are not candidates for an
aggressive local therapy, while AS is a suitable treatment option for patients who might also
be offered a curative alternative. Very low-risk PCa patients are initially not treated but are
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monitored and will receive treatment with a curative intent in case of progression or if the threat
of progression occurs during follow-up [Heidenreich et al., 2014a].

AS was introduced aiming to reduce the ratio of overtreatment in patients with low-risk
PCa. According to recent data, good candidates for AS are men with low-risk PCa and high
life expectancy (>10 years). From the patients that will receive AS approximately 30% will
require delayed radical intervention [Klotz et al., 2010].

1.3.2 Radical prostatectomy

Radical prostatectomy (RP) is an active treatment option for PCa where the whole prostate is
surgically removed. Nerve-sparing RP is the gold standard approach for men with a normal
erectile function and organ-confined cancer. The need for, and the extent of, pelvic lym-
phadenectomy is controversial. In men with low-risk PCa and <50% positive biopsy cores
the risk of lymph node involvement is lower than in men with intermediate- or high-risk PCa
[Heidenreich et al., 2011]. To patients of the latter group, extensive pelvic lymphadenectomy
should always be performed [Briganti et al., 2006].

1.3.3 Androgen deprivation therapy

Androgen deprivation therapy (ADT) is the standard treatment option for advanced metastatic
PCa. Surgical (orchiectomy) or medical ADT (hormone treatment) alleviates symptoms in
many patients [Sharifi, Gulley, and Dahut, 2005] by decreasing the male hormones which
support the prostate cancer growth. ADT can also be used as a complement to other treatments,
such as radical prostatectomy, to increase their effectiveness by shrinking the PCa prior to the
main treatment.

Among the possible agents, luteinising hormone-releasing hormone (LHRH) agonists have
become the standard choice for ADT due to their reversibility potential, the lower risk for
cardiotoxicity, the absence of psychological stress associated with orchiectomy, and their
oncologic efficacy [Heidenreich et al., 2014b]. During the first weeks of LHRH-agonist
therapy, an initial increase in testosterone levels is observed (flare).

Contrary to the agonists, LHRH antagonists result in a prompt decrease in targeting hor-
mones (luteinising hormone, follicle-stimulating hormone and testosterone) levels without the
occurrence of flare phenomenon. In recent studies, rapid suppression of testosterone has been
shown within the first 3 days without flare phenomenon and with lower risk of PSA- and
PCa-specific death [Klotz et al., 2008, and Tombal et al., 2010].

The speed and effectiveness of LHRH-antagonist therapy possesses a significant role in the
treatment of patients with advanced metastatic disease. However, the benefit of the treatment
in other clinical situations remains to be proven.

1.3.4 Chemotherapy

Chemotherapy is not so common as other treatment options (radical prostatectomy, external
radiotherapy, brachytherapy) for the treatment of prostate cancer. It is usually an option
for patients who have been diagnosed with metastatic PCa. It is offered alongside hormone
therapy to improve the outcome of the latter, or alone to patients that have undergone previously
hormone therapy and demonstrate disease relapse [Gibbons, 1987].
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Chemotherapy drugs aim to delay or improve symptoms and decrease cancer’s growth.
However, their effectiveness is still not optimal due to the limited understanding of the biology
of PCa [Petrylak, 1999]. Among chemotherapy drugs, docetaxel has demonstrated superior
survival levels and symptoms improvement, when given with prednisone [Tannock et al., 2004].

1.3.5 External beam radiotherapy

External beam radiotherapy (EBRT) is a non-invasive treatment option where high-energy
photon beams are used to kill cancer cells. A high-energy X-ray beam, produced by a linear
accelerator, is directed to the prostate gland for the elimination of PCa. EBRT is advised for
patients with localized cancer inside the prostate or with a limited spread in the proximal area.

The deposition of high-energy radiation in cancer cells results in ionization and eventual
destruction of the genetic material, leading to cellular death. Ionization and genetic material
damage occur also in healthy tissue cells in the beam’s trajectory, but genetic material repair
mechanisms, absent in cancer cells, restore the damaged tissue if the damage is tolerable.
Nevertheless, side effects related to the healthy tissue damage such as urination difficulties,
rectal bleeding, diarrhea, secondary cancer in the radiated region, and etc. are common,
depending on the extent of the healthy tissue irradiation. Therefore, extra caution should be
taken during the decision of treatment delivery.

In order to decrease the side effects occurrence in external beam radiation, intensity-
modulated radiotherapy (IMRT) and its more recent update, the volumetric modulated arc ther-
apy (VMAT), are two widely used methods. IMRT is an advanced form of three-dimensional
conformal radiotherapy (3D-CRT) where intensity-modulated beams are used to irradiate the
tumor from multiple angles. The intensity modulation of the radiation beams allows for higher
conformity than conventional 3D-CRT and further reduction of the dose deposited in healthy
surrounding tissues (see Figure 1.3). VMAT allows the delivery of three-dimensional opti-
mized dose distribution in a single gantry rotation. Treatment time with VMAT is smaller
compared to conventional IMRT and the dose deposited to the clinical target (CTV) can be
increased without violating OAR dose constraints [Shaffer et al., 2009].

Figure 1.3 – Intesity-modualated (IMRT) and Volumetric modulated (VMAT) radiotherapy.
VMAT allows for the delivery of increased dose at the target without violating OAR dose
constraints and in reduced treatment time, compared to IMRT.

The treatment dose to be delivered depends on the stage of PCa. For low-risk PCa, at least
74 Gy should be delivered while for intermediate-risk PCa a higher dose in the range of 76-81
Gy is more effective. In high-risk PCa, external beam radiation is combined with ADT to
reduce the risk of systematic relapse.
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safety and possible side effects that might occur. After a period of approximately one month,
the patient returns and undergoes a CT scan acquisition. Post-implant dosimetry is performed
to evaluate differences between the planned and the actual delivered dose.

High-dose-rate (HDR) brachytherapy

High-dose-rate (HDR) prostate brachytherapy is a transrectal ultrasound-guided transperineal
procedure similar to LDR procedure. However, instead of permanent low-dose-rate sources,
after-loading applicators are placed in the prostate to direct the temporary insertion of a high-
dose-rate source for the treatment of PCa. Typical high-dose-rate sources are loaded with
Iridium-192 (192Ir). In addition to LDR, HDR exploits the radiobiology of PCa. Due to the
higher sensitivity of PCa over the normal tissue to radiation delivered in high dose fractions it
can ensure additional sparing of normal tissues [Challapalli et al., 2014].

HDR brachytherapy procedure is performed with the patient under general or spinal anes-
thesia in the lithotomy position. After-loading applicators are placed through a template in the
prostate guided by transrectal ultrasound (see Figure 1.6).

Figure 1.6 – HDR applicators insertion. After-loading applicators are placed through a template
in the prostate, guided by TRUS, in order to insert temporarily a high-dose-rate 192Ir source
that delivers tumoricidal dose to the PCa. Image from [Kovács and Hoskin, 2013].

In common practice, the entire prostate is treated and applicators are placed at approximately
10 mm distance around the periphery of the gland. Furthermore, applicators at the central row
of the template are placed at the extreme periphery to avoid urethral damage. An inner row
of applicators is also placed to provide better dose control around the urethra. Lastly, the
applicators are pushed beyond the prostate base to ensure the dose coverage of the base.

The source positions and source dwell times, time that the source remains at a given position,
are determined using an inverse planning software to provide optimal dose distribution to the
prostate and minimum dose to the OARs. Deviations of the true locations of the applicators
from the pre-planned, ideal, positions must be accounted by the planning system. The source
positions and dwell times are modified if necessary to consider these deviations.

The corrected treatment plan is transferred to the remote after-loader which delivers the
source through the appropriate needles sequentially to the determined dwell positions for the
corresponding dwell times (see Figure 1.7). This method is more flexible than LDR prostate
brachytherapy. Source positions and dwell times can be adjusted in real time providing more
precise dose distribution with improved selectivity. On the other hand, HDR brachytherapy
requires several sessions associated with a brief hospital stay.
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18 Chapter 1. Background

Figure 1.7 – HDR after-loader. The after-loader controls the delivery of the source at the
corresponding dwell positions for the given dwell times according to the available treatment
plan. Image from [Kovács and Hoskin, 2013].

1.3.7 Focusing on LDR brachytherapy

Among the available treatment options for prostate cancer, transperineal brachytherapy is one
of the most appealing. It demonstrates less toxicity-related side-effects than EBRT as a result of
the local deposition of radiation from sealed radioactive sources (seeds), implanted in the target
area. In addition, it is less invasive than radical prostatectomy. Surgery related side-effects are
hence, significantly reduced and the patient is able to leave the treatment center after one-two
days of hospitalization.

Between HDR and LDR brachytherapy, LDR is an one-time procedure and has been the
gold standard for the treatment of low risk patients since many years. On the other hand, HDR
brachytherapy enables to control over its postimplant dosimetry (source position and dwell time
modulation), however it requires several sessions [Skowronek, 2013].

While equivalent outcomes in localized prostate cancer with LDR or HDR brachytherapy
are supported by radiobiological models, LDR is preferred by many clinical centers for practical
reasons (one-time procedure, reduced hospitalization, etc.). Furthermore, recent advancements
in focal treatment with LDR brachytherapy [Peach, Trifiletti, and Libby, 2016] present the
advantage of reduced toxicity in surrounding healthy tissues and attract more interest to LDR
over HDR brachytherapy. It is therefore necessary to increase the dosimetric control in LDR
brachytherapy by addressing current limitations in the treatment’s delivery.

1.4 LDR brachytherapy limitations

Despite LDR prostate brachytherapy is widely used with high success rates (75% − 91%),
several limitations exist in the current treatment planning systems. The radioactive seeds’
placement is guided intraoperatively by TRUS imaging, however the low image quality of
TRUS induce difficulty in needle tracking. Moreover, needle artifacts reduce even more the
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Using Equation 1.1, the dose rate contribution from each source at the point-of-interest is
calculated. The sum of all contributions, according to the sources placement, defines the total
dose rate. The clinical practicality of TG-43 formulation lies in the fast dose rate calculation
for a given sources’ placement pattern (seeds’ configuration).

However, this method assumes that there are no source-to-source shielding effects, that
human tissue is composed by a homogeneous water-equivalent material and that the scattering
volume, surrounding the point of calculation, is at least 5 cm of water-equivalent material. Due
to the above assumptions, tissue heterogeneities, attenuation between seeds and finite patient
dimensions are not considered, leading to a significant increase of dosimetric uncertainties.

For LDR sources, the photoelectric process is dominant therefore, differences in mass-
energy absorption coefficients between various tissues and water [White et al., 1989] can result
in significant dose differences, depending on the medium chosen for radiation transport and
energy deposition [Beaulieu et al., 2012]. As reviewed in AAPM Task Group No. 186 (TG-
186), dose differences up to 10% between results of Monte Carlo (MC) simulations, reporting
dose to the prostate, and dose calculations in homogeneous water have been demonstrated for
125I and 103Pd sources by Taylor [2006].

The impact of considering the tissue composition on dose distribution and dose-volume
histogram (DVH) has been investigated [Chibani, Williamson, and Todor, 2005]. For a treat-
ment plan using 103Pd the D100, the dose deposited to the 100% of the prostate volume, was 6%
lower when prostate was modeled as soft tissue rather than pure water. Similarly, differences
of 4%-5% in D90, the minimum dose deposited in 90% of the prostate volume, were found
evaluating MC simulation results of treatment plans with 125I [Carrier et al., 2006]. In the
study of Carrier et al., the dose distribution for a TG-43 calculation was compared to a MC
simulation with the prostate modeled as water and full MC simulation using a realistic prostate
tissue model. In a later study of the same group [Carrier et al., 2007] the comparison of MC
simulations, where material composition was determined using patient CT attenuation data,
with the TG-43 formalism revealed a 7% difference in D90, where 3% was associated with the
tissue composition and the rest 4% with the attenuation between seeds. In all the mentioned
studies, above, a general overestimation of the dose delivered in the prostate and OARs was
demonstrated by TG-43.

In order to consider attenuation between seeds, patient geometry, and tissue composition
heterogeneities during dose calculation, model-based dose calculation (MBDCA) methods
have been developed. The three methods with application in LDR brachytherapy treatment
planning are CC superposition/convolution [Carlsson and Ahnesjo, 2000], grid-based Boltz-
mann equation solvers (GBBS) [Zhou and Inanc, 2002, and Alcouffe et al., 1995] and MC
simulations.

Among the MBDCA methods, MC simulation is the gold standard in computational dosime-
try. MC techniques are based on iterative random sampling and are used for the solution of
probabilistic or even deterministic problems exploiting randomness. The accuracy of MC
methods depends strongly on the repetition number of random sampling.

Tissue material composition can be accounted in MBDCA methods by assigning interaction
cross sections on each voxel of the patient’s image dataset, using the electron densities ρe (or
the mass densities ρ) derived from CT images. In brachytherapy, where photons with energy
< 1 MeV are used, a large difference between mass-attenuation and mass-energy absorption
coefficients is observed due to the importance of the photoelectric cross section. Therefore,
the knowledge of tissue mass (or electron) density and the atomic number distribution of the
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material is crucial [Williamson et al., 2006].
Especially in MC, a material has to be assigned on each voxel in addition to the mass

(or electron) density. Consequently, dosimetric calculation accuracy depends strongly on
the image segmentation process since inaccuracies in the materials assignment can lead to
significant dosimetric errors [Verhaegen and Devic, 2005]. The assigned materials should be
described by the elemental composition of materials as given in ICRU report No. 46 [Bethesda,
1992] and in [Woodard and White, 1986].

1.4.2 Edema during brachytherapy

Another significant issue in dosimetry calculation is the presence of edema in the prostate, and
especially its variable influence on the dose over time, on post-implant evaluation, and on dose
reporting.

Edema occurs due to the insertion of needles for the delivery of the seeds into the prostate
gland. The mechanical trauma caused by the needle insertion, the resulting bleeding and the
general inflammatory response leads to immediate swelling of the prostate, which reaches the
maximum volume shortly after the end of the procedure and is followed by a gradual resorption
[Speight et al., 2000 and Whittington et al., 1999]. Additionally, the cellular necrosis due
to the dose delivered by the permanently deposited sources supports the inflammation and
possibly can have a significant role in the regulation of edema resorption [Butler et al., 2000].
Despite that, no sufficient data exist for the correlation of edema characteristics (extent, temporal
resorption pattern) with patient characteristics such as age, pre-implant gland volume, hormone
uptake, or with procedure characteristics such as used radioisotope, number of needles, number
of implanted sources and total source strength [Taussky et al., 2005a, Waterman et al., 1998,
Badiozamani et al., 1999a and Yamada et al., 2003a]. Edema varies significantly from patient
to patient and the underlying responsible mechanisms are yet to be understood.

In order to account for edema during dosimetry calculation, analytical models have been
developed. In the work of Tejwani et al. [2012], edema was monitored for twenty-nine patients
treated with LDR brachytherapy as monotherapy, or combined with external beam radiotherapy
(EBRT). An exponential edema resorption pattern was observed similar to previous studies
[Waterman et al., 1998] and a correction factor (CF) was proposed to account for dosimetric
changes between day 1 and day 30 dosimetry. The proposed CF was calculated for each
participating patient as

CF =
PV30

PV1
, (1.2)

where PV30 defines the prostate volume as measured on day 30 and PV1 the prostate volume
as measured on day 1. The mean CF was used to estimate the D90 on day 30 from the D90 on
day 1 as given below:

D90Day30estimated
=

D90Day1

CFmean

(1.3)

No significant difference was found in the D90 on day 30 estimation when the actual patient’s
CF was used rather than the mean CF. Additionally, in this study the seed activity, the treatment
modality (monotherapy or boosted EBRT), and the Gleason score were found as significant
edema parameters.
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Another approach was proposed [Monajemi, Clements, and Sloboda, 2011 and Sloboda
et al., 2012] where an analytical model of edema was developed based on data extracted
from serial magnetic resonance imaging measurements on a group of forty patients, who have
undergone LDR brachytherapy [Sloboda et al., 2009]. The proposed model described the
observed spatially anisotropic and linearly resolving edema based on the edema magnitude (∆)

∆ =
Vmax − V0

V0
(1.4)

and the edema resorption time, T . In Equation 1.4, Vmax specifies the prostate volume when
maximum edema occurs and V0 specifies the initial prostate volume with no edema.

Incorporating the described model in the TG-43 (see Equation 1.1), the dose delivered to a
calculation point located at distance r relative to the seed can be measured after the edema has
resolved by the extended TG-43 formalism for a point source by

D(r) = Sk · Λ · r2
0 · φ̄an

∫ ∞

0
|r(t)|−2 · g(|r(t)|) · e−λt dt. (1.5)

The relative dose error, associated to disregarding edema was calculated for three 125I
implants using the proposed edema model with edema magnitude∆ = 0.2 and edema resorption
time T = 28 days. The average relative dose error for pre- and post-implant dosimetry was
found 2% and 0%-3.5% respectively.

Both models described here are based on volumetric measurements derived using image
processing techniques. The use of different modalities for volume information extraction during
implantation (US or MRI) and post-implant follow-up (CT or MRI) results in the increase
of volume measurement uncertainty, due to the different image quality and tissue visibility.
Therefore, leads to inaccurate evaluation of the edema parameters (magnitude, resorption time)
that affects significantly the outcome of these models.

Furthermore, edema parameters diversify strongly among patients and edema models should
account for this diversion. Sophisticated models, considering tissue mechanical parameters
could predict the diversion of edema parameters amongst patients and could eventually improve
the dosimetry and success rate of LDR brachytherapy, if would be accounted during the
treatment planning.

1.4.3 Inverse treatment planning

LDR brachytherapy inverse treatment planning aims in the determination of a seeds’ distribu-
tion, such that the deposited dose covers completely the planning target volume (PTV) and is
not less than the prescribed dose [Lahanas et al., 2004]. In contrast with forward planning,
the required dose distribution is given and the seeds’ configuration that can deliver this distri-
bution is the unknown. A mathematical expression (cost function) that describes the required
dosimetric objectives is constructed. The unknown seeds’ configuration is then retrieved by
the minimization of the cost function using a dedicated optimization algorithm. The quality of
the optimization’s outcome is strongly depended on the form of the cost function (smoothness,
local extrema) and the optimizing properties of the selected algorithm.

The main dosimetric objectives to be expressed by the cost function is the delivery of as
high as possible therapeutic dose to the cancerous tissue and the delivery of as low as possible
dose to the OARs and surrounding tissues. Due to the nature of the radiation-tissue interaction
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(high penetration, scattering), it is not possible to conform totally the delivered dose in the target
area. The simultaneous satisfaction of both objectives is not always feasible and a trade-off
between the two must be done.

The problem is updated in finding the seeds’ configuration that results to the most proximal
to the optimal dose distribution amongst all the possible ones. The similarity of a dose
distribution to the optimal one can be naturally quantified by a distance measure, such as the
Lp norm.

Lp =

(
N∑

i=1

(di − d ∗
i )p

) 1
p

, (1.6)

where N is the sampling points where the dose values of the given dose distribution di

are evaluated against the optimal dose values d ∗
i

. The dose optimization is interpreted as
the minimization of the distance between the ideal dose distribution and the achievable dose
distribution. This can be expressed introducing the objective functions fL(x) and fH(x)

fL(x) =
1

N

N∑

i=1

Θ(DL − di(x))(DL − di(x))
p, (1.7)

fH(x) =
1

N

N∑

i=1

Θ(di(x) − DH)(di(x) − DH)
p, (1.8)

where di(x) defines the dose at the ith sampling point that depends on parameters x, such as
the total seeds’ number, p defines the type of the distance norm, N is the number of sampling
points, DL and DH the low and high dose limits. These expressions are used if dose values
above DL and below DH are to be ignored, expressed by the step function Θ(x).

In order to address the dose optimization process, several algorithms have been proposed.
An iterative geometric optimization algorithm has been proposed by Chen et al. [1997]. In each
iteration of this method, a new seed is placed in the coldest spot of the dose distribution in the
PTV, improving in each step the dose uniformity. Optimized seeds’ configuration is considered
the one with the minimum total activity. The minimum total activity varies slowly with the
number of the seeds and multiple clinically acceptable seeds’ configurations with similar total
activity but different individual activities are generated. The configuration with total activity
as close as possible to the minimized value is chosen, if an individual activity is matched.

Alternative inverse planning systems based on simulated annealing (SA) have been proposed
by various groups [Sloboda, 1992, Sloboda, Pearcey, and Gillan, 1993 and Pouliot et al.,
1996]. SA is a metaheuristic optimization algorithm inspired by metal annealing. When a
metal is cooling down, slowly enough, its atoms are rearranging to form eventually a crystal
structure which corresponds to the global minimum thermodynamic energy state of the system.
Similarly, in SA a virtual temperature is used. This temperature is incorporated in the acceptance
probability formula of the form

Paccept = e
−∆E
T , (1.9)

where Paccept denotes the acceptance probability of the new configuration, ∆E denotes
the energy (cost) difference between the previous and new configuration, and T defines the
virtual temperature. Lower energy configurations are always accepted, while higher energy
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configurations can be accepted if the acceptance probability is higher than a specified threshold
(usually randomly selected from a uniform distribution). The particularity of SA is the ability
to escape from local minima in the initial steps of the algorithm where T is high. While T

is gradually decreasing the system’s state is hopefully in the global optimum area and only
“better” solutions are accepted (see Figure 1.9).

Figure 1.9 – Energy (cost) function with several minima. The global minimum is located at
the state with the lowest energy (E).

In the SA-based optimization scheme proposed in [Pouliot et al., 1996] several objectives,
with manually adjusted importance factors by the operator, are optimized simultaneously
providing control over the dose to be deposited on the PTV and the cold-/hot-spot occurrence.
The whole optimization procedure is completed in approximately 15 minutes.

Genetic algorithm (GA), another metaheuristic optimization algorithm, has also been ap-
plied in LDR brachytherapy optimization [Yu and Schell, 1996, Yang et al., 1998, and Yu et al.,
1999].

GA is a variant of evolutionary algorithms [Deb, 2001]. It is designed for solving opti-
mization problems based on a natural selection process inspired from biological evolution. In
contrast to SA, GA generates a population of candidate solutions in each iteration, rather than
one. The candidate solutions are evaluated and then ranked from best to worst. New solutions
are generated from the previous ones following the process of elitism, mutation or crossover
[Vasconcelos et al., 2001].

In a recent study, a new approach for the optimization of LDR brachytherapy using a
compressed sensing inspired solver has been proposed [Guthier et al., 2015]. Compressed
sensing is a signal processing technique for signal reconstruction, exploiting the sparsity of a
signal through optimization to recover it from fewer samples than required by the Shannon-
Nyquist sampling theorem [Luke, 1999]. Guthier et al. in their work exploit the sparsity of the
seeds’ configuration to optimize a multi-objective function considering dose delivery both in
PTV and OARs within few milliseconds.

Per contra, compressed sensing solvers are greedy algorithms and do not guarantee to
identify the global optimum. Under center conditions, the global optimum can be found with
high probability, however, was not investigated whether the LDR brachytherapy optimization
problem satisfies these conditions.
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1.5 Thesis objective statement

The objective of this thesis is to optimize the treatment planning of low-dose-rate prostate
brachytherapy. The goal is to meet the limitations of current planning systems as described in
Section 1.4. The planning of the brachytherapy procedure can be summarized in the decision
of optimal seed positions, so that the maximum possible dose is delivered to the tumor target
while simultaneously depositing as little dose as possible in the OARs and surrounding tissues.

Inverse treatment planning systems that reduce the time required to complete a dose plan
are already available in clinical routine. However, the accuracy of the solution depends on the
models and calculation methods used in these systems. For reasons of computation speed, since
the plan is performed intraoperatively, the AAPM TG-43 dose formalism is used. However, it
considers the patient as a volume of water, which introduces an important approximation on the
performed treatment plan. In addition, there is another important approximation on treatment
planning. In fact, the insertion of the needles as well as the radiation-induced tissue necrosis
creates a physiological response which results in the creation of prostatic edema. Deformations
of the prostate and surrounding tissues during and after surgery due to edema are not taken into
account by current treatment planning systems. As a result, once more, there is a significant
gap between the estimated plan and the treatment that will be provided to the patient.

The goal of this work is to help improve the treatment planning of prostate brachytherapy.
To do so, recalling the two main limitations, namely, the approximate dose calculation and the
non-consideration of the edema will be addressed by proposing:

1. An inverse treatment planning system (ITPS) with a dose calculation mechanism based
on Monte Carlo (MC) simulation methods to take into account the heterogeneity of
the patient’s tissues (by image acquisition). To ensure cumputational time complying
to clinical restrictions, the dose calculation engine GGEMS, which employs graphics
processing units (GPUs), will be used. This system will be combined with a fast
simulated annealing optimization method and a cost function based on dose volume
histograms.

2. A biomechanical model of the edema evolution mechanism. Based on theories of
elasticity and mixtures, a computational model is developed and incorporated into the
ITPS dose calculation mechanism. The objective of this development is the correlation
between the mechanical properties of the patient’s specific tissues and the parameters of
the edema (magnitude, resorption time), in order to allow the in situ prediction of the
edema evolution mechanism and the integration of this information in the seed implant
positions planning.

This manuscript will present these two suggestions for improvements in prostate brachyther-
apy treatment planning in 3 main chapters.

Chapter 2 will describe the methods for the implementation of the ITPS. The methodology
assumptions will be presented, in particular on the conversion of the patient into a computa-
tional phantom from intraoperative ultrasound images and its effect on the accuracy of MC
simulations. The dosimetric objectives will be translated into a cost function and a methodol-
ogy for optimization will be established. The optimization capabilities of the proposed ITPS
will be evaluated with actual clinical plans using the recommendations of AAPM TG-137.
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In Chapter 3, a brief introduction on the theoretical aspects of continuum mechanics and
numerical modeling will describe the biomechanical model of edema that will be proposed. A
series of experiments for the model’s evaluation will be carried out and will make it possible
to understand the important parameters of the model and in particular the impact of the tissue
elasticity in the formation of the edema.

Chapter 4 will be the last chapter describing the methodology. This chapter will propose
a strategy to incorporate the edema biomechanical model into the dosimetry of the ITPS,
including the introduction of a dynamic dosimetry system. The advantage of this approach
is that allows the consideration of anatomical changes in dosimetry. It will be studied by
comparing the intraoperative and postoperative dosimetry according to different scenarios of
edema evolution. A representative case will be selected to demonstrate the ability of the
proposed strategy to produce treatment plans where the seeds migration is considered in dose
calculation during treatment planning.

To conclude, a final chapter of discussion and conclusion will be presented. It will focus
on the major results of this thesis but also on the different approximations and consequently the
various points that still need to be improved as perspectives.

1.6 Objective de thèse

L’objectif de cette thèse est d’optimiser la planification dosimétrique de la curiethérapie prostate
à bas débit de dose. Le but est de répondre aux limites des systèmes de planification actuels
tels qu’ils sont décrits dans la section 1.4. La planification de la procédure de curiethérapie
peut être résumée dans la décision des positions optimales des grains, de sorte que la dose
maximale possible soit délivrée à la cible tumoral alors que, simultanément, déposée le moins
de dose possible dans les OAR et les tissus environnant.

Il existe en routine clinique des systèmes de planification de traitement inverse qui facilitent
le temps de réalisation d’un plan de dose. Toutefois, l’exactitude de la solution dépend des
modèles et méthodes de calcul employés dans ces systèmes. Pour des raisons de rapidité
de calcul, car le plan est réalisé en peropératoire, le formalisme de calcul de la dose AAPM
TG-43 est utilisé. Cependant il considère le patient comme un volume d’eau, qui apporte une
approximation importante sur un plan de dose réalisé à partir d’un tel formalisme. En plus
de cela, il existe une autre approximation importante sur la planification du traitement. En
effet, l’insertion des aiguilles ainsi que la nécrose des tissus par irradiations créées une réponse
physiologique qui se traduit par la création d’un œdème de la prostate. Les déformations de la
prostate et des tissus environnants pendant et après l’opération en raison de la formation d’un
œdème ne sont pas prises en compte par les systèmes actuels de planification du traitement. En
conséquence, encore une fois, il y aura un écart important entre le plan estimé et le traitement
qui sera prodigué au patient.

L’objectif de cet travail est de contribuer à améliorer la planification de dose du traitement de
curiethérapie de la prostate. Pour cela les deux limitations principales évoquant ultérieurement
à savoir le calcul de dose approximatif et la non considération de l’œdème sera résolue en
proposant :

1. Un système de planification de traitement inverse (ITPS) avec un mécanisme de calcul de
dose basé sur des méthodes de simulation par Monte Carlo (MC) permettant de prendre
en compte l’hétérogénéité des tissus du patient (via une image scanner). Pour garantir un
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temps clinique le moteur de calcul de dose GGEMS utilisant des processeurs graphiques
(GPU) sera utilisé. Ce système sera combiné à une méthode d’optimisation par recuit
simulé et une fonction de cout basé sur les histogrammes de volume de dose.

2. Un modèle biomécanique du modèle d’évolution de l’œdème. Sur la base des théories
de l’élasticité et des mélanges, un modèle de calcul est développé et incorporé dans
le mécanisme de calcul de la dose MC de l’ITPS. L’objectif de ce développement est
la corrélation entre les propriétés mécaniques des tissus spécifiques du patient et les
paramètres de l’œdème (grandeur, temps de résorption), afin de permettre la prédiction in
situ du modèle d’évolution de l’œdème et d’intégrer cette information dans la planification
de la position des grains.

Ce manuscrit présentera ces deux propositions d’améliorations de la planification de la
dose en curiethérapie prostate en 3 chapitres principaux.

Le chapitre 2 décrira les méthodes pour la réalisation de l’ITPS. Les hypothèses seront
présentées, notamment sur la conversion du patient en fantôme numérique à partir d’images
ultrason peropératoires et leurs effets sur la précision des simulations MC. Les objectifs
dosimétriques seront traduits en fonction de coût et une méthodologie pour son optimisa-
tion sera établie. Les capacités d’optimisation de l’ITPS proposé seront évaluées avec des
plans cliniques réels en utilisant les recommandations du rapport AAPM TG-137.

Dans le chapitre 3, après une brève introduction sur les aspects théoriques de la physique
mécanique continue et de la modélisation numérique, on décrira le modèle biomécanique de
l’œdème qui sera proposé. Une série d’expériences pour l’évaluation sera réalisée et permettra
de comprendre les paramètres important du modèle et notamment de la place des valeurs
d’élasticités des tissus dans la formation de l’œdème.

Le chapitre 4 sera le dernier chapitre méthodologique. Ce chapitre proposera une stratégie
pour incorporer le modèle biomécanique de l’œdème dans le calcul dosimétrique de l’ITPS,
notamment en introduisant un système de dosimétrie MC dynamique. La capacité de cette
approche est de permettre la compensation des changements anatomique dans la dosimétrie.
Elle sera étudier en comparant la dosimétrie peropératoire et post-opératoire en fonction de
différents scénarios de création d’œdèmes. Un cas représentatif sera sélectionné pour démontrer
la capacité de la stratégie proposée à produire des plans de traitement où la position des grains
est compensée par la prédiction de l’œdème.

Pour terminer un dernier chapitre de discussion et de conclusion sera présenté. Il portera
sur les résultats majeurs de cette thèse mais également sur les différentes approximations et par
conséquent les divers points qu’ils restent à améliorer en tant que perspectives.
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CHAPTER

2
MONTE CARLO INVERSE TREATMENT

PLANNING ALGORITHM

A fast and efficient inverse treatment planning algorithm is presented. The fast simulated
annealing is used as the optimization method. Dose calculations are performed based on

GPU-accelerated Monte Carlo (MC) simulations using the GGEMS platform. The quality of the
generated treatment plans is evaluated with the AAPM TG137 recommendations. Treatment
plans are also compared with clinical plans of 18 patients. The DVH-based optimization
outperforms in planning quality the clinical plans. Treatment plans of high quality can be
produced in less than 1 minute providing MC dosimetric accuracy.

Un algorithme de planification de traitement inverse rapide et efficace est présenté dans ce
chaptire. Le recuit simulé rapide est utilisé comme méthode d’optimisation. Les calculs

de dose sont effectués par des simulations Monte Carlo (MC) accélérées sur GPU à l’aide
de la plate-forme GGEMS. La qualité des plans de traitement générés a été évaluée avec les
recommandations de l’AAPM TG137. Les plans de traitement obtenus ont été également
comparés à ceux obtenus par le système clinique de 18 patients. L’optimisation basée sur
l’histogramme du volume de dose est supérieure aux plans obtenus par le système clinique.
Les plans de traitement obtenus par notre méthode sont produits en moins d’une minute.

“Well begun is half done."

— Aristotle
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2.1 Inverse treatment planning algorithm overview

The quality of the LDR brachytherapy outcome depends strongly on the placement of the
radioactive sources (seeds) in the prostate. Considering the anatomical constraints, such as the
volume and size of the gland, and the procedure constraints that are introduced by the use of
the 2D template guide for needle guiding and seeds’ placement (see Figure 1.4), the number
of available positions that a seed can occupy ranges between 200 and 600. During a typical
implant, approximately 60-70 seeds are chosen to be delivered in specific locations, from the
available 200-500 positions. The selected seeds’ configuration (implant) should deliver the
desired dose to the prostate while sparing the organs at risk (OARs). Achieving the specified
dosimetric objectives is a matter of selecting the best combination of seed positions (optimal
implant). In the minimum set-up of 200 available seed positions, the number of possible
combinations for 60 seeds, C60

200, can be calculated using the combinatoric formula

C60
200 =

200!

60!(200 − 60)!
≈ 7 × 1051. (2.1)

Finding the optimal implant manually, out of this astronomical number of possible con-
figurations, is impossible. Therefore, a satisfying implant rather than the optimal is selected
based on the experience and the intuition of the clinician. Additionally, it is usually necessary
to evaluate several implants until conclude, “hopefully”, to the most satisfying one.

Alternatively to the manual implant selection, inverse treatment planning algorithms (pre-
sented in Subsection 1.4.3) aiming to the automatic prediction of the optimal implant have been
proposed [Pouliot et al., 1996, Yang et al., 1998, and Guthier et al., 2015]. The introduction of
inverse treatment planning algorithms in the clinical procedure improves the treatment’s out-
come and decreases the overall operation time. These algorithms are usually based on iterative
methods in order to “explore” the large space of possible implants and eventually select the
optimal (or near optimal) one.

The quality of an inverse treatment planning algorithm lies in its ability to achieve an
optimal implant in the possible least time. Among the various proposed algorithms, simulated
annealing (SA) is known as one of the most capable to achieve the global optimum implant
and hence is widely used in inverse treatment planning systems, dedicated to various treatment
procedures [Lessard and Pouliot, 2001, Webb, 1991, Martin et al., 2007, and Dai Kubicky et al.,
2008]. As a result of the thermal fluctuations model (see Equation 1.9) of the SA metaheuristic,
“worse” quality implants can be selected during the first iterations of SA avoiding, therefore,
local minima “traps”. The probability to select solutions of lower quality is decreasing as
the system “cools down” and the algorithm is expected to eventually converge at the global
optimum. The global optimum convergence of SA depends on the cooling rate (CR) of the
algorithm. For standard SA the temperature for the j th state is given by T j

=
T0

ln( j)
and leads to

a big number of iterations until the algorithm cools down to the optimal solution.
Due to the increased computational cost, this cooling procedure is not applicable in an

intraoperative environment, hence improved simulated annealing procedures have been intro-
duced. These procedures follow a fast cooling schedule of the form T j

=
T0
j
, where j is the j th

iteration and have already been applied successfully in LDR prostate brachytherapy [Pouliot
et al., 1996]. The fast simulated annealing FSA of Pouliot et al. was able to produce treatment
plans in 15 minutes on a Sparc-5 SUN workstation at the time of publication, however the
FSA implementation in modern computer systems can converge to the optimal solution in
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≈ 1 minute [D’Amours et al., 2011]. A novel approach in LDR brachytherapy optimization
demonstrating interesting results was introduced recently by Guthier et al. [2015]. Guthier et al.
proposed an inverse planning algorithm based on compressed sensing [Donoho, 2006]. The
compressed sensing optimization algorithm presented by Guthier et al. is based on the sparsity
of the seeds’ configuration and was demonstrated that outperforms SA (x542 faster), while
generating similar optimization results. However, this implementation is based on a greedy
algorithm and its ability to overcome local minima traps was not investigated by the authors.

Despite the ability of an inverse planning optimizer to achieve the optimal implant, the
quality of its result is as good as the explored solutions’ space. While the various proposed
inverse planning systems are focusing on the decrease of the optimization time, little has been
done in the improvement of the accuracy during the generation of the configuration space to
be explored. The previously proposed inverse treatment planning algorithms are based on the
AAPM TG-43 protocol recommendations (see Subsection 1.4.1) for the dosimetric evaluation
of the possible configurations’ space. Since the optimization procedure of the inverse planning
algorithms is based on the evaluation of the dose deposited by the possible seeds’ configurations,
the generated optimal configuration of the optimizer is expected to be in reality sub-optimal,
due to dosimetric errors introduced by the rough approximations of the TG-43 protocol.

In an effort to develop a high-quality optimizer, a Monte Carlo inverse treatment plan-
ning algorithm (MC-ITPA) is proposed in this chapter. Similarly to previous work in HDR
brachytherapy inverse planning [D’Amours et al., 2011], we evaluate the dose deposition of the
possible seeds’ configurations using Monte Carlo (MC) calculated dose kernels. Patient spe-
cific anatomy and tissue heterogeneities can, therefore, be accounted. In contrast to the method
of D’Amours et al., the dose kernels are not precalculated using time-consuming conventional
MC algorithms. We rather exploit the power of parallel processing on GPU.

We introduce GGEMS [Bert et al., 2013] - a GPU-accelerated Monte Carlo library - in
the inverse treatment planning system. The fast MC dosimetry implementation of GGEMS
enables the calculation of dose kernels in intraoperative acceptable times. Furthermore, the
optimization of the seeds’ configuration selection is based on an FSA implementation following
the paradigm of Pouliot et al. [1996] since the alternative considered method of Guthier et al.
lacks maturity at the current moment. The steps of the proposed MC-ITPA pipeline are listed
below with a brief description:

1. Dose kernel A dose deposition map is calculated
generation for every possible seed position

2. Implant Accumulation of dose deposition maps
total dose of selected seeds forming the given implant

3. Optimal Optimization of the implant using
implant fast simulated annealing

2.1.1 GPU-accelerated Monte Carlo dosimetry

MC simulations are based on random sampling methods to numerically approach the solution
to physical and mathematical problems that might be deterministic. Among many science
fields, these simulations are used in particle physics to model accurately physical processes and
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As a single instruction multiple data device, all threads of a GPU execute the same code,
called kernel. Once a kernel is launched, the GPU architecture automatically schedules all
blocks of threads on the different SMs. Each block assigned to a SM is subdivided into units
called warps, which can be considered as the smallest executable unit of code. Recent GPU
architectures have at least 32 SPs per SM, meaning that a SM processes a single instruction
over all of the threads in a warp at a time. The capability to process warps in a parallel way
over thousands of SPs sets the GPU a highly parallel computing device.

Multiple memory spaces are available from where threads may access data during their
execution. Each thread has private local memory, while each block of threads has shared
memory visible to all threads of a block. Local and shared memory provide quick access,
however their size per block remains rather small (16–64 kB per block). In addition to local
and share, all threads have access to the same global memory. This global memory is the largest
one (up to 12 GB), and even it has a high latency compared to the local and shared memory,
its bandwidth remains higher than the one provided by recent CPU processors (547.7 GBps for
the latest NVIDIA TITAN Xp and only 34.1 GBps for an Intel Core i7-7920HQ).

Moreover, there are two additional read-only memory spaces, namely the constant and
texture memory, accessible by all threads residing within the global memory but cached for
efficient access. The constant memory, which is usually limited in size (<65 kB for recent
NVIDIA GPU architectures) is often used for input variables, since their values can be accessed
by all threads. On the other hand, texture memory is an alternative way to use cached data
residing on the global memory, without the memory size limitation of the constant memory.
For a more detailed description of GPU architectures the reader is referred to (Blythe 2008,
Nickolls and Dally 2010).

Considering the implementation for MC simulations in GPUs, it has to be particularly
adapted to perfectly fit the specifications and constraints of the GPU architecture. GGEMS
library, is a Geant4-based MC simulation library for medical application using the CUDA
paradigm, which allows harnessing in an efficient manner the power of recent GPU architectures.

GGEMS platform

The GGEMS platform (GPU GEant4-based Monte carlo Simulations, http://ggems.fr) is a
toolkit for MC simulations in medical applications based on the extensively validated physics
models of Geant4 [Agostinelli et al., 2003]. The physics processes of the photoelectric phe-
nomenon and Compton scattering from the standard model as such as the Rayleigh scattering
from the Livermore model are implemented in GPU, based on the original Geant4 implemen-
tation, without introducing any approximations [Bert et al., 2013, Bert, 2016].

The particle-emitting source is modeled by a phasespace file provided in the simulation
process which can be generated by any other simulation toolkit such as Geant4 or GATE [Jan
et al., 2011, Sarrut et al., 2014]. Otherwise, if it is available, it can be retrieved by the GGEMS
database. The use of phasespace files for modeling the particle-emitting source is adopted in
order to avoid degradation of the simulation speed due to the analytical construction of source
models with complicated shape, such as the ones found in brachytherapy procedures.

The particles emitted from the phasespace-modeled source are tracked in a voxelized phan-
tom that represents the anatomy of the patient. In case that a CT image of the patient anatomy
is provided, it can be used directly as the voxelized phantom by implicitly converting the elec-
tronic density of the CT image voxels to the corresponding materials using the GGEMS material
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database. Therefore, voxel-level heterogeneities of the patient anatomy can be considered in
the MC simulation.

InGGEMS plaform, in order to further decrease the simulation time, dose deposition recording
using track length estimator (TLE) is implemented [Williamson, 1987], additionally to dose
deposition recording based on the conventional analog estimator. In the case of the analog
estimator, the dose delivered by a particle is expressed as the ratio of the energy deposited in
a voxel of interaction and the mass of this voxel. However, in TLE the dose is recorded in
all the traversed voxels by the given particle’s trajectory. In this way, the desired statistical
uncertainty can be obtained for a significantly lower number of simulated particles compared
to the standard analog estimator.

Considering a LDR brachytherapy simulation were 125I seeds are used, the statistical
uncertainty in the prostate volume is ≈ 2% for a GGEMS simulation using the TLE for 5 × 106

simulated particles. Under these conditions, a MC simulation of a LDR prostate brachytherapy
treatment plan can be executed in ≈ 6s on a standard laptop equipped with a NVIDIA GEFORCE
GTX 960M graphic card and in ≈ 2s on a workstation equipped with a NVIDIA GTX Titan X.
The high accuracy of the resulting dose map and the low execution time provided by GGEMS
platform sets it ideal to be used in the proposed MC-based inverse treatment planning algorithm
(MC-ITPA).

2.1.2 Brachytherapy seed model in the proposed MC-ITPA

While in conventional inverse treatment planning algorithms (ITPA) based on the TG-43
recommendations the radiation sources are modeled as either point or linear sources, in our
proposed MC-ITPA the full analytical model of the seed type used in our simulations is
considered. All the undergone simulations during the development and validation of the MC-
ITPA were done using the STM1251 (Bard Medical Division, Covington, GA, USA) seed model,
as it is the seed type used in the Regional University Hospital Center (CHRU) of Brest, from
where clinical data were provided for the validation of our developments.

The STM1251 seed is a cylindrical 125I source of 4.5 mm length and 0.81 mm diameter
[Kirov and Williamson, 2001]. The radioactive 125I source has the form of a cylindrical coat
embedded in a coaxial cylindrical geometry of seven layers of different material composition
(see Figure 2.2).

Figure 2.2 – STM1251 seed model. The STM1251 seed is a LDR 125I emitting source and is
composed of 7 coaxial cylindrical layers. Ordered from the inner to the outer, the seed consists
of gold, aluminum, copper, iodine-125, nickel, air, and titan.
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The core of the STM1251 seed is composed by gold (ZAu = 78) and is 3.8 mm long with 0.36
mm diameter. As a result of its high atomic number, gold absorbs X-rays and hence, facilitates
the localization of the seeds in fluoroscopic or tomographic imaging used for post-implant
evaluation of the brachytherapy procedure.

The seed’s gold core is covered by three layers of aluminum, copper, and nickel with similar
length as the gold core and thickness of 0.15 mm, 1.9 µm, and 2.5 µm respectively. The role of
these three layers is to provide chemical fixation between the gold core and the 125I layer which
is located between the copper and nickel layers and has a thickness of 17 nm. The external
layer (4.5mm length, 0.81 mm diameter) is composed by titan and is separated from the coated
core by a layer of air. Furthermore, the coated core is not spatially fixed and is in contact with
the external titan shield due to gravity.

The STM1251 was previously modeled by Lemaréchal et al. [2015] and a phasespace file,
where particle interactions within the seed’s geometry are taken into account, is available in
GGEMS phasespace database. The phasespace file of the described STM1251 seed is used in
the simulations of the proposed MC-ITPA for the generation of single-seed dose maps for all
the possible positions a seed can occupy in the prostate of a given patient. These single-seed
dose maps are accumulated, in different combinations, to form the total dose maps for various
implants which are evaluated by an optimization algorithm in order to provide the optimal
implant.

2.1.3 Fast simulated annealing in LDR brachytherapy

Fast simulated annealing (FSA) is a version of simulated annealing (SA) with accelerated
convergence towards the optimal solution in comparison with the classic SA. It is chosen as
the optimization algorithm of the proposed MC-ITPA due to its maturity and extensive use in
various, commercial and no, algorithms for the inverse treatment planning of several medical
procedures [Oldham and Webb, 1995, Pouliot et al., 1996, Rowbottom, Nutting, and Webb,
2001, and Lahanas, Schreibmann, and Baltas, 2003]. FSA has been successfully implemented
in the past [Pouliot et al., 1996] for the optimization of 125I LDR prostate brachytherapy,
demonstrating the capability to produce clinically acceptable treatment plans.

Because of computational power limitations at the time of implementation (1996), several
approximations were considered. During the optimization procedure, the space of possible
solutions was constrained by setting, manually, prior to the optimization, the desired needles’
trajectories. In this way, the number of possible seeds’ positions to be considered was limited
to the number of seeds that correspond to the selected trajectories.

Furthermore, the objectives of the optimization were limited to maximum prostate dose
coverage and sufficient dose uniformity, in order to avoid cold/hot spots, in the prostate interior.
Restrictions for the dose delivered to the organs at risk (OARs) were not considered in the cost
function

E(k) =
f

N

N∑

i=1

Hi +W
g

M

M∑

j=1

B j, (2.2)

but were rather controlled by the initial needles selection. In the above cost function (see
Equation 2.2) E(k) is an “energy-like” cost value at the k th iteration. The optimal solution for
the optimization objectives corresponds to the minimum cost value of the given function. The
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2.2 MC-ITPA development

While previously proposed inverse planning algorithms for LDR brachytherapy are based on the
TG-43 dose calculation recommendations, our inverse planning algorithm uses MC-simulated
dose calculation for high dosimetric accuracy. Even if, inverse planning algorithms based on
MC dose kernels have previously been proposed [D’Amours et al., 2011], our development
(according to our current knowledge) is the first to incorporate a fast GPU-accelerated MC
dosimetry scheme in inverse planning with intra-operative acceptable computational time
requirements. The combination of MC dosimetry with FSA enables the fast, fully automatic,
optimization of the treatment planning procedure of LDR prostate brachytherapy.

2.2.1 MC-based seed dose map generation

MC simulations produce high accuracy dose maps that consider the heterogeneities in the
patient’s anatomy. In order to acquire a result of satisfying low statistical uncertainty, a
great number of particles (109) must be generated during the simulation. This demand leads
to a significant increase of the simulation’s computational time and is the main reason that
MC-based dosimetry is not yet fully integrated into the clinical routine.

In order to overcome this limitation of the MC-based dosimetry, we incorporated the GGEMS
platform in our proposed MC-ITPA. Using GGEMS, the simulation time is dramatically decreased
by exploiting GPU computational resources to track the interaction history of multiple particles
inside a medium in parallel. Furthermore, the use of the TLE implementation provided
by GGEMS enables the reduction of the number of particles required to acquire a statistical
uncertainty of ≈ 2% inside the prostate from 109 to 5 × 106 particles.

Even though MC simulation is fast using GGEMS, it can not be incorporated directly in any
inverse planning algorithm of iterative nature, such as the fast simulated annealing. The dosi-
metric evaluation of several thousands of possible implants required by the FSA optimization
algorithm is expected to result in long simulation times, not applicable in clinical routine.

This limitation is addressed by generating and storing in secondary memory (hard disk
drive) single-seed dose maps for all the possible positions that a seed could occupy, instead of
evaluating the dosimetry for various implants “on the fly”, considering a realistic clinical setup
(patient’s anatomy, seed’s geometry). The possible seed locations are retrieved with respect
to all the possible needle trajectories available at the needle-guiding template grid (see Figure
2.4). Noticeably, candidates for dose map generation are seed occupying positions that are
located only on needle trajectories penetrating the prostate gland.
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(a) Transperineal US image (b) 3D representation of possible seeds’ positions

Figure 2.4 – Possible seed positions. The possible positions that seeds can occupy in a treatment
plan are selected considering the needle positions, as given by the template guide. Needles
that do not penetrate the prostate, or penetrate additionally an OAR (urethra or rectum) are not
considered during the possible seeds’ locations calculation.

The seed positions located on needle trajectories that are not penetrating the prostate and
the ones on trajectories that penetrate, additionally to the prostate, an OAR (urethra or rectum)
are discarded and no dose map is generated for them. By discarding seed positions that are
expected to never be selected, we reduce significantly the search space of possible implants
during the optimization process and, eventually, the necessary time to generate the single-seed
dose maps.

In the inverse planning process, the generated dose maps will be retrieved and will be
accumulated to generate the total dose map of the possible implants that will be evaluated during
the optimization. While interactions between emitted particles from a seed with neighbor seeds
can not be accounted with this approach (single-seed dose map generation), interactions within
the seed are considered by using a phase-space to simulate the seeds (STM1251 seed model)
derived from GGEMS database. For the generation of the employed phasespace, MC simulations
were executed considering an analytical model of the full geometry of the STM1251 seed
[Lemaréchal et al., 2015].

Moreover, heterogeneities between different underlying tissues are taken into account. For
voxel-level heterogeneities consideration, a CT acquisition has to be available in order to convert
the voxel electronic density to material composition, since such information is not available in
the ultrasound image, used during treatment planning. The CT acquisition should be registered
to the intra-operatively acquired US image using a dedicated registration algorithm.

However preoperative CT imaging is not part of the standard imaging protocol of LDR
brachytherapy and is associated with additional exposure of the patient to ionizing radiation.
On the other hand, according to the recommendations of the AAPM TG-186 [Beaulieu et
al., 2012], computational phantoms can be generated by assigning materials with elemental
composition, following the ICRU report No. 46 [Bethesda, 1992] and the recommendation of
Woodard and White [1986], on the different labels of the segmentation image that is generated
during the standard operation procedure by the clinician for the assessment of the size and
shape of the prostate and OARs.
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the final dose map of the implant is not affected. This is a result of the dose “hits” accumulation
when the individual seed dose maps are added. Furthermore, the computational time is reduced
since less emitted particles are simulated.

As an example, for a standard implant of 60 seeds, where all the seeds have the same
activity, the emission of the simulated particles (5 × 106) is equally distributed at the available
seeds of the given implant. As a result, the number of simulated particles per single-seed dose
map can be divided by a factor of 60, achieving a significant acceleration during the single-seed
dose map generation (15/20s for 400/600 single-seed dose maps). When these 60 dose maps
are accumulated, the resulting total dose map is expected to have similar statistical uncertainty
as if the dose map was produced by a complete simulation for the implant with 5× 106 emitted
particles.

With this approach, the computational time is greatly decreased, allowing for intra-operative
MC dosimetry. In Table 2.2, the difference in the statistical uncertainty in the prostate for a dose
map generated by a simulation for the total implant with 5 × 106 simulated particles and the
corresponding dose map from the accumulation of the 60 single-seeds’ dose maps simulated
with 83334 particles, each, is demonstrated.

Table 2.2 – Comparison of the statistical uncertainty in the prostate between the total implant
dose map generated by a complete MC simulation and generated by single-seed dose maps
accumulation

Complete Single-seed dose
Organ

simulation map accumulation
prostate

2.27 ± (0.16)% 2.29 ± (0.15)%
uncertainty

The presented results correspond to a 18 patients dataset. In complete simulations of the total
seeds’ configuration, 5 × 106 particles are simulated. In single-seed dose maps generation
5 × 106/N particles are simulated where N = 60 is the number of the seeds in the total
configuration.

As expected, the statistical uncertainty’s difference between the two dose maps is very low
(lower than the standard deviation) and hence MC-based dosimetry can be fully integrated in
the clinical environment without significant computational overhead. Before continuing with
the development of the optimization process of the MC-ITPA, the effect of the considered
assumptions (number of simulated particles, material composition) on the dosimetric results
should be evaluated.

2.2.2 Statistical uncertainty effect in MC-ITPA dosimetry

In order to reduce the statistical uncertainty of MC simulations the number of simulated
particles should be increased at the cost of increased computational time. However to allow
for the incorporation of MC simulations in clinical practice, the computation time should be
reduced significantly. Nevertheless, an appropriate statistical uncertainty, usually ≈ 2% is
required to ensure accurate dosimetric results.

In our experiments, single-seed dose maps were generated using few thousands of particles
(≈ 60-80 × 103particles) exploiting the TLE implementation of the GGEMS platform. The
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number of simulated particles was selected appropriately so that the generated dose map of the
optimal implant should have the desired statistical uncertainty (≈ 2%) in the prostate. For this
number of simulated particles, each single-seed dose maps was generated in ≈ 35 ms on the
workstation (NVIDIA GTX Titan X).

In order to verify the dosimetric accuracy of simulations with 5 × 106 particles, their
dosimetric results were compared with dosimetric results from simulations with 107 particles
(≈ 1% statistical uncertainty in the prostate). Simulations were executed for three randomly
selected patients from the MC-ITPA dataset. The percentage relative difference in the dose
metrics between the simulations with 5 × 106 and 107 particles is demonstrated in Table 2.3.

Table 2.3 – Simulated particles number effect on the dose metrics. The percentage relative
difference in the dose metrics for simulations with 107 particles (≈ 1% statistical uncertainty)
against simulations with 5 × 106 particles (≈ 2% statistical uncertainty) is given.

107 p. vs 5 × 106 p.
Organ

relative difference (%)

Prostate

V100 0.04 ± (0.05)
V150 −0.11 ± (0.15)
V200 0.00 ± (0.00)
D90 0.02 ± (0.06)

Urethra
D10 −0.74 ± (0.26)
D30 0.30 ± (0.15)%

Rectum
D2cc −0.03 ± (0.02)
D0.1cc −1.46 ± (0.27)

Comparison between these simulations yielded negligible dosimetric differences in all
criteria except than a low overestimation of the D0.1cc dose metric of 1.4% for the simulation
with 5 × 106 particles. It is shown that the chosen number of simulated particles to achieve a
≈ 2% uncertainty was sufficient for the generation of dosimetric results of high accuracy.

2.2.3 Material composition effect in MC-ITPA dosimetry

Another important factor affecting the dosimetric accuracy of the MC simulation is the selection
of the materials that are assigned to the corresponding tissues during the computational phan-
tom generation. Heterogeneous phantoms can be constructed by assigning different material
attributes to the segmented organs (see Figure 2.5). Using such phantoms the non-uniform dose
distribution can be simulated with realism in contrast to homogeneous water-like phantoms
such as the ones used in the TG-43 dose formalism.

Similarly to the dose overestimation induced by the TG-43 “water-phantom” assumption,
the dose can be over or underestimated if not realistic materials are used in the simulation.
To avoid such situation, appropriate materials should be selected. A more appropriate way
to generate computational phantoms is by using the patient’s CT image. This image can be
directly converted in a computational phantom with voxel-level heterogeneity by converting
the underlying Hounsfield units [Brooks, 1977] in the corresponding material values. While
this approach enables the consideration of the complete heterogeneity pattern of the underlying
tissues during the MC simulation, is only applicable if the patient’s CT image is available.
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Since pre-operative CT imaging is not part of the imaging protocol of LDR brachytherapy,
it is of interest to investigate the dosimetric impact of computational phantoms derived from
the segmentation image rather than the patient’s CT image. Here, we investigate dosimetric
differences between computational phantoms based on the ICRU report No. 46 and the ICRP
Publication No. 89 recommendations (Comp. Ph.) and CT image derived phantoms (CT Ph.).
The preoperative CT images, and the corresponding segmentation images, of the 5 patients
available in the MC-ITPA database are used. MC simulations are executed using GGEMS with
the TLE enabled with 5 × 106 simulated particles. Since the urethra was not segmented in the
provided dataset the effect of the assumed material composition on the various dose metrics of
interest was investigated only for the prostate and the rectum.

The relative dosimetric difference between the computational phantoms and CT phantoms
is demonstrated in Table 2.4. A comparison with filtered CT image phantoms, after applying
a Gaussian filter, is also considered in order to account for the effect of the statistical noise
present in CT images.

Table 2.4 – Effect of the materials’ composition on the dose metrics. Percentage relative
difference of the various dose metrics between simulations performed with computational
phantoms and CT derived phantoms (without or with statistical noise correction).

Comp. Ph. vs CT Ph. Comp. Ph. vs filtered CT Ph.
Organ

relative difference (%) relative difference (%)

Prostate

V100 1.4 ± (0.8) 0.4 ± (0.2)
V150 6.8 ± (1.8) 2.4 ± (0.6)
V200 8.1 ± (0.4) 2.9 ± (0.7)
D90 6.5 ± (0.6) 1.8 ± (0.6)

Rectum
D2cc 2.2 ± (3.0) 3.4 ± (4.7)
D0.1cc −5 ± (7.2) −2.2 ± (3.3)

It was demonstrated that the computational phantoms are overestimating the deposited dose
in general. This results from not accounting the complete heterogeneity of the patient’s tissue.
However, the dose differences are reduced when the statistical noise is removed from the CT
image. This shows that an initial image processing should be done on the CT images before
used in MC dosimetry to avoid false heterogeneities.

It was found that the dose overestimation when computational phantoms are used is less
than 5% compared to the filtered CT-derived phantoms for the given dataset. This allows
the use of such computational phantoms for MC dosimetry when a CT image is not available.
Nevertheless, CT-derived phantoms should be preferred as patient-specific heterogeneities such
as calcifications can be considered, too. However image processing is admissible in order to
reduce the statistical noise and improve the outcome.

2.2.4 Optimization process

Following the generation and storage of the single-seed dose maps for all the possible seed
locations, the optimization process is initiated in order to retrieve the optimal implant that
corresponds to the desired dose distribution in the area of interest. Due to the extensive use
of the single-seed dose maps during this process, a data structure of dose vectors (dectors) is
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extracted from the given single-seed dose maps. The dectors are loaded in primary memory
once (initialization phase) and are used through the whole treatment planning optimization
process. In this way, speed-down due to data latency (multiple access in secondary memory
during single-seed dose map retrieval), is avoided.

Dectors construction

The goal of the optimization process, in order to acquire the optimal implant, is to achieve several
dosimetric objectives. These objectives correspond to the dose preferences or restrictions on
the treated region (prostate) and the proximal OARs (urethra and rectum). The dosimetric
objectives are evaluated either on the corresponding organ’s surface or internal points of the
organ. The aim of the dosimetric evaluation on an organ’s surface (contour) is to achieve a
desired dose coverage for the whole organ, while on the other hand, the evaluation at internal
points aims at achieving an adequate dose uniformity in the interior of the organ (avoid hot/cold
dose spots).

Since only dose values recorded on the dose map’s voxels that correspond to either the given
organ’s contour or internal points are required, the processing of millions of voxels available in
the generated dose maps, is rendered useless. In order to avoid pointless data processing and
reduce, therefore, the computational workload the dector data structure is constructed. Dose
values stored in voxels that belong to the organ’s contour or the selected internal points are
extracted from the dose maps while the rest are discarded. This procedure is repeated for all
the organs and corresponding optimization objectives. The generated dectors are expected to
be of size given as

Sizedector = Nvoxels × Mseeds, (2.3)

where Nvoxels is the number of voxels that correspond to either the contour, or the internal
organ points for the respective objective and Mseeds is the number of possible seeds for which
the single-seed dose maps have been generated earlier. Additionally, the value Nvoxels is stored
in the relevant dector structure in order to enable the extraction of bunches of dose values
(specific single-seed dose map contribution) later during the accumulation and evaluation of
the seeds’ configurations in the optimization procedure.

This procedure is based on the formation of a cost function, combining the several desired
objectives. The arithmetic reduction of the cost function for various implants results to different
cost values. By seeking the implant that leads to the minimum cost value, we can retrieve the
optimal one according to the given objectives.

Cost function establishment

The cost function is the combination of all the desired optimization objectives in a single
function. The target is to minimize the cost value, which is often interpreted as energy. The
minimum cost value is the one that, ideally, satisfies all the optimization objectives. However,
in many applications various objectives are competitive, meaning that they cannot be satisfied
simultaneously.

Due to the rising complexity of the cost function, many local extrema are expected to be
present in the function’s solution space, therefore an algorithm able to explore the whole space
sufficiently well and to avoid getting trapped in local extrema is necessary, in order to achieve
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a global optimum. In LDR prostate brachytherapy inverse planning, several objectives with
respect to the dose criteria for the different organs of interest are present in the cost function. In
the proposed MC-ITPA, five objectives are considered in the cost function construction. The
generated cost function is a weighted sum of the five objectives given as

CF = w1Objpcd + w2Objpdu + w3Objucd + w4Objrcd + w5Objnn, (2.4)

where Objpcd is the prostate’s contour dose objective function, Objpdu defines the prostate’s
dose uniformity objective function, Objucd refers to the urethra’s contour dose objective func-
tion, Objrcd is the rectum’s contour dose objective function, and finally Objnn is the objective
function associated with the number of needles used in the treatment plan. The above objective
functions are simulating specific dose preferences and restrictions at the various organs of
interest, according to the clinical requirements.

Many of these criteria are competitive (e.g Objpcd and Objrcd cannot be satisfied simulta-
neously), therefore the importance of these criteria in the optimization is controlled implicitly,
by the form of the mathematical expression describing the respective objective functions, and
explicitly by the operator, with the adjustment of the weight factors w1 − w5 of the given
objectives. The sum of the weight factors is equal to unity, hence the weight factors can be
interpreted as the percentage of the contribution of the respective objective to the cost function.

Cost function objectives

In order to favor the satisfaction of specific objectives in a cost function constructed by com-
petitive objectives, as the one presented above, mathematical expressions with steep gradient
can be used. The term “steep gradient” refers to the magnitude of cost value changes in respect
with variations of the objective’s dose value from the given prescribed dose.

As an example, an objective with a quadratic relation between the cost and the dose produces
higher cost values for a given dose variation than an objective with a linear relationship. Hence,
the contribution of the former objective in the cost function is higher than the contribution of
the latter. In the proposed development, different mathematical expressions are used for
the description of the different objectives that form the cost function. Furthermore, all the
objectives, except the one associated with the number of needles (Objnn), are expressed in
terms of dose variations.

The cost of a given objective is expressed as the sum of the dose difference between the dose
values recorded in the dectors and the respective dose prescriptions. This sum is normalized
by the number of the contributing voxels to produce the final contribution of the objective in
the total cost function value.

Prostate contour dose objective: The prostate’s contour dose objective is considered the
most important in the cost function generation of the MC-ITPA implementation. The main
goal of LDR prostate brachytherapy is to deliver the higher possible dose to the cancerous
region of the prostate. Usually, cancerous areas are spread all over the prostate tissue, therefore
a minimum dose coverage of the whole prostate is required by current recommendations (AAPM
TG-137).

In order to simulate this requirement, an asymmetric, dose restricting, objective function is
established and evaluated on the contour voxels of the prostate. As a result of this unsymmetrical
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behavior, lower doses than the desired are more penalized than higher doses. Considering the
prescribed dose on the contour of the organ, the prostate’s contour dose objective is set as

Objpcd =
1

Npc

Npc∑

i=1

(Di − Dpc)
a

Db
i

, (2.5)

where Npc is the number of the prostate contour voxels (dose evaluation points), Di is the
dose deposited in the ith contour voxel, Dpc defines the required dose value (prescribed by
the clinician) and the exponents a, b are even numbers satisfying the condition a > b used to
control the slope of the two parts of the asymmetric objective function (see Figure 2.6a).

Prostate dose uniformity objective: Another restriction taken into consideration refers
to the uniformity of the dose to be deposited in the prostate. The dose uniformity is an
important factor that should be respected in order to avoid cold dose spots (regions receiving
significantly lower dose than the desired), which are connected with cancer recurrence, and hot
spots (regions receiving significantly higher dose than the desired), which are connected with
increased toxicity.

This requirement is expressed using a symmetric dose restricting objective function (see
Figure 2.6b), which is established and evaluated at measurement points located between the
possible seed positions. The prostate’s dose uniformity is, therefore, given as

Objpdu =
1

Npu

Npu∑

j=1

(D j − Dpu)
c, (2.6)

where Npu defines the number of voxels where prostate’s dose uniformity is evaluated, D j is
the dose value of the j th prostate dose uniformity measurement voxel, Dpu defines the expected
dose as it is prescribed by the clinician and the exponent c is an even number controlling the
slope of the symmetrical objective function.

Urethra & rectum contour dose objective: Following the dose requirements for
prostate dose coverage and uniformity, the dose received by the OARs is also required to satisfy
specific criteria. In more detail, the dose received by the urethra and the rectum should not
exceed the higher dose limits set by the corresponding dose recommendations.

The dosimetric restriction on the OARs is implemented here by a high dose restricting
objective function (see Figure 2.6c). Since only a high dose limit exists for these organs, doses
below the prescribed dose should have no contribution to the total cost function (zero cost).
The dose restricting objective functions for the urethra and rectum are formed as

Objucd =
1

Nuc

Nuc∑

k=0

Θ(Dk − Duc) · (Dk − Duc)
d

Objrcd =
1

Nrc

Nrc∑

l=0

Θ(Dl − Drc) · (Dl − Drc)
e,

(2.7a)

(2.7b)

where Nuc and Nrc define the number of contour voxels of the urethra and the rectum
respectively, Θ expresses the Heaviside step function, Dk and Dl are the doses corresponding
to the k th and lth contour voxels of the urethra and rectum respectively, Duc and Drc define the
desired prescribed doses, and finally the exponents d,e ∈ N are used to control explicitly the
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By introducing the objective functions described in Equations 2.5 - 2.8 in Equation 2.4, we
derive the complete form of the cost function implemented in the proposed MC-ITPA given as

CF = w1
1

Npc

Npc∑

i=1

(Di − Dpc)
a

Db
i

+ w2
1

Npu

Npu∑

j=1

(D j − Dpu)
c
+

w3
1

Nuc

Nuc∑

k=0

Θ(Dk − Duc) · (Dk − Duc)
d
+

w4
1

Nrc

Nrc∑

l=0

Θ(Dl − Drc) · (Dl − Drc)
e
+ w5k × Nneedles .

(2.9)

Minimizing this cost function, the optimal seeds’ configuration with respect to the pre-
scribed doses on the different objectives can be retrieved. By modifying the weight factors w1

- w5 and the exponents a, b, c, different implants can be achieved that favor selected criteria.
In order to explore the space of the different available solutions of the presented cost function
effectively, the fast simulated annealing (FSA) is implemented.

Core of the optimization procedure

FSA is chosen as the optimization method of the proposed MC-ITPA due to its previously
successful application in inverse planning algorithms [Oldham and Webb, 1995, Pouliot et al.,
1996, Rowbottom, Nutting, and Webb, 2001, and Lahanas, Schreibmann, and Baltas, 2003].
Adjustments on FSA have been done as seen appropriate in order to introduce the dector
structures in the algorithm’s implementation and are described below.

Prior to the optimization of the implant, the number of seeds to be used in the treatment plan
must be estimated to adjust the number of the simulated particles per single-seed dose map.
This input can be determined either manually by the clinician, or implicitly by the MC-ITPA
algorithm based on the empirical formula introduced by Pouliot et al. [1996] in which the
number of seeds to be used is given by

Nseeds = 4 +
4.674 × V0.562

A
, (2.10)

where V defines the volume of the prostate expressed in cm3 and A is the activity per seed
expressed in mCi.

During the optimization process, according to the given number of seeds to be used, an
initial implant is set by occupying Nseeds random positions from the available possible seeds’
positions. All the possible seeds’ positions are implicitly numbered and the indices of the
initially selected seeds are used as an offset in the processing of the dector structures in order
to extract the dose contribution of the given seed to the organs of interest (see Figure 2.7).
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According to this seed “swapping”, the dose contribution of the discarded seed in the
accumulated dose vector will be subtracted and the dose contribution of the newly added seed
will be accumulated. The updated accumulated dose vectors will be used to update the objective
functions and calculate the updated value of the cost function.

During the FSA process, each update of the implant is accepted as “better” if the associated
cost value is lower than the cost value of the previous implant. If the cost value is higher, the
new implant is accepted with a probability P(∆E) given as

P(∆E) = e
−∆E
T (k) , (2.11)

where ∆E = E′ − E is the difference of the updated implant cost (E′) and the previous cost
of the previous one (E). T(k) = T(k − 1) × (1 − CR) defines the annealing temperature of the
k th iteration in relation to the annealing temperature of the previous iteration and the cooling
rate (CR) which get values from the interval (0, 1].

The probability P(∆E) tends to unity for high values of annealing temperature (worse con-
figuration acceptance) and to zero when the annealing temperature is low (worse configuration
rejection). This probabilistic acceptance of lower quality implants enables the algorithm to
avoid being trapped in local minima during the first iterations when the annealing temperature
is high. After a big number of iterations, when the annealing temperature has been lowered, it is
expected to converge towards the global optimum since only better implants will be admissible
then. The process of FSA, as was implemented in the proposed MC-ITPA, is given in the
pseudo-code snippet in Appendix B.

The acceptance probability of lower quality implants depends on the given value of the initial
annealing temperature and the selected cooling rate. For high initial annealing temperature
and considerably slow cooling rate, the algorithm is capable of exploring the solution space
efficiently and escaping local minima. In contrast, for a low initial temperature and a high
cooling rate, implants of worse quality are early rejected and the algorithm is more keen to be
trapped in local minima, while for zero initial temperature the algorithm transforms to greedy
(worse implants are never accepted).

The initial annealing temperature value and the cooling rate affect also the speed of the
algorithm to converge to the final solution, since for a slower cooling scheme the algorithm
tends to be slower by executing more iterations until reaching convergence. The trade-off
between computation time and outcome’s quality must be considered by the operator, taking
into account the constraints of the given clinical setup.

The capabilities of the proposed MC-ITPA algorithm to produce efficiently clinically ac-
cepted treatment plans can be evaluated by its ability to generate treatment plans that respect
the current dose recommendations, such as the ones recommended by the AAPM TG-137 report
[Nath et al., 2009].

As those recommendations may not always be satisfied under realistic clinical condi-
tions (anatomic-related restrictions in seeds delivery), a comparison between treatment plans
produced from the proposed MC-ITPA and clinical plans delivered to real patients will be
considered in the evaluation of the planning capabilities of our development, following below.
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2.3 MC-ITPA validation process

The capability of an inverse treatment planning system to produce implants of good quality
should be evaluated by means of clinical dose recommendations and clinical practice setup.
For the validation of the proposed MC-ITPA a database of 18 patients, that have undergone
LDR prostate brachytherapy as monotherapy in the CHRU of Brest, was used.

The first objective was to investigate the ability of the MC-ITPA to produce treatment
plans that satisfy the AAPM TG-137 recommended dose restrictions. Due to the competitive
nature of these dose restrictions, the generation of a treatment plan that satisfies all of them
simultaneously is challenging and, therefore, the AAPM TG-137 recommendations satisfaction
is a good quality measure for the evaluation of the algorithm under general conditions.

The second objective of this validation was to evaluate the ability of the algorithm to
produce treatment plans with dosimetric outcome comparable to that of real clinical treatment
plans, that were delivered to patients in CHRU Brest. In this way, the response of the proposed
algorithm under realistic clinical conditions was investigated.

2.3.1 Patients database for MC-ITPA validation

The patients’ database used for the validation of the MC-ITPA development was created by
retrieving treatment plans delivered to 18 patients in CHRU of Brest. These treatment plans
were retrieved from the VariSeedTM v9.0 LDR treatment planning system of CHRU Brest.

The final database was composed of 18 files where the planned seeds’ positions, approved by
the clinician for implantation, were recorded. Complementary the intra-operative US images,
after the insertion of the peripheral needles, and the post-implant CT images of the 18 patients
were acquired.

In addition, pre-operative CT images were available for 5 out of the 18 patients and were
included in the database. In all the collected intra-operative US images the contours of the
prostate (clinical target volume - CTV), of the urethra, and the rectum were available.

Prior to use, all the patient datasets were anonymized in respect to the confidentiality of
the acquired clinical data. The database was named “MC-ITPA database” and was used in the
evaluation phase of the MC-ITPA.

2.3.2 MC-ITPA evaluation

The first objective of the MC-ITPA evaluation was the investigation of the algorithm’s ability to
produce treatment plans that respect the AAPM TG-137 dosimetric recommendations [Nath et
al., 2009]. These recommendations, initially introduced by PROBATE group of GEC ESTRO
[Salembier et al., 2007], aim to the standardization of certain planning parameters in order
to assist in the understanding of arising differences in outcome, morbidity, and post-implant
dosimetry. In a brief review the planning recommendations consider the clinical target volume
(CTV), which in the case of brachytherapy is the whole prostate gland, the urethra, and the
rectum.
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Prostate planning criteria are:

I. V100 > 95% of CTV. That means that the V100, the percentage of the CTV that receives at
least the prescribed dose, must be at least 95%.

II. V150 ≤ 50% of CTV. Which translates into the V150, the percentage of the CTV that
receives at least 150% of the prescription dose, should be equal to or less than 50%.

III. V200 ≤ 20% of CTV. Which express the requirement that V200, the percentage of the CTV
that receives at least 200% of the prescription dose, should be equal to or less than 20%.

As a result of the V100 criterion the D90, the dose that covers 90% of the CTV, will be larger
than the prescription dose. In the following, the criteria for the organs at risk (OARs) are given

Urethra planning criteria are:

I. D10 < 150% of the prescribed dose.

II. D30 < 130% of the prescribed dose.

Rectum planning criteria are:

I. D2cc < 100% of the prescribed dose.

II. D0.1cc(Dmax) < 150% of the prescribed dose.

The urethra D10 and the rectum D2cc are the primary planning criteria, while the urethra
D30 and the rectum D0.1cc are considered secondary. The prescribed dose, intended dose for
the 100% isodose, for 125I LDR brachytherapy according to AAPM TG-137 is 145Gy and is
the prescribed dose value that was used in our experimentations. For the prescription dose of
145Gy, the numerical values of the planning criteria are summarized in the following table
(Table 2.5).

Table 2.5 – AAPM TG-137 planning criteria for prescribed dose (Dpresc) 145 Gy.

Organ V100 V150 D90 D30 D10 D2cc D0.1cc

prostate > 95% ≤ 50% > 145.0 - - - -
urethra - - - < 188.5 < 217.5 - -
rectum - - - - - < 145.0 < 217.5

MC-ITPA vs AAPM TG-137 recommendations

The capability of an inverse treatment planning algorithm to meet the planning criteria of AAPM
TG-137 recommendations depends on the chosen cost function to be minimized. The cost
function implemented in the proposed MC-ITPA (see Equation 2.9) provides the flexibility
to achieve the desired planning criteria by modifying the expected dose prescriptions, the
objective functions’ weight factors, and their respective exponents.

For a given combination of the cost function’s parameters, the optimal seeds’ configuration
is acquired by minimizing the employed cost function. The final accomplishment of the
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planning criteria (various dose metrics on CTV and OARs) depends strongly on the selection
of these parameters.

The intra-operative US image of a randomly selected patient from the MC-ITPA database
was used and treatment plans were generated for various parameter combinations. The number
of seeds to be used during treatment planning was implicitly calculated by the MC-ITPA
algorithm. A possible combination of cost function parameters that satisfied adequately the
AAPM TG-137 planning criteria was chosen (see Table 2.6). The resulting dose metrics for the
CTV and the OARs are shown in Table 2.7.

Table 2.6 – Cost function parameters set-up to achieve the AAPM TG-137 planning criteria for
one patient.

Organ Prescriptions

Prostate
Dpc a b Duc c w2

380 4 2 230 2 0.05

Urethra
Duc d w3

140 3 0.04

Rectum
Drc e w4

250 3 0.04

Needles
k w5

80000 0.06
Prescribed

145Gy
Dose

Modification of the selected parameters leads to plans with different dosimetric outcome. By
fine-tuning the given parameters, high-quality treatment plans can be achieved.

Table 2.7 – Dosimetric results of a treatment plan generated with cost function parameters as
given in Table 2.6

Organ Metrics

Prostate
V100(%) V150(%) D90(Gy)

95.6 49.7 160.4

Urethra
D10(Gy) D30(Gy)

207.8 186.4

Rectum
D2cc(Gy) D0.1cc(Gy)

118.0 187.4
Dosimetric criteria as given by AAPM TG-137 are met. 17 needles are required for the delivery
of the given plan rendering it admissible for clinical application.

For the chosen cost function parameters all theAAPM TG-137 planning criteria were satisfied
successfully showing the ability of the algorithm to produce high quality treatment plans.
In addition, 17 needles were selected in the generated implant, demonstrating the clinical
applicability of the treatment plan. The MC-ITPA was able to generate realistic treatment
plans where the dosimetric outcome was controlled by the input parameters selected by the
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Annealing parameters effect on optimization convergence

The optimization result of the FSA algorithm, similarly to the other simulated annealing
variations, depends strongly on the selected annealing temperature (T) and cooling rate (CR).
These two variables control the acceptance probability (see Equation 2.11), and hence the ability
of the algorithm to avoid getting trapped in local minima. When T is high the probability to
accept a lower quality solution increases, therefore, the possibility to avoid local minima “traps”
increases, too. For a high value of initial T and a significantly low CR, the FSA will follow a
slow cooling procedure and a bigger range of the solution space will be explored, leading to
the convergence at a better final solution.

On the other hand, the combination of a very high initial T and a very low CR leads to
increased computational time and a trade-off between the solution’s quality and the compu-
tational time must be done. In the previous validation process of the MC-ITPA against the
TG-137 recommendations and in the following validation process against the clinical treatment
plans, the initial T was set at 105 and the chosen CR was 0.2%. For this setup the MC-ITPA
was able to converge to the minimum possible cost function value in 0.8s using an Intel Core
i7 4720HQ processor.

In order to ensure the appropriateness of the selected parameters’ values, a series of tests
were executed where T was modified in a range from 1 to 106 while the CR was held constant
to 0.2% to study the dependence of the algorithm’s convergence on the annealing temperature
(see Figure 2.13). An additional series of tests, where now the initial T was held constant at
105 and the CR was modified in the range of 0.01% to 20% was executed to investigate the
dependence of the solution’s quality on the selected cooling rate (see Figure 2.14).

Figure 2.13 – FSA convergence dependence on temperature. For increasing temperature, FSA
algorithm explores more efficiently the solution space by accepting worse solutions initially.
Convergence to better solutions is achieved for higher temperature.
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Figure 2.14 – FSA convergence dependence on cooling rate. The convergence of FSA algorithm
has a stronger dependence on the cooling rate (CR) than the temperature. For not sufficiently
low CR, the algorithm is trapped in local minima. However, very low CR can make the
algorithm slow. It is shown that CR = 0.2% is a very good comprimise between solution
quality and computational time.

In figures 2.13 and 2.14, it is shown that the MC-ITPA convergence is depended more
strongly on the selected cooling rate, rather than the temperature (given a sufficiently low
cooling rate is selected). As demonstrated in Figure 2.13, for T = 105 the exploration of the
solution space is sufficiently large and convergence to a similar cost value as for T = 106 can
be achieved. For lower temperatures the solution space exploration is limited, however not
significant degradation to the cost convergence is observed.

On the contrary, variations of the cooling rate affect strongly the algorithm’s convergence,
where for high cooling rates (20%, 2%) the algorithm converges to worse solutions with higher
cost values. For high cooling rates, the annealing temperature decreases fast during the first
iterations and the algorithm performs similarly to a greedy algorithm. The 0.2% cooling rate
provides sufficient solution space exploration and convergence to similar cost value as for lower
cooling rates (0.02%, 0.01%) but at least ×10 times faster.

The optimization process of the MC-ITPA, as demonstrated, can provide solutions of high
quality in less than 1 second and therefore satisfies the clinical time requirements providing
real-time optimization.

MC-ITPA vs Clinician’s treatment plan

Having proved the ability of the proposed MC-ITPA algorithm to generate treatment plans
that satisfy the AAPM TG-137 planning criteria, the next objective of the validation process
was to test its ability to produce treatment plans comparable to those applied in real clinical
environment situations.

In this experiment, the clinical treatment plans delivered to 18 patients were compared to
the corresponding treatment plans generated by the MC-ITPA in terms of the dosimetric criteria
satisfaction. The clinical treatment plans were delivered to the patients using the VariSeedTM

v9.0 LDR treatment planning system of CHRU Brest. In the real clinical procedure, an initial
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treatment plan was generated using the optimization algorithm available in VariSeedTM v9.0
in 1 minute. Following, the generated treatment plan was modified manually by the clinician for
a time period of 15-20 minutes until the treatment plan met all the desired dosimetric criteria
prior to its delivery to the patient.

These treatment plans were reproduced with MC simulation using the GGEMS platform, the
MC dosimetry engine, of the MC-ITPA algorithm. In this way, dosimetric differences between
clinical and MC-ITPA plans, related to the chosen dosimetric formalism, were eliminated. In
the MC simulations of the clinical treatment plans 5 × 106 particles were simulated using the
track length estimator (TLE) in order to generate dose maps of similar statistical uncertainty to
those generated by the MC-ITPA.

For all the available patients, treatment plans of comparable quality to the clinical treatment
plans were generated using the MC-ITPA. The planning criteria of MC-ITPA were adjusted
manually for each patient in order to generate treatment plans that meet the desired dosimetric
criteria while a number of seeds and needles is used, similar to the ones used in the clinical
plans.

The mean values of the various considered dosimetric criteria, with their standard deviation,
for the MC-simulated clinical plans and the MC-ITPA treatment plans are demonstrated in Table
2.8, while individual values are reported in Appendix C, Table C.1.

Table 2.8 – Dose metrics comparison between clinical plans (simulated with MC) and MC-
ITPA generated plans. Mean dose metrics’ values with their standard deviation are presented.
The percentage relative difference between the MC-ITPA and the clinical plans is given.

Organ Clinical plan (MC) MC-ITPA plan Rel. difference (%)

Prostate

V100(%) 94.7 ± (2.3) 95.8 ± (1.1) 1.2
V150(%) 44.8 ± (4.8) 51.3 ± (3.0) 14.5
V200(%) 18.9 ± (2.5) 25.4 ± (4.0) 34.4
D90(Gy) 156.7 ± (6.4) 161.5 ± (4.6) 3.1

Urethra
D10(Gy) 172.7 ± (8.9) 178.8 ± (15.7) 3.5
D30(Gy) 159.7 ± (5.7) 165.4 ± (11.8) 3.6

Rectum
D2cc(Gy) 108.1 ± (10.9) 114.4 ± (9.0) 5.8
D0.1cc(Gy) 153.6 ± (15.7) 167.8 ± (16.0) 9.2

Seeds 64 ± 7 64 ± 5 0.0
Needles 18 ± 2 16 ± 2 −11.1

Clinical plans are simulated using MC and considering the tissue heterogeneities similarly to
MC-ITPA dosimetry. In this way dosimetric differences depend only on the selected seeds’
configurations.

For all the considered patients, the MC-ITPA treatment plans demonstrated better dosimetric
quality than the simulated clinical plans. The majority of the dosimetric recommendations were
met in all cases in the MC-ITPA plans. However, the dose homogeneity in the prostate was
not completely satisfied where V150 was found 1.3% higher than the upper limit. Similarly, the
V200 metric was 5.4% higher than the recommended limit.

The treatment plans generated by the MC-ITPA comprised the same number of seeds as
the clinical plans but 10.5% fewer needles were used in average. This is a finding of great
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importance, since it demonstrates that good quality treatment plans can be produced by the
proposed algorithm using fewer needles and hence, reducing the associated trauma which is
directly related to the formation of edema, a quality decreasing factor of the treatment to be
delivered.

The overall superior dosimetric quality of the MC-ITPA-generated treatment plans over the
simulated clinical plans is visible in the graphical representation of the respective dose-volume
histograms (see Figure 2.15).

Figure 2.15 – DVH comparison of clinical and MC-ITPA plans. Clinical plans demonstrate
more homogeneous prostate dose coverage (V150, V200) than the MC-ITPA plans but the V100 is
lower than the recommended value (95%), therefore their quality is inferior.

The general lower dose distribution observed in the MC-simulated clinical treatment plans
(see Table 2.8, Figure 2.15) is a result of the dose overestimation present in the AAPM TG-43
formalism. Due to this overestimation, the minimum dose coverage criterion for the prostate
(V100 > 95%) is not respected, as presented by the MC simulation. The well-known and
extensively reported issue of dose overestimation of the TG-43 formalism [Beaulieu et al.,
2012, Sinnatamby et al., 2015, Xu et al., 2015, and Peppa et al., 2016] is demonstrated in Table
2.9. The clinical plans’ dosimetry considering heterogeneous materials, Clinical plan (MC), is
compared with the MC simulation of the TG-43 dosimetry, Clinical plan (TG-43), in which all
the tissues are simulated as water.
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Table 2.9 – Dose metrics overestimation by TG43 dosimetric formalism. The simulated clinical
plans with MC on computational heterogeneous phantoms are compared to the clinical plans
following the TG43 paradigm. TG43 dosimetric formalism is simulated by MC assigning to all
the materials of the computational phantom the composition of water. The percentage relative
difference between the TG43-based and the MC-based plans is given.

Clinical plan Clinical plan Rel. difference
Organ

(MC) (TG-43) (%)

Prostate

V100(%) 94.7 ± (2.3) 96.1 ± (1.5) 1.5
V150(%) 44.8 ± (4.8) 49.0 ± (4.0) 9.4
V200(%) 18.9 ± (2.5) 20.7 ± (2.2) 9.5
D90(Gy) 156.7 ± (6.4) 161.6 ± (4.9) 3.1

Urethra
D10(Gy) 172.7 ± (8.9) 184.6 ± (8.5) 6.9
D30(Gy) 159.7 ± (5.7) 171.3 ± (4.5) 7.3

Rectum
D2cc(Gy) 108.1 ± (10.9) 109.4 ± (10.3) 1.2
D0.1cc(Gy) 153.6 ± (15.7) 156.6 ± (14.8) 2.0

The dosimetric values of clinical plans when theTG-43 formalism is considered demonstrate
similar satisfaction to the treatment planning criteria as the MC-ITPA generated plans. However,
when MC dosimetry is used dosimetric inaccuracies are reduced and the actual deposited dose
does not satisfy the planning criteria in the case of the clinical plans, as it is revealed. Therefore,
the selected implants in the clinical plans are sub-optimal compared to the MC-ITPA implants.
This is an outcome of the inaccurate dosimetry of the former and the false satisfaction of the
treatment planning criteria.

Comments on MC-ITPA plans’ quality

Using the proposed MC-ITPA, treatment plans of comparable quality to clinical plans (based
on TG43 formalism) can be generated. Moreover, the planning recommendations of the AAPM
TG-137 report are respected. High quality plans can be generated fast and efficiently in less
than 1 second (≈ 0.6 − 0.8s) on the Intel Core i7 4720HQ. However, homogeneous dose
delivery in the prostate can be difficult to be achieved in some cases and fine tuning of the
optimization parameters is required. This is a drawback of the proposed method and other
similar methods that optimize the deposited dose on sampling points on the surface and interior
of the organs [Pouliot et al., 1996, D’Amours et al., 2011].

The objective of the clinician is to optimize the dose to be delivered to the patient as it is
expressed by the dose volume histogram (DVH). However, since the optimization algorithm
optimizes the dose deposited on sampling points (mainly distributed on the surface of the
organ), the optimization of the dose deposited in the organs’ volume is addressed indirectly.
The benefit of this method is that significantly lower amount of data is processed during the
optimization (dectors) allowing for fast generation of results. However, a significant drawback
is that a complicate cost function must be employed to achieve this indirect optimization (see
Equation 2.9). This leads to the introduction of a significant number of optimization parameters
(15 in our development) that should be set accordingly in order to achieve plans of good quality.
Moreover these parameters do not represent realistic dose requirements and could introduce a
significant learning curve in the optimization procedure.
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Aiming to provide a “user-friendly” optimization procedure of improved quality, we focus
on the direct optimization of the actual dosimetric criteria. To do so we are proposing a
DVH-based optimization, based on the presented MC-ITPA.

2.4 DVH-based inverse planning

Optimization of the treatment planning procedure directly on the DVH metrics has been
previously performed for inverse planning of IMRT and prostate brachytherapy (LDR/HDR)
[Spirou and Chui, 1998, Gorissen, Den Hertog, and Hoffmann, 2013, and Chen, Boyer, and
Xing, 2000]. The optimization of DVH-based dose metrics has a natural analogy to the
treatment’s optimization, therefore, the learning-curve is avoided. More significantly, the
simultaneous satisfaction of all the desired dose metrics can be translated in a simple cost
function which can be minimized easier. The only drawback of the DVH-based optimization is
that a bigger amount of data must be processed during each iteration of the optimization which
can lead to longer computational time. To adapt the MC-ITPA to the DVH-based optimization at
the minimum computational cost, modifications are introduced in three different steps, named:
preprocessing; cost function generation; optimization loop.

Preprocessing update

The DVH-based optimization demands the evaluation of the total dose map of the implant
rather than the corresponding dectors in each iteration step. In contrast to the standard version
of MC-ITPA, here the total dose map of the implant is constructed in each iteration of the
optimization loop by accumulating the corresponding single-seed dose maps. Since the whole
single-seed dose map for each seed swapping must be accumulated in each update of the
implant’s dose map, extra computational work-load is added. However, only the dose recorded
in voxels belonging to the organs of interest (prostate, urethra, rectum) is evaluated. In order
to reduce the operations during the dose maps accumulation the single-seed dose maps are
compressed in a preprocessing step prior to the optimization. In this compression step voxels
that do not belong in any of the organs of interest are discarded from the single-seed dose maps
and the new compressed dose maps are used during the FSA optimization.

Cost function update

The demand of simultaneous satisfaction of the desired DVH metrics (AAPM TG-137 recom-
mendations) can be translated in a much simpler cost function than Equation 2.9. This leads
to a smoother solution space that can be explored more efficiently by FSA. In the employed
DVH-based cost function eight different objectives are simultaneously addressed. These ob-
jectives are firstly the requirement of a lower limit for the V100 metric, a higher limit for V150

metric, and a higher limit for V200 metric for the prostate. Secondly, higher limits for the D30,
D10 and D2cc, D0.1cc metrics for the urethra and the rectum, respectively. Finally, an objective
considering the number of the needles to be used for the delivery of the treatment plan. The
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DVH-based cost function therefore gets the form

CF = wΘ(V100LB − V100) · (V100LB − V100)+

i∑
wΘ(Vi − ViHB

) · (Vi − ViHB
)+

j∑
wΘ(D j − D jHB

) · (D j − D jHB
) + wNneedles,

(2.12)

where V100LB defines the lower limit (minimum acceptable value) for the prostate’s V100

metric, ViHB
is the higher limit (maximum acceptable value) for the V150 and V200 metrics of the

prostate. D jHB
corresponds to the higher limit for the D10, D30 and D2cc, D0.1cc metrics for the

urethra and rectum, respectively. Moreover, w = 1
Nobjectives

=
1
8 = 0.125 is a common weight

factor for each objective and Nneedles refers to the number of the used needles. The V100 and Vi,
D j are the DVH metrics of the plan under evaluation. The lower and higher limits are selected
equal to the values given by the AAPM TG-137 recommendations. The resulting treatment plan
can be modified by altering these parameters.

Optimization loop update

The optimization of the DVH-based cost function requires the generation and evaluation of
the DVH of the accumulated dose map for each implant during the optimization loop of the
FSA algorithm. Since the dose metrics are extracted from the cumulative DVH, the dose map
should be processed several times in each iteration for the construction and evaluation of the
histograms of the prostate, the urethra, and the rectum. To avoid computational time increase,
we construct in each iteration the differential DVHs for the three organs. The three histograms
are initialized consisting 500 dose bins with bin width equal to 1 Gy. The dose map is processed
only once and according to the recorded dose values the corresponding bins of the differential
DVHs are populated. Finally, the differential DVHs are converted in cumulative and the values
of the desired dose metrics are extracted. In this way direct DVH-based treatment planning
optimization can be achieved in ≈ 15s on the Intel Core i7 4720HQ.

Dosimetric evaluation of the DVH-based MC-ITPA

The updated DVH-based version of the MC-ITPA (DVH-MC-ITPA) is evaluated against the,
previously presented, standard version (MC-ITPA). It is shown that the DVH-MC-ITPA out-
performs in dosimetric quality the standard MC-ITPA and provide plans with higher dose
homogeneity in the prostate (see Table 2.10).
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Table 2.10 – Impoved treatment planning with DVH-MC-ITPA. The DVH-based version of the
MC-ITPA can generate treatment plans of improved quality against the standard version. Dose
metrics of the treatment plans generated with the two methods are compared and the percentage
relative difference between the two is given.

Organ standard MC-ITPA DVH-MC-ITPA Rel. difference (%)

Prostate

V100(%) 95.8 ± (1.1) 96.6 ± (1.0) 0.8
V150(%) 51.3 ± (3.0) 46.0 ± (2.7) −10.3
V200(%) 25.4 ± (4.0) 19.6 ± (0.5) −22.8
D90(Gy) 161.5 ± (4.6) 162.4 ± (3.8) 0.6

Urethra
D10(Gy) 178.8 ± (15.7) 177.3 ± (11.8) −0.8
D30(Gy) 165.4 ± (11.8) 165.0 ± (9.2) −0.2

Rectum
D2cc(Gy) 114.4 ± (9.0) 108.7 ± (7.8) −5.0
D0.1cc(Gy) 167.8 ± (16.0) 166.7 ± (21.2) −0.7

Seeds 64 ± 5 64 ± 5 0.0
Needles 16 ± 2 17 ± 2 6.25

The direct optimization of the DVH metrics enables the fast and efficient generation of
treatment plans conforming with great accuracy to the desired planning criteria. There is no
need for experimentation with parameters that could create confusion such as in the case of the
standard MC-ITPA. Significantly improved dose homogeneity can be achieved in the prostate
with the DVH-MC-ITPA. This is demonstrated by the 10.3% and 22.8% decrease in the V150

and V200 metrics, respectively. Dose deposition in OARs can also be decreased (5.0% decrease
in rectum D2cc metric). The improved planning quality of the DVH-MC-ITPA against the
standard MC-ITPA can be observed graphically in the DVH representation of the generated
treatment plans (see Figure 2.16).
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Figure 2.16 – DVH comparison of DVH-MC-ITPA and standard MC-ITPA plans. Planning cri-
teria can be addressed more efficiently by the DVH-MC-ITPA and increased dose homogeneity
in the prostate can be achieved while sparring the OARs.

It is demonstrated in Figure 2.16 that the DVH-MC-ITPA can generate treatment plans
that respect all the desired planning criteria with improved dose homogeneity at the prostate.
Furthermore, the reduced standard deviation, especially for the prostate and the rectum demon-
strates the ability of FSA to minimize the employed function effectively. In this way, the desired
planning criteria are efficiently met without significant variations for all the patients. Moreover,
as shown in Table 2.10, the DVH-MC-ITPA provides improved quality plans compared to the
standard MC-ITPA for a similar number of used needles. It was found that for the given patients
the AAPM TG-137 planning criteria were always satisfied. However, the presented results were
acquired using a more “restrictive” planning schedule than the one recommended by AAPM
TG-137. This was done in order to evaluate the performance of the algorithm under extreme
conditions. The desired DVH metrics used in this planning schedule are summarized in Table
2.11.

Table 2.11 – Used planning schedule for treatment planning with DVH-MC-ITPA.

Organ V100 V150 V200 D30 D10 D2cc D0.1cc

prostate > 98% ≤ 49% ≤ 20% - - - -
urethra - - - < 180 < 200 - -
rectum - - - - - < 145 < 200

The DVH-MC-ITPA is able to satisfy even more “restrictive” planning schedules, however,
such plans demand a higher number of needles to be used for their delivery. Therefore,
these schedules were not considered. Dose metrics of the treatment plans generated for each
individual patient are summarized in Appendix C, Table C.2.
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2.5 MC-Inverse treatment planning algorithm summary

In this chapter a fast and efficient GPU-accelerated Monte Carlo inverse treatment planning
algorithm (MC-ITPA) was presented. Dosimetry in state of the art inverse treatment planning
algorithms (ITPAs) is based on the AAPM TG-43 protocol, which is proven to overestimate the
deposited dose (see Subsection 2.3.2). Therefore, based on inaccurate dosimetry, mathemati-
cally optimal treatment plans, as generated by current ITPAs, are suboptimal in reality.

On the contrary, the proposed MC-ITPA provides significantly more accurate dosimetric
results and hence more optimal solution by using MC-based dosimetry. Even if MC-based
dosimetry suffers by long computational time, in our implementation GPU-accelerated MC
dosimetry, as provided by the GGEMS platform, is combined with the track length estimator
(TLE) to provide fast MC-based dosimetry.

The uncertainty reduction during single-seed dose maps accumulation allows for the gen-
eration of dose maps with only few thousands of simulated particles without modifying the
statistical uncertainty of the final total seed’s configuration dose map. With only ≈ 35ms for
the generation of a single-seed dose map on a workstation equipped with NVIDIA GTX Titan
X, the generation of 400 single-seed dose maps (for all the possible positions a seed could
occupy in a standard plan) can be completed in ≈ 15 seconds, time absolutely acceptable in an
intraoperative environment.

Following the single-seed dose maps generation, the use of the fast simulated annealing
(FSA) algorithm enables, the fast optimization and retrieval of the optimal seeds’ configuration
in less than 1s (≈ 0.8s) when the standard proposed MC-ITPA is used. Clinically acceptable
plans can be achieved, comparable with clinical plans that were delivered in CHRU Brest. The
indirect planning optimization by optimizing the deposited dose on the organ’s surface may
lead to a learning curve for the operator. Additionally, it is not easy to achieve adequate dose
homogeneity in the prostate. The presented DVH-based version of the MC-ITPA overcomes
these limitations and delivers plans of improved quality in ≈ 15s on an Intel Core i7 4720
HQCPU. All the treatment plans generated by the DVH-MC-ITPA during the validation phase of
the algorithm (see Subsection 2.3.2) satisfied all the AAPM TG-137 planning recommendations
and were significantly better than the provided clinical plans. Moreover, the MC-ITPA was
able to achieve these plans using fewer needles than used in the clinical plans which results
to treatment plans’ delivery with decreased needle-induced mechanical trauma and associated
edema occurrence.

Having introduced a fast and efficient inverse planning algorithm using MC-based dosime-
try, our focus is now set to decrease further the treatment planning inaccuracies by taking into
consideration the formation and evolution of the edema which is associated with the treat-
ment delivery. To do so the edema evolution mechanism must be understood and modeled
appropriately.

In the following chapter the LDR brachytherapy-induced edema will be investigated and a
biomechanical model aiming to predict its resorption pattern will be developed and presented.
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CHAPTER

3
EDEMA BIOMECHANICAL MODELING

Edema mechanism is investigated based on continuum mechanics principles. Following an
introduction to the continuum mechanics theory, a patient-specific biomechanical model is

developed using the Finite Element (FE) method. Statistical data derived from the literature
are used for the validation of our developments. Variations of edema magnitude and edema
half-life are associated with the underlying inflammation and the tissue mechanical properties.
The effect of prostate stiffness on the edema resorption pattern is studied. Insight in edema
dynamics and inter-patient diversion is provided.

Le mécanisme de l’œdème de la prostate est étudié en fonction des principes de la mécanique
continue. Suite à une introduction de la théorie de la mécanique continue, un modèle

biomécanique spécifique au patient est développé à l’aide de la méthode des éléments finis
(FE). Les données statistiques dérivées de la littérature sont utilisées pour la validation de nos
développements. Les variations de l’œdème ainsi que de la demi-vie du dégonflement sont
associées à l’inflammation sous-jacente et aux propriétés mécaniques des tissus. L’effet de la
raideur de la prostate sur la mécanique de résorption de l’œdème est également étudié dans ce
chapitre. Des informations sur la dynamique de l’œdème ainsi que sa variation en fonction des
patients sont présentées.

“People who are crazy enough to

think they can change the world,

are the ones who do."

— Rob Siltanen
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3.1 Edema effect on dosimetry

Brachytherapy-induced edema is an uncontrolled parameter during and after the treatment pro-
cedure. The divergence in edema magnitude and resorption time among patients incommodes
the a priori estimation of the impact of edema in the treatment delivery.

Consequently, despite how much optimal is a treatment plan, a misplacement of the seeds
is expected due to the edema and depends on its magnitude [Villeneuve et al., 2008]. To
minimize the seeds misplacement, the treatment planning is executed during the operation
after the insertion of the peripheral needles, or/and locking needles, when edema has already
occurred. However, no measures are taken to account for the resorption of the edema and the
associated movement of the seeds from the initial implantation positions.

Due to changes in the final positions of the seeds, edema has a negative effect on dosimetry.
As a result, intra-operative dosimetric calculations can have significant deviations from post-
implant dosimetric evaluation measurements.Waterman et al. [1997] have demonstrated that
a prostate volume decrease of 17% during 38 days after the operation leads to 13% higher
D90 as measured in post-implant dosimetry at Day 38. This volume decrease is related to
edema resorption since volumetric change due to radiation is not expected in only 38 days
for 125I implants. Similarly, dose underestimation during Day 1 dosimetry has been shown
by Chira et al. [2013] where for a prostate volume change of 10% from Day 1 to Day 30, an
11.7% increase of the D90 metric was found in Day 30 dosimetry. Likewise, more studies have
demonstrated similar results showing the underestimation of the actual dose to be delivered
when the edema resorption mechanism is not accounted [Leclerc et al., 2006 and Villeneuve
et al., 2008].

In order to reduce the difference between the estimated dose during the operation and the
actual dose to be delivered in the prostate and organs at risk (OARs), several models have been
proposed to account for the edema effect on dosimetry (see subsection 1.4.2). However, these
models, based on statistical data, do not account for patient-specific edema characteristics.
Since edema magnitude can vary from 10% up to 96% and edema half-life (time needed for
edema resorption by 50%) from ≈9.3 up to ≈30 days [Waterman et al., 1998, Chira et al., 2013,
and Sloboda et al., 2012] such models, depending on averaged data, can not be considered
sufficiently accurate.

Understanding the factors and parameters on which edema depends on is essential to
establish patient-specific models. According to Tejwani et al. [2012], such factors are the seed
activity, the treatment modality (monotherapy vs. combined therapy), and the Gleason score.
Contradictorily, Waterman et al. [1998] in their study found no evident correlation between
the number of needles, the radioisotope, the number of seeds, and the total seed strength
neither with the edema magnitude nor with the half-life. Additionally, no consistent correlation
between neither the edema magnitude nor the resorption time is found in other published
studies with patient characteristics such as age, pre-implant prostate volume, hormonal uptake,
number of needles, number of seeds, and seed activity [Badiozamani et al., 1999b, Taussky
et al., 2005b, and Yamada et al., 2003b].

The difficulty in correlating patient characteristics with the edema evolution can be at-
tributed to underlying mechanisms that still remain not investigated. In order to extend our
understanding of edema, more extensive investigation of the initial cause of it is required.

Consequently, the attention should be pointed on the initial inflammatory response of the
prostate to the treatment procedure which results in the formation of edema. Obtaining insight
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The external signs of inflammation are heat, redness, swelling, pain, and loss of function.
Considering its duration, inflammation can be characterized as acute or chronic. The rapid
response to an alteration of homeostasis by an offending agent describes the acute inflammation
response. This rapid response is often controlled and can last from few seconds up to few days.
If the infection or injury cannot be quickly eliminated the result may be chronic inflammation,
which lasts from several days up to years and can cause serious detrimental side-effects (heart
disease, cancer, diabetes, etc).

Acute inflammation

In Acute inflammation (AcI), leukocytes and plasma proteins are delivered rapidly to the
damaged site. The role of leukocytes is to iradicate the invading pathogens and begin the
digestion process of necrotic tissues. Vascular changes, such as vasodilation and increased
permeability, support the emigration of leukocytes and plasma proteins. These vascular changes
can be triggered by various stimuli, such as infections, trauma, tissue necrosis, and foreign
bodies [Kumar, Abbas, and Aster, 2013]. They are prompted by chemical signals emitted
from receptors (phagocytes, dendritic cells, and other epithelial cells) that can sense microbes,
infectious pathogens, and substances released from dead cells.

Due to the arteriolar vasodilation, the blood flow is increased locally and the down-stream
capillary beds are enlarging. This vascular expansion is the cause of the redness and warmth
characteristic of acute inflammation. The increase of vascular permeability facilitates the
movement of protein-rich fluid into the extravascular tissues. This movement results in an
increased concentration of red cells and hence, increased blood viscocity and slower blood
circulation (stasis). As stasis develops, leukocytes (principally neutrophils) start to accumulate
along the vascular endothelial surface and eventually emigrate in the extravascular tissues.

The excessive accumulation of protein-rich fluid and blood cells in the extravascular tissues
increases the osmotic pressure of the interstitial fluid, resulting in increased outflow of water
from the blood into the tissues. The resulting protein-rich fluid accumulation is called exudate
and is responsible for the formation of edema (see Figure 3.2).

Figure 3.2 – Exudate formation. The vascular permeability increase promotes the movement of
repairing cells and proteins to the impaired area. These agents are carried by a protein-rich fluid
called exudate which accumulates in the extravascular tissues and leads to edema formation.
Image from [Kumar, Abbas, and Aster, 2013]
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The most common cause of increased vascular permeability is endothelial cell contraction,
which creates intercellular gaps in postcapillary venules [Vandenbroucke et al., 2008]. This
increase occurs immediately after the binding of mediators with specific receptors and usually
has a short duration (15 to 30 minutes). Moreover, changes in the cytoskeleton and cytokines
such as tumor necrosis factor (TNF) and interleukin-1 (IL-1) may induce a slower and more
prolonged retraction of endothelial cells. This reaction may take 4 to 6 hours to develop after
the initial trigger and can persist for 24 hours or more.

Endothelial injuries cause endothelial cell necrosis and detachment resulting in vascular
leakage. Endothelial cells are impaired after a severe injury, such as burns and aggressive
infections. In most cases, leakage starts shortly after the injury and endures for several hours
(or even days) until the damaged vessels are repaired.

The outcome of acute inflammation may be the removal of the exudate and restoration of
the normal tissue architecture (resolution); transition to chronic inflammation; or extensive
tissue destruction resulting in scarring.

Chronic inflammation

Chronic inflammation (ChI) is a state in which inflammation, tissue injury, and healing proceed
simultaneously for a prolonged time. Chronic inflammation is characterized by infiltration of
mononuclear cells (macrophages, lymphocytes, and plasma cells), tissue destruction, and repair
involving new vessel proliferation (angiogenesis) and fibrosis [Shacter and Weitzman, 2002].
ChI can pursue acute inflammation in case the latter cannot be resolved. Persistent microbial
infections that are difficult to eradicate, immune-mediated inflammatory diseases, or prolonged
exposure to potentially toxic agents can be the cause of chronic inflammation. The combination
of prolonged and repeated inflammation, tissue destruction and fibrosis that characterizes
chronic inflammation involves complex interactions between several cell populations and their
secreted mediators.

The macrophages, the first involved population, are the dominant cells of chronic inflam-
mation. They are tissue cells originated from monocytes circulating in the vasculature after
their emigration from the bloodstream. The role of macrophages, like neutrophils, is the in-
gestion and elimination of microbes and dead tissues. Additionally, macrophages trigger the
process of tissue repair and are implicated in fibrosis. Furthermore, they secrete mediators of
inflammation, such as cytokines (TNF, IL-1, chemokines, and others) and eicosanoids [Nathan,
1987]. These cells are, therefore, central to the initiation and propagation of all inflammatory
reactions. Macrophages display antigens to T lymphocytes and respond to signals from T
cells, thus setting up a feedback loop that is essential for defense against many microbes by
cell-mediated immune responses (see Figure 3.3). After the initiating stimulus is eliminated
and the inflammatory reaction recedes, macrophages eventually die or drift into the lymphatics.
In chronic inflammatory sites, however, macrophage accumulation persists, through continued
recruitment from the blood and local proliferation.
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Figure 3.3 – Chronic inflammation recursion. Macrophages which have a key role in inflam-
matory reactions display antigens to T lymphocytes and additionally respond to signals emitted
from the latter. This emission-response circle leads to a chronic inflammation recursive loop
that can lead to serious complications.

Another involved population, are the lymphocytes which are triggered by any specific
immune stimulus (i.e., infections) as well as non-immune-mediated inflammation, such as
trauma. They are responsible for the inflammatory response to many autoimmune and chronic
inflammatory diseases.

Lymphocytes and macrophages interact in a bidirectional way (see Figure 3.3), and their
interactions play an important role in propagating chronic inflammation. Macrophages display
antigens to T cells, express membrane molecules, and produce cytokines that stimulate T
cell responses. Moreover, T lymphocytes, in response, produce cytokines which engage and
activate macrophages. The result is a recursive loop of cellular reactions that fuel and sustain
chronic inflammation.

In some strong and prolonged inflammatory reactions, the accumulation of lymphocytes
(antigen-presenting cells) and plasma cells may assume the morphologic features of lymphoid
organs and alike to lymph nodes may even contain well-formed germinal centers. This pattern of
lymphoid organogenesis is often seen in the synovium of patients with long-standing rheumatoid
arthritis and the thyroid of patients with autoimmune thyroiditis [Dayan and Daniels, 1996].

3.2.2 Starling equation

Edema formation can be associated with different pathologic conditions. Excessive fluid can
accumulate within cells (cellular edema) or within the extracellular matrix in the interstitial
space (interstitial edema). Some of the possible types of interstitial edema are:

• Vasogenic due to capillary hypertension or hypoproteinemia

• Permeability edema due to trauma, or endogenous mediators

• Myxedema due to overproduction of interstitial collagen
and mucopolysaccharides

• Lymphedema due to lymphatic vessels dysfunction

In brachytherapy operation, the occurring edema is a result of the inflammation response
associated with trauma, due to needle penetration and radiation-related cellular death, as de-
scribed in subsection 3.2.1. The flow of exudate in the interstitial matrix, facilitated by the
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The equation describing the elastic motion (elastodynamics equation) can be derived from
the law of linear momentum conservation, hence the deformation of an elastic body B can be
described from the elastodynamics initial-boundary value problem

ρ0 Üu = ∇ · σ + ρ0b in B

u = f on B∂D

σ · n = t on B∂N

u(·, 0) = U0 in B

Ûu(·, 0) = V0 in B

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

where B∂D defines the part of the boundary surface of the body B where displacement is
fixed to f (Dirichlet condition), B∂N corresponds to the boundary surface where traction t is
known (Neumann condition), B∂D∪B∂N

= B∂ (the total boundary surface), and B∂D∩B∂N
= ∅.

In addition U0 and V0 express the initial values (for t = 0) of the displacement u(x, t) and the
velocity Ûu(x, t) field respectively.

The elastodynamics initial-boundary value problem (see Equation 3.10) is completed by
introducing a constitutive equation which describes the stress-strain relationship of the elastic
material. For an isotropic linear elastic material, the constitutive relation is given by

σi j = λεkkδi j + 2µεi j, (3.11)

where σi j is the Cauchy stress tensor components, εi j = 0.5(ui, j + u j,i) is the infinitesimal
strain tensor components, and the parameters λ, µ are elastic parameters known as Lamé
parameters [Lamé, 1866].

The above constitutive relation can describe the motion of an elastic material undergoing
small deformations. In the study of biological tissues where large deformations are common,
more complex (non-linear) constitutive equations should be used instead.

3.3.3 Biphasic mixture theory

Soft human tissues demonstrate elastic properties and elastodynamics can be used to describe
various phenomena and interactions of the human body. However, in some cases, the elastic
properties of the soft tissues may not be sufficient to describe complicate phenomena. The
majority of biological tissues are porous and permeable hence, in some cases the contribution
of interstitial fluid pressurization and flow in the mechanical properties of the tissue can not be
neglected.

In these cases, biphasic mixture theory can be used to describe soft tissues as a porous
permeable deformable medium. Biphasic mixture theory is a special case of mixture theory,
where the mixture consists of two compartments, a solid and a fluid compartment coupled to
each other. Mixture theory was first introduced by Truesdell and Toupin [1960] and since then
have been used in studies of soft tissues, such as articular cartilage [Mow, 1984, Mow and
Roth, 1981, and Mow et al., 1989].

In biphasic mixture theory, both the solid and fluid compartment are assumed to be in-
trinsically incompressible, such as there is no reaction between the solid and fluid. While
the incompressible fluid assumption is reasonable since water is nearly incompressible under
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physiological stress magnitudes, the incompressible assumption for the solid must be verified
experimentally.

In this theory, each constituent α of the mixture (α = s for solid and α = w for fluid)
has a separate motion φα(Xα, t) that deforms particles of each mixture compartment from the
reference position Xα to the deformed configuration x

x = φα(Xα, t). (3.12)

In the governing equations, as described in Maas et al. [2011], the mixture is treated as a
whole and under quasi-static conditions the conservation of linear momentum is expressed as

∇ · σ + ρb = 0, (3.13)

where σ defines the Cauchy stress mixture, ρ is the mixture density, and b is the external
force per mass. The mixture is porous and the stress tensor can be described as

σ = −pI + σe, (3.14)

where p is the fluid pressure, σe is the effective stress resulting from the solid compartment’s
deformation and I is the identity tensor. In addition, the conservation of mass for the mixture
requires that

∇ · (vs
+ w) = 0, (3.15)

where vs
= Ûu is the solid matrix velocity –u is the solid component’s displacement field–

and w the fluid flux relative to the solid compartment. The relative fluid flux w is related to the
fluid pressure and the solid deformation. The equation of linear momentum conservation for
the fluid compartment is derived as

−φw∇p + ρwbw + p̂wd = 0, (3.16)

where φw defines the solid matrix porosity, ρw = φwρw
T

describes the apparent fluid density
and ρw

T
is the true fluid velocity, bw expresses the external body force per mass acting on the

fluid, and p̂w
d

is the momentum exchange between the solid and fluid compartments which
represents the frictional interaction between these constituents. The most commonly used
constitutive relation is p̂w

d
= −φwk−1 · w, where the second order, symmetric tensor k refers to

the hydraulic permeability of the mixture. In combination with Equation 3.16, it produces

w = −k · (∇p − ρwT b
w), (3.17)

which is equivalent to Darcy’s law. In general, k can be a function of the deformation.

3.4 Modeling techniques

Soft tissues can be modeled completely by solving the initial-boundary value problem consid-
ering various boundary conditions for the description of interactions with their environment.
The smoothness of the solution depends on the order of the employed differential equation.
In elastic and biphasic models the governing differential equation requires solutions with C2
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continuity. In other words, second-order derivatives of the solution, arising from the combina-
tion of stress divergence (see Equation 3.10a) with the stress-strain relationship (see Equation
3.11), must be continuous.

However, it is possible to relax the solution’s continuity requirement by using the variational
approach, which can be related to the virtual work principle [Bathe, 2006]. When a force is
applied to a particle, work is generated. The generated work will be different for different
displacements of the point. All these possible displacements are called virtual displacements

and among them one will require the least action and will be the one that the point will follow
according to the principle of least action. Virtual work is the work of a force acting on a particle
along a virtual displacement and is expressed as

δW =

∬

Ω

ū · f bdΩ +

∫

Γ

ū · tdΓ, (3.18)

where ū is a virtual displacement, f b body forces acting on the body domain Ω, and t

tractions acting on the body boundary Γ.
Finding the analytical solution of the variational equation deriving from the principle

of virtual work is arduous especially in complex geometry problems like the one arising in
tissue modeling and hence, numerical approximation techniques are used to find a proximal
approximate solution.

3.4.1 Finite elements method

Among numerical approximation techniques, the finite elements (FE) method is one of the most
well known techniques for solving complex engineering problems. The main characteristic of
this technique is that the domain of interest is discretized into a set of simple interconnected
sub-domains (finite elements). The solution of the variational equation (see Equation 3.18) can
then be approximated in a simple polynomial form within each finite element.

The solution u(x) to the variational equation can be described by a sum of a number of trial
functions such as

u(x) =

n∑

i=1

ciφi(x), (3.19)

where n is the number of terms used, φi(x) are known trial functions, and ci are coefficients
to be determined by minimizing the error between the exact and the approximate solution. The
accuracy of the approximation depends on the employed trial functions. The trial functions
and coefficients must be chosen such as they satisfy the essential boundary conditions of the
problem.

Under such a requirement, it is difficult to obtain the trial functions if the solution is approx-
imated on the whole domain. Dividing the domain into simple elements and approximating
the solution individually in these elements allows to construct trial functions for internal ele-
ments without considering the essential boundary conditions and only treating differently those
elements that include the essential boundary conditions. Then, the solution within each finite
element can be approximated with a simple polynomial form.
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trial functions can be constructed using these types of elements. Similarly to the 1D case (see
Equation 3.20, Figure 3.10), in 2- and 3- dimensional geometries the displacements solution
will be approximated linearly when simplices are used. Strains and stresses in these types
of elements will be approximated as constants since strain is measured by the deformation
gradient (see Equation 3.6). Therefore, near the locations where stress/strain gradients are
present the mesh should be extremely fine in order to approach accurately these gradients. A
higher quality solution is expected when quadrilateral or hexahedral elements are used due to
the bilinear or trilinear form of the trial functions, respectively.

Despite the better quality of quadrilateral and hexahedral elements, the generation of a
mesh containing exclusively these types of elements is not easy especially in the 3D case. Fully
automated algorithms for hexahedral mesh generation are not available and manual input from
the user is required [Grosland et al., 2009]. The process of a mesh representing accurately
a complex geometry can be a challenging task even for the high-experienced analyst and can
require a lot of time. On the contrary, fast generation of simplicial meshes either in 2D or
3D, based on mature triangulation methods such as Delaunay triangulation [Cohen-Steiner,
De Verdiere, and Yvinec, 2002], is much easier and fully automated algorithms exist, provided
in various libraries [Fabri and Pion, 2009, Si and TetGen, 2006].

In medical intra-operative applications, applied biomechanical models based on FE analysis
are constrained to use simplicial meshes in order to meet the time limitations of the operation
if aiming to be of any practical use. It is possible to improve the solution accuracy of simplicial
meshes by introducing additional nodes in the underlying elements, allowing for higher-order
trial functions, at the expense of computational cost. The choice of the mesh generation method
is highly dependent on the respective medical procedure.

3.5 Proposed model development

Aiming to improve LDR brachytherapy treatment planning, we propose a biomechanical model
based on the FE method in order to account for the impact of edema in dosimetry. Continuum
mechanics formulation is used to describe the elastic properties of the prostate and the neighbor
organs of the pelvic region. Edema is described using the biphasic theory to simulate prostate
tissue and edema fluid interactions.

3.5.1 Patient database

The proposed biomechanical model aims in providing a patient-specific scheme for the esti-
mation of the edema resorption pattern and its impact on dosimetric calculations. In order
to account for anatomical differences among patients and their effect on the model’s output
a database of 15 patients’ datasets who underwent LDR brachytherapy in the radiotherapy
department of the CHRU Brest was established.

A pre-implant CT acquisition was acquired for each of the 15 patients. An experienced
clinician outlined the prostate, rectum, and bladder contours in each CT image acquisition.
Even if not clearly visible in CT images, a contour was approximately delineated for the urethra
at the central area of the prostate. Following, the same clinician constructed 15 brachytherapy
treatment plans manually with respect to the dose restrictions on the CTV, rectum, and urethra
as they were delineated during the contouring process. The contouring of the organs of interest
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Table 3.1 – Average mesh quality criteria for the given patients dataset.

Mesh quality criterion Value
Elements number 139212
Aspect ratio 1.52
Min. dihedral angle (◦) 35.65
Max. dihedral angle (◦) 115.33
Jacobian 203.68

3.5.3 Edema evolution modeling

Edema, as shown in Subsection 3.2.1, is a result of the complicated mechanism of inflammation.
More extensively, it results from the accumulation of excessive fluid, originated from the
vascular system, in the interstitial matrix in order to suppress pathogenic agents and repair
tissue damage. Swelling effects in the prostate due to brachytherapy, described as edema,
are the product of a bidirectional interaction between the fluid build-up due to tissue damage,
originated from needle gestures and radiation-induced cellular death, and the prostate interstitial
matrix. Obviously, it is straightforward to model the phenomenon of brachytherapy-induced
edema using the biphasic material assumption for the prostate (see Section 3.3.3).

Using the tetrahedral mesh representation of the patient’s anatomy, a FE model was devel-
oped using the FeBIO software suite [Maas et al., 2012] in order to predict the evolution of
edema over time, for the period that its presence is significant.

Prostate modeling

The biphasic mixture theory implementation of FeBIO as described by Maas et al. [2011]
was used for the modeling of the prostate as a biphasic material. Additionally, excessive fluid
accumulation was modeled incorporating a source term Sw in Eq. 3.15 and deriving

∇ · (vs
+ w) = Sw, (3.21)

where Sw is described by a simplified version of the Starling equation available in FeBio

Sw = k(pv − p), (3.22)

where k is a filtration coefficient, pv defines the pressure due to the excessive fluid accu-
mulation, and p is the biphasic mixture’s (prostate) fluid compartment pressure. Recalling that
edema magnitude ∆ is the maximum relative prostate volume increase (see Equation 1.4), we
can assume additionally that is equal to the total accumulated excessive fluid, such that

∫ tmax

0
Swdt = ∆, (3.23)

where the upper limit of the integration (tmax) is the time corresponding to the occurrence of
the maximum prostate volume. Furthermore, the accumulation of excessive fluid was assumed
to depend linearly on time and hence, by substituting a linear model of the form pv(t) = at + b
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in Equation 3.23, the excessive fluid pressure at any given time t ∈ [0, tmax] can be expressed
as

pv(t) =
2∆

kt2
max

t + p. (3.24)

In order to close the equations system of the biphasic model, constitutive relations must
be set for both the solid and fluid compartment. For the prostate solid compartment, the
neo-Hookean hyperelastic material was assigned accounting for nonlinear effects of large
deformations similar to previous work [Wang et al., 2016]. As for the fluid compartment
of the saturated biphasic continuum, the permeability was modeled with the Holmes-Mow
strain-dependent permeability model [Mow, Holmes, and Lai, 1984].

Neighbor tissues modeling

Since edema evolves in the prostate, the porous nature of the neighbor tissues can be omitted.
However, significant displacements and deformations are expected depending on the edema
magnitude, therefore, a biomechanical model should account for the elastic properties of these
tissues.

The proposed model accounts for these properties considering the neighbor tissues as non-
linear elastic materials [Fu and Ogden, 2001]. In more detail, the filling organs (rectum,
urethra, bladder) were modeled using the near-incompressible Mooney-Rivlin material. The
Mooney-Rivlin material was chosen similarly to previous studies [Haridas et al., 2006] in
order to account for the incompressible behavior of filling organs which are undergoing large
shape changes rather than volumetric increase (e.g filling/emptying process, external pressure
reaction).

Considering the rest tissues of the pubic region which are not considered as of primary
significance, by the proposed model, the compressible neo-Hookean constitutive relation was
employed similarly to the solid compartment of the prostate for the whole pubic tissue block.
The Exception were the pubic arch bones where the rigid body assumption was used, imposing
zero deformation constrains in these structures.

Mechanical parameters & constraints

The range of deformation of an elastic or biphasic material (elastic solid compartment) depends
on the elastic parameters of the material. These parameters control the stress-strain response
of the material and can be measured experimentally. Unfortunately, the measurement of soft
tissue mechanical properties is challenging. Usually, ex vivo measured parameter values differ
from in vivo actual values and the assessment of the latter demands the use of techniques
and equipment not widely available. Considering the mechanical parameters of the prostate
and neighbor organs, knowledge is limited. Even though the advancements in ultrasound
3D elastography allow for in vivo evaluation of the elastic parameters of the prostate and its
surroundings, available sources of data are few [Barr, Memo, and Schaub, 2012]. Even more,
there is not available insight on the permeability of the prostatic tissue.

The basic parameters to describe an elastic material are the Young modulus (YM) and
Poisson’s ratio (v). The Young modulus defines the relationship between stress and strain of a
material and is given by the slope of the linear part of the stress-strain diagram of the material
(see Figure 3.14).
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Table 3.2 – Material properties assigned on the pubic organs of interest.

Domain Poisson’s ratio Porosity
Young

modulus
(MPa)

Permeability
(mm4N−1s−1)

Prostate 0.01 − 0.1a 0.1 − 0.45a 0.5 3.177E−05
Bladder & Rectumb 0.015 MPa 0.49 – –

Soft Tissue 0.001 MPa 0.35 – –
a Prostate drained porous solid compartment.
b The Young modulus and Poisson’s ratio of the rectum and the bladder were converted

to the c1, c2 Mooney Rivlin parameters and bulk modulus.

Having set the mathematical models of biphasic mixture theory and elasticity and having
assigned the corresponding material properties to the model’s domains, the proposed biome-
chanical model of brachytherapy-induced edema resorption pattern is completed by setting
geometric and physiological constraints (boundary conditions) in the different domains. In
more detail, edema was constrained in the prostate prescribing the fluid pressure on the pro-
static surface to zero and pubic arch bones were constrained to zero displacements in all
directions, similarly to all the surfaces of the soft tissue block (see Figure 3.13). The boundary
conditions are summarized below:

• Prostate: Prescribed zero fluid pressure on prostate surface

• Pubic arch bones Prescribed zero displacement (only rotations possible)

• Soft tissue block Prescribed zero displacement of block surfaces
(patient’s body constrain)

3.5.4 Model validation

A very important step of the biomechanical modeling process is the validation phase. During
the modeling procedure, the variation of the model’s simulated results from the expected results
is evaluated and improvements are introduced in the model in order to minimize the observed
divergence.

In the case of modeling a physical phenomenon with a large time-span, such as edema
(t ≈ 30 days) the actual response of the phenomenon must be experimentally recorded in
many time intervals in order to validate accurately the model’s response. Modeling the edema
resorption pattern, it would mean that a statistically sufficient number of patients should
undergo several image acquisition sessions in order to monitor the edema evolution over time
and furthermore, the mechanical parameters, that are expected to vary significantly among
patients, should be measured. A procedure like that is not easily feasible due to the elevated
financial cost, the risk of unnecessary radiation exposure (CT imaging) and the discomfort of
the patients. This is one of the principle reasons that little have been done so far in the accurate
modeling of brachytherapy-induced edema. However, few clinical studies are present in the
bibliography and can be used for the biomechanical model validation [Sloboda et al., 2009 and
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Tejwani et al., 2012]. A clinical trial to collect MRI imaging data (no radiation exposure) from
25 patients for the evaluation of edema evolution is set in our establishment, however will not
be available before the end of 2017.

Therefore, the proposed model is currently validated based on the statistical results of the
work of Tejwani et al. [2012] due to the demonstration of an average exponential decaying
pattern of the edema similarly to other studies [Waterman et al., 1997 and Waterman et al.,
1998]. Tejwani et al. measured the prostate volume using CT images of 29 patients, who have
undergone LDR brachytherapy, acquired in several time intervals: 1, 9, 30, and 60 days after
the operation, demonstrating a mean edema magnitude ∆ = 0.38 and a complete swelling
resorption at Day 30.

For the validation of the proposed model, the mean values of edema magnitude at the
time intervals as presented by Tejwani et al. are used as control points. The prostate fluid
compartment pressure pv is set accordingly using Equation 3.24 with k = 1, tmax = 1, and
∆ = 0.38. The mechanical parameters of the prostate and neighbor organs were not measured
by Tejwani et al., therefore the mechanical properties of the neighbor organs shown in Table
3.2 were used and the prostate parameters were assessed manually to ensure ∆ = 0.38 at Day 1.
The prostate mechanical parameters after the model assessment are given in Table 3.3 below.

Table 3.3 – Prostate elastic properties after model assessment.

Domain Poisson’s ratio Porosity
Young

modulus
(MPa)

Permeability
(mm4N−1s−1)

Prostate 0.05 0.4 0.5 3.177E−05
a These mechanical properties were shown to have the optimal fitting with

the reference ground truth measurements of Tejwani et al., 2012 used in
this study.

The excessive fluid accumulation was "switched off " after Day 1 by setting pv = 0 ∀t ∈

(1− 30] and the resorption of the edema was therefore controlled exclusively by the associated
mechanical parameters of the prostate and the surrounding organs. Fitting manually the
model’s response at Day 1 with the reference data of Tejwani et al., the validity of the model
was evaluated by its ability to approximate the edema magnitude values at the rest control
points: 9, 30 days. The control point Day 60 was discarded since edema was resolving by Day
30 in the clinical case study of Tejwani et al.

The proposed biomechanical model was simulated on the 15 patients dataset available and
the mean edema magnitude values at time intervals: 1, 9, 30 days produced by the model were
compared with the corresponding reference values, considering the standard deviation of the
given dataset. The biomechanical model was able to successfully approximate the reference
edema magnitude values at the given control points with a maximum uncertainty of 1.3%.
Additionally, the exponentially decaying resorption pattern described in previous studies was
produced (see Figure 3.16).
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Figure 3.16 – Edema mean resorption pattern. The edema resorption pattern of the proposed
model was validated with the finding of Tejwani et al. [Tejwani et al.] demonstrating maximum
uncertainty of 1.3%

Describing the edema resorption pattern by the proposed biomechanical model we are able
to investigate the effect of the tissue mechanical properties on the evolution of the edema aiming
to extend the insight on the edema characteristics in such ways that, was not feasible with the
previous existing approaches based on macroscopic observations.

3.6 Prostate mechanical parameters effect on edema

Edema resorption pattern shows significant variations among patients, both in terms of edema
magnitude and edema half-life. Until now, a clear correlation between the observed variations
and clinical variables, such as age, hormonal therapy uptake, needles gestures, seed activity,
etc. is not available (see Section 3.1). The difficulty defining the significant edema parameters
underlies in the anatomical and physiological variations among patients and in the difficulty
quantifying these variations.

In order to investigate the effect of these variations on the edema parameters (magnitude,
half-life) we consider two theoretical scenarios. Recalling the biphasic nature of the prostate,
it is natural to assume that the edema characteristics will depend both on the initial cause
(excessive fluid accumulation) and the resulting tissue response (elastic deformation) of the
prostate. Considering the two elastic parameters used in the biomechanical model (YM, v)
a preliminary test was first done to evaluate the dependence of both edema magnitude and
half-life on these values. After this preliminary evaluation, the first scenario, Young modulus

effect test, was executed in order to investigate the effect of the prostate elastic properties on the
edema resorption pattern. Subsequently, the second scenario, Excessive fluid pressure effect

test, was performed where the effect of the extent of fluid accumulation on the edema resorption
pattern was investigated.

Simplifying the investigation process, only the parameter of interest was considered variable
while keeping the rest parameters constant in the corresponding tests. In more detail, in the
Young modulus effect test the YM of the prostate was considered variable in the interval of
[0.01MPa, 0.1MPa] while the rest parameters of the prostate were considered as given in Table
3.3 and the mechanical parameters of the rest organs as described in Table 3.2. In Excessive

fluid pressure effect test, where the excessive fluid accumulation effect was investigated, all the
elastic parameters were held constant as given in Tables 3.2, 3.3 and only the excessive fluid
pressure pv was considered variable in such a way so the resulting edema magnitudes under
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operation, dosimetric corrections could be imposed to the treatment plan leading to an improved
outcome of the procedure with lower risk of complications.
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CHAPTER

4
DYNAMIC MONTE CARLO DOSIMETRY

In order to account for volumetric changes in the patient’s anatomy, a biomechanical FE
model was proposed in the previous chapter. Here, this information is used to update the

intra-operative dosimetry. Principles of 3D rasterization are briefly reviewed and a volumetric
resampling algorithm based on these principles is introduced. Using this algorithm the com-
puted deformation of the tetrahedral mesh is mapped on the initial CT image of the patient.
Deforming the patient’s CT image at different time intervals during the edema evolution, dy-
namic Monte Carlo dosimetry is introduced. Our purpose is to account for the effect of edema
on dosimetry. Then, the post-operative dosimetry can be accounted during treatment planning.

Afin de tenir compte des changements volumétriques de la prostate du patient en fonction
du modèle biomécanique des méthodes de rééchantillonnage sont présentés dans ce chap-

tire. Le but est de pouvoir mettre à jour la dosimétrie intra-opératoire. Les principes du
tramage 3D sont brièvement expliqués et un algorithme de rééchantillonnage volumétrique est
proposé. En utilisant cet algorithme, la déformation calculée du maillage tétraédrique est car-
tographiée sur l’image CT initiale du patient. En déformant l’image CT du patient à différents
intervalles de temps pendant l’évolution de l’œdème, on peut introduire la dosimétrie Monte
Carlo dynamique. Ensuite, la dosimétrie post-opératoire peut être prise en compte lors de la
planification du traitement.

“Progress lies not in enhancing

what is, but in advancing toward

what will be."

— Gibran Khalil Gibran
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4.1 Voxelized image deformation

In Chapter 3, a biomechanical model for the simulation of the brachytherapy-induced edema
resorption pattern was proposed. The time evolution of the edema was associated with the
mechanical characteristics of the prostate and the proximal organs. Based on the finite elements
(FE) method and using a tetrahedral mesh discretization of the patient’s pubic anatomy the
deformation of the prostate and near proximity organs can be calculated for different time
intervals during the resorption time of the edema. This information can be exploited to
improve dosimetry calculations, considering volumetric changes of the prostate and movement
of the seeds from the planned locations during the time span of the edema.

However, the application of this information is not straight forward. Medical image data
representation is generated and stored following a voxelized data structure. Moreover, most of
the Monte Carlo (MC) dosimetry algorithms, such as the one employed in our developments
(see Chapter 2), are based on this voxelized representation of the medical image to estimate
the dose deposition accounting for voxel-level tissue heterogeneities. Consequently, the de-
formation information of the patient’s anatomy tetrahedral representation, as generated by the
biomechanical model, should be mapped to the initial voxelized image representation in order
to be exploited in the dosimetric calculation.

The mapping of a geometrical object (tetrahedron) to a voxelized structure is similar to the
common task of modern 3D graphics were primitives (triangles) in 3D space are mapped to a
pixelized structure (screen) for realistic visualization. Based on rasterization, a 3D computer
graphics technique, a resampling method for deformation of voxelized images was developed
recently by Aguilera et al. [2015]. Exploiting GPU computing, this algorithm applies the
deformation of a tetrahedral model on its respective volumetric representation in interactive
time.

This algorithm was employed in our development to apply the calculated deformation from
the biomechanical model of the patient’s anatomy to the initial voxelized image at several
time intervals during the simulated edema resorption period. In this way, dynamic volumetric
changes during dosimetry calculations are considered. Furthermore, seeds’ displacements that
follow the prostate deformation during the edema resorption period were considered based on
the principles of the applied resampling method.

4.1.1 Rasterization

Rasterization is currently the most popular rendering technique of 3D scenes. It involves the
conversion of vectors and geometrical shapes into pixels for display on the computer screen.
The rasterization method has low computational cost and can rapidly produce real-time 3D
graphics. Additionally, it allows for high parallelism, therefore, it is the base of GPU rendering
[Owens, 2007].

During rasterization, a polygonal shape (eg. triangle) is projected onto the screen using
perspective projection [Novins, Sillion, and Greenberg, 1990]. The coordinates of the triangle’s
vertices are, therefore, converted in raster (pixel) coordinates. Subsequently, the pixels that
are included in the projected triangle are identified and the color properties of the triangle are
assigned to them. The most common method to identify the pixels included in a given triangle
is using the edge function as introduced by Pineda [1988].
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Figure 4.2 – Polygon rasterization. An arbitrary polygon can be represented as a union of
triangles. Projecting the vertices of these triangles on the screen and interpolating the color
values stored in the triangle vertices on the bounded pixels, the triangles and eventually the
polygon can be rasterized on the screen.

4.1.2 Barycentric interpolation

The rasterization task described in Subsection 4.1.1 can be divided into two steps; projection and
color properties assignment. Barycentric interpolation is an efficient method to interpolate the
color values of the projected polygon’s vertices in its interior pixels by mapping the coordinates
of the vertices in a barycentric coordinates system. The idea of barycentric interpolation is
based on the work of Möbius [1827].

The principle of barycentric interpolation lies in finding a point x, such that for a fixed set
of points xi, where i = 0, . . . , n, and weights wi associated with these points, the point x is the
barycenter of the point-set given as

x =

∑n
i wixi∑n

i wi

. (4.2)

The weights wi can be expressed as a function of the point x, and they represent the
barycentric coordinates of x with respect to the xi points. The barycentric coordinates are
homogeneous, hence they can be normalized, such that

n∑

i

bi(x) = 1, (4.3)

where bi are the barycentric basis functions (normalized weights). Additionally, each point
x can be expressed as the linear combination

x =

n∑

i

bixi . (4.4)

Moreover, the barycentric basis functions bi satisfy the Lagrange property, bi(x j) = δi j ,
such that the barycentric basis function bi(xi) = 1 at the corresponding point i and zero on the
rest n − 1 points of the point-set.

Returning to the rasterization of a polygon, for simplicity consider a triangle T of area
A, the bi barycentric basis functions, with i = 1 . . . 3, are associated with the vertices of the
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a tetrahedral mesh can be rasterized into a volumetric model. A volumetric model resampling
algorithm based on this technique is employed in our implementation for the application of the
proposed biomechanical model’s deformation to the original patient’s CT image. Implementa-
tion details of this algorithm as it was presented by Aguilera et al. [2015] are described in the
following.

4.1.3 Volumetric model resampling

The principal uncertainty-inducing factors in LDR brachytherapy dosimetry are prostate vol-
umetric changes and associated seeds’ movement resulting from the formation and resorption
of prostatic edema. Introducing the previously proposed biomechanical model (see Chap-
ter 3), prostate volumetric changes can be predicted considering patient-specific anatomical
and elastomechanical variations based on the finite elements (FE) method. These volumetric
changes are interpreted in terms of a displacements field calculated on the tetrahedral mesh
representation of the patient’s anatomy and therefore they can not be incorporated directly into
the dosimetric calculation. Dosimetric calculations, such as the calculations performed by the
Monte Carlo (MC) dosimetry algorithm used in our development, are usually performed on the
voxelized representation of the patient’s anatomy provided from CT acquisitions. In order to
incorporate the information produced by the biomechanical model in the dosimetry calculation,
a mapping of the deformation field from the tetrahedral mesh representation back to the initial
voxelized volume representation is required.

With regard to this mapping, a fast volumetric model resampling (VMR) algorithm proposed
by Aguilera et al. [2015] was employed. Exploiting GPU parallelization the VMR algorithm
was able to perform a deformation mapping from a tetrahedral representation consisting of
128 × 103 tetrahedra to a voxelized volume of 13 × 106 voxels in ≈ 30 ms. The deformation
mapping is based on 3D rasterization, however, a preprocessing step is performed to decouple
the deformation process from the rasterization, therefore deformation fields calculated on
high-resolution meshes can be handled without decreasing the performance of the algorithm.

Preprocessing step

In more detail, in the preprocessing step, the voxelized volumetric model is treated as a regular
3D grid, where each voxel’s value is assigned to a vertex located in the center of the voxel,
where 8 adjacent nodes form a regular 8-node hexahedron. Subsequently, each hexahedron is
decomposed in five adjacent tetrahedra (5-T decomposition) constructing an implicit continuous
tetrahedral mesh (sampling mesh, see Figure 4.4a). In each deformation step, the deformation
field, stored on the vertices of the biomechanical model’s tetrahedral mesh is mapped statically
on the vertices of the sampling mesh.
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(a) Regular hexahedron 5T decomposition (b) Resampling algorithm pipeline

Figure 4.4 – VMR algorithm preprocessing pipeline. A preprocessing step in the VMR
algorithm consists of a 5T decompsition of the initial regular mesh of the volume model in a
tetrahedral sampling mesh where the deformation field of the deformation model is statically
mapped on the vertices of the sampling mesh.

3D Rasterization

Following the deformation, the sampling mesh is rasterized in a target 3D regular grid. For each
tetrahedron of the sampling mesh, its axis-aligned bounding box is computed and an inclusion
test is performed on the content voxels to outline voxels which are bounded from the current
tetrahedron. The inclusion test is performed calculating the barycentric coordinates of the
voxels and the values stored in the tetrahedron’s vertices are interpolated through the bounded
voxels (see Figure 4.5). As a result, the deformation field, as calculated from the biomechanical
model, is integrated in the medical image of the patient (volumetric model) which is resampled
interactively for each deformation state (edema resorption state).

Figure 4.5 – VMR algorithm 3D rasterization. In the 3D rasterization process, voxel values of
the initial volumetric model stored in the vertices of the sampling mesh are interpolated using
tetrahedral barycentric interpolation to the bounded voxel of the target 3D regular grid.

4.1.4 CT image resampling

Applying the deformation field of the biomechanical model on the patient’s CT image, using
the presented VMR algorithm, we are able to incorporate shape and volume changes on the CT
image and eventually in the dosimetry. This permits to propose a dynamic dosimetry scheme
based on deformed CT images, of a given patient, in different chosen time intervals.
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Considering a given prediction of the edema resorption pattern, the patient’s image datasets
can be resampled according to the expected deformation in the different time intervals. In this
way, dosimetry can be performed on deformed images approaching more accurately the current
anatomical state of the patient, rather than on the initial images which correspond to a previous
state.

In order to perform dynamic MC dosimetry, both the CT and the segmentation images
of the patient must be deformed appropriately. While the former image can be used in MC
simulations for particle tracking and dose deposition calculation, the latter is used for volumetric
information extraction from the regions of interest (ROI), useful for the measurement of various
dose metrics. Furthermore, the segmentation image can be used as a computational phantom,
substituting the CT image in MC simulations.

The employed VMR algorithm utilizes barycentric interpolation for the resampling of the
image from the initial state to the deformed. Obviously, due to the interpolation error, the
resampled values of some voxels are expected to differ from the actual ones. In the CT image
deformation, where Hounsfield unit (HU) values are stored in the voxels, erroneous HU values
are expected in some voxels. However, the observed error is significantly smaller than the range
of HU values in any given organ, hence interpolation errors do not pose any complications
in material definition during the MC dosimetry. Furthermore, no deformation artifacts are
observed in rigid structures, such as the pubic arch bones. Additionally, sharp features, such
as calcifications are preserved during the resampling process, allowing for MC dosimetric
simulations of similar accuracy through all the deformation states under consideration (see
Figure 4.6).

Figure 4.6 – VMR sharp features preservation. The volumetric resampling of the gray-scale
volume model (CT image) is free from artifacts during the deformation application. Rigid
structures, such as pubic arch bones are not deforming and sharp features such as calcifications
are maintained in the resulting image.

On the contrary, even small interpolation errors even are significant during the deformation
of the patient’s segmentation image where specific discrete integer values are assigned to the
voxels of the underlying ROIs. All the voxels associated with a specific ROI (e.g prostate)
are assigned a unique value (label) which should be maintained under any deformation. If
this restriction is not respected, erroneous dose metrics will be measured if dosimetry is
performed on the deformed images. To avoid this complication, special processing is required.
Fortunately, the interpolation error is present only in a small number of voxels and the deformed
segmentation images can be corrected by treating the voxels containing erroneous values as
holes in the labeled ROIs and applying a standard hole filling filter.
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4.1.5 Seeds displacement

In a dynamic LDR brachytherapy dosimetry scheme, additionally to the prostate volumetric
changes, the displacement of brachytherapy seeds during the edema resorption period has to
be considered. While edema resorbs, the seeds are displaced from their implantation positions
following the volumetric change of the prostate. This displacement results in a different
final dose distribution than the one estimated during the implantation, as shown comparing
intra-operative and post-implant dosimetry. Taking into consideration the displacement of the
seeds during the treatment planning could reduce significantly the variation between intra-
operative and post-implant dosimetry (actual dose deposition). In order to take into account
the seeds’ displacements in the dosimetry, we propose a dynamic dosimetry scheme based on
the previously developed biomechanical model (see Chapter 3).

In real conditions, the seeds are expected to contribute in the overall deformation of the
prostate rather than follow it, due to their different material properties (stiffness, density),
and are expected to undergo a rigid motion (translation, rotation) during the deformation
period. In favor of accounting for the complete rigid motion of dozens of seeds, implanted
in a usual standard treatment plan, an extremely locally refined mesh is required to establish
the biomechanical FE model. Such a complicated mesh is cumbersome to be generated in
intra-operative time and increases greatly the computational cost, therefore, for this reason, no
seeds contribution in the prostate was considered in our development.

The seeds are assumed to follow the deformation of the prostate linearly, rather than
contributing to it. In order to update the seeds locations, in each time interval of the dynamic
dosimetry simulation, the displacement field calculated by the biomechanical model is mapped
on the initial seeds locations using the VMR algorithm in a similar manner as was used in the
volumetric model resampling.

In more detail, an inclusion test is performed on the seeds to the initial (undeformed)
tetrahedral mesh representation by firstly expressing the centroids of the respective seeds in
barycentric coordinates. In each time interval, the deformation field stored in the vertices of
the bounding tetrahedra is interpolated by means of barycentric interpolation on the centroid
positions of the seeds, updating their locations in respect to the undergoing deformation (see
Figure 4.7).

Figure 4.7 – Seeds movement during deformation. The displacements of seeds following the
volumetric changes of the prostate can be estimated assuming translational moves (no rotations)
and linear relation to the volumetric change using the VMR algorithm.
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By mapping the deformation field, calculated by the biomechanical model, to the original
patient image datasets (CT and segmentation) and the initial seeds positions, it is possible to
consider volumetric changes and seeds’ movement associated with the edema in different time
intervals. This development enables the establishment of a dynamic MC dosimetry scheme in
LDR brachytherapy that could eventually improve the outcome of the treatment by improving
the treatment planning quality.

4.2 Dynamic dosimetry scheme

In LDR brachytherapy, the quality of the treatment’s outcome depends strongly on the accurate
implantation of the seeds at the selected locations during the treatment planning procedure.
Volumetric changes and seeds movement associated with the formation of edema can lead to a
significantly different dose distribution as observed in post-implant dosimetry, leading often to
increased toxicity.

Following the developments of the edema biomechanical model and the incorporation of the
resulting deformation in the patient’s image data sets and initial seeds positions, our objective
is to account during the operation for post-implant dose variations. In order to achieve that,
a dynamic dosimetry scheme is proposed to take into consideration edema-associated dose
deviations between intra-operative and post-implant dosimetry. The objective is to modify the
treatment plan according to a prediction of the volumetric changes and seed displacements,
linked to the edema resorption pattern, in order to minimize the observed difference between
the intra-operative and post-implant dosimetry.

Instead of calculating the dose to be deposited considering the intra-operative prostatic
volume and the planned seed positions, the edema resorption pattern is incorporated to estimate
the prostate volumetric changes and the associated seed displacements in different time intervals
during the resorption period. The dose to be deposited during each time interval is calculated
and accumulated to the total deposited dose.

4.2.1 MC dose to real dose conversion

In MC dosimetry simulations the dose deposited in a voxel i is given by

D(i)MC =
Ei

mi

, (4.9)

where Ei is the energy deposited in the voxel i for the total number of simulated particles
(PMC) and mi = v × ρi, is the voxel’s mass, given as the product of the voxel volume v and
the density ρi of the underlying material in voxel i. Then, the actual deposited dose is easily
calculated by

DReal = DMC ×
PReal

PMC

, (4.10)

where PReal is the real number of emitted particles. The number of emitted particles from a
given radiation source can be expressed as the product of its radioactivity A(t) (disintegrations
per second) and the exposure time t (seconds). In LDR brachytherapy interventions a number
Ns of sealed radioactive sources (seeds) are implanted permanently in the prostate, therefore,
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the exposure time is theoretically infinite (total decay time). The number of real particles hence
can be calculated from

PReal = Nsκ

∫ ∞

0
A(t)dt, (4.11)

where κ is the average number of photons emitted per disintegration and depends on the
used radionuclide (e.g κ = 1.476 for 125I seeds [Rivard et al., 2004]). Incorporating the
radioactive decay formula in Equation 4.11 we derive

PReal = Nsκ

∫ ∞

0
A0e−λt dt

PReal = Nsκ

∫ ∞

0
A0e−λt dt

PReal = NsκA0

[
−

1

λ
e−λt

]∞

0

PReal = Nsκ
A0

λ

(4.12a)

(4.12b)

(4.12c)

(4.12d)

where A0 is the initial radioactivity and λ the decay constant. The result of Equation 4.12
can be incorporated in Equation 4.10 in a conventional dosimetry simulation scheme, where
no volumetric changes or seeds’ movement is considered, to convert the simulated dose in the
actual deposited dose. However, in the dynamic dosimetry scheme where volumetric changes
and seeds’ movements are considered the Equations 4.12c and 4.12d are no more valid.

In the proposed dynamic dosimetry scheme the exposure time is partitioned in two time
periods, the edema resorption period (first 30 days after operation) and the after-edema pe-
riod where no volumetric changes or seed movements are present. Furthermore, the edema
resorption period is discretized in n time intervals assuming zero volumetric changes and seed
movements during the time span of each interval. Then, the dose deposited during the total ex-
posure time can be described, in a dynamic manner, as the sum of the dose fractions calculated
during each time interval, expressed by

DReal = DMC ×
NsκA0

PMC

×
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n



. (4.13)

The accuracy of the dynamic dosimetry calculation, as given by Equation 4.13, depends
on the discretization level of the edema resorption period. In the lower limit where n = 1
the result will be equivalent to the conventional dosimetry, while for n → ∞ the dynamic
dose calculation will be continuous. The choice of the number of time intervals n will be,
therefore, a trade-off between accuracy and computational time. Additionally, the dose-rate of
the seeds should be considered during the choice of the time intervals since higher dose-rate
will require shorter time intervals for a realistic result. In our development, where 125I seeds
were used in the simulations (STM125I, Bard Medical Division, Covington, GA, USA [Kirov
and Williamson, 2001]), the edema resorption period was discretized in 30 time intervals of
1 Day duration similar to the time step of the biomechanical model calculation. However,
no significant dosimetric difference was found when the time interval was relaxed in 2 Days
duration (15 intervals).
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4.2.2 Dynamic vs Conventional dosimetry

In order to investigate the capability of the proposed dynamic dosimetry scheme to improve
intraoperative dosimetry, a MC dosimetry study was performed. Using the deformation fields
computed in the Young modulus effect and Excessive fluid pressure effect experiments, pre-
sented in Chapter 3, the 15 patients dataset was extended in order to account for the effect of
various edema characteristics as well as various prostate elastic properties. Deformed images
were generated and seed positions were updated for each experimental setup using the VMR
algorithm.

A dynamic dosimetry was performed for each case discretizing the edema resorption period
in 30 intervals of 1 Day duration during the edema resorption period. Additionally, two static
dosimetry simulations were performed for each case. In the first, the Day 1 (maximum edema
volume) CT image and corresponding seed positions were used while in the latter, the Day 30
CT image and seed positions were used. The two static dosimetry simulations were considered
as intraoperative and post-implant dosimetry, respectively. Dose metrics for the evaluation
of the dosimetry were calculated for the dynamic, intraoperative, and post-implant dosimetry
simulations.

The relative difference between dynamic and intraoperative dosimetry (Day30 dynamic

relative difference) and the relative difference between post-implant and intraoperative dosime-
try (Day30 conventional relative difference) are summarized below in Tables 4.1 and 4.2 for
all the cases of the Young modulus effect and the Excessive fluid pressure effect experiments
respectively.

The comparison of the intraoperative dosimetry simulation with both the dynamic and post-
implant dosimetry simulations, for the various edema resorption cases considered, demonstrates
the overall underestimation of the dose if the intraoperative dosimetry is performed without
accounting for the edema resorption mechanism similarly to previous studies [Tejwani et al.,
2012, Chira et al., 2013]. Furthermore, the dose difference is shown to increase proportionally
with the edema magnitude and prostate stiffness increase. Higher edema magnitude leads to
increased prostate volumetric changes, hence more extended seeds’ movement that result in
higher dose underestimation during the intraoperative dosimetry.

Moreover, the higher prostate stiffness cause more rapid volumetric changes and seed move-
ments increasing, therefore, the edema-associated dosimetric difference between intraoperative
and post-implant dosimetry. On the other hand, for prostate with lower stiffness (lower Young
modulus) due to the linear edema resorption and the higher edema half-life, the negative effect
of edema on the intra-operative dosimetry is lower.
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Table 4.1 – Mean relative difference for the dose metrics of interest for the 15 patients dataset
between Day1 and conventional/dynamic Day30 dosimetry for the different cases of the Young
modulus effect experiment.

Young
modulus
effect case

Dose metric
Day30 dynamic

relative difference
(%)

Day30 conventional
relative difference

(%)

YM: 0.01

Prostate V90 20.8 ± (5.5) 26.1 ± (6.4)
Prostate D90 10.2 ± (1.7) 10.4 ± (2.1)
Urethra D10 7.6 ± (1.4) 9.3 ± (1.6)
Rectum D2cc 6.2 ± (1.0) 6.3 ± (1.4)
P. Arch D10 −1.8 ± (0.3) −2.2 ± (0.5)

YM: 0.05

Prostate V90 44.8 ± (6.0) 50.5 ± (6.1)
Prostate D90 22.0 ± (1.9) 22.2 ± (2.6)
Urethra D10 19.2 ± (2.1) 21.8 ± (2.1)
Rectum D2cc 9.3 ± (2.5) 9.4 ± (3.1)
P. Arch D10 −4.4 ± (0.4) −4.8 ± (0.6)

YM: 0.001

Prostate V90 31.4 ± (3.5) 34.3 ± (4.7)
Prostate D90 19.2 ± (0.6) 19.0 ± (0.5)
Urethra D10 18.9 ± (6.2) 20.6 ± (6.1)
Rectum D2cc 4.2 ± (2.5) 4.3 ± (2.8)
P. Arch D10 −4.2 ± (0.3) −4.2 ± (0.4)
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Table 4.2 – Mean relative difference for the dose metrics of interest for the 15 patients dataset be-
tween Day1 and conventional/dynamic Day30 dosimetry for the different cases of the Excessive
fluid pressure effect experiment.

Excessive
fluid pressure
case

Dose metric
Day30 dynamic

relative difference
(%)

Day30 conventional
relative difference

(%)

∆ : 0.10

Prostate V90 7.7 ± (3.7) 8.9 ± (4.6)
Prostate D90 6.2 ± (1.1) 5.9 ± (1.4)
Urethra D10 4.2 ± (1.5) 4.9 ± (1.5)
Rectum D2cc −1.0 ± (0.7) −0.6 ± (0.8)
P. Arch D10 −1.3 ± (0.3) −1.2 ± (0.4)

∆ : 0.20

Prostate V90 19.0 ± (3.4) 21.9 ± (4.7)
Prostate D90 13.6 ± (1.5) 13.4 ± (4.1)
Urethra D10 10.5 ± (3.4) 12.2 ± (4.2)
Rectum D2cc 4.1 ± (1.5) 4.4 ± (3.8)
P. Arch D10 −2.7 ± (0.3) −2.9 ± (0.8)

∆ : 0.38

Prostate V90 44.8 ± (6.0) 50.5 ± (6.1)
Prostate D90 22.0 ± (1.9) 22.2 ± (2.6)
Urethra D10 19.2 ± (2.1) 21.8 ± (2.1)
Rectum D2cc 9.3 ± (2.5) 9.4 ± (3.1)
P. Arch D10 −4.4 ± (0.4) −4.8 ± (0.6)

∆ : 0.65

Prostate V90 80.1 ± (18.4) 96.7 ± (20.9)
Prostate D90 35.9 ± (5.0) 37.3 ± (6.6)
Urethra D10 31.2 ± (1.9) 36.3 ± (5.6)
Rectum D2cc 20.4 ± (2.9) 20.0 ± (4.1)
P. Arch D10 −6.2 ± (0.6) −7.0 ± (1.1)
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4.2.3 Dynamic dosimetry improvements

The introduced dynamic dosimetry scheme, as shown in Tables 4.1 and 4.2, is capable of incor-
porating edema associated volumetric changes and seed migration in intraoperative dosimetry.
In this way, it is possible during the treatment planning to account for significant dose modifi-
cations that will eventually occur during the edema resorption period.

In the performed simulation experiments, relative dose differences in the prostate, between
dynamic and conventional intraoperative dosimetry, were found in a range between 6.2% and
35.9% with the minimum value occurring in the case of the minimum edema magnitude (0.1)
and the maximum value in the case of the maximum edema magnitude (0.6) respectively.
Similarly, the relative dose difference was found more significant for increasing prostate stiff-
ness, where for prostate with a Young modulus (YM) of 0.01 MPa (linear resorption) the dose
difference was 10.2% while in the case of YM equal to 0.1 MPa (exponential resorption) was
up to 19.6%.

The increased relative dose differences for high edema magnitude and high prostate YM
can be correlated with the extent of volumetric changes, the associated seeds migration, and
the time that the phenomenon endures. Indeed, when the treatment planning is performed on
a significantly edematous prostate it is expected to observe increased prostate dose coverage
after edema resorption. Then, the prostate volume is reduced and the associated movement
of the seeds leads to a more compact implant than the one planned. The dose alteration is
more significant when the prostate YM is higher due to the resulting shorter edema resorption
period. In contrast, when the edema resorption period is long, the volumetric changes and the
seeds’ migration are slow and the effect in dosimetry is lower due to the radioactive decay of
the seeds.

A side-effect of the seeds migration during the edema resorption is the increase of the dose
delivered on the urethra and hence the increase of the toxicity of the procedure. In the presented
experimental setup, significant relative dose differences were found when dynamic dosimetry
was considered, ranging between 4.2% and 31.2% and demonstrating the hot-spots occurrence
in the central area of the prostate (see Figure 4.8)

Figure 4.8 – Isodoses distribution in conventional and dynamic dosimetry. The dynamic
dosimetry simulation is able to demonstrate significant dose increase in the central prostate
region considering the displacements of the seeds after the edema resorption, while this in-
formation is not present in the conventional intraoperative dosimetry where edema is not
considered.

The results of our experiments are in accordance with results from previously published
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studies. Precisely, the prostate D90 increase of ≈11.7% for an edema magnitude of 10%
(∆ = 0.1) demonstrated by Chira et al. [2013] is within the D90 increase range for ∆ = 0.1−0.2
as it was estimated by the proposed dynamic dosimetry scheme. The prostate dose uncertainty
of 2% of our Monte Carlo simulations and the low resolution image quality of the US modality
used in the study of Chira et al. should be taken into account in the comparison of our results.
Moreover, our dynamic dosimetry scheme demonstrated an increase of D90 of 22% for an
average edema magnitude (∆ = 0.38) similarly to the 20 Gy increase of D90, demonstrated by
the dynamic dosimetry scheme proposed by Leclerc et al. [2006].

In accordance to results demonstrated here and in Section 3.6, our proposed methodology
enables to perform dynamic dosimetry calculation during the operation accounting for the
edema resorption pattern of the patient, given the patient-specific mechanical parameters of
the prostate and neighbor organs. The effect of the expected edema resorption pattern can
be investigated in terms of isodoses distribution (see Figure 4.8) and dose-volume histogram
(DVH) plots (see Figure 4.9) during the operation. This could improve the decision-making
during the seeds’ implantation procedure, leading to a lower chance of complications and
improved outcome quality.

Figure 4.9 – DVH conventional and dynamic dosimetry. Dynamic dosimetry enables to
improve the treatment planning procedure by estimating the impact of the edema resorption on
the overall dose distribution in terms of dose-volume-histograms (DVH).

An interesting remark on the presented results can be done comparing the relative dose
differences of the dynamic and post-implant dosimetry simulation with the intra-operative one.
For all the edema magnitude and YM scenarios, an overall dose overestimation is demonstrated
in post-implant dosimetry simulations when compared to the dynamic dosimetry scheme. This
finding is attributed to the consideration of static volume and seeds’ positions during the edema
resorption period in the former case. Instead of considering the continuous displacements of
the seeds from the implantation to the final positions and accounting for the gradual volumetric
changes, in the post-implant simulation the CT image and the seeds’ positions used are the ones
acquired after the edema resorption.

The higher dose differences observed in our experiments between dynamic and conven-
tional post-implant dosimetry were for the higher edema magnitude scenario (∆ = 0.65) tested.
The prostate D90 and the urethra D10 differences in this scenario were 1.4% and 5.1% respec-
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tively with dose over-estimation in post-implant dosimetry simulation for both dose metrics.
Nevertheless, the differences demonstrated in our experiment should be considered indicative
rather than representative due to the small size of the employed patients’ dataset. However,
despite the demonstrated differences, correcting the intra-operative dosimetry based on the
conventional post-implant scheme can improve significantly the quality of treatment planning
with the minimum extra computational cost. This could enable the intraoperative adaptation
of the treatment planning to edema-related seeds’ migration.

4.3 Adaptive treatment planning

As shown in this Chapter, edema and the associated seeds’ migration can have a significant
effect in dosimetry. This effect is proportional to the magnitude of the edema. High edema
magnitude leads to larger seeds’ displacement from the planned positions, resulting in higher
dosimetric differences.

By introducing the methodology that was developed in this chapter in the treatment planning
procedure, the edema can be considered and the planned implantation sites can be modified
in order to account for the calculated edema-related migration of the seeds. Therefore, here
we present a strategy for adaptive treatment planning by combining the dynamic dosimetry
methodology with the MC-ITPA that was presented in Chapter 2.

In the proposed strategy, right after the calculation of all the possible needle trajectories,
the edema biomechanical model, presented in Chapter 3, is applied on the patient’s medical
image using the VMR algorithm (see Subsection 4.1.3). This allows to estimate the volumetric
change of the prostate and the associated seeds migration on all the possible seed locations (see
Figure 4.10).

Figure 4.10 – Edema prediction in treatment planning. Applying the edema biomechanical
model using the VMR algorithm on the patient’s medical image during the treatment planning,
volumetric changes and seeds’ migration can be estimated.

With this information, the single-seeds dose maps are generated considering the post-
operative geometry (reduced prostate volume after edema resorption) and the updated possible

Université de Bretagne Occidentale - Brest - France



110 Chapter 4. Dynamic Monte Carlo dosimetry

seed positions, after applying the edema-related seed migration. In this way, MC-ITPA will
produce the optimal implant with respect to the post-operative prostate volume and the seeds’
migration.

The ability of MC-ITPA to adapt the treatment plan to edema resorption was evaluated for
the scenario of maximum edema magnitude (∆ = 0.65). The DVH-MC-ITPA was used due
to its superior planning quality. A DVH-MC-ITPA optimized treatment plan was generated
without considering the edema resorption (prostate volume = 70.8cc) and no seeds’ migration
(no-edema-correction plan). The resulting optimal implant’s dosimetry was also evaluated
using the post-operative prostate volume (42.9cc at Day30) to simulate the postoperative
dosimetry (no-edema-correction post). Finally, a DVH-MC-ITPA optimized treatment plan
was generated but this time after considering the edema resorption (prostate volume = 42.9cc)
and the edema-related seeds’ migration (edema-correction plan). The dose metrics for the
prostate and OARs (urethra, rectum) for the three different scenarios (no-edema-correction
plan, no-edema-correction post, edema-correction plan) are summarized in Table 4.3.

Table 4.3 – Adaptation of treatment planning to edema. The dosimetric results of a standard
treatment plan without considering the edema (no-edema-correction plan), its post-operative
dosimetry (no-edema-correction post), and a treatment plan with intra-operative consideration
of edema (edema-correction plan) are demonstrated. The desired planning requirements are
achieved by implants of less seeds using fewer needles when edema is accounted in the treatment
planning.

Dose no-edema- no-edema- edema-
Organ

Metric correction plan correction post correction plan

Prostate

V100 (%) 95.5 99.9 96.1
V150 (%) 47.4 86.6 45.8
V200 (%) 19.3 40.6 19.8
D90 (Gy) 159.5 209.5 160.4

Urethra
D10 (Gy) 187.3 241.2 197.9
D30 (Gy) 177.1 228.4 176.1

Rectum
D2cc (Gy) 119.5 153.5 111.5
D0.1cc (Gy) 171.2 211.2 177.9

Seeds 91 91 55
Needles 25 25 16

Prostate Volume (cc) 70.8 42.9 42.9

As shown in Table 4.3, even if the no-edema-correction plan’s implant respects all the AAPM
TG-137 planning criteria, it results in significant post-operative over-dosage of the OARs
(28.8% higher urethra D10, 28.5% higher D2cc) and significant dose coverage heterogeneity
in the prostate (82.7% increase of V150) as shown in the no-edema-correction post. However,
with the proposed strategy for adaptive treatment planning (edema-correction plan) these
differences between intra-operative and post-operative dosimetry are alleviated. Furthermore,
the resulting optimal implant is composed of fewer seeds delivered by fewer needles since the
prostate volume considered during treatment planning is significantly lower after considering
the edema resorption.
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It should be noted that in cases of high edema magnitude, where edema-related seeds mi-
gration is higher, the dosimetric differences between dynamic and conventional post-operative
dosimetry are more significant (see Table 4.2). In these cases, single-seed dose maps should be
generated considering the prostate volume and the seeds migration at different time intervals
during the first 30 days after the operation and be accumulated in the final cumulative single-
seed dose maps (dynamic dosimetry) to be used during the DVH-MC-ITPA optimization.

As it is demonstrated, by integrating the VMR algorithm in the DVH-MC-ITPA we are
able to provide treatment plans that conform to the planning requirements (even in extreme
cases - ∆ = 0.65), taking into consideration the post-operative anatomic changes and edema-
related seeds’ migration. This experiment was considered a proof of concept and extended
experimentation on patient-specific data is planned after completing the clinical trial, where
MRI edema follow-up of 25 patients will be performed at CHRU Brest.

4.4 Dynamic Monte Carlo dosimetry summary

A methodology to account for the edema dynamics in intra-operative dosimetry has been
presented. A volumetric model resampling algorithm, introduced by Aguilera et al. [2015], has
been updated. The edema-induced deformation, as computed by the proposed biomechanical
model (see Chapter 3), is mapped to the patient’s CT image, the segmentation image, and
the selected seeds’ positions. MC dosimetry can then be performed considering the volume
deformation of the organs of interest and the seed displacements. This dynamic MC dosimetry
scheme has been shown adequate to compensate for observed dose differences, between intra-
operative and post-operative dosimetry. Introducing the proposed methodology in the treatment
planning, the outcome of the LDR brachytherapy procedure can be improved by considering
dose differences between intra-operative and post-operative dosimetry during the planning.
This capability was demonstrated for the extreme edema magnitude scenario of ∆ = 0.65.
More extensive investigations based on real patient data are expected to be performed after
creating a clinical database of edema follow-up MRI images from 25 patients in the CHRU of
Brest.
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Discussion

Despite the continuous advancements in cancer treatment the last decades, prostate cancer
remains the second most common type of cancer amongst men. Throughout this manuscript,
the focus was pointed on the LDR brachytherapy, between the various available treatment
options for prostate cancer. This choice was supported by the wide clinical application of
LDR brachytherapy nowadays. However, LDR brachytherapy treatment planning is based on
rough approximations that result in significant side-effects. The aim of this thesis was to adress
specific limitations (inverse planning quality, dosimetry approximations, edema) and propose
methods and strategies to improve the current LDR brachytherapy procedure.

Inverse planning

In Chapter 2, a fast and efficient inverse treatment planning algorithm was presented, called
MC-ITPA. Currently, the available inverse planning systems in clinical practice are based on
FSA optimization. For a sufficiently high annealing temperature (Tanneal) and sufficiently slow
cooling rate (CR), FSA provides implants of the desired quality. Recently, a new optimization
method inspired by sparse signal reconstruction was proposed with the ability to achieve plans
of sufficient quality in interactive time (0.03-0.23s) [Guthier et al., 2015]. However, the prostate
V150 dose metric recommendations were not respected in these plans. Values ranging between
59% to 73% have been reported while the maximum limit is 50%, as given by the AAPM TG137
recommendations. Higher values than 50% for the prostate V150 metric represent increased dose
heterogeneity which is associated with under-treatment of the disease and increased possibility
of recurrence.

Moreover, all these methods are based on the AAPM TG43 dosimetric formalism where
the patient is considered as an homogeneous infinite volume of water. Especially in LDR
brachytherapy, where the photoelectric phenomenon is dominant, atomic number differences
(tissue heterogeneity) affect notably the dosimetry. It is shown that the formalism of TG43
overestimates the delivered dose with differences up to 7% in prostate D90 (3% due to tissue
heterogeneity and 4% due to attenuation between seeds), compared to Monte Carlo (MC)
simulations [Carrier et al., 2007].

The first improvement of the proposed MC-ITPA was the introduction of MC dosimetry in
the optimization process, where MC single-seed dose maps were calculated for all the available
seed positions, that could be occupied in an implant, during a pre-optimization step. This
approach has been previously adopted in HDR brachytherapy [D’Amours et al., 2011], but not
efficiently enough to be introduced in the intra-operative practice. The employment of GPU
computation resources enabled us to render the MC simulation applicable in the operating
room, where single-seed dose maps of ≈ 2% statistical uncertainty in the prostate could be
generated in ≈ 15 − 20 for ≈ 400 − 600 seeds using a NVIDIA GTX Titan GPU.

The second improvement of the MC-ITPA was the improvement of the FSA-based opti-
mization, itself. In our development, an optimal implant was able to be delivered in ≈ 0.8 − 1s
for a setting of Tanneal = 105 and CR = 0.2%. The quality of the planning results (implant
dosimetry) was evaluated against the TG137 planning recommendations. The resulting treat-
ment plans had comparable quality to clinical treatment plans previously performed in CHRU
Brest (following the AAPM TG43 dose formalism) for the given dataset of 18 patients.
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However, prostate dose homogeneity, as expressed by V150 and V200 was not always re-
spected. The mean prostate V150 and V200 dose metrics were found 51.3 ± (3.0)% and
25.4 ± (4.0)% respectively, exceeding the AAPM TG137 recommended limits (50% and 20%).
This limitation is associated to the low number of dose optimization points in the interior of
the prostate (located only between seeds). While a common solution would be to increase
the number of the prostate internal dose points, another approach was preferred. Rather than
using dose-based cost function, a DVH-based cost function was employed which enabled the
direct control over all the desired dosimetric criteria. In this way, the optimization was per-
formed in 15s, still ×4 times faster than state-of-the-art systems [D’Amours et al., 2011], but
implants with improved prostate dose homogeneity could be generated (V150 = 46.0 ± (2.7)%
and V200 = 19.6 ± (0.7)%). Furthermore, with this approach, the operator controls directly
the treatment planning outcome by setting the desired DVH metrics. In this way, the inverse
planning of the treatment is more natural and no learning curve is required.

In the simulations, computational phantoms considering 4 different materials for the 4 areas
of interest (prostate, urethra, rectum, and surrounding tissues) were used, following the material
composition recommendations of the ICRU report 46 and ICRP Publication 89, in order to
account for tissue heterogeneity in dose calculations. The effect of the selected materials
composition on dosimetry was evaluated with CT-derived phantoms. The dose calculation was
found over-estimated when the computational phantoms were used instead of the CT-derived
phantoms. However, it was found that a significant portion of the dosimetric difference between
the two types of phantoms was associated with the statistical noise of CT images. After applying
a Gaussian filter on the CT images, reported differences up to 8.1± (0.4)% in the prostate were
reduced to 2.9 ± (0.7)%. In order to achieve the highest possible dosimetric accuracy during
the operation, a CT image of the patient must be available. This image should be registered to
the intra-operative US image and filtered accordingly to reduce the statistical noise. Otherwise,
computational phantoms derived directly from the US image segmentation can be used with
tolerable error.

Comparing Monte-Carlo dosimetry on the heterogeneous computational phantoms and on
water-equivalent phantoms (TG43 simulation), we found mean dosimetric differences in prostate
D90 of 3.1% similarly to published studies [Carrier et al., 2007]. The validity of the simulated
results was ensured by investigating the effect of the chosen MC statistical uncertainty (≈ 2%)
on the DVH metrics which was found negligible. Therefore, in our methodology the TG43
dose overestimation on prostate D90 is reduced by 3% on average. However, the use of the seed
phasespace does not allow for reducing the dose overestimation related to particle interactions
between seeds.

Introducing the DVH-MC-ITPA we were able to generate optimal treatment plans in less
than 1 minute (15-20s for single-seed dose maps + 15s for DVH-based FSA optimization). Our
next objective was to further improve the treatment planning procedure, trying to eliminate
dosimetric uncertainties. An important factor that reduces the quality of the treatment plan is
the operation-induced edema.

Edema biomechanical modeling

In Chapter 3, a biomechanical model to simulate the edema dynamics was proposed. Edema
is formed fast during the operation and reaches its maximum magnitude shortly after its end.
Moreover, it resorbs gradually and the resorption can last for several days. The magnitude
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and the resorption time of edema can differ significantly amongst patients. Current models
are based on macroscopic observations and are not able to account for this diversion. In
our effort to develop a patient-specific model, we proposed a biomechanical model based on
continuum mechanics principles. Using the Finite Element (FE) method, we simulated the
edema dynamics by associating the phenomenon with the inflammation mechanism and the
tissue mechanical properties.

A series of experiments revealed that between the Young modulus (stiffness) and the
Poisson’s ratio (compressibility), the former has a stronger effect on the edema. It was also
shown that the prostate’s stiffness affects the edema half-life, where edema demonstrated a
linear resorption pattern for prostates with low stiffness. For increasing stiffness the edema
resorption pattern gradient was increasing, until becoming exponential. This finding showed
that prostate stiffness can be an indicator of the observed diversion in edema resorption which
was shown in previous studies that can follow an exponential, or linear or even no specific
pattern. Moreover, the edema magnitude was correlated with the increased excessive fluid
accumulation in the interstitial matrix due to inflammation. Brachytherapy-induced edema
mechanism has not been previously addressed.

Our study showed that a priori knowledge about the tissue mechanical properties and the
underlying inflammation mechanism could provide a predictive insight to the evolution of
the edema. Prostate’s mechanical properties can be acquired by elastography measurements
and inflammation can be accounted by modeling the responsible biological mechanism. This
information can allow to adapt the treatment planning intra-operatively in order to reduce
dosimetric uncertainties.

Dynamic Monte Carlo dosimetry

The adaptation of the treatment plan to volumetric and shape changes in the patient’s anatomy
due to edema was the objective of the developments of Chapter 4. In this chapter, a volumetric
model resampling (VMR) algorithm was adapted to LDR brachytherapy. In the VMR method,
the computed deformation field on the tetrahedral representation of the biomechanical model,
was mapped to the medical image (voxelized volume) of the patient using barycentric interpo-
lation. In this way, volumetric and shape changes due to edema in different time intervals were
mapped to pre-operative CT images of 15 patients in order to investigate the effect of edema
in dosimetry. In addition, the computed deformation field was applied to the initially selected
seeds considering a linear relationship. In this way seeds migration due to edema dynamics
was considered.

Considering anatomical changes and seeds migration, a dynamic Monte Carlo simulation
scheme was proposed. The dynamic MC dosimetry revealed the dosimetric differences that
arise between intra-operative and post-operative dosimetry. A proportional relationship be-
tween edema magnitude and intra-/post-operative dosimetric differences was shown. Even
under the assumption of linear seed migration, dosimetric differences found in this study agree
with findings of previous studies available in the literature. Introducing the developed method-
ology in the treatment planning procedure of the MC-ITPA, intra-operative and post-operative
dosimetry differences were eliminated during treatment planning for the extreme value of the
considered edema magnitude (∆ = 0.65).

In order to transfer the developments described in this thesis in the clinical practice a
treatment planning system named ORACLE was developed and is briefly described in the
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Appendix A. ORACLE stands for Optimized Brachytherapy planning system and pro-
vides a user-friendly graphical interface for the use of the developments described in Chapters
2 and 4. A finite element solver was not incorporated in ORACLE. The biomechanical model
of edema can be solved with any available FE solver (e.g FeBio) and be provided as input to
ORACLE, in the current state of the program. This last development decision was motivated by
the fact that edema dynamics are not yet fully explored and more research should be focused on
this task. In addition, FE method demands the generation of a 3D mesh which can be an arduous
task even for experienced engineers and is not attractive for intra-operative applications. On
the other hand, these last modeling limitations create the perspective for future improvements
of the proposed methods.

Table D.1 – Thesis contributions in LDR treatment planning summary.

Clinical Proposed
Objective

method
Cons

method
Pros Cons Perspective

- FSA - Indirect - DVH-based - Direct - - GPU

Inverse
planning (1min) FSA planning (15s) acceleration

planning
- TG43 - Overestes - GPU MC - Accurate Dose -No seeds - Correction

dose (few ms) (≈ 15 − 20s) interactions Factor
- Analytical - No patient - Biomechanical - Patient - Mesh - Meshless

Edema
models specific FE model anatomy distortion methods

correction
- Predictive - Elasticity - Elastography

Adaptive - None - Static - 3D volume - Dynamic - Linear seed - Rigid body
planning dosimetry resampling (≈ 2s) dosimetry migration modeling

Perspective

Currently, our focus is on meshless methods that can be used as an alternative to the FE method
for the biomechanical modeling of edema. The principal advantage of these methods is that the
mesh requirement of FE method is eliminated and hence meshless methods could be introduced
in intra-operative environment. In addition, the native parallelism of these methods renders
them compatible with the time constraints of brachytherapy treatment.

The freedom offered by meshless methods in the construction of models with an arbitrary
level of detail can enable the efficient modeling of more complicated mechanisms and could
be essential for the improvement of the proposed edema model and the understanding of the
edema mechanism. This edema mechanism is strongly related on patient-specific mechanical
properties and insight that can be provided by elastography could be essential for the adaptation
of the model to patient-specific biomechanics other than anatomy. Moreover, fine structures
can be considered with less computational overhead and seeds migration could be introduced
in the edema model, based on rigid body motions. Then, interactions between seeds could
also be considered by introducing a hybrid navigation algorithm in the dosimetric calculation.
Moreover, the implementation of FSA on GPU could accelerate the inverse planning procedure.

Conclussion

Concluding, the treatment planning optimization of LDR brachytherapy was addressed in sev-
eral ways. Intra-operative dosimetry was improved introducing GPU-accelerated MC dosime-
try. This in combination with the DVH-based optimization enabled the fast and efficient
adaptive inverse treatment planning. The biomechanics of edema were explored and observed
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116 Discussion

diversity amongst patients was correlated with inflammation and tissue mechanical properties.
Taking into consideration the edema biomechanics, we were able to provide a dynamic MC sim-
ulation scheme that can be used for the adaptation of the treatment planning in various edema
conditions. This work created the perspective for future investigation of the edema mechanism
focusing on meshless methods that will allow to develop more sophisticated biomechanical
models that could be easily incorporated in the operational room. The contributions of this
thesis to LDR treatment planning are summarized in the Table D.1.
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122 ORACLE

ORACLE (Optimized Brachytherapy planning system) is an easy-to-use treatment planning
software for LDR brachytherapy. Currently it is in experimental state and its purpose is to
transfer the developments presented in this manuscript in the clinical practice.

The software is written completely in C++ and depends on few well documented and stable
C++ libraries to provide a friendly graphical user interface equipped with the appropriate
visualization tools that can facilitate the operator to deliver improved LDR brachytherapy
treatment plans.

ORACLE dependencies

• QT: Graphical user interface

• VTK: Visualization tasks

• Boost: Filesystem management

• GGEMS: GPU-accelerated dosimetry

The two versions of the MC-ITPA algorithm, presented in Chapter 2, are both available in
ORACLE.

ORACLE planning pipeline

The generation of a treatment plan can be performed in a number of simple steps. In this
experimental version of the software, once the patient’s data are loaded, the operator must set
the position of the template guide by selecting the location of the first hole of the grid (1A).
After setting the template guide, the available needle trajectories and seeds positions can be
calculated by ORACLE. The pipeline of the generation of a treatment plan consists of the
following steps

• Load patient data [image format (.mhd), model format (.feb/.txt)]

• Set the position of the template grid

• Set the number of simulated particles for the single-seed dose maps generation

• Generate single-seed dose maps

• Perform standard or DVH-based optimization

• Evaluate resulting plan’s quality (DVH, isodoses)

The individual steps of the planning pipeline are described in the following in more detail.
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Evaluate resulting plan’s quality (DVH, isodoses)

Finally, after the optimization of the treatment plan, the operator can evaluate qualitatively and
quantitatively the generated plan. To do so a table with the different DVH dose metrics for the
prostate, the urethra, and the rectum is given. Moreover, the DVH plot and the isodoses, both
in 3D and in image-view, are available for visualization such as the selected seed positions (see
Figure A.6).

(a) Isodoses visualization

(b) DVH graph visualization

Figure A.6 – ORACLE Results evaluation. The generated plan can be evaluated by the various
DVH metric available for the prostate OARS, their DVH graph and the isodoses distribution
for the selected seeds’ configuration.
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128 FSA OPTIMIZATION PSEUDO-CODE

Data: Initial temperature (T0), cooling rate (CR), Dectors, dose prescriptions, possible
seeds

Result: Optimized seeds’ configuration
set initial random seeds configuration (initial_config);
extract dose values from dectors and construct accumulated dose vectors;
convert accumulated dose vectors to objective functions;
calculate cost function value E;
set current configuration: current_con f ig = initial_con f ig;
set current temperature: T = T0;
accepted_update = f alse;
while T > 0 do

generate new_con f ig by swapping two random seeds;
update accumulated dose vectors;
convert updated accumulated dose vectors to objective functions;
calculate new cost function value E′;
if E′ < E then

accepted_update = true;
E = E′;
current_con f ig = new_con f ig;

else

calculate P(∆E);
select randomly from uniform distribution Paccept ∈ [0, 1];
if Paccept > P(∆E) then

accepted_update = true;
E = E′;
current_con f ig = new_con f ig;

end

end

T∗ = (1 − CR);
end

Algorithm 1: MC-ITPA implementation of FSA algorithm
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Table C.1 – Dose metrics for the individual plans generated by the standard MC-ITPA for the given patients dataset.

Prostate Urethra Rectum
Patient V100(%) V150(%) V200(%) D90(Gy) D10(Gy) D30(Gy) D2cc(Gy) D0.1cc(Gy) Seeds Needles
P1 95.6 49.7 21.0 160.4 207.8 186.4 118.0 187.4 67 17
P2 95.4 49.9 20.2 159.6 191.8 171.0 109.8 172.8 71 17
P3 94.3 50.0 24.3 156.2 201.2 180.5 129.0 191.6 70 19
P4 94.1 52.4 22.9 158.4 192.4 173.8 107.6 165.7 62 18
P5 95.8 50.3 22.0 159.4 200.4 180.7 121.2 178.0 66 18
P6 95.9 50.7 26.5 158.9 165.4 156.1 96.5 134.7 63 19
P7 96.6 49.7 22.9 160.0 157.5 149.4 111.5 180.4 55 16
P8 97.0 60.2 32.8 168.7 170.3 150.8 107.8 147.4 63 16
P9 96.3 58.0 31.1 164.0 167.6 153.8 132.6 193.7 67 17
P10 95.2 54.9 26.0 160.0 166.2 155.2 101.1 152.8 72 18
P11 97.3 54.6 33.6 174.0 194.2 183.1 113.4 151.1 64 13
P12 96.7 53.2 30.3 163.0 164.3 155.7 119.1 173.0 65 15
P13 95.5 48.4 20.6 160.3 173.9 164.2 118.8 157.3 74 20
P14 96.0 48.1 24.1 156.3 157.3 147.7 102.3 137.3 63 21
P15 95.3 45.6 30.4 162.5 172.6 162.0 107.5 160.6 55 13
P16 95.3 49.8 25.6 159.2 170.6 159.5 118.5 176.3 60 17
P17 95.2 55.1 29.2 159.8 166.4 156.2 109.7 170.1 62 16
P18 95.1 49.0 27.5 156.9 161.5 152.1 113.3 154.1 62 15

In overall the dose homogeneity criteria is difficult to be respected. By fine tuning the optimization parameters (dose prescriptions, etc.),
better homogeneity can be achieved in more loose-patterned plans (using more needles for plan delivery).
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Table C.2 – Dose metrics for individual patient treatment plans, generated with the DVH-MC-ITPA.

Prostate Urethra Rectum
Patient V100(%) V150(%) V200(%) D90(Gy) D10(Gy) D30(Gy) D2cc(Gy) D0.1cc(Gy) Seeds Needles
P1 95.2 40.2 19.4 154.9 156.6 148.4 104.3 179.0 67 18
P2 96.9 44.6 17.9 159.7 157.6 149.1 109.7 172.7 71 21
P3 95.0 41.2 19.7 156.9 168.9 158.8 110.8 190.1 70 19
P4 96.8 46.3 19.7 163.2 168.4 159.0 102.9 141.9 62 17
P5 97.1 42.4 19.6 162.7 167.8 158.7 116.4 197.8 66 20
P6 95.1 43.6 19.6 157.0 169.6 159.0 93.7 130.8 63 20
P7 98.1 48.0 19.7 168.8 191.0 175.8 108.1 154.7 55 16
P8 97.6 49.3 19.7 165.5 172.0 159.4 106.0 164.5 63 16
P9 96.0 46.2 19.8 161.3 170.5 159.2 127.1 195.1 67 19
P10 98.2 48.2 19.2 166.6 194.8 173.7 109.3 166.3 72 19
P11 95.4 47.7 20.2 161.0 185.4 174.2 101.3 143.3 64 14
P12 96.7 47.5 19.7 165.6 189.5 173.5 117.9 197.1 65 17
P13 95.7 47.7 19.8 160.0 185.3 172.3 114.6 184.4 74 19
P14 97.4 46.6 19.9 165.7 189.8 175.9 105.5 148.7 63 19
P15 96.6 47.1 19.8 165.1 187.4 170.1 98.5 147.35 55 15
P16 96.8 48.1 19.8 164.0 189.5 176.9 110.0 148.9 60 17
P17 97.6 48.0 19.9 164.8 193.1 172.1 116.3 175.6 62 16
P18 97.9 47.6 19.5 166.2 182.5 170.7 108.5 153.7 62 17

In all the cases all the planning criteria are efficiently achieved proving the treatment planning capabilities of the DVH-MC-ITPA.
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ACRONYMS

103Pd palladium-103.

103Rh Rhodium-103.

125I iodine-125.

125Te tellurium-125.

192Ir iridium-192.

v Poisson’s ratio.

3D-CRT three-dimensional conformal radiotherapy.

AcI acute inflammation.

ADT androgen deprivation therapy.

AJCC American Joint Committee on Cancer.

AS active surveillance.

BC boundary condition.

BPH benign prostatic hyperplasia.

ChI chronic inflammation.

CT computed tomography.

DVH dose-volume histogram.

EBRT external beam radiotherapy.
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FE finite elements.

FSA fast simulated annealing.

GA genetic algorithm.

GBBS grid-based Boltzmann equation solvers.

GPU graphical process unit.

GS modified Gleason score.

HDR high-dose-rate.

HU Hounsfield unit.

IMRT intensity-modulated radiotherapy.

ISUP International Society of Urological Pathology.

LDR low-dose-rate.

LHRH luteinising hormone-releasing hormone.

MBDCA model-based dose calculation.

MC Monte Carlo.

MC-ITPA MC-based inverse treatment planning algorithm.

OAR organ at risk.

PCa prostate cancer.

PDE partial differential equation.

PSA prostate-specific antigen.

PTV planning target volume.

RP radical prostatectomy.

SA simulated annealing.

TG-186 AAPM Task Group No. 186.

TG-43 AAPM Task Group No. 43.

TRUS transrectal ultrasound.

US ultrasound.
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VMAT volumetric modulated arc therapy.

VMR volumetric model resampling.

YM Young modulus.
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