B. I. Aggoun and N. Beldiceanu, Extending chip in order to solve complex scheduling and placement problems, Mathematical and Computer Modelling, vol.17, issue.7, pp.57-73, 1993.
DOI : 10.1016/0895-7177(93)90068-A

URL : https://hal.archives-ouvertes.fr/hal-00442821

A. David, L. Applegate, E. Robert, V. Bixby, . Chvatal et al., The traveling salesman problem : a computational study, 2011.

N. Ascheuer, Hamiltonian path problems in the on-line optimization of flexible manufacturing systems, Thèse de doct, 1995.

G. Benoit and S. Boyd, Finding the Exact Integrality Gap for Small Traveling Salesman Problems, Mathematics of Operations Research, vol.33, issue.4, pp.921-931, 2008.
DOI : 10.1287/moor.1080.0337

[. Balas and N. Christofides, A restricted Lagrangean approach to the traveling salesman problem, Mathematical Programming, vol.1, issue.1, pp.19-46, 1981.
DOI : 10.1007/BF01584228

[. Baldacci, A. Mingozzi, and R. Roberti, New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem, Operations Research, vol.59, issue.5, pp.1269-1283, 2011.
DOI : 10.1287/opre.1110.0975

[. Baldacci, A. Mingozzi, and R. Roberti, New State-Space Relaxations for Solving the Traveling Salesman Problem with Time Windows, INFORMS Journal on Computing, vol.24, issue.3, pp.356-371, 2012.
DOI : 10.1287/ijoc.1110.0456

[. Baldacci, A. Mingozzi, and R. Roberti, Recent exact algorithms for solving the vehicle routing problem under capacity and time window constraints, European Journal of Operational Research, vol.218, issue.1, pp.1-6, 2012.
DOI : 10.1016/j.ejor.2011.07.037

[. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, Global Constraint Catalogue: Past, Present and Future, Constraints, vol.2, issue.1, pp.21-62, 2007.
DOI : 10.1007/978-3-540-24664-0_5

URL : http://www.emn.fr/x-info/tpetit/constraints0607.pdf

[. Benchimol, W. Van-hoeve, J. Régin, L. Rousseau, and M. Rueher, Improved filtering for weighted circuit constraints, Constraints, vol.26, issue.4, pp.205-233, 2012.
DOI : 10.1145/322154.322161

URL : https://hal.archives-ouvertes.fr/hal-01099501

[. Christofides, A. Mingozzi, and P. Toth, Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations, Mathematical Programming, vol.19, issue.1, pp.255-282, 1981.
DOI : 10.1007/BF01589353

[. Christofides, A. Mingozzi, and P. Toth, Statespace relaxation procedures for the computation of bounds to routing problems, pp.145-164, 1981.

[. Carpeneto and P. Toth, Some New Branching and Bounding Criteria for the Asymmetric Travelling Salesman Problem, Management Science, vol.26, issue.7, pp.736-743, 1980.
DOI : 10.1287/mnsc.26.7.736

[. Carlier, The one-machine sequencing problem, European Journal of Operational Research, vol.11, issue.1, pp.42-47, 1982.
DOI : 10.1016/S0377-2217(82)80007-6

H. Sylvain-ducomman, B. Cambazard, and . Penz, Alternative Filtering for the Weighted Circuit Constraint : Comparing Lower Bounds for the TSP and Solving TSPTW, AAAI Conference on Artificial Intelligence, 2016.

[. Desrochers, J. Desrosiers, and M. Solomon, A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows, Operations Research, vol.40, issue.2, pp.342-354, 1992.
DOI : 10.1287/opre.40.2.342

G. Dantzig, R. Fulkerson, and S. Johnson, Solution of a Large-Scale Traveling-Salesman Problem, Journal of the Operations Research Society of America, vol.2, issue.4, pp.393-410, 1954.
DOI : 10.1287/opre.2.4.393

B. George, . Dantzig, H. John, and . Ramser, The truck dispatching problem, Management Science, vol.61, pp.80-91, 1959.

[. Dejemeppe, S. Van-cauwelaert, and P. Schaus, The Unary Resource with Transition Times, International Conference on Principles and Practice of Constraint Programming, pp.89-104, 2015.
DOI : 10.1007/978-3-319-23219-5_7

B. George and . Dantzig, Origins of the simplex method, 1990.

G. Bernard and D. , Linear Programming and extensions, 1998.

A. Derrien, Cumulative scheduling in constraint programming : energetic characterization of reasoning and robust solutions, Theses. Ecole des Mines de Nantes
URL : https://hal.archives-ouvertes.fr/tel-01242789

[. Dumas, J. Desrosiers, E. Gelinas, M. Marius, and . Solomon, An Optimal Algorithm for the Traveling Salesman Problem with Time Windows, Operations Research, vol.43, issue.2, pp.367-371, 1995.
DOI : 10.1287/opre.43.2.367

[. Frost and R. Dechter, Dead-end Driven Learning AAAI '94, Proceedings of the Twelfth National Conference on Artificial Intelligence, pp.294-300, 1994.

[. Focacci, A. Lodi, and M. Milano, A Hybrid Exact Algorithm for the TSPTW, INFORMS Journal on Computing, vol.14, issue.4, pp.403-417, 2002.
DOI : 10.1287/ijoc.14.4.403.2827

[. Focacci, A. Lodi, and M. Milano, Cost-Based Domain Filtering, International Conference on Principles and Practice of Constraint Programming, pp.189-203, 1999.
DOI : 10.1007/978-3-540-48085-3_14

L. Marshall and . Fisher, Optimal solution of vehicle routing problems using minimum k-trees, Operations Research, vol.424, pp.626-642, 1994.

[. Gendreau, D. Christos, and . Tarantilis, Solving large-scale vehicle routing problems with time windows : The state-of-the-art, 2010.

N. Harold, Z. Gabow, T. Galil, . Spencer, E. Robert et al., Efficient algorithms for finding minimum spanning trees in undirected and directed graphs, Combinatorica, vol.6, issue.2, pp.109-122, 1986.

[. Gendreau, J. Potvin, O. Bräumlaysy, G. Hasle, and A. Løkketangen, Metaheuristics for the vehicle routing problem and its extensions : A categorized bibliography . The vehicle routing problem : latest advances and new challenges, pp.143-169, 2008.

M. Arthur and . Geoffrion, Lagrangian relaxation for integer programming . 50 Years of Integer Programming, pp.243-281, 1958.

M. Robert, . Haralick, L. Gordon, and . Elliott, Increasing tree search efficiency for constraint satisfaction problems, Artificial Intelligence, vol.143, pp.263-313, 1980.

[. Held, M. Richard, and . Karp, The Traveling-Salesman Problem and Minimum Spanning Trees, Operations Research, vol.18, issue.6, pp.1138-1162, 1970.
DOI : 10.1287/opre.18.6.1138

[. Held, M. Richard, and . Karp, The traveling-salesman problem and minimum spanning trees: Part II, Mathematical Programming, vol.6, issue.1, pp.6-25, 1971.
DOI : 10.1007/BF01584070

[. Held, M. Richard, P. Karp, and . Wolfe, Large scale optimization and the relaxation method, Proceedings of the ACM annual conference on , ACM'72, pp.507-509, 1972.
DOI : 10.1145/800193.569964

[. Van-hoeve, The alldifferent constraint : A survey. arXiv preprint cs, p.105015, 2001.

[. Et-ton and . Volgenant, Transforming asymmetric into symmetric traveling salesman problems, Operations Research Letters, vol.2, issue.4, pp.161-163, 1983.

B. Joseph and . Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical society, vol.7, issue.1, pp.48-50, 1956.

W. Harold and . Kuhn, The hungarian method for the assignment problem. 50 Years of Integer Programming, pp.29-47, 1958.

[. Laporte, H. Mercure, and Y. Nobert, An exact algorithm for the asymmetrical capacitated vehicle routing problem, Networks, vol.12, issue.1, pp.33-46, 1986.
DOI : 10.1007/BFb0120888

[. Laporte, Y. Nobert, and M. Desrochers, Optimal Routing under Capacity and Distance Restrictions, Operations Research, vol.33, issue.5, pp.1050-1073, 1985.
DOI : 10.1287/opre.33.5.1050

A. Langevin, M. Desrochers, and J. Desrosiers, Sylvie Gélinas et Fra?loisFra?Fra?lois Soumis. A two-commodity flow formulation for the traveling salesman and the makespan problems with time windows, pp.631-640, 1993.

[. Laporte, M. Gendreau, J. Potvin, and F. Semet, Classical and modern heuristics for the vehicle routing problem, International Transactions in Operational Research, vol.21, issue.4-5, pp.4-5, 2000.
DOI : 10.2307/2584478

J. Laurière, A language and a program for stating and solving combinatorial problems, Artificial Intelligence, vol.10, issue.1, pp.29-127, 1978.
DOI : 10.1016/0004-3702(78)90029-2

C. Lemaréchal, Lagrangian relaxation. Computational Combinatorial Optimization, pp.112-156, 2001.

[. Martello and P. Toth, Knapsack problems : algorithms and computer implementations Networks of constraints : Fundamental properties and applications to picture processing, Mon74] Ugo Montanari, pp.95-132, 1974.

J. [. Oplobedu, Y. Marcovitch, and . Tourbier, CHARME : Un langage industriel de programmation par contraintes, illustré par une application chez Renault. the Ninth International Workshop on Expert Systems and their Applications : General Conference 1, pp.55-70, 1989.

[. Orman and P. Williams, A survey of different integer programming formulations of the travelling salesman problem. Optimisation, Economics and Financial Analysis, Advances in Computational Management Science, vol.9, pp.93-106, 2006.

[. Potvin and S. Bengio, The Vehicle Routing Problem with Time Windows Part II: Genetic Search, INFORMS Journal on Computing, vol.8, issue.2, pp.165-172, 1996.
DOI : 10.1287/ijoc.8.2.165

URL : http://www.idiap.ch/~bengio/publications/orig/potvin_1996_informs.ps.gz

[. Pesant, M. Gendreau, J. Potvin, and J. Rousseau, An Exact Constraint Logic Programming Algorithm for the Traveling Salesman Problem with Time Windows, Transportation Science, vol.32, issue.1, pp.12-29, 1998.
DOI : 10.1287/trsc.32.1.12

[. Prim, Shortest Connection Networks And Some Generalizations, Bell System Technical Journal, vol.36, issue.6, pp.1389-1401, 1957.
DOI : 10.1002/j.1538-7305.1957.tb01515.x

[. Rossi, P. Van-beek, and T. Walsh, Handbook of Constraint Programming, 2006.

R. Colin and . Reeves, Modern heuristic techniques for combinatorial problems, 1993.

P. Refalo, Impact-based search strategies for constraint programming. Principles and Practice of Constraint Programming? CP 2004, pp.557-571, 2004.
DOI : 10.1007/978-3-540-30201-8_41

URL : http://www.crt.umontreal.ca/~pesant/BIRS/pesant-IBS.pdf

J. Régin, L. Rousseau, M. Rueher, and W. Van-hoeve, The weighted spanning tree constraint revisited. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.287-291, 2010.

J. Régin, Cost-based arc consistency for global cardinality constraints, Constraints, vol.7, pp.3-4, 2002.

J. Régin, Simpler and incremental consistency checking and arc consistency filtering algorithms for the weighted spanning tree constraint. Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.233-247, 2008.

J. Régin, Global constraints : A survey. Hybrid optimization, pp.63-134, 2011.

M. Marius, J. Solomon, and . Desrosiers, Survey Paper-Time Window Constrained Routing and Scheduling Problems, Transportation Science, vol.221, pp.1-13, 1988.

[. Sellmann, An Arc-Consistency Algorithm for the Minimum Weight All Different Constraint, International Conference on Principles and Practice of Constraint Programming, pp.744-749, 2002.
DOI : 10.1007/3-540-46135-3_56

M. Marius and . Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, Operations Research, vol.352, pp.254-265, 1987.

P. Toth and D. Vigo, Models, relaxations and exact approaches for the capacitated vehicle routing problem, Discrete Applied Mathematics, vol.123, issue.1-3, pp.487-512, 2002.
DOI : 10.1016/S0166-218X(01)00351-1

URL : https://doi.org/10.1016/s0166-218x(01)00351-1

P. Toth and D. Vigo, An Exact Algorithm for the Vehicle Routing Problem with Backhauls, Transportation Science, vol.31, issue.4, pp.372-385, 1997.
DOI : 10.1287/trsc.31.4.372