Skip to Main content Skip to Navigation
Theses

MiRNAs in kidney disease

Abstract : MicroRNAs are now recognized as key players in the regulation of proteins and any abnormality in their function is a cause for pathway instability, leading to pathological conditions. Numerous reports from a variety of pathologies provide new data about microRNAs function, their targets and their potential as biomarkers and possible ways to control microRNAs' expression for potential therapeutic purpose. A number of reports also connect microRNAs with pathological conditions in the kidney and point to the use of microRNAs as biomarkers for diagnosis and prognosis of kidney disease in blood, serum, tissue and urine samples. In this thesis, we researched:1) A possible role of the microRNAs in the progression of adult chronic kidney disease (CKD), a disease representing a global burden with the tendency to rise worldwide. Progression of CKD is still very hard to detect non-invasively with the currently used clinical tools (eGFR and albuminuria). In our work we studied alterations of the level of the microRNAs in human urine samples of patients with fast or slow progression of CKD, in order to identify new potential biomarkers for non-invasive progression of CKD. Using Next Generation Sequencing, we analyzed urinary microRNA modifications in urine samples of 70 patients with established CKD and correlated their expression profiles to disease progression. This lead to the identification of 25 urinary microRNAs significantly associated to CKD progression (adjusted pvalue<0.05). Among those, four microRNAs (hsa-miR-34c-5p, hsa-miR-410-3p, hsa-miR-301b-3p, and hsa-miR-145-5p) were selected for validation in an independent cohort of 52 patients with CKD. Increased urinary abundance of hsa-miR-145-5p was confirmed to be associated to progression of CKD. In vitro exploration of the effects of hsa-miR-145-5p inhibition in human kidney cells showed that the microRNA seemed to be involved in necrotic processes. In conclusion we have identified hsa-miR-145-5p as potential urinary microRNA marker of CKD progression. 2) The identification of microRNAs associated to obstructive nephropathy, a frequently encountered disease in children that can lead, in severe cases, to end stage renal disease (ESRD). In this study we used a comprehensive system biology analysis in which we combined micro- and mRNA data from human and animal obstructive nephropathy to obtain information on possible mechanisms involved in this disease. In particular, we have studied in parallel the urinary miRNome of infants with ureteropelvic junction (UPJ) obstruction and the kidney tissue miRNome and transcriptome of the corresponding neonatal partial unilateral ureteral obstruction (UUO) mouse model. Several hundreds of microRNAs and mRNAs displayed changed abundance during disease. Combination of microRNAs in both species and associated mRNAs let to the prioritization of 5 microRNAs and 35 mRNAs associated to disease. In vitro and in vivo validation identified consistent dysregulation of let-7a-5p and miR-29-3p and new potential targets, E3 ubiquitin-protein ligase (DTX4) and neuron navigator 1 (NAV1). Our study is the first to correlate a mouse model of neonatal partial UUO with human UPJ obstruction in a comprehensive systems biology analysis. Our data revealed let-7a and miR-29b as molecules potentially involved in the development of fibrosis in UPJ obstruction via the control of DTX4 in both man and mice that would not be identified otherwise.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01688221
Contributor : Abes Star :  Contact
Submitted on : Friday, January 19, 2018 - 11:10:07 AM
Last modification on : Saturday, August 15, 2020 - 4:00:33 AM
Long-term archiving on: : Thursday, May 24, 2018 - 2:43:38 AM

File

2013TOU30194BIS.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01688221, version 1

Collections

Citation

Theofilos Papadopoulos. MiRNAs in kidney disease. Pharmacology. Université Paul Sabatier - Toulouse III, 2016. English. ⟨NNT : 2016TOU30194⟩. ⟨tel-01688221⟩

Share

Metrics

Record views

382

Files downloads

1705