Skip to Main content Skip to Navigation

Les sources responsables de la réionisation vues par MUSE

Abstract : Significant efforts have been put for the past two decades to understand the formation process of structure in the early Universe. The recent technological advances in the observational field allow for observing galaxies further and further, even the ones responsible for the cosmic reionization which occurred during the first billion years of the Universe. The main goal of this thesis was to impose constraints on the nature and the abundance of the sources responsible of the cosmic reionization. More specifically, the study was focused on the star-forming galaxies that have a Lyman-alpha emission (LAE) between z ~ 3 and 6.7. This thesis has been conducted within the framework of the MUSE consortium, a brand new instrument installed on the VLT in January 2014, as part of the exploitation of the Guaranteed Time (GTO). This thesis work has enabled us to confirm the unrivalled power of MUSE concerning the detection and the study of weak extragalactic sources without any preselection. We have observed four lensing clusters which magnify the incident light and make it possible to detect faint sources, at the expense of a decrease of the volume of the observed Universe. At first we started with the study of the galaxy cluster Abell 1689 in order to build up a methodology we intend to apply on other galaxy clusters. By comparing the volume density of the detected LAEs to the luminosity functions (LF) coming from the literature, we have reached the following conclusion : the slope of the power law from the Schechter function is smaller than alpha <= -1.5, which means that the number of LAEs increases drastically towards the faint luminoities. Then we have applied the new-build method to the other galaxy clusters of our sample observed with MUSE. The LAEs we have detected and measured in this sample are roughly ten times fainter than the ones observed in blank fields thanks to the lensing effect (39 < log(Lya) < 42.5). About one third of them lacks a counterpart in the continuum up to AB ~ 28 on the HST images and couldn't have been seen on targeted surveys. The final catalog includes more than 150 LAEs, this amount has enabled us to study the contribution of the faintest ones and also the evolution of the slope according to the redshift. The results of this work seem to confirm that the slope alpha is close to -2 for all the 2.9 < z < 6.7 LAEs. Furthermore, one can notice the evolution of alpha from -1.8 to -1.95 between z ~ 3-4 and z ~ 5-7, an original result and irrespective of the data set used to complement the present sample towards the bright region of the LF. The integral of the LF allows for working out the ionizing photons density emitted by these LAEs and for determining their relative impact on the cosmic reionization. In the future, the depth of the James Webb Space Telescope (JWST) observations will improve the limits of galaxy detection, certainly up to z ~ 8. The use of near-IR spectrographs such as MOSFIRE/Keck, KMOS/VLT or the very recent EMIR/GTC already provides the confirmation of z >= 7 candidates. This thesis brought new constraints on the faint-end part of the LF of LAEs for a redshift up to z ~ 6, which represents a beginning with respect to all we can do in the coming years for redshifts up to z ~ 7-8.
Complete list of metadatas

Cited literature [92 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, January 19, 2018 - 10:16:07 AM
Last modification on : Thursday, October 15, 2020 - 4:06:56 AM
Long-term archiving on: : Thursday, May 24, 2018 - 1:14:10 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01688114, version 1



David Bina. Les sources responsables de la réionisation vues par MUSE. Cosmologie et astrophysique extra-galactique [astro-ph.CO]. Université Paul Sabatier - Toulouse III, 2016. Français. ⟨NNT : 2016TOU30296⟩. ⟨tel-01688114⟩



Record views


Files downloads