Skip to Main content Skip to Navigation
Theses

New theoretical concepts for designing oxide interfaces with exoticproperties for electronics and spintronics

Abstract : This thesis theoretically studies structural and electronic properties of perovskite manganese oxide superlattices by means of ab-initio calculations.Lanthanum manganese oxides, given with the generic formula La1−xAxMnO3 (LAMO) (A a divalent element), are an important class of perovskite manganese oxides due to their various exotic properties, such as giant and colossal magnetoresistance effect, rich phase diagrams with respect to doping, temperature or external fields, and intinsic large Curie temperature. These properties can be exploited in many potential technological applications such as spin valves or spin injectors. Controlling the properties of these materials can be done through deposition as thin films or as building blocks in superlattices. When x = 1/3, bulk La1−xAxMnO3 is ferromagnetic and metallic due to the double-exchange mechanism in the Mn 3d shell. When Mn is in a mixed valence state, the eg orbitals (dx2-y2 and dz2) are partially occupied, and can delocalize on neighboring Mn atoms only if the latter are ferromagnetically aligned. In very thin films, since the direction perpendicular to the substrate, c, is only a few unit cell thick, only in-plane (ab) interactions are important for the thermodynamic properties. By acting on the LAMO layer geometry, one can thus maximize the dx2-y2 occupancy and increase the magnetic exchange and related Curie temperature.Our aim was thus to design new materials with desired 3d orbital order so that to ensure desired magnetic properties.In this thesis, we worked on two types of superlattices. The first one was made of two undoped antiferromagnetic manganese oxides LaMnO3 and SrMnO3, i.e. [LaMnO3]n/[SrMnO3]m superlattices. We investigated the magnetic ground state for different n and m values in order to explain suprising experimental results. The second type of superlattices is composed of metallic LAMO layers with alternated insulating layers. Indeed, the superlattices with metal-insulator interfaces have a great potential in spin valves applications. Thus, we first considered the ferromagnetic-metallic/ferroelectric-insulating [LAMO]3/[BTiO3]3 superlattices (A= Sr or Ba, B=Ba or Pb) where the magnetic properties are reduced due to delocalization of dz2 electrons at the interface from Mn to Ti. In such superlattices, we clarified the role of the polarization of the ferroelectric layers and the role of the antiferrodistortive motions in the manganite layers. In order to prevent the delocalization taking place at the interface, we designed another superlattice with metallic-insulator interface where we replaced the insulator (BTiO3) with a simple oxide (BO); that is [LAMO]n/[BO]p superlattices (A= Sr or Ba, B=Ba, Sr or Mg and n=3 or 6, p=6 or 2). Within this new superlattice, we successully managed to promote dx2-y2 orbital occupancies at the interfaces which ensures a large magnetic moment at the interfaces and an expected large Curie temperature. We also showed the weak correlation between electrical conductivity and orbital ordering.
Complete list of metadatas

Cited literature [119 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01687743
Contributor : Abes Star :  Contact
Submitted on : Thursday, January 18, 2018 - 4:58:08 PM
Last modification on : Wednesday, October 14, 2020 - 4:16:22 AM
Long-term archiving on: : Thursday, May 24, 2018 - 1:42:03 AM

File

KOCAK_2017_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01687743, version 1

Collections

STAR | CNRS | NEEL | UGA

Citation

Aysegül Begüm Koçak. New theoretical concepts for designing oxide interfaces with exoticproperties for electronics and spintronics. Mechanics of materials [physics.class-ph]. Université de Liège, 2017. English. ⟨NNT : 2017GREAI033⟩. ⟨tel-01687743⟩

Share

Metrics

Record views

425

Files downloads

237