F. Pineda-thèse-de-physique-du-capteur and .. , -Tests de fatigue (cycles d'élongation répétés), CEA-Leti Département des Technologies pour la Biologie et la Santé III, p.74, 2015.

I. 5-discussion and .. , 77 III.5.a -Comparaison des résultats expérimentaux et des modèles, p.79

S. Détectable-vmin and .. , 103 IV.5.a -Notion de volume mort V0 et de volume minimal 103 IV.5.b -Remplissage par volume imposé 105 IV.5.d -Actionnement d'un volume calibré en mode « à la demande, IV.5 -Caractérisations du, p.111

V. Chapitre and .. En-application-des-réservoirs-hyperélastiques, 115 V.1 -Dilution programmable, p.116

.. La-carte-microfluidique-et-principe, 116 V.1.b -Programme, p.119

C. Hadji, I. Fukada, F. Baléras, Y. Taguchi, B. Icard et al., Hollow Lamé Mode MEMS Mass Sensors With 10 ppb-range stability for particles counting and weighing in fluid, pp.1121-1124, 2015.

Y. Fouillet, D. Jary, C. Chabrol, P. Claustre, and C. Peponnet, Digital microfluidic design and optimization of classic and new fluidic functions for lab on a chip systems, Microfluidics and Nanofluidics, vol.6, issue.1, pp.159-165, 2008.
DOI : 10.1007/s10404-007-0164-5

E. Bisceglia, M. Cubizolles, F. Mallard, F. Vinet, O. Français et al., Micro-organism extraction from biological samples using DEP forces enhanced by osmotic shock, Lab on a Chip, vol.27, issue.5, pp.901-910, 2013.
DOI : 10.1016/j.fm.2010.04.008

URL : https://hal.archives-ouvertes.fr/hal-00785335

D. Chen, M. Mauk, X. Qiu, C. Liu, J. Kim et al., An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids, Biomedical Microdevices, vol.7, issue.4, pp.705-724, 2010.
DOI : 10.1007/s10544-010-9423-4

M. Unger, H. P. Chou, T. Thorsen, S. R. Scherer, and . Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, vol.288, issue.5463, pp.113-116, 2000.
DOI : 10.1126/science.288.5463.113

F. Ilievski, A. D. Mazzeo, R. F. Shepherd, X. Chen, and G. M. Whitesides, Soft robotics for chemists, Chem. Robot, vol.50, issue.8, pp.1890-1895, 2011.
DOI : 10.1002/ange.201006464

URL : https://dash.harvard.edu/bitstream/handle/1/12967812/18696876.pdf?sequence=1

T. Tech, Taking Touch Screen Interfaces Into A New Dimension, pp.1-13, 2012.

B. Mosadegh, A. D. Mazzeo, R. F. Shepherd, S. Morin, U. Gupta et al., Control of soft machines using actuators operated by a Braille display, Lab Chip, vol.104, issue.1, pp.189-99, 2014.
DOI : 10.1063/1.2981642

J. Coleman and . Rogers, Epidermal electronics, Science, vol.333, issue.6044, pp.838-881, 2011.

J. So, J. Thelen, A. Qusba, G. J. Hayes, G. Lazzi et al., Reversibly Deformable and Mechanically Tunable Fluidic Antennas, Advanced Functional Materials, vol.86, issue.22, pp.3632-3637, 2009.
DOI : 10.1002/adfm.200900604

URL : http://onlinelibrary.wiley.com/doi/10.1002/adfm.200900604/pdf

]. S. Cheng and Z. Wu, Microfluidic stretchable RF electronics, Thèse en Physique Microfluidic stretchable RF electronics, pp.3227-3234, 2010.
DOI : 10.1126/scitranslmed.3000738

S. Cheng and Z. Wu, A Microfluidic, Reversibly Stretchable, Large-Area Wireless Strain Sensor, Advanced Functional Materials, vol.9, issue.12, pp.2282-2290, 2011.
DOI : 10.1109/TNANO.2010.2060350

S. H. Jeong, A. Hagman, K. Hjort, M. Jobs, J. Sundqvist et al., Liquid alloy printing of microfluidic stretchable electronics, Lab on a Chip, vol.25, issue.22, pp.4657-64, 2012.
DOI : 10.1016/j.proeng.2011.12.031

J. C. Mcdonald, D. C. Duffy, J. R. Anderson, and D. T. Chiu, Fabrication of microfluidic systems in poly(dimethylsiloxane), Electrophoresis, vol.66, issue.1, pp.27-40, 2000.
DOI : 10.1007/978-94-011-0161-5

. Smooth-on and . Inc, Ecoflex ® Series, Technical sheet

M. Kubo, X. Li, C. Kim, M. Hashimoto, B. J. Wiley et al., Stretchable microfluidic electric circuit applied for radio frequency antenna, 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), pp.1582-1587, 2011.
DOI : 10.1109/ECTC.2011.5898722

B. K. Gale, Determining the optimal PDMS? PDMS bonding technique for microfluidic devices, J. Micromechanics Microengineering, vol.18, issue.6, p.67001, 2008.

R. F. Shepherd, F. Ilievski, W. Choi, S. Morin-mazzeo, X. Chen et al., Multigait soft robot, Proc. Natl. Acad. Sci, pp.20400-20403, 2011.
DOI : 10.1002/(SICI)1098-111X(200005)15:5<365::AID-INT1>3.0.CO;2-P

URL : http://www.pnas.org/content/108/51/20400.full.pdf

S. Morin, R. F. Shepherd, S. W. Kwok, A. Stokes, A. Nemiroski et al., Camouflage and Display for Soft Machines, Science, vol.24, issue.1, pp.828-860, 2012.
DOI : 10.1002/elps.200305584

URL : https://dash.harvard.edu/bitstream/handle/1/11933749/64631641.pdf?sequence=1

R. V. Martinez, C. R. Fish, X. Chen, and G. M. Whitesides, Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators, Advanced Functional Materials, vol.11, issue.7, pp.1376-1384, 2012.
DOI : 10.1039/c1lc20161a

URL : https://dash.harvard.edu/bitstream/handle/1/11931822/30503109.pdf?sequence=1

R. V. Martinez, J. L. Branch, C. R. Fish, L. Jin, R. F. Shepherd et al., Robotic Tentacles with Three-Dimensional Mobility Based on Flexible Elastomers, Advanced Materials, vol.460, issue.2, pp.205-212, 2013.
DOI : 10.1098/rspa.2004.1313

URL : https://dash.harvard.edu/bitstream/handle/1/12388816/Robotic%20Tentacles%20with%20Three-Dimensional%20Mobility%20Based%20on%20Flexible%20Elastomers.pdf?sequence=1

A. A. Stokes, R. F. Shepherd, S. Morin, F. Ilievski, and G. M. Whitesides, A Hybrid Combining Hard and Soft Robots, Soft Robotics, vol.1, issue.1, pp.70-74, 2014.
DOI : 10.1089/soro.2013.0002

URL : https://dash.harvard.edu/bitstream/handle/1/12388522/34103585.pdf?sequence=1

F. Pineda-thèse-de-physique, ]. R. Martinez, A. C. Glavan, C. Keplinger, A. I. Oyetibo et al., Soft actuators and robots that are resistant to mechanical damage, Adv. Funct. Mater, vol.23, issue.24 20, pp.3003-3010, 2014.

R. F. Shepherd, A. Stokes, R. M. Nunes, and G. M. Whitesides, Soft Machines That are Resistant to Puncture and That Self Seal, Advanced Materials, vol.73, issue.46, pp.6709-6713, 2013.
DOI : 10.1002/(SICI)1097-4628(19990725)73:4<495::AID-APP5>3.0.CO;2-I

URL : https://dash.harvard.edu/bitstream/handle/1/12361265/54726101.pdf?sequence=1

P. Polygerinos, S. Lyne, Z. Wang, L. F. Nicolini, B. Mosadegh et al., Towards a soft pneumatic glove for hand rehabilitation, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1512-1517, 2013.
DOI : 10.1109/IROS.2013.6696549

A. Konda, J. M. Taylor, M. A. Stoller, and S. A. Morin, Reconfigurable microfluidic systems with reversible seals compatible with 2D and 3D surfaces of arbitrary chemical composition, Lab on a Chip, vol.9, issue.9, 2009.
DOI : 10.1039/b903755a

Y. Huang, Y. Wang, L. Xiao, H. Liu, W. Dong et al., Microfluidic serpentine antennas with designed mechanical tunability, Lab Chip, vol.13, issue.21, pp.4205-4217, 2014.
DOI : 10.1039/c3lc50691f

R. C. Huang and L. Anand, Non-linear mechanical behavior of the elastomer polydimethylsiloxane (PDMS) used in the manufacture of microfluidic devices, Innov. Manuf. Syst. Technol, vol.http, 2005.

M. R. Mitchell, R. E. Link, M. Brieu, J. Diani, and N. Bhatnagar, A New Biaxial Tension Test Fixture for Uniaxial Testing Machine???A Validation for Hyperelastic Behavior of Rubber-like Materials, Journal of Testing and Evaluation, vol.35, issue.4, p.100688, 2007.
DOI : 10.1520/JTE100688

N. Reuge, F. M. Schmidt, Y. L. Maoult, M. Rachik, and F. Abbé, Elastomer biaxial characterization using bubble inflation technique. I: Experimental investigations, Polymer Engineering & Science, vol.66, issue.3, pp.522-531, 2001.
DOI : 10.1002/pen.10310

T. Liu, P. Sen, and C. J. Kim, Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices, Journal of Microelectromechanical Systems, vol.21, issue.2, pp.443-450, 2012.
DOI : 10.1109/JMEMS.2011.2174421

M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. Weiss, D. Weitz et al., Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature, Advanced Functional Materials, vol.37, issue.7, pp.1097-1104, 2008.
DOI : 10.1103/PhysRevB.59.783

T. Liu, P. Sen, and C. Kim, Characterization of liquid-metal Galinstan&#x00AE; for droplet applications, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS), pp.560-563, 2010.
DOI : 10.1109/MEMSYS.2010.5442440

]. V. Kocourek, C. Karcher, M. Conrath, and D. Schulze, Stability of liquid metal drops affected by a high-frequency magnetic field, Thèse en Physique, pp.2-3, 2006.
DOI : 10.1103/PhysRevE.71.047301

G. Li, M. Parmar, D. Kim, J. J. Lee, and D. Lee, PDMS based coplanar microfluidic channels for the surface reduction of oxidized Galinstan, Lab Chip, vol.21, issue.1, pp.200-209, 2014.
DOI : 10.1021/la050011b

M. Knoblauch, J. M. Hibberd, J. C. Gray, and J. Van-bel, A galinstan expansion femtosyringe for microinjection of eukaryotic organelles and prokaryotes, Nature Biotechnology, vol.17, issue.9, pp.906-909, 1999.
DOI : 10.1038/12902

T. Krupenkin and J. A. Taylor, Reverse electrowetting as a new approach to high-power energy harvesting, Nature Communications, vol.2, p.448, 2011.
DOI : 10.1088/0022-3727/41/10/105302

URL : http://www.nature.com/articles/ncomms1454.pdf

A. Piruska, I. Nikcevic, S. H. Lee, C. Ahn, W. R. Heineman et al., The autofluorescence of plastic materials and chips measured under laser irradiation, Lab on a Chip, vol.25, issue.12, pp.1348-54, 2005.
DOI : 10.1039/b508288a

H. Shadpour, H. Musyimi, J. Chen, and S. A. Soper, Physiochemical properties of various polymer substrates and their effects on microchip electrophoresis performance, Journal of Chromatography A, vol.1111, issue.2, pp.238-51, 2006.
DOI : 10.1016/j.chroma.2005.08.083

H. Becker and C. Gärtner, Polymer microfabrication methods for microfluidic analytical applications, Electrophoresis, vol.70, issue.1, pp.12-26, 2000.
DOI : 10.1016/0168-9002(91)90289-3

. Topas, TOPAS-Cyclic Olefin Copolymers, 2015.

H. Becker and C. Gärtner, Polymer microfabrication technologies for microfluidic systems, Analytical and Bioanalytical Chemistry, vol.0, issue.24, pp.89-111, 2008.
DOI : 10.1081/AL-200057209

J. Steigert, S. Haeberle, T. Brenner, C. Müller, C. P. Steinert et al., Rapid prototyping of microfluidic chips in COC, Journal of Micromechanics and Microengineering, vol.17, issue.2, pp.333-341, 2007.
DOI : 10.1088/0960-1317/17/2/020

J. K. Lee, N. Stoffel, and K. Fite, Electronic packaging of sensors for lower limb prosthetics, 2012 IEEE 62nd Electronic Components and Technology Conference, pp.86-91, 2012.
DOI : 10.1109/ECTC.2012.6248811

A. A. Nawaz, X. Mao, Z. S. Stratton, and T. J. Huang, Unconventional microfluidics: expanding the discipline, Lab on a Chip, vol.337, issue.8, pp.1457-63, 2013.
DOI : 10.1126/science.1222149

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000022/pdf

F. Pineda-thèse-de-physique46, ]. S. Sia, and G. M. Whitesides, Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies, Electrophoresis, vol.24, issue.21, pp.3563-3576, 2003.

L. C. Nunes, Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test, Materials Science and Engineering: A, vol.528, issue.3, pp.1799-1804, 2011.
DOI : 10.1016/j.msea.2010.11.025

H. Bourbaba and C. Benachaiba, Study of the Mechanical Behavior of a Hyperelastic Membrane, Sensors and Transducers, vol.168, issue.4, pp.108-112, 2014.

M. Mooney, A Theory of Large Elastic Deformation, Journal of Applied Physics, vol.92, issue.9, pp.582-592, 1940.
DOI : 10.1021/ie50271a013

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. IV. Further Developments of the General Theory, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.835, pp.379-397, 1948.
DOI : 10.1098/rsta.1948.0024

H. Alexander, A constitutive relation for rubber-like materials, International Journal of Engineering Science, vol.6, issue.9, pp.549-563, 1968.
DOI : 10.1016/0020-7225(68)90006-2

R. W. Ogden, Non-linear Elastic Deformations, Courier Corporation, 1997.

J. Lambert-diani and C. Rey, ??laboration de nouvelles lois de comportement pour les ??lastom??res : principe et avantages, Comptes Rendus de l'Acad??mie des Sciences - Series IIB - Mechanics-Physics-Astronomy, vol.326, issue.8, pp.483-488, 1998.
DOI : 10.1016/S1251-8069(98)80003-3

R. S. Rivlin, Large Elastic Deformations of Isotropic Materials. I. Fundamental Concepts, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.240, issue.822, pp.459-490, 1948.
DOI : 10.1098/rsta.1948.0002

G. D. Spathis, Polyurethane elastomers studied by the Mooney???Rivlin equation for rubbers, Journal of Applied Polymer Science, vol.43, issue.3, pp.613-620, 1991.
DOI : 10.1002/app.1991.070430323

K. Jahani and H. Mahmoodzade, Predicting the dynamic material constants of Mooney-Rivlin model in broad frequency range for elastomeric components, Latin American Journal of Solids and Structures, vol.5, issue.11, 1983.
DOI : 10.1098/rsta.1948.0024

L. R. Schmidt and J. F. Carley, Biaxial stretching of heat-softened plastic sheets using an inflation technique, International Journal of Engineering Science, vol.13, issue.6, pp.563-578, 1975.
DOI : 10.1016/0020-7225(75)90091-9

D. D. Joye, A Bubble Inflation Technique for the Measurement of Viscoelastic Properties in Equal Biaxial Extensional Flow, Thèse en Physique, p.421, 1972.
DOI : 10.1122/1.549259

E. Verron, R. E. Khayat, A. Derdouri, and B. Peseux, Dynamic inflation of hyperelastic spherical membranes, Journal of Rheology, vol.43, issue.5, p.1083, 1999.
DOI : 10.1122/1.551017

URL : https://hal.archives-ouvertes.fr/hal-01006758

D. D. Joye, A Bubble Inflation Technique for the Measurement of Viscoelastic Properties in Equal Biaxial Extensional Flow. II, Transactions of the Society of Rheology, vol.17, issue.2, p.287, 1973.
DOI : 10.1122/1.549291

W. W. Feng and J. O. Hallquist, On Mooney-Rivlin Constants for Elastomers, 12th International LS-DYNA Users Conference

S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. Hutchins, A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors, PLoS ONE, vol.18, issue.11, p.49365, 2012.
DOI : 10.1371/journal.pone.0049365.g004

J. Dobrzynska, M. , and M. Gijs, Polymer-based flexible capacitive sensor for three-axial force measurements, Journal of Micromechanics and Microengineering, vol.23, issue.1, p.15009, 2013.
DOI : 10.1088/0960-1317/23/1/015009

M. Ying, A. P. Bonifas, N. Lu, Y. Su, R. Li et al., Silicon nanomembranes for fingertip electronics, Nanotechnology, vol.23, issue.34, p.344004, 2012.
DOI : 10.1088/0957-4484/23/34/344004

X. Hu, P. Krull, B. De-graff, K. Dowling, J. Rogers et al., Stretchable Inorganic-Semiconductor Electronic Systems, Advanced Materials, vol.48, issue.26, pp.2933-2939, 2011.
DOI : 10.1016/j.microrel.2008.03.025

S. Yao and Y. Zhu, Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires, Nanoscale, vol.8, issue.4, pp.2345-52, 2014.
DOI : 10.1038/nmat2493

R. D. Ponce-wong, J. D. Posner, V. J. Santos-actuators, and . Phys, Flexible microfluidic normal force sensor skin for tactile feedback, Sensors and Actuators A: Physical, vol.179, pp.62-69, 2012.
DOI : 10.1016/j.sna.2012.03.023

F. Pineda-thèse-de-physique, CEA-Leti Département des Technologies pour la Biologie et la Santé [71] a Fassler and C. Majidi Soft-matter capacitors and inductors for hyperelastic strain sensing and stretchable electronics, Smart Mater. Struct, vol.22, issue.5, p.55023, 2013.

P. Roberts, D. D. Damian, W. Shan, T. Lu, and C. Majidi, Soft-matter capacitive sensor for measuring shear and pressure deformation, 2013 IEEE International Conference on Robotics and Automation, pp.3529-3534, 2013.
DOI : 10.1109/ICRA.2013.6631071

A. Tabatabai, A. Fassler, C. Usiak, and C. Majidi, Liquid-Phase Gallium???Indium Alloy Electronics with Microcontact Printing, Langmuir, vol.29, issue.20, pp.6194-200, 2013.
DOI : 10.1021/la401245d

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, Hyperelastic pressure sensing with a liquid-embedded elastomer, Journal of Micromechanics and Microengineering, vol.20, issue.12, p.125029, 2010.
DOI : 10.1088/0960-1317/20/12/125029

Y. Park, B. Chen, and R. J. Wood, Design and Fabrication of Soft Artificial Skin Using Embedded Microchannels and Liquid Conductors, IEEE Sensors Journal, vol.12, issue.8, pp.2711-2718, 2012.
DOI : 10.1109/JSEN.2012.2200790

J. Chossat, Y. Park, R. J. Wood, and V. Duchaine, A Soft Strain Sensor Based on Ionic and Metal Liquids, IEEE Sensors Journal, vol.13, issue.9, pp.3405-3414, 2013.
DOI : 10.1109/JSEN.2013.2263797

URL : http://www.ri.cmu.edu/pub_files/2013/9/Chossat_IEEE_Sensors_2013.pdf

J. Chossat, Y. Tao, V. Duchaine, and Y. Park, Wearable soft artificial skin for hand motion detection with embedded microfluidic strain sensing, 2015 IEEE International Conference on Robotics and Automation (ICRA), pp.2568-2573, 2015.
DOI : 10.1109/ICRA.2015.7139544

K. J. Hemmerich, General aging theory and simplified protocol for accelerated aging of medical devices, Med. Plast. Biomater, vol.5, pp.16-23, 1998.

M. Pokorny and H. U. Astrom, Temperature dependence of the electrical resistivity of liquid gallium between its freezing point (29.75 degrees C) and 752 degrees C, Journal of Physics F: Metal Physics, vol.6, issue.4, pp.559-565, 1976.
DOI : 10.1088/0305-4608/6/4/015

A. W. Smith, The Electrical Conductivity of Indium and Thallium, Ohio J. Sci, vol.16, issue.6, pp.244-247, 1916.

P. Li, Probing circulating tumor cells in microfluidics, Lab on a Chip, vol.84, issue.4, pp.602-609, 2013.
DOI : 10.1021/ac301723s

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990734/pdf

J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F. V. Stetten et al., The centrifugal microfluidic Bio-Disk platform, Journal of Micromechanics and Microengineering, vol.17, issue.7, pp.103-115, 2007.
DOI : 10.1088/0960-1317/17/7/S07

K. Abi-samra, R. Hanson, M. Madou, and R. Gorkin, Infrared controlled waxes for liquid handling and storage on a CD-microfluidic platform, Thèse en Physique, pp.723-726, 2011.
DOI : 10.1016/j.snb.2003.09.037

. Chipshop, Lab-on-a-Chip Catalogue microfluidic ChipShop ? The company, 2013.

B. Garst, A. Campitelli, and P. Münster, Blister techniques -miniFAB

S. Selvakumar, B. Anthony, T. Supervisor, and D. E. Hardt, Manufacturing of Lab-on-a-Chip Devices: Variation Analysis of Liquid Delivery using Blister Packs, 2010.

L. Weber, Patent Thinxxs US20110303306A1 -Flow cell having integrated fluid reservoir

D. P. Holmes, B. Tavakol, G. Froehlicher, and H. A. Stone, Control and manipulation of microfluidic flow via elastic deformations, Soft Matter, vol.11, issue.29, p.7049, 2013.
DOI : 10.1038/nmat3331

M. P. Mcrae, G. Simmons, J. Wong, B. Shadfan, S. Gopalkrishnan et al., Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements, Lab on a Chip, vol.104, issue.20, 2015.
DOI : 10.1161/hc3801.096336

D. B. Weibel, A. C. Siegel, A. Lee, A. H. George, and G. M. Whitesides, Pumping fluids in microfluidic systems using the elastic deformation of poly(dimethylsiloxane), Lab on a Chip, vol.76, issue.12, pp.1832-1838, 2007.
DOI : 10.1039/b714664g

D. R. Moles, Microfluidic elastic micro-aliquotter, 2010.

S. Rosset, M. Niklaus, P. Dubois, and H. R. Shea, Large-Stroke Dielectric Elastomer Actuators With Ion-Implanted Electrodes, Journal of Microelectromechanical Systems, vol.18, issue.6, pp.1300-1308, 2009.
DOI : 10.1109/JMEMS.2009.2031690

URL : https://infoscience.epfl.ch/record/141999/files/jmems eap 2009_1.pdf

N. Pekas, Q. Zhang, and D. Juncker, Electrostatic actuator with liquid metal???elastomer compliant electrodes used for on-chip microvalving, Journal of Micromechanics and Microengineering, vol.22, issue.9, p.97001, 2012.
DOI : 10.1088/0960-1317/22/9/097001

J. Ni, B. Li, and J. Yang, A pneumatic PDMS micropump with in-plane check valves for disposable microfluidic systems, Microelectronic Engineering, vol.99, pp.28-32, 2012.
DOI : 10.1016/j.mee.2012.04.002

F. Pineda-thèse-de-physique95, ]. S. Liao, C. Y. Chang, and H. C. Chang, A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood, Biomicrofluidics, vol.7, issue.2, pp.1-10, 2013.

J. Fan, B. Li, S. Xing, and T. Pan, Reconfigurable microfluidic dilution for high-throughput quantitative assays, Lab on a Chip, vol.39, issue.2, pp.2670-2679, 2015.
DOI : 10.1007/s12033-008-9050-y

R. Thakur, A. M. Amin, and S. Wereley, On-chip dilution in nanoliter droplets, The Analyst, vol.15, issue.17, pp.5855-5859, 2015.
DOI : 10.1007/s10404-013-1180-2

F. Pineda-thèse-en-physique, CEA-Leti Département des Technologies pour la Biologie et la Santé 3 -Propriétés physique du galinstan Liste des propriétés physiques et chimiques du galinstan, fournie par Geratherm , un fabriquant de galinstan, Source, 2015.