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THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
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Thèse soutenue publiquement le 9 Octobre 2015,
devant le jury composé de :
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How I had a Vision of Lineland

Having amused myself till a late hour with my favourite recreation of Geometry,

I had retired to rest with an unsolved problem in my mind. In the night I had a

dream. I saw before me a vast multitude of small Straight Lines – all moving to

and fro in one and the same Straight Line. [. . .] Approaching one [. . .], replied

the small Line “I am the Monarch of the world.” [. . .]

It seemed that this poor ignorant Monarch – as he called himself – was persuaded

that the Straight Line which he called his Kingdom, and in which he passed his

existence, constituted the whole of the world, and indeed the whole of Space. Not

being able either to move or to see, save in his Straight Line, he had no conception

of anything out of it. [. . .]

His subjects – of whom the small Lines were men and the Points Women – were

all alike confined in motion and eye-sight to that single Straight Line, which was

their World. [. . .] Moreover, as each individual occupied the whole of the narrow

path, so to speak, which constituted his Universe, and no one could move to the

right or left to make way for passers by, it followed that no Linelander could ever

pass another. Once neighbours, always neighbours. [. . .]

Such a life, with all vision limited to a Point, and all motion to a Straight Line,

seemed to me inexpressibly dreary; and I was surprised to note the vivacity and

cheerfulness of the King.

E. A. Abbott, Flatland: A Romance of Many Dimensions, 1884.
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Preface

T
HIS thesis summarizes the main topics of the research activity I have performed

during the three years of my PhD education at the Laboratoire de Physique et

Modélisation des Milieux Condensés in Grenoble, as a student of the Ecole doctorale de

Physique of the Université de Grenoble, under the supervision of Dr. Anna Minguzzi

and Prof. Frank Hekking. The object of this thesis is the study of one-dimensional

mesoscopic quantum systems constituted by ultracold atomic Bose gas.

The interest in one-dimensional (1D) quantum many-body systems dates back to

the early years of Quantum Mechanics. One reason is that 1D systems often constitute

simple toy-models, in which analytical approaches are applicable. For example, in his

pioneering work of 1931, H. Bethe found an exact solution to the 1D Heisenberg model

using the famous ansatz for the wave function that nowadays bears his name [1]. Sub-

sequently, during the last century, the study of 1D quantum many-body systems has

led to the discovery of other paradigmatic examples of exactly solvable models, such

as the Lieb-Liniger, and the Hubbard ones, as well as to the development of powerful

theoretical methods especially suited for 1D systems [2, 3], such as the Luttinger liq-

uid theory, just to cite one of the most celebrated. One-dimensional quantum systems

have thus been found to present interesting, unexpected and often counterintuitive

features, as compared to their higher-dimensional counterparts. For instance, the re-

duced dimensionality drastically affects the nature of the excitations. Also the effects

of quantum fluctuations and interparticle interactions are greatly enhanced as com-

pared to higher dimensions, thus leading to different phases, superfluid properties

and even to the surprising phenomenon of statistical transmutation: strongly inter-

acting bosons that display fermionic properties. The interest in such low-dimensional

systems, however, is not restricted to a purely fundamental ground. The technolog-

ical developments of the 20th and 21st centuries in the fields of chemical synthesis,

microfabrication, criogeny, and, more recently, control and manipulation of ultracold

1



2 Preface

atomic gases through light-matter interaction, led to the discovery and realization of

many (quasi-)1D systems, such as carbon nanotubes [4], quantum wires [5–7], Joseph-

son junctions arrays [8], liquid 4He in elongated nanopores [9], and ultracold atomic

gases confined in very anisotropic traps. In particular, ultracold atomic gases have be-

come object of intense experimental and theoretical research in the 1990s, triggered by

the first achievement of Bose-Einstein condensation in dilute vapours of alkali atoms

cooled down to fractions of microkelvin [10,11]. Subsequently, the aforementioned ex-

perimental progress in cooling, trapping and manipulating such systems has reached

an extraordinary and unprecedented degree of control of the parameters of the sys-

tem, whose dimensionality, geometry and interparticle interactions can be adjusted at

will [12]. In recent experiments, quantum state preparation of few-particle states with

a control even at the single atom level have been demonstrated [13]. Thanks to this

progress, ultracold atomic gases are considered nowadays as model quantum fluids,

that find applications in the field of quantum simulation [14], the study of quantum

physics problem by mimicking hardly accessible systems via analogous and easily

controllable cold atomic ones, and, more recently, in the emerging one of atomtron-

ics [15], that aims to realize atomic-based devices counterparts of electronic ones, with

applications e.g. in quantum computation.

The aim of this PhD thesis is to study theoretically a few 1D mesoscopic systems

of ultracold bosonic gases which exhibit interesting quantum phenomena, and are

also potentially relevant for some new technological applications. In particular, as a

recurring theme in this thesis, I focus on the interplay of effects arising from the pres-

ence of interactions, quantum fluctuations and of localized potential barriers in the

systems, whose contributions are all enhanced in 1D. The manuscript starts with a

general chapter introducing the 1D Bose gas, followed by three chapters, each dedi-

cated to a specific system. The thesis is completed by three appendixes which detail

some calculations.

The thesis is organized as follows. The first chapter provides a general introduction

to the physics of the 1D Bose gas. It includes a description of its experimental real-

ization with ultracold atomic gases, a discussion of its most important and peculiar

physical features, and a description of the interparticle interactions, pointing out the

main differences between the weak- and strong-interaction regimes. Then, the theo-

retical methods employed to describe the 1D Bose gas in different physical regimes

are explained in detail. These methods will be used in the research projects described

in the following chapters.

In the second chapter we study the phenomenon of persistent currents in a system of

interacting 1D bosons confined in a ring trap and subjected to a rotating barrier poten-
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tial. By employing a combination of analytical and numerical techniques, we provide

a complete characterization of the persistent current amplitude in the system, as a

function of the interparticle interaction strength and of the system size. We identify

the existence of a regime of maximal screening of the barrier by the fluid, arising from

the interplay between classical and quantum screening. In this regime, the persistent

current amplitude is maximal and its scaling behaviour with the system size is most

favourable for its observation.

In the third chapter we consider an interacting Bose gas confined in a 1D ring-shaped

optical lattice, in the presence of an artificial gauge potential and a potential barrier,

realizing an atomtronic quantum interference device. Such system has been proposed

for the realization of atomic flux-qubits and macroscopic superpositions of current

states for quantum computation. We perform a systematic study of the quality of the

qubit realized by such system, identifying the best system’s parameters regime for its

realization, definition and detection via time-of-flight measurements of the momen-

tum distribution.

In the fourth chapter we study the dipolar excitation of a Bose gas confined in a 1D

split trap, subjected to a sudden quench of the center of the trapping potential. We

characterize the oscillation frequency of the system in all the interaction regimes, by

a combination of theoretical and analytical techniques. We find a non-trivial depen-

dency of the oscillation frequency on the interaction strength. Also in this case this

is understood in terms of barrier screening and renormalization, showing that this

phenomenon, first elucidated in the study of persistent currents, is very generally af-

fecting various physical observables. Furthermore, we find a surprising parity effect

in the oscillation frequency at strong interactions, originated from the statistical trans-

mutation of the strongly correlated Bose system, and reminiscent of fermionic trans-

port processes.

Finally, the manuscript ends with a summary of the main original results of the re-

search projects presented in the thesis, together with an outlook for future research.

List of publications

The original results presented in this thesis have been published in the following

articles:

(i) M. Cominotti, D. Rossini, M. Rizzi, F. Hekking, and A. Minguzzi. Optimal Per-

sistent Currents for Interacting Bosons on a Ring with a Gauge Field, Phys. Rev.

Lett., 113, 025301, 2014. Ref. [16].
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(ii) M. Cominotti, M. Rizzi, D. Rossini, D. Aghamalyan, L. Amico, L.-C. Kwek, F.

Hekking, and A. Minguzzi. Optimal scaling of persistent currents for interact-

ing bosons on a ring, The European Physical Journal Special Topics, 224, 519, 2015.

Ref. [17].

(iii) D. Aghamalyan, M. Cominotti, M. Rizzi, D. Rossini, F. Hekking, A. Minguzzi,

L.-C. Kwek, and L. Amico. Coherent superposition of current flows in an Atom-

tronic Quantum Interference Device, New J. Phys., 17, 045023, 2015. Ref. [18].

(iv) M. Cominotti, F. Hekking, and A. Minguzzi. Dipole mode of a strongly corre-

lated one-dimensional Bose gas in a split trap: Parity effect and barrier renor-

malization, Phys. Rev. A, 92, 033628, 2015. Ref. [19].
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Préface

Cette thèse théorique résume les principaux projets de recherche que j’ai abordés au cours

de mon doctorat au sein du Laboratoire de Physique et Modélisation des Milieux Condensés

à Grenoble, en tant que doctorant de l’Ecole doctorale de Physique de l’Université de Greno-

ble, sous la direction d’Anna Minguzzi et de Frank Hekking. L’objet de cette thèse est l’étude

de systèmes quantiques mésoscopiques unidimensionnels constitués par des gaz d’atomes ul-

trafroids, qui presentent des phénomènes quantiques intéressants, et pourraient mener à de

nouvelles applications technologiques. Mon étude prend en compte les effets combinés des in-

teractions, des fluctuations quantiques et des barrières de potentiel localisés dans les systèmes,

dont l’effet est plus fort en une dimension qu’en dimensions supérieures. Le manuscrit com-

mence par un chapitre général qui introduit le gaz de Bose en une dimension, suivi de trois

chapitres, chacun dédié à l’étude théorique d’un système spécifique. La thèse est complétée par

trois annexes qui détaillent certains calculs.
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Chapter 1

Theoretical methods for

one-dimensional bosons

1.1 Introduction

T
HIS first chapter is devoted to a general review of the properties of the one-dimen-

sional (1D) Bose gas of ultracold atoms, and of the theoretical methods that have

been employed to study it in different physical regimes in the following chapters. In

particular we focus on the effect of interparticle interactions. A more specific intro-

duction and motivation to the systems and problems that have been studied is given

in the following dedicated chapters. I would like to stress that several of the methods

mentioned in this chapter, and of the results discussed later, are not specific for 1D

ultracold atomic gases, but are in fact more general and could be extended to other

quantum fluids of different nature.

1.1.1 One-dimensionality

The realization of 1D systems of ultracold atoms is obtained by tightly confining,

through very anisotropic trapping potentials, the motion of the atoms in two direc-

tions (the transverse directions), limiting their motion to zero point oscillations. Then,

the 3D many body wave function can be factorized as

Ψ(r1, ..., rN ) = Ψ(x1, ..., xN )

N
∏

i=1

φ0(ri⊥) , (1.1)

where ri⊥ = (yi, zi) and φ0(r⊥) is the single particle wave function that corresponds

to the lowest energy transverse quantum state. To reach this situation, the energy

7



8 Chap. 1 – Theoretical methods for one-dimensional bosons

Figure 1.1: (a) Superposition of two counter-propagating laser beams creat-
ing a standing wave periodic potential for the atoms. Superpostion of two of
orthogonal standing waves creating a 2D optical lattice, resulting in an array of
1D tubes (From Ref. [20–22]). (b) Atom chip magnetically trapping the atoms
in a single tube, and imaging system (From Ref. [23, 24]).

scale associated with the energy gap of the transverse confinement should be much

larger than all the other energy scales present in the system, such as thermal energy

and chemical potential, which assuming a harmonic transverse confinement with fre-

quency ω⊥, translates into the condition

!ω⊥ ≫ kBT, µ . (1.2)

In this case, the transverse degrees of freedom are frozen out and one can focus only

on the degrees of freedom described by Ψ(x1, ..., xN ), and thus kinematically the gas

is 1D. The value of the effective 1D interparticle interaction depends on the transverse

confinement, as I will detail in the next section.

The experimental realization of such very anisotropic confinements for the atoms

is most commonly achieved via two possible schemes. (i) Atoms can be trapped in

2D optical lattices, which are realized superimposing two orthogonal light standing

waves. Each light standing wave, in turn, is realized superimposing two counter-

propagating laser beams. The dipole force acting on the atoms, as a consequence of

the ac-Stark shift, localizes the atoms in the minima (or maxima) of the intensity of the

light wave, depending whether the laser frequency is blue (or red) detuned with re-

spect to the corresponding atomic transition frequency. In this way an array of tightly



Introduction 9

confining 1D potential tubes is created [12,21] (see Fig. 1.1(a)). (ii) In a second scheme,

atoms can be magnetically trapped in an atom chip. In the microchip magnetic fields

are created via the the current flowing in microscopic wires and electrodes micro-

fabricated on a carrier substrate. The precision in the fabrication of such structures

allows for a very good control of the generated magnetic field, that via the Zeeman

force acting on the atoms designs the potential landscape [23] (see Fig. 1.1(b)). In this

latter configuration a single 1D sample can be produced, instead of an array of several

copies like with the optical lattice. Both techniques are nowadays employed in several

laboratories around the world, among which we may cite [23–40].

1.1.2 Interactions in one-dimension

In a dilute and ultracold gas the interactions between the particles are due only to

two-body collisions. These collisions, at low-energy, can be characterized by a single

parameter, the s-wave scattering length a, independently of the details of the two-

body potential V (r− r′). This allows to introduce the effective contact interaction po-

tential V (r−r′) = gδ(r−r′), where the interaction strength g is related to the scattering

length a through g = 4π!2a/m [41]. The scattering problem, however, is modified by

the presence of an external tight confinement and the interaction coupling is modified

in lower dimensionalities with respect to the 3D case. For example, in the experimen-

tally relevant case of a tight 2D harmonic confinement of frequency ω⊥, that restrict

the system to an effective 1D geometry, it has been shown in [42] that the effective 1D

scattering length a1D reads

a1D = −a
2
⊥
2a

(

1− C a

a⊥

)

, (1.3)

where a⊥ =
√

!/mω⊥ is the transverse harmonic oscillator length, and C = |ζ(1/2)| =

1.4603..., where ζ(...) is the Riemann zeta function. Then the effective contact interac-

tion strength in 1D is related to the effective 1D scattering length a1D by

g1D = − 2!2

ma1D
. (1.4)

The dependence of a1D and g1D on the 3D s-wave scattering length a is shown in

Fig. 1.2. In the rest of this thesis, since I will always refer to 1D systems, for the sake

of compactness I will indicate the 1D effective interaction strength g1D simply as g.

The interaction strength between the particles in 1D can be modified by tuning the

transverse confinement frequency alone. This technique, which goes under the name

of confinement-induced-resonance, is an additional tool, compared to higher dimen-
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Figure 1.2: Effective 1D scattering length a1D and interaction strength g1D
vs. the 3D s-wave scattering length a, in units of the transverse oscillator length
a⊥ and the radial oscillator frequency ω⊥. (Figure from Ref. [44]).

sions, to tune the interparticle interaction strength. Another possibility, which is not

specific for low-dimensional system, is the application of external magnetic fields, that

through Feshbach resonances allows to tune the strength of the interparticle interac-

tions, even allowing a change from repulsive to attractive [43].

A useful dimensionless interaction parameter, that allows to quantify whether the

system is in a weakly or strongly interacting regime, is given by the ratio between the

interaction energy per particle, Eint = n0g, with n0 the average system density, and

the characteristic kinetic energy of particles at a mean separation 1/n0 between them,

Ekin = !
2n20/m

γ =
Eint

Ekin
=

mg

!2n0
. (1.5)

A small value of γ corresponds to a weakly interacting system, in which particles tend

to be delocalized and overlap. On the contrary, a large value of γ corresponds to a

strongly interacting system, in which particles tend to avoid each other, hence are spa-

tially localized by the strong correlations among each other, as illustrated in Fig. 1.3.

In the limit of infinitely strong repulsive interactions (γ → ∞), the so-called Tonks-

Girardeau regime, the interactions mimic Pauli’s exclusion principle and bosons be-

have in various respects like fermions. This shows the absence of a well defined con-

cept of statistics in 1D (see Sec. 1.2). From Eq. (1.5) one can observe another peculiar

property of a 1D gas, which becomes more strongly interacting at decreasing the par-

ticle density, counterintuitively and differently with respect to higher dimensions.
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Figure 1.3: Cartoon of the 1D atomic distribution, illustrating the size and
separation of single-particle wave functions as a function of the dimensionless
interaction parameter γ. (Figure adapted from Ref. [27]).

1.1.3 Coherence properties of one-dimensional bosons

One-dimensional Bose systems at low temperature display peculiar coherence prop-

erties, drastically changed with respect to their higher dimensional counterparts. One

reason lies in the fact that in 1D being all the transverse degrees of freedom frozen,

quantum fluctuations can only propagate longitudinally, and this implies that their

effect is enormously enhanced. A major difference with respect to higher dimensional

systems is for instance the absence of Bose-Einstein condensation (BEC) in an inter-

acting 1D Bose gas in the thermodynamic limit (N,L → ∞, where N is the total

number of particles and L the system size, with n0 = N/L constant), both at finite

and zero temperature. Bose-Einstein condensation can be defined in two ways: in a

homogeneous system by the presence of off-diagonal long range order, namely a non

vanishing value of the one-body density matrix g(1)(x, x′) = 〈ψ(x)†ψ(x′)〉 at long dis-

tances |x − x′| → ∞ [45], where ψ(x) is the bosonic field operator, or by the presence

of a macroscopic eigenvalue in the one-body density matrix, of the order of the total

number of particles [46]. The latter definition holds also for a confined system. The

two definitions underline two of the main features of BEC: phase coherence over the

whole system size and macroscopic occupation of a single quantum state [41]. In the

thermodynamic limit, and at finite temperatures, the momentum distribution n(k) of

the Bose gas presents a quadratic infrared divergence as predicted by the Hohenberg

theorem [47]:

n(k)  
mkBT

k2
N0

N
− 1

2
, (1.6)

where N0 is the number of condensed particles. This inequality states the absence of

condensation according to the Penrose-Onsager criterion: the fraction of condensed

particles N0 can not be of macroscopic order, since the total number of particles N =



12 Chap. 1 – Theoretical methods for one-dimensional bosons

Figure 1.4: Phase diagram in the dimensionless interaction-temperature (t =
!2kBT/mg

2) parameter space for a repulsive uniform 1D Bose gas, derived
from atom number fluctuations measurements [39]. g(2)(0) is the local two-
body correlation, indicated for the three main regimes (white and grey areas).
The two black horizontal lines show the parameters regimes explored in the
experiment. (Figure from Ref. [39]).

∫

dk n(k) must be finite. Also, the one-body density matrix decays exponentially at

large distances, due to long-wavelength quantum fluctuations that prevent long range

phase coherence. Despite the absence of condensation, however, a rich behaviour is

found upon varying the interaction strength from weakly to strongly repulsive [24,39],

as it is shown in Fig. 1.4. At zero temperature condensation is also prevented. The

momentum distribution n(k) presents a linear infrared divergence [48]:

n(k)  
k→0

mvs
2!k

N0

N
− 1

2
, (1.7)

where vs is the sound velocity of Bogoliubov excitations. Also in this case this inequal-

ity states the absence of condensation, because N0 can not be of macroscopic order to

have a finite number of particles N =
∫

dk n(k). At zero temperature, however, the

one-body density matrix presents a power-law decay g(1)(x, x′) ∝ |x−x′|−1/2K , where

K  1 is the interaction dependent Luttinger parameter (see Sec. 1.4) [49, 50], and one

can speak of algebraic or quasi-long range order and of a quasi-condensate phase [51].

For a trapped system, such as in the presence of harmonic confinement, the density

of states is modified compared to the homogeneous case, but BEC is still prevented in

the thermodynamic limit, the critical transition temperature going to zero [52]. For a

finite system size and number of particles, and at very low temperatures, instead, the

system can exhibit a large occupation of a single-particle state and the phase coherence

can extend to the whole system, thus reaching a true-condensate regime [51].
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1.1.4 Theoretical Methods

To describe 1D systems of interacting bosons there are various methods avail-

able that rely on different assumptions and approximations. In the next sections I

will review the methods that have been employed to obtain the results presented in

Chap. 2, 3, and 4. I will not provide an exhaustive description of all the methods

present in the literature, since this goes beyond the scope of this thesis.

The 1D homogeneous Bose gas with arbitrary contact interactions is a very special

quantum many-body problem, that, together with few other examples, is integrable

via Bethe ansatz. This celebrated model goes under the name of Lieb-Liniger model,

after the names of the two physicists that in 1963 found an exact solution for its many-

body wave function [53, 54]. The availability of such an exact solution is not only

relevant in itself for its beautiful mathematical rigour, but it is also very important

as a benchmark to prove the validity of other approximated methods. The fact that

this integrable model can not take into account the presence of an external poten-

tial however limits its applicability with respect to relevant experimental situations,

where a external confinement is usually present. Therefore, in order to treat this gen-

eral situation, other methods have been developed, that rely on different assumptions

and approximations depending, for instance, on the interparticle interaction strength.

I will describe in particular the exact solution based on the Tonks-Girardeau Bose-

Fermi mapping in the infinitely strong (or hard-core) interacting limit, the mean-field

Gross-Pitaevskii equation valid for weak interactions and large number of particles,

the Luttinger liquid effective field theory approach valid at strong interactions when

the low-energy excitations are collective phonon waves, and the numerical diago-

nalization method, applicable at any interaction strength but only for small system

sizes. Another method that has been employed in the research projects presented in

Chaps. 2, 3 is the numerical density-matrix renormalization group (DMRG) approach.

This represents nowadays probably the most efficient numerical method for 1D quan-

tum systems [55–57]. It is an iterative variational method based on a renormalization

procedure, that allows to reduce the exponentially growing size of the Hilbert space to

effective degrees of freedom that are the most important for a certain target state, e.g.

the ground state. Since the implementation and use of this method was not the object

of my research activity, but was done by other researchers 1 within a scientific collab-

oration with our group, I will not present in this thesis the details of this technique.

1The implementation of the DMRG method has been done by Matteo Rizzi (Institut für Physik,
Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany), and Davide Rossini
(NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy).



14 Chap. 1 – Theoretical methods for one-dimensional bosons

1.2 Tonks-Girardeau Bose-Fermi mapping

The general Hamiltonian describing a system of N bosons of mass m in 1D, inter-

acting via the contact potential V (x − x′) = gδ(x − x′), and subjected to an external

potential Vext(x), is given in first quantization by

H =
N
∑

j=1

− !
2

2m

∂2

∂x2j
+ Vext(xj) +

g

2

N
∑

j,l=1

δ(xj − xl) , (1.8)

where xj is the j-th particle coordinate. The problem of solving the full many-body

Schrödinger equation associated to this Hamiltonian is very hard. In the general case,

an exact solution can be obtained only through ab initio numerical simulations, based

for instance on Quantum Monte Carlo or DMRG techniques, that are exact within

statistical errors. However, in the limit of infinitely strong contact repulsion between

the bosons (impenetrable or hard-core bosons) g → ∞, an exact solution exists for

the bosonic many-body wave function ΨB(x1, ..., xN ). This solution, that was intro-

duced by M. D. Girardeau in 1960 [58], constitutes to some extent a particular case

of the Bethe anzatz Lieb-Liniger exact solution [53, 54] that is valid at arbitrary inter-

action strength, but at the same time an important generalization of the latter, being

applicable also in the case of an inhomogeneous system in the presence of an external

potential. The Bose gas in the infinitely interacting limit is usually referred to in the

literature as Tonks-Girardeau (TG) gas, after the physicists M. D. Girardeau and L.

Tonks.

The presence of the interacting contact potential between the particles can be trans-

lated into the well-known cusp condition for the many-body wave function

!

2mg

[

(

∂ΨB

∂xj
− ∂ΨB

∂xl

)

xj=x+

l

−
(

∂ΨB

∂xj
− ∂ΨB

∂xl

)

xj=x−

l

]

= ΨB(xj = xl) . (1.9)

In the infinitely interacting limit g →∞, this expression implies that Ψmust vanish at

contact between two particles

ΨB(x1, ..., xN ) = 0 if xj = xl, 1 " j < l " N . (1.10)

The surfaces xj = xl thus divide the N -dimensional configuration space into N ! dis-

connected regions, usually referred to as coordinate sectors, in each of which the

many-body problem is reduced to a non interacting one. Girardeau then observed

that such a bosonic wave function has a property in common with the wave function

of a spin-polarized (or spinless) fermionic system subjected to the same boundary
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Figure 1.5: Comparison between the momentum distribution of a TG Bose
gas and a non-interacting Fermi gas at zero temperature in the thermodynamic
limit. (Figure from Ref. [42]).

conditions and external potential, which also must vanish at contact between two par-

ticles, as imposed by Pauli’s exclusion principle. From these two observations, he had

the idea that the bosonic many-body wave function for the infinitely interacting prob-

lem can be expressed in terms of the many-body wave function of spin-polarized (or

spinless) non-interacting fermions subject to the same external potential, through the

Bose-Fermi mapping:

ΨB(x1, ..., xN ) = A(x1, ..., xN )ΨF (x1, ..., xN ) , (1.11)

where the fermionic wave function is given by the Slater determinant

ΨF (x1, ..., xN ) = (1/
√
N !)det[ψk(xj)]k,j=1...N , (1.12)

ψj(xk) being the single-particle orbitals for the given external potential labelled by

the index k, and A(x1, ..., xN ) is a unitary mapping function, antisymmetric under

exchange of two particles, that ensures the proper overall bosonic symmetry under

exchange of two particles

A(x1, ..., xN ) =
∏

1"i<l"N

sgn(xi − xl) . (1.13)

The bosonic and fermionic wave functions then differ only by an overall phase

factor in each coordinate sector. As a consequence, all the observables of the TG Bose

gas that do not depend on the sign of the many-body wave function coincide with the



16 Chap. 1 – Theoretical methods for one-dimensional bosons

Figure 1.6: First experimental observations of the TG regime. (a) Increas-
ing the interaction strength γ between the particles, the cloud size slowly ap-
proaches the one predicted for the TG gas, indicated by the horizontal dotted
line. The measured values coincide with the solid curve which represents the
expected behaviour of the 1D Bose gas theory. The dashed line represents a
mean-field calculation (Figure from Ref. [27]). (b) Momentum distribution of
the 1D atomic gas in an optical lattice. The dots represent measured data
whereas the lines correspond to the computed momentum distributions. The
green dotted line represents ideal bosons, the yellow dashed line represents the
ideal Fermi gas and the gray solid line represents the TG gas. Due to the
non-uniformity of the TG gas on the lattice, the slope of the linear part in
the double logarithmic plot deviates from the expected 1/2 behaviour of the
uniform TG gas indicated in short dashes (Figure from Ref. [28]).

corresponding ones of the mapped Fermi gas, we may cite as an example the parti-

cle and current densities, and the energy spectra. For this reason the TG gas is often

called also fermionized Bose gas. The ground-state energy of the TG gas for instance

is given by ETG =
∑N−1

i=0 εi, where εi are the single-particle energies, and the particle

density by n(x) =
∑N−1

i=0 |ψi(x)|
2. On the other hand, all the quantities sensitive to the

relative phases imposed by the mapping function, such as the one-body density ma-

trix g(1)(x, x′) =
∫

dx2...dxN Ψ∗
B(x, x2, ..., xN )ΨB(x

′, x2, ..., xN ), and the momentum

distribution n(k) =
∫

dx
∫

dx′ g(1)(x, x′)eik(x−x′), are markedly different for bosons as

compared to fermions. A comparison between the fermionic momentum distribution

and the TG bosonic one is shown in Fig. 1.5. As it is expected, the Fermi system is

dominated by the effect of the exclusion principle and the momentum states occupa-

tion is uniform and equal to 1 up to the Fermi momentum and zero otherwise. In

contrast, the TG bosonic system reflects tendency toward condensation, even if the

1/
√
k peak at low momenta [59] proves the absence of a true BEC. This is confirmed

also by the fact that the largest eigenvalue of the one-body density matrix scales as√
N [60]. At high momenta, also in contrast with the Fermi system, the TG Bose gas

displays a 1/k4 long tail decay that is found to be an universal feature [61, 62].
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The extension of the mapping (1.11) to the time-dependent case becomes straight-

forward, after remarking that the impenetrability condition and the consequent sepa-

ration of the many-body wave function in disconnected coordinate sectors hold at any

time, and that consequently the Bose-Fermi mapping can be applied for any configu-

ration of the particles, at any time [63]:

ΨB(x1, ..., xN ; t) = A(x1, ..., xN )ΨF (x1, ..., xN ; t) , (1.14)

where the mapping function A is the same as the one found for the time-independent

case, Eq. (1.13), and does not entails explicitly the dependence on time.

Experimentally, the 1D TG strongly interacting regime has been reached for the

first time in 2004 by two different groups [27, 28], that demonstrated the successful

fermionization measuring respectively the cloud size and the momentum distribution

of the gas, as illustrated in Fig. 1.6.

In Chaps. 2, 3, and 4 I will show properties of the TG Bose gas that are peculiar of

fermionic system, such as a parity effect, leading to different values of a given observ-

able depending on whether the number of particles is even or odd, and the appear-

ance of Friedel oscillations of the density in the proximity of an abrupt potential (see

e.g. Fig. 2.6). Furthermore, I will show that the TG exact solution can be used not only

to study the behaviour of a 1D Bose gas in the infinitely interacting limit, but also as a

valuable benchmark to compare with other approximated methods, as the Luttinger

liquid theory, and to fix some non universal parameters present in the theory.

1.3 Gross-Pitaevskii equation

As I have stressed in the previous section, the many-body quantum problem to

solve the Schrödinger equation associated with Hamitonian (1.8) is very hard in gen-

eral, both analytically and numerically. A common approach that is developed to

tackle it is based on the mean-field approximation, that in the context of ultracold

dilute quantum gases has been proven to be very successful in providing not only

qualitative but also quantitative predictions for static, dynamic and thermodynamic

properties [41, 64].

The mean-field description of a zero-temperature Bose gas of N particles is based

on the assumption that the many body wave function can be written in Hartree ap-

proximation as a symmetrized product of single-particle wave functions, that in the
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fully condensed state all coincide with the same single-particle state φ(x)

ΨB(x1, ..., xN , t) =
N
∏

i=1

φ(xi, t) . (1.15)

This approximation amounts thus to neglecting all the correlations between the parti-

cles, that are not taken into account by this form of the wave function, and that become

less and less important as the interparticle interactions are weakened (γ ≪ 1). Also,

it neglects the quantum depletion of the condensate, namely the fraction of particles

that are not in the macroscopically occupied state. A large occupation of a single state

is realized also in 1D, as we have seen in Sec. 1.1.3, even if the depletion is more im-

portant than in higher dimensions and one can not always speak of a true BEC [51].

In general, the depletion of the condensate is less and less important as the number of

particles is increased [65]. Applying Hamiltonian (1.8) to the wave function written

in this way, one gets the following expression for the energy of the system

E = N

∫

dx

[

!
2

2m
|∂xφ(x)|

2 + Vext(x)|φ(x)|
2 +

N − 1

2
g|φ(x)|4

]

. (1.16)

It is then convenient to introduce the so-called wave function of the condensate

Φ(x) =
√
Nφ(x) , (1.17)

where the same single-particle state φ(x) is normalized to unity. The density of par-

ticles is thus given by n(x) = |Φ(x)|2, and under the assumption N ≫ 1, the energy

functional of the system can be rewritten as

E ≃
∫

dx

[

!
2

2m
|∂xΦ(x)|

2 + Vext(x)|Φ(x)|
2 +

g

2
|Φ(x)|4

]

. (1.18)

The optimal form for the ground-state of the condensate wave function is then found

minimizing the energy functional (1.18), under the condition N =
∫

dx|Φ(x)|2 that

the total number of particles is constant. Therefore, equating to zero the variation of

E − µN with respect to Φ∗(x), where the Lagrange multiplier µ is the chemical po-

tential, that ensures the constancy of the particle number, one finally gets the time-

independent Gross-Pitaevskii (GP) equation, that was derived for the first time in

1961, independently by the physicists E. Gross and L. Pitaevskii [66, 67]:

− !
2

2m

∂2

∂x2
Φ(x) + Vext(x)Φ(x) + g|Φ(x)|2Φ(x) = µΦ(x) . (1.19)
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The time evolution of the condensate wave function can then be determined by

i!
∂Φ(x, t)

∂t
=

δE

δΦ∗ . (1.20)

If the external potential is independent of time, Eq (1.20) admits the stationary solu-

tion

Φ(x, t) = Φ(x, 0)e−iµt/! . (1.21)

Remarkably, the time evolution of the condensate wave function is thus determined by

the chemical potential and not by the energy, as it happens with usual wave functions.

It is useful to remark for subsequent discussion, that in the case of a uniform Bose

gas, in absence of motion of the center of mass, one can take Φ =
√

N/L, where L is

the system size, and Eq. (1.19) reduces to µ = gn, with E/L = gn2/2.

The GP equation is a nonlinear partial differential equation, which cannot be solved

analytically in the general case. Exact analytical solutions may be found in special

cases. A particularly famous class of these solutions for instance is represented by the

solitary waves, or solitons. In Chap. 2 and App. A a special analytical solution of this

equation is presented, for a gas in a ring geometry in the presence of a rotating po-

tential barrier. In the general case, to solve the stationary GP equation (1.19) one can

adopt a numerical method based directly on a self-consistent minimization the energy

functional, as detailed in [68]. This method consists in projecting an initial arbitrary

trial condensate wave functionΦ(x) onto the minimum of the energy functional (1.18),

by propagating it in imaginary time according to the diffusive equation

!
∂Φ(x, τ)

∂τ
= − δE

δΦ∗(x, τ)
, (1.22)

obtained from Eq. (1.20) applying the Wick rotation of the time coordinate t → −iτ .

This self-consistent equation, under the further constraint of normalization, defines

thus a trajectory in the wave function space, that for τ →∞ converges to the exact so-

lution which corresponds to ∂Φ/∂τ = 0. In practice, the minimization of the gradient

is done by choosing a time step∆τ and iterating the equation

Φ(x, τ +∆τ) ≃ Φ(x, τ)−∆τHGPΦ(x, τ) , (1.23)

where HGP = −(!2/2m)∂2x) + Vext(x) + g|Φ(x)|2 depends nonlinearly on Φ, and nor-

malizing the wave function to N at each iteration. The convergence of such an itera-

tive procedure depends thus on the initial choice of the wave function, and its rate is

controlled by the time step∆τ .
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1.4 Luttinger liquid effective field theory

The Luttinger liquid (LL) is a universality class of 1D quantum many-body sys-

tems, called in this way by Haldane [69] after the earlier contribution to their study

of Luttinger [70], and sometimes also referred as Tomonaga-Luttinger liquid [71]. It

includes a wide variety of celebrated 1D systems, among which we may cite the Bose

gas with repulsive contact interactions, the Heisenberg model, interacting spinless and

spin-12 fermions, electrons in the edge states of the quantum Hall effect, and many oth-

ers [2]. At low temperatures all these systems exhibit a fluid phase in which no con-

tinuous or discrete symmetries are broken, in agreement with the Mermin-Wagner-

Hohenberg theorem [47, 72], and that has the key feature that the low-energy excita-

tions are collective modes with a gapless linear dispersion. Haldane brought a sig-

nificant contribution to the development of a universal description of such systems

in terms of a low-energy harmonic field theory approach [49], which corresponds to

a quantum hydrodynamics description, in which the excitation spectrum is described

in terms of non-interacting bosonic collective modes (bosonization). The collective na-

ture of the elementary excitations in 1D can be easily understood in these terms: in the

presence of interactions, any individual motion of a particle is immediately converted

into a collective one, since a moving particle can not avoid its neighbours to propagate.

This has also the consequence of greatly enhancing the effect of interactions between

the particles in 1D.

Let us consider a homogeneous 1D system of length L, containing N particles. It

is not necessary at this point to specify its boundary conditions. In order to construct

a quantum hydrodynamic description of the system we consider the conjugate fields

density ρ(x) and velocity v(x), that in the case of a potential flow can be expressed as

the gradient of a dimensionless potential φ(x) as v(x) = (!/m)∂xφ(x), satisfying the

canonical commutation relation [ρ(x),φ(x′)] = iδ(x−x′). The low-energy Hamiltonian

of the system can be expressed in terms of such fields as

H =

∫ L

0
dx

[

1

2
mρ(x)v2(x) + e(ρ)

]

, (1.24)

where the first term corresponds to the kinetic energy density and the second to the

internal energy one [73]. At low-energy and low-momenta the hydrodynamic descrip-

tion of the system can be simplified performing an expansion of Hamiltonian (1.24) for

long wave-length and small fluctuations of the density and small velocities. Therefore,

under the assumption that the velocity of the fluid v(x), and the low-momenta (|k|≪
n0) density fluctuation above the the equilibrium value of the densityΠ(x) = ρ(x)−n0,
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with n0 = N/L, are small quantities of the same order, the first non-vanishing contri-

butions to the Hamiltonian, after the constant zero-order terms, are of the quadratic

form (mn0/2)v
2(x), and (∂2e(ρ)/∂ρ2)|ρ=n0

Π2(x)/2. Hamiltonian (1.24) can then be

recast in the harmonic-fluid form

H =
!vs
2

∫ L

0
dx

[

K

π
(∂xφ(x))

2 +
π

K
Π

2(x)

]

, (1.25)

by introducing the two parameters K and vs, which are known respectively as the

Luttinger parameter and the sound velocity, defined by vsK = !πn0/m, and vs/K =

(1/!π)(∂µB/∂ρ)|ρ=n0
, where µB = ∂E/∂N is the chemical potential of the Bose gas [50].

From these relations one can see immediately that the Luttinger parameter K corre-

sponds to the square root of the ratio between the adiabatic compressibility of an ideal

Fermi gas in the same geometry, κF = (∂µF /∂ρ)|ρ=n0
= π2

!
2n0/m, and the actual

compressibility of the Bose gas κB = (∂µB/∂ρ)|ρ=n0
, K =

√

κF /κB , where µF is the

chemical potentials of the Fermi gas.

The low-energy physics of the 1D Bose gas is thus governed by a quadratic Hamil-

tonian, with a linear and gapless sound waves excitation spectrum ω(k) = vsk, and

two non-universal parameters vs and K, that depend on the interaction strength g, the

density n0, and on the form of the compressibility of the gas. The terms of higher or-

der in the expansion of Hamiltonian (1.24) represent the anharmonicity of the sound

vibrations, taking into account phonon interactions.

The Luttinger parameter K and the sound velocity vs are related to measurable

properties of the systems. In some special cases, for which the corresponding micro-

scopic model is integrable, they can be related to the microscopic ones. This is the case

of the 1D Bose gas for which the Lieb-Liniger Bethe ansatz solution exists [53, 54], as

illustrated in Fig. 1.7. In general, analytical expressions are not available for arbitrary

values of the interaction parameter γ, defined by Eq. (1.5). However, in the limit of

large and small γ the following asymptotic expressions are known [50]:

K(γ) =







1 + 4
γ

for γ ≫ 1

π√
γ

(

1−
√
γ

2π

)−1/2
for γ ≪ 1

(1.26)

and

vs(γ) =







vF

(

1− 4
γ

)

for γ ≫ 1

vF
√
γ

π

(

1−
√
γ

2π

)1/2
for γ ≪ 1

(1.27)

where vF = !πn0/m is the Fermi velocity of a Fermi gas with the same density. In the

TG limit, due to the Bose-Fermi mapping (see Sec. 1.2), the compressibility of the Bose
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Figure 1.7: Luttinger parameter K and sound velocity vs, in units of the
Fermi velocity vF , as a function of the dimensionless interaction strength γ. The
dashed and dotted-dashed lines correspond to the asymptotic results given by
Eqs. (1.26), and (1.27), the solid line corresponds to the numerical calculation
from the Bethe ansatz equations. (Figure from Ref. [50]).

gas is identical to the one of the corresponding Fermi gas and the Luttinger parameter

K approaches unity. In the same limit, the sound velocity is close to the Fermi velocity.

In the weakly interacting limit, instead, the bosonic compressibility tends to zero and

the Luttinger parameter K diverges, while phase fluctuations are small and the sound

velocity is strongly suppressed. An important property to keep in mind is that the

Luttinger parameter K for bosons with contact interactions is larger than or equal to

one, and it decreases as the interactions become more repulsive.

The power of the LL approach goes beyond the simple description of the hydro-

dynamics of the system in terms of the quadratic Hamiltonian (1.25). Its peculiarity

consists in the representation of the microscopic bosonic and density fields ψ†(x) and

ρ(x), in terms of the phase and long wave-length density fluctuation ones φ(x) and

Π(x), via a systematic expansion taking into account fluctuations of any wave-vector.

The density operator is defined in first quantized form as

ρ(x) =

N
∑

j=1

δ(x− xj) , (1.28)

where xj is the position of the j-th particle. One can introduce a labelling field Θ(x)

which takes the value Θ(xj) = jπ at the position xj , and satisfies the topological

property Θ(L) − Θ(0) = πN . Using δ[f(x)] = δ(x − x0)/|∂xf(x0)|, where f(x0) = 0,
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we can recast the density operator in the form

ρ(x) = ∂xΘ(x)
+∞
∑

l=−∞
δ(Θ(x)− lπ) . (1.29)

Then applying Poisson’s summation formula 2, one gets

ρ(x) =
1

π
∂xΘ(x)

+∞
∑

l=−∞
ei2lΘ(x) . (1.30)

It is customary in the literature to work with the field

θ(x) ≡ Θ(x)− πn0x , (1.31)

the density operator then reads

ρ(x) =

(

n0 +
1

π
∂xθ(x)

) +∞
∑

l=−∞
ei2l(θ(x)+πn0x) . (1.32)

Taking the spatial average of the density operator over distances larger than the mean

interparticle distance 1/n0, all the oscillating terms vanish in the homogeneous sys-

tem, and only the l = 0 leading contribution describing the long wave-length fluctu-

ations with |k| ≪ n0 around the mean density n0 remains ρ(x) ≃ n0 + ∂xθ(x)/π, thus

allowing us to identify Π(x) ≡ ∂xθ(x)/π. The l ± 1 terms describe fluctuations with

momenta k ≈ 2πn0, and l ± 2 those with k ≈ 4πn0, etc. The single-particle creation

field operator ψ†(x) can be represented in terms of the Luttinger fields θ(x) and φ(x),

through the density ρ(x) = ψ†(x)ψ(x) and phase φ(x) representation

ψ†(x) =
√

ρ(x)e−iφ(x) . (1.33)

In the case of bosonic particles, the single-particle operator ψ†(x) satisfies the usual

bosonic commutation rule [ψ(x),ψ†(x′)] = δ(x−x′), which translates into the commu-

tation rule for the Luttinger fields θ(x) and φ(x):

[

∂xθ/π,φ(x
′)
]

= iδ(x− x′) . (1.34)

Recalling Fermi’s trick [δ(θ)]2 = Aδ(θ), where A is a non-universal constant that de-

pends on the Dirac delta function representation, and thus on the way the high energy

2
∑+∞

k=−∞
f(k) =

∑+∞

l=−∞

∫ +∞

−∞
dzf(z)ei2lπz.
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fluctuations are cut-off, applying Poisson’s summation formula, and finally multiply-

ing by e−iφ(x) from the right, one gets the final expression for the bosonic creation field

operator

ψ†(x) ∝
√

n0 +
1

π
∂xθ(x)

+∞
∑

l=−∞
ei2l(θ(x)+πn0x)e−iφ(x) . (1.35)

Where the proportionality symbol indicates that this expression is valid only up to a

cut-off dependent prefactor A.

The effective low-energy harmonic-fluid Hamiltonian (1.25) can be recast in terms

of the gradients of the Luttinger fields θ(x) and φ(x), by recalling the representation

of the long wave-length fluctuations of the density as Π(x) ≡ ∂xθ(x)/π

HLL =
!vs
2π

∫ L

0
dx

[

K(∂xφ(x))
2 +

1

K
(∂xθ(x))

2

]

. (1.36)

To conclude this section on the LL low-energy effective field theory it is interesting

to compare a posteriori the regime of validity of such a quadratic theory, that predicts a

linear and gapless sound waves excitation spectrum, with the true excitation spectrum

known from the exact solution of the Lieb-Liniger model, which is shown in Fig. 1.8.

One can notice that the long wave-length fluctuations approximation, |k| ≪ n0, that

has been done while deriving Hamiltonian (1.36), does not suffice to describe all the

possible low-energy density fluctuations. It is therefore necessary to distinguish be-

tween low-energy and low-momenta. A 1D interacting Bose gas shows low-energy

density excitations with momenta ∼ n0 or higher. Indeed, the energy spectrum of a

system of N bosons of size L with periodic boundary conditions, shown in Fig. 1.8(a),

has local minima at the so-called supercurrent states I (I = 0, 1, 2, ...) with kI = 2πn0I ,

that lie on the parabola !
2k2/2mN . These local minima are in correspondence with

the so-called umklapp excitations, that correspond to excitations in which a momen-

tum !2π/L, corresponding to the reciprocal wave vector of system, is imparted to

each particle. These processes are taken into account through the higher harmonics,

l = ±1,±2, ..., in the Luttinger field expansions Eqs. (1.35) and (1.32). The position of

these minima does not depend on interactions and their energy tends to zero in the

thermodynamic limit, breaking superfluidity according to Landau’s criterion [74].

In his seminal work [54], E. H. Lieb characterized the nature of the excitation spec-

trum of the 1D Bose gas identifying two types of possible excitations, that he labelled

Type I and Type II, see Fig. 1.8(b). The Type I excitations are the so-called elemen-

tary excitations that correspond to Bogoliubov’s excitation spectrum at weak interac-

tions (yellow line in Fig. 1.8(a)), while Type II excitations are the lowest energy single

particle-hole excitations (green line in Fig. 1.8(a)), that have no equivalent in Bogoli-
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Figure 1.8: (a) Scheme of the energy domain of the excitation spectrum of the
1D Bose gas in a homogeneous system of size L, in units of kF = !πn0 and εF =
!
2k2F /2m. Excitations occur in the shaded area, the blue part corresponding

to single particle-hole excitations. The discreteness on the spectrum is not
shown for simplicity. The yellow line corresponds to Bogoliubov elementary
excitations (Lieb Type I), and the green line to the lowest energy single particle-
hole excitations (Lieb Type II). The transitions from the ground state caused
by the motion of an obstacle with velocity v, lie on the red line ω = vk.
(Figure adapted from Ref. [75]). (b) Density plot of the zero-temperature
dynamical structure factor S(k,ω), quantifying the probability of single particle
excitations, obtained from Bethe ansatz for a 1D bosonic system at interaction
strength γ = 20 quasi at the thermodynamic limit (Figure from Ref. [74]).

ubov’s perturbative analysis. The validity of the LL harmonic fluid approach is thus

restricted to the low-energy and low-momenta region of the spectrum, where Type

I and Type II excitations dispersion relations coincide, approaching k → 0 with a

slope equal to the sound velocity vs(γ). The probability of excitation of such one-

body processes by an infinitesimal external probe transferring momentum !k and en-

ergy !ω to the system, can be quantified via the dynamical structure factor, which is

the Fourier transform of the time-dependent density-density correlation function [41],

S(k,ω) =
∫

dt
∫

dx e−ikx+iωt〈ρ(x, t)ρ(0, 0)〉. Its analytical calculation can be done for

instance at strong interactions, via a perturbative approach starting from the TG so-

lution [76], or, at low energy, via the LL approach starting from expression (1.32) for

the density [77]. Its exact calculation, instead, has been done numerically via Bethe

ansatz [74], an example of the result is shown in Fig. 1.8(b). A recent experimen-

tal measurement of the dynamical structure factor for a 1D Bose gas via Bragg spec-

troscopy has been reported e.g. in [78].

In the next chapters I will apply the LL effective field theory to the specific system

considered. In particular, in Chap. 2 I will present how a mode expansion for the Lut-

tinger fields, dependent on the system’s boundary conditions, can be used to diago-



26 Chap. 1 – Theoretical methods for one-dimensional bosons

nalize Hamiltonian (1.36), and in Chap. 3. I will show how the present harmonic-fluid

description can be extended to the case of an inhomogeneous system.

1.5 Exact diagonalization

The exact diagonalization method can be used to calculate the low-energy eigen-

spectrum and eigenfunctions of a time-independent Hamiltonian. This method is ex-

tremely general in its formalism, and not restricted to the case of 1D bosons to which it

is applied in this thesis [79]. The starting point is the stationary Schrödinger equation

H|Ψ〉 = E|Ψ〉 , (1.37)

where |Ψ〉 is the many body state in Dirac representation. In order to solve this eigen-

value problem, one should chose an arbitrary basis of the Hilbert space {|n〉}n=1,2,...,

and project the stationary Schrödinger equation on the states |n〉

〈n|H
∑

n′

|n′〉〈n′|Ψ〉 = E〈n|Ψ〉 ∀n . (1.38)

This set of equations can be written in matrix form, and the problem is therefore sim-

ply reduced to the diagonalization of the Hamiltonian matrix 〈n|H|n′〉n,n′=1,2,....

The formalism of second quantization is particularly suitable in this context to

represent the many-body state as a Fock state |n1, n2, ...〉, where nα is the number of

particles that occupy the α-th single-particle basis state. All the many-particle opera-

tors (one- and two-body) present in Hamiltonian (1.8) then can be expressed by means

of creation and annihilation operators a†α and aα of a particle in a single-particle basis

state [80], obeying the commutation relation [aα, a
†
β ] = δα,β . The kinetic and potential

energy are one-body operators that are represented as

N
∑

j=1

− !
2

2m

∂2

∂x2j
+ Vext(xj) =

N
∑

j=1

hj0 =
∑

α,β

〈α|h0|β〉a†αaβ ; (1.39)

while the interaction energy is a two-body operator, that is represented as

g

2

N
∑

i,j=1

δ(xi − xj) =
N
∑

i,j=1

hi,jint =
∑

α,β,γ,δ

〈αβ|hint|γδ〉a†αa†βaγaδ . (1.40)

The matrix elements 〈α|h0|β〉 and 〈αβ|hint|γδ〉 are thus evaluated by means of the
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wave functions of the single-particle basis ϕα = 〈x|α〉 as

〈α|h0|β〉 =
∫

dx ϕ∗
α(x)

(

− !
2

2m

∂2

∂x2
+ Vext(x)

)

ϕβ(x) , (1.41)

and

〈αβ|hint|γδ〉 =
g

2

∫

dx

∫

dx′ ϕ∗
α(x)ϕ

∗
β(x

′)δ(x− x′)ϕγ(x)ϕδ(x
′) . (1.42)

In Chap. 3 we have chosen, for instance, Wannier functions as a basis for the single

particle states, relevant for the problem on a lattice considered there, that in such a

way is mapped onto the Bose-Hubbard model, while in Chap. 4 we have chosen the

Whittaker functions that diagonalize the one-body part of the Hamiltonian.

The diagonalization of the Hamiltonian matrix can be efficiently performed on a

computer. However, the dimension of the Hilbert space is in general infinite, hence

in the actual calculation one must restrict the basis {|n〉} to a finite number, due to

CPU and memory limitations. This truncation gives rise to a deviation between the

exact and numerically obtained eigenenergies and eigenfunctions. Strictly speaking,

the name exact diagonalization is thus improper, indicating simply the absence of any

further approximation or assumption on the wave function. The accuracy of the result

depends strongly on a ‘good choice’ of the basis functions and their number. The size

D of the many-body Hilbert space for a bosonic gas is obtained through elementary

combinatorics as the binomial

D =

(

S +N − 1

N

)

=
(N + S − 1)!

N !(S − 1)!
, (1.43)

where S is the number of single-particle states |α〉 used to build the finite-size many-

body basis |n1, n2, ..., nS〉, and N =
∑S

α=1 nα is the total number of particles. We see

that the size of the Hilbert space grows factorially with the system size, and thus only

small systems can be tackled with this method. To improve the accuracy of the esti-

mation of the eigenvalues a finite size scaling over different number of single-particle

states can be performed, as in Chap. 4.
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Résumé du chapitre

Méthodes theorique pour bosons unidimensionnels

Ce premier chapitre est consacré à une présentation générale des propriétés du gaz bo-

sonique d’atomes ultrafroids en une dimension (1D), et des méthodes théoriques qui ont été

employées pour l’étudier dans différents régimes physiques dans les chapitres suivants. En

particulier, nous nous concentrons sur l’effet des interactions entre les particules. Un système

unidimensionnel est realisé par un piège fortement confinant dans deux directions spatiales,

ce qui limite le mouvement des atoms aux oscillations de point zero dans les deux directions

transverse. Le gaz de Bose unidimensionnel présente des propriétés de cohérence très par-

ticulières à basse température, radicalement différentes de celles observées dans les systèmes

de dimension supérieure. Une différence majeure est par exemple l’absence de condensation

de Bose-Einstein dans un gaz 1D de bosons en interaction à la limite thermodynamique, tant

à température finie qu’à température nulle. Plusieurs methodes, exactes et approchees, sont

connues pour decrire des gaz de bosons unidimensionnels.

Dans ce chapitre je présente en particulier la solution exacte de Tonks-Girardeau, basée sur

la correspondance de Bose-Fermi dans la limite des interactions infiniment fortes, l’équation

de Gross-Pitaevskii basée sur une approximation de champ moyen valable dans le régime

d’interactions faibles et d’un grand nombre de particules, la théorie effective du liquide de Lut-

tinger valable pour interactions fortes lorsque les excitations de basse énergie sont des phonons,

et la méthode numérique de diagonalisation exacte, applicable pour tous les valeurs des interac-

tions mais seulement pour des systèmes de petite taille. Une autre méthode qui a été employée

dans les projets de recherche présentés dans cette thèse est l’approche numérique de groupe de

renormalisation de la matrice densité (DMRG), qui est une méthode variationnelle itérative

basée sur une procédure de renormalisation.



Chapter 2

Persistent currents for

interacting bosons on a ring

2.1 Introduction

I
N this chapter I present our study of persistent currents in a system of interacting

one-dimensional bosons confined in a ring.

The persistent currents phenomenon is essentially a manifestation of the Aharonov-

Bohm effect, that entails the influence of a gauge field on the quantum dynamics of

charged particles in a multiply-connected geometry [82]. One of the most striking

consequences of this effect in condensed matter physics occurs when one considers

e.g. a mesoscopic metallic quantum ring threaded by a static magnetic field at low

temperature. In this case, if the quantum phase coherence extends to the whole sys-

tem and thermal fluctuations do not wash it out, the Aharonov-Bohm effect shows

up at the many-body level as a dissipationless equilibrium current flowing through

the system even in the absence of any applied voltage [83, 84]. The theoretical and

experimental investigation of this counterintuitive phenomenon of an electric current

that flows without dissipating energy in a normally resistive medium has attracted

in the last 50 years an enormous attention. Persistent currents were first observed in

solid state electronic systems subjected to a magnetic field: first in bulk superconduc-

tors [85], and more recently, overcoming the challenges of decoherence induced by in-

elastic scattering also in normal metallic rings [86–88]. The measurement of persistent

current in such electronic systems is in general very challenging because of its small

signal (typically of the order of ∼ 1 nA) and its high sensitivity to the electromagnetic

environment and to the effect of microscopic disorder present in the material [88].

The most recent development in the manipulation of ultracold atomic gases has

29
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Figure 2.1: Sketch of atoms confined in a tight ring trap realized by an at-
tractive (red-detuned) laser beam with a rotating barrier realized by a repulsive
(blue-detuned) one. (Figure adapted from Ref. [81]).

led to the realization of micrometric ring traps [89–95], disclosing a novel platform for

the study of the persistent currents phenomenon. Ultracold gases are model quantum

fluids characterized by long-range coherence properties, that compared to their elec-

tronic counterparts are extremely tunable and clean. Experimentally it is possible to

adjust at will the dimensionality, the geometry of the confining potential, and even the

strength of the interactions, thus giving rise to a very versatile platform for the quan-

tum simulation of many quantum phenomena [12,14], including that of the persistent

currents. Because of the charge neutrality of the atoms that constitute the quantum gas

it is not possible to induce a persistent current by means of a magnetic field, as for the

electronic systems. However, thanks to the formal equivalence between the Lorentz

force acting on charged particles in a magnetic field and the Coriolis force acting on

particles under rotation, it is possible to generate for the neutral atoms a rotational

phase analogous to the vector potential one for charged particles, thus applying an

artificial gauge field. This idea has been applied in several experiments, in which a

Bose-Einstein condensate of ultracold atoms confined on a ring trap has been set into

motion by stirring it with a well-focused repulsive (blue-detuned) laser beam that acts

as a sort of optical paddle, see the sketch in Fig. 2.1. In this way persistent flows with

quantized circulation have been induced, and precise control both in inducing and

arresting the particles flow has been demonstrated [96–98]. The state of circulation

of the system can be tested via time-of-flight expansions measurements [94, 95], that

allow to access the momentum distribution of the gas, or directly by interferometric

measurements, as has been recently proposed in [99, 100]. This rapid experimental

progress of the last years has motivated an intense investigation of such systems. On

the fundamental side a lot of effort has been devoted to the study of the superfluid

properties and decay mechanisms of such currents once the stirring is arrested: long-

lived metastable superflows with lifetimes up to 40 s have been observed [94], and
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the nucleation of vortices has been identified as one of the fundamental mechanisms

leading to phase slips and current decay [101]. On the application side such systems

are regarded with more and more attention as the best candidates for the realization of

high-precision gyroscopes based on matter-wave interferometry [102], superpositions

of current states and flux qubits (see Chap. 3) [81, 103–106].

The scenario becomes particularly intriguing if the transverse section of the ring is

sufficiently thin to effectively confine the system to 1D. In this case the rich interplay

between interactions, quantum fluctuations and the presence of a stirring potential

barrier, whose effects are all enhanced in 1D, acquires a role of primary relevance. In

this context we have provided a complete characterization of the persistent currents

for 1D bosons, studying its amplitude and scaling properties with the system size in

all the interaction and barrier strength regimes.

2.2 Persistent currents for bosons on a ring

We consider a system of N bosons of mass m, interacting with each other via the

contact potential V (x − x′) = g δ(x − x′), and confined in a 1D ring of circumfer-

ence L. The ring contains a localized barrier, modelled as a delta function Ub(x, t) =

U0δ(x− vt), rotating along its circumference at constant tangential velocity v. We con-

sider the stationary regime, at zero temperature, reached after the barrier has been

adiabatically switched on and set into motion at early times, such that no high-energy

excitations are produced. The rotation induces an effective U(1) gauge field for the

neutral atoms [107], with a Coriolis flux Ω = mvL/2π! threading the ring. The same

artificial gauge field could also be applied in a non-rotating system by imparting a

geometric phase directly to the atoms via suitably designed laser fields [108–110]. The

corresponding system’s Hamiltonian, in the rotating frame, reads

H=
N
∑

j=1

!
2

2m

(

−i ∂

∂xj
− 2π

L
Ω

)2

+ U0δ(xj) +
g

2

N
∑

j,l=1

δ(xj − xl) , (2.1)

where xj ∈ [0, L] is the j-th particle coordinate along the ring circumference. This

generalizes the Lieb-Liniger model to the rotating case and is non-integrable due to

the presence of the barrier external potential.

In the absence of the barrier (U0 = 0), the system is rotationally invariant, and

the total linear momentum P = −i!
∑N

l=1 ∂xl
along the circumference, and the total

angular momentum Lẑ = PL/2π, commute with Hamiltonian (2.1), their eigenvalues

being good quantum numbers. The wave function for the system confined in the

ring has to fulfil periodic boundary conditions (PBC) for each particle l = 1, ..., N , i.e.



32 Chap. 2 – Persistent currents for interacting bosons on a ring

Figure 2.2: Scheme of the energy spectrum for bosons on a ring under the
influence of an artificial gauge field with Coriolis flux Ω. The periodically
repeated parabolas correspond to states with well-defined circulation J and
total angular momentum JN!.

Ψ(x1, ..., xl, ..., xN ) = Ψ(x1, ..., xl+L, ..., xN ). The many-body wave function in general

can be written as a linear combination of products of single-particle wave functions

ψj(x), with j a quantum number, as Ψ(x1, ..., xN ) =
∑

{j1,...,jN} c{j1,...,jN}

∏N
l=1 ψjl(xl),

and then the single-particle wave functions must also fulfil PBC, ψj(x) = ψj(x + L).

Applying Bloch theorem for the case of a homogeneous ring we have that the single-

particle wave functions are plane waves ψj(x) = (1/
√
L) exp(ikjx) with single particle

energy εj = !
2k2j /2m, and wave vectors quantized by the periodicity condition, kj =

2πj/L for j integer. The periodic boundary conditions of the ring thus quantize the

linear momentum in units of 2π!/L, and provide a natural energy unit for this system,

that is the smallest non-zero kinetic energy of a single particle

E0 =
2π2

!
2

mL2
. (2.2)

From the commutation of the total linear momentum P with the Hamiltonian, the

many-body wave function can be written, separating the degree of freedom of the

center of mass xcm =
∑N

l=1 xl/N , in the form

Ψ(x1, ..., xN ) = eiPxcm/!χP (x1, ..., xN ) , (2.3)

where the “intrinsic” wave function χP (x1, ..., xN ) is a linear combination of products

of single-particle wave functions χP (x1, ..., xN ) =
∑

{j1,...,jN} c{j1,...,jN}

∏N
l=1 ψjl(ζl),

with ζl = xl − xcm, and such that P/! =
∑N

l=1 kjl . Applying the Bloch unitary trans-

formation U = exp(i2πΩx/L), the Ω-dependence is removed from the Hamiltonian,

and the PBC of the wave function translates into twisted boundary conditions (TBC),

ψj(x) = ei2πΩψj(x + L). This means that a phase factor proportional to the Coriolis
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Figure 2.3: Scheme of the energy spectrum for bosons on a ring under the
influence of an artificial gauge field with Coriolis flux Ω. The black-solid line
corresponds to the case in the absence of the barrier (U0 = 0), and the red-
dashed line to the the case in the presence of a finite barrier (U0 > 0) that
opens gaps in the spectrum.

flux is added to the wave function after a full loop around the ring, giving rise to the

Aharonov-Bohm effect [82]. The wave function given by Eq. (2.3) then takes the form

Ψ(x1, ..., xN ) = ei(P/!−Ω2πn0)xcmχP (x1, ..., xN ) , (2.4)

where n0 = N/L, and the intrinsic wave function χP (x1, ..., xN ) is left unchanged by

this unitary transformation. The many-body ground state energy as a function of the

Coriolis flux Ω is thus given by

E(Ω, J) = NE0(J − Ω)2 + Eint , (2.5)

where J = P/2π!n0, and Eint is the Ω-independent interaction energy. These are

parabolas, corresponding to states with well defined circulation J and corresponding

total angular momentum JN!, periodically shifted by a Galilean transformation in

Ω with period 1, and intersecting at the so-called frustration points at half-integer

values of the flux (see Fig. 2.2) [111,112]. Given the periodicity of the spectrum, in the

following we will always restrict to the first rotational Brillouin zone Ω ∈ [0, 1].

The presence of a finite barrier (U0 > 0) breaks the rotational symmetry of the sys-

tem, and, coupling states with different circulation J , opens gaps in the spectrum that

lift the degeneracy in correspondence of the crossing between parabolas (see Fig. 2.3).

As I will present in detail in Chap. 3, this forms the working point for a qubit based

on a superposition of current states. The shape of the energy bands in the presence of

a barrier, and the size of the gaps at the frustration points depend in general on the

barrier potential strength and on the interaction strength between the particles.
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Figure 2.4: Scheme of the persistent currents in the first rotational Brillouin
zone (a) in the rotating frame and (b) in the non-rotating frame, in units of
NI0 = 2π!N/mL2 for zero barrier (black-dashed line), weak barrier (red-solid
line) and strong barrier (blue dotted line) at fixed interaction strength.

From the previous considerations on the spectrum of the system, we have that

the ground state of the system in the presence of Coriolis flux can carry a non-zero

circulation. An interesting quantity to study is therefore the particle current flowing

in the ring. Both in the context of cold atoms confined in ring traps under rotation

and in the analogous one of electronic systems in circuits threaded by magnetic fields,

the current induced by a gauge flux as a consequence of the Aharonov-Bohm effect

is usually referred to in the literature as persistent current. At zero temperature, the

spatially averaged particle current I(Ω), or persistent current, is obtained from the

ground state energy E(Ω) via the thermodynamic relation [113]:

I(Ω) = − 1

2π!

∂E(Ω)

∂Ω
. (2.6)

The current calculated in this way corresponds to the one in the co-rotating frame. The

current in the non-rotating frame, can be obtained performing a Galilean boost

Inr(Ω) = I(Ω) + n0v = I(Ω) +
2π!N

mL2
Ω . (2.7)

Applying the Hellmann-Feynman theorem1 it is easy to see that the current calcu-

lated in this way corresponds to the spatially averaged particle current Inr(Ω) =
1
L

∫ L
0 dx j(x,Ω), where the current density is given by the usual expectation value

of the momentum operator j(x,Ω) = (1/m)〈Ψ(Ω)|
∑N

l=1−i!∂xl
|Ψ(Ω)〉.

In the absence of the barrier, the current corresponding to the periodic parabolic

ground state energy of Eq. (2.5) is given, for any interaction regime, in the rotating

frame by a sawtooth [114, 115], and in the non-rotating frame by a staircase function,

1 d

dΩ
E(Ω) = 〈Ψ(Ω)| d

dΩ
H(Ω)|Ψ(Ω)〉/〈Ψ(Ω)|Ψ(Ω)〉.
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with plateaus corresponding to states with well defined circulation, see Fig. 2.4. In

absence of any barrier, the sawtooth current attains its maximal amplitude NI0, with

I0 =
E0

π!
=

2π!

mL2
. (2.8)

A diamagnetic or paramagnetic response depending on the population parity is ex-

pected for fermions but not for bosons [84,116]. The presence of a level mixing barrier,

that gives rise to gap openings at the frustration points in the spectrum, is visible

also in the current. For a weak barrier, that opens a small gap in the spectrum, the

current becomes a smeared sawtooth and a smeared staircase in the rotating and non-

rotating frame respectively (see Fig. 2.4). For a large barrier that opens a large gap,

or small-tunnelling limit, the current acquires a modulated-linear and sinusoidal be-

haviour respectively (see Fig. 2.4), as obtained for thin superconducting rings from a

Luttinger-liquid approach [117]. Beyond these limiting regimes the physics of bosonic

persistent current was unexplored before our work.

2.3 Optimal amplitude of persistent currents

In this section I present a complete characterization of persistent currents for 1D

bosons, focusing on the amplitude α of the persistent current in the rotating frame

α =
Imax − Imin

NI0
, (2.9)

and determining its value in all the regimes of interaction and barrier strength. The

results presented in this section are part of the original work of my PhD and are sum-

marized in the first publication [16]. This work has been the result of a collaboration of

our group with Davide Rossini 2, and Matteo Rizzi 3. Below in this section, I provide

primarily details on our results, and on the methods I have implemented myself. For

further details on the DMRG technique, that was implemented by our collaborators, I

refer to the publication [16] and to the references therein.

By combining analytical as well as numerical techniques suited for the 1D prob-

lem, we have found that the current amplitude is a non-monotonic function of the

interaction strength and displays a pronounced maximum at intermediate interaction

in all regimes of barrier height, see Fig. 2.5. The presence of an optimal regime of max-

imal current amplitude illustrates the highly non trivial combination of correlations,

quantum fluctuations and barrier effects.

2NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.
3Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany.



36 Chap. 2 – Persistent currents for interacting bosons on a ring

Figure 2.5: Persistent current amplitude α, in units ofNI0 = 2π!N/mL2, as a
function of the interaction strength γ at varying dimensionless barrier strength
λ = mU0L/π!

2, for N = 18, from Gross-Pitaevskii equation (black dotted
lines), Luttinger liquid approach (blue solid lines), numerical DMRG calcula-
tions (red squares, red thin lines are guides to the eye) and non-interacting and
Tonks-Girardeau exact solutions (green dashes). Orange diamonds and cyan
circles are for a Gaussian barrier of width σ = 0.5, 2n−1

0 respectively.

2.3.1 Non-interacting and impenetrable boson limits

Both for zero and infinitely large repulsive interactions, it is possible to find an ex-

act solution to the many-body Schrödinger equation HΨ(x1, ... xN ) = EΨ(x1, ... xN ).

For a non-interacting (NI) Bose gas, the many-body wave function

ΨNI(x1, ... xN ) =
N
∏

i=1

ψ0(xi) (2.10)

is simply given by the product of N identical single-particle wave functions ψ0(xi),

which are ground-state solutions of the corresponding one-body Schrödinger equa-

tion
!
2

2m

(

−i ∂
∂x
− 2π

L
Ω

)2

ψn + U0δ(x)ψn = εnψn , (2.11)

and has energy ENI = Nε0.

In the infinitely interacting limit of impenetrable bosons, or Tonks-Girardeau (TG)

gas, the solution is obtained by mapping the system onto a gas of non-interacting
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fermions subjected to the same external potential (see Sec. 1.2 for details)

ΨTG(x1, ... xN ) =
∏

1≤j<ℓ≤N

sgn(xj − xℓ) det[ψk(xi)] . (2.12)

The corresponding energy ETG =
∑N−1

k=0 εk and density profile n(x) =
∑N−1

k=0 |ψk|
2

directly reflect the fermionization properties of the strongly interacting Bose gas. The

Friedel-like oscillations of the density profile, shown in Fig. 2.6, are indeed a signature

of the strongly correlated regime [118].

The persistent current amplitude in the zero and infinitely interacting limits is

then obtained from Eq. (2.6). We need thus to solve the one-body Schrödinger equa-

tion (2.11) to compute the ground state energy in the two cases. The single particle

eigenfunctions take the form

ψn(x;Ω) =







1
Nn

e−iΩπ
[

eikn(x−L/2) +An,Ωe
−ikn(x−L/2)

]

x ∈ [0, L/2)

1
Nn

eiΩπ
[

eikn(x+L/2) +An,Ωe
−ikn(x+L/2)

]

x ∈ [−L/2, 0)
(2.13)

that satisfy the twisted boundary conditions ψn(−L/2;Ω) = ei2πΩψn(L/2;Ω). By

imposing unity normalization, and the cusp condition at the position of the barrier

∂xψ
+
n (0

+;Ω) − ∂xψ
−
n (0

−;Ω) = λψn(0;Ω), where λ = mU0L/π!
2 is the dimensionless

barrier strength, we obtain the transcendental equation for the wave vectors

kn = ±λ
π

L

sin(knL)

cos(2πΩ)∓ cos(knL)
, (2.14)

where the ± sign refers to a number of particles N odd or even respectively. This

follows from the fact that the mapping function A = Π1≤j<ℓ≤N sgn(xj − xℓ) used to

build the TG wavefunction ΨTG(x1, ... xN ) = A det[ψk(xi)] is periodic (antiperiodic)

for odd (even) N respectively; correspondingly, the single-particle orbitals need to be

periodic (antiperiodic) for odd (even) N [53,58]. The coefficients entering in Eq. (2.13)

are An,Ω = sin(knL/2+Ωπ)
sin(knL/2−Ωπ) for N odd and An,Ω = − cos(knL/2+Ωπ)

cos(knL/2−Ωπ) for N even, while

Nn =

√

L
(

1 +A2
n,Ω + 2An,Ω

sin(knL)
knL

)

is the normalization factor. The single particle

energies are then given by

εn =
k2n!

2

2m
, (2.15)

and allow us to compute the many-body ground state energy and the current.

In the weak barrier limit λ ≪ 1 we determined also perturbatively the persistent

current amplitude. The single-particle energy levels ε
(±)
n are obtained by degenerate

perturbation theory around the unperturbed parabolas ǫn = (2π!)2

2mL2 (Ω− n)2, where we
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Figure 2.6: Normalized density vs. angular coordinate θ along the ring for
the values of the dimensionless barrier strength λ specified in the figure and
N = 18, Ω = 0.4. The lines correspond to the analytical TG solution, the
squares to the numerical DMRG results in the same parameter regime, the
zoom showing the excellent agreement between the two. The density displays a
Friedel-like oscillatory modulation induced by the presence of the barrier that
is typical of fermionic systems [118]. A study of its dependence on the rotation
velocity is reported in [119].

have chosen N odd for simplicity 4. Close to the frustration point Ω = 1/2 the pairs of

degenerate levels are ǫn and ǫ1−n, and we immediately get

ε(±)
n =

(2π!)2

2mL2

{

[δΩ2 + (n− 1/2)2]± 2(n− 1/2)

√

δΩ2 + λ̃2n

}

(2.16)

where δΩ = Ω − 1/2 and λ̃n = λ/(2n − 1). The TG ground-state energy is thus given

by ETG =
∑(N−3)/2

n=0 (ε
(+)
n + ε

(−)
n ) + ε

(−)
(N−1)/2. In this sum the ± terms in the right hand

side of Eq. (2.16) compensate except the highest-energy one, as is typical in fermionic

systems, where only the highest occupied level determines the transport properties.

This yields the analytical expression for the persistent current

I(Ω) = −NI0 δΩ
[

1−
(
√

4δΩ2 + λ2eff/π
2
)−1]

, (2.17)

with λeff = λ/N . As we shall see in Sec. 2.3.3, comparing this expression with the

result of the Luttinger liquid theory, allows us to choose the short-distance cutoff of

the Luttinger theory.

The persistent current amplitude α in the zero and infinitely interacting limits, ob-

tained in this way, is shown in Fig. 2.5. We find that the current amplitude depends

on the interaction regime. In particular, for all values of barrier strength, α is always

4In the case of N even one should consider antiperiodic boundary conditions [53, 58], that lead to
a 1/2 shift in Ω of the single-particle spectrum, and thus to the same final expression for the current,
Eq (2.17).
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larger in the strongly interacting regime than in the non-interacting one. This be-

haviour is due to the fact that the barrier affects in proportion more the lower-energy

NI system than the higher-energy TG one. As a result, the current amplitude is smaller

for non-interacting bosons, occupying only the lowest level, than for the TG gas, where

the levels are filled up to the Fermi energy.

2.3.2 Weak interactions

In order to explore the role of interactions, we start from the non-interacting result

and consider the effect of weakly repulsive interactions. In this regime we neglect

quantum fluctuations and describe the system making use of the mean-field Gross-

Pitaevskii (GP) equation, see Sec 1.3 for details. In the co-rotating frame, this takes the

form
!
2

2m

(

−i ∂
∂x
− 2π

L
Ω

)2

Φ+ U0δ(x)Φ+ g|Φ|2Φ = µΦ , (2.18)

whereΦ is the condensate wave function and µ the chemical potential. We have found

an analytical dark-soliton solution for Φ in terms of Jacobi elliptic functions, thus ex-

tending Refs. [120,121] to the presence of a barrier potential. The details of the deriva-

tion are presented in App. A, and the final expressions for the density and phase are

given by Eqs. (A.5), (A.11). The resulting density profile has a minimum pinned at the

barrier position, whose depth and healing length depend on the interaction strength,

the barrier height, and the rotation velocity, see Fig. 2.7(a-d). The solitary suppression

of the density is accompanied by a winding of the phase, known as a phase-slip, see

the insets of Fig. 2.7(a-d).

The soliton energy is obtained from the GP energy functional

EGP[Φ] =

∫ L

0
dx Φ∗ !

2

2m

(

−i ∂
∂x
− 2π

L
Ω

)2

Φ+
g

2
|Φ|4 + U0δ(x)|Φ|

2 , (2.19)

which encodes the dependence on Ω also in the condensate wave function. Comput-

ing then the persistent current amplitude α through Eq. (2.6) we find that it increases

monotonically with the interaction strength γ, as illustrated in Fig. 2.5. This is due

to the fact that the healing length ξ = !/
√
2mgn0, decreases at increasing interaction

strength, as is visible also in the density profile (see Fig. 2.7(b)), thus yielding a more

effective screening of the barrier.

By performing imaginary-time numerical integration of the GP equation, we have

checked that the analytical soliton solution given by Eqs. (A.5), (A.11) coincides with

the numerical ground state, see the excellent agreement in Fig. 2.7(e). Via the imaginary-

time integration technique, we have also considered the case of a finite-width Gaus-
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Figure 2.7: (a) GP soliton solution for the density (main figure) and phase
(inset) as a function of the angular coordinate θ along the ring, for various
values of the dimensionless barrier strength λ, as indicated in the figure, at
fixed Ω = 0.4, N = 18 and γ = 0.01. (b) GP soliton solution for various values
of the interaction strength γ, at fixed Ω = 0.4, N = 18 and λ = 1.9. (c, d)
GP soliton solution for various values of the Coriolis flux Ω , at fixed λ = 1.9,
N = 18 and γ = 0.01. (e) Comparison of the analytical GP soliton solution
(black solid line) with the imaginary-time numerical solution (red dashed line)
for N = 18, Ω = 0.4, λ = 0.5, and γ = 0.01. The corresponding numerical
ground state energy is Enum/E0 = 0.2965(3) to be compared with the soliton
solution one Esol/E0 = 0.2966. (f) GP numerical solution (solid lines) at
γ = 0.01 for a Gaussian barrier of strength λ = 1.9, for various values of the
barrier width σ (in units of n−1

0 ), and corresponding barrier potential (dashed
lines, in units of 10E0).

sian barrier, as could be realized experimentally, finding results which are very similar

to the case of localized barrier, as long as the barrier width does not exceed the mean

interparticle distance σ # n−1
0 . This is a realistic condition, achievable e.g., with a

microscope-focused stirring beam [122], see Figs. 2.7(f), and 2.5.
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2.3.3 Strong interactions

For strong interparticle interactions the effect of quantum fluctuations on the per-

sistent current cannot be neglected as in the mean-field Gross-Pitaevskii theory. To

cover this regime we apply the Luttinger liquid (LL) theory. As introduced in Sec. 1.4,

this is a low-energy, quantum hydrodynamics description of the bosonic fluid, in

terms of the canonically conjugate fields θ and φ corresponding to density fluctuations

and phase respectively.

In the rotating frame, the effective LL Hamiltonian for a uniform ring is

H0 =
!vs
2π

∫ L

0
dx

[

K

(

∂xφ(x)−
2π

L
Ω

)2

+
1

K
(∂xθ(x))

2

]

. (2.20)

The microscopic interaction strength enters through the Luttinger parameter K and

the sound velocity vs. In the case of repulsive contact interactions their dependence

on the interaction strength is known (see Eqs. (1.26), (1.27) and Fig. 1.7): at vanishing

interactions, K tends to infinity and vs vanishes, while, in the TG limit, K = 1 and vs

corresponds to the Fermi velocity of the fermionized Bose gas.

In the presence of a barrier, the nonlinear term

Hb =

∫ L

0
dxU0δ(x)ρ(x) (2.21)

is added to the Hamiltonian (2.20). We treat this term perturbatively in the limits

of weak and strong barrier strength. The problem of the transmission of a 1D quan-

tum fluid through a potential barrier has been widely studied in condensed matter

physics, through LL renormalization group approaches. Some remarkable results in

the context of electronic systems are for instance summarized in [123, 124].

Weak barrier – In the weak barrier case, we start from the mode expansion for

the Luttinger fields θ and φ that diagonalize the Hamiltonian H0 for a uniform ring

with periodic boundary conditions [49, 50]

θ(x) = θ0 +
1

2

∑

q )=0

∣

∣

∣

∣

2πK

qL

∣

∣

∣

∣

1/2

[eiqxbq + e−iqxb†q] , (2.22)

φ(x) = φ0 +
2πx

L
(J − Ω) + 1

2

∑

q )=0

∣

∣

∣

∣

2π

qLK

∣

∣

∣

∣

1/2

sgn(q)[eiqxbq + e−iqxb†q] , (2.23)

where q = 2πj/L with j integer, J is the angular momentum operator and the fol-

lowing commutation relations hold: [bq, b
†
q′ ] = δq,q′ , and [J, e−i2θ0 ] = e−i2θ0 . The latter
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property implies that the zero-mode θ0 acts as a raising operator for the states |J〉 of

given angular momentum: e−i2θ0 |J〉 = |J + 1〉. The effect of the rotation has been

reabsorbed in the definition of the phase field going from periodic to twisted bound-

ary conditions, and appears explicitly in the mode expansion for the phase. Inserting

Eqs. (2.22) and (2.23) in the Hamiltonian (2.20) we obtain

H0 = E0(J − Ω)2 + !vs
∑

q

|q|

(

b†qbq +
1

2

)

, (2.24)

where E0 is given by Eq. (2.2), and we have used the relation vsK = !πn0/m between

the Luttinger parameters, see Sec. 1.4 for details.

In the weak barrier regime the contribution of the barrier part of the Hamiltonian,

Eq. (2.21), can be treated as a perturbation and is obtained by keeping only the lowest

harmonics in the density field expansion ρ(x) = (n0+∂xθ(x)/π)
∑+∞

l=−∞ ei2lθ(x)+i2lπn0x,

see Eq. (1.32), which then reads

ρ(x) ≃ (n0 + ∂xθ(x)/π) {1 + 2 cos [2θ(x) + 2πn0x]} . (2.25)

Correspondingly, the barrier term (2.21) in the Hamiltonian reads

Hb ≃ U0(n0 + ∂xθ(0)/π) {1 + 2 cos [2θ(0)]} . (2.26)

The backscattering term 2U0n0 cos [2θ(0)] breaks angular momentum conservation in-

ducing transitions of one quantum of angular momentum due to the zero-mode part

in θ(x) ≡ θ0 + δθ(x). Using e−i2θ0 =
∑

J |J + 1〉〈J | we obtain thus

Hb ≃
U0

π
∂xθ(0) + n0U0

∑

J

|J − 1〉〈J |ei2δθ(0) + |J〉〈J + 1|e−i2δθ(0) . (2.27)

The non-zero modes δθ(x) correspond to quantum fluctuations, while higher harmon-

ics in the expansion induce jumps of more than one unit of angular momentum. The

latter can be ignored for a weak barrier, their probability becoming exponentially small

as the angular momentum difference increases [125].

To calculate the current using perturbation theory to first order in the barrier po-

tential, according to Eq. (2.6), we need to average the total HamiltonianH = H0 +Hb

over the unperturbed ground state of the system. The average is performed in two

steps. First, using the mode expansion of the field θ we average the total Hamil-

tonian over the non-zero modes, obtaining an effective Hamiltonian for the angular

momentum operator. The average over the non-zero modes is done by employing

the zero-temperature relations 〈b†qbq′〉 = 0, and 〈bqb†q′〉 = δq,q′ , which lead to the re-
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sults 〈∂xθ(0)〉 = 0, since it is linear in the bq operators, and 〈δθ2(0)〉 =
∑2πd

q>0 πK/qL ≈
(K/2) ln(d/L), where d is a short distance cut-off of the order of the interparticle dis-

tance n−1
0 . Hence 〈e±i2δθ(0)〉 = e−2〈δθ2(0)〉 = (d/L)K . We can now write an effective

Hamiltonian for the angular momentum operator J

HJ = E0(J − Ω)2 + n0Ueff

∑

J

|J + 1〉〈J |+H.c. , (2.28)

where we have introduced the effective barrier strength

Ueff = U0

(

d

L

)K

(2.29)

that takes into account the renormalization introduced by the screening of the bar-

rier due to density quantum fluctuations. By choosing d = K/n0, this expression

coincides with the exact TG result at K = 1, see Eq. (2.17), and takes into account

the shrinking of the linear region of the excitation spectrum once interactions are de-

creased away from the TG limit. Note that the quantum fluctuations of the density

suppress the effective barrier strength more for weak interactions (K ≫ 1) than for

strong interactions (K $ 1). This is coherent with the larger suppression of density

fluctuations at strong interactions expected from LL, which predicts a power-law scal-

ing of the density-density correlation function 〈ρ(x)ρ(x′)〉 ∝ |x − x′|−2K [49, 50]. In

a second step, we represent the effective Hamiltonian HJ on the basis of the angular

momentum eigenvectors. The ground state value ofH0 is characterized by a quantum

number J which depends on the value of the Coriolis flux Ω, and in the absence of

the barrier is the integer closest to Ω. At half-integer values of Ω there is a degener-

acy of the ground state. This degeneracy is lifted by the barrier. In the weak barrier

limit λeff = mUeffL/π!
2 ≪ 1, degenerate perturbation theory yields the ground state

energy

E(Ω) = NE0

[

δΩ2 −
√

δΩ2 + λ2eff/4π
2
]

, (2.30)

with δΩ = Ω − 1/2. As a result, upon using the thermodynamic relation (2.6), the

persistent current is given by a smeared sawtooth

I(Ω) = −NI0 δΩ
[

1−
(
√

4δΩ2 + λ2eff/π
2
)−1]

, (2.31)

The corresponding amplitude α is shown in Fig. 2.5 for small values of the dimension-

less barrier strength λ. For decreasing interactions down from the TG limit, the quan-

tum fluctuations of density increase, thereby suppressing the barrier more strongly,

and thus increasing α. Interestingly, the renormalization by quantum fluctuations at
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intermediate interactions is effective enough to turn a relatively large barrier into a

weak one. This quantum healing phenomenon completely changes the physical sce-

nario and illustrates the dramatic effect of interplay of interactions and quantum fluc-

tuations.

Strong barrier – In order to treat the case of a strong barrier, we start by con-

sidering a ring which is cut by an infinitely large barrier at x = 0 = L. The appropriate

mode expansion for the Luttinger fields θ and φ, that diagonalize the H0 part of the

Hamiltonian in the case of open boundary conditions reads [49, 50]

θ(x) = θ0 + i
∑

q>0

(

πK

qL

)1/2

sin(qx)[bq − b†q] , (2.32)

φ(x) = φ0 +
2πx

L
+

∑

q>0

(

π

qLK

)1/2

cos(qx)[bq + b†q] , (2.33)

where q = jπ/L with j integer. Note that the absence of the angular momentum

operator J in this mode expansion is a consequence of the fact that no circulation

is allowed in the limit of infinitely large barrier. Inserting Eqs.(2.32) and (2.33) in

Hamiltonian (4.18) we obtain

H0 = !vs
∑

q>0

q

(

b†qbq +
1

2

)

. (2.34)

We describe the transport of bosons across a barrier of large but finite strength

localized at x = 0 ≡ L via a single-particle tunnelling Hamiltonian

Hτ = −τψ†(0)ψ(L) + H.c. , (2.35)

where the tunnelling amplitude τ depends on the details of the barrier potential. This

Hamiltonian takes into account the possibility for a boson to tunnel through the barrier

potential from x = 0+ to x = L−, and the Hermitian conjugate to tunnelling processes

in the opposite direction. In the case of a strong barrier τ is small, and the Hτ term

of the Hamiltonian will be treated as a perturbation. Inserting the representation of

the bosonic field, Eq. (1.35), and keeping only the l = 0 term, we find the standard

Josephson Hamiltonian

Hτ ≃ −2τn0 cos[φ(L)− φ(0)− 2πΩ] , (2.36)

where the effect of the rotation has been reabsorbed in the definition of the phase field
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passing from periodic to twisted boundary conditions.

In order to calculate the current we consider the only term in H = H0 + Hτ that

depends on the flux Ω, that is the tunnelling part. As in the weak-barrier case, we

average Hamiltonian over the fluctuation modes obtaining the Ω-dependent part of

the energy

E(Ω) = −2τn0〈cos(φ(L)− φ(0)− 2πΩ)〉 . (2.37)

Separating the cosine of the sum we get two contributions: the sin term vanishes tak-

ing the average, while the cos term becomes 〈cos(φ(L) − φ(0))〉 = 〈ei[φ(L)−φ(0)]〉 =

e−〈[φ(L)−φ(0)]2〉/2. Making the same choice for the short-distance cut-off length d as in

the weak-barrier case above, we get 〈[φ(L) − φ(0)]2〉 = 4
∑πd

q>0
π

qLK (cos(πn0) − 1)2 ≡
(2/K) ln(d/L). Thus, finally, we get the the ground state energy

E(Ω) = −2τeffn0 cos(2πΩ) , (2.38)

where the effective tunnelling amplitude

τeff = τ

(

d

L

)1/K

(2.39)

takes into account the renormalization introduced by the screening of the tunnelling

barrier due to the quantum phase fluctuations. Using the thermodynamic relation (2.6),

we get immediately the persistent current

I(Ω) = −(2τeffn0/!) sin(2πΩ) . (2.40)

Notice that in this tunnel limit the persistent current has a sinusoidal shape, differently

from the weak interaction case. Increasing the interaction strength the quantum phase

fluctuations screen more the tunnelling amplitude, that translates into a smaller value

of the current amplitude α. This is coherent with the large effect of phase fluctuations

at strong interactions expected from the Luttinger power-law behaviour of the one-

body density matrix 〈ψ†(x)ψ(x′)〉 ∝ |x− x′|−1/2K [49,50]. Note the dual nature of this

behaviour (exponent 1/K) as compared to the one obtained for a weak barrier (power

K), Eq. (2.31).

The duality between the two models can also be used to establish a link between

the tunnel amplitude τ and dimensionless barrier strength λ at given interparticle

interactions. For this purpose we use the result of Weiss [126]

τ/L = Γ(1 +K)Γ(1 + 1/K)K (!ωc)
1+K (U0/L)

−K , (2.41)
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Figure 2.8: Tunneling amplitude τ vs. barrier strength λ in the TG limit for
N = 18. For the red dots, the value of λ is too weak for the tunneling approx-
imation to hold, and a deviation from the hyperbolic behaviour is observed.

where Γ(...) is the Euler Gamma function, and the model-dependent cut-off frequency

ωc is determined using the exact TG result in the case K = 1. In essence, for large val-

ues of the barrier strength we perform exact calculations of the current I vs. Coriolis

flux Ω, then use Eq. (2.40) as fitting function to extract the value of the tunnel ampli-

tude τ . The resulting dependence of τ on the barrier strength is shown in Fig. 2.8. For

sufficiently large values of the barrier strength (i.e., λ $ 50) a very good agreement is

found with the hyperbolic law (2.41), allowing therefore to extract ωc.

The persistent current amplitude for large barrier is also shown in Fig. 2.5 for large

values of the dimensionless barrier strength λ. Both for weak and large barriers, the

LL description breaks down for sufficiently weak interactions when the short-distance

cut-off required in the theory increases, until it becomes comparable with the system

size.

2.3.4 DMRG numerical results

Away from the weakly and the strongly interacting regime and for arbitrary barrier

strength it is difficult to tackle the many-body Schrödinger equation corresponding

to Hamiltonian (2.1) with analytical approaches; therefore, we resorted to numerical

simulations based on a density-matrix renormalization-group (DMRG) approach (see,

e.g., Ref. [56, 57]). This technique has been implemented by our collaborators.

After discretizing the space on M sites, we map Eq. (2.1) onto a Bose-Hubbard

model on a 1D ring lattice:

H=
M
∑

j=1

−t
(

e−i 2πΩ

M b†jbj+1+H.c.
)

+
U

2
nj(nj−1) + (Λ δj,1nj − µnj) , (2.42)
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Figure 2.9: Normalized density computed with the numerical DMRG tech-
niqie vs. angular coordinate θ along the ring, for the values of the dimensionless
barrier strength λ specified in the figure and γ = 3.3, N = 18, Ω = 0.4.

where b†j (bj) are bosonic creation (annihilation) operators at site j, nj = b†jbj counts

the number of bosons on site j, t is the tunnel energy for bosons on adjacent sites, U is

the on-site repulsion energy, Λ is the barrier strength, and µ is the chemical potential.

The presence of the gauge flux Ω is taken into account through the Peierls phase twist

Ω/M [110, 127]. By taking the continuum limit of Hamiltonian (2.42), we link the

parameters t, U and Λ of the Bose-Hubbard model to the parameters m, g and U0 of

the continuum Hamiltonian (1) in the main text. Specifically we have !
2/2m = ta2,

g = Ua and U0 = aΛ, where a = L/M is the lattice spacing of the discrete model.

In order to minimize the lattice effects and be able to compare the results for the

discrete system with the ones for the continuous one, we have chosen the parameter

of the discrete model in such a way to be in a low filling regime. In this way the

particles occupy only the low parabolic part of the cos energy dispersion of the Bose-

Hubbard model, and mimic, with an effective mass, the behaviour of free particles in

the continuum having a parabolic dispersion. In the simulations we have chosen M =

120 sites and fixed the chemical potential µ in such a way to have N ∼ 18 particles

in the system. We thus kept an average low filling 〈nj〉 # 0.15. The resulting density

profiles are shown in Fig. 2.6, and Fig. 2.9. For large interactions the density profiles

display Friedel oscillations, in very good agreement with the analytical predictions in

the TG limit (Fig. 2.6). The oscillations are strongly damped at intermediate and weak

interactions.

The amplitude α of the persistent current computed with the DMRG technique,

for a large range of barrier heights and interaction strengths, is shown in Fig. 2.5. The

DMRG algorithm allows us to reach an accuracy of the order 10−7 in terms of absolute

values of energies, thus leading to an error in the extrapolation of the particle current

I(Ω) of the order of 1%, that is barely visible on the scale of Fig. 2.5. A further and
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most important source of inaccuracies comes from the determination of the average

number of particlesN , which in some cases (especially for small interactions) becomes

less accurate when varying the barrier strength. As a combination of these two sources

of errors, the bars in Fig. 2.5 have been computed from point to point.

Remarkably, the numerical approach confirms the non-monotonic behaviour esti-

mated connecting the weak- and strong-interaction results. We understand this effect

as being a result of the interplay between barrier backscattering and interaction ef-

fects. Furthermore, this results allows us to confirm the expected regimes of validity

of the analytical predictions.

2.3.5 Conclusion on optimal amplitude of persistent currents

In this section I have presented our study of the persistent currents for interacting

one-dimensional bosons on a tight ring trap, subjected to a rotating barrier potential,

which induces an artificial U(1) gauge field. Our results, summarized in Fig. 2.5, evi-

dence the presence of a regime, at intermediate interaction strength, in which the the

persistent current response is maximal. This is due to a subtle interplay of effects due

to the barrier, the interaction and quantum fluctuations. While at increasing interac-

tions a classical bosonic field screens the barrier more and more, going towards the

strongly correlated regime, quantum fluctuations screen the barrier less and less. Our

results imply that, for intermediate interaction strengths, unwanted impurities or im-

perfections on the ring are expected to only weakly affect the system properties. On

the other hand, for the applications to quantum state manipulation, the regimes of

choice should be either weak or strong interactions, since these are the regimes where

the system responds stronger to a localized external probe. Our predictions are rele-

vant for ongoing experiments with ultracold atomic gases on mesoscopic rings, and

could be tested via time-of-flight measurements of the momentum distribution, simi-

lar to those used to probe circulation in atomic rings [94,95], see Sec. 3.4 of Chap. 3 for

a thorough analysis.

As a final remark, I would like to stress that the calculations presented in this

section refer to a system at zero temperature. The presence of thermal fluctuations

at low but finite temperature is expected to give rise to an additional smearing of the

persistent currents, starting from a typical temperature kBT ∼ NE0 [84,115,128]. For a

system of 18 87Rb atoms, as the one considered in Fig. 2.5, confined in a ring of∼ 5 µm

diameter, a system size that should be attainable in the next-generation of experiment

on a chip, this corresponds to a typical energy NE0 ∼ 550 Hz.

The persistent current that we have studied is a thermodynamic, equilibrium,

quantity. But the interplay of barrier, interactions and quantum fluctuations should
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have a similar impact also on out-of-equilibrium properties such as collective excita-

tion modes and transport phenomena. We have explored these features in Ref. [19],

and they are the object of Chap. 4.

2.4 Optimal scaling of persistent currents

In the previous section, I have discussed how the persistent current amplitude de-

pends, at fixed ring length L, on the barrier height and on the interaction strength,

finding an optimal regime at intermediate interaction strength, where the current am-

plitude is maximal. In this section I focus on another important property of persistent

current, especially in view of their experimental observation, namely the scaling of

the persistent current amplitude with the system size. The results presented in this

section are part of the original work of my PhD and are summarized in the second

publication [17]. This work has been the result of a collaboration of our group with

Matteo Rizzi 5, Davide Rossini 6, Davit Aghamalyan 7, Luigi Amico 8, and Leong-C.

Kwek 9.

In Sec. 2.2 I have discussed how the persistent current phenomenon, namely the

particle current response to the flux of an applied gauge field, is a manifestation of the

Aharonov-Bohm effect at the many-body level, that occurs when the phase coherence

length of the fluid extends to the whole system. This effect vanishes when the system

size is large and phase fluctuations wash out the coherence.

A first simple consideration on the scaling properties of the persistent current can

be obtained already from the current unit we have chosen. As I have already discussed

in Sec. 2.2, in the absence of the barrier and for any interaction strength, the ground-

state energy of Hamiltonian (2.1) is given by a series of parabolas corresponding to

states of well-defined circulation, and the corresponding persistent current is a perfect

sawtooth of the maximal attainable amplitude NI0, where I0 = 2π!/mL2 is given

in Eq. (2.8). Hence, we notice immediately that in the thermodynamic limit (N →∞,

L→∞, at fixed n = N/L) the persistent current amplitudeNI0 ∝ n0L
−1 vanishes, the

persistent current being thus a mesoscopic phenomenon, as is well known [88, 129].

We have considered again Hamiltonian (2.1), and in order to solve the many-body

problem associated with it, and study how the current amplitude α depends on the

5Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany.
6NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.
7Centre for Quantum Technologies, National University of Singapore, Singapore 117543.
8CNR-MATIS-IMM & Dipartimento di Fisica e Astronomia, I-95127 Catania, Italy and Centre for

Quantum Technologies, National University of Singapore, Singapore 117543.
9Centre for Quantum Technologies, National University of Singapore, Singapore 117543 and Insti-

tute of Advanced Studies, Nanyang Technological University, Singapore 637616.
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Figure 2.10: Log-Log plots of the persistent current amplitude versus system
size L/a, at fixed density n0 = 0.25/a at various values of the interactions
γ =∞ (TG (%)), 20 (DMRG (©)), 2 (DMRG (△)), 0.2 (GP (♦)), 0 (NI (∗)).
For weak barrier strength U04π

2a/E0L
2 = 0.1 (blue) and 1 (red), we plot 1−α,

with faster decaying curves being more favourable for the current, while for
large barrier strength U04π

2a/E0L
2 = 10 (green) we more conveniently show

α, with reverted meaning of the scaling behaviour. The solid black lines show
the predictions of the LL, Eq. (2.43) for weak barrier (first panel) and (2.44) for
strong barrier (third panel), with LL parameter K|γ=∞ = 1.00, K|γ=20 ≃ 1.20
and K|γ=2 ≃ 2.52, as extracted from the asymptotic expansions of K(γ), see
Eqs. (1.26), (1.27).

system size, for various values of barrier and interaction strengths, we have resorted to

the same combination of analytical and numerical techniques employed in Sec. 2.2. At

arbitrary barrier strength and for intermediate-to-strong interactions we have adopted

a DMRG numerical technique, in which space has been discretized in M lattice sites

of spacing a = L/M , that we take as the length unit, see Sec. 2.3.4. In the two opposite

limiting cases of non-interacting and infinitely interacting Tonks-Girardeau gas, the

many-body problem reduces to a single-particle one and is therefore solved exactly,

as in Sec. 2.3.1. At weak interactions the bosonic fluid is described within a mean-

field approximation via the Gross-Pitaevskii equation, see Sec. 2.3.2. Finally, at strong

interaction, we use the Luttinger liquid theory developed in Sec. 2.3.3.

In Fig. 2.10 I show the scaling of the persistent current amplitude α calculated

with the above mentioned methods. We observe that for all values of the barrier the

scaling strongly depends on the interaction strength. In the NI regime the scaling

is unfavourable, because increasing the system size the current amplitude vanishes

even faster than n0L
−1, the overall scaling factor encoded in the current unit NI0.

At increasing interactions, we observe instead that the scaling gets more favourable,
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because the decay of the current amplitude with the system size is, in part, compen-

sated by many-body effects. In particular, we observe that there is an optimal regime,

at intermediate interactions (γ ≃ 2), for which the scaling is the most favourable, in

all the regimes of barrier height. In the first and third panels of Fig. 2.10 we notice

that, at large enough interactions, the current amplitude obtained numerically scales

as a power law. In order to give a theoretical interpretation to this behaviour we con-

sider the results obtained for the LL theory in Sec. 2.3.3. For a small barrier strength

we have obtained Eq. (2.31) for the persistent current. The amplitude of the current

given by this expression, in units of NI0, is then α = 1 − (3/2)(λeff/π)
2/3, where

λeff = mU0(d/L)
KL/π!2 is the effective barrier strength, renormalized by the quan-

tum fluctuations of the density (see Sec. 2.3.3 for details). Therefore, we obtain the

scaling

1− α ∝ L(2/3)(1−K) . (2.43)

In the opposite regime of large barrier strength, we we have obtained Eq. (2.40) for

the persistent current. The amplitude of the current given by this expression, in units

of NI0, is α = 2τeffn0/NI0, where τeff = τ(d/L)1/K is the effective tunnelling ampli-

tude across the barrier, renormalized by the quantum fluctuations of the phase (see

Sec. 2.3.3 for details). The tunnelling amplitude t across the barrier, depends on the

system size, and is related to the barrier strength via Eq. (2.41), with cut-off energy

!ωc ∼ NE0 ∼ n0L
−1. Therefore the current amplitude α, in units of NI0, for large

barrier scales as

α ∝ L1−1/K . (2.44)

In Fig. 2.10 one can note the good agreement of the numerical results with the LL

expressions (2.43) and (2.44).

2.4.1 Conclusion on the optimal scaling of persistent currents

In this section I have shown our results on the scaling of the persistent currents

with system size. We have found that the scaling depends on the interaction strength,

and that the persistent current amplitude decreases slower at intermediate interactions

than at very large or very small ones. This non-monotonic effect can be understood

also in this case in terms of the combination of the effects of interaction and quantum

fluctuations that determine a screening of the barrier.

Our results are important in view of the forthcoming experimental realizations,

where the best regime for observing the largest possible current signal should be

found from the trade-off between realizable small system size and interaction strength.
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Résumé du chapitre

Courants permanents pour bosons en interaction dans un anneau

Dans ce chapitre, je présente notre étude des courants permanents dans un système de

bosons unidimensionnels en interaction, confinés dans un piège en forme d’anneau.

Le phénomène des courants permanents est une manifestation de l’effet Aharonov-Bohm.

Une des conséquences les plus frappantes de cet effet dans la matière condensée se produit

lorsqu’on considère par exemple un anneau métallique mésoscopique à basse température tra-

versé par un champ magnétique statique. Dans ce cas, l’effet Aharonov-Bohm se manifeste

sous la forme d’un courant d’équilibre circulant sans dissipation à travers le système, même

en l’absence de toute tension appliquée. L’étude théorique et expérimentale de ce phénomène

paradoxal d’un courant électrique qui circule sans dissipation d’énergie dans un milieu nor-

malement résistif a attiré une attention considérable au cours des 50 dernières années.

Des développements récents dans la manipulation des gaz atomiques ultrafroids a conduit

à la réalisation de pièges annulaires micrométriques, qui offrent une nouvelle plate-forme pour

l’étude du phénomène des courants permanents. Les gaz ultrafroids sont des fluides quantiques

modèles, caractérisés par de longs temps de cohérence, et qui par rapport à leurs homologues

électroniques sont extrêmement ajustables et propres. Dans plusieurs expériences, un conden-

sat de Bose-Einstein d’atomes ultrafroids confinés sur un piège en forme d’anneau a été mis en

mouvement par agitation d’un faisceau laser répulsif bien focalisé qui agit comme une sorte de

cuillère optique. De cette façon, des courants à circulation quantifiée ont été induits dans le

système. L’état de circulation du système peut être testé par des mesures de temps de vol, qui

permettent d’accéder à la distribution d’impulsions du gaz.

Le scénario devient particulièrement intrigant si la section transversale de l’anneau est

suffisamment petite pour confiner efficacement le système à une dimension. Dans ce cas, les

effets conjugués des interactions, des fluctuations quantiques et de la présence d’une barrière

de potentiel, dont les effets sont tous amplifiés en 1D, jouent un rôle de première importance.

Dans ce contexte, nous avons fourni une caractérisation complète des courants permanents

pour les bosons en 1D, nous avons étudié son amplitude et renormalisation avec la taille du

système dans tous les régimes d’interaction et de amplitude de la barriere.

En combinant des techniques analytiques ainsi que numériques adaptées pour le problème

1D, nous avons constaté que l’amplitude du courant est une fonction non-monotone de la force

d’interaction et présente un maximum prononcé aux interactions intermédiaires dans tous les

régimes de hauteur de la barrière. La présence d’un régime optimal d’amplitude maximale

du courant illustre la combinaison hautement non triviale des corrélations et des fluctuations

quantiques qui déterminent un écrantage de la barrière. Nous avons également constaté que la

renormalisation dépend de la force des interactions, et que l’amplitude du courant permanent
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diminue avec la taille du système plus lentement pour les interactions intermédiaires que dans

les régimes de fortes ou faibles interactions.

Nos résultats sont importants dans la perspective des prochaines réalisations expérimenta-

les, où le meilleur régime pour observer le meilleur signal devrait résulter du compromis entre

la réalisation d’une petite taille du système et la force des interactions.
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Chapter 3

Flux qubit and superposition of

circulation states in a ring-lattice

3.1 Introduction

I
N the introduction of Chap. 2, I have discussed how the recent development in the

micro-fabrication of ring traps for ultracold atomic gases has disclosed a novel

platform for the study of persistent currents. However, this progress has boosted not

only fundamental research but also the development of technological applications of

such systems, leading to the foundation of atomtronics, an emerging interdisciplinary

field that seeks to develop devices and circuits where ultracold atoms play the role

of electrons in electronics [15]. Key features of atomtronic circuits are the high de-

gree of control, where it is possible to chose the statistic of the current-carrying parti-

cles (bosons/fermions), to change the geometry and the dimensionality of the system,

and to tune the interactions from attractive to repulsive as well as to choose short-

or long- range ones. Furthermore, the neutrality of the atoms carrying the current,

and their consequent insensitivity to the electromagnetic environment, substantially

reduces decoherence sources.

The most paradigmatic example of an atomtronic circuit is provided by a Bose-

Einstein condensate flowing in a ring-shaped trapping potential [89,91,94,95]. If a po-

tential barrier is painted along the ring, giving rise to a so-called weak link, i.e. a region

of low atomic density where atoms can tunnel through the barrier, this creates an ultra-

cold atoms analogue of the rf-SQUID: a superconducting ring interrupted by a Joseph-

son junction [130], namely an atomtronic quantum interference device (AQUID). The

first experimental realizations made use of a Bose-Einstein condensate confined along

a toroidal potential, where a potential constriction (giving rise to the aforementioned

55
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Figure 3.1: Experimental realization of a ring-lattice potential with an ad-
justable weak link, created by a potential barrier localized on one lattice well
(red arrow). The figure shows the measured optical intensity distribution re-
alized with a spatial light modulator, as reported in [135]. The central peak
is the residual zero-order diffraction and does not affects the geometry of the
ring-lattice. The size of the structure is scalable from a radius of ∼ 90µm to
∼ 5µm. (Figure from Ref. [135]).

weak link) was created via a focused laser beam or a painting potential [96–98, 131].

The interest in creating an atomic analogue of the SQUID comes mainly from the pos-

sible applications in the field of quantum information. In this context the SQUID has

already been applied to realize qubits, namely quantum two-level systems, via macro-

scopic quantum superposition states of many-body current states [132–134]. Thanks

to the above mentioned tunability of ultracold atomic systems, the AQUID is expected

to push even forward the progress in this field.

The possibility to realize macroscopic superposition states with an AQUID has

been the object of recent theoretical investigation. It has been shown that the pres-

ence of a weak link indeed generates a macroscopic two-level system, whose features

have been studied in some special cases so far [81,103–106,136]. For instance, a NOON

superposition state, a maximally entangled state very interesting for quantum compu-

tation, which is constituted by a two-mode superpositon of all the atoms having e.g.

zero or one quanta of angular momentum, has been predicted to be very unfavourable

to realize, being very sensitive to particle losses and displaying an exponentially de-

creasing gap of the corresponding two-level system with the particle number [81,106].

The regime of infinitely strong interactions between the particles, instead, has been

identified to be favourable from this point of view, the qubit gap being insensitive to

the particle number, as long as the weak-link is extremely localized on the ring cir-

cumference [104].
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In this chapter I present a systematic study of the quality of the qubit in an AQUID,

with the aim of identifying the best regime of system parameters for its experimental

realization. We consider specifically an interacting Bose gas tightly confined to a 1D

ring-shaped optical lattice, in the presence of an artificial gauge potential inducing

a persistent current through it, and a potential barrier. This set-up can be realized

following different routes, for instance by interfering a Laguerre-Gauss beam with a

plane wave, or via a spatial light modulator, see e.g. [135, 137] and Fig. 3.1. It presents

several advantages for the design of an AQUID. From an experimental point of view,

the presence of the lattice helps to realize effective one-dimensional dynamics, to tune

the interparticle interaction strength [28], and allows to localize the barrier potential to

a single lattice well, which has been found to be important for a favourable scaling of

the qubit gap [104]. We have corroborated the emergence of an effective two-level sys-

tem in such a setup for certain values of the artificial gauge flux, and we have assessed

its quality, in terms of its inner energy gap and its separation from the rest of the many-

body spectrum, examining its dependence on the system size, the bosonic density, and

the interaction and barrier strengths. Furthermore, we have studied how it is possible

to observe experimentally, via time-of-flight measurements of the momentum distri-

bution, the superposition of the circulation states characterizing the states of the qubit.

By employing a combination of analytical and numerical techniques, that allows us to

cover all the relevant physical regimes of system sizes, filling, barrier and interaction

strengths, we have shown that a mesoscopic ring lattice with intermediate-to-strong

interactions and weak barrier strength is the most favourable regime for setting up,

manipulating and probing a qubit in the next generation of atomic experiments. The

results presented in this chapter are part of the original work of my PhD, and are sum-

marized in the third publication [18]. This work has been the result of a collaboration

of our group with Davit Aghamalyan 1, Matteo Rizzi 2, Davide Rossini 3, Leong-C.

Kwek 4, and Luigi Amico 5.

3.2 The ring-lattice

We consider a system of N interacting bosons at zero temperature, loaded into

a 1D ring-shaped optical lattice of M sites. The discrete rotational symmetry of the

1Centre for Quantum Technologies, National University of Singapore, Singapore 117543.
2Institut für Physik, Johannes Gutenberg-Universität, Staudingerweg 7, D-55099 Mainz, Germany.
3NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy.
4Centre for Quantum Technologies, National University of Singapore, Singapore 117543 and Insti-

tute of Advanced Studies, Nanyang Technological University, Singapore 637616.
5CNR-MATIS-IMM & Dipartimento di Fisica e Astronomia, I-95127 Catania, Italy and Centre for

Quantum Technologies, National University of Singapore, Singapore 117543.
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lattice ring is broken by the presence of a localized barrier potential on one lattice

site, which gives rise to a weak link. The ring is also threaded by a dimensionless

gauge flux Ω, which can be experimentally induced for neutral atoms as a Coriolis

flux by rotating the lattice at constant velocity [107], or as a synthetic magnetic flux

by imparting a geometric phase to the atoms [108–110, 138–140]. As compared to the

system considered in Chap. 2, we consider here the addition of a lattice modulation

along the ring circumference.

In the deep optical lattice regime, this system can be described in tight-binding

approximation by the 1D Bose-Hubbard (BH) Hamiltonian

H =
M
∑

j=1

−t(e−i 2πΩ

M b†jbj+1 +H.c.) +
U

2
nj(nj − 1) + Λδj,1nj , (3.1)

where bj (b
†
j) are bosonic annihilation (creation) operators on the j-th site and nj = b†jbj

is the corresponding number operator. Periodic boundary conditions are assumed

in order to account for the ring geometry of the system, and are imposed by taking

M + 1 ≡ 1 for the lattice sites. The parameter U takes into account the on-site repul-

sion energy, t is the hopping energy, and Λδj,1 defines an externally localized barrier

potential on a single site. The presence of the flux Ω is taken into account through the

Peierls phase twist 2πΩ/M [110,127]. In the thermodynamic limit, the BH model with

Λ = 0 displays a superfluid to Mott-insulator transition for integer fillings ν = N/M ,

and at a critical value of the ratio U/t of interaction-to-tunnel energy [141, 142]. On a

finite system the phase boundaries of the transition are expected to be affected by the

presence of the gauge flux [143], although this phenomenon is rather a crossover, the

ring being of finite size.

In order to investigate the feasibility and identify the best regime of parameters for

the experimental realization of a flux qubit and of a superposition of states of differ-

ent circulation with the system described by Hamiltonian. (3.1), we have pursued a

thorough analysis of the system, for different interaction and barrier strengths, as well

as densities and system sizes. In the hard-core limit of infinite repulsions we have

applied the Tonks-Girardeau (TG) mapping that allows an exact description. At weak

interactions and for large particle numbers we have applied the mean-field Gross-

Pitaevskii (GP) approximation. In the continuum limit of small filling and at strong

interactions we have applied the Luttinger liquid description developed in Sec. 2.3.3.

Lastly, numerical analyses based on truncated and exact diagonalization (ED) meth-

ods, and the density-matrix renormalization-group (DMRG) technique have been em-

ployed to cover the intermediate parameter regimes. Below I provide some details on
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the methods I have implemented myself. For further details on the techniques that

have been implemented by our collaborators (DMRG and ED for this study) I refer to

the publication [18] and to the references therein.

3.2.1 Hard-core bosons

In the limiting case of infinite repulsive contact interaction between the particles

(U → ∞), the so-called hard-core bosons or Tonks-Girardeau gas, an exact approach

can be pursed to diagonalize Hamiltonian (3.1). Since multi-occupancy of one site is

forbidden by the infinite interaction energy, it can be simplified into

H = −t
M
∑

j=1

(e−i 2πΩ

M b†jbj+1 +H.c.) +
M
∑

j=1

Λδj,1n
b
j (3.2)

where the bosonic annihilation and creation operators have the additional on-site con-

straints b2j = b†2j = 0 and [bj , b
†
j ]+ = 1. By applying the Jordan-Wigner transforma-

tion [144, 145]

bj =

j−1
∏

l=1

eiπf
†
l
flfj , b†j = f †j

j−1
∏

l=1

e−iπf†
l
flfj , (3.3)

where fi (f †i ) are fermionic annihilation (creation) operators, the Hamiltonian (3.2) can

be mapped on the one for spinless fermions:

H = −t
M
∑

j=1

(e−i 2πΩ

M f †j fj+1 +H.c.) +
M
∑

j=1

Λδj,1n
f
j (3.4)

This Bose-Fermi mapping is the analogue, for a discrete system, of the one introduced

by Girardeau for a continuous system, see Sec. 1.2 for more details. Hamiltonians (3.2)

and (3.4) have the same spectrum, but non-trivial differences appear for instance in

the off-diagonal one-body density matrix: 〈f †i fj〉 vs. 〈b†ibj〉, which we have calculated

following the scheme described in App. B in order to compute the momentum distri-

bution in Sec. 3.4. Hamiltonian (3.4), can be readily represented in matrix form and

diagonalized. The mapping thus allows us to calculate exactly the energy spectrum as

a function of the flux Ω.

3.2.2 Gross-Pitaevskii equation

In the limit of weak interactions, we adopt a mean-field approximation to deter-

mine the ground state properties of the gas. We pursue this approach as a benchmark

case for the BH model at weak interaction. Moreover the GP equation is a particularly
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suitable tool for the large-N regime, which is routinely realized in experiments.

The Gross-Pitaevskii (GP) equation for the bosons subjected to a lattice potential

in the presence of a gauge field reads

!
2

2m

(

−i ∂
∂x
− 2π

L
Ω

)2

Φ+ U0δ(x)Φ+ V0 sin
2 (πx/a)Φ+ g|Φ|2Φ = µΦ , (3.5)

where Φ is the condensate wavefunction, µ is the chemical potential, V0 is the optical-

lattice depth, a = L/M is the lattice spacing and L the system size, U0 is the strength of

the localized barrier, m is the particle mass, and g is the effective interaction coupling

strength in one dimension. In this continuous model we have modelled the barrier as

a delta potential δ(x). The barrier strength is connected to the discrete-model one Λ

by U0 = Λa.

In absence of the lattice potential, an analytical soliton solution for Eq. (3.5) has

been found in App. A (see also Sec 2.3.2). In the presence of the lattice potential,

we solve Eq. (3.5) numerically by imaginary time integration, see Sec. 1.3 fore more

details.

3.3 Flux qubit and energy gap

The Hamiltonian (3.1) is manifestly periodic inΩwith period 1, which allows us to

restrict its study to the first rotational Brillouin zone Ω ∈ [0, 1]. In addition, the energy

spectrum is symmetric with respect to Ω ↔ −Ω, and we can further restrict to half of

it Ω ∈ [0, 0.5]. As it has been detailed in Sec. 2.2, in the absence of a barrier (Λ = 0),

the system is also invariant under discrete rotations and the many-body ground-state

energy, as a function of Ω, is given by a set of parabolas each corresponding to a well

defined circulation and angular momentum state, shifted with respect to each other by

a Galilean transformation and intersecting at frustration points at half-integer values

of the flux. The presence of a finite barrier (Λ > 0) breaks the axial rotational symmetry

and couples different angular momenta states. Therefore the ground state becomes a

superposition of states with different quanta of circulation, and the degeneracy at the

frustration points is lifted by the appearance of a gap∆E1 in the spectrum, see Fig.2.3.

The larger Λ, the larger is ∆E1, corresponding to the width of the gap separating the

first two bands. Provided that the other excitations are energetically far enough from

these two levels, this identifies a two-level system and defines the working point for a

qubit.

In this section I present a detailed study of the spectroscopy of the qubit. We anal-

yse how the energy gaps ∆E1, ∆E2 between the ground and, respectively, the first-
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Figure 3.2: (a-d) Density profiles 〈nj〉/N at Ω = 0.5, along a ring with
M = 11 sites and N = 5 particles, for different interaction regimes. The various
data sets correspond to different values of the barrier strength: Λ/t = 0.01
(black circles), 0.05 (red squares), 0.1 (green diamonds), 0.5 (blue triangles), 1
(brown crosses), 5 (purple stars). (e) Critical values of barrier and interaction
strengths Λ and U discriminating the parameters region in which the boson
density at the barrier position vanishes (black circles refer to N/M = 5/11,
green diamonds are for N/M = 4/16); the vertical blue dashed lines indicate
the interaction parameter corresponding to the densities shown in panels (a-d),
while the straight red line is a linear fit.

excited and second-excited energy levels of the many-body Hamiltonian (3.1) depend

on the system size and on the filling, for different Λ and U . We find that the qubit is

well resolved in the mesoscopic regime of intermediate ring sizes, and that it is at best

separated from the higher energy levels of the many-body spectrum in the regime of

strong interactions and weak barrier.

3.3.1 Density profiles

Before entering into the detailed analysis of the gap properties, and in order to

become familiar with the parameters that characterize the system, I show in Fig. 3.2

the density profiles of the gas at the frustration point Ω = 0.5, for various values of the

barrier and interactions strengths.

The presence of the barrier gives rise to a suppression of the particle density on a

length scale determined by the healing length of the gas. Depending on the ring size,

the whole system can be affected. The depth of the density suppression increases

monotonously with Λ (inside each panel), while its width decreases with increas-

ing U (compare the different panels). Notice that the density is suppressed at the

barrier position at the expense of multi occupancy of the other sites, hence it com-

petes with the repulsive on-site interactions. The latter effect implies a decrease of the
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0.5 0.50.25 0.25
Ω Ω

Figure 3.3: Low-energy spectrum of the BH model for various values of the
interaction and the barrier strength at fixed size M = 16 and filling ν = 1/4.
Upper panels: the four lowest energy levels as a function of Ω, for U/t =
10, Λ/t = 0.5 (left) and U/t = 2, Λ = 5 (right). Lower panels: behaviour of
∆E1 and ∆E1/∆E2 as a function of U , for different values of Λ/t (curves from
bottom to top: Λ/t = 0.1, 0.2, 0.5, 1, 2, 5, 10).

healing length at increasing the interaction strength. At strong repulsive interactions,

Fig. 3.2(d), the barrier induces Friedel-like oscillations in the density [118], analogue to

those observed for a uniform ring in Fig. 2.6. These are a consequence of the peculiar

strong correlations of 1D bosons that make their response to impurities similar to the

fermionic one.

We note also that, a sufficiently large barrier (at fixed U ) makes the density at the

barrier position vanish, thus effectively disconnecting the ring. The barrier strength

required to disconnect the ring depends on the interaction strength. Fig. 3.2(e) shows

the result of a thorough analysis of the transition line in the Λ vs. U plane. For a wide

range of interaction strengths, the critical barrier strengths displays a nearly perfect

linear behaviour with U , whose slope is proportional to the filling.

3.3.2 Identification of the qubit: effective two-level system

We consider the low-energy spectrum of Hamiltonian (3.1) obtained by an ED nu-

merical analysis, as shown in Fig. 3.3. The upper-left panel shows how large interac-
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tions and moderate barrier strengths cooperate to define a doublet of energy levels at

Ω = 0.5, well separated in energy with respect to the higher excited states; weaker in-

teractions and larger barrier strengths, in contrast, do not allow for a clear definition of

a two-level system (upper-right panel). We observe that for increasing Λ, as expected,

the gap increases and the bands become flatter, thus weakening the dependence of

the energy on Ω. The lower two panels display a complete analysis of the behaviour

of the spectral gap and its distance to the next excited level at Ω = 0.5 as a function

of interactions and barrier strength, allowing us to identify the parameter regime for

the existence of an effective two-level system. In particular, we find that a too-weakly

interacting gas cannot give rise to a well-defined qubit, since one cannot isolate two

levels out of the many-body spectrum with the sole tuning of the barrier strength. In-

stead, this is possible for larger interaction strengths U . In the light of these results,

we conclude that in a certain parameter range, when the interpartice interactions are

not too weak, it is possible to identify in the low-energy spectrum of the system an

effective two level system that defines a qubit, corresponding to the ground and first

excited states at the frustration point at half-integer value of the flux. The problem to

identify the best parameter range to define a flux qubit is studied in the next section,

taking into account also the gap dependence on the system size and filling.

3.3.3 Gap scaling with system size

It is very important, in view the experimental realization of the flux-qubit defined

in the previous section, to study the dependence of ∆E1 and its separation from the

rest of the spectrum on the system size and filling.

In Fig. 3.4 we show both the qubit gap ∆E1 and the separation of the two levels

from the rest of the spectrum in terms of ∆E1/∆E2, as obtained by DMRG simu-

lations at constant filling ν = 1/4. The three panels correspond to various barrier

strengths, from weak to high, and each panel contains curves at varying interparticle

interactions, from intermediate to the hard-core limit, the weak interaction regime be-

ing excluded based on the results of the previous section. We find a clear evidence

of a power-law decay of ∆E1 with the system size in all the interaction regimes, the

exponent depending on the interplay between the barrier and interaction strengths.

In the low-filling regime under consideration (ν = 1/4), the lattice model given

by Hamiltonian (3.1) can be mapped on the continuous one of Hamiltonian (2.1), as

I have discussed in Sec. 2.3.4. We can thus give an analytical interpretation of the

observed scaling law of the gap resorting to the Luttinger-liquid theory for the con-

tinuous system. In the small-barrier limit, we have from Eq. (2.30) that ∆E1 ∝ n0Ueff ,

where Ueff = U0(d/L)
K is the effective barrier strength of the continuous model renor-
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Figure 3.4: DMRG results for the scaling of the qubit gap∆E1 (filled symbols)
and of the ratio between the gaps ∆E1/∆E2 (empty symbols) with the system
size, at fixed filling ν = 1/4, Ω = 0.5, and the barrier strength Λ specified in the
panels. In each plot the various curves stand for different interaction strengths
U , as specified in the legend. The straight solid lines in panel (a) correspond to
the power-law behaviour predicted by the Luttinger-liquid analysis in the small-
barrier limit (3.6), for the values of the Luttinger parameter K|U=∞ = 1.00,
K|U=10 = 1.20 andK|U=1 = 2.52, as extracted from the asymptotic expansions
of K(γ) given by Eqs. (1.26), (1.27), where γ = U/2tν.

malized by the quantum fluctuations of the density, d is a short distance cut-off of the

low-energy theory, L is the system size, and K is the Luttinger parameter (see Sec. 1.4

for details). After converting the continuous barrier parameter in terms of the lattice

one Λ, this yields the scaling of the gap with the number of lattice sites M as,

∆E1 ∝ νΛ(d/L)K ∝M−K . (3.6)

As illustrated in Fig. 3.4(a), we find a very good agreement between the numerical

data and the power-law predicted by the Luttinger theory. For stronger barriers, in-

terestingly, we observe in Fig. 3.4(b-c) that the gap still scales as a power-law, even

beyond the regime of validity of such perturbative analytical prediction.

By looking at the separation of the effective two-level system from the rest of the

spectrum (dashed lines in Fig. 3.4), we get a first clue for identifying an optimal size

for the implementation of the flux qubit. If the barrier strength is weak, i.e. Λ/t =

0.1 (Fig. 3.4(a)), the best choice appears to be a mesoscopic lattice size of few tens of

sites, filled with strongly enough interacting bosons (U/t $ 1), such that the energy

bands are not completely flattened by the presence of the barrier (see again Sec. 3.3.2).

However, this parameter regime would allow for a very small qubit gap of the order of
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10−3t, while this being only about 0.01∆E2. At intermediate barrier strengths Λ/t = 1

(Fig. 3.4(b)), a nicely addressable pair of levels with an energy splitting of the order of

10−2t, and a relative separation from the spectrum of around 10−1t, can be obtained in

a mesoscopic lattice of a few tens of sites. According to our analysis, this is the optimal

parameter choice for the realization of a qubit. When the barrier becomes stronger

(Fig. 3.4(c)), the size dependence of ∆E1/∆E2 becomes less and less important, with

its absolute value increasing more and more, i.e. the qubit gets less and less isolated in

energy. If the barrier is strong enough to effectively cut the ring, the low lying levels of

the many-body spectrum get almost equally spaced and therefore the qubit definition

results to be very poor. Fianlly, rings that are too large in size would improve the

definition of the two-level system, isolating it even more from the rest of the spectrum,

yet at the price of too small a separation of the qubit levels for practical addressing.

3.3.4 Dependence of the qubit energy spectrum on the filling factor

in mesoscopic rings

In the previous section we have identified the regime of mesoscopic size of a few

tens of lattice sites, strong enough interactions (U/t $ 1), and not too strong a barrier

strength (Λ/t # 1) as the best candidate for the flux qubit realization, which benefits

simultaneously of a clear definition with respect to the other excited states and a good

energy resolution. In this section we focus on the scaling properties of the gap as a

function of the particles filling of the system.

In Figs. 3.5 and 3.6 we present our results for the gap ∆E1 and ∆E2 as a function

of the filling at fixed system size, studying its dependence on the barrier and on the

interaction strength. The upper panels of Fig. 3.5 present the data for fixed interaction

strength (U/t = 1 and U/t = 10, respectively) with the different curves representing

barrier strengths from weak to strong. At small U (upper-left panel), we observe a

smooth dependence of ∆E1 on the boson filling, as expected in the superfluid regime

of Hamiltonian (3.1). The increase of the barrier strength has two effects: first, at fixed

filling, it increases the gap since it enhances the effect of the breaking of the rotational

invariance and therefore the lifting of the level degeneracy at half-flux. In addition, it

changes the dependence of the gap on the filling from being monotonically decreasing

to monotonically increasing, passing through a crossover situation. Since the healing

length ξ of the system is proportional to 1/
√
νU , at small barrier strengths a weakly

interacting Bose gas screens the barrier, effectively reducing its height as the density

is increased. On the contrary, for a large barrier, the system is effectively in the tunnel

limit, and the situation is reversed. The barrier strength is effectively enhanced, since

the tunnel energy required to move one particle from one side of the barrier to the
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Figure 3.5: ED results for the energy gap ∆E1 and the ratio ∆E1/∆E2, as a
function of the number of particles, for M = 9 lattice sites, at Ω = 0.5, for the
interaction strengths U specified in the panels. In each plot the various curves
stand for different barrier strengths Λ, as specified in the legend.

other increases if the number of particles or the interaction strength are increased: in

order to accommodate the tunnelling particle, the other particles have to readjust their

configuration.

At large U (upper-right panel) in Fig. 3.5, ∆E1 displays a more complex depen-

dence on the filling, with pronounced peaks at particle numbers commensurate (or

quasi) with the size, due to the presence of the Mott insulator phase in the phase di-

agram of Hamiltonian (3.1) [141, 146]. For a weak barrier the peaks appear at integer

values of N/M , while for a very strong barrier the density vanishes completely on one

site, the system being similar to a lattice with M − 1 sites and the peaks are conse-

quently shifted. At intermediate barrier strengths we can observe a transient between

the two regimes with broader peaks.

The upper panels of Fig. 3.6 show our results for fixed barrier strength (Λ/t = 0.1

and Λ/t = 1, respectively) with the curves representing interaction strengths from

weak to the hard-core limit. First, one can clearly observe the non-monotonous de-

pendence of the gap on the interaction strength U , which was illustrated in Fig. 3.3,

to hold at all fillings in both panels. Secondly, the dependence of ∆E1 on N drasti-

cally changes increasing the interaction strength, displaying different regimes: quickly
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a function of the number of particles, for M = 11 lattice sites, at Ω = 0.5, for
the barrier strength Λ specified in the panels. In each plot the various curves
stand for different interaction strengths U , as specified in the legend.

decreasing, non monotonous and almost constant. The rapid and unfavourable de-

crease of the energy gap with the number of particles at weak interactions can be

understood again in terms of classical screening of the barrier, that is effectively re-

duced, as the healing length of the gas, by increasing the filling. In the opposite

regime of hard core bosons, instead, the energy gap is the same as the one of the

non-interacting Fermi gas. This can be readily understood in terms of the TG Bose-

Fermi mapping: indeed, in a non-interacting Fermi gas the energy gap is given by

∆E1 = (
∑N−1

j=1 ǫj + ǫN+1) −
∑N

j=1 ǫj , where ǫj are the single-particle energies. In

particular, for a small barrier, using perturbation theory, one obtains that the single-

particle energy gaps ǫj+1 − ǫj are identical for all the avoided levels crossings, hence

the gap∆E1 is independent of the filling (see Sec. 2.3.1 for a detailed calculation in the

continuum).

The lower panels of Figs. 3.5 and 3.6 display the ratio ∆E1/∆E2, and allow us

to complete the identification of the most favourable regime for the qubit to have a

well defined gap, taking into account also the effect of the number of particles. This

turns out to be, also in the light of these results, the weak-barrier (Λ/t # 1), and

intermediate-to-strong interaction regime (U/t $ 1), for which the energy gap does
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not decrease with the number of particles, but remains almost constant for any value

of the filling, provided one is away from the commensurate values of particles and

sites that lead to the Mott insulating phase. Indeed, depending on the interaction

strength, too large a barrier yields an unfavourable situation similar to the one de-

picted in the top-right panel of Fig. 3.3, in which ∆E2 ∼ ∆E1. It is interesting to

notice that these unfavourable cases correspond to values of barrier and interaction

strength in the Fig. 3.2(e) where the ring is effectively disconnected. The ratio Λ/U is

thus a useful parameter to define the quality of the qubit in terms of its energy resolu-

tion: the most advantageous parameter regime for the qubit corresponds to the lower

half-plane in Fig. 3.2(e), below the critical line.

Finally, it is interesting to give an estimate of the order of magnitude of the gaps

discussed above for a realistic system. For a 87Rb gas in a mesoscopic ring shaped

deep optical lattice of ∼ 50µm circumference and 10 lattice wells, the hopping energy

is of the order of t ∼ 0.5kHz. This yields a typical energy scale for the gap of tens to

a few hundreds of Hz, depending on the choice of barrier strength, well within the

range of experimental accessibility.

3.4 Momentum distribution of a superposition of circula-

tion states

So far I have presented our analysis of the behaviour of the energy spectrum of the

flux qubit as a function of the system parameters. Now we investigate the ground state

of the system in more detail. Special attention is devoted to the regimes of parameters

in which it corresponds to a superposition of states with different circulation. We

assess the detectability of the latter through the study of the momentum distribution.

The measurement of the momentum distribution is the most common tool em-

ployed in ultracold atoms experiments to get information about the state of motion of

the gas, and in particular about the current circulation along the ring [94, 95], and it is

experimentally accessible in ultracold atoms experiments via the time-of-flight (TOF)

expansion technique, which is illustrated in Fig. 3.7. In such measurements, the con-

fining potential that is used to trap the gas is switched off at a given time, at which

the system is probed, hence releasing the gas that is free to expand due to its internal

momentum. After an expansion time tTOF, typically of the order of tens of ms, the

density profile of the gas is measured via standard absorption imaging techniques,

e.g. by a CCD camera. The spatial density distribution measured in this way can be

related to the initial momentum distribution of the gas in the trap immediately before

the release 〈n(x)〉TOF ∝ 〈n(k)〉trap, where the momentum of the gas in the trap k and
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Figure 3.7: (a) Schematic set-up for absorption imaging after a TOF expan-
sion time. (b) Absorption image for a Bose-Einstein condensate released from
a harmonic trap. (c) Absorption image for a Bose-Einstein condensate released
from a shallow optical lattice. (From Ref. [12]).

the position of the atoms x after the TOF are related by the ballistic expansion condi-

tion k = mx/!tTOF, which holds under the assumption that there are no effects due to

interaction during the expansion, as it is typically the case with good approximation

in experiments [64].

The momentum distribution is defined as the Fourier transform with respect to the

relative coordinate of the one-body density matrix

n(k) =

∫

dx

∫

dx′〈ψ̂†(x)ψ̂(x′)〉eik·(x−x′), (3.7)

where x and x′ denote the position of two points along the ring’s circumference. Al-

though, in general, k is a three dimensional wave vector, due to the symmetry of the

particular ring configuration we are considering here we restrict to a two dimensional

k in the plane of the ring, which corresponds to a TOF image integrated along the

symmetry axis of the ring. To adapt Eq. (3.7) to our lattice system, we expand the

field operator in terms of the single particle Wannier functions wj(x) = w(x − xj),

localized on the j-th lattice site, where xj denotes the position of the j-th lattice site

ψ̂(x) =
∑M

j=1wj(x)b̂j , see e.g. [147]. Thereby, after substituting, Eq. (3.7) can be recast

into

n(k) = |w̃(k)|2
M
∑

l,j=1

eik·(xl−xj)〈b̂†l b̂j〉, (3.8)

where w̃(k) is the Fourier transform of the Wannier function. For the calculations

presented in this section we have assumed an isotropic Gaussian form for the Wannier

function. This corresponds to take a harmonic approximation for the lattice well, and

is suitable in the tight-binding regime of deep optical lattice. This is the case we have

chosen, taking a lattice depth 10Er, where Er = 2!2π2M2/mL2 is the recoil energy of

the lattice.
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Figure 3.8: NI and TG results for the ground state momentum distribution
in the absence of the barrier, for different values of the Coriolis flux: Ω = 0, 1, 2
and different regimes of interaction strength: non-interacting (upper line) and
infinite interactions (lower line), at filling N/M = 5/11. The wave vector is
expressed in unit of the radius of the ring R = L/2π.

To avoid effects associated with the Mott insulating phase, in the following analy-

sis we focus on incommensurate values of the filling parameter (see Section 3.3.4 for a

more detailed discussion).

In absence of the barrier (Λ = 0), the ground state of the system has no circulation

for Ω < 0.5, in this case the momentum distribution is peaked at k = 0, and has

one quantum of circulation for Ω > 0.5, in this case the momentum distribution is

ring-shaped, the radius of the ring increasing for higher angular momentum states at

larger values of Ω [94, 95] (see App. C for a calculation in the non-interacting limit in

the continuum). Fig. 3.8 shows the predicted momentum distributions in the absence

of the barrier for various values of the interaction strengths. The presence of the ring

shape at all interaction strengths reflects angular momentum conservation, consistent

with the fact that the persistent currents through a rotationally invariant system are

not affected by the interactions [114, 115] (see Sec. 2.2). We note, however, that the

detectability in the time-of-flight images is reduced for large interactions, due to the

enhanced role of phase fluctuations.

Exactly at the frustration point Ω = 0.5, instead, the momentum distribution dis-

plays an interference of the two situations (peaked and ring-shaped), reflecting the fact

that the ground state is a superposition of the two states of well-defined angular mo-

mentum (see App. C). When Λ > 0, the superposition occurs for a wider range of Ω,

thereby displaying interference effects as shown in Fig. 3.9. The relative weight of the

two-quanta-of-circulation components in the superposition strongly depends on Ω, Λ
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and U (see Fig. C.1 in App. C). In particular, at the frustration point, the superposition

is perfectly balanced, independently of Λ, and U . Away from the frustration point, the

relative weights tend to the unperturbed ones carrying zero or one quantum of angu-

lar momentum.This phenomenon occurs over a distance in Ω − π that depends on Λ:

the smaller is Λ, the faster the unperturbed weights are recovered. For this reason, in

Figs. 3.9 and 3.12, in order to study the effects of the barrier and of the interactions

on the superposition, we slightly off-set Ω from the frustration point. In this case the

weights of the circulating states are not equal, yet close enough to ensure that both

angular momentum states contribute significantly to the superposition. For Ω > 0.5,

the component carrying one quantum of angular momentum has a larger weight in

the superposition, making the effect of the barrier and its screening easily detectable

in the momentum distribution; the opposite situation occurring for Ω < 0.5. The mo-

mentum distribution results shown in Fig. 3.9 and 3.12 quantitatively depend on the

choice of Ω, but the screening effect of the barrier and the detectability of the superpo-

sition are weakly affected by this choice. To understand the momentum distribution

results of Fig. 3.9, it is instructive to consider first the case without interactions, that,

in the continuum case of Hamiltonian (2.1), is easily analytically accessible. The corre-

sponding momentum distribution close to the frustration point and for a weak barrier

reads (see Eq. (C.9) in App. C for the derivation)

n(k) = sin2(ϕ/2)J2
n(|k|R) + cos2(ϕ/2)J2

n+1(|k|R)

+ sin(ϕ) cos(γk)Jn(|k|R)Jn+1(|k|R) , (3.9)

where the Bessel functions Jn correspond to states with circulation n, and γk is the

angle along the ring in momentum space; the parameter ϕ is a function of the flux and

the barrier strength (see Eq. (C.7) in App. C). In App. C the difference between the

momentum distribution for the continuum model (Hamiltonian (2.1)) and the one on

a lattice (Hamiltonian (3.1)) is also discussed. Eq. (3.9) shows that the TOF images

allow to visualize the superposition of states with different angular momenta: the

functions J0 and J1 interfere, giving rise to a peak at zero k and a fringe with ring-

shaped symmetry. The detectability of this feature increases with the barrier strength

Λ. Note that the angular position of the peak in momentum space depends on the

position of the barrier in real space along the ring, and would be affected by a phase

shift between the two states of well-defined angular momentum.

The superposition state for small U displays similar features. We note in Fig. 3.9

that, for sufficiently weak interactions, an angular modulation of the ring-shaped mo-

mentum distribution arises. A stronger barrier makes the angular asymmetry increas-
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Figure 3.9: ED and TG results for the ground state momentum distribution
close to the qubit frustration point: Ω = 0.5 + ǫ (hereafter we fix ǫ = 10−3),
for different values of the interaction and barrier strengths U and Λ, at filling
N/M = 5/11. The superposition of circulation states depends on the interplay
between U and Λ. For the filling adopted in these graphs, larger values of Λ
yield momentum distributions very close to those for Λ/t = 1. The wave vector
is expressed in unit of the radius of the ring R = L/2π.

ing, while the interaction strength, by screening the barrier, leads to the opposite phe-

nomenon.

Upon increasing the interaction strength from intermediate to very large, we ob-

serve a smearing of the modulated ring-shape momentum distribution. This is an

effect of increased quantum fluctuations, which leads, for strong barrier strengths, to

a single maximum centred at non-zero k values. The very different momentum dis-

tributions between the regimes of weak and strong interactions can be understood

by recalling the different nature of the superposition state in the various interaction

regimes. A thorough exact diagonalizaiton study for a small system of the nature

of the many-body superposition state has been carried out in [104]. For instance, at

zero or very weak interactions, within the GP regime, the many-body state is a co-

herent state of single particle superpositions |Ψ0〉 = [(b†J=0 − b†J=1)/
√
2]N |0〉, with J

the circulation quanta. Increasing the interaction strength to the intermediate regime
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Figure 3.10: Fidelity of the many-body superposition state |Ψ〉 with respect
to the states |Ψ0〉, |Ψ1〉, and |Ψ∞〉, obtained in [104] via exact diagonalization,
for a system of N = 3 and M = 5 at Ω = 0.5 with Λ/t = 0.01. (Figure adapted
from Ref. [104]).

the superposition is well described by the so-called NOON state |N, 0〉 + |0, N〉, i.e.,

a macroscopic superposition of states where all bosons occupy either the state with

zero circulation or the one carrying one quantum of circulation |Ψ1〉 = [(b†J=0)
N −

(b†J=1)
N ]/
√
2|0〉. Further increasing the interactions to the hard-core limit the many-

body state becomes instead a macroscopic superposition of Fermi spheres |Ψ∞〉 =

[ΨJ=0
∞ −ΨJ=1

∞ ]/
√
2|0〉. In Fig. 3.10 I report the results of [104] for the fidelity of the ex-

act many-body ground state with the reference states mentioned above as a function

of the interactions.

For all regimes of interactions, we find that the momentum distributions become

independent of the barrier strength above a critical value, which well agrees with the

critical value of barrier strength for disconnecting the ring, as identified in Fig. 3.2(e).

To quantify the detectability of the superposition state in the momentum distri-

bution for different barrier and interaction strengths, we define the averaged contrast

between the momentum distribution with and without barrier

η =

∫

dk |nΛ )=0(k)− nΛ=0(k)|
∫

dk nΛ )=0(k) + nΛ=0(k)
, (3.10)

reflecting the modification in the integrated momentum distribution due to superposi-

tion of states induced by the barrier. For small values of barrier strengths, we find that

η displays a non-monotonic behaviour upon increasing the interactions between the

particles, see Fig. 3.11. This is an effect of the non-monotonic screening of the barrier

as a function of interaction strength, analogously to what we found in Chap. 2 in the

study of the persistent-current amplitude. We find a higher contrast when the screen-
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Figure 3.11: Averaged contrast η vs. interaction strength U for dif-
ferent values of the barrier strength (curves from left to right: Λ/t =
0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10). The red circles denote the critical value
of interactions strength, for each value of Λ, defined from the analysis of Fig. 3.2.

ing of the barrier is smaller, i.e. for a ratio Λ/U in the vicinity or above the critical line

identified in Fig. 3.2(e). This should allow to easily distinguish the presence or not of

a superposition state.

Finally, I comment on the expected behaviour for systems with a larger filling than

the ones considered so far. The momentum distributions for larger fillings, ranging

from values of N/M close to one, obtained via ED, to fillings much larger than one,

obtained via the GP Eq. (3.5), are shown in Fig. 3.12. In both cases, they are qualita-

tively very similar to the ones shown in Fig. 3.9 for smaller number of particles, the

main difference being that at higher filling a larger barrier strength is needed, with

respect to the lower filling case, to produce the same superposition and to observe

a similar momentum distribution, since the screening of the barrier is enhanced at

higher filling. Our analysis for small systems is thus also relevant, at least qualita-

tively, for systems with larger number of particles, like the ones employed in most of

the experiments so far.

3.5 Conclusion

In this chapter I have presented our study of a system of bosonic atoms loaded in

a ring-shaped one-dimensional optical lattice, whose discrete rotational symmetry is

broken by the presence of a potential barrier localized on one site of the lattice, that

induces a weak link. In the presence of an artificial gauge flux threading the ring, we

have demonstrated that at the frustration points at half-integer values of the flux this

system can describe a qubit, whose effective two-level system is given by superposi-
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Figure 3.12: Ground state momentum distribution close to the qubit frustra-
tion point: Ω = 0.5+ǫ for U/t = 10−2,M = 11 and N = 15, 103 (obtained from
truncated ED and GP respectively). The momentum distributions are quali-
tatively similar to the ones in Fig. 3.9, but the features of the superposition
appear at larger values of Λ, compared to the case at lower filling.

tions of circulation states. In particular, first we have studied the resolution of the qubit

by the analysis of the scaling properties of its energy gap and of its separation from

the rest of the spectrum for various regimes of the system’s parameters. Secondly, we

have addressed its detectability from the analysis of the momentum distribution of its

ground state.

Our scaling analysis allows us to identify the regime of mesoscopic size (tens of

lattice sites) for a sufficiently correlated gas (U/t $ 1) in the presence of a moderately-

weak barrier (Λ/t # 1) as the best suited for the realization and addressability of the

qubit with an adequate number of particles for experimental implementations. Fur-

thermore, we have demonstrated that the superposition of well-defined circulation

states defining the ground state of the system is detectable through time-of-flight mea-

surements of the momentum distribution, the best regime for its detection being the

regime in which the barrier is less screened by the interactions. In particular, we have

identified that the ratio U/Λ is an important parameter to characterize the behaviour

of the qubit both in terms of its gap definition and in terms of the detectability of

states superposition through the momentum distribution. The optimal regime, corre-

sponding to the best trade-off between the two requirements, corresponds to values

of the ratio U/Λ on the critical line identified in Fig. 3.2(e), where a full depletion of

the density occurs in correspondence of the barrier site.
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Résumé du chapitre

Flux qubit et superposition d’états de courant dans un reseau en an-

neau

Les développements récents dans la micro-fabrication de pièges annulaires pour les gaz

atomiques ultrafroids a stimulé non seulement la recherche fondamentale, mais aussi le dé-

veloppement d’applications technologiques de ces systèmes, ce qui conduit à la fondation de

l’atomtronique, un domaine interdisciplinaire émergeant qui cherche à développer des disposi-

tifs où les atomes ultrafroids jouent le rôle des électrons en électronique. Les principales car-

actéristiques des circuits atomtronics sont le degré élevé de contrôle et la neutralité des atomes

transportant le courant, réduisant considérablement les sources de décohérence.

L’exemple le plus paradigmatique d’un circuit atomtronique est constitué par un conden-

sat de Bose-Einstein circulant dans un piège en forme d’anneau. Si une barrière de potentiel

traverse l’anneau, donnant lieu à un lien faible, l’analogue du rf-SQUID: un anneau supra-

conducteur interrompu par une jonction Josephson, est crée par les atomes ultrafroids: un

dispositif d’interférence quantique atomique (AQUID). L’intérêt de la création d’un analogue

atomique du SQUID réside principalement dans les applications possibles dans le domaine de

l’information quantique. Dans ce contexte, le SQUID a déjà été appliqué pour réaliser des

qubits, et des états de superposition quantique macroscopiques, basés sur la superposition des

états de courant.

La possibilité de réaliser des états de superposition macroscopique avec un AQUID a

fait l’objet de plusieurs études théoriques récentes. Dans ce chapitre, je présente une étude

systématique de la qualité du qubit dans un AQUID, dans le but d’identifier le meilleur régime

de paramètres du système pour sa réalisation expérimentale. Nous considérons en particulier

un gaz de Bose interagissant piégé dans un réseau optique en forme d’anneau unidimensionnel,

en présence d’un potentiel de jauge effectif induisant un courant persistant, et d’une barrière

de potentiel localisée. Nous avons établi dans une telle configuration l’émergence d’un système

effectif à deux niveaux pour certaines valeurs du flux de jauge effectif, et nous avons étudié sa

qualité, en termes de la difference d’energie interne entre les deux niveaux et leur séparation

du reste du spectre, examinant la dépendance en fonction de la taille du système, la densité de

bosons, l’interaction entre les particules et la force de la barrière. Nous avons également étudié

la façon dont il est possible d’observer expérimentalement, par des mesures de la distribution

d’impulsions, la superposition des états de circulation qui caractérisent les états du qubit.

En combinant des techniques analytiques et numériques, qui nous permet de couvrir tous

les régimes physiques du système, nous avons montré qu’un réseau en anneau mésoscopique

avec un faible barrière et des fortes interactions entre les atomes est le régime le plus favorable

pour la mise en place et manipulation d’un qubit dans la prochaine génération d’expériences.



Chapter 4

Dipole excitation of a

one-dimensional Bose gas in a

split trap

4.1 Introduction

T
HE study of elementary excitations is a fundamental aspect of many-body theo-

ries. For neutral quantum fluids, these excitations at low energy correspond to

sound waves for homogeneous systems and to inhomogeneous collective modes with

discrete frequencies for confined ones. The analysis of the latter in ultracold quantum

gases has been the subject of intense experimental [148–155] and theoretical [156–161]

activity in the last decades. A variety of different excitation modes has been character-

ized, as the monopole (breathing), dipole (sloshing), quadrupole, and scissor modes,

to cite the best known. An unprecedented precision has been reached in the mea-

surement of their frequencies, becoming one of the most reliable tests for theoretical

models and tools to investigate many-body phases [149, 162–164]. One of the most

interesting aspects of these excitations is that their frequencies depend on the micro-

scopic properties of the system, yielding information e.g. on the equation of state or

on its superfluid properties.

The investigation of collective modes in ultracold quantum gases confined in low-

dimensional geometries, in particular, has attracted a lot of theoretical [165–168] and

experimental [26, 31, 40, 169] attention. In this chapter I present how, using a specific

confining geometry, i.e. a split trap obtained by a localized barrier at the center of a

quasi-one-dimensional harmonic trap, one can access the particularly rich interplay of

77
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Figure 4.1: Sketch of the potential along the 1D waveguide. At t = 0 the
potential is displaced by ∆x to induce the dipole oscillation of the center of
mass of the Bose gas.

effects due to interactions, transport through a potential barrier and quantum fluctua-

tions, the effects of which are all enhanced in a low-dimensional geometry.

We focus on the dipolar excitation mode of a one-dimensional (1D) ultracold Bose

gas, i.e. on the periodic oscillation of the center of mass of the atomic cloud, see

the sketch in Fig. 4.1. In ultracold-gas experiments, this sloshing mode can be ex-

cited by a displacement of the center of the confining potential. A localized barrier

can be created by microscope-focused laser beams [122] or by a light-sheet repulsive

potential [170, 171]. For a purely harmonic potential, as predicted by Kohn’s theo-

rem [172, 173], the dipole mode has the same frequency as the harmonic trap for ar-

bitrary interactions. In the presence of the barrier, instead, Kohn’s theorem does not

apply, and the situation becomes much more interesting. In our work we have found

that the dipole mode displays an interaction-dependent frequency shift compared to

the harmonic confining frequency, which allows to estimate directly the effective bar-

rier strength seen by the fluid, yielding information on the classical screening of the

barrier and on its renormalization due to quantum fluctuations. This effect generalizes

the one found in Sec. 2.3 for the persistent current, to the case of an out-of-equilibrium,

dynamical problem. We also find a surprising parity effect in the oscillation frequency,

which becomes important in the strongly correlated phase, and that can be understood

in terms of a fermionic rather than a bosonic transport process. The dipolar oscillation

of the cloud realizes in fact a specific type of quantum transport across the barrier.

The transport of correlated quantum fluids is more and more explored with ultracold

atoms [174–176].

The results presented in this chapter are part of the original work of my PhD and

are summarized in the fourth publication [19]. All the methods employed in this

study, analytical and numerical, have been implemented by myself, and are detailed

below in this section.
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Figure 4.2: Ground state density for different interparticle interaction regimes
and U0/Ehℓh = 0, 1 (dashed and solid line respectively). In the TG case the
barrier creates a notch in the density, in correspondence of a minimum or
maximum, depending on whether the number of particles is even or odd. The
grey line is a sketch of the potential in dimensionless units and divided by a
factor of 50.

4.2 The model and the ground state

We consider a system of N bosons of mass m, confined in a 1D linear waveg-

uide geometry at zero temperature. The bosons interact with each other via a contact

interaction V (x − x′) = g δ(x − x′), and are subjected to the harmonic confinement

Vh(x) = 1
2mω

2
hx

2 along the waveguide. The waveguide also contains a localized po-

tential barrier at the center of the harmonic confinement, Vb(x) = U0δ(x), which gives

rise to a split trap for the particles, as the one sketched in Fig. 4.1. The corresponding

system’s Hamiltonian reads

H =
N
∑

j=1

− !
2

2m

∂2

∂2xj
+ U0δ(xj) +

1

2
mω2

hx
2
j +

g

2

N
∑

j,l=1

δ(xl − xj) . (4.1)

In Fig. 4.2 we show the effect of the localized barrier potential on the the ground

state density profiles, for different interaction regimes. We notice that for increasing

interactions the width of the density profile increases and, for very strong interactions,

shell effects appear, as in a Fermi gas. The latter are readily explained by the Bose-

Fermi mapping (see Sec. 1.2). Analogously to what is observed in a ring (see again
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Figure 4.3: Time evolution of the center of mass position xCM(t) for various
values of barrier strength β = U0/Ehℓh, with Eh = !ωh, and for interaction
strength g = 0. Solid black line: real-time evolution obtained from the numer-
ical solution of the quench problem, red dashed line: estimate using the energy
gaps of the many-body spectrum – a single frequency (E1 − E0)/! in the first
panel, and an additional frequency for the second and third panel, weighted
according to perturbation theory, Eq. (4.7).

Figs. 2.6), the effect of the barrier is to create a dip in the density profile, the size of

which is governed by the healing length.

4.3 Dipole excitation

Starting from the ground state of the system in the split trap, we have studied the

dynamics following a sudden quench of the harmonic and barrier potential positions,

both being displaced at time t = 0 by a small amount∆x≪ ℓh, with ℓh =
√

!/mωh the

characteristic harmonic oscillator length. The sudden displacement of the external po-

tentials induces a collective excitation in the gas, whose center of mass (CM) starts to

oscillate periodically in time around the new center of the trap, with a main frequency

ωd, hereafter referred as the dipole frequency, see the sketch in Fig. 4.1.

In the absence of the barrier (U0 = 0), when only the harmonic confinement is

present, the oscillation of the CM induced by the potential displacement is purely

sinusoidal, with a dipole frequency that corresponds to the one of the harmonic con-

finement. This is a well-known result of Kohn’s theorem [172, 173], that is specific to



Dipole excitation 81

the harmonic confinement, and is valid for arbitrary strength of the two-body interac-

tion between the particles. It can be immediately understood from the separation of

the CM degree of freedom from the internal ones for the harmonic confinement [41].

In the presence of the barrier (U0 > 0), instead, the aforementioned separation of de-

grees of freedom can no longer be made, and, as we show in Fig. 4.3, we find the

appearance of additional harmonics into the CM motion and a frequency shift of the

fundamental dipole oscillation frequency with respect to the harmonic confining one.

This frequency shift, and in particular its dependence on the interaction regime be-

tween the particles, is the main topic of the analysis presented in this chapter.

4.3.1 Dipole excitation frequency from many-body perturbation

theory

In order to get a simple physical interpretation for the appearance of the additional

harmonics entering the CM motion when the localized potential barrier is switched

on, we have studied the excitation of the CM of the system applying perturbation

theory. For t < 0 the system is assumed to be in its many-body ground state |Ψt<0
0 〉 of

the Hamiltonian Ht<0 before the quench. In accordance with perturbation theory, we

decompose the initial ground state into the eigenstates of the system after the quench

|Ψt<0
0 〉 = |Ψt 0

0 〉+
∞
∑

k=1

ck|Ψ
t 0
k 〉 , (4.2)

whereHt 0|Ψt 0
k 〉 = Et 0

k |Ψt 0
k 〉, and

ck =
〈Ψt 0

k |Ht<0 −Ht 0|Ψt 0
0 〉

(Et 0
0 − Et 0

k )
. (4.3)

Assuming a small displacement,∆x≪ ℓh, we have

Ht<0 ≃ Ht 0 +∆x
N
∑

j=1

∂xj
V t 0
ext (xj) +O(∆x2) , (4.4)

where Vext =
∑N

j=1
1
2mω

2
hx

2
j +U0δ(xj), and therefore ∂xj

V t 0
ext (xj) = mω2

hxj +U0δ
′(xj).

The expectation value of the position of the center of mass as a function of time is

given by

xCM(t) =

∫ ∞

−∞
dxxn(x, t) , (4.5)
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Figure 4.4: Absolute value of the matrix element ck as a function of the
quantum number k, for β = U0/Ehℓh = 1, and different interparticle interaction
strengths g/Ehℓh = 0, 30 (panel (a) and (b) respectively).

in terms of the density

n(x, t) =

∫ ∞

−∞
dx1, . . . ,dxN

N
∑

j=1

δ(x− xj)|Ψt 0
0 (x1, . . . , xN , t)|

2 . (4.6)

Perturbation theory thus yields

xCM(t) = x0 +

∫ ∞

−∞
dxx

∫ ∞

−∞
dx1, . . . ,dxN

N
∑

j=1

δ(x− xj)

×
∞
∑

k=1

ck 2ℜe[Ψ∗
0(x1, . . . , xN )Ψk(x1, . . . , xN )e−i(Et!0

k
−Et!0

0
)t/!] , (4.7)

where with x0 we denote the unperturbed position of the CM in the displaced poten-

tial, i.e. x0 = ∆x. From this expression we see that the periodic oscillation of the center

of mass motion is decomposed in a Fourier series at frequencies (Et 0
k −E

t 0
0 )/!, where

the weight of each component depends on the coefficient ck and the overlap integrals

of the many-body wavefunctions Ψ∗
0Ψk.

In the absence of the barrier (U0 = 0), we have checked by numerically diagonaliz-

ing the HamiltonianHt 0 (see Sec. 1.5 and 4.4.2 for details) that the only non vanishing

matrix element ck is the k = 1 one. Therefore the center of mass evolves at a single

frequency

ωd =
(Et 0

1 − Et 0
0 )

!
, (4.8)

i.e. the dipole one, which we readily find to be ωd = ωh, since the eigenenergies of

the Hamiltonian are those of the quantum harmonic oscillator, with a level spacing of

!ωh, in agreement with Kohn’s theorem.
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In the presence of the barrier (U0 > 0), the matrix elements ck for k > 1 are in-

stead in general non vanishing, and the dynamics of the CM is determined by more

frequencies (Et 0
k − Et 0

0 )/!. However, for small U0, the contribution of the higher

energy states with k  1, gets less and less important, the most important contribu-

tion being the dipolar one. The dependence of the matrix element ck on the quantum

number k is shown in Fig. 4.4. The overlap integrals in Eq. (4.7) further decrease the

weight of the higher-frequency components.

In conclusion, even in the presence of the barrier, we obtain that the sudden quench

of the center of the trap excites mainly the dipole mode. The higher harmonics of the

motion are also obtainable with this method, and well agree with the results of the

exact time-evolution of the system, as shown in Fig. 4.3.

4.4 Barrier renormalization and parity effect

As I have anticipated above, in our study we have focused mainly on the dipole

frequency shift produced by the barrier at various interparticle interaction regimes.

The dipole frequency shift increases with the barrier strength, as is clearly visible in

Fig. 4.3, and depends in a non trivial way on the interaction regime between the parti-

cles, as shown in Fig. 4.5(a, b). Indeed, for a weak barrier, the frequency shift directly

reflects the effective strength of the barrier seen by the fluid. The effective barrier is

maximally reduced for intermediate interactions as a consequence of the competition

of classical screening of the barrier – occurring for weak interactions and increasing

with the interaction strength, and barrier renormalization by the quantum fluctuations

of the density – occurring for strong interactions and, being conjugate to phase fluctua-

tions, decreasing for increasing interactions. Furthermore, we find that the frequency

shift of the dipole mode in the strongly correlated regime depends on the particle

number being even or odd, see again Fig. 4.5(a, b). This is particularly striking for a

bosonic system, which does not display parity effects in other observables e.g. in the

persistent currents [16, 116]. When the barrier potential is not placed at the center of

the harmonic trap, the parity effect is still present, but it is modulated by the position

of the barrier, as we show in Fig. 4.5(c). Remarkably, we find also that signatures of

this mesoscopic effect remain visible at finite temperatures, Fig. 4.5(d).

In order to study the dipole frequency shift in all the regimes of interparticle in-

teraction, we have resorted to a combination of analytical and numerical techniques

suited for the 1D problem, that I detail below.
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Figure 4.5: (a, b) Frequency of the dipole mode ωd as function of the inter-
action strength g for β = U0/Ehℓh = 1, in different regimes: (a) GP and LL
solution for N = 50, 51 (orange, cyan and purple lines respectively), the dotted
lines at intermediate interactions are a guide to the eye in the regime beyond
the validity of the GP and LL approaches; (b) ED solution for N = 4, 5 (blue
and red respectively). The green dashed lines in the panels (a, b) correspond
to the limiting cases of NI and TG gas (g → 0,∞). (c) Dependence of ωd

on the position of the barrier d, for g → ∞; calculated with the exact TG
technique and corresponding LL for K0 = 1 (inset, with the LDA density, and
gray lines, using the exact TG density in Eq. (4.28)). (d) Density plot of the
Fourier transform of the center of mass oscillation |ℜe[δxCM(ω)]| as a function
of frequency and temperature, in the TG limit, for β = 1 and N = 4.

4.4.1 Non-interacting and Tonks-Girardeau limits

In the two limiting cases of non-interacting (NI) and infinitely interacting or Tonks-

Girardeau (TG) gas, we find an exact solution for the dynamical evolution of the gas.

In both cases, starting from the analytical expression for the ground-state wavefunc-

tion Ψt<0
0 before the quench, that we can calculate by reducing the many-body prob-

lem to a single-particle one (see Sec. 1.2), we perform a numerical evolution of the
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ground-state wave function in real-time |Ψt 0
0 (t)〉 = exp(−iHt 0t/!)|Ψt<0

0 〉. The re-

sulting time evolution of the position of the CM, xCM(t) =
∫∞
−∞ dxxn(x, t), where

n(x, t) is the time-dependent gas density, is illustrated for instance in Fig. 4.3 for the

NI case. A Fourier analysis of xCM(t) shows that the center of mass motion is character-

ized by a main dipolar frequency, corresponding to the difference between the energy

of the first excited many-body state and of the ground state of (4.1), ωd = (E1−E0)/!,

as well as by a higher harmonic with frequency (E3−E0)/!, in agreement with many-

body perturbation theory (Sec. 4.3.1).

In the following we focus on the dipolar frequency ωd. For the NI case, the N -

particle ground-state energy is given by ENI
0 = Nε0, and the first excited one by ENI

1 =

(N − 1)ε0 + ε1, where εj are the single particle energies, solutions of the one-body

Schrödinger equation in the presence of harmonic and centred barrier potentials

[

− !
2

2m
∂2x + U0δ(x) +

1

2
mω2

hx
2

]

ψn = εnψn . (4.9)

In the TG case, the many-body energy spectrum coincides with the one of a free Fermi

gas. In particular, the ground state energy isETG
0 =

∑N−1
k=0 εk and the first excited state

one is ETG
1 =

∑N−2
k=0 εk + εN . Expressing all the quantities in units of the harmonic

oscillator level spacing Eh = !ωh and characteristic length ℓh =
√

!/mωh we obtain

the Schrödinger equation in the reduced form

[

−1

2
∂2x + βδ(x) +

1

2
x2

]

ψn = εnψn , (4.10)

where β = U0/Ehℓh. The odd solutions ψ2n+1 of the quantum harmonic oscillator

without barrier (β = 0), with ε2n+1 = (2n+3/2)!ωh, are still solutions of this equation

with barrier, and having a node at the position of the barrier, they are independent of

the strength of the barrier potential. The even solutions ψ2n, instead, can be expressed

in terms of Whittaker functions, after noticing that Eq. (4.10) for x > 0 corresponds to

the differential equation for the parabolic cylinder functions [177, 178]:

ψ2n(x) = NDεn(|x|) ,

Dεn(x) = cos
(π

4
+
π

2
εn

)

Y1 − sin
(π

4
+
π

2
εn

)

Y2 ,
(4.11)
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where N is a normalization constant, and

Y1 =
Γ
(

1
4 − 1

2εn
)

√
π2

1

2
εn+

1

4

e−
x2

2 M

(

1

2
εn +

1

4
,
1

2
, x2

)

,

Y2 =
Γ
(

3
4 − 1

2εn
)

√
π2

1

2
εn− 1

4

e−
x2

2

√
2xM

(

1

2
εn +

3

4
,
3

2
, x2

)

.

Here, M(...) is the confluent hypergeometric function and Γ(...) is the Euler Gamma

function. Imposing the cusp condition at the position of the barrier, ∂xψn(0
+) −

∂xψn(0
−) = βψn(0), we get the following expression for the eigenvalues εn:

Γ
(

3
4 − 1

2εn
)

Γ
(

1
4 − 1

2εn
) = −β

2
. (4.12)

We observe that for β → 0 the energy eigenvalues εn tend to the even eigenvalues

of the harmonic oscillator without barrier. In the opposite limit β → ∞ they tend to

the odd eigenvalues, that thus become doubly degenerate. The results for the dipole

frequency in the NI and TG limits are shown in Fig. 4.5(a, b), while the corresponding

ground-state densities are shown in Fig. 4.2.

The TG solution allows to readily get physical insight in the parity effect. Using

perturbation theory in the barrier strength we have !ωd = ETG
1 − ETG

0 = !ωh +

〈ΨTG
1 |Hb|Ψ

TG
1 〉 − 〈ΨTG

0 |Hb|Ψ
TG
0 〉, where Hb =

∑N
j=1 U0δ(xj). Using the explicit form

of the ground- and first-excited many body wavefunction in the TG limit (see Sec. 1.2),

ΨTG(x1, ...xN ) = Π1≤j<k≤N sgn(xj−xk) det[ψn(xℓ)], where n = 0...N−1 for the ground

state and n = 0...N − 2, N for the first excited state, we readily obtain

!ωd = !ωh + U0

(

|ψN (0)|2 − |ψN−1(0)|
2
)

. (4.13)

The single-particle orbitals ψk(0) vanish for k odd and are finite for k even, therefore

ωd is larger or smaller than ωh depending on the number of particles being even or

odd. In analogy with transport phenomena in Fermi gases, for the strongly correlated

(fermionized) bosons the dynamics of the gas at zero temperature is determined by

the states at the (effective) Fermi level.

Scaling of the dipole frequency shift with number of particles – In Fig. 4.6

we show the scaling of the dipole frequency ωd on the number of particles N , as ob-

tained from the TG exact calculation. For sufficiently large numbers of particles we

find |ωd − ωh| ∝ 1/
√
N . As I will show later in Sec. 4.4.4, this is a special case of a

general power law behaviour predicted by the Luttinger liquid theory.
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Figure 4.6: Scaling of ωd as a function of the number of particles N in the TG
regime. Different colors correspond to β = U0/Ehℓh = 0.2, 1, and 5 (orange,
red, and brown points respectively). For N sufficiently large (N $ 10) the
scaling follows the power law |ωd − ωh| ∝ 1/

√
N (black solid lines).

Exact solution for a non-centred barrier – If the barrier is placed at a dis-

tance d from the center of the harmonic trap, it is still possible to calculate exactly the

dipole frequency in the NI and TG limits, by solving the modified Eq. (4.9) with barrier

potential U0δ(x− d).
The one-body Schrödinger equation in the presence of harmonic and non-centred

barrier potentials reads

[

− !
2

2m
∂2x + U0δ(x− d) +

1

2
mω2

hx
2

]

ψn = εnψn . (4.14)

In this case the mirror symmetry x → −x of the system is broken, and the solutions

do not have a well defined spatial symmetry. The solution can be written piecewise in

the form [179]:

ψn(x) = NlΘ(d− x)Dεn(−x) +NrΘ(x− d)Dεn(x) , (4.15)

where Θ(x) is the Heaviside function, Dεn(x) are the parabolic cylinder functions de-

fined in Eq. (4.11), and Nl,r are normalization factors. Imposing at the position of the

barrier the condition of continuity NlDεn(−d) = NrDεn(d), and the cusp condition

∂xψn(d
+) − ∂xψn(d

−) = βψn(d), and using the recursive relations for the derivatives

of the parabolic cylinder functions [178], we obtain the trascendental equation for the

energy eigenvalues:

(

εn −
1

2

)

(Dεn−1(−d)Dεn(d) +Dεn−1(d)Dεn(−d)) =
√
2βDεn(−d)Dεn(d) . (4.16)
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As shown in Fig. 4.5(c), in this case the parity effect is modulated, displaying an oscil-

lating behaviour as a function of d.

4.4.2 Numerical exact diagonalization

To cover all the interaction strength regimes, for small numbers of particles, we

have adopted a numerical method based on the exact diagonalization (ED) of Hamil-

tonian (4.1): we calculate the low-energy eigenspectrum of the many-body system,

and obtain the dipole mode frequency as ωd = (E1 − E0)/!. Details on this technique

are given in Sec. 1.5. To represent Hamiltonian (4.1) we have chosen the N -particle ba-

sis built using the single-particle eigenfunctions of Eq. (4.9), which have been detailed

in Sec. 4.4.1 above. The truncation of the Hilbert space to a number S of single-particle

states is the only approximation performed with this technique. Since the dimension

of the Hilbert space rapidly grows with S and the particle numberN , we are limited to

small N . In our calculations we have considered up to N = 5 and S = 18. To improve

the estimate of the eigenspectrum obtained with the truncated Hilbert space we have

also performed a finite-size scaling varying the number of single particle states. The

ED results for the dipole frequency are shown in Fig. 4.5(b).

4.4.3 Mean-field Gross-Pitaevskii equation

For larger values of the particle number we adopt complementary approximate ap-

proaches. In the regime of weak interactions, we describe the fluid as a Bose-Einstein

condensate by means of the Gross-Pitaevskii (GP) equation, see Sec. 1.3.

[

− !
2

2m
∂2x + U0δ(x) +

1

2
mω2

hx
2 + g|Φ|2

]

Φ = µΦ , (4.17)

where Φ(x) is the condensate wave function and µ the chemical potential. We inte-

grate this equation in imaginary time to find its ground state solution, as explained in

Sec. 1.3, the ground-state density in the weak interaction regime is shown in Fig. 4.2.

Subsequently, we evolve the ground state in real time with shifted potential, to calcu-

late the time evolution of the position of the CM after the quench, as for the NI and TG

cases. The frequency of the dipole mode is thus found through a Fourier analysis of the

time-evolution of the CM position, which is obtained as xCM(t) =
∫∞
−∞ dxx|Φ(x, t)|2,

and is shown in Fig. 4.5(a). We find that in the weak interaction regime, the dipole

frequency shift decreases monotonically with the interaction strength g. This can be

understood in terms of classical screening of the barrier, quantified by the healing

length ξ = !/
√
2mgn, that decreases at increasing interaction strength.
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4.4.4 Luttinger liquid approach

In the strongly interacting regime we take into account the effect of quantum fluc-

tuations using the Luttinger liquid (LL) theory, introduced in Sec. 1.4. The presence of

the smoothly varying harmonic potential is taken into account within the local den-

sity approximation (LDA), i.e. expressing the equation of state of the inhomogeneous

system as a functional of the local density n(x). The effective LL Hamiltonian for the

inhomogeneous system then reads [50, 180]

H0 =
!

2π

∫ ∞

−∞
dx

[

vs(x)K(x)(∂xφ(x))
2 +

vs(x)

K(x)
(∂xθ(x))

2

]

, (4.18)

where θ(x) and φ(x) are canonically conjugate fields, corresponding to density fluctu-

ations above the equilibrium density n(x) and phase respectively. The local Luttinger

parameter K(x) and the sound velocity vs(x) depend on the microscopic interaction

strength g, and are determined in LDA according to vs(x)K(x) = !πn(x)/m, and

vs(x)/K(x) = ∂nµ(n(x))/!π, see Sec. 1.4.

In order to diagonalize the inhomogeneous LL Hamiltonian (4.18), we have intro-

duced, in analogy to what is done for the quantum harmonic oscillator, the bosonic

conjugate fields bj and b†j in the following way:

∂xφ(x, t) =
∞
∑

j=0

i

√

mωj

2!n(x)

(

ϕj(x)e
iωjtb†j − ϕ∗

j (x)e
−iωjtbj

)

,

−θ(x, t)
π

=
∞
∑

j=0

√

!n(x)

2mωj

(

ϕj(x)e
iωjtb†j + ϕ∗

j (x)e
−iωjtbj

)

;

(4.19)

such that the canonical commutation relation [−θ(x)/π, ∂x′φ(x′)] = iδ(x − x′) and

the orthogonality relation
∫

dxϕ∗
j (x)ϕl(x) = δj,l imply that [bj , b

†
l ] = δj,l. Hamilto-

nian (4.18) is then diagonal in terms of the bj and b†j fields,

H0 =
∞
∑

j=0

!ωj

(

b†jbj +
1

2

)

, (4.20)

provided that the modes’ wavefunctions ϕj(x) satisfy the differential equation

− ω2
j

√

vs(x)K(x)ϕj(x) = vs(x)K(x)∂x

(

vs(x)

K(x)
∂x(

√

vs(x)K(x)ϕj(x))

)

. (4.21)

The spatial dependence of the parametersK and vs can be determined in LDA, assum-

ing an equation of state of the form µ(n) = ηnν [166,180]: this connects the GP regime,
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where µ(n) = gn, and TG regime, where µ(n) = (!2π2/2m)n2. The parameters η and

ν can be obtained from the Bethe ansatz solution of the homogeneous Lieb-Liniger

model [181]. In the LDA, we get from the equation of state the following expression

for the density: n(x) = [η(µ− Vh(x))]
1/ν , where Vh(x) = mω2

hx
2/2 and µ = mω2

hR
2/2,

whereR is the Thomas-Fermi radius which is determined from the normalization con-

ditionN =
∫ R
−R dxn(x). This yields the expressionsK(x) = K0(1−x2/R2)1/ν−1/2, and

vs(x) = v0
√

1− x2/R2, with v0 =
√

ν/2ωhR, and K0 =
√

(∂µ/∂n)|TG/(∂µ/∂n)|x=0 =
√

!2π2n(0)2−ν/mην. The dependence on the interaction strength of such Luttinger

parameters is known (see Eqs. (1.26), (1.27) and Fig. 1.7); in particular in the TG limit

K0 = 1 and vs = vF , the Fermi velocity of the fermionized Bose gas. Eq. (4.21) has an

analytical solution [178, 180]:

ϕj(x) =

√

j!(j + 1/ν + 1/2)

RπΓ(j + 2/ν + 1)
21/νΓ(1/ν + 1/2)C

1/ν+1/2
j (x/R) ,

(ωj/ωh)
2 = (j + 1)(1 + jν/2) ,

(4.22)

where Ca
j (...) is the Gegenbauer polynomial and Γ(...) is the Euler Gamma function.

We notice immediately that the lowest eigenvalue j = 0, that corresponds to the fre-

quency ω0 of the dipole mode (j = 0), is given by ωh for any interaction strength, in

agreement with Kohn’s theorem.

Let us consider now how the barrier term of the HamiltonianH = H0+Hb, affects

the frequency of the dipole mode ofH0 The barrier, located for the sake of generality at

position d, yields a non-linear contribution to the Luttinger liquid Hamiltonian of the

form Hb =
∫∞
−∞ dxU0δ(x − d)ρ(x). Such a localized barrier potential induces a very

rapid spatial variation of the confinement, hence cannot be taken into account in the

LDA description of H0. We treat its effect perturbatively in the limit of weak barrier

strength. Keeping only the lowest harmonics l = ±1 in the density field expansion

ρ(x) = [n(x) + ∂xθ(x)/π]
∑+∞

l=−∞ ei2lθ(x)+i2lπ
∫ x

−∞
dx′n(x′), see Eq. (1.32), we obtain as

the most dominant term

Hb ≃ 2U0n(d) cos

[

2θ(d) + 2π

∫ d

−∞
dxn(x)

]

. (4.23)

Since we are interested only in the dipole excitation mode, if the barrier strength

is small compared to the characteristic energy of the dipole mode (U0/ℓh < !ωd),

we can integrate out all the higher modes, j  1. Considering the Fourier decom-

position of the field θ(x, t) =
∑∞

j=0 e
−iωjtθj(x), we decompose the cos potential of

the sum, and taking the zero-temperature average over the vacuum of excitations,

we obtain a renormalization of the barrier strength by density quantum fluctuations
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Ueff = U0〈0| cos(2
∑∞

j=1 θj(d))|0〉. We define 〈0| cos(2∑N/c
j=1 θj(d))|0〉 = exp[−2G(d)],

where G(d) = 〈0|(
∑N/c

j=1 θj(d)))
2|0〉. The LL being an effective low-energy field theory,

the sum over the modes can not extend up to infinity, but should stop at a certain cut-

off jc, that is intrinsic to the effective theory and that can not be determined within the

theory itself. In our calculations we take it to be proportional to the Fermi energy 1,

thus jc is proportional to the number of particles jc = N/c, up to some numerical fac-

tor c of order 1. The latter is fixed imposing the matching between the LL solution and

the exact TG one in the infinitely strong interaction limit, K0 → 1. Thus, in general,

the effective renormalized barrier strength for the lowest mode is given by

Ueff(d) = U0e
−2G(d) . (4.24)

Using the mode decompositions (4.19), the local two point correlation function for

θ(x) takes the form G(d) = (π/2)K(d)vs(d)
∑N/c

j=1(1/ωj)|ϕj(d)|
2. In the particular case

where the barrier is at the center of the trap and for large particle numbers we find

Ueff(0) = U0

( a

N

)κ

, (4.25)

where κ = K(0)vs(0)/ωhR = K0

√

ν
2 , and a is a non-universal parameter dependent

on the cut-off of the effective LL theory 2. Having integrated out the higher modes

and consequently renormalized the barrier strength, we can rewrite the barrier term

of the Hamiltonian in terms only of the field θ0, as

Hb ≃ 2Ueff(d)n(d) cos

[

2θ0(d) + 2π

∫ d

−∞
dxn(x)

]

. (4.26)

Upon a Taylor expansion for small θ0 to second order, substituting Eq. (4.19) for the

field θ0, and neglecting constant contributions to the Hamiltonian, we get the final,

diagonal, expression:

Hb ≃ 2n(d)Ueff(d)πvs(d)K(d)ϕ2
0(d)ω

−1
h cos

[

2π

∫ d

−∞
dxn(x)

]

(

b†0b0 +H.c.
)

. (4.27)

This, after substituting the analytical expression of ϕ0 given by Eq. (4.22), leads to the

expression for the shift of the dipole mode frequency:

ωd − ωh =
n(d)U eff(d)K(d)vs(d)

!ωhR
f(ν) cos

(

2π

∫ d

−∞
dxn(x)

)

, (4.28)

1Here we chose the cutoff of the strongly interacting regime; in general jc is interaction-dependent.
2We have used as an estimate for a its value in the TG limit, accessible through the exact solution.



92 Chap. 4 – Dipole excitation of a one-dimensional Bose gas in a split trap

where f(ν) = ( 1
ν
+ 1

2)Γ
2( 1

ν
+ 1

2)2
2

ν
+2/Γ( 2

ν
+1). The integral of the density gives rise to

an oscillating term as a function of d, as shown in Fig. 4.5(c), which reduces to (−1)N
for d = 0. This explains the parity-dependent frequency shift of the dipole mode. In

the case of a centred barrier (d = 0), this expression simplifies to

ωd − ωh = (−1)Nn(0)U0

( a

N

)κ

K0

√

ν

2

1

!

(

( 1
ν
+ 1

2)Γ
2( 1

ν
+ 1

2)2
2

ν
+2

Γ( 2
ν
+ 1)

)

. (4.29)

We have used Eq. (4.29) to estimate the interaction-dependent frequency shift of the

dipole mode in Fig. 4.5(a). For repulsive interactions the effective barrier strength

is smaller than the bare one, since κ  1, and decreases as the interaction strength

is decreased from infinite to intermediate values (κ → 1 for g → ∞, and κ → ∞
for g → 0), which explains that ωd approaches ωh when decreasing the interaction

strength. This is consistent with the larger suppression of density fluctuations for

strong interactions expected from the Luttinger power-law behaviour of the density-

density correlation function 〈ρ(x)ρ(x′)〉 ∝ |x − x′|−2K [49, 50]. Finally, we notice that

in the TG limit one has κ = 1 and nTG(0) = (1/ℓh)
√

2N/π in LDA; thus we find the

scaling law |ωd−ωh| ∝ 1/
√
N for the dipole frequency shift, which in Fig. 4.6 is shown

to be in excellent agreement with the TG exact solution.

4.4.5 Temperature effects

The analysis presented in the previous section refers to a system at zero tempera-

ture. Because of the relevance of thermal effects in realistic experimental situations, we

have performed an exact finite-temperature calculation in the TG limit, see Fig. 4.5(d).

Interestingly, the main features of the dipole-mode frequency shift remain visible at

finite temperatures, even if for temperatures kBT $ !ωh thermal fluctuations mix the

characteristic zero-temperature frequencies of odd and even number of particles. As

it is shown below, this can be understood in terms of smearing of the effective TG

fermionic distribution function.

TG real time evolution – We have obtained the oscillation spectrum at finite

temperature shown in Fig. 4.5(d) by performing a Fourier analysis of the time evo-

lution of the position of the CM, xCM(t) =
∫∞
−∞ dxx nT (x, t), where the density at

finite temperature is given by nT (x, t) =
∑∞

j=0 f(εj)|ψj(x, t)|
2, with f(ε) the Fermi

distribution function at finite temperature for a state of energy ε, εj the single particle

energies determined in Section 4.4.1, and ψj(x, t) the time dependent single particle

wave functions determined by numerically evolving in real time the exact initial-state

wave functions determined in Section 4.4.1 with the HamiltonianHt 0.
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Figure 4.7: Fourier transform of the center of mass oscillation |ℜe[δxCM(ω)]|
as a function of frequency, in the TG limit obtained with the Fourier transform
of the real-time evolution (black solid line) and from linear response theory (red
vertical lines with dots).

Linear response theory – The dynamics of the center of mass of the sys-

tem can also be analysed, in the limit of small oscillation amplitude, through lin-

ear response theory. This allows to obtain the time evolution of the particle density

n(x, t) = 〈ρ(x, t)〉, where ρ is the density operator, in response to the perturbation op-

erator Hp =
∫∞
−∞ dxVp(x, t)ρ(x) where Vp(x, t) = Θ(t)∆x∂xV

t 0
ext (x), and Θ(t) is the

Heaviside function, see Sec. 4.3.1. Within the framework of linear response theory the

corresponding evolution is then given by

〈ρ(x, t)〉 = 〈ρI(x, t)〉+
∫ ∞

−∞
dx′

∫ ∞

−∞
dt′χ(x, x′; t− t′)Vp(x′, t′) , (4.30)

where χ(x, x′; t, t′) = (1/i!)Θ(t − t′)〈[ρI(x, t), ρI(x′, t′)]〉 is the response function, and

ρI(x, t) = eiH
t!0t/!ρ(x)e−iHt!0t/! gives the unperturbed evolution of the density oper-

ator. Recalling that the center of mass position is given by xCM(t) =
∫∞
−∞ dx x〈ρ(x, t)〉,

we readily obtain in Fourier space δxCM(ω) =
∫∞
−∞ dx x

∫

dx′ χ(x, x′;ω)Vp(x′,ω), with

χ(x, x′;ω) =
1

!Z(β)

∑

n )=m

〈m|ρ(x)|n〉〈n|ρ(x′)|m〉e−βEm

×
(

1

(ω − (En − Em)/!) + i0+
− 1

(ω + (En − Em)/!) + i0+

)

. (4.31)

Here, Z(β) =
∑

m e−βEm , β = 1/kBT , n and m denote the many-body states.

In the TG limit the density-density response function coincides with the one of a
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non-interacting Fermi gas, and Eq. (4.31) simplifies to [182]:

χ(x, x′;ω) = (1/!)
∑

j )=k

ψ∗
j (x)ψk(x)ψ

∗
k(x

′)ψj(x
′)f(εj)[1− f(εk)]

×
(

1

(ω − (εk − εj)/!) + i0+
− 1

(ω + (εk − εj)/!) + i0+

)

. (4.32)

In Fig. 4.7 we show the comparison between the oscillation spectrum at finite tem-

perature in the TG case obtained with the real-time evolution, as explained above,

with the linear response theory approach. The results obtained with the two methods

agree quite well, which is remarkable given the finite simulation time used for the

real-time evolution calculation that smears the frequency peaks.

4.5 Conclusion

In this chapter I have presented our study of an interacting, one-dimensional Bose

gas confined in a split trap, obtained by an harmonic potential with a localized bar-

rier at its center. In particular, as a prototype of quantum transport phenomena, we

have studied the dipolar oscillations of the gas across the barrier, induced by a sud-

den quench of the position of the center of the trap. We have found that the main

frequency of the dipole oscillation strongly depends on the interaction strength be-

tween the particles, allowing to determine the effective barrier strength seen by the

fluid, and thus yielding information on the classical screening of the barrier and on

its renormalization due to quantum fluctuations. The full quantum solution also dis-

plays a peculiar parity effect, due to the combination of fermionic transport properties

for the correlated Bose gas and the harmonic trap geometry. Observation of this par-

ity effect and of the shift of the dipole frequency with the interaction strength would

provide a unambiguous evidence of the effect of quantum fluctuations.

A characterization of the full dynamics of the system shall include damping. Its

study, which is beyond the scope of the present work since its contribution is negligi-

ble in the linear response regime we have considered, should include several sources

of dissipation, such as quantum phase slips, phonon emission due to mode coupling

and anharmonicities beyond the LL description. Numerical and experimental studies

have been done in this direction [31, 161, 175, 183].
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Résumé du chapitre

Excitation de dipole d’un gaz de bosons unidimensionnels dans un

piège à double puits

L’étude des excitations élémentaires est un aspect fondamental des théories à plusieurs

corps. Pour les fluides quantiques neutres, ces excitations à basse énergie correspondent à

des ondes sonores pour les systèmes homogènes, et à des modes collectifs avec des fréquences

discrètes pour ceux confinés. L’analyse de ces derniers dans les gaz quantiques ultrafroids a

été l’objet d’une intense activité de recherche expérimentale et théorique au cours des dernières

décennies, et une précision sans précédent a été atteinte dans la mesure de leurs fréquences. Un

des aspects les plus intéressants de ces excitations est que leurs fréquences dépendent des pro-

priétés microscopiques du système, ce qui donne des informations par exemple sur son équation

d’état ou sur ses propriétés de superfluidité.

Dans ce chapitre, je présente notre étude d’un gaz de Bose unidimensionnel en interaction,

dans un piège à double puits, obtenu par un potentiel harmonique avec une barrière localisée en

son centre. En particulier, comme un prototype des phénomènes de transport quantique, nous

avons étudié les oscillations dipolaires du gaz à travers la barrière induites par un deplacement

istantané de la position du centre du piège.

En appliquant plusieurs méthodes analytiques et numériques valables dans différents ré-

gimes d’interaction entre les particules, nous avons trouvé que la fréquence principale de

l’oscillation du dipole dépend fortement de la force d’interaction entre les particules, ce qui

permet de déterminer la hauteur effective de la barriere vue par le fluide, et d’obtenir ainsi

des informations sur l’écrantage classique de la barrière ainsi que sur sa renormalisation due

aux fluctuations quantiques. La solution exacte de ce problème montre également un effet de

parité particulière qui consiste en une fréquence d’oscillation du dipole qui dépend de la parité

du nombre de particules. Ceci peut être expliqué en rappelant que un gaz de bosons en fortes

repulsions a les mêmes propriétés de transport qu’ un gaz des fermions. L’observation de cet

effet de parité et la dépendance de la fréquence du mode de dipole avec la force des interactions

constituerait une preuve sans équivoque de l’effet des fluctuations quantiques.
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Conclusions and perspectives

I
N this thesis I have presented our study of a few mesoscopic quantum systems con-

stituted by a one-dimensional (1D) ultracold Bose gas. These systems are relevant

both for the study of fundamental properties of quantum fluids and, thanks to their

high degree of experimental control and tunability, also in view of the future real-

ization of atomic-based quantum devices e.g. in the field of quantum computation.

In particular, we have studied the behaviour of these systems for various regimes of

interaction strengths between the particles. In order to do so, we have applied a com-

bination of several theoretical techniques, based on different approximations valid

in different physical regimes, such as the mean-field Gross-Pitaevskii desprition for

weak interactions, the Luttinger liquid effective theory for strong interactions, the

Tonks-Girardeau exact solution in the infinitely strong interactions limit and numer-

ical simulations based on density-matrix renormalization group and exact diagonal-

ization algorithms in the intermediate regimes. In particular we have focused on the

interplay of effects arising from the presence in such systems of interactions, quantum

fluctuations and localized potential barriers, whose contributions are all enhanced in

1D compared to higher-dimensions.

In the second chapter of the thesis I have presented our study of the persistent cur-

rents phenomenon for interacting 1D bosons on a ring trap. The current is induced

as a consequence of the Aharonov-Bohm effect by the presence of a rotating barrier

potential, as in recent experiments with atomic condensates stirred by a laser beam

on toroidal confinements. We provide a complete characterization of the persistent

current for a ring of mesoscopic size and particle number, in all the interaction and

barrier strength regimes. In particular, we disclose the presence of an optimal regime,

for intermediate interaction strength, in which the amplitude of the persistent current

is maximal. This is due to a non-monotonic screening effect of the barrier by the fluid,

due to the competition between the tendency of a classical bosonic field to screen the
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barrier more and more as interactions are increased, and the effect of quantum fluc-

tuations that screen the barrier less and less going towards the strongly correlated

regime. Furthermore, we have studied the scaling properties of the persistent cur-

rent amplitude with the system size. Despite the fact that the persistent current is

overall a mesoscopic phenomenon, which vanishes for an infinite system in the ther-

modynamic limit, we have found that the scaling of the current amplitude depends

also non-monotonically on the interaction strength, displaying an optimal regime for

intermediate interactions in which the persistent current amplitude decreases slower

with the system size than for very large or very small interaction strengths.

In the third chapter I have presented our study of a system of bosonic atoms loaded

in a ring-shaped 1D optical lattice, in the presence of a localized potential barrier, and

an artificial gauge potential inducing a persistent current. This system represents an

ultracold atoms analogue of the rf-SQUID, namely an atomtronic quantum interfer-

ence device (AQUID), which is currently under investigation for the realization of

flux-qubits based on the superpositions of circulation states. We have performed a

systematic analysis of this system in order to identify the best parameter regime for

the realization and addressability of a flux-qubit. In particular, we have studied the

resolution of the qubit, the scaling properties of its energy gap, and its detectability

from time-of-flight measurements of the momentum distribution. This allowed us to

identify the regime of mesoscopic size (tens of lattice sites) for a sufficiently corre-

lated gas in the presence of a weak barrier as the best suited for the resolution and

addressability of the qubit with a sufficient number of particles for experimental im-

plementations. At the same time, the best regime for the detection of the superposi-

tion of circulation states through the momentum distribution corresponds to the case

in which the barrier is less screened by the bosonic fluid.

In the fourth chapter I have presented our study of an interacting, one-dimensional

Bose gas confined in a split trap, obtained by a harmonic potential with a localized

barrier at its center. A sudden quench of the position of the center of the trap in-

duces an oscillation of the center of mass of the gas across the barrier, thus realizing

a particular type of quantum transport phenomena. We have studied how the main

frequency of this dipole excitation depends on the interaction strength between the

particles for a mesoscopic system of a finite number of particles, thus obtaining infor-

mation on the effective barrier seen by the fluid. Furthermore, we disclosed a peculiar

parity dependence of the dipole frequency in the strongly correlated regime, due to

the combination of fermionic transport properties of the Bose gas and the harmonic

trap geometry.
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As a recurring theme in all these systems, we have disclosed the important effects

of screening and renormalization of localized potential barriers in a 1D bosonic sys-

tem, due to the combination of the effects of interparticle interactions and quantum

fluctuations. The presence of this screening, and in particular of a regime unknown

so-far for intermediate interaction strength where it is maximized, has important con-

sequences for the physics of the systems we have considered, affecting various physi-

cal observables, both at- and out-of-equilibrium. This behaviour needs to be taken into

account in the design of future atomtronic quantum devices. Lastly, this phenomenon

is very general, and we expect it to have an impact also on different situations from

those considered by us, such as in the study of the motion of localized impurities

through quantum fluids, just to cite one example.

Most of the problems considered in this thesis allow for a number of possible de-

velopments. Concerning the persistent currents it would be interesting to study via

time-dependent exact solutions and DMRG simulations the effect on the current dy-

namics of an out-of-equilibrium and time-dependent driving of the barrier potential.

In this way realistic experimental protocols of state preparation and setting into mo-

tion of the system could be fully taken into account. The study of the flux-qubit could

be completed by further investigations of the superposition of circulations states, for

instance by quantifying the amount of entanglement of the superposition. Also, in

view of quantum computation applications, the effect of decoherence due to particle

losses and the sensitivity to experimental inaccuracies should be analysed in detail.

Regarding the dipole excitations, it would be interesting to study damping effects in

the system dynamics, which can be induced by large displacement of the trap and by

the presence of anharmonicities accounting for phonon interactions.

In my opinion, in the next years the experimental progress in the micro-fabrication

of optical circuits for ultracold gases will lead to a boost in the development of quan-

tum technologies, which are currently advancing towards realistic applications e.g.

in the fields of quantum metrology and quantum information, and will provide the

most accurate platform to investigate fundamental aspects of quantum many-body

theory. From the technological point of view, the coupling of several atomtronics cir-

cuits like the ones considered in this thesis opens for the possibility to build coupled-

qubit systems and quantum logic gates. From a fundamental point of view, these sys-

tems provide a clean quantum simulator for investigating the features of macroscopic

quantum superposition states such as Scrödinger-cat-like states, and their quantum

information properties. Furthermore, the study of the dimensional crossover of these

systems, from 1D to higher dimensions, should help us to better understand super-

fluid properties of quantum fluids, and the microscopic mechanisms of formations
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of phase slips and vortex excitations. As it has always been the case in science, the

understanding of natural phenomena and the technological progress arise from the

cross-fertilization between fundamental and applied research. The fields of ultracold

gases and atomtronics are nowadays among the most promising ones in this sense.
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Conclusion

Dans cette thèse, j’ai présenté notre étude de quelques systèmes quantiques mésoscopiques

constitués par un gaz de Bose ultrafroid unidimensionnel (1D). Ces systèmes sont intéressants

à la fois pour l’étude des propriétés fondamentales des fluides quantiques et, grâce à leur haut

degré de contrôle expérimental, également en vue de la réalisation future des dispositifs quan-

tiques atomiques dans le domaine du calcul quantique. En particulier, nous avons étudié le

comportement de ces systèmes pour les différents régimes de force d’interaction entre les par-

ticules. Pour ce faire, nous avons appliqué une combinaison de plusieurs techniques théoriques,

sur la base de différentes approximations valides dans différents régimes physiques, telles que

la description de Gross-Pitaevskii en champ moyen pour les interactions faibles, la théorie effec-

tive du liquide de Luttinger pour les interactions fortes, la solution exacte de Tonks-Girardeau

dans la limite des interactions infiniment fortes et des simulations numériques basées sur le

groupe de renormalisation de la matrice densité et des algorithmes de diagonalisation exacte

dans les régimes intermédiaires. En particulier, nous avons mis l’accent sur l’interaction des

effets liés à la présence dans ces systèmes d’interactions entre les particules, des fluctuations

quantiques et des barrières de potentiel localisées, dont les contributions sont toutes amplifiées

en 1D par rapport aux dimensions supérieures.

Comme thème récurrent dans tous ces systèmes, nous avons décrit les effets importants de

l’écrantage et de renormalisation des barrières de potentiel localisées dans un système de bosons

1D, en raison de la combinaison des effets des interactions entre les particules et des fluctua-

tions quantiques. La présence de cet écrantage, et en particulier d’un régime inconnu jusqu’à

maintenant où il est maximisé, pour une force d’interaction intermédiaire, a des conséquences

très importantes pour la physique des systèmes que nous avons examinés, affectant diverses

observables physiques, à la fois à l’équilibre et hors-équilibre. Cette propriété doit être prise en

compte dans la conception des futurs dispositifs quantiques atomiques.

La plupart des problèmes considérés dans cette thèse permettent un certain nombre de

développements possibles. En ce qui concerne les courants permanents, il serait intéressant

d’étudier l’effet sur la dynamique d’un mouvement hors d’équilibre et dépendant du temps de

la barrière de potentiel. L’étude du qubit de flux pourrait être complétée par d’autres recherches

sur la nature des états de superposition de circulation. Aussi, en vue d’applications au calcul

quantique, l’effet de la décoherence en raison de pertes des particules et de la sensibilité à aux

inexactitudes expérimentales doivent être analysés en détail. En ce qui concerne les excita-

tions dipolaires, il serait intéressant d’étudier les effets d’amortissement sur la dynamique du

système.
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Appendix A

Soliton solution of the

Gross-Pitaevskii equation with a

rotating barrier

I
N this Appendix I detail the derivation of the analytical soliton-like solution of

the Gross-Pitaevskii (GP) equation (2.18). We first recast the GP equation in di-

mensionless form by introducing Φ̃(θ) =
√

L/2πΦ(2πx/L), µ̃ = mL2µ/(2π2
!
2) and

g̃ = gmNL/(π!2), and take θ ∈ [0, 2π]. A parametrization of the condensate wave-

function in density-phase representation Φ̃(θ) = f(θ)eiφ(θ) yields

−f ′′ + f(φ′)2 − 2Ωfφ′ + (Ω2 − µ̃+ g̃f2)f = 0 , (A.1)

−2f ′φ′ − fφ′′ + 2Ωf ′ = 0 . (A.2)

The effect of the delta barrier is replaced by the cusp condition f ′(0+) − f ′(0−) =

λf(0), where λ = mU0L/π!
2, which assuming a symmetric cusp f ′(0+) = −f ′(0−)

and introducing the density s = f2 reads s′(0+) = λs(0). We first integrate Eq. (A.2)

to obtain φ′,

φ′ =
C

f2
+ Ω , (A.3)

where C is an integration constant. Substituting this result into Eq. (A.1) we get−f ′′+
C2/f3 + (g̃f2 − µ̃)f = 0 , which, upon integration and change of variables, yields

s′2 = −4C2 + 2g̃s3 − 4µ̃s2 + 4As, A being an integration constant. Introducing the

potential U(s) = 2C2 − 2As+ 2µ̃s2 − g̃s3, we see that the problem is equivalent to the

one of a classical particle of unitary mass with position s and velocity s′ having zero

total energy. Denoting U(s) = −g̃(s − s1)(s − s2)(s − s3) = 0 with s1 ≤ s2 ≤ s3, an
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allowed trajectory is possible in the interval s1 < s < s2 if A > 0. In the presence of the

barrier, in order to satisfy the the cusp condition, the soliton trajectory starts at initial

position smin > s1. The soliton is then found upon integration,

s(θ)
∫

smin

ds′
√

−2U(s′)
=

θ
∫

0

dθ′ = θ (A.4)

Introducing the change of variable y2 = (s− s1)/(s2 − s1), the integral corresponds to

the Jacobi elliptic function sn(u|m) with m = (s2−s1)/(s3−s1). By imposing periodic

boundary conditions for the condensate density (i.e., requiring that at half-period the

soliton solution reaches its maximum value s = s2), we find π
√

g̃(s3 − s1)/2 + α = K

and

s(θ) = s1 + (s2 − s1)sn2[(K − α)θ/π + α]. (A.5)

Here α = F [arcsin(
√

(smin − s1)/(s2 − s1))|m], with F [φ|m] being the incomplete el-

liptic integral of the first kind, and K is the corresponding complete elliptic integral.

Imposing the normalization condition
∫ 2π
0 dθs(θ) = 1 we obtain

2πs1 + 4(K − α)(K − α− E + α′)/(πg̃) = 1, (A.6)

where E[φ|m] and E are respectively the incomplete and complete elliptic integrals of

the second kind, and α′ = E[arcsin(
√

(smin − s1)/(s2 − s1))|m] . Substituting Eq. (A.5)

for s in equation s′2 = −2U(s) and equating the terms with the same power of sn,

yields the following parameter identification:

µ̃ = 3g̃s1/2 + (1 +m)[(K − α)/π]2 ; (A.7)

A = 2µ̃s1 − 3g̃s21/2− 2m[(K − α)/π]4/g̃ ; (A.8)

C2 = As1 − µ̃s21 + g̃s31/2 . (A.9)

Finally, the cusp condition yields an equation for smin,

λsmin =
√

−2U(smin). (A.10)

Equations (A.7 – A.10) form a coupled set of equations which can be solved as a func-

tion of m and smin.

Using Eqs. (A.3) and (A.5), we then obtain the solution for the phase of the soliton
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solution:

φ(θ) = C
Π[(s1 − s2)/s1; (K − α)θ/π +K|m]−Π[(s1 − s2)/s1;α|m]

(K − α)s1
+ Ω(θ + π) ,

(A.11)

where Π[n;u|m] is the incomplete elliptic integral of the third kind.

Imposing 2π-periodicity of the condensate wave function, integration of Eq. (A.3)

yields 2πn =
π
∫

−π

dθC
s + 2πΩ, hence

2π(n− Ω)
C

= 2π(Π[(s1 − s2)/s1;K|m]− Π[(s1 − s2)/s1;α|m])

(K − α)s1
. (A.12)

In summary, we find the soliton solution according to the following strategy: for

given values of the interaction constant g̃, the barrier strength λ and the Coriolis flux

Ω, we express s1, s2 and s3 (hence µ̃, A, and C) as a function of m and smin, then solve

simultaneously Eq. (A.10) and the one obtained after equating Eqs. (A.12) and (A.9).

This uniquely fixes m and smin, and hence the entire soliton solution.
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Appendix B

One-body density matrix for

hard-core bosons on a lattice

I
N this Appendix I present the exact approach that I have pursued to calculate the

one-body density matrix g
(1)
l,j = 〈b†l bj〉 for hard-core bosons in a one-dimensional

lattice. I have used this method in Chap. 3 to calculate the momentum distribution

according to Eq. (3.8).

The method follows the scheme presented in [145]. Applying the Jordan-Wigner

mapping, Eq. (3.3) (see Sec. 3.2.1) the one-particle Green’s function for the hard-core

bosons can be written in the form

Gl,j = 〈ΨB|blb
†
j |ΨB〉 = 〈ΨF |

l−1
∏

β=1

eiπf
†
β
fβflf

†
j

j−1
∏

γ=1

e−iπf†
γfγflf

†
j |ΨF 〉 ≡ 〈ΨA

F |Ψ
B
F 〉 , (B.1)

where |ΨB〉 is the hard-core bosonic ground-state, |ΨF 〉 is the equivalent noninteract-

ing fermionic ground-state, and we have denoted

〈ΨA
F | =



f †l

l−1
∏

β=1

e−iπf†
β
fβ |ΨF 〉





†

, |ΨB
F 〉 = f †j

j−1
∏

γ=1

e−iπf†
γfγ |ΨF 〉 . (B.2)

The ground-state of the equivalent noninteracting fermionic system can be obtained

diagonalizing Hamiltonian (3.4), and can be recast in the form

|ΨF 〉 =
N
∏

δ=1

M
∑

σ=1

Pσ,δf
†
σ|0〉 , (B.3)

with N the number of particles, M the number of lattice sites, |0〉 the vacuum state,
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and the matrix components Pσ,δ are given by the N lowest eigenstates of Hamilto-

nian (3.4).

In order to calculate |ΨA
F 〉, and |ΨB

F 〉, we first observe that

l−1
∏

β=1

e−iπf†
β
fβ =

l−1
∏

β=1

[1− 2f †βfβ ] , (B.4)

then, the action of
∏l−1

β=1 e
−iπf†

β
fβ on the fermionic ground-state given by Eq. (B.3)

implies only a change of sign of the elements Pσ,δ for σ " l − 1, and the creation of a

particle at site l implies the addition of one column to the matrix P , with the element

Pl,N+1 = 1 and all the others equal to zero. Thus, |ΨA
F 〉, and |ΨB

F 〉 can be rewritten as

|ΨA,B
F 〉 =

N+1
∏

δ=1

M
∑

σ=1

PA,B
σ,δ f †σ|0〉 , (B.5)

where the matrices PA,B are obtained from P changing the proper signs and adding

the new column N + 1. The Green’s function is then calculated numerically as

Gl,j = 〈ΨA
F |Ψ

B
F 〉 = 〈0|

N+1
∏

δ=1

M
∑

σ=1

PA
σ,δfσ

N+1
∏

δ′=1

M
∑

σ′=1

PB
σ′,δ′f

†
σ′ |0〉 , (B.6)

and the one-particle density matrix is thus obtained as g
(1)
l,j = (Gl,j)

†.
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Momentum distribution of a

superposition of circulation

states in the non-interacting limit

I
N this Appendix I detail the derivation of the momentum distribution, defined by

Eq. (3.7) for the ground state of the continuum Hamiltonian (2.1), in the non-

interacting regime. In this case the many-body problem reduces to a single-particle

one, and in the absence of the barrier the Schrödinger equation, in polar coordinates

and scaling the energies in units of E0 = 2π2
!
2/mL2, with m being the particle mass,

and L the system size, reads

(

−i ∂
∂θ
− Ω

)2

ψ(θ) = Eψ(θ) , (C.1)

where θ ∈ [0, 2π]. The wave function for a state with defined circulation is a plane

wave ψ(θ) = (1/
√
2π)einθ, where n ∈ Z to satisfy periodic boundary conditions, and

the corresponding spectrum is En = (n−Ω)2. The momentum distribution then reads

n(k) =

∫

dx

∫

dx′eik·(x−x′)ψ∗(x)ψ(x′)

∼
∣

∣

∣

∣

∫ 2π

0
dθ ei(kxR cos θ+kyR sin θ)ψ∗(θ)

∣

∣

∣

∣

2

=
∣

∣einγJn(|k|R)
∣

∣

2
= |Jn(|k|R)|

2 , (C.2)

where R = L/2π is the ring radius, we have defined γ as kx = |k| sin γ, ky = |k| cos γ,

and Jn is the n-th order Bessel function of the first kind. For n = 0 the momentum
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non-interacting limit

Figure C.1: Weights | sin(ϕ/2)|2 and | cos(ϕ/2)|2 of the n = 0 and n = 1
circulation states in the superposition Eq. (C.8) as a function of the flux Ω, for
different values of the dimensionless barrier strength λ,

distribution is peaked at k = 0, while for n > 0 it is ring shaped, with a radius that

grows with n.

In the presence of a localized barrier of strength λ the Schrödinger equation be-

comes
(

−i ∂
∂θ
− Ω

)2

ψ(θ) + λδ(θ)ψ(θ) = Eψ(θ) . (C.3)

The effect of the δ-barrier is to mix states with different circulation states. For a small

barrier we can reduce to the simplest case of mixing of states that differ by just one

quantum of angular momentum, and apply degenerate perturbation theory. We write

the Hamiltonian in the following form

H =

(

En λ/2π

λ/2π En+1

)

; (C.4)

the corresponding eigenvalues and eigenvectors reads:

ǫ1,2 =
En+1 + En

2
±

√

δE2 + λ2/π2

2
, (C.5)

where δE = En+1 − En, and

w1 =

(

sin(ϕ/2)

cos(ϕ/2)

)

, w2 =

(

cos(ϕ/2)

− sin(ϕ/2)

)

, (C.6)

where

cos2(ϕ/2) =

√

δE2 + λ2/π2 − δE

2
√

δE2 + λ2/π2
. (C.7)
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We then write the wave function as

ψ(θ) =
1√
2π

sin(ϕ/2)einθ +
1√
2π

cos(ϕ/2)ei(n+1)θ , (C.8)

where ϕ depends on λ and Ω.

The momentum distribution in this case becomes

n(k) ∼
∣

∣

∣

∣

∫ 2π

0
dθ ei(kxR cos θ+kyR sin θ)ψ∗(θ)

∣

∣

∣

∣

2

=
∣

∣

∣ sin(ϕ/2)einγJn(|k|R) + cos(ϕ/2)ei(n+1)γJn+1(|k|R)
∣

∣

∣

2

= sin2(ϕ/2)J2
n(|k|R) + cos2(ϕ/2)J2

n+1(|k|R)

+2 sin(ϕ/2) cos(ϕ/2) cos(γ)Jn(|k|R)Jn+1(|k|R) , (C.9)

where an interference term, proportional to cos γ, appears between the two states with

defined angular momentum, giving rise to a 2π-periodic angular modulation of the

ring shape found previously. This behaviour is the same found in Fig. 3.9, where we

observe an analogous modulation in the weak barrier and weak interaction case, that

we can interpret than as direct consequence of the superposition of two stated that

differ by one quantum of angular momentum.

Finally, in Fig. C.2 I show a comparison between the momentum distribution for

the model on a lattice (Hamiltonian (3.1)) and the continuum one (Hamiltonian (2.1)).

The main difference arising in the momentum distribution, is due to the product with

Figure C.2: Comparison between the momentum distribution of model on
a lattice (Hamiltonian (3.1)) for M = 11 and the continuum one (Hamilto-
nian (2.1)) for different values of the flux Ω.



112
App. C – Momentum distribution of a superposition of circulation states in the

non-interacting limit

the Fourier transform of the Wannier function in the lattice case, see Eq. (3.8). This,

however, being the Fourier transform of a very localized function in real space (the

Wannier function) is a very slow-decaying function in k-space, that doesn’t change

the shape of the momentum distribution at low momenta. Also the effect of the dis-

cretization of space in the model on a lattice is visible only for very large momenta,

see Fig C.2. The momentum distribution in the continuum and lattice model have thus

the same qualitative form, and we can for simplicity consider the continuum model to

obtain some analytical insight also for the model on a lattice.
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[139] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt,

M. Lewenstein, K. Sengstock, and P. Windpassinger. Tunable Gauge Potential

for Neutral and Spinless Particles in Driven Optical Lattices. Phys. Rev. Lett.,

108, 225304, 2012.

[140] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and

I. Bloch. Direct measurement of the Zak phase in topological Bloch bands. Nat.

Phys., 9, 795, 2013.

[141] M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher. Boson localization

and the superfluid-insulator transition. Phys. Rev. B, 40, 546, 1989.

[142] M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch, and I. Bloch. Quantum phase
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[152] O. M. Maragò, S. A. Hopkins, J. Arlt, E. Hodby, G. Hechenblaikner, and C. J.

Foot. Observation of the Scissors Mode and Evidence for Superfluidity of a

Trapped Bose-Einstein Condensed Gas. Phys. Rev. Lett., 84, 2056, 2000.

[153] C. Fort, F. S. Cataliotti, L. Fallani, F. Ferlaino, P. Maddaloni, and M. Inguscio.

Collective Excitations of a Trapped Bose-Einstein Condensate in the Presence of

a 1D Optical Lattice. Phys. Rev. Lett., 90, 140405, 2003.
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