Skip to Main content Skip to Navigation

Thermoelectric phenomena in superconducting nanostructures

Abstract : The aim of my Ph.D. thesis is to study theoretically the thermoelectric phenomena occurring in some superconducting nanostructures which are the object of various research lines in condensed matter physics. Specifically, we focus on four different devices based on superconductors and insulating tunnel barriers where both charge and heat transport are governed by the quantum tunneling effect. We start by considering a voltage-biased Normal metal-Insulator-Superconductor (N-I-S) tunnel junction. No single-particle current is expected to flow in this circuit when the applied voltage is below the superconducting energy gap of S. However, in real experiments, a subgap leakage current is observed in the current-voltage (I-V) characteristic of this device, even at very low temperatures. We show that the absorption of photons from the high-temperature electromagnetic environment connected to the junction is a possible origin of the single-particle tunneling below the gap. We first consider a N-I-S junction directly coupled to the environment. Then we focus on a circuit where a low-temperature lossy transmission line is inserted between them. For both these circuits, we analyze analytically and numerically the subgap leakage current. We find, in particular, that it is exponentially suppressed as the length and the resistance per unit length of the line are increased. Then, we go beyond the single N-I-S junction considering a hybrid single-electron transistor (SET) constituted by a gate-controlled normal-metal island (N) connected to two voltage-biased superconducting leads (S) by means of two tunnel junctions (S-I-N-I-S). A controlled single-electron current flows between the two superconductors by properly changing in time the gate potential of N. In principle, the Andreev reflection, i.e., the tunneling of two electrons from N to S can be ideally suppressed when the charging energy of N is larger than the energy gap of S. Actually, in real experiments, this two-particle tunneling process also contributes to the total current through the SET. We show that the exchange of photons between the S-I-N-I-S device and the high-temperature electromagnetic environment where it is embedded makes the Andreev reflection energetically possible. We discuss how this effect limits the single-electron tunneling accuracy needed for metrological applications. Next, we focus on the thermodynamical features of the superconductor-based tunnel junctions. We first consider the well-known electronic cooling capabilities of the S1-I-N-I-S1 and S2-I-S1-I-S2 double-junction devices, where S2 and S1 are superconductors with different energy gaps. Then, we study the design and operation of an electronic nanorefrigerator based on a combination of these two structures, i.e., a cascade cooler. We show numerically that a normal-metal island can be cooled down to about 100 mK starting from a bath temperature of 500 mK. We discuss the practical implementation, potential performance and limitations of such a device. Finally, we consider the dynamics of a quantum phase-slip junction (QPSJ) connected to a microwave source. With respect to an ordinary Josephson junction, a QPSJ can sustain dual Shapiro steps, consisting of well-defined current plateaus at multiple integers of the microwave frequency in the I-V characteristic. Their experimental observation has been elusive up to now. We argue that thermal and quantum fluctuations can smear the I-V curve considerably. To understand these effects, we determine the I-V characteristic of a current-biased QPSJ under microwave irradiation and connected to an inductive and resistive environment. We find that the effect of these fluctuations is governed by the resistance of the environment and by the ratio of the phase-slip energy and the inductive energy. Our results are of interest for experiments aimed at the observation of dual Shapiro steps in QPSJ devices for the definition of the quantum current standard.
Complete list of metadatas

Cited literature [104 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Wednesday, January 17, 2018 - 3:44:06 PM
Last modification on : Wednesday, July 15, 2020 - 9:58:03 AM
Long-term archiving on: : Tuesday, May 8, 2018 - 12:50:38 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01686644, version 1




Angelo Di Marco. Thermoelectric phenomena in superconducting nanostructures. Materials Science [cond-mat.mtrl-sci]. Université Grenoble Alpes, 2015. English. ⟨NNT : 2015GREAY099⟩. ⟨tel-01686644⟩



Record views


Files downloads