?. Decay-rate, Data refer to the passive systems of reference , without bacteria. The dashed line represents the linear fit ? = Dq 2 for the diffusion of passive colloids in the dilute system at ? = 0

.. From-springer, O systems displaying the phase-separation temperature (T s ) boundaries as a function of the lutidine (or 3MP) concentration (C L ). T C and C C are, respectively, the critical temperature (LCST) and the critical concentrations. Both 3MP and lutidine water-mixture exhibit the same features. The boxes of the left are sketches of the colloidal distribution in three different areas: a stable suspension in the 1-phase region (bottom), clusters in the aggregation region (centre ) and stable, fragmented-clusters redispersed into the lutidine-rich (or 3MP- rich) phase upon phase separation (top), p.125

T. Vicsek, A. Czirók, E. Ben-jacob, I. Cohen, and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Physical Review Letters, vol.1, issue.6, p.1226, 1995.
DOI : 10.1142/S0218348X93000320

I. Theurkauff, C. Cottin-bizonne, J. Palacci, C. Ybert, and L. Bocquet, Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling, Physical Review Letters, vol.108, issue.26, pp.268303-2012
DOI : 10.1209/epl/i2003-10237-5

URL : https://hal.archives-ouvertes.fr/hal-01628778

D. Beysens and D. Estève, Adsorption Phenomena at the Surface of Silica Spheres in a Binary Liquid Mixture, Physical Review Letters, vol.52, issue.19, pp.2123-2126, 1985.
DOI : 10.1103/PhysRevLett.52.2371

W. B. Russell, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions, 1989.
DOI : 10.1017/CBO9780511608810

D. F. Evans and H. Wennerström, The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 1999.

J. N. Israelachvili, Intermolecular and Surface Forces, 2011.

G. Popkin, The physics of life, Nature, vol.529, issue.7584, pp.52916-52934, 2016.
DOI : 10.1038/529016a

J. Toner, Y. Tu, and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics, vol.318, issue.1, pp.170-244, 2005.
DOI : 10.1016/j.aop.2005.04.011

A. Ramaswamy and H. Stark, The mechanics and statistics of active matter. arXiv, preprint arXiv:1004, 1933.

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, vol.517, issue.3-4, pp.71-140, 2012.
DOI : 10.1016/j.physrep.2012.03.004

M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost et al., Hydrodynamics of soft active matter, Reviews of Modern Physics, vol.109, issue.3, pp.1143-1189, 2013.
DOI : 10.1140/epje/i2005-10029-3

C. Bechinger, R. Di-leonardo, H. Löwen, C. Reichhardt, G. Volpe et al., Active Brownian particles in complex and crowded environments, 2016.

A. Zöttl and H. Stark, Emergent behavior in active colloids, Journal of Physics: Condensed Matter, vol.28, issue.25, p.253001, 2016.
DOI : 10.1088/0953-8984/28/25/253001

H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking, Nature, vol.90, issue.5374, pp.500-504, 1972.
DOI : 10.1038/239500a0

P. G. De-gennes, Soft matter, Reviews of Modern Physics, vol.2, issue.3, pp.645-648, 1992.
DOI : 10.1209/0295-5075/2/7/005

P. Van-vaerenbergh, J. Léonardon, M. Sztucki, P. Boesecke, J. Gorini et al., An upgrade beamline for combined wide, small and ultra small-angle x-ray scattering at the ESRF, AIP Conference Proceedings, p.30034, 2016.
DOI : 10.1107/S0909049508008960

C. N. Likos, Effective interactions in soft condensed matter physics, Physics Reports, vol.348, issue.4-5, pp.267-439, 2001.
DOI : 10.1016/S0370-1573(00)00141-1

X. Bian, C. Kim, and G. E. Karniadakis, 111 years of Brownian motion, Soft Matter, vol.74, issue.20, pp.6331-6346, 2016.
DOI : 10.1103/PhysRevE.74.031402

B. J. Berne and R. Pecora, Dynamic Light Scattering with applications to Chemistry, Biology and Physics, 1976.

L. Belloni, Colloidal interactions, Journal of Physics: Condensed Matter, vol.12, issue.46, pp.549-587, 2000.
DOI : 10.1088/0953-8984/12/46/201

W. Stöber, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, vol.26, issue.1, pp.62-69, 1968.
DOI : 10.1016/0021-9797(68)90272-5

G. Frens, Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions, Nature Physical Science, vol.241, issue.105, pp.20-22, 1973.
DOI : 10.1038/physci241020a0

T. Narayanan, M. Sztucki, G. Belina, and F. Pignon, Microstructure and Rheology near an Attractive Colloidal Glass Transition, Physical Review Letters, vol.96, issue.25, p.258301, 2006.
DOI : 10.1103/PhysRevE.58.738

URL : https://hal.archives-ouvertes.fr/hal-00341493

H. N. Lekkerkerker and R. Tuinier, Colloids and the Depletion Interaction, 2011.
DOI : 10.1007/978-94-007-1223-2

S. Asakura and F. Oosawa, On Interaction between Two Bodies Immersed in a Solution of Macromolecules, The Journal of Chemical Physics, vol.12, issue.7, pp.1255-1256, 1954.
DOI : 10.1063/1.1724036

J. Adler and M. M. Dahl, A Method for Measuring the Motility of Bacteria and for Comparing Random and Non-random Motility, Journal of General Microbiology, vol.46, issue.2, pp.161-173, 1967.
DOI : 10.1099/00221287-46-2-161

J. Adler and B. Templeton, The Effect of Environmental Conditions on the Motility of Escherichia coli, Journal of General Microbiology, vol.46, issue.2, pp.175-184, 1967.
DOI : 10.1099/00221287-46-2-175

J. Saragosti, P. Silberzan, and A. Buguin, Modeling E. coli Tumbles by Rotational Diffusion. Implications for Chemotaxis, PLoS ONE, vol.73, issue.11, p.35412, 2012.
DOI : 10.1371/journal.pone.0035412.s001

H. Salman, A. Zilman, C. Loverdo, M. Jeffroy, and A. Libchaber, Solitary Modes of Bacterial Culture in a Temperature Gradient, Physical Review Letters, vol.112, issue.11, p.118101, 2006.
DOI : 10.1038/239500a0

W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St et al., Catalytic nanomotors: Autonomous movement of striped nanorods, Journal of the American Chemical Society, issue.41, pp.12613424-13431, 2004.

R. Golestanian, T. B. Liverpool, and A. Ajdari, Propulsion of a Molecular Machine by Asymmetric Distribution of Reaction Products, Physical Review Letters, vol.24, issue.22, p.220801, 2005.
DOI : 10.1017/S0033583500003735

W. F. Paxton, A. Sen, and T. E. Mallouk, Motility of Catalytic Nanoparticles through Self-Generated Forces, Chemistry - A European Journal, vol.303, issue.276, pp.6462-6470, 2005.
DOI : 10.1098/rspl.1889.0099

J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh et al., Self-Motile Colloidal Particles: From Directed Propulsion to Random Walk, Physical Review Letters, vol.23, issue.4
DOI : 10.1006/jcat.1997.1754

URL : http://www.brad.ac.uk/library/media/library/documents/bs_deposit_process.pdf

X. Ma, A. Jannasch, U. Albrecht, K. Hahn, A. Miguel-lópez et al., Enzyme-Powered Hollow Mesoporous Janus Nanomotors, Nano Letters, vol.15, issue.10, pp.7043-7050, 2015.
DOI : 10.1021/acs.nanolett.5b03100

URL : http://doi.org/10.1021/acs.nanolett.5b03100

I. Buttinoni, G. Volpe, F. Kümmel, G. Volpe, and C. Bechinger, Active Brownian motion tunable by light, Journal of Physics: Condensed Matter, vol.24, issue.28, pp.284129-2012
DOI : 10.1088/0953-8984/24/28/284129

URL : http://arxiv.org/pdf/1110.2202

A. Würger, Self-Diffusiophoresis of Janus Particles in Near-Critical Mixtures, Physical Review Letters, vol.9, issue.18, pp.188304-2015
DOI : 10.1002/cphc.200600307

S. Samin and R. Van-roij, Self-Propulsion Mechanism of Active Janus Particles in Near-Critical Binary Mixtures, Physical Review Letters, vol.115, issue.18, pp.188305-2015
DOI : 10.1103/PhysRevA.46.2012

T. Narayanan and A. Kumar, Reentrant phase transitions in multicomponent liquid mixtures, Physics Reports, vol.249, issue.3, pp.135-218, 1994.
DOI : 10.1016/0370-1573(94)90015-9

A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat-lami, and E. Duguet, Design and synthesis of Janus micro- and nanoparticles, Journal of Materials Chemistry, vol.33, issue.35-36, pp.35-363745, 2005.
DOI : 10.1039/CC9960000731

URL : https://hal.archives-ouvertes.fr/hal-00096043

T. Chen, G. Chen, S. Xing, T. Wu, and H. Chen, Nanoparticles, Scalable Routes to Janus Au-SiO 2 and Ternary Ag-Au-SiO 2 Nanoparticles, pp.3826-3828, 2010.
DOI : 10.1021/cm101155v

URL : https://hal.archives-ouvertes.fr/hal-01566583

A. Walther and A. H. Müller, Janus Particles: Synthesis, Self-Assembly, Physical Properties, and Applications, Chemical Reviews, vol.113, issue.7, pp.5194-5261, 2013.
DOI : 10.1021/cr300089t

R. Golestanian, Anomalous Diffusion of Symmetric and Asymmetric Active Colloids, Physical Review Letters, vol.23, issue.18, p.188305, 2009.
DOI : 10.1073/pnas.052015699

X. Zheng, B. Hagen, A. Kaiser, M. Wu, H. Cui et al., Non-Gaussian statistics for the motion of self-propelled Janus particles: Experiment versus theory, Physical Review E, vol.88, issue.3, pp.32304-2013
DOI : 10.1088/0034-4885/72/9/096601

J. G. Gibbs and Y. Zhao, Autonomously motile catalytic nanomotors by bubble propulsion, Applied Physics Letters, vol.94, issue.16, p.163104, 2009.
DOI : 10.1063/1.2964110

A. Brown and W. Poon, Ionic effects in self-propelled Pt-coated Janus swimmers, Soft Matter, vol.83, issue.22, pp.4016-4027, 2014.
DOI : 10.1039/f29878301287

A. L. Thorneywork, R. E. Rozas, R. P. Dullens, and J. Horbach, Effect of Hydrodynamic Interactions on Self-Diffusion of Quasi-Two-Dimensional Colloidal Hard Spheres, Physical Review Letters, vol.115, issue.26, pp.268301-2015
DOI : 10.1103/PhysRevA.40.3817

C. Dombrowski, L. H. Cisneros, S. Chatkaew, R. E. Goldstein, and J. O. Kessler, Self-Concentration and Large-Scale Coherence in Bacterial Dynamics, Physical Review Letters, vol.30, issue.9, p.98103, 2004.
DOI : 10.1016/0022-5193(71)90050-6

URL : https://hal.archives-ouvertes.fr/hal-00014870

A. Sokolov, I. S. Aranson, J. O. Kessler, and R. E. Goldstein, Concentration Dependence of the Collective Dynamics of Swimming Bacteria, Physical Review Letters, vol.145, issue.15, p.98158102, 2007.
DOI : 10.1016/0022-5193(71)90050-6

A. Sokolov and I. S. Aranson, Physical Properties of Collective Motion in Suspensions of Bacteria, Physical Review Letters, vol.1, issue.24, pp.248109-2012
DOI : 10.1119/1.10903

F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-andersen, A. Deutsch et al., Collective Motion and Nonequilibrium Cluster Formation in Colonies of Gliding Bacteria, Physical Review Letters, vol.108, issue.9, pp.98102-2012
DOI : 10.1103/PhysRevLett.78.5018

URL : https://hal.archives-ouvertes.fr/hal-00905217

J. Bialké, T. Speck, and H. Löwen, Active colloidal suspensions: Clustering and phase behavior, Journal of Non-Crystalline Solids, vol.407, pp.367-375, 2015.
DOI : 10.1016/j.jnoncrysol.2014.08.011

O. Pohl and H. Stark, Dynamic Clustering and Chemotactic Collapse of Self-Phoretic Active Particles, Physical Review Letters, vol.112, issue.23, pp.238303-2014
DOI : 10.1088/1367-2630/15/6/065009

M. E. Cates and J. Tailleur, When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation, EPL (Europhysics Letters), vol.101, issue.2, 2013.
DOI : 10.1209/0295-5075/101/20010

URL : https://hal.archives-ouvertes.fr/hal-00903637

J. Stenhammar, D. Marenduzzo, R. J. Allen, and M. E. Cates, Phase behaviour of active Brownian particles: the role of dimensionality, Soft Matter, vol.440, issue.10, pp.1489-1499, 2014.
DOI : 10.1017/S0022112001004682

A. P. Solon, J. Stenhammar, M. E. Cates, Y. Kafri, and J. Tailleur, Generalized Thermodynamics of Phase Equilibria in Scalar Active Matter, 2016.

R. Soto and R. Golestanian, Self-Assembly of Catalytically Active Colloidal Molecules: Tailoring Activity Through Surface Chemistry, Physical Review Letters, vol.9, issue.6, pp.68301-2014
DOI : 10.1063/1.881812

G. S. Redner, A. Baskaran, and M. F. Hagan, Reentrant phase behavior in active colloids with attraction, Physical Review E, vol.88, issue.1, pp.12305-2013
DOI : 10.1103/PhysRevE.67.061404

R. M. Navarro and S. M. Fielding, Clustering and phase behaviour of attractive active particles with hydrodynamics, Soft Matter, vol.10, issue.33, pp.7525-7246, 2015.
DOI : 10.1039/C4SM00621F

L. Angelani, Collective Predation and Escape Strategies, Physical Review Letters, vol.2, issue.11, pp.118104-2012
DOI : 10.1016/S0003-3472(86)80208-1

X. Wu and A. Libchaber, Particle Diffusion in a Quasi-Two-Dimensional Bacterial Bath, Physical Review Letters, vol.27, issue.13, p.3017, 2000.
DOI : 10.1017/S0022112067000552

J. P. Hernandez-ortiz, C. G. Stoltz, and M. D. Graham, Transport and Collective Dynamics in Suspensions of Confined Swimming Particles, Physical Review Letters, vol.57, issue.20, p.95204501, 2005.
DOI : 10.1038/1981221a0

A. Jepson, V. A. Martinez, J. Schwarz-linek, A. Morozov, and W. C. Poon, Enhanced diffusion of nonswimmers in a three-dimensional bath of motile bacteria, Physical Review E, vol.180, issue.4, pp.41002-2013
DOI : 10.1073/pnas.1019079108

N. Koumakis, A. Lepore, C. Maggi, and R. D. Leonardo, Targeted delivery of colloids by swimming bacteria, Nature Communications, vol.46, p.2588, 2013.
DOI : 10.1099/00221287-46-2-175

K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering, Proceedings of the National Academy of Sciences, pp.10940-10945, 2011.
DOI : 10.1126/science.1125142

J. Hu, M. Yang, G. Gompper, and R. G. Winkler, Modelling the mechanics and hydrodynamics of swimming E. coli, Soft Matter, vol.109, issue.40, pp.7867-7876, 2015.
DOI : 10.1016/1047-8477(92)90063-G

D. Loi, S. Mossa, and L. F. Cugliandolo, Effective temperature of active matter, Physical Review E, vol.77, issue.5, p.51111, 2008.
DOI : 10.1103/PhysRevLett.92.078101

URL : https://hal.archives-ouvertes.fr/hal-00519904

D. Loi, S. Mossa, and L. F. Cugliandolo, Effective temperature of active complex matter, Soft Matter, vol.315, issue.8, pp.3726-3729, 2011.
DOI : 10.1126/science.1134404

J. Palacci, C. Cottin-bizonne, C. Ybert, and L. Bocquet, Sedimentation and Effective Temperature of Active Colloidal Suspensions, Physical Review Letters, vol.8, issue.8, p.88304, 2010.
DOI : 10.1103/PhysRevLett.102.188305

URL : https://hal.archives-ouvertes.fr/hal-01628773

F. Ginot, I. Theurkauff, D. Levis, C. Ybert, L. Bocquet et al., Nonequilibrium Equation of State in Suspensions of Active Colloids, Physical Review X, vol.18, issue.1, pp.11004-2015
DOI : 10.1017/jfm.2011.132

URL : https://hal.archives-ouvertes.fr/hal-01132427

R. Ni, M. A. Cohen-stuart, M. Dijkstra, and P. G. Bolhuis, Crystallizing hard-sphere glasses by doping with active particles, Soft Matter, vol.365, issue.35, pp.6609-6613, 2014.
DOI : 10.1038/365035a0

URL : http://pubs.rsc.org/en/content/articlepdf/2014/sm/c4sm01015a

M. Lieb, J. J. Weigle, and E. Kellenberger, A study of hybrids between two strains of Escherichia coli, Journal of Bacteriology, vol.69, issue.4, pp.468-471, 1955.

P. Latimer, Light scattering vs. microscopy for measuring average cell size and shape, Biophysical Journal, vol.27, issue.1, pp.117-126, 1979.
DOI : 10.1016/S0006-3495(79)85206-6

N. E. Lonergan, L. D. Britt, and C. J. Sullivan, Immobilizing live Escherichia coli for AFM studies of surface dynamics, Ultramicroscopy, vol.137, pp.30-39
DOI : 10.1016/j.ultramic.2013.10.017

J. A. Hobot, E. Carlemalm, W. Villiger, and E. Kellenberger, Periplasmic Gel: New Concept Resulting from the Reinvestigation of Bacterial Cell Envelope Ultrastructure by New Methods, Journal of Bacteriology, vol.160, issue.1, pp.143-152, 1984.

L. L. Graham, T. J. Beveridge, and N. Nanninga, Periplasmic space and the concept of the periplasm, Trends in Biochemical Sciences, vol.16, issue.9, pp.328-329, 1991.
DOI : 10.1016/0968-0004(91)90135-I

T. J. Beveridge, Structure of Gram-Negative Cell Walls and Their Derived Mebrane Vesicles, Journal of Bacteriology, vol.181, issue.16, pp.4725-4733, 1999.

V. R. Matias, A. , J. Dubochet, and T. J. Beveridge, Cryo-Transmission Electron Microscopy of Frozen-Hydrated Sections of Escherichia coli and Pseudomonas aeruginosa, Journal of Bacteriology, vol.185, issue.20, pp.6112-6118, 2003.
DOI : 10.1128/JB.185.20.6112-6118.2003

L. Angelani, C. Maggi, M. L. Bernardini, A. Rizzo, and R. D. Leonardo, Effective Interactions between Colloidal Particles Suspended in a Bath of Swimming Cells, Physical Review Letters, vol.46, issue.13, p.138302, 2011.
DOI : 10.1103/PhysRevLett.100.218103

T. Narayanan, Synchrotron Small-Angle Scattering, Soft-Matter Characterization, 2008.

T. Narayanan, H. Wacklin, O. Konovalov, and R. Lund, Recent applications of synchrotron radiation and neutrons in the study of soft matter, Crystallography Reviews, vol.8, issue.3, pp.160-226, 2017.
DOI : 10.1107/S2052252515002535

O. Glatter and O. Kratky, Small-Angle X-ray Scattering, 1982.

L. A. Feigin and D. I. Svergun, Structural Analysis by Small-Angle X-ray and Neutron Scattering, 1987.

M. S. Longair, High energy astrophysics Volume 1: Particles, photons and their detection, 1992.

J. Schelten and W. Schmatz, Multiple-scattering treatment for small-angle scattering problems, Journal of Applied Crystallography, vol.13, issue.4, pp.385-390, 1980.
DOI : 10.1107/S0021889880012356

M. A. Kiselev, P. Lesieur, A. M. Kisselev, D. Lombardo, and V. L. Aksenov, Model of separated form factors for unilamellar vesicles, Applied Physics A: Materials Science & Processing, vol.74, issue.0, pp.741654-1656, 2002.
DOI : 10.1007/s003390201837

N. Ku?erka, S. Tristram-nagle, and J. F. Nagle, Structure of Fully Hydrated Fluid Phase Lipid Bilayers with Monounsaturated Chains, Journal of Membrane Biology, vol.70, issue.3, pp.193-202, 2006.
DOI : 10.1016/0304-4157(89)90010-5

N. Ku?erka, M. Nieh, and J. Katsaras, Small-Angle Scattering from Homogenous and Heterogeneous Lipid Bilayers, Advances in planar lipid bilayers and liposomes, 2010.
DOI : 10.1016/B978-0-12-381266-7.00008-0

G. Pabst, N. Ku?erka, M. Nieh, M. C. Rheinstädter, and J. Katsaras, Applications of neutron and X-ray scattering to the study of biologically relevant model membranes, Chemistry and Physics of Lipids, vol.163, issue.6, pp.460-479, 2010.
DOI : 10.1016/j.chemphyslip.2010.03.010

N. Ku?erka, B. W. Holland, C. G. Gray, B. Tomberli, and J. Katsaras, Scattering Density Profile Model of POPG Bilayers As Determined by Molecular Dynamics Simulations and Small-Angle Neutron and X-ray Scattering Experiments, The Journal of Physical Chemistry B, vol.116, issue.1, pp.232-239, 2012.
DOI : 10.1021/jp208920h

D. Marquardt, F. A. Heberle, J. D. Nickels, G. Pabst, and J. Katsaras, On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons, Soft Matter, vol.108, issue.47, pp.9055-9072, 2015.
DOI : 10.1016/j.bpj.2014.11.197

S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-731, 1972.
DOI : 10.1126/science.175.4023.720

G. L. Nicolson, The Fluid???Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1838, issue.6, pp.18381451-1466, 2014.
DOI : 10.1016/j.bbamem.2013.10.019

J. Pencer, S. Krueger, C. P. Adams, and J. Katsaras, Method of separated form factors for polydisperse vesicles, Journal of Applied Crystallography, vol.39, issue.3, pp.293-303, 2006.
DOI : 10.1107/S0021889806005255

T. Foster, Universal Analytical Scattering Form Factor for Shell???, Core???Shell, or Homogeneous Particles with Continuously Variable Density Profile Shape, The Journal of Physical Chemistry B, vol.115, issue.34, pp.10207-10217, 2011.
DOI : 10.1021/jp204136b

C. L. Oliveira, B. B. Gerbelli, E. R. Silva, F. Nallet, L. Navailles et al., Gaussian deconvolution: a useful method for a form-free modeling of scattering data from mono- and multilayered planar systems, Journal of Applied Crystallography, vol.50, issue.6, pp.451278-1286, 2012.
DOI : 10.1103/PhysRevE.50.5047

P. Heftberger, B. Kollmitzer, F. A. Heberle, J. Pan, M. Rappolt et al., Global small-angle X-ray scattering data analysis for multilamellar vesicles: the evolution of the scattering density profile model, Journal of Applied Crystallography, vol.47, issue.1, pp.173-180, 2014.
DOI : 10.1107/S1600576713029798/fs5056sup1.pdf

C. M. Sorensen, Light Scattering by Fractal Aggregates: A Review, Aerosol Science and Technology, vol.35, issue.2, pp.648-687, 2001.
DOI : 10.1080/02786820117868

P. Debye and A. M. Bueche, Scattering by an Inhomogeneous Solid, Journal of Applied Physics, vol.20, issue.6, pp.518-525, 1949.
DOI : 10.1002/andp.19103381612

R. Klein and B. D. Aguanno, Static Scattering Properties of Colloidal Suspensions, Light Scattering: Principles and Development, chapter, 1996.

M. S. Wertheim, Exact Solution of the Percus-Yevick Integral Equation for Hard- Spheres. Physical review letters, pp.321-323, 1963.

E. Thiele, Equation of State for Hard Spheres, The Journal of Chemical Physics, vol.39, issue.2, pp.474-479, 1963.
DOI : 10.1016/0031-8914(62)90058-7

M. S. Wertheim, Analytic Solution of the Percus???Yevick Equation, Journal of Mathematical Physics, vol.17, issue.5, pp.643-651, 1964.
DOI : 10.1017/S0305004100025603

R. V. Sharma and K. C. Sharma, The structure factor and the transport properties of dense fluids having molecules with square well potential, a possible generalization, Physica A: Statistical Mechanics and its Applications, vol.89, issue.1, pp.213-218, 1977.
DOI : 10.1016/0378-4371(77)90151-0

W. Chen, S. Chen, and F. Mallamace, copolymer micellar solutions and its relation to kinetic glass transition, Physical Review E, vol.65, issue.2, p.21403, 2002.
DOI : 10.1103/PhysRevE.65.031407

R. J. Baxter, Percus???Yevick Equation for Hard Spheres with Surface Adhesion, The Journal of Chemical Physics, vol.17, issue.6, pp.2770-2774, 1968.
DOI : 10.1063/1.1761073

Y. Liu, W. Chen, and S. Chen, Cluster formation in two-Yukawa fluids, The Journal of Chemical Physics, vol.46, issue.4, p.44507, 2005.
DOI : 10.1103/PhysRevLett.91.038302

J. P. Hansen and J. B. Hayter, A rescaled MSA structure factor for dilute charged colloidal dispersions, Molecular Physics, vol.56, issue.3, pp.651-656, 1982.
DOI : 10.1063/1.1677784

F. J. Rogers and D. A. Young, New, thermodynamically consistent, integral equation for simple fluids, Physical Review A, vol.28, issue.2, p.999, 1984.
DOI : 10.1103/PhysRevA.28.2990

A. Lopez-rubio and E. P. Gilbert, Neutron scattering: a natural tool for food science and technology research. Trend in Food Science & Technology, pp.11-12576, 2009.

B. Jacrot, The study of biological structures by neutron scattering from solution, Reports on Progress in Physics, vol.39, issue.10, pp.911-953, 1976.
DOI : 10.1088/0034-4885/39/10/001

G. Zaccai, Small-angle neutron scattering, Structure and Dynamics of Biomolecules, chapter 12, 2002.

G. Grübel, A. Madsen, and A. Robert, X-Ray Photon Correlation Spectroscopy (XPCS)
DOI : 10.1007/978-1-4020-4465-6_18

R. L. Leheny, XPCS: Nanoscale motion and rheology. Current Opinion in Colloid and Interface Science, pp.3-12, 2012.
DOI : 10.1016/j.cocis.2011.11.002

J. Möller, Y. Chushkin, S. Prevost, and T. Narayanan, Multi-speckle X-ray photon correlation spectroscopy??in the ultra-small-angle X-ray scattering??range, Journal of Synchrotron Radiation, vol.44, issue.4, pp.929-936, 2016.
DOI : 10.1107/S0021889810053446

M. Sutton, A review of X-ray intensity fluctuation spectroscopy, Comptes Rendus Physique, vol.9, issue.5-6, pp.657-667, 2008.
DOI : 10.1016/j.crhy.2007.04.008

M. S. Longair, High energy astrophysics: Particles, photons and their detection, 1992.

P. J. Duke, Synchrotron Radiation: Production and Properties, 2000.

M. Sztucki and T. Narayanan, Development of an ultra-small-angle X-ray scattering instrument for probing the microstructure and the dynamics of soft matter, Journal of Applied Crystallography, vol.40, issue.s1, pp.40-459, 2007.
DOI : 10.1107/S0021889806045833

A. R. Von-gundlach, V. M. Garamus, T. M. Willey, J. Ilavsky, K. Hilpert et al., Use of small-angle X-ray scattering to resolve intracellular structure changes of Escherichia coli cells induced by antibiotic treatment, Journal of Applied Crystallography, issue.6, pp.492210-2216, 2016.

S. B. Zimmerman and S. O. Trach, Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli, Journal of Molecular Biology, vol.222, issue.3, pp.599-620, 1991.
DOI : 10.1016/0022-2836(91)90499-V

T. Kaneshiro and A. G. Marr, Cis-9,10-Methylene the Phospholipids Hexadecanoic Acid from of Escherichia coli, The Journal of Biological Chemistry, vol.236, issue.10, pp.2615-2619, 1961.

J. E. Cronan and J. , Phospholipid Alterations During Growth of Escherichia coli, Journal of Bacteriology, vol.95, issue.6, pp.2054-2061, 1968.

A. J. De and . Siervo, Alterations in the Phospholipid Composition of Escherichia coli B During Growth at Different Temperatures, Journal of Bacteriology, vol.100, issue.3, pp.1342-1349, 1969.

D. Oursel, C. Loutelier-bourhis, N. Orange, S. Chevalier, V. Norris et al., Lipid composition of membranes ofEscherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization, Rapid Communications in Mass Spectrometry, vol.14, issue.11, pp.1721-1728, 2007.
DOI : 10.1139/o59-099

T. J. Silhavy, D. Kahne, and S. Walker, The Bacterial Cell Envelope, Cold Spring Harbor Perspectives in Biology, vol.2, issue.5, p.414, 2010.
DOI : 10.1101/cshperspect.a000414

A. Zaritsky and C. E. Helmstetter, Rate maintenance of cell division in Escherichia coli B/r: analysis of a simple nutritional shift-down., Journal of Bacteriology, vol.174, issue.24, pp.8152-8155, 1992.
DOI : 10.1128/jb.174.24.8152-8155.1992

D. Pink, J. Moeller, B. Quinn, M. Jericho, and T. Beveridge, On the Architecture of the Gram-Negative Bacterial Murein Sacculus, Journal of Bacteriology, vol.182, issue.20, pp.5925-5930, 2000.
DOI : 10.1128/JB.182.20.5925-5930.2000

L. Gan, S. Chen, and G. J. Jensen, Molecular organization of Gram-negative peptidoglycan, Proceedings of the National Academy of Sciences, pp.18953-18957, 2008.
DOI : 10.1016/j.jsb.2007.08.002

W. Shu, J. Liu, H. Ji, and M. Lu, Core structure of the outer membrane lipoprotein from Escherichia coli at 1.9 ?? resolution 1 1Edited by D. Rees, Journal of Molecular Biology, vol.299, issue.4, pp.1101-1112, 2000.
DOI : 10.1006/jmbi.2000.3776

S. Asakura, G. Eguchi, and T. Iino, Reconstitution of bacterial flagella in vitro, Journal of Molecular Biology, vol.10, issue.1, pp.42-56, 1964.
DOI : 10.1016/S0022-2836(64)80026-7

I. Yamashita, K. Hasegawa, H. Suzuki, F. Vonderviszt, Y. Mimori-kiyosue et al., Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction, Nature Structural Biology, vol.35, issue.2, pp.125-132, 1998.
DOI : 10.1107/S002188987801331X

N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, On Torque and Tumbling in Swimming Escherichia coli, Journal of Bacteriology, vol.189, issue.5, pp.1756-1764, 2007.
DOI : 10.1128/JB.01501-06

L. Turner, R. Zhang, N. C. Darnton, and H. C. Berg, Visualization of Flagella during Bacterial Swarming, Journal of Bacteriology, vol.192, issue.13, pp.3259-3267, 2010.
DOI : 10.1128/JB.00083-10

H. Kaya and N. Souza, Scattering from cylinders with globular end-caps, Journal of Applied Crystallography, vol.37, issue.2, pp.223-230, 2004.
DOI : 10.1107/S0021889804000020

C. R. Calladine, Change of waveform in bacterial flagella: The role of mechanics at the molecular level, Journal of Molecular Biology, vol.118, issue.4, pp.457-479, 1978.
DOI : 10.1016/0022-2836(78)90285-1

A. Chien, N. S. Hill, and P. A. Levin, Cell Size Control in Bacteria, Current Biology, vol.22, issue.9, pp.340-349, 2012.
DOI : 10.1016/j.cub.2012.02.032

F. I. Maclean and R. J. Munson, Some Environmental Factors Affecting the Length of Escherichia coli Organisms in Continuous Cultures, Journal of General Microbiology, vol.25, issue.1, pp.17-27, 1961.
DOI : 10.1099/00221287-25-1-17

F. J. Trueba and C. L. Woldringh, Changes in Cell Diameter During the Division Cycle of Escherichia coli, Journal of Bacteriology, vol.142, issue.3, pp.869-878, 1980.

H. E. Kubitschek, Cell volume increase in Escherichia coli after shifts to richer media., Journal of Bacteriology, vol.172, issue.1, pp.94-101, 1990.
DOI : 10.1128/jb.172.1.94-101.1990

R. B. Weart, A. H. Lee, A. Chien, D. P. Haeusser, N. S. Hill et al., A Metabolic Sensor Governing Cell Size in Bacteria, Cell, vol.130, issue.2, pp.335-347, 2007.
DOI : 10.1016/j.cell.2007.05.043

H. C. Beno??tbeno??t and J. S. Higgins, Polymers and Neutron Scattering, Oxford Series on Neutron Scattering in Condensed Matter, 1994.

P. Schurtenberger, Static Properties of Polymers, Neutrons, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, 2002.

P. J. Flory, Statistical Mechanics of Chain Molecules, 1969.

F. Dyson, A meeting with Enrico Fermi, Nature, vol.427, issue.6972, p.297, 2004.
DOI : 10.1038/427297a

J. Mayer, K. Khairy, and J. Howard, Drawing an elephant with four complex parameters, American Journal of Physics, vol.78, issue.6, pp.648-649, 2010.
DOI : 10.1119/1.3254017

C. W. Mullineaux, A. Nenninger, N. Ray, and C. Robinson, Diffusion of Green Fluorescent Protein in Three Cell Environments in Escherichia Coli, Journal of Bacteriology, vol.188, issue.10, pp.3442-3448, 2006.
DOI : 10.1128/JB.188.10.3442-3448.2006

A. Zaritsky, C. L. Woldringh, and D. Mirelman, Constant Peptidoglycan Density in the Sacculus of Escherichia coli B/r Growing at Different Rates. Federation of European Biochemical Societies Letters, pp.29-32, 1979.

D. Svergun, C. Barberato, and M. H. Koch, ??? a Program to Evaluate X-ray Solution Scattering of Biological Macromolecules from Atomic Coordinates, Journal of Applied Crystallography, vol.28, issue.6, pp.768-773, 1995.
DOI : 10.1107/S0021889895007047

B. P. Klaholz, T. Pape, A. V. Zavialov, A. G. Myasnikov, E. V. Orlova et al., Structure of the Escherichia coli ribosomal termination complex with release factor 2, Nature, vol.73, issue.6918, pp.42190-94, 2003.
DOI : 10.1016/0263-7855(93)87009-T

A. R. Von-gundlach, V. M. Garamus, T. Gorniak, H. A. Davies, M. Reischl et al., Small angle X-ray scattering as a high-throughput method to classify antimicrobial modes of action, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1858, issue.5
DOI : 10.1016/j.bbamem.2015.12.022

J. Möller and T. Narayanan, Velocity fluctuations in sedimenting Browninan particles, p.2017

J. Schwarz-linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers et al., Escherichia coli as a model active colloid: A practical introduction, Colloids and Surfaces B: Biointerfaces, vol.137, pp.2-16, 2015.
DOI : 10.1016/j.colsurfb.2015.07.048

H. M. López, J. Gachelin, C. Douarche, H. Auradou, and E. Clement, Turning Bacteria Suspensions into Superfluids, Physical Review Letters, vol.92, issue.2, pp.28301-2015
DOI : 10.1073/pnas.0910426107

F. Sciortino and P. Tartaglia, Glassy colloidal systems, Advances in Physics, vol.94, issue.6-7, pp.471-524, 2005.
DOI : 10.1103/PhysRevLett.94.218301

E. Zaccarelli and W. C. Poon, Colloidal glasses and gels: The interplay of bonding and caging, Proceedings of the National Academy of Sciences, pp.15203-15208, 2009.
DOI : 10.1103/PhysRevLett.78.4581

A. H. Elcock, Models of macromolecular crowding effects and the need for quantitative comparisons with experiment, Current Opinion in Structural Biology, vol.20, issue.2, pp.196-206, 2010.
DOI : 10.1016/j.sbi.2010.01.008

I. M. Sokolov, Models of anomalous diffusion in crowded environments, Soft Matter, vol.79, issue.11, pp.9043-9052, 2012.
DOI : 10.1103/PhysRevE.79.011112

E. F. Semeraro, J. Möller, and T. Narayanan, Analysis of multiple-scattering in static and dynamic USAXS, p.2017

J. Schwarz-linek, C. Valeriani, A. Cacciuto, M. E. Cates, D. Marenduzzo et al., Phase separation and rotor self-assembly in active particle suspensions, Proceedings of the National Academy of Sciences, pp.4052-4057, 2012.
DOI : 10.1006/jcph.1995.1039

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters, Nano Letters, vol.2, issue.8, pp.891-894, 2002.
DOI : 10.1021/nl025633l

D. Beysens and T. Narayanan, Wetting-Induced Aggregation of Colloids, Journal of Statistical Physics, vol.95, issue.5/6, pp.997-1008, 1999.
DOI : 10.1023/A:1004506601807

B. M. Law, J. Petit, and D. Beysens, Adsorption-induced reversible colloidal aggregation, Physical Review E, vol.62, issue.5, p.5782, 1998.
DOI : 10.1016/0021-9797(77)90128-X

H. Guo, T. Narayanan, M. Sztucki, P. Schall, and G. H. Wegdam, Reversible Phase Transition of Colloids in a Binary Liquid Solvent, Physical Review Letters, vol.287, issue.18, p.188303, 2008.
DOI : 10.1088/0953-8984/20/7/072101

R. Okamoto and A. Onuki, Attractive interaction and bridging transition between neutral colloidal particles due to preferential adsorption in a near-critical binary mixture, Physical Review E, vol.287, issue.2, pp.22309-2013
DOI : 10.1103/PhysRevE.77.020703

V. D. Nguyen, S. Faber, Z. Hu, G. H. Wegdam, and P. Schall, Controlling colloidal phase transitions with critical Casimir forces, Nature Communications, vol.287, p.1584, 2013.
DOI : 10.1126/science.287.5453.627

URL : http://www.nature.com/articles/ncomms2597.pdf

D. Pontoni, T. Narayanan, J. Petit, G. Grübel, and D. Beysens, Microstructure and Dynamics near an Attractive Colloidal Glass Transition, Physical Review Letters, vol.28, issue.18, p.90188301, 2003.
DOI : 10.1103/PhysRevLett.89.245503

URL : https://hal.archives-ouvertes.fr/hal-00242322

C. Gögelein, M. Brinkmann, M. Schröter, and S. Herminghaus, Controlling the Formation of Capillary Bridges in Binary Liquid Mixtures, Langmuir, vol.26, issue.22, pp.17184-17189, 2010.
DOI : 10.1021/la103062s

C. E. Bertrand, P. D. Godfrin, and Y. Liu, Direct observation of critical adsorption on colloidal particles, The Journal of Chemical Physics, vol.287, issue.8, pp.84704-2015
DOI : 10.1103/PhysRevE.57.5782

G. D. Phillies, Interpretation of light-scattering spectra in terms of particle displacements, The Journal of Chemical Physics, vol.122, issue.22, 2005.
DOI : 10.1063/1.1834895

H. K. Pak, W. I. Goldburg, and A. Sirivat, An Experimental Study of Weak Turbolence, Fluid Dynamics Research, vol.8, pp.1-4, 1991.

L. Wang, H. Xu, J. Zhao, C. Song, and F. Wang, Density and viscosity of (3-picoline+water) binary mixtures from T=(293.15 to 343.15) K, The Journal of Chemical Thermodynamics, vol.37, issue.5, pp.477-483, 2005.
DOI : 10.1016/j.jct.2004.11.009

F. Sciortino, A. Giacometti, and G. Pastore, Phase Diagram of Janus Particles, Physical Review Letters, vol.103, issue.23, p.237801, 2009.
DOI : 10.1103/PhysRevLett.101.208301

L. Bergström, Hamaker constants of inorganic materials, Advances in Colloid and Interface Science, vol.70, pp.125-169, 1997.
DOI : 10.1016/S0001-8686(97)00003-1

R. M. Epand and H. J. Vogel, Diversity of antimicrobial peptides and their mechanisms of action, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.11-28, 1999.
DOI : 10.1016/S0005-2736(99)00198-4

Y. Shai, Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by ??-helical antimicrobial and cell non-selective membrane-lytic peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1462, issue.1-2, pp.55-70, 1999.
DOI : 10.1016/S0005-2736(99)00200-X

E. M. Purcell, The efficiency of propulsion by a rotating flagellum, Proceedings of the National Academy of Sciences, pp.11307-11311, 1997.
DOI : 10.1038/239500a0

S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu, Swimming efficiency of bacterium Escherichia coli, Proceedings of the National Academy of Sciences, pp.13712-13717, 2006.
DOI : 10.1002/cm.20071

V. A. Martinez, J. Schwarz-linek, M. Reufer, L. G. Wilson, A. N. Morozov et al., Flagellated bacterial motility in polymer solutions, Proceedings of the National Academy of Sciences, pp.11117771-17776, 2014.
DOI : 10.1007/s003970000094

P. Boesecke, Reduction of two-dimensional small- and wide-angle X-ray scattering data, Journal of Applied Crystallography, vol.40, issue.s1, pp.423-427, 2007.
DOI : 10.1107/S0021889807001100/aj6013sup1.pdf