S. Cy5, 5-ATW Figure 124 -Emissions de Fluorescence relevées avec l'Hamamatsu 24h après injection 1, EXPLOITATION DU VECTEUR RAFT, issue.4

D. Hanahan and R. A. Weinberg, The Hallmarks of Cancer, Cell, vol.100, issue.1, pp.57-70, 2000.
DOI : 10.1016/S0092-8674(00)81683-9

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.
DOI : 10.1016/j.cell.2011.02.013

F. Xing, J. Saidou, and K. Watabe, Cancer associated fibroblasts (CAFs) in tumor microenvironment, Frontiers in Bioscience, vol.15, issue.1, pp.166-179, 2010.
DOI : 10.2741/3613

N. Bertrand, J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad, Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology, Advanced Drug Delivery Reviews, vol.66, pp.2-25, 2014.
DOI : 10.1016/j.addr.2013.11.009

I. Brigger, C. Dubernet, and P. Couvreur, Nanoparticles in cancer therapy and diagnosis, Advanced Drug Delivery Reviews, vol.54, issue.5, pp.631-651, 2002.
DOI : 10.1016/S0169-409X(02)00044-3

M. L. Biniossek, D. K. Nägler, C. Becker-pauly, and O. Schilling, Proteomic Identification of Protease Cleavage Sites Characterizes Prime and Non-prime Specificity of Cysteine Cathepsins B, L, and S, Journal of Proteome Research, vol.10, issue.12, pp.5363-5373, 2011.
DOI : 10.1021/pr200621z

S. Demchik, Proteases New Perspectives -Chap : Cell-Surface Proteases in Cancer, 2012.

B. Turk, Targeting proteases: successes, failures and future prospects, Nature Reviews Drug Discovery, vol.183, issue.9, pp.785-799, 2006.
DOI : 10.1016/S0167-4838(99)00263-0

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes, Nature Biotechnology, vol.16, issue.4, pp.375-378, 1999.
DOI : 10.1016/0169-409X(95)00034-5

M. Verhille, H. Benachour, A. Ibrahim, M. Achard, P. Arnoux et al., Photodynamic Molecular Beacons Triggered by MMP-2 and MMP-9: Influence of the Distance Between Photosensitizer and Quencher onto Photophysical Properties and Enzymatic Activation, Current Medicinal Chemistry, vol.19, issue.32, pp.5580-5594
DOI : 10.2174/092986712803833128

URL : https://hal.archives-ouvertes.fr/hal-00732553

L. M. Coussens, B. Fingleton, and L. M. Matrisian, Matrix Metalloproteinase Inhibitors and Cancer--Trials and Tribulations, Science, vol.295, issue.5564, pp.2387-2392, 2002.
DOI : 10.1126/science.1067100

I. Niculescu-duvaz and C. J. Springer, Antibody-directed enzyme prodrug therapy (ADEPT): a review, Advanced Drug Delivery Reviews, vol.26, issue.2-3, pp.151-172, 1997.
DOI : 10.1016/S0169-409X(97)00032-X

M. L. Macheda, S. Rogers, and J. D. Best, Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer, Journal of Cellular Physiology, vol.14, issue.3, pp.654-662, 2005.
DOI : 10.1128/MCB.15.10.5363

P. Rigo, P. Paulus, B. J. Kaschten, R. Hustinx, T. Bury et al., Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose, European Journal of Nuclear Medicine, vol.34, issue.7/9, pp.1641-1674, 1996.
DOI : 10.1148/radiology.144.4.6981123

A. J. Palmer and H. M. Wallace, The polyamine transport system as a target for anticancer drug development, Amino Acids, vol.22, issue.2, pp.415-422, 2009.
DOI : 10.1042/bj2020785

N. Seiler, Thirty Years of Polyamine-Related Approaches to Cancer Therapy. Retrospect and Prospect. Part 1. Selective Enzyme Inhibitors, Current Drug Targets, vol.4, issue.7, pp.537-564, 2003.
DOI : 10.2174/1389450033490885

F. L. Meyskens, C. E. Mclaren, D. Pelot, S. Fujikawa-brooks, P. M. Carpenter et al., Difluoromethylornithine Plus Sulindac for the Prevention of Sporadic Colorectal Adenomas: A Randomized Placebo-Controlled, Double-Blind Trial, Cancer Prevention Research, vol.1, issue.1, pp.32-38, 2008.
DOI : 10.1158/1940-6207.CAPR-08-0042

B. Thibault, E. Clement, G. Zorza, S. Meignan, J. Delord et al., F14512, a polyamine-vectorized inhibitor of topoisomerase II, exhibits a marked anti-tumor activity in ovarian cancer, Cancer Letters, vol.370, issue.1, pp.10-18, 2016.
DOI : 10.1016/j.canlet.2015.09.006

P. A. Stark, B. D. Thrall, G. G. Meadows, and M. M. , Synthesis and evaluation of novel spermidine derivatives as targeted cancer chemotherapeutic agents, Journal of Medicinal Chemistry, vol.35, issue.23, pp.4264-4269, 1992.
DOI : 10.1021/jm00101a002

J. P. Richard, K. Melikov, E. Vives, C. Ramos, B. Verbeure et al., Cell-penetrating Peptides, Journal of Biological Chemistry, vol.268, issue.1, pp.585-590, 2003.
DOI : 10.1074/jbc.273.26.16027

A. D. Frankel and C. O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, vol.55, issue.6, pp.1189-1193, 1988.
DOI : 10.1016/0092-8674(88)90263-2

M. Green and P. M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein, Cell, vol.55, issue.6, pp.1179-1188, 1988.
DOI : 10.1016/0092-8674(88)90262-0

E. Vivès, P. Brodin, and B. Lebleu, A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in the Cell Nucleus, Journal of Biological Chemistry, vol.100, issue.25, pp.16010-16017, 1997.
DOI : 10.1093/nar/24.4.655

J. B. Rothbard, T. C. Jessop, R. S. Lewis, B. A. Murray, and P. A. Wender, Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells, Journal of the American Chemical Society, vol.126, issue.31, pp.9506-9507, 2004.
DOI : 10.1021/ja0482536

A. Walrant, I. Correia, C. Jiao, O. Lequin, E. H. Bent et al., Different membrane behaviour and cellular uptake of three basic arginine-rich peptides, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.1, pp.382-393, 2011.
DOI : 10.1016/j.bbamem.2010.09.009

URL : https://hal.archives-ouvertes.fr/hal-00599704

F. Wang, Y. Wang, X. Zhang, W. Zhang, S. Guo et al., Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery, Journal of Controlled Release, vol.174, pp.126-136, 2014.
DOI : 10.1016/j.jconrel.2013.11.020

B. Gupta, T. S. Levchenko, and V. P. Torchilin, Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.637-651, 2005.
DOI : 10.1016/j.addr.2004.10.007

G. P. Dietz and M. Bähr, Delivery of bioactive molecules into the cell: the Trojan horse approach, Molecular and Cellular Neuroscience, vol.27, issue.2, pp.85-131, 2004.
DOI : 10.1016/j.mcn.2004.03.005

M. Mäe and Ü. , Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery, Current Opinion in Pharmacology, vol.6, issue.5, pp.509-514, 2006.
DOI : 10.1016/j.coph.2006.04.004

D. Zavaglia, N. Normand, N. Brewis, P. O-'hare, M. Favrot et al., VP22-mediated and light-activated delivery of an anti-c-raf1 antisense oligonucleotide improves its activity after intratumoral injection in nude mice, Molecular Therapy, vol.8, issue.5, pp.840-845, 2003.
DOI : 10.1016/j.ymthe.2003.08.001

E. S. Olson, T. A. Aguilera, T. Jiang, L. G. Ellies, Q. T. Nguyen et al., In vivo characterization of activatable cell penetrating peptides for targeting protease activity in cancer, Integrative Biology, vol.17, issue.5-6, pp.382-393, 2009.
DOI : 10.1148/radiology.213.3.r99dc14866

J. Howl, S. Matou-nasri, D. C. West, M. Farquhar, J. Slaninová et al., Bioportide: an emergent concept of bioactive cell-penetrating peptides, Cellular and Molecular Life Sciences, vol.1808, issue.17, pp.2951-2966, 2012.
DOI : 10.1016/j.bbamem.2010.10.019

L. E. Kelemen, The role of folate receptor ?? in cancer development, progression and treatment: Cause, consequence or innocent bystander?, International Journal of Cancer, vol.257, issue.2, pp.243-250, 2006.
DOI : 10.1016/0304-4157(89)90014-2

N. Parker, M. J. Turk, E. Westrick, J. D. Lewis, P. S. Low et al., Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay, Analytical Biochemistry, vol.338, issue.2, pp.284-293, 2005.
DOI : 10.1016/j.ab.2004.12.026

J. F. Ross, P. K. Chaudhuri, and M. Ratnam, Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications, Cancer, vol.51, issue.9, pp.2432-2443, 1994.
DOI : 10.1016/B978-0-12-372180-8.50013-5

P. S. Low and A. C. Antony, Folate receptor-targeted drugs for cancer and inflammatory diseases, Advanced Drug Delivery Reviews, vol.56, issue.8, pp.1055-1058, 2004.
DOI : 10.1016/j.addr.2004.02.003

P. S. Low, W. A. Henne, and D. D. Doorneweerd, Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases, Accounts of Chemical Research, vol.41, issue.1, pp.120-129, 2008.
DOI : 10.1021/ar7000815

A. Gabizon, D. Tzemach, J. Gorin, L. Mak, Y. Amitay et al., Improved therapeutic activity of folate-targeted liposomal doxorubicin in folate receptor-expressing tumor models, Cancer Chemotherapy and Pharmacology, vol.26, issue.1, pp.43-52, 2010.
DOI : 10.1016/0304-4157(92)90038-C

G. Pasut, F. Canal, L. D. Via, S. Arpicco, F. M. Veronese et al., Antitumoral activity of PEG???gemcitabine prodrugs targeted by folic acid, Journal of Controlled Release, vol.127, issue.3, pp.239-248, 2008.
DOI : 10.1016/j.jconrel.2008.02.002

R. Schneider, F. Schmitt, C. Frochot, Y. Fort, N. Lourette et al., Design, synthesis, and biological evaluation of folic acid targeted tetraphenylporphyrin as novel photosensitizers for selective photodynamic therapy, Bioorganic & Medicinal Chemistry, vol.13, issue.8, pp.2799-2808, 2005.
DOI : 10.1016/j.bmc.2005.02.025

URL : https://hal.archives-ouvertes.fr/hal-00200165

Y. Lu and P. S. Low, Folate-mediated delivery of macromolecular anticancer therapeutic agents, Advanced Drug Delivery Reviews, vol.54, issue.5, pp.675-693, 2002.
DOI : 10.1016/S0169-409X(02)00042-X

J. R. Woodburn, The Epidermal Growth Factor Receptor and Its Inhibition in Cancer Therapy, Pharmacology & Therapeutics, vol.82, issue.2-3, pp.241-250, 1999.
DOI : 10.1016/S0163-7258(98)00045-X

C. M. Rocha-lima, H. P. Soares, L. E. Raez, and R. Singal, EGFR Targeting of Solid Tumors, Cancer Control, vol.22, issue.4, pp.295-304, 2007.
DOI : 10.1200/jco.2004.22.14_suppl.7015

S. Song, D. Liu, J. Peng, Y. Sun, Z. Li et al., Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo, International Journal of Pharmaceutics, vol.363, issue.1-2, pp.155-161, 2008.
DOI : 10.1016/j.ijpharm.2008.07.012

K. Holmes, O. L. Roberts, A. M. Thomas, and M. J. Cross, Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition, Cellular Signalling, vol.19, issue.10, pp.2003-2012, 2007.
DOI : 10.1016/j.cellsig.2007.05.013

A. Hoeben, B. Landuyt, M. S. Highley, H. Wildiers, A. T. Oosterom et al., Vascular Endothelial Growth Factor and Angiogenesis, Pharmacological Reviews, vol.56, issue.4, pp.549-580, 2004.
DOI : 10.1124/pr.56.4.3

Y. Liu, S. R. Cox, T. Morita, and S. Kourembanas, Hypoxia Regulates Vascular Endothelial Growth Factor Gene Expression in Endothelial Cells : Identification of a 5' Enhancer, Circulation Research, vol.77, issue.3, pp.638-643, 1995.
DOI : 10.1161/01.RES.77.3.638

N. Ferrara, K. J. Hillan, and W. Novotny, Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy, Biochemical and Biophysical Research Communications, vol.333, issue.2, pp.328-335, 2005.
DOI : 10.1016/j.bbrc.2005.05.132

K. Miller, M. Wang, J. Gralow, M. Dickler, M. Cobleigh et al., Paclitaxel plus Bevacizumab versus Paclitaxel Alone for Metastatic Breast Cancer, New England Journal of Medicine, vol.357, issue.26, pp.2666-2676, 2007.
DOI : 10.1056/NEJMoa072113

M. H. Cohen, J. Gootenberg, P. Keegan, and R. Pazdur, The Oncologist, pp.713-718, 2007.

D. Liu, F. Liu, Z. Liu, L. Wang, and N. Zhang, Tumor Specific Delivery and Therapy by Double-Targeted Nanostructured Lipid Carriers with Anti-VEGFR-2 Antibody, Molecular Pharmaceutics, vol.8, issue.6, pp.2291-2301, 2011.
DOI : 10.1021/mp200402e

K. Kubo, T. Shimizu, S. Ohyama, H. Murooka, A. Iwai et al., ???-{4-(4-quinolyloxy)phenyl}ureas, Journal of Medicinal Chemistry, vol.48, issue.5, pp.1359-1366, 2005.
DOI : 10.1021/jm030427r

S. Baka, A. R. Clamp, and G. C. Jayson, A review of the latest clinical compounds to inhibit VEGF in pathological angiogenesis, Expert Opinion on Therapeutic Targets, vol.65, issue.6, pp.867-876, 2006.
DOI : 10.1158/0008-5472.CAN-04-3833

R. K. Jain, D. G. Duda, J. W. Clark, and J. S. Loeffler, Lessons from phase III clinical trials on anti-VEGF therapy for cancer, Nature Clinical Practice Oncology, vol.25, issue.1, pp.24-40, 2006.
DOI : 10.1016/j.urolonc.2004.01.011

T. Nakagawa, O. Tohyama, A. Yamaguchi, T. Matsushima, K. Takahashi et al., E7050: A dual c-Met and VEGFR-2 tyrosine kinase inhibitor promotes tumor regression and prolongs survival in mouse xenograft models, Cancer Science, vol.90, issue.1, pp.210-215, 2010.
DOI : 10.1111/j.1349-7006.1999.tb00671.x

S. Sarkar, A. Mazumdar, R. Dash, D. Sarkar, P. B. Fisher et al., ZD6474, a dual tyrosine kinase inhibitor of EGFR and VEGFR-2, inhibits MAPK/ERK and AKT/PI3-K and induces apoptosis in breast cancer cells, Cancer Biology & Therapy, vol.9, issue.8, pp.592-603, 2010.
DOI : 10.4161/cbt.9.8.11103

B. Herzog, C. Pellet-many, G. Britton, B. Hartzoulakis, and I. C. Zachary, VEGF binding to NRP1 is essential for VEGF stimulation of endothelial cell migration, complex formation between NRP1 and VEGFR2, and signaling via FAK Tyr407 phosphorylation, Molecular Biology of the Cell, vol.22, issue.15, pp.2766-2776, 2011.
DOI : 10.1091/mbc.E09-12-1061

A. Starzec, P. Ladam, R. Vassy, S. Badache, N. Bouchemal et al., Structure???function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF165 binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex, Peptides, vol.28, issue.12, pp.2397-2402, 2007.
DOI : 10.1016/j.peptides.2007.09.013

URL : https://hal.archives-ouvertes.fr/hal-00703415

E. Ruoslahti, RGD AND OTHER RECOGNITION SEQUENCES FOR INTEGRINS, Annual Review of Cell and Developmental Biology, vol.12, issue.1, pp.697-715, 1996.
DOI : 10.1146/annurev.cellbio.12.1.697

M. M. Quigley, K. J. Bethel, R. W. Sharpe, and A. Saven, CD52 expression in hairy cell leukemia, American Journal of Hematology, vol.73, issue.4, pp.227-230, 2003.
DOI : 10.1002/ajh.10428

L. M. Weiner, R. Surana, and S. Wang, Monoclonal antibodies: versatile platforms for cancer immunotherapy, Nature Reviews Immunology, vol.279, issue.5, pp.317-327, 2010.
DOI : 10.4049/jimmunol.178.7.4089

B. Coiffier, E. Lepage, J. Briere, R. Herbrecht, H. Tilly et al., CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma, New England Journal of Medicine, vol.346, issue.4, pp.235-242, 2002.
DOI : 10.1056/NEJMoa011795

H. Rus, C. Cudrici, and F. Niculescu, The Role of the Complement System in Innate Immunity, Immunologic Research, vol.33, issue.2, pp.103-112, 2005.
DOI : 10.1385/IR:33:2:103

C. Liu, Y. Yang, L. Chen, Y. Lin, and F. Li, A Unified Mechanism for Aminopeptidase N-based Tumor Cell Motility and Tumor-homing Therapy, Journal of Biological Chemistry, vol.17, issue.50, pp.34520-34529, 2014.
DOI : 10.1006/jmbi.1994.1083

J. B. Engel, A. V. Schally, G. Halmos, B. Baker, A. Nagy et al., Targeted cytotoxic bombesin analog AN-215 effectively inhibits experimental human breast cancers with a low induction of multi-drug resistance proteins, Endocrine Related Cancer, vol.12, issue.4, pp.999-1009, 2005.
DOI : 10.1677/erc.1.01022

D. Naor, R. V. Sionov, and D. Ish-shalom, CD44: Structure, Function and Association with the Malignant Process, Adv. Cancer Res, vol.71, pp.241-319, 1997.
DOI : 10.1016/S0065-230X(08)60101-3

S. Kasibhatla, K. A. Jessen, S. Maliartchouk, J. Y. Wang, N. M. English et al., A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid, Proceedings of the National Academy of Sciences, vol.9, issue.1, pp.12095-12100, 2005.
DOI : 10.1074/jbc.M304895200

D. Polyak, C. Ryppa, A. Eldar-boock, P. Ofek, A. Many et al., Development of PEGylated doxorubicin-E-[c(RGDfK)2] conjugate for integrin-targeted cancer therapy, Polymers for Advanced Technologies, vol.62, issue.Suppl 1, pp.103-113, 2011.
DOI : 10.1172/JCI0215468

J. Cao, S. Cui, S. Li, C. Du, J. Tian et al., Targeted Cancer Therapy with a 2-Deoxyglucose-Based Adriamycin Complex, Cancer Research, vol.73, issue.4, pp.1362-1373, 2013.
DOI : 10.1158/0008-5472.CAN-12-2072

S. Renaud, V. Corcé, I. Cannie, M. Ropert, S. Lepage et al., Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect, Biochemical Pharmacology, vol.96, issue.3, pp.179-189, 2015.
DOI : 10.1016/j.bcp.2015.06.001

URL : https://hal.archives-ouvertes.fr/hal-01163245

L. L. Kiessling, J. E. Gestwicki, and L. E. Strong, Synthetic Multivalent Ligands as Probes of Signal Transduction, Angewandte Chemie International Edition, vol.76, issue.15, pp.2348-2368, 2006.
DOI : 10.1016/S0968-0896(98)00122-9

S. Hanessian, C. Laferrière, and A. , The Synthesis of Functionalized Cyclodextrins As Scaffolds and Templates for Molecular Diversity, Catalysis, and Inclusion Phenomena, The Journal of Organic Chemistry, vol.60, issue.15, pp.4786-4797, 1995.
DOI : 10.1021/jo00120a023

L. Baldini, A. Casnati, F. Sansone, and R. Ungaro, Calixarene-based multivalent ligands, Chem. Soc. Rev., vol.126, issue.2, pp.254-266, 2007.
DOI : 10.1021/ja049085k

D. Boturyn, E. Defrancq, G. T. Dolphin, J. Garcia, P. Labbe et al., RAFT Nano-constructs: surfing to biological applications, Journal of Peptide Science, vol.22, issue.2, pp.224-240, 2008.
DOI : 10.1002/cmdc.200600118

D. Boturyn, J. Coll, E. Garanger, M. Favrot, and P. Dumy, Template Assembled Cyclopeptides as Multimeric System for Integrin Targeting and Endocytosis, Journal of the American Chemical Society, vol.126, issue.18, pp.5730-5739, 2004.
DOI : 10.1021/ja049926n

U. Hersel, C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials, vol.24, issue.24, pp.4385-4415, 2003.
DOI : 10.1016/S0142-9612(03)00343-0

P. Chandna, J. J. Khandare, E. Ber, L. Rodriguez-rodriguez, and T. Minko, Multifunctional Tumor-Targeted Polymer-Peptide-Drug Delivery System for Treatment of Primary and Metastatic Cancers, Pharmaceutical Research, vol.1365, issue.1???2, pp.2296-2306, 2010.
DOI : 10.1016/S0005-2728(98)00039-5

A. Chilkoti, M. R. Dreher, D. E. Meyer, and D. Raucher, Targeted drug delivery by thermally responsive polymers, Advanced Drug Delivery Reviews, vol.54, issue.5, pp.613-630, 2002.
DOI : 10.1016/S0169-409X(02)00041-8

B. Taghizadeh, S. Taranejoo, S. A. Monemian, Z. Salehi-moghaddam, K. Daliri et al., Classification of stimuli???responsive polymers as anticancer drug delivery systems, Drug Delivery, vol.49, issue.3, pp.145-155, 2015.
DOI : 10.1021/bc2005945

N. T. Zaman, Targeted and Stimuli-Responsive Polymers as Chemotherapeutic Delivery Systems, Massachusetts Institute of Technology, 2008.

A. H. Faraji and P. Wipf, Nanoparticles in cellular drug delivery, Bioorganic & Medicinal Chemistry, vol.17, issue.8, pp.2950-2962, 2009.
DOI : 10.1016/j.bmc.2009.02.043

T. R. Daniels, E. Bernabeu, J. A. Rodríguez, S. Patel, M. Kozman et al., The transferrin receptor and the targeted delivery of therapeutic agents against cancer, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1820, issue.3, pp.291-317, 2012.
DOI : 10.1016/j.bbagen.2011.07.016

J. Gao, K. Chen, R. Xie, J. Xie, Y. Yan et al., In Vivo Tumor-Targeted Fluorescence Imaging Using Near-Infrared Non-Cadmium Quantum Dots, Bioconjugate Chemistry, vol.21, issue.4, pp.604-609, 2010.
DOI : 10.1021/bc900323v

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617504/pdf

J. Ciccione, T. Jia, J. Coll, K. Parra, M. Amblard et al., Unambiguous and Controlled One-Pot Synthesis of Multifunctional Silica Nanoparticles, Chemistry of Materials, vol.28, issue.3, pp.885-889, 2016.
DOI : 10.1021/acs.chemmater.5b04398

URL : https://hal.archives-ouvertes.fr/hal-01275703

A. Yahia-ammar, D. Sierra, F. Mérola, N. Hildebrandt, and X. L. Guével, Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery, ACS Nano, vol.10, issue.2, pp.2591-2599, 2016.
DOI : 10.1021/acsnano.5b07596

S. Goodall, M. L. Jones, S. Mahler, and J. , Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy??-??future prospects, Journal of Chemical Technology & Biotechnology, vol.106, issue.128, pp.1169-1176, 2015.
DOI : 10.1073/pnas.0904378106

J. M. Chan, P. M. Valencia, L. Zhang, R. Langer, and O. C. Farokhzad, Polymeric Nanoparticles for Drug Delivery, Methods Mol. Biol. Clifton NJ, vol.624, pp.163-175, 2010.
DOI : 10.1007/978-1-60761-609-2_11

Y. Miura, T. Takenaka, K. Toh, S. Wu, H. Nishihara et al., Cyclic RGD-Linked Polymeric Micelles for Targeted Delivery of Platinum Anticancer Drugs to Glioblastoma through the Blood???Brain Tumor Barrier, ACS Nano, vol.7, issue.10, pp.8583-8592, 2013.
DOI : 10.1021/nn402662d

V. P. Torchilin, Targeted polymeric micelles for delivery of poorly soluble drugs, Cellular and Molecular Life Sciences, vol.61, issue.19-20, pp.2549-2559, 2004.
DOI : 10.1007/s00018-004-4153-5

D. Sutton, N. Nasongkla, E. Blanco, and J. Gao, Functionalized Micellar Systems for Cancer Targeted Drug Delivery, Pharmaceutical Research, vol.72, issue.6, pp.1029-1046, 2007.
DOI : 10.1111/j.2042-7158.1988.tb07001.x

Y. Bae, N. Nishiyama, S. Fukushima, H. Koyama, M. Yasuhiro et al., Preparation and Biological Characterization of Polymeric Micelle Drug Carriers with Intracellular pH-Triggered Drug Release Property:?? Tumor Permeability, Controlled Subcellular Drug Distribution, and Enhanced in Vivo Antitumor Efficacy, Bioconjugate Chemistry, vol.16, issue.1, pp.122-130, 2005.
DOI : 10.1021/bc0498166

S. Ganta, H. Devalapally, A. Shahiwala, and M. Amiji, A review of stimuli-responsive nanocarriers for drug and gene delivery, Journal of Controlled Release, vol.126, issue.3, pp.187-204, 2008.
DOI : 10.1016/j.jconrel.2007.12.017

K. Kostarelos, A. Bianco, and M. Prato, Promises, facts and challenges for carbon nanotubes in imaging and therapeutics, Nature Nanotechnology, vol.4, issue.10, pp.627-633, 2009.
DOI : 10.1002/jbm.a.31803

URL : https://hal.archives-ouvertes.fr/hal-00425705

S. M. Moghimi and C. A. Hunter, Complement monitoring of carbon nanotubes, Nature Nanotechnology, vol.10, issue.6, pp.382-383, 2010.
DOI : 10.1016/j.bbadis.2004.02.005

A. Isidro-llobet, M. Alvarez, and F. Albericio, Amino Acid-Protecting Groups, Chemical Reviews, vol.109, issue.6, pp.2455-2504, 2009.
DOI : 10.1021/cr800323s

URL : http://diposit.ub.edu/dspace/bitstream/2445/69570/1/572285.pdf

T. I. Al-warhi, H. M. Hazimi, and A. , Recent development in peptide coupling reagents, Journal of Saudi Chemical Society, vol.16, issue.2, pp.97-116, 2012.
DOI : 10.1016/j.jscs.2010.12.006

J. C. Jewett and C. R. Bertozzi, Cu-free click cycloaddition reactions in chemical biology, Chemical Society Reviews, vol.9, issue.4, pp.1272-1279, 2010.
DOI : 10.1002/aja.1002030302

M. F. Debets, S. S. Van-berkel, J. Dommerholt, A. Ton, ). J. Dirks et al., Bioconjugation with Strained Alkenes and Alkynes, Accounts of Chemical Research, vol.44, issue.9, pp.805-815, 2011.
DOI : 10.1021/ar200059z

C. P. Hackenberger and D. Schwarzer, Chemoselective Ligation and Modification Strategies for Peptides and Proteins, Angewandte Chemie International Edition, vol.130, issue.52, pp.10030-10074, 2008.
DOI : 10.1002/anie.200802161

P. E. Dawson, T. W. Muir, I. Clark-lewis, and S. B. Kent, Synthesis of proteins by native chemical ligation, Science, vol.266, issue.5186, pp.776-779, 1994.
DOI : 10.1126/science.7973629

M. B. Soellner, B. L. Nilsson, and R. T. Raines, Reaction Mechanism and Kinetics of the Traceless Staudinger Ligation, Journal of the American Chemical Society, vol.128, issue.27, pp.8820-8828, 2006.
DOI : 10.1021/ja060484k

J. W. Bode, R. M. Fox, and K. D. Baucom, Chemoselective Amide Ligations by Decarboxylative Condensations ofN-Alkylhydroxylamines and ??-Ketoacids, Angewandte Chemie International Edition, vol.118, issue.8, pp.1248-1252, 2006.
DOI : 10.15227/orgsyn.080.0207

C. W. Tornøe, C. Christensen, and M. , Peptidotriazoles on Solid Phase:?? [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides, The Journal of Organic Chemistry, vol.67, issue.9, pp.3057-3064, 2002.
DOI : 10.1021/jo011148j

V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective ???Ligation??? of Azides and Terminal Alkynes, Angewandte Chemie International Edition, vol.20, issue.14, pp.2596-2599, 2002.
DOI : 10.1002/1099-0682(200011)2000:11<2311::AID-EJIC2311>3.0.CO;2-7

M. Meldal and C. W. Tornøe, Cu-Catalyzed Azide???Alkyne Cycloaddition, Chemical Reviews, vol.108, issue.8, pp.2952-3015, 2008.
DOI : 10.1021/cr0783479

D. S. Del-amo, W. Wang, H. Jiang, C. Besanceney, A. Yan et al., Biocompatible Copper(I) Catalysts for in Vivo Imaging of Glycans, Journal of the American Chemical Society, vol.132, issue.47, pp.16893-16899, 2010.
DOI : 10.1021/ja106553e

D. C. Kennedy, C. S. Mckay, M. C. Legault, D. C. Danielson, J. A. Blake et al., Cellular Consequences of Copper Complexes Used To Catalyze Bioorthogonal Click Reactions, Journal of the American Chemical Society, vol.133, issue.44, pp.17993-18001, 2011.
DOI : 10.1021/ja2083027

Y. Su, L. Li, H. Wang, X. Wang, and Z. Zhang, All-in-One azides: empowered click reaction for in vivo labeling and imaging of biomolecules, Chemical Communications, vol.423, issue.10, pp.2185-2188, 2016.
DOI : 10.1038/nature01634

N. J. Agard, J. A. Prescher, and C. R. Bertozzi, A Strain-Promoted [3 + 2] Azide???Alkyne Cycloaddition for Covalent Modification of Biomolecules in Living Systems, Journal of the American Chemical Society, vol.126, issue.46, pp.15046-15047, 2004.
DOI : 10.1021/ja044996f

K. Gutsmiedl, C. T. Wirges, V. Ehmke, and T. , Copper-Free ???Click??? Modification of DNA via Nitrile Oxide???Norbornene 1,3-Dipolar Cycloaddition, Organic Letters, vol.11, issue.11, pp.2405-2408, 2009.
DOI : 10.1021/ol9005322

L. Plougastel, O. Koniev, S. Specklin, E. Decuypere, C. Créminon et al., 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1.0]-nonyne, Chem. Commun., vol.18, issue.66, pp.9376-9378, 2014.
DOI : 10.1021/jm00235a011

D. Forget, D. Boturyn, E. Defrancq, J. Lhomme, and P. Dumy, Highly Efficient Synthesis of Peptide-Oligonucleotide Conjugates: Chemoselective Oxime and Thiazolidine Formation, Chemistry - A European Journal, vol.7, issue.18, pp.3976-3984, 2001.
DOI : 10.1021/bc950074d

G. Casi, N. Huguenin-dezot, K. Zuberbühler, J. Scheuermann, and D. Neri, Site-Specific Traceless Coupling of Potent Cytotoxic Drugs to Recombinant Antibodies for Pharmacodelivery, Journal of the American Chemical Society, vol.134, issue.13, pp.5887-5892, 2012.
DOI : 10.1021/ja211589m

A. Abbas, B. Xing, and T. Loh, Allenamides as Orthogonal Handles for Selective Modification of Cysteine in Peptides and Proteins, Angewandte Chemie International Edition, vol.116, issue.29, pp.7491-7494, 2014.
DOI : 10.1039/C39870000735

J. W. Drijfhout, E. W. Perdijk, W. J. Weijer, and W. Bloemhoff, Controlled peptide-protein conjugation by means of 3-nitro-2-pyridinesulfenyl protection-activation, International Journal of Peptide and Protein Research, vol.37, issue.3, pp.161-166, 1988.
DOI : 10.1111/j.1399-3011.1986.tb03236.x

O. Koniev, G. Leriche, M. Nothisen, J. Remy, J. Strub et al., Selective Irreversible Chemical Tagging of Cysteine with 3-Arylpropiolonitriles, Bioconjugate Chemistry, vol.25, issue.2, pp.202-206, 2014.
DOI : 10.1021/bc400469d

O. Koniev, S. Kolodych, Z. Baatarkhuu, J. Stojko, J. Eberova et al., MAPN: First-in-Class Reagent for Kinetically Resolved Thiol-to-Thiol Conjugation, Bioconjugate Chemistry, vol.26, issue.9, pp.1863-1867
DOI : 10.1021/acs.bioconjchem.5b00440

G. Liang, H. Ren, and J. Rao, A biocompatible condensation reaction for controlled assembly of nanostructures in living cells, Nature Chemistry, vol.20, issue.1, pp.54-60, 2009.
DOI : 10.1177/002215549704500102

D. Y. Lewis, D. Soloviev, and K. M. Brindle, Imaging Tumor Metabolism Using Positron Emission Tomography, The Cancer Journal, vol.21, issue.2, pp.129-136, 2015.
DOI : 10.1097/PPO.0000000000000105

M. Schwaiger and H. Wester, How Many PET Tracers Do We Need?, Journal of Nuclear Medicine, vol.52, issue.Supplement_2, pp.36-41, 2011.
DOI : 10.2967/jnumed.110.085738

W. Gonzalez, Nanotechnologies en IRM : les produits de contraste de demain ?, 2013.

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, Current and Future Clinical Applications for Optical Imaging of Cancer: From Intraoperative Surgical Guidance to Cancer Screening, Seminars in Oncology, vol.38, issue.1, pp.109-118, 2011.
DOI : 10.1053/j.seminoncol.2010.11.008

W. L. Byrne, A. Delille, C. Kuo, J. S. De-jong, G. M. Van-dam et al., Use of optical imaging to progress novel therapeutics to the clinic, Journal of Controlled Release, vol.172, issue.2, pp.523-534, 2013.
DOI : 10.1016/j.jconrel.2013.05.004

S. L. Troyan, V. Kianzad, S. L. Gibbs-strauss, S. Gioux, A. Matsui et al., The FLARE??? Intraoperative Near-Infrared Fluorescence Imaging System: A First-in-Human Clinical Trial in Breast Cancer Sentinel Lymph Node Mapping, Annals of Surgical Oncology, vol.196, issue.10, pp.2943-2952, 2009.
DOI : 10.1016/j.jmb.2007.09.019

. Fluoptics, fluoptics-obtient- la-certification-fda-pour-la-mise-sur-le-marche-americain-du-fluobeam.pdf, 2014.

I. Stoffels, J. Leyh, T. Pöppel, D. Schadendorf, and J. Klode, Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-99mTc-nanocolloid hybrid tracer versus 99mTc-nanocolloid, European Journal of Nuclear Medicine and Molecular Imaging, vol.60, issue.11, pp.1631-1638, 2015.
DOI : 10.1016/j.eururo.2011.03.024

R. Abramson, https://www.mycancergenome.org/content/molecularmedicine/overview-of-targeted-therapies-for-cancer, 2016.

M. Galibert, P. Dumy, and D. Boturyn, One-Pot Approach to Well-Defined Biomolecular Assemblies by Orthogonal Chemoselective Ligations, Angewandte Chemie International Edition, vol.81, issue.14, pp.2576-2579, 2009.
DOI : 10.1007/978-94-010-0464-0_119

URL : https://hal.archives-ouvertes.fr/hal-01659013

C. Kumar, Integrin &#945;v&#946;3 as a Therapeutic Target for Blocking Tumor-Induced Angiogenesis, Current Drug Targets, vol.4, issue.2, pp.123-131, 2003.
DOI : 10.2174/1389450033346830

P. C. Brooks, R. A. Clark, and D. A. Cheresh, Requirement of vascular integrin alpha v beta 3 for angiogenesis, Science, vol.264, issue.5158, pp.569-571, 1994.
DOI : 10.1126/science.7512751

J. Xiong, T. Stehle, R. Zhang, A. Joachimiak, M. Frech et al., Crystal Structure of the Extracellular Segment of Integrin alpha Vbeta 3 in Complex with an Arg-Gly-Asp Ligand, Science, vol.296, issue.5565, pp.151-155, 2002.
DOI : 10.1126/science.1069040

S. Hehlgans, M. Haase, and N. Cordes, Signalling via integrins: Implications for cell survival and anticancer strategies, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, vol.1775, issue.1, pp.163-180, 2007.
DOI : 10.1016/j.bbcan.2006.09.001

M. A. Schwartz and M. H. Ginsberg, Networks and crosstalk: integrin signalling spreads, Nature Cell Biology, vol.153, issue.4, pp.65-68, 2002.
DOI : 10.1083/jcb.153.5.1023

P. C. Brooks, A. M. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu et al., Integrin ??v??3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels, Cell, vol.79, issue.7, pp.1157-1164, 1994.
DOI : 10.1016/0092-8674(94)90007-8

G. Eisele, A. Wick, A. Eisele, P. M. Clément, J. Tonn et al., Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression, Journal of Neuro-Oncology, vol.88, issue.6, pp.141-145, 2014.
DOI : 10.1155/2000/421719

S. Djordjevic and P. C. Driscoll, Targeting VEGF signalling via the neuropilin co-receptor, Drug Discovery Today, vol.18, issue.9-10, pp.447-455, 2013.
DOI : 10.1016/j.drudis.2012.11.013

A. M. Jubb, L. A. Strickland, S. D. Liu, J. Mak, M. Schmidt et al., Neuropilin-1 expression in cancer and development, The Journal of Pathology, vol.1, issue.1, pp.50-60, 2012.
DOI : 10.4161/mabs.1.4.8885

P. Hamerlik, J. D. Lathia, R. Rasmussen, Q. Wu, J. Bartkova et al., Autocrine VEGF???VEGFR2???Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth, The Journal of Experimental Medicine, vol.63, issue.3, pp.507-520, 2012.
DOI : 10.1038/sj.cr.7310126

S. Soker, H. Miao, M. Nomi, S. Takashima, and M. Klagsbrun, VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding, Journal of Cellular Biochemistry, vol.97, issue.2, pp.357-368, 2002.
DOI : 10.1182/blood.V97.6.1671

P. R. Somanath, N. L. Malinin, and T. V. Byzova, Cooperation between integrin ??????3 and VEGFR2 in angiogenesis, Angiogenesis, vol.273, issue.Pt 4, pp.177-185, 2009.
DOI : 10.4161/cc.7.3.5234

G. H. Mahabeleshwar, W. Feng, D. R. Phillips, and T. V. Byzova, Integrin signaling is critical for pathological angiogenesis, The Journal of Experimental Medicine, vol.6, issue.11, pp.2495-2507, 2006.
DOI : 10.1074/jbc.274.31.21609

T. S. Ellison, S. J. Atkinson, V. Steri, B. M. Kirkup, M. E. Preedy et al., Suppression of ??3-integrin in mice triggers a neuropilin-1-dependent change in focal adhesion remodelling that can be targeted to block pathological angiogenesis, Disease Models & Mechanisms, vol.8, issue.9, pp.1105-1119, 2015.
DOI : 10.1242/dmm.019927

N. Kosaka, M. Ogawa, P. L. Choyke, and H. Kobayashi, Clinical implications of near-infrared fluorescence imaging in cancer, Future Oncology, vol.14, issue.9, pp.1501-1511, 2009.
DOI : 10.1117/1.3147424

X. Chen, P. S. Conti, and R. A. Moats, in Brain Tumor Xenografts, Cancer Research, vol.64, issue.21, pp.8009-8014, 2004.
DOI : 10.1158/0008-5472.CAN-04-1956

Z. Cheng, Y. Wu, Z. Xiong, S. S. Gambhir, and X. Chen, Expression in Living Mice, Bioconjugate Chemistry, vol.16, issue.6, pp.1433-1441, 2005.
DOI : 10.1021/bc0501698

Y. Wu, W. Cai, and X. Chen, Near-Infrared Fluorescence Imaging of Tumor Integrin ??v??3 Expression with Cy7-Labeled RGD Multimers, Molecular Imaging and Biology, vol.2, issue.4, pp.226-236, 2006.
DOI : 10.1177/153303460300200607

A. R. Hsu, L. C. Hou, A. Veeravagu, J. M. Greve, H. Vogel et al., In Vivo Near-Infrared Fluorescence Imaging of Integrin ??v??3 in an Orthotopic Glioblastoma Model, Molecular Imaging and Biology, vol.52, issue.4, pp.315-323, 2006.
DOI : 10.1007/s11307-006-0059-y

J. Cao, S. Wan, J. Tian, S. Li, D. Deng et al., Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis, Contrast Media & Molecular Imaging, vol.113, issue.1, pp.390-402, 2012.
DOI : 10.1562/0031-8655(2000)072<0392:HCDACA>2.0.CO;2

L. Liu, G. Lin, F. Yin, W. Law, and K. Yong, and their biotoxicity evaluation, Journal of Biomedical Materials Research Part A, vol.3, issue.4, pp.910-916, 2016.
DOI : 10.1039/C2RA21990E

H. Wu, H. Chen, D. Pan, Y. Ma, S. Liang et al., Imaging Integrin ??v??3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe, Molecular Imaging and Biology, vol.9, issue.Suppl 3, pp.781-792, 2014.
DOI : 10.1007/s00726-010-0546-y

Y. Ma, S. Liang, J. Guo, R. Guo, and H. Wang, F labeled RGD-A7R peptide for dual integrin and VEGF-targeted tumor imaging in mice bearing U87MG tumors, Journal of Labelled Compounds and Radiopharmaceuticals, vol.48, issue.11, pp.627-631, 2014.
DOI : 10.2967/jnumed.107.040816

Y. Ye, L. Zhu, Y. Ma, G. Niu, and X. Chen, Synthesis and evaluation of new iRGD peptide analogs for tumor optical imaging, Bioorganic & Medicinal Chemistry Letters, vol.21, issue.4, pp.1146-1150, 2011.
DOI : 10.1016/j.bmcl.2010.12.112

K. N. Sugahara, T. Teesalu, P. P. Karmali, V. R. Kotamraju, L. Agemy et al., Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors, Cancer Cell, vol.16, issue.6, pp.510-520, 2009.
DOI : 10.1016/j.ccr.2009.10.013

M. D. Pierschbacher and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, vol.82, issue.5963, pp.30-33, 1984.
DOI : 10.1016/S0174-173X(80)80011-2

M. A. Dechantsreiter, E. Planker, B. Mathä, E. Lohof, G. Hölzemann et al., Integrin Antagonists, Journal of Medicinal Chemistry, vol.42, issue.16, pp.3033-3040, 1999.
DOI : 10.1021/jm970832g

S. Foillard, M. O. Rasmussen, J. Razkin, D. Boturyn, and P. Dumy, 1-Ethoxyethylidene, a New Group for the Stepwise SPPS of Aminooxyacetic Acid Containing Peptides, The Journal of Organic Chemistry, vol.73, issue.3, pp.983-991, 2008.
DOI : 10.1021/jo701628k

J. Kalia and R. T. Raines, Hydrolytic Stability of Hydrazones and Oximes, Angewandte Chemie International Edition, vol.60, issue.39, pp.7523-7526, 2008.
DOI : 10.1002/anie.200802651

M. Wendeler, L. Grinberg, X. Wang, P. E. Dawson, and M. Baca, Enhanced Catalysis of Oxime-Based Bioconjugations by Substituted Anilines, Bioconjugate Chemistry, vol.25, issue.1, pp.93-101, 2014.
DOI : 10.1021/bc400380f

O. Melnyk, J. S. Fruchart, C. Grandjean, and H. Gras-masse, Tartric Acid-Based Linker for the Solid-Phase Synthesis of C-Terminal Peptide ??-Oxo Aldehydes, The Journal of Organic Chemistry, vol.66, issue.12, pp.4153-4160, 2001.
DOI : 10.1021/jo001509f

H. C. Kolb and K. B. Sharpless, The growing impact of click chemistry on drug discovery, Drug Discovery Today, vol.8, issue.24, pp.1128-1137, 2003.
DOI : 10.1016/S1359-6446(03)02933-7

E. Garanger, D. Boturyn, J. Coll, M. Favrot, and P. Dumy, integrin ligands, Org. Biomol. Chem., vol.124, issue.10, pp.1958-1965, 2006.
DOI : 10.1021/ja027184x

A. C. Conibear, K. Farbiarz, R. L. Mayer, M. Matveenko, H. Kählig et al., Arginine side-chain modification that occurs during copper-catalysed azide???alkyne click reactions resembles an advanced glycation end product, Organic & Biomolecular Chemistry, vol.18, issue.26, pp.6205-6211, 2016.
DOI : 10.1021/acscombsci.5b00087

E. Garanger, D. Boturyn, Z. Jin, P. Dumy, M. Favrot et al., New Multifunctional Molecular Conjugate Vector for Targeting, Imaging, and Therapy of Tumors, Molecular Therapy, vol.12, issue.6, pp.1168-1175, 2005.
DOI : 10.1016/j.ymthe.2005.06.095

X. Chen, P. S. Conti, and R. A. Moats, in Brain Tumor Xenografts, Cancer Research, vol.64, issue.21, pp.8009-8014, 2004.
DOI : 10.1158/0008-5472.CAN-04-1956

Z. Jin, V. Josserand, S. Foillard, D. Boturyn, P. Dumy et al., In vivo optical imaging of integrin ??V-??3 in mice using multivalent or monovalent cRGD targeting vectors, Molecular Cancer, vol.6, issue.1, p.41, 2007.
DOI : 10.1186/1476-4598-6-41

G. Tuchscherer, A. Chandravarkar, M. Camus, J. Bérard, K. Murat et al., Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis, Biopolymers, vol.42, issue.2, pp.239-252, 2007.
DOI : 10.1002/bip.20663

S. Cobo, F. Lafolet, E. Saint-aman, C. Philouze, C. Bucher et al., Reactivity of a pyridinium-substituted dimethyldihydropyrene switch under aerobic conditions: self-sensitized photo-oxygenation and thermal release of singlet oxygen, Chemical Communications, vol.30, issue.234, pp.13886-13889, 2015.
DOI : 10.1016/j.trac.2010.08.009

URL : https://hal.archives-ouvertes.fr/hal-01234150

S. Eißler, T. Bogner, M. Nahrwold, and N. Sewald, -Alkoxymethyl Unit???A Analogues, Chemistry - A European Journal, vol.267, issue.42, pp.11273-11287, 2009.
DOI : 10.1248/cpb.42.2394

M. Nahrwold, C. Weiß, T. Bogner, F. Mertink, J. Conradi et al., Conjugates of Modified Cryptophycins and RGD-Peptides Enter Target Cells by Endocytosis, Journal of Medicinal Chemistry, vol.56, issue.5, pp.1853-1864, 2013.
DOI : 10.1021/jm301346z

G. M. Dubowchik, R. A. Firestone, L. Padilla, D. Willner, S. J. Hofstead et al., Cathepsin B-Labile Dipeptide Linkers for Lysosomal Release of Doxorubicin from Internalizing Immunoconjugates:?? Model Studies of Enzymatic Drug Release and Antigen-Specific In Vitro Anticancer Activity, Bioconjugate Chemistry, vol.13, issue.4, pp.855-869, 2002.
DOI : 10.1021/bc025536j