K. Tittel, D. Richter, and A. Fried, Mid-Infrared Laser Applications in Spectroscopy, Topics of Applied Physics, vol.516, pp.445-516, 2003.
DOI : 10.1007/3-540-36491-9_11

S. , F. Webster, and D. Kiemle, Spectrometric Identification of Organic Compounds, pp.7-17, 2005.

P. , C. De, T. , B. Troia, M. L. Notte et al., Recent advances in integrated photonic sensors, Sensors, vol.12, pp.15558-15598, 2012.

S. and B. Mizaikoff, Toward On-Chip Mid-Infrared Sensors, Anal. Chem, vol.88, pp.5562-5573, 2016.

T. Lin, H. Lin-greg, H. Zhaohong, J. Tiening, R. Millender et al., Label-Free Glucose Sensing Using Chip-Scale Mid-Infrared Integrated Photonics, Advanced Optical Materials, vol.1, issue.11, pp.1755-1759, 2016.
DOI : 10.1002/adom.201300205

C. Chang, P. Wagli, V. Paeder, A. Homsy, L. Hvozdara et al., Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip, Lab on a Chip, vol.8, issue.14, p.3020, 2012.
DOI : 10.1039/B712368J

J. Eggleton, Chalcogenide photonics: fabrication, devices and applications Introduction, Optics Express, vol.18, issue.25, pp.26632-26634, 2010.
DOI : 10.1364/OE.18.026632

L. , Y. Zhang, S. W. Kok, B. P. Ng, and Y. C. Soh, Reflection-based near-field ellipsometry for thin film characterization, Ultramicroscopy, vol.124, pp.26-34, 2013.

P. , V. Kozlovskaya, and S. A. Sukhishvili, Determination of film thickness and refractive index in one measurement of phase-modulated ellipsometry, J. Opt

A. , G. Wang, and R. Jansson, Gas sensing based on ellipsometric measurement on porous silicon, Phys. Stat. Sol. a, vol.197, pp.518-522, 2003.

G. , I. Lundström, and H. Arwin, Temperature sensitivity and thermal expansion coefficient of benzocyclobutene thin films studied with ellipsometry, Appl. Phys. Lett, p.68, 1996.

W. , C. Liedert, L. Hakalahti, and R. Myllyl, An Integrated Young Interferometer Based on UV-Imprinted Polymer Waveguides for Label-Free Biosensing Applications, 2012.

Y. , J. Greve, P. V. Lambeck, T. Wink, T. A. Beumer et al., Fast , Ultrasensitive Virus Detection Using a Young Interferometer Sensor, Nano Letters, vol.7, pp.12-15, 2007.

S. , G. Armelles, and L. M. Lechuga, Magneto-optical phase modulation in integrated Mach-Zehnder interferometric sensors, Sensors and Actuators A: Physical, vol.134, pp.339-347, 2007.

Z. , H. Luo, Q. Sun, Z. Xu, and W. Jia, Microfiber-Based Inline Mach ? Zehnder Interferometer for Dual-Parameter Measurement Microfiber-Based Inline Mach, IEEE Photonics, vol.7, 2015.

F. , G. Gauglitz, and J. Ingenhoff, A gas sensor based on an integrated optical Mach-Zehnder interferometer, Sensor Actuators: B, vol.7, pp.672-676, 1992.

H. , J. S. Choi, G. Han, J. K. Kang, C. M. Kim et al., A Mach- Zehnder interferometer based on silicon oxides for biosensor applications, Analytica Chimica Acta, pp.573-574, 2006.

H. , R. Kooyman, and J. Greve, Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor, Sensor Actuators: B, vol.10, pp.209-217, 1993.

S. M. Bibliographie, J. C. Lindecrantz, B. Tinguely, O. Singh, G. Ahluwalia et al., Characterization of a waveguide mach-zehnder interferometer using pdms as a cover layer, JOURNAL OF THE EUROPEAN OPTICAL SOCIETY -RAPID PUBLICATIONS, vol.10, 2015.

S. , J. Haas, M. Jetter, P. Michler, M. Godejohann et al., Mid- Infrared Spectroscopy Platform Based on GaAs/AlGaAs Thin-Film Waveguides and Quantum Cascade Lasers, Anal. Chem, vol.88, pp.2558-2562, 2016.

M. , D. Luna-moreno, and D. Martinez-escobar, Chemical Fast response fiber optic hydrogen sensor based on palladium and gold, Sensors and Actuators B, vol.136, pp.562-566, 2009.

S. , H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura et al., A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide, Sensors and Actuators B, pp.142-145, 2000.

S. , F. A. Muhammad, and B. Culshaw, Sensitivity improvement for evanescentwave gas sensors, Sensors and Actuators B, pp.521-524, 1993.

W. , S. S. Kim, R. Rossbach, M. Jetter, P. Michler et al., Ultrasensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers, Analyst, vol.137, pp.2322-2327, 2012.

M. Lechuga, K. Zinoviev, O. E. Alonso, C. Dom, and J. Elizalde, Biosensing microsystems: fast, label-free, real-time clinical testing, SPIE Newsroom, vol.2, pp.2-3
DOI : 10.1117/2.1200812.1377

URL : http://spie.org/documents/newsroom/imported/1377/1377_5213_0_2008-12-01.pdf

G. , H. Gremlich, and . Spectroscopy, An introduction, pp.56-72, 2002.

R. , W. Jiang, and F. K. Tittel, Single-QCL-based absorption sensor for simultaneous trace-gas detection of CH4 and N2O, Applied Physics B: Lasers and Optics, vol.117, pp.245-251, 2014.

. Weiss, Fluorescence Spectroscopy of Single Biomolecules, Science, vol.283, issue.5408, 1999.
DOI : 10.1126/science.283.5408.1676

Y. , K. Goswami, K. Hong, J. Grant, and Z. Xue, Fluorescent-Dye-Doped Sol -Gel Sensor for Highly Sensitive Carbon Dioxide Gas Detection below Atmospheric Concentrations, pp.593-600, 2010.

M. L. Bibliographie, G. S. Simpson, G. Sayler, D. E. Patterson, E. K. Nivens et al., An integrated cmos microluminometer for low-level luminescence sensing in the bioluminescent bioreporter integrated circuit, Sensors and Actuators B: Chemical, vol.72, pp.134-140, 2001.

S. , A. Choudhary, D. Haranath, A. G. Joshi, N. Singh et al., Zno decorated luminescent graphene as a potential gas sensor at room temperature, Carbon, vol.50, pp.385-394, 2012.

T. Okabayashi, T. Fujimoto, I. Yamamoto, K. Utsunomiya, T. Wada et al., High sensitive hydrocarbon gas sensor utilizing cataluminescence of ??-Al2O3 activated with Dy3+, Sensors and Actuators B: Chemical, vol.64, issue.1-3, pp.54-58, 2000.
DOI : 10.1016/S0925-4005(99)00483-9

L. , R. Haisheng, R. Jones, O. Cohen, D. Hak et al., Optical amplification and lasing by stimulated Raman scattering in silicon waveguides, Journal of Lightwave Technology, vol.24, pp.1440-1455, 2006.

R. Ferraro, K. Nakamoto, and C. W. Brown, Basic theory " , in Introductory raman spectroscopy (second edition), sous la dir, pp.1-94, 2003.

R. and Y. Agrawal, Raman spectroscopy : Recent advancements , techniques and applications, Vibrational Spectroscopy, pp.163-176, 2011.

J. Barbillat and P. Dhamelincourt, Raman confocal microprobing, imaging and fibre-optic remote sensing: A further step in molecular analysis, Journal of Raman Spectroscopy, vol.21, issue.1, pp.3-11, 1994.
DOI : 10.1366/0003702924124411

B. Mabrouk, T. H. Kauffmann, and M. D. Fontana, Abilities of Raman sensor to probe pollutants in water, Journal of Physics: Conference Series, vol.450, p.12014, 2013.
DOI : 10.1088/1742-6596/450/1/012014

URL : https://hal.archives-ouvertes.fr/hal-00866125

R. , P. Chalus, L. Maurer, C. Lema-martinez, A. Edmond et al., A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies, Pharmaceutical and Biomedical Analysis, vol.44, pp.683-700, 2007.

D. Region and . Mir, répresentation graphique de la localisation dans le mir des molécules d'interêt avec des forts absorptions, pp.2016-2022

P. , M. Myers, and A. Ross, Mid-infrared sensing of organic pollutants in aqueous environments, Sensors, vol.9, pp.6232-6253, 2009.

M. W. Bibliographie, R. Todd, T. G. Provencal, B. Owano, K. Paldus et al., Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6-8 ??m) optical parametric oscillator, Applied Physics B: Lasers and Optics, vol.75, pp.367-376, 2002.

D. , D. Ambrosini, L. Pezzati, and D. Paoletti, Thermal Quasi-Reflectography: a new imaging tool in art conservation, Optics express, vol.20, pp.14746-53, 2012.

D. , S. Uvin, B. Kuyken, S. Selvaraja, F. Leo et al., Telecom to midinfrared spanning supercontinuum generation in hydrogenated amorphous silicon waveguides using a Thulium doped fiber laser pump source, Optics Express, vol.21, pp.32032-32039, 2013.

K. , X. Liu, R. Osgood, Y. Vlasov, R. Baets et al., Generation of a telecom-to-mid-infrared spanning supercontinuum using silicon-on-insulator wire waveguides, pp.2011-2012, 2011.

S. Ross and C. A. Puliafito, Erbium-YAG and holmium-YAG laser ablation of the lens, Lasers in Surgery and Medicine, vol.6, issue.1, p.82, 1994.
DOI : 10.1016/S0161-6420(88)32995-7

B. Seddon, A Prospective for New Mid-Infrared Medical Endoscopy Using Chalcogenide Glasses, International Journal of Applied Glass Science, vol.15, issue.4, pp.177-191, 2011.
DOI : 10.1049/el:19790077

. Downey, Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics, TrAC Trends in Analytical Chemistry, vol.17, issue.7, pp.418-424, 1998.
DOI : 10.1016/S0165-9936(98)00042-9

C. Madden, F. Galliano, .. P. Jones, and M. Sauvage, ISM properties in low-metallicity environments Mid-infrared spectra of dwarf galaxies, Astronomy and Astrphysics, vol.45, pp.877-896, 2005.

K. , P. Verheyen, P. Tannouri, X. Liu, R. Baets et al., Generation of 3600 nm radiation and telecomband amplification by fourwave mixing in a silicon waveguide, Optics letters, vol.39, pp.1349-52, 2014.

D. Pelusi, G. T. Vahid, L. Fu, E. Magi, M. R. Lamont et al., Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing, IEEE Journal of Selected Topics in Quantum Electronics, vol.14, issue.3, pp.529-539, 2008.
DOI : 10.1109/JSTQE.2008.918669

L. Carletti, P. Ma, Y. Yu, B. Luther-davies, D. Hudson et al., Nonlinear optical response of low loss silicon germanium waveguides in the mid-infrared, Optics Express, vol.23, issue.7, pp.8261-8271, 2015.
DOI : 10.1364/OE.23.008261

URL : https://hal.archives-ouvertes.fr/hal-01489423

M. Bibliographie, R. H. Kacurakova, and . Wilson, Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates, Carbohydrate Polymers, vol.44, pp.291-303, 2001.

C. and J. Hu, Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing, ACS nano, pp.6955-6961, 2014.

A. , P. Mas?owski, A. Foltynowicz, K. C. Cossel, T. C. Briles et al., Mid-infrared Fourier transform spectroscopy with a broadband frequency comb, Optics express, vol.18, pp.21861-21872, 2010.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel et al., Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers, Sensors and Actuators B: Chemical, vol.207, pp.518-525, 2015.
DOI : 10.1016/j.snb.2014.10.011

URL : https://hal.archives-ouvertes.fr/hal-01077740

R. , A. Katzir, N. Fleischmann, K. Staubmann, R. Allabashi et al., In situ sensing of volatile organic compounds in groundwater: first field tests of a mid-infrared fiber-optic sensing system, Appl. Spectrosc, vol.57, pp.607-613, 2003.

L. and Y. Sui, A carbon monoxide detection device based on midinfrared absorption spectroscopy, Applied Physics B, vol.119, pp.287-296, 2015.

K. Valiunas, G. Stewart, and G. Das, Detection of Nitrous Oxide (N2O) at Sub-ppmv Using Intracavity Absorption Spectroscopy, pp.359-362, 2016.

D. , Y. J. Yu, C. G. Li, S. So, and F. K. Tittel, Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell, Opt. Express, vol.23, 2015.

L. , S. Yu, C. Sun, C. Zou, H. Yu et al., U-shaped fiber-optic ATR sensor enhanced by silver nanoparticles for continuous glucose monitoring, Biosensors and Bioelectronics, vol.72, pp.370-375, 2015.

M. C. Hans, S. Müller, and M. W. Sigrist, Infrared attenuated total reflection (IR-ATR) spectroscopy for detecting drugs in human saliva, Drug Testing and Analysis, vol.11, issue.6, pp.420-429, 2012.
DOI : 10.1111/j.1553-2712.2004.tb00775.x

Y. , M. K. Fah, K. Reynolds, J. D. Sexton, M. R. Riley et al., Opto-electrophoretic detection of bio-molecules using conducting chalcogenide glass sensors, Optics express, vol.18, pp.26754-26759, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00608588

M. Bibliographie, M. Karlowatz, B. Kraft, and . Mizaikoff, Simultaneous Quantitative Determination of Benzene, Toluene, and Xylenes in Water Using Mid-Infrared Evanescent Field Spectroscopy, Analytical Chemistry, vol.76, pp.2643-2648, 2004.

R. , M. Schwenk, B. Pejcic, M. Myers, K. Ho et al., A midinfrared sensor for the determination of perfluorocarbon based Compounds in aquatic Systems for geosequestration Purposes, Talanta, vol.130, pp.527-535, 2014.

G. Botelho, N. Reis, L. S. Oliveira, and M. M. Sena, Development and analytical validation of a screening method for simultaneous detection of five adulterants in raw milk using mid-infrared spectroscopy and PLS-DA, Food Chemistry, vol.181, pp.31-37, 2015.
DOI : 10.1016/j.foodchem.2015.02.077

M. , B. Bureau, C. Boussard-pledel, T. Jouan, J. Adam et al., Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers, Sensors and Actuators B: Chemical, vol.101, pp.252-259, 2004.

A. , M. Meurens, H. Naveau, and S. Agathos, ATR-FTIR sensor development for continuous on-line monitoring of chlorinated aliphatic hydrocarbons in a fixed-bed bioreactor, Biotechnology and Bioengineering, vol.68, pp.473-487, 2000.

B. , M. Casolaro, and A. Magnani, Characterization of Biomaterial Surfaces : ATR-FTIR , Potentiometric and Calorimetric Analysis, Clinical Materials, vol.11, pp.37-51, 1992.

F. and H. Hughes, A comparison of polymeric materials as pre-concentrating media for use with ATR / FTIR sensing, International Journal of Environment Analytical Chemistry, vol.86, pp.401-415, 2006.

Y. Chao, W. Fung, and L. J. Guo, Polymer microring resonators for biochemical sensing applications, IEEE Journal of Selected Topics in Quantum Electronics, vol.12, issue.1, pp.134-142, 2006.
DOI : 10.1109/JSTQE.2005.862945

C. and L. J. Guo, Design and Optimization of Microring Resonators in Biochemical Sensing Applications, Lightwave Technology, vol.24, pp.1395-1402, 2006.

A. Sanogo, C. Obaton, J. Delezoide, M. Lautru, J. Lièvre et al., Phase Sensitive-Optical Low Coherence Interferometer: A New Protocol to Evaluate the Performance of Optical Micro-Resonators, Journal of Lightwave Technology, vol.31, issue.1, pp.111-117, 2013.
DOI : 10.1109/JLT.2012.2225408

I. , M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn et al., Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation, IEEE Journal of Selected Topics in Quantum Electronics, vol.16, pp.654-661, 2010.

G. Kim, G. Son, H. Lee, K. Kim, and S. Lee, Integrated photonic glucose biosensor using a vertically coupled microring resonator in polymers, Optics Communications, vol.281, issue.18, pp.4644-4647, 2008.
DOI : 10.1016/j.optcom.2008.06.006

B. , P. Heyn, T. V. Vaerenbergh, K. D. Vos, and S. Kumar, Silicon microring resonators, Laser and Photonics: Review, vol.73, pp.47-73, 2012.

N. , L. Chen, and M. Lipson, Cavity-enhanced on-chip absorption spectroscopy using microring resonators, Optics express, vol.16, pp.11930-11936, 2008.

S. , P. T. Lin, N. Patel, H. Lin, L. Li et al., Mid-infrared materials and devices on a Si platform for optical sensing, Science and Technology of Advanced Materials, vol.15

W. , L. Ding, W. Zhang, Z. Luo, H. Ou et al., A high-throughput surface plasmon resonance biosensor based on differential interferometric imaging, Measurement Science and Technology, vol.23, p.65701, 2012.

J. E. Nico and . Mol, Surface plasmon resonance: methods and protocols, 2010.

L. , C. Nylander, and I. Lundstrm, Biosensing with surface plasmon resonance? how it all started, Biosensors and Bioelectronics, vol.10, 1995.

H. , S. Y. Sinclair, and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical, vol.54, pp.3-15, 1999.

G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, Cancer biomarker detection in serum samples using surface plasmon resonance and quartz crystal microbalance sensors with nanoparticle signal amplification, Anal. Chem, vol.84, 2012.

S. Yee, Surface plasmon resonance sensors: review, Sensors and Actuators B, vol.54, pp.3-15, 1999.

A. Willets and R. P. Van-duyne, Localized Surface Plasmon Resonance Spectroscopy and Sensing, Annual Review of Physical Chemistry, vol.58, issue.1, pp.267-297, 2007.
DOI : 10.1146/annurev.physchem.58.032806.104607

X. , J. Aizpurua, M. Kall, and P. Apell, Electromagnetic contributions to singlemolecule sensitivity in surface-enhanced raman scattering, Phys. Rev. E, vol.62, pp.4318-4324, 2000.

C. , A. März, R. Böhme, F. Theil, K. Weber et al., Surfaceenhanced raman spectroscopy (sers): progress and trends, Analytical and Bioanalytical Chemistry, vol.403, pp.27-54, 2012.

O. Bibliographie, N. Lyandres, C. Shah, J. Yonzon, M. Walsh et al., Realtime glucose sensing by surface-enhanced raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer, Analytical Chemistry, vol.77, pp.6134-6139, 2005.

S. , M. Soucé, and I. Chourpa, Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of sers spectroscopy, Analyst, vol.134, pp.1868-1872, 2009.

S. , M. Ekpanyapong, and A. Tuantranont, Highly-sensitive surface-enhanced raman spectroscopy (sers)-based chemical sensor using 3d graphene foam decorated with silver nanoparticles as sers substrate, Scientific Reports, 2016.

O. , K. Ataka, M. Ikeda, H. Uchihara, and R. Nanba, Surface enhanced infrared absorption spectroscopy. mechanism and application to trace analysis, Anal

B. , Z. D. Yan, M. Wang, Y. Zhao, J. Li et al., Distancedetermined sensitivity in attenuated total reflection-surface enhanced infrared absorption spectroscopy: aptamer-antigen compared to antibody-antigen, Chem. Commun, vol.50, pp.7787-7789, 2014.

H. Wanzenbock, B. Mizaikoff, N. Weissenbacher, and K. R. , Multiple internal reflection in surface enhanced infrared absorption spectroscopy (SEIRA) and its significance for various analyte groups, Journal of Molecular Structure, vol.410, issue.411, pp.535-538, 1997.
DOI : 10.1016/S0022-2860(96)09666-4

R. and E. H. Korte, Surface enhanced infrared absorption observed with attenuated total reflection (atr-seira): modeling the optical response, Fresenius' Journal of Analytical Chemistry, vol.362, pp.51-57, 2008.

E. , S. Rupp, A. Küller, and A. Pucci, Surface enhanced infrared absorption on au nanoparticle films deposited on sio2/si for optical biosensing: detection of the antibody?antigen reaction, Surface Science, p.600, 2006.

F. Chekhun, G. I. Solyanik, G. Kulik, V. P. Tryndiak, I. N. Todor et al., The seira spectroscopy data of nucleic acids and phospholipids from sensitive-and drug-resistant rat tumours, J. Exp. Clin. Cancer Res, vol.21, pp.599-607, 2002.

A. , S. T. Stripp, and J. Heberle, Surface-enhanced infrared absorption spectroscopy (seiras) to probe monolayers of membrane proteins, Biochimica et Biophysica ActaBiomembranes, vol.1828, pp.2283-2293, 2013.

S. Sánchez-cortés, C. Domingo, J. V. García-ramos, and J. A. Aznárez, Surface-Enhanced Vibrational Study (SEIR and SERS) of Dithiocarbamate Pesticides on Gold Films, Langmuir, vol.17, issue.4, pp.1157-1162, 2001.
DOI : 10.1021/la001269z

R. , B. Schwarz, P. Reininger, H. Detz, T. Zederbauer et al., Monolithically integrated mid-infrared sensor using narrow mode operation and temperature feedback, Applied Physics Letters, vol.106, p.41101, 2015.

G. Lee, M. Belkin, R. Audet, J. Macarthur, L. Diehl et al., Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy, Applied Physics Letters, vol.91, issue.23, pp.2007-2009, 2007.
DOI : 10.1109/JQE.1975.1068581

P. , H. Seo, J. Ahn, Y. Choi, J. Heo et al., Dy3 doped ge-ga-sb-se glasses and optical fibers for the mid-ir gain media, J. Ceram. Soc. Jap, vol.116

S. , B. Samson, J. Hector, W. Brocklesby, D. Hewak et al., Infrared emission from holmium doped gallium lanthanum sulphide glass, Infrared Phys. Techno, vol.40, 1999.

F. , L. Shaw, J. Myers, K. Ewing, and J. Sanghera, Mid-ir emission in erbiumdoped gallium lanthanum sulfide glass integrated optic waveguides, Photonics Society Summer Topical Meeting Series, p.49, 2014.

N. Leindecker, A. Marandi, R. L. Byer, and L. Vodopyanov-k, Broadband degenerate OPO for mid-infrared frequency comb generation, Optics Express, vol.19, issue.7, pp.6296-6302, 2011.
DOI : 10.1364/OE.19.006296

H. , K. Miyamoto, and H. Ito, Generation of tunable mid-ir (5.5 -9.3 um) from a 2 um pumped zngep2 optical parametric oscillator, Optics Communications, vol.241, pp.173-178, 2004.

Y. , X. Gai, T. Wang, P. Ma, R. Wang et al., Mid-infrared supercontinuum generation in chalcogenides, Opt. Mater. Express, vol.3, pp.1075-1086, 2013.

S. , D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson et al., Midinfrared supercontinuum generation from 2 to 6 µm in a silicon nanowire, p.797, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489439

G. , M. L. Amraoui, M. Liao, and Y. Ohishi, Mid infrared supercontinuum generation in a suspended core as2s3 chalcogenide microstructured optical fiber, Opt. Express, vol.21, pp.9573-9583, 2013.

M. Piels and J. E. Bowers, Photodetectors for silicon photonic integrated circuits, Photodetectors, sous la dir, pp.3-20, 2016.
DOI : 10.1016/B978-1-78242-445-1.00001-4

P. K. Hamamatsu, Characteristics and use of infrared detectors, p.43, 2004.

P. , A. Evirgen, P. Christol, A. Cordat, A. Nedelcu et al., Midwave infrared InSb nBn photodetector, Electron. Lett, vol.50, pp.1472-1473, 2014.
DOI : 10.1049/el.2014.2799

URL : https://hal.archives-ouvertes.fr/hal-01623568

A. Bibliographie and . Rogalski, Infrared detectors: An overview, Infrared Physics and Technology, vol.43, pp.187-210, 2002.

M. Itsuno, J. D. Phillips, and S. Velicu, Mid-wave infrared HgCdTe nBn photodetector, Applied Physics Letters, vol.100, issue.16, pp.28-31, 2012.
DOI : 10.1063/1.3492853

T. Lin, V. Singh, J. Wang, H. Lin, J. Hu et al., Si-CMOS compatible materials and devices for mid-IR microphotonics, Optical Materials Express, vol.3, issue.9, p.1474, 2013.
DOI : 10.1364/OME.3.001474

K. , S. Peters, B. Gruska, M. Semtsiv, and W. T. Masselink, Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride, Appl. Opt, vol.51, pp.6789-6798, 2012.

L. P. Singh, H. G. Lin, T. Tiwald, L. C. Kimerling, and A. M. Agarwal, Lowstress silicon nitride platform for mid-infrared broadband and monolithically integrated microphotonics, Adv. Opt. Mater, vol.1, pp.732-739, 2013.

F. Edwards and E. Ochoa, Infrared refractive index of silicon, Applied Optics, vol.19, issue.24, pp.4130-4131, 1980.
DOI : 10.1364/AO.19.004130

S. S. Emelett, Silicon waveguided components for the long-wave infrared region, J. Opt. A: Pure Appl. Opt, vol.8, 2006.

S. , P. S. Kuo, K. L. Vodopyanov, T. J. Pinguet, O. Levi et al., Improved dispersion relations for gaas and applications to nonlinear optics, J. Appl. Phys, vol.94, pp.6447-6455, 2003.

W. , J. Antoszewski, G. Putrino, W. Lei, L. Faraone et al., Mercury Cadmium Telluride Waveguides A Novel Strategy for On Chip Mid Infrared Sensors, Analytical Chemistry, vol.85, pp.10648-10652, 2013.

P. Li and C. H. Henry, Silica-based optical integrated circuits, IEE Proceedings - Optoelectronics, vol.143, issue.5, pp.263-280, 1996.
DOI : 10.1049/ip-opt:19960840

G. , B. Kuyken, X. Liu, M. Van-camp, S. Assefa et al., Mid-Infrared Silicon Photonics, Optical Fiber Communication Conference, 2013.

. Hu, Low loss silicon waveguides for the mid-infrared, Optics express, vol.19, pp.7112-7119, 2011.

D. , D. Xu, P. Waldron, S. Janz, J. Lapointe et al., A Silicon on Insulator Photonic Wire Based Evanescent Field Sensor, 3rd IEEE International Conference on Group IV Photonics, pp.2520-2522, 2006.

P. , A. Khokhar, M. Nedeljkovic, and G. Mashanovich, Low-Loss Mid-Infrared SOI Slot Waveguides, IEEE Photonics Technology, vol.27, pp.1197-1199, 2015.

T. Lin, V. Singh, Y. Cai, L. C. Kimerling, and A. Agarwal, Air-clad silicon pedestal structures for broadband mid-infrared microphotonics, Optics Letters, vol.38, issue.7, pp.1031-1033, 2013.
DOI : 10.1364/OL.38.001031

B. , A. Spott, R. Ilic, A. Spott, B. Penkov et al., Silicon-on-sapphire integrated waveguides for the mid-infrared, Optics express, vol.18, pp.12127-12135, 2010.

Z. , H. Subbaraman, and S. Chakravarty, Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths, Optics Letters, vol.39, pp.3070-3073, 2014.

H. , S. K. Kalyoncu, Q. Zhao, R. Torun, and O. Boyraz, Silicon-on-sapphire waveguides design for mid-IR evanescent field absorption gas sensors, Optics Communications, vol.313, pp.186-194, 2014.

S. , I. Bulu, and M. Lonvcar, Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared, IEEE International Conference on Group IV Photonics GFP 051108, pp.17-18, 2013.

. Morini, Low-loss ge-rich si0.2ge0.8 waveguides for mid-infrared photonics, Opt. Lett, vol.42, pp.105-108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01430021

Y. Chang, V. Paeder, L. Hvozdara, J. Hartmann, and H. P. Herzig, Low-loss germanium strip waveguides on silicon for the mid-infrared, Optics Letters, vol.37, issue.14, pp.2883-2888, 2012.
DOI : 10.1364/OL.37.002883

B. , P. Labeye, G. Grand, J. M. Hartmann, F. Boulila et al., Low loss SiGe graded index waveguides for mid-IR applications, Opt. Express, vol.22, pp.508-518, 2014.

T. Lin, V. Singh, H. Y. Lin, T. Tiwald, L. C. Kimerling et al., Low-Stress Silicon Nitride Platform for Mid-Infrared Broadband and Monolithically Integrated Microphotonics, Advanced Optical Materials, vol.77, issue.10, pp.732-739, 2013.
DOI : 10.1063/1.359435

T. Lin, V. Singh, L. Kimerling, and A. M. Agarwal, Silicon nitride based mid-infrared microphotonics for sensor applications, 2013 IEEE SENSORS, pp.1-4, 2013.
DOI : 10.1109/ICSENS.2013.6688617

M. Bibliographie, F. Sieger, X. Ballu, S. Wang, L. Kim et al., On Chip Integrated MidInfrared GaAs AlGaAs Mach Zehnder Interferometer, Analytical Chemistry, vol.85, pp.3050-3052, 2013.

T. , E. Mujagi´cmujagi´-mujagi´c, C. K. Madsen, C. F. Gmachl, and C. B. Arnold, Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides, Optics express, vol.18, pp.15523-15530, 2010.

M. , D. Y. Choi, Y. Yu, Z. Yang, K. Vu et al., High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing, Opt. Express, vol.23, 2015.

X. , Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared, Optics letters, vol.35, pp.3228-3230, 2010.

M. C. Ho, H. Phillips, P. J. Qiao, K. Allen, B. J. Krishnaswami et al., Single-mode low-loss chalcogenide glass waveguides for the mid-infrared, Optics Letters, vol.31, issue.12, p.1860, 2006.
DOI : 10.1364/OL.31.001860

T. , Y. Zha, and C. B. Arnold, Solution-processed chalcogenide glass for integrated single-mode mid-infrared waveguides, Optics express, vol.18, pp.26744-26753, 2010.

L. , L. Li, Y. Zou, S. Danto, J. D. Musgraves et al., Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators, Optics Letters, vol.38, pp.1470-1472, 2015.

T. Lin, V. Singh, J. Hu, K. Richardson, J. D. Musgraves et al., Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides, Lab on a Chip, vol.82, issue.1, pp.2161-2167, 2013.
DOI : 10.1021/ac1007128

C. , M. Giovannini, J. Faist, and B. Mizaikoff, Fabrication and characterization of molecular beam epitaxy grown thin-film GaAs waveguides for mid-infrared evanescent field chemical sensing, Analytical Chemistry, vol.78, pp.4224-4227, 2006.

B. Seddon, Chalcogenide glasses: a review of their preparation, properties and applications, Journal of Non-Crystalline Solids, vol.184, pp.44-50, 1995.
DOI : 10.1016/0022-3093(94)00686-5

D. Pelusi, V. G. Ta, L. Fu, M. Eric, M. Lamont et al., Applications of Highly-Nonlinear Chalcogenide Glass Devices Tailored for High-Speed All-Optical Signal Processing, IEEE Journal of Selected Topics in Quantum Electronics, vol.14, issue.3, pp.529-539, 2008.
DOI : 10.1109/JSTQE.2008.918669

V. Nazabal, F. Charpentier, J. L. Adam, P. Nemec, H. Lhermite et al., Sputtering and Pulsed Laser Deposition for Near- and Mid-Infrared Applications: A Comparative Study of Ge25Sb10S65 and Ge25Sb10Se65 Amorphous Thin Films, International Journal of Applied Ceramic Technology, vol.226, issue.[1-2], pp.990-1000, 2011.
DOI : 10.1016/S0022-3093(97)00493-6

URL : https://hal.archives-ouvertes.fr/hal-00564132

R. , D. Krol, and K. Hirao, Glasses for Photonic Applications, International Journal of Applied Glass Science, vol.1, pp.74-86, 2010.

F. Charpentier, B. Bureau, J. Troles, C. Boussard-plédel, K. Michel-le-pierrès et al., Infrared monitoring of underground CO2 storage using chalcogenide glass fibers, Optical Materials, vol.31, issue.3, pp.496-500, 2009.
DOI : 10.1016/j.optmat.2007.10.014

URL : https://hal.archives-ouvertes.fr/hal-00400769

L. Coq, K. Michel, J. Keirsse, C. Boussard-plédel, G. Fonteneau et al., Infrared glass fibers for in-situ sensing, chemical and biochemical reactions, Comptes Rendus Chimie, vol.5, issue.12, pp.907-913, 2002.
DOI : 10.1016/S1631-0748(02)01452-2

URL : https://hal.archives-ouvertes.fr/hal-01427418

B. Bureau, X. H. Zhang, F. Smektala, J. L. Adam, J. Troles et al., Recent advances in chalcogenide glasses, Journal of Non-Crystalline Solids, vol.345, issue.346, pp.345-346, 2004.
DOI : 10.1016/j.jnoncrysol.2004.08.096

URL : https://hal.archives-ouvertes.fr/hal-01427349

X. , Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, Low-loss chalcogenide waveguides on lithium niobate for the mid-infrared, Optics Letters, vol.35, p.3228, 2010.

M. T. Bordas and . Clavaguera-mora, Glass formation and crystallization kinetics of some Ge???Sb???Se glasses, Journal of Non-Crystalline Solids, vol.119, issue.2, pp.232-237, 1990.
DOI : 10.1016/0022-3093(90)90846-E

F. Santosa, A. Ganjoob, H. Jain, and R. M. Almeida, Optical and spectroscopic characterization of germanium selenide glass films, Non-Oxide and New Optical Glasses 16 355, pp.37-42, 2009.
DOI : 10.1016/j.jnoncrysol.2009.04.057

N. , M. Olivier, E. Baudet, A. Kalendova, P. Benda et al., Optical properties of (GeSe2)100-x(Sb 2Se3)x glasses in near-and middle-infrared spectral regions, Materials Research Bulletin, vol.51, pp.176-179, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01001870

T. Katsuyama, Glass-Forming Regions of Ternary Ge?Te?Al and Ge?Te?Sb Chalcogenide Glasses, J. Non-Cryst. Solids, pp.177-178, 1992.

W. H. Bibliographie, S. Wei, S. W. Xiang, L. Xu, R. P. Fang et al., Structural investigation on gexsb10se90x glasses using x ray photoelectron spectra, Journal of Applied Physics, vol.183506, 2014.

S. Shiryaeva, A. P. Velmuzhova, Z. Tangc, M. Churbanova, and A. Seddonc, Preparation of high purity glasses in the Ga???Ge???As???Se system, Optical Materials, vol.37, pp.18-23, 2014.
DOI : 10.1016/j.optmat.2014.04.021

T. Kohoutek, T. Wagner, J. Orava, M. Krbal, J. Ilavsky et al., Multilayer systems of alternating chalcogenide As???Se and polymer thin films prepared using thermal evaporation and spin-coating techniques, Journal of Physics and Chemistry of Solids, vol.68, issue.5-6, pp.1268-1271, 2007.
DOI : 10.1016/j.jpcs.2007.01.011

C. , X. Shen, R. Wang, G. Wang, S. Dai et al., Optical and structural properties of Ge-Sb-Se thin films fabricated by sputtering and thermal evaporation, Journal of Alloys and Compounds, vol.548, pp.7-12, 2013.

F. , S. Madden, and B. Luther-davies, Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam, Optics Express, vol.13, pp.3079-3086, 2005.

. Zhao, Structure and optical properties of amorphous Ge?Se films prepared by pulsed laser deposition, Optik -International Journal for Light and Electron Optics, vol.114, 2013.

N. , V. Nazabal, and M. Frumar, Photoinduced phenomena in amorphous As4Se3 pulsed laser deposited thin films studied by spectroscopic ellipsometry, Journal of Applied Physics, vol.106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00411540

N. , P. Nemec, A. M. Jurdyc, S. Zhang, F. Charpentier et al., Optical waveguide based on amorphous Er3+-doped Ga-Ge-Sb-S(Se) pulsed laser deposited thin films, Thin Solid Films, vol.518, pp.4941-4947, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486336

N. Mcclanahan and . Laegreid, Sputtering by particle bombardment, 1991.

S. , K. Gao, X. Pang, H. Yang, and A. A. Volinsky, Thickness effect on the band gap of magnetron sputtered Pb45Se45O10 thin films on Si, Physica E: Low-Dimensional Systems and Nanostructures 67, pp.152-158, 2015.

B. , A. Gutierrez-arroyo, P. Nemec, L. Bodiou, J. Lemaitre et al., Selenide sputtered films development for mir environmental sensor, Opt. Mater. Express, vol.6, pp.2616-2627, 2016.

A. Jenkins and H. E. White, Fundamental of optics, 4 e éd, 2001.

M. Sze and K. N. Kwok, Physics of semiconductor devices, 3 e éd, 2006.

H. , L. Calvez, F. Tessier, P. Lucas, and X. H. Zhang, Nanoporous surface of infrared transparent chalcogenide glass-ceramics by chemical etching, Materials Research Bulletin, vol.47, pp.4076-4081, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00813173

Y. Choi, S. Maden, A. Rode, R. Wang, and B. Luther-davies, Plasma etching of As2S3 films for optical waveguides, Journal of Non-Crystalline Solids, vol.354, issue.27, pp.3179-3183, 2008.
DOI : 10.1016/j.jnoncrysol.2008.01.014

G. , E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy et al., Optical characterization at 7.7 um of an integrated platform based on chalcogenide waveguides for sensing applications in the midinfrared, Opt. Express, vol.24, pp.23109-23117, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398053

M. and G. M. Carlomagno, Recent advances in the use of infrared thermography, Measurement Science and Technology, vol.15, pp.27-58, 2004.

S. , P. T. Lin, N. Patel, H. Lin, L. Li et al., Mid-infrared materials and devices on a Si platform for optical sensing, Science and Technology of Advance Materials, p.14603, 2014.

T. Lin, V. Singh, J. Hu, K. Richardson, and D. Musgraves, Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides, Lab on a Chip, vol.82, issue.1, pp.2161-2166, 2013.
DOI : 10.1021/ac1007128

D. Vallero, Fundamentals of Air Pollution, p.5, 2014.

S. , S. Reis, and C. E. Sabel, Quantifying human exposure to air pollution?moving from static monitoring to spatio-temporally resolved personal exposure assessment, Science of The Total Environment, vol.443, pp.184-193, 2013.

C. Lopez, G. Quijano, J. M. Souza-t, R. Estrada, R. Lebrero et al., Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges, Applied Microbiology and Biotechnology, vol.190, issue.40, pp.2277-2303, 2013.
DOI : 10.1016/j.jhazmat.2011.04.011

K. Luhar, D. M. Etheridge, R. Leuning, Z. Loh, C. R. Jenkins et al., storage site using atmospheric modeling and measurements, Journal of Geophysical Research: Atmospheres, vol.12, issue.3, pp.10959-10979, 2014.
DOI : 10.1007/978-1-4757-4465-1

URL : http://onlinelibrary.wiley.com/doi/10.1002/2014JD021880/pdf

R. , M. Mayer, and J. Harnisch, The Kyoto Protocol and non-CO2 greenhouse gases and carbon sinks, Environ. Model. Assess, vol.7, pp.217-229, 2002.

W. Weldon, P. Phelan, and J. Hegarty, Methane and carbon dioxide sensing using a DFB laser diode operating at 1.64 ??m, Electronics Letters, vol.29, issue.6, pp.560-563, 1993.
DOI : 10.1049/el:19930374

R. Bibliographie, J. Siebert, and . Muller, Infrared integrated optical evanescent field sensor for gas analysis: Part I: System design, Sensors and Actuators A: Physical, vol.119, pp.138-149, 2005.

F. Starecki, F. Charpentier, J. L. Doualan, L. Quetel, K. Michel et al., Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers, Sensors and Actuators B: Chemical, vol.207, pp.518-525, 2015.
DOI : 10.1016/j.snb.2014.10.011

URL : https://hal.archives-ouvertes.fr/hal-01077740

Y. , K. Goswami, K. Hong, J. Grant, and Z. L. Xue, Fluorescent-dye-doped sol-gel sensor for highly sensitive carbon dioxide gas detection below atmospheric concentrations, Anal. Chem, vol.82, pp.593-600, 2010.

J. , R. Roth, J. S. Fuglestvedt, G. P. Peters, I. G. Enting et al., Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis, Atmospheric Chemistry and Physics, vol.13, pp.2793-2825, 2013.

S. , G. K. Qin, M. Plattner, S. K. Tignor, J. Allen et al., Summary for Policymakers In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ipcc, pp.1-29, 2013.

. Schoell, Multiple origins of methane in the Earth, Chemical Geology, vol.71, issue.1-3, p.10, 1988.
DOI : 10.1016/0009-2541(88)90101-5

B. , C. Guillou, F. Reniero, and E. Wada, The global methane cycle: isotopes and mixing ratios, sources and sinks, Isotopes in Environmental and Health Studies, vol.37, pp.12723792-257, 2001.

M. , D. Schimel, D. Valentine, K. Bronson, and W. Parton, Methane and nitrousoxide fluxes in native, fertilized and cultivated grasslands, Nature, vol.350, pp.330-332, 1991.

C. , N. P. Sanchez, W. Jiang, R. J. Griffin, F. Xie et al., Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser, Optics Express, vol.23, p.2121, 2015.

A. , E. T. Es-sebbar, and A. Farooq, Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures, Journal of Molecular Spectroscopy, vol.303, pp.8-14, 2014.

T. Hulgaardt and K. D. Johansen, Nitrous oxide sampling, analysis, and emission measurements from various combustion systems, Environmental Progress, vol.84, issue.4, 1992.
DOI : 10.1002/ep.670110418

W. , W. Dong, Q. Yan, J. Chou, Z. Yang et al., Developed and Developing World Contributions to Climate System Change Based on Carbon Dioxide , Methane and Nitrous Oxide Emissions, Advances in Atmospheric Sciences, vol.33, pp.632-643, 2016.

W. , Z. Bielecki, T. Stacewicz, J. Mikolajczyk, R. Medrzycki et al., Application of quantum cascade lasers in nitric oxide and nitrous oxide detection, Acta Physica Polonica A, vol.120, pp.794-797, 2011.

A. Toth, Line-frequency measurements and analysis of N_2O between 900 and 4700 cm^???1, Applied Optics, vol.30, issue.36, pp.5289-315, 1991.
DOI : 10.1364/AO.30.005289

E. Logsdon and R. Loke, Isopropyl alcohol. kirk-othmer encyclopedia of chemical technology, 2000.

A. V. Belay and . Gholap, Determination of integrated absorption cross-section, oscillator strength and number density of caffeine in coffee beans by the integrated absorption coefficient technique, International Journal of Physical Sciences, vol.4, pp.722-728, 2009.

C. Dobrowolski, S. Ostrowski, R. Kolos, and M. H. Jamroz, Ar-matrix IR spectra of 2-propanol and its OD, D7 and D8 isotopologues, Vibrational Spectroscopy, vol.48, issue.1, pp.82-91, 2008.
DOI : 10.1016/j.vibspec.2007.12.017

R. and D. Goranovic, Biotechnological applications of acetic acid bacteria, Critical Reviews in Biotechnology, vol.28, pp.101-124, 2008.

L. , W. W. Li, B. Mizaikoff, A. Katzir, Y. Raichlin et al., Highsensitivity infrared attenuated total reflectance sensors for in situ multicomponent detection of volatile organic compounds in water, Nat. Protocols, vol.11, pp.377-386, 2016.

M. Wieliczka, S. Weng, and M. R. Querry, Wedge shaped cell for highly absorbent liquids: infrared optical constants of water, Applied Optics, vol.28, issue.9, pp.1714-1719, 1989.
DOI : 10.1364/AO.28.001714

G. , R. W. Seitz, S. A. Tomellini, R. Krska, and R. Kellner, Infrared attenuated total reflection spectroscopic investigations of the diffusion behaviour of chlorinated hydrocarbons into polymer membranes, Vibrational Spectroscopy, vol.8, pp.141-149, 1995.

G. Gorchev and G. Ozolins, WHO guidelines for drinking-water quality, WHO Chron, vol.38, pp.104-108, 2011.

A. Gutierrez-arroyo, E. Baudet, L. Bodiou, V. Nazabal, E. Rinnert et al., Theoretical study of an evanescent optical integrated sensor for multipurpose detection of gases and liquids in the Mid-Infrared, Sensors and Actuators B: Chemical, vol.242, pp.842-848, 2017.
DOI : 10.1016/j.snb.2016.09.174

C. , V. Nazabal, and B. Bureau, Evanescent wave optical micro-sensor based on chalcogenide glass, Sensor Actuat B-Chem, vol.173, pp.468-476, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00743261

A. , E. Es-sebbar, and A. Farooq, Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures, Journal of Molecular Spectroscopy, vol.303, pp.8-14, 2014.

T. , A. C. Vandaele, and J. V. Auwera, The HITRAN 2008 molecular spectroscopic database, Journal of Quantitative Spectroscopy and Radiative Transfer, vol.110, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01005778

I. For, O. Safety, and H. , International chemical safety cards (icsc). methane. icsc 0291, pp.74-82, 2010.

A. French, A. For, F. , and O. H. Safety, Carbon dioxide in indoor air, rapp. tech, Consulté mai, p.2016, 2013.

A. Society, A. C. Heating, and . Engineers, Ashrae standard 62.1-2013. ventilation for acceptable indoor air quality, rapp. tech, Consulté mai, p.2016, 2013.

H. Hoerauf, C. Koller, K. Taeger, and J. Hobbhahn, Occupational exposure to sevoflurane and nitrous oxide in operating room personnel, International Archives of Occupational and Environmental Health, vol.69, issue.2, pp.134-138, 1997.
DOI : 10.1007/s004200050127

H. , P. Lin, V. Singh, L. Kimerling, J. Hu et al., On-chip mid-infrared gas detection using chalcogenide glass waveguide, Applied Physics Letters, vol.108, 2016.

C. , N. Sanchez, W. Jiang, R. J. Griffin, F. Xie et al., Simultaneous atmospheric nitrous oxide, methane and water vapor detection with a single continuous wave quantum cascade laser, Opt. Express, vol.23, pp.2121-2132, 2015.

M. Hale and M. R. Querry, Optical Constants of Water in the 200-nm to 200-??m Wavelength Region, Applied Optics, vol.12, issue.3, pp.555-563, 1973.
DOI : 10.1364/AO.12.000555

H. Organization, Guidelines for drinking water quality, rapp. tech, 2016.

G. , R. Seitz, S. Tomellini, R. Krska, and R. Kellner, Infrared attenuated total reflection spectroscopic investigations of the diffusion behaviour of chlorinated hydrocarbons into polymer membranes, Vibrational Spectroscopy, vol.8, pp.141-149, 1995.

K. Tien, Light Waves in Thin Films and Integrated Optics, Applied Optics, vol.10, issue.11, 1971.
DOI : 10.1364/AO.10.002395

A. , K. Tsujimoto, and S. Tachi, Deposition in dry-etching gas plasmas, Japanese Journal of Applied Physics, vol.31, p.2011, 1992.

M. , D. Y. Choi, Y. Yu, X. Gai, Z. Yang et al., Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared, Optics express, vol.21, pp.29927-29964, 2013.

J. , F. Henrio, D. Bosc, and J. L. Adam, Sulphide gagesbs sputtered films. fabrication and optical characterizations of planar and rib optical waveguides, J. Appl. Phys, vol.104, 2008.

W. , Y. Abe, Y. Matsuura, M. Miyagi, and H. Uyama, Refractive indices and extinction coefficients of polymers for the mid-infrared region, Appl. Opt, vol.37, pp.7091-7095, 1998.

J. Chamberlain, On a relation between absorption strength and refractive index, Infrared Physics, vol.5, issue.4, 1965.
DOI : 10.1016/0020-0891(65)90020-5