R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, vol.65, issue.103, p.104, 1975.

M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, 37 in Pure and Applied Mathematics, p.172, 2000.

A. Anantharaman and E. Cancès, Existence of minimizers for Kohn???Sham models in quantum chemistry, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.26, issue.6, pp.2425-2455, 2009.
DOI : 10.1016/j.anihpc.2009.06.003

T. A. Arias, Multiresolution analysis of electronic structure: semicardinal and wavelet bases, Reviews of Modern Physics, vol.99, issue.1, pp.267-311, 1999.
DOI : 10.1016/S0038-1098(96)80049-4

M. Aubert, N. Bessis, and G. Bessis, Prolate-spheroidal orbitals for homonuclear and heteronuclear diatomic molecules. II. Shielding effects for the two-electron problem, Physical Review A, vol.41, issue.1, pp.61-70, 1974.
DOI : 10.1063/1.1726326

I. Babu?ka and J. Osborn, Eigenvalue problems, in Finite Element Methods of Handbook of Numerical Analysis, pp.64-787, 1991.

G. Bao, G. Hu, and D. Liu, An h-adaptive finite element solver for the calculations of the electronic structures, Journal of Computational Physics, vol.231, issue.14, pp.4967-4979, 2012.
DOI : 10.1016/j.jcp.2012.04.002

G. Bao, G. Hu, and D. Liu, Numerical Solution of the Kohn-Sham Equation by Finite Element Methods with an Adaptive Mesh Redistribution Technique, Journal of Scientific Computing, vol.372, issue.12, pp.372-391, 2013.
DOI : 10.1016/j.physleta.2008.05.075

G. Beylkin, On the Representation of Operators in Bases of Compactly Supported Wavelets, SIAM Journal on Numerical Analysis, vol.29, issue.6, pp.1716-1740, 1992.
DOI : 10.1137/0729097

URL : https://hal.archives-ouvertes.fr/hal-01322928

G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Communications on Pure and Applied Mathematics, vol.1, issue.2, pp.141-183, 1991.
DOI : 10.1017/CBO9780511662294.012

G. Beylkin and R. Cramer, A Multiresolution Approach to Regularization of Singular Operators and Fast Summation, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.81-117, 2002.
DOI : 10.1137/S1064827500379227

D. R. Bowler and T. Miyazaki, \mathcal{O}(N) methods in electronic structure calculations, Reports on Progress in Physics, vol.75, issue.3, pp.36503-36544, 2012.
DOI : 10.1088/0034-4885/75/3/036503

S. F. Boys, Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System, Proc. R. Soc. Lond. A, pp.542-554, 1950.
DOI : 10.1098/rspa.1950.0036

M. Brewster, G. I. Fann, and Z. Yang, Wavelets for electronic structure calculations, Journal of Mathematical Chemistry, vol.22, issue.2/4, pp.117-142, 1997.
DOI : 10.1023/A:1019171830287

E. Cancès, Self-Consistent Field (SCF) algorithms, Encyclopedia of Applied and Computational Mathematics, pp.1310-1316, 2015.

E. Cancès, R. Chakir, and Y. Maday, Numerical Analysis of Nonlinear Eigenvalue Problems, Journal of Scientific Computing, vol.30, issue.1-3, pp.90-117, 2010.
DOI : 10.5802/aif.204

E. Cancès, R. Chakir, and Y. Maday, Numerical analysis of the planewave discretization of orbital-free and Kohn-Sham models, pp.46-341, 2012.

E. Cancès, M. Defranceschi, W. Kutzelnigg, C. L. Bris, and Y. Maday, Computational quantum chemistry: A primer, in Special Volume: Computational Chemistry X of Handbook of Numerical Analysis, pp.3-270, 2003.

E. Cancès and C. L. Bris, Can we outperform the DIIS approach for electronic structure calculations?, 2<82::AID-QUA3>3.0.CO;2-I. 31, pp.82-90, 2000.

E. Cancès and C. L. Bris, On the convergence of SCF algorithms for the Hartree-Fock equations, pp.34-749, 2000.

E. Cancès and M. Lewin, Modèles à N corps. Notes du cours M2 : Méthodes variationnelles en physique quantique, Février, 2008.

E. Cancès and K. Pernal, Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations, The Journal of Chemical Physics, vol.128, issue.13, pp.134108-211, 2008.
DOI : 10.1103/PhysRevLett.94.233002

K. Capelle, A bird's-eye view of density-functional theory, Braz, J. Phys, vol.36, pp.1318-1343, 2006.

R. Chakir, Contribution à l'analyse numérique de quelques problèmes en chimie quantique et mécanique, p.133, 2009.

C. Chauvin, Les ondelettes comme fonctions de base dans le calcul des structures électroniques, p.41, 2005.

H. Chen, X. Dai, X. Gong, L. He, and A. Zhou, Adaptive Finite Element Approximations for Kohn--Sham Models, Multiscale Modeling & Simulation, vol.12, issue.4, pp.1828-1869, 2014.
DOI : 10.1137/130916096

URL : http://arxiv.org/pdf/1302.6896

H. Chen, X. Gong, L. He, Z. Yang, and A. Zhou, Numerical analysis of finite dimensional approximations of Kohn???Sham models, Advances in Computational Mathematics, vol.28, issue.2, pp.225-256, 2013.
DOI : 10.1002/mma.793

H. Chen, L. He, and A. Zhou, Finite element approximations of nonlinear eigenvalue problems in quantum physics, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.21-22, pp.1846-1865, 2011.
DOI : 10.1016/j.cma.2011.02.008

C. Chizallet, S. Lazare, D. Bazer-bachi, F. Bonnier, V. Lecocq et al., Calculations, Journal of the American Chemical Society, vol.132, issue.35, pp.12365-12377, 2010.
DOI : 10.1021/ja103365s

URL : https://hal.archives-ouvertes.fr/hal-01229899

K. Cho, T. A. Arias, J. D. Joannopoulos, and P. K. Lam, Wavelets in electronic structure calculations, Physical Review Letters, vol.246, issue.12, pp.1808-1811, 1993.
DOI : 10.1098/rsta.1953.0014

C. K. Chui, An introduction to wavelets of Wavelet Analysis and its Applications, p.105, 1992.

C. K. Chui and J. Wang, A cardinal spline approach to wavelets, Proc. Amer, pp.785-793, 1991.
DOI : 10.1090/S0002-9939-1991-1077784-X

A. Cohen, Ondelettes, analyses multir??solutions et filtres miroirs en quadrature, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.7, issue.5, pp.439-459, 1990.
DOI : 10.1016/S0294-1449(16)30286-4

A. Cohen and I. Daubechies, A new technique to estimate the regularity of refinable functions, Revista Matem??tica Iberoamericana, vol.12, pp.527-591, 1996.
DOI : 10.4171/RMI/207

A. Cohen, I. Daubechies, and J. Feauveau, Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5, pp.485-560, 1992.
DOI : 10.1002/cpa.3160450502

W. Dahmen and C. A. Micchelli, Using the Refinement Equation for Evaluating Integrals of Wavelets, SIAM Journal on Numerical Analysis, vol.30, issue.2, pp.507-537, 1993.
DOI : 10.1137/0730024

X. Dai, J. Xu, and A. Zhou, Convergence and optimal complexity of adaptive finite element eigenvalue computations, Numerische Mathematik, vol.98, issue.3, pp.313-355, 2008.
DOI : 10.1007/s00211-008-0169-3

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.34, issue.7, pp.909-996, 1988.
DOI : 10.1007/978-3-642-61987-8

I. Daubechies and J. C. Lagarias, Two-Scale Difference Equations II. Local Regularity, Infinite Products of Matrices and Fractals, SIAM Journal on Mathematical Analysis, vol.23, issue.4, pp.1031-1079, 1992.
DOI : 10.1137/0523059

I. P. Daykov, T. A. Arias, and T. D. Engeness, Calculation of Condensed Matter: Transparent Convergence through Semicardinal Multiresolution Analysis, Physical Review Letters, vol.13, issue.21, p.216402, 2003.
DOI : 10.1103/PhysRevB.13.5188

URL : http://arxiv.org/abs/cond-mat/0204411

T. J. De-bruin, L. Magna, P. Raybaud, and H. Toulhoat, Hemilabile Ligand Induced Selectivity:?? a DFT Study on Ethylene Trimerization Catalyzed by Titanium Complexes, Organometallics, vol.22, issue.17, pp.22-3404, 2003.
DOI : 10.1021/om030255w

M. De-llano, A. Salazar, and M. A. Solís, Two-dimensional delta potential wells and condensed-matter physics, Rev. Mex. Fis, vol.51, pp.626-632, 2005.

P. Duchêne, Résolution numérique d'une équation de type Schrödinger 1-D non linéaire, 0211.

P. Duchêne, Calcul numérique du produit scalaire entre une gaussienne et la fonction d'échelle d'une ondelette, p.162, 2014.

G. Dusson and Y. Maday, analysis of a nonlinear Gross???Pitaevskii-type eigenvalue problem, IMA Journal of Numerical Analysis, vol.37, issue.1, pp.94-137, 2017.
DOI : 10.1093/imanum/drw001

URL : https://hal.archives-ouvertes.fr/hal-00903715

T. D. Engeness and T. A. Arias, Multiresolution analysis for efficient, high precision all-electron density-functional calculations, Physical Review B, vol.3, issue.16, p.165106, 2002.
DOI : 10.1016/S1359-0286(98)80042-9

R. N. Euwema, Rapid convergence of crystalline energy bands by use of a plane-wave-gaussian mixed basis set, International Journal of Quantum Chemistry, vol.179, issue.S5, pp.471-487, 1971.
DOI : 10.1103/PhysRevB.1.4692

D. F. Feller and K. Ruedenberg, Systematic approach to extended even-tempered orbital bases for atomic and molecular calculations, Theoretica Chimica Acta, vol.52, issue.3, pp.231-251, 1979.
DOI : 10.1007/BF00547681

P. Fischer and M. Defranceschi, Looking at atomic orbitals through fourier and wavelet transforms, International Journal of Quantum Chemistry, vol.25, issue.6, pp.619-636, 1993.
DOI : 10.1098/rspa.1935.0085

P. Fischer and M. Defranceschi, Iterative Process for Solving Hartree???Fock Equations by Means of a Wavelet Transform, Applied and Computational Harmonic Analysis, vol.1, issue.3, pp.232-241, 1994.
DOI : 10.1006/acha.1994.1010

G. J. Fix, Eigenvalue approximation by the finite element method, Advances in Mathematics, vol.10, issue.2, pp.300-316, 1973.
DOI : 10.1016/0001-8708(73)90113-8

URL : http://doi.org/10.1016/0001-8708(73)90113-8

A. A. Frost, Delta???Function Model. I. Electronic Energies of Hydrogen???Like Atoms and Diatomic Molecules, The Journal of Chemical Physics, vol.4, issue.6, pp.1150-76, 1956.
DOI : 10.1063/1.1742060

S. Geltman, Bound States in Delta Function Potentials, Journal of Atomic, Molecular, and Optical Physics, vol.59, issue.12, pp.1-4, 2011.
DOI : 10.1119/1.16691

URL : http://doi.org/10.1155/2011/573179

L. Genovese and T. Deutsch, Multipole-preserving quadratures for the discretization of functions in real-space electronic structure calculations, Phys. Chem. Chem. Phys., vol.97, issue.4, pp.31582-31591, 2015.
DOI : 10.1103/PhysRevLett.97.170201

L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S. A. Ghasemi et al., Daubechies wavelets as a basis set for density functional pseudopotential calculations, The Journal of Chemical Physics, vol.129, issue.1, pp.14109-71, 2008.
DOI : 10.1137/1.9780898719604

URL : http://arxiv.org/pdf/0804.2583

L. Genovese, M. Ospici, T. Deutsch, J. Méhaut, A. Neelov et al., Density functional theory calculation on many-cores hybrid central processing unit-graphic processing unit architectures, The Journal of Chemical Physics, vol.131, issue.3, pp.34103-63, 1998.
DOI : 10.1016/0010-4655(93)90057-J

URL : http://edoc.unibas.ch/10299/1/1%252E3166140.pdf

S. Goedecker, Linear scaling electronic structure methods, Reviews of Modern Physics, vol.78, issue.4, pp.1085-1123, 1999.
DOI : 10.1103/PhysRevLett.78.479

S. Goedecker and O. V. Ivanov, Linear scaling solution of the Coulomb problem using wavelets, Solid State Commun, pp.665-669, 1998.

S. Goedecker and O. V. Ivanov, Frequency localization properties of the density matrix and its resulting hypersparsity in a wavelet representation, Physical Review B, vol.140, issue.11, pp.7270-7273, 1999.
DOI : 10.1006/jcph.1998.5885

A. S. Gomes and R. Custodio, Exact Gaussian expansions of Slater-type atomic orbitals, Journal of Computational Chemistry, vol.7, issue.10, pp.1007-1012, 2002.
DOI : 10.1093/comjnl/7.4.308

URL : https://hal.archives-ouvertes.fr/hal-00820886

X. Gonze, B. Amadon, P. Anglade, J. Beuken, F. Bottin et al., ABINIT: First-principles approach to material and nanosystem properties, Computer Physics Communications, vol.180, issue.12, pp.180-2582, 2009.
DOI : 10.1016/j.cpc.2009.07.007

URL : https://digital.csic.es/bitstream/10261/95956/1/accesoRestringido.pdf

R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan, and G. Beylkin, Multiresolution quantum chemistry: Basic theory and initial applications, The Journal of Chemical Physics, vol.121, issue.23, pp.11587-11598, 2004.
DOI : 10.1063/1.435280

W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton, and J. A. Pople, Gaussian 70, quantum chemistry program exchange, program no, p.13, 1970.

W. J. Hehre, R. F. Stewart, and J. A. Pople, Self???Consistent Molecular???Orbital Methods. I. Use of Gaussian Expansions of Slater???Type Atomic Orbitals, The Journal of Chemical Physics, vol.51, issue.6, pp.2657-2664, 1969.
DOI : 10.1016/0009-2614(68)80030-2

J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, SpringerBriefs in Mathematics, vol.169, p.170
DOI : 10.1007/978-3-319-22470-1

URL : https://hal.archives-ouvertes.fr/hal-01223456

M. Hoffmann-ostenhof, T. Hoffmann-ostenhof, and T. Østergaard-sørensen, Electron Wavefunctions and Densities for Atoms, Annales Henri Poincar??, vol.2, issue.1, pp.77-100, 2001.
DOI : 10.1007/PL00001033

URL : http://arxiv.org/pdf/math/0005018

M. Hoffmann-ostenhof, T. Hoffmann-ostenhof, and H. Stremnitzer, Local properties of Coulombic wave functions, Communications in Mathematical Physics, vol.7, issue.1, pp.185-215, 1994.
DOI : 10.1007/978-94-009-2323-2

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.80, issue.3B, pp.864-871, 1964.
DOI : 10.1088/0370-1328/80/5/307

E. Hunsicker, V. Nistor, and J. O. Sofo, Analysis of periodic Schr??dinger operators: Regularity and approximation of eigenfunctions, Journal of Mathematical Physics, vol.4, issue.8, p.83501, 2008.
DOI : 10.1016/S0168-2024(08)70178-4

S. Huzinaga, Gaussian???Type Functions for Polyatomic Systems. I, The Journal of Chemical Physics, vol.42, issue.4, pp.1293-1302, 1965.
DOI : 10.1063/1.1725897

L. Jacques, L. Duval, C. Chaux, G. Peyré, and T. Kato, A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity, Signal Process Fundamental properties of Hamiltonian operators of Schrödinger type, Trans. Amer. Math. Soc, vol.70, pp.91-2699, 1951.

T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics, Communications on Pure and Applied Mathematics, vol.6, issue.2, pp.151-177, 1957.
DOI : 10.1002/cpa.3160100201

T. Kato, Perturbation Theory for Linear Operators, p.23, 1980.

B. Klahn and W. A. , The convergence of the Rayleigh-Ritz method in quantum chemistry. I. The criteria of convergence, Theor. Chim. Acta, pp.44-53, 1977.

B. Klahn and W. A. , The convergence of the Rayleigh-Ritz method in quantum chemistry. II. Investigation of the convergence for special systems of Slater, Gauss and two-electron functions Sham, Self-consistent equations including exchange and correlation effects, Theor. Chim. Acta Phys. Rev, vol.140, pp.44-71, 1965.

G. Kresse and J. Furthmüller, total-energy calculations using a plane-wave basis set, Physical Review B, vol.2, issue.16, pp.11169-11186, 1996.
DOI : 10.1016/0927-0256(94)90105-8

H. Kreusler and H. Yserentant, The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces, Numerische Mathematik, vol.45, issue.4, pp.781-802, 2012.
DOI : 10.1051/m2an/2010103

W. Kutzelnigg, Theory of the expansion of wave functions in a gaussian basis, International Journal of Quantum Chemistry, vol.199, issue.6, pp.447-463, 1994.
DOI : 10.1017/S0370164600017806

B. Langwallner, C. Ortner, and E. Süli, EXISTENCE AND CONVERGENCE RESULTS FOR THE GALERKIN APPROXIMATION OF AN ELECTRONIC DENSITY FUNCTIONAL, Mathematical Models and Methods in Applied Sciences, vol.8, issue.12, pp.2237-2265, 2010.
DOI : 10.1007/978-1-4612-4838-5

Z. H. Levine and J. W. Wilkins, An energy-minimizing mesh for the Schr??dinger equation, Journal of Computational Physics, vol.83, issue.2, pp.361-3720021, 1989.
DOI : 10.1016/0021-9991(89)90124-1

H. Li and V. Nistor, Analysis of a modified Schr??dinger operator in 2D: Regularity, index, and FEM, Journal of Computational and Applied Mathematics, vol.224, issue.1, pp.320-338, 2009.
DOI : 10.1016/j.cam.2008.05.009

E. H. Lieb, Thomas-fermi and related theories of atoms and molecules, Reviews of Modern Physics, vol.31, issue.4, pp.603-641, 1981.
DOI : 10.1143/JPSJ.31.882

E. H. Lieb and E. H. Lieb, Density functionals for coulomb systems, International Journal of Quantum Chemistry, vol.140, issue.3, pp.243-277, 1983.
DOI : 10.4153/CJM-1949-007-x

G. Lippert, J. Hutter, and M. Parrinello, A hybrid Gaussian and plane wave density functional scheme, Molecular Physics, vol.48, issue.3, pp.477-488, 1997.
DOI : 10.1103/PhysRevB.48.14646

F. Longo, Gaussian and wavelet bases in electronic structure calculations, pp.71-212, 2011.

Y. Maday and ?. , P finite element approximation for full-potential electronic structure calculations, Chin, Ann. Math., Ser. B, vol.35, pp.1-24, 2014.
DOI : 10.1007/978-3-642-41401-5_14

Y. Maday, Numerical Analysis of Eigenproblems for Electronic Structure Calculations, Encyclopedia of Applied and Computational Mathematics, pp.1042-1047, 2015.
DOI : 10.1007/978-3-540-70529-1_258

Y. Maday, A Priori and A Posteriori Error Analysis in Chemistry, Encyclopedia of Applied and Computational Mathematics, pp.5-10
DOI : 10.1007/978-3-540-70529-1_255

Y. Maday and G. Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations, Multiresolution approximation and wavelet orthonormal bases of, pp.739-770, 1989.
DOI : 10.1126/science.271.5245.51

URL : https://hal.archives-ouvertes.fr/hal-00798321

S. Mallat, A wavelet tour of signal processing: The sparse way, pp.51-52, 2008.

A. J. Markvoort, R. Pino, and P. A. Hilbers, Interpolating Wavelets in Kohn-Sham Electronic Structure Calculations, Computational Science ? ICCS 2001: International Conference Proceedings, 2001.
DOI : 10.1007/3-540-45545-0_63

M. Mehra and K. Goyal, Algorithm 929, ACM Transactions on Mathematical Software, vol.39, issue.4, pp.27-61, 2013.
DOI : 10.1145/2491491.2491497

S. Mohr, L. E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste et al., Daubechies wavelets for linear scaling density functional theory, The Journal of Chemical Physics, vol.140, issue.20, 2014.
DOI : 10.1103/PhysRevB.82.035431

URL : https://hal.archives-ouvertes.fr/hal-01334186

P. Monasse and V. Perrier, Orthonormal Wavelet Bases Adapted for Partial Differential Equations with Boundary Conditions, SIAM Journal on Mathematical Analysis, vol.29, issue.4, pp.1040-1065, 1998.
DOI : 10.1137/S0036141095295127

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4210

P. Motamarri, M. Nowak, K. Leiter, J. Knap, and V. Gavini, Higher-order adaptive finite-element methods for Kohn???Sham density functional theory, Journal of Computational Physics, vol.253, pp.308-343, 2013.
DOI : 10.1016/j.jcp.2013.06.042

URL : http://arxiv.org/abs/1207.0167

S. Muraki, Volume data and wavelet transforms, IEEE Computer Graphics and Applications, vol.13, issue.4, pp.50-56, 1993.
DOI : 10.1109/38.219451

S. Nagy and J. Pipek, A wavelet-based adaptive method for determining eigenstates of electronic systems, Theoretical Chemistry Accounts, vol.38, issue.3-6, pp.471-479, 2010.
DOI : 10.1016/S0377-0427(00)00511-2

A. I. Neelov and S. Goedecker, An efficient numerical quadrature for the calculation of the potential energy of wavefunctions expressed in the Daubechies wavelet basis, Journal of Computational Physics, vol.217, issue.2, pp.312-339, 2006.
DOI : 10.1016/j.jcp.2006.01.003

A. M. Niklasson, C. J. Tymczak, and H. Röder, Multiresolution density-matrix approach to electronic structure calculations, Physical Review B, vol.340, issue.15, p.155120, 2002.
DOI : 10.1016/S0009-2614(01)00409-2

R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, of International Series of Monographs on Chemistry, p.13, 1989.
DOI : 10.1007/978-94-009-9027-2_2

V. Perrier and C. Basdevant, Periodical wavelet analysis, a tool for inhomogeneous field investigations: Theory and algorithms, Rech. Aérosp, pp.53-67, 1989.

D. H. Pham, Bases mixtes ondelettes?gaussiennes pour le calcul des structures électroniques, tech. report, IFP Energies nouvelles, p.141, 2013.

C. Prud-'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday et al., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Engrg, vol.124, issue.167, pp.70-80, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00798326

A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, pp.2015-2032
DOI : 10.1007/978-3-319-15431-2

J. M. Restrepo and G. Leaf, Inner product computations using periodized Daubechies wavelets, 19<3557::AID-NME227>3.0.CO;2-A. 69, pp.3557-35781097, 1998.
DOI : 10.1137/0724066

URL : https://hal.archives-ouvertes.fr/hal-01323007

J. M. Restrepo, G. K. Leaf, and G. Schlossnagle, Periodized Daubechies wavelets, tech. report, p.69, 1996.
DOI : 10.2172/211651

URL : https://digital.library.unt.edu/ark:/67531/metadc669960/m2/1/high_res_d/211651.pdf

M. Schechter, Operator methods in quantum mechanics, North-Holland, p.23, 1981.

T. C. Scott, J. F. Babb, A. Dalgarno, and J. D. Morgan, The calculation of exchange forces: General results and specific models, The Journal of Chemical Physics, vol.36, issue.4, pp.2841-2854, 1993.
DOI : 10.1063/1.1724312

T. C. Scott, R. Mann, R. E. Martinez, and I. , General relativity and quantum mechanics: Towards a generalization of the Lambert W function, AAECC, pp.17-41, 2006.

I. Shavitt and M. Karplus, Gaussian???Transform Method for Molecular Integrals. I. Formulation for Energy Integrals, The Journal of Chemical Physics, vol.49, issue.2, pp.398-414, 1964.
DOI : 10.1017/S0370164600026262

I. M. Sigal, How many electrons can a nucleus bind?, Annals of Physics, vol.157, issue.2, pp.307-3200003, 1984.
DOI : 10.1016/0003-4916(84)90062-9

J. C. Slater, Atomic Shielding Constants, Physical Review, vol.35, issue.1, pp.57-64, 1930.
DOI : 10.1103/PhysRev.35.509

J. C. Slater, Wave Functions in a Periodic Potential, Physical Review, vol.51, issue.10, pp.846-851, 1937.
DOI : 10.1103/PhysRev.51.129

W. Sweldens and R. Piessens, Quadrature Formulae and Asymptotic Error Expansions for Wavelet Approximations of Smooth Functions, SIAM Journal on Numerical Analysis, vol.31, issue.4, pp.31-1240, 1994.
DOI : 10.1137/0731065

A. Szabo and N. S. Ostlund, Modern quantum chemistry: An introduction to advanced electronic structure theory, p.37, 1982.

Q. H. Tran, Une analyse de l'erreur de quadrature du produit scalaire gaussienne-fonction d'échelle. Note de travail, p.162, 2014.

M. Unser, P. Thévenaz, and A. Aldroubi, Shift-orthogonal wavelet bases using splines, IEEE Signal Processing Letters, vol.3, issue.3, pp.85-88, 1996.
DOI : 10.1109/97.481163

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.1564

J. Vandevondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing et al., Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, Computer Physics Communications, vol.167, issue.2, pp.103-128, 2005.
DOI : 10.1016/j.cpc.2004.12.014

R. Verfürth, A review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in numerical mathematics, p.172, 1996.

G. G. Walter and L. Cai, Periodic wavelets from scratch, J. Comput. Anal. Appli, vol.1, pp.25-41, 1999.

T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, Multiresolution quantum chemistry in multiwavelet bases: Analytic derivatives for Hartree???Fock and density functional theory, The Journal of Chemical Physics, vol.121, issue.7, pp.2866-2876, 2004.
DOI : 10.1080/00268970210133206

T. Yanai, G. I. Fann, Z. Gan, R. J. Harrison, and G. Beylkin, Multiresolution quantum chemistry in multiwavelet bases: Hartree???Fock exchange, The Journal of Chemical Physics, vol.98, issue.14, p.6680, 2004.
DOI : 10.1063/1.457068

H. Yserentant, On the regularity of the electronic Schr???dinger equation in Hilbert spaces of mixed derivatives, Numerische Mathematik, vol.4, issue.4, pp.731-759, 2004.
DOI : 10.1007/s00211-003-0498-1

D. Zhang, L. Shen, A. Zhou, and X. Gong, Finite element method for solving Kohn???Sham equations based on self-adaptive tetrahedral mesh, Physics Letters A, vol.372, issue.30, pp.5071-5076, 2008.
DOI : 10.1016/j.physleta.2008.05.075

G. M. Zhislin, Discussion of the spectrum of Schrödinger operators for systems of many particles, Trudy Mosk, Mat. Obs, vol.9, pp.81-120, 1960.

A. Zhou, An analysis of finite-dimensional approximations for the ground state solution of Bose???Einstein condensates, Nonlinearity, vol.17, issue.2, pp.541-550010, 2004.
DOI : 10.1088/0951-7715/17/2/010

A. Zhou, Finite dimensional approximations for the electronic ground state solution of a molecular system, Mathematical Methods in the Applied Sciences, vol.26, issue.4, pp.429-447, 2007.
DOI : 10.1007/978-1-4612-0603-3