Skip to Main content Skip to Navigation
Theses

Etude in vitro des effets de la protéine MAP6 sur le cytosquelette

Abstract : The eukaryotic cell's cytoskeleton is constitued by three types of different polymers which are the actin filaments, the intermediate filaments and the microtubules. These elements confer on the cell the main part of its mechanical properties such as the architecture preservation or the modification of its shape to allow the cellular movement. They are also involved in the organelles or nutrients transport throughout the cell, in the chromosomes segregation during mitosis or still in the cellular division process. To answer the cell's various needs, these filaments are extremly dynamics and are able to dis-assemblate to re-assemblate in another place of the cell. Tis dynamic is regulated ny numerous proteins which are going to be capable of modifiying the intrinsic properties of the different filaments (dynamic, mechanic and structure). Among them are present the MAPs, for Microtubule-Associated Proteins, which will be able to influence the microtubule dynamics and structure. MAP6, also known as STOP for Stable Tubule Only Peptide, is a neuronal MAP which was initially described for its capacity to protect microtubule from cold or nocodazole exposure. KO MAP6 mice display cognitive and behavioral disorders close to patient with schyzophrenia, involving at least partially microtubules stabilization defects. However, the effects of the protein on the microtubules still remained to determine. In this context, using diverse biochemical and cideomicroscopy technics, we showed that MAP6 is able to directly interact in vitro with the microtubules and stabilizes them. It also regulates the microtubule dynamics by increasing the microtubule growth rate of the plus end extremity, decreases the shrinkage frequency and allows rescue of shrinking microtubules, similarly to other MAPs like Tau or MAP2. However, contrary to the other MAPs, we showed that MAP6 has another effect on the microtubule (-) end by decreazing and freezing its dynamics. This dual effect could confer to MAP6 an essential role of microtubules nucleation by stabilizing the new formed microtubule (-) end and by stabilizing and increasing the (+) end microtubule growth rate. Furthermore, MAP6 is also able to strongly modify the microtubule structure. Microtubules are the stiffest elements of the cytoskeleton and naturally form due to their composition linear hollow tubes. Yet in presence of MAP6, microtubules lose their usual shape and adopt a helical structure (4,5 μm pitch and approximatly 1 μm thickness) which had never been observed until now. The presence of such a population of microtubules in the neuron could thus provide a mechanical strength and allow the preservation of the axon architecture. Finally, we showed that MAP6 can also directly interact with the actin filaments to associate them and form bundles. In neurons, several molecules have been identified as key regulators in the " crosstalk " between actin filaments and microtubules. The interaction and coordination between the different cytoskeletal elements play a vital role in the synaptic transmission. MAP6 may be important for all these mechanisms which would explain the synaptic plasticity and cognitive defects observed in KO MAP6 mice.
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01685705
Contributor : Abes Star :  Contact
Submitted on : Tuesday, January 16, 2018 - 4:18:06 PM
Last modification on : Monday, May 18, 2020 - 8:41:16 PM
Long-term archiving on: : Tuesday, May 8, 2018 - 12:01:08 AM

File

SEGGIO_2016_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01685705, version 1

Collections

STAR | UGA

Citation

Maxime Seggio. Etude in vitro des effets de la protéine MAP6 sur le cytosquelette. Neurobiologie. Université Grenoble Alpes, 2016. Français. ⟨NNT : 2016GREAV063⟩. ⟨tel-01685705⟩

Share

Metrics

Record views

1322

Files downloads

439