Skip to Main content Skip to Navigation
Theses

Contrôle des activités synchrones oscillatoires pathologiques par le récepteur dopaminergique D3 et le transporteur de la dopamine.

Abstract : Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic-Control rats (NEC) derive from an original Wistar-Hannover rat strain (WH). The onset age of spike-and-waves discharges in GAERS is about 25 days post-natal (P25). In adult GAERS with fully developed epilepsy, dopamine plays a modulatory role in seizure expression. Adult GAERS display an over-expression of dopaminergic D3-receptors (D3R) mRNA as compared to NEC. Expression and function of D3R and dopamine transporter (DAT) are closely related. The aim of this work was to investigate the putative involvement of D3R and DAT during epileptogenesis by measuring their expression and functionality in GAERS before the onset of epilepsy (P25). D3R expression and functionality was investigated by [125I]-PIPAT autoradiography and quinpirole-induced yawning, respectively, in the three strains of rats (GAERS, NEC and WH) in adults, P14 and P21. DAT expression was investigated in GAERS and NEC by [123I]-Ioflupane SPECT imaging in adults and [3H]-GBR12935 autoradiography in adults, P14 and P21 rats. Furthermore, DAT activity was assessed by 3H-dopamine reuptake in synaptosomal living fractions of striatum, cortex and hippocampus of adult rats in the three strains. The involvement of the D3R was further investigated by video-EEG recording following systemic injections of either D3R agonist (quinpirole and PD128907) or antagonists (SB277011 and SR21502). Autoradiography showed an over-expression of D3R in GAERS in structures known to be involved in seizure initiation (somato-sensory cortex), seizure control (nucleus accumbens,) as well as in other structures (anterior thalamus, olfactory tubercles and islands of Calleja) at P14 and P21, as compared to age-matched NEC and WH. As in adults, this over-expression was associated with a higher number of quinpirole-induced yawns in GAERS at P14 and P21. Neither SPECT imaging nor autoradiographic data revealed any modification in DAT expression between the three strains in adults, however at P14 and P21 DAT is overexpressed in the striatum of GAERS rats. However, we found a consistent increase in 3H-dopamine reuptake in adult GAERS as compared to NEC and WH in the functional assay supporting an increase in dopamine translocation velocity. Administrations of D3R agonists increased spike-and-wave discharges, whereas antagonists had no effect. Furthermore, the chronic injection of aripiprazole (an atypical neuroleptic known to stabilize dopamine release) to GAERS pups reduced the number of seizures in adults along with a decreased expression of D3R. Preliminary data using lentiviral infection with shRNA anti-D3R also support reduced seizure number in adult GAERS rats. Our results suggest that an over-expression of functional D3R already exists before the onset of seizures in GAERS and that, despite a lack of changes in DAT expression, functional changes in this transporter occur in adults. They further support that a profound modification in basal ganglia function together with changes in D3R could be a conditional factor for epileptogenesis. The dopaminergic system appears persistently altered in spontaneous epileptic rats, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies and/or improvement of quality of life of epileptic patients.
Document type :
Theses
Complete list of metadatas

https://tel.archives-ouvertes.fr/tel-01685541
Contributor : Abes Star :  Contact
Submitted on : Tuesday, January 16, 2018 - 2:59:09 PM
Last modification on : Tuesday, October 2, 2018 - 4:28:26 AM
Long-term archiving on: : Monday, May 7, 2018 - 1:16:46 PM

File

CAVAREC_2016_diffusion.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01685541, version 1

Collections

STAR | UGA

Citation

Fanny Cavarec. Contrôle des activités synchrones oscillatoires pathologiques par le récepteur dopaminergique D3 et le transporteur de la dopamine.. Médecine humaine et pathologie. Université Grenoble Alpes, 2016. Français. ⟨NNT : 2016GREAV067⟩. ⟨tel-01685541⟩

Share

Metrics

Record views

1481

Files downloads

480