E. Random, 98 4.3.1 Definition of the estimator of the random effects, p.99

.. Nonparametric-estimation, 100 4.4.1 Nonparametric estimator of the density of the random effects, p.102

.. Numerical, 166 6.4.1 Simulated data, p.170

. Pour-approfondir-cette-piste, ) propose une applicationàapplicationà l'imagerie avec une procédure pouvant rejoindre celles vues pour le modèle de bruit multiplicatif, 2015.

M. Abbaszadeh, C. Chesneau, and H. Doosti, Multiplicative censoring : Estimation of a density and its derivatives under the l-p-risk, Revstat Statistical Journal, vol.11, pp.255-276, 2013.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, American Journal of Physics, vol.34, issue.2, 1966.
DOI : 10.1119/1.1972842

H. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposimum on Information Theory, pp.267-281, 1973.

F. Alarcon, C. Bonaiti-pellié, and H. Harari-kermadec, A nonparametric method for penetrance function estimation, Genetic Epidemiology, vol.9, issue.1, pp.38-44, 2009.
DOI : 10.1201/9781420036152

URL : https://hal.archives-ouvertes.fr/inserm-00359205

A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes, Monte Carlo Methods and Applications, vol.8, issue.4, 2005.
DOI : 10.1137/S0036142901395588

M. Asgharian, M. Carone, and V. Fakoor, Large-sample study of the kernel density estimators under multiplicative censoring, The Annals of Statistics, vol.40, issue.1, pp.159-187, 2012.
DOI : 10.1214/11-AOS954SUPP

P. Bacher and H. Madsen, Identifying suitable models for the heat dynamics of buildings, Energy and Buildings, vol.43, issue.7, pp.1511-1522, 2011.
DOI : 10.1016/j.enbuild.2011.02.005

A. Barron, L. Birgé, and P. Massart, Risk bounds for model selection via penalization, Probability Theory and Related Fields, vol.113, issue.3, pp.301-413, 1999.
DOI : 10.1007/s004400050210

J. Baudry, C. Maugis, and B. Michel, Slope heuristics: overview and implementation, Statistics and Computing, vol.6, issue.2, pp.455-470, 2012.
DOI : 10.1214/aos/1176344136

URL : https://hal.archives-ouvertes.fr/hal-00461639

D. Belomestny, F. Comte, and V. Genon-catalot, Laguerre estimation for k-monotone densities observed with noise, p.1122847, 2016.

R. Berg, W. Alaburda, and J. Hounsgaard, Balanced Inhibition and Excitation Drive Spike Activity in Spinal Half-Centers, Science, vol.315, issue.5810, pp.390-393, 2007.
DOI : 10.1126/science.1134960

L. Birgé and P. Massart, From Model Selection to Adaptive Estimation, 1997.
DOI : 10.1007/978-1-4612-1880-7_4

L. Birgé and P. Massart, Minimum Contrast Estimators on Sieves: Exponential Bounds and Rates of Convergence, Bernoulli, vol.4, issue.3, pp.329-375, 1998.
DOI : 10.2307/3318720

L. Birgé and P. Massart, Minimal penalties for gaussian model selection. Probability Theory and Related Fields 138, pp.33-73, 2006.

N. Bissantz, L. Dümbgen, H. Holzmann, and A. Munk, Non-parametric confidence bands in deconvolution density estimation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.60, issue.3, pp.483-506, 2007.
DOI : 10.1093/mnras/249.2.368

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2007.599.x/pdf

B. Bongioanni and J. L. Torrea, What is a Sobolev space for the Laguerre function systems ? Studia Math, pp.147-172, 2009.

M. Briane and G. Pagès, Théorie de l'intégration, 2006.

E. Brunel, F. Comte, and V. Genon-catalot, Nonparametric density and survival function estimation in the multiplicative censoring model, TEST, vol.20, issue.3, 2015.
DOI : 10.1214/aos/1176348668

URL : https://hal.archives-ouvertes.fr/hal-01122847

A. Burkitt, A Review of the Integrate-and-fire Neuron Model: I. Homogeneous Synaptic Input, Biological Cybernetics, vol.68, issue.1, pp.1-19, 2006.
DOI : 10.1007/978-3-642-93059-1

C. Butucea, Deconvolution of supersmooth densities with smooth noise, Canadian Journal of Statistics, vol.330, issue.2, pp.181-192, 2004.
DOI : 10.1214/lnms/1215090078

URL : https://hal.archives-ouvertes.fr/hal-00103058

C. Butucea and A. Tsybakov, Sharp optimality in density deconvolution with dominating bias. ii. Teor. Veroyatnost. i Primenen, pp.336-349, 2007.

R. Carroll and P. Hall, Optimal Rates of Convergence for Deconvolving a Density, Journal of the American Statistical Association, vol.74, issue.404, pp.1184-1186, 1988.
DOI : 10.1214/aos/1176349741

A. Celisse, Model selection via cross-validation in density estimation, regression, and change-points detection. Theses, 2008.
URL : https://hal.archives-ouvertes.fr/tel-00346320

A. Celisse, Optimal cross-validation in density estimation with the L2-loss. The Annals of Statistics 42, pp.1879-1910, 2014.

G. Chagny, Warped bases for conditional density estimation, Mathematical Methods of Statistics, vol.22, issue.4, pp.253-282, 2013.
DOI : 10.3103/S1066530713040017

URL : https://hal.archives-ouvertes.fr/hal-00641560

. Comte and J. Kappus, Density deconvolution from repeated measurements without symmetry assumption on the errors, Journal of Multivariate Analysis, vol.140, pp.31-46, 2015.
DOI : 10.1016/j.jmva.2015.04.004

URL : https://hal.archives-ouvertes.fr/hal-01010409

F. Comte, C. Cuénod, M. Pensky, and Y. Rozenholc, Laplace deconvolution and its application to dynamic contrast enhanced imaging, 2015.
DOI : 10.1111/rssb.12159

URL : https://hal.archives-ouvertes.fr/hal-00715943

F. Comte and C. Dion, Nonparametric estimation in a multiplicative censoring model with symmetric noise, Journal of Nonparametric Statistics, vol.11, issue.4, 2016.
DOI : 10.1214/aos/1176348668

URL : https://hal.archives-ouvertes.fr/hal-01252780

F. Comte and V. Genon-catalot, Adaptive Laguerre density estimation for mixed Poisson models, Electronic Journal of Statistics, vol.9, issue.1, pp.1113-1149, 2015.
DOI : 10.1214/15-EJS1028

URL : https://hal.archives-ouvertes.fr/hal-00848158

F. Comte, V. Genon-catalot, and Y. Rozenholc, Penalized nonparametric mean square estimation of the coefficients of diffusion processes, Bernoulli, vol.13, issue.2, pp.514-543, 2007.
DOI : 10.3150/07-BEJ5173

URL : https://hal.archives-ouvertes.fr/hal-00748947

F. Comte, V. Genon-catalot, and A. Samson, Nonparametric estimation for stochastic differential equations with random effects, Stochastic Processes and their Applications, pp.2522-2551, 2013.
DOI : 10.1016/j.spa.2013.04.009

URL : https://hal.archives-ouvertes.fr/hal-00761394

F. Comte and J. Johannes, Adaptive functional linear regression, The Annals of Statistics, vol.40, issue.6, pp.2765-2797, 2012.
DOI : 10.1214/12-AOS1050SUPP

URL : https://hal.archives-ouvertes.fr/hal-00651293

F. Comte and C. Lacour, Pointwise deconvolution with unknown error distribution, Comptes Rendus Mathematique, vol.348, issue.5-6, pp.323-326, 2010.
DOI : 10.1016/j.crma.2010.02.012

URL : https://hal.archives-ouvertes.fr/hal-00533627

F. Comte and C. Lacour, Data-driven density estimation in the presence of additive noise with unknown distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.18, issue.4, pp.601-627, 2011.
DOI : 10.1214/aos/1176347627

F. Comte and C. Lacour, Anisotropic adaptive kernel deconvolution, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques 49, pp.569-609, 2013.
DOI : 10.1214/11-AIHP470

URL : https://hal.archives-ouvertes.fr/hal-00579608

F. Comte, Y. Rozenholc, and M. Taupin, Penalized contrast estimator for adaptive density deconvolution, Canadian Journal of Statistics, vol.18, issue.3, pp.431-452, 2006.
DOI : 10.1007/978-1-4613-8643-8

URL : https://hal.archives-ouvertes.fr/hal-00138768

F. Comte and A. Samson, Nonparametric estimation of random-effects densities in linear mixed-effects model, Journal of Nonparametric Statistics, vol.20, issue.4, pp.951-975, 2012.
DOI : 10.1111/j.0006-341X.2001.00795.x

URL : https://hal.archives-ouvertes.fr/hal-00657052

F. Comte, A. Samson, and J. Stirnemann, Censored data and measurement error, 2015.

J. Cox, J. Ingersoll, and S. Ross, A Theory of the Term Structure of Interest Rates, Econometrica, vol.53, issue.2, pp.385-407, 1985.
DOI : 10.2307/1911242

A. Dalalyan, Sharp adaptive estimation of the drift function for ergodic diffusions, The Annals of Statistics, vol.33, issue.6, pp.2507-2528, 2005.
DOI : 10.1214/009053605000000615

URL : https://hal.archives-ouvertes.fr/hal-00022066

A. Dalalyan and M. Reiß, Asymptotic statistical equivalence for scalar ergodic diffusions, Probability Theory and Related Fields, vol.30, issue.2, pp.248-282, 2006.
DOI : 10.1007/s00440-004-0416-1

URL : https://hal.archives-ouvertes.fr/hal-00016596

I. Dattner, A. Goldenshluger, and A. Juditsky, On deconvolution of distribution functions, The Annals of Statistics, vol.39, issue.5, pp.2477-2501, 2011.
DOI : 10.1214/11-AOS907SUPP

URL : https://hal.archives-ouvertes.fr/hal-00976668

M. Davidian and D. Giltinan, Nonlinear models for repeated measurement data, 1995.

A. Delaigle and I. Gijbels, Bootstrap bandwidth selection in kernel density estimation from a contaminated sample, Annals of the Institute of Statistical Mathematics, vol.52, issue.1, pp.19-47, 2004.
DOI : 10.1007/978-1-4899-4493-1

A. Delaigle, P. Hall, and M. Meister, On deconvolution with repeated measurements, The Annals of Statistics, vol.36, issue.2, pp.665-685, 2008.
DOI : 10.1214/009053607000000884

M. Delattre, V. Genon-catalot, and A. Samson, Maximum Likelihood Estimation for Stochastic Differential Equations with Random Effects, Scandinavian Journal of Statistics, vol.80, issue.2, pp.322-543, 2013.
DOI : 10.1093/biomet/80.4.791

URL : https://hal.archives-ouvertes.fr/hal-00650844

M. Delattre, V. Genon-catalot, and A. Samson, Estimation of population parameters in stochastic differential equations with random effects in the diffusion coefficient, ESAIM: Probability and Statistics, vol.19, pp.671-688, 2015.
DOI : 10.1051/ps/2015006

URL : https://hal.archives-ouvertes.fr/hal-01056917

M. Delattre, V. Genon-catalot, and A. Samson, Mixtures of stochastic differential equations with random effects: Application to data clustering, Journal of Statistical Planning and Inference, vol.173, 2015.
DOI : 10.1016/j.jspi.2015.12.003

URL : https://hal.archives-ouvertes.fr/hal-01218612

M. Delattre and M. Lavielle, Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models, Statistics and Its Interface, vol.6, issue.4, pp.519-532, 2013.
DOI : 10.4310/SII.2013.v6.n4.a10

URL : https://hal.archives-ouvertes.fr/hal-00916803

M. Delattre, M. Lavielle, and M. Poursat, A note on BIC in mixed-effects models, Electronic Journal of Statistics, vol.8, issue.1, pp.456-475, 2014.
DOI : 10.1214/14-EJS890

URL : https://hal.archives-ouvertes.fr/hal-00991708

R. Devore and G. Lorentz, Constructive approximation, 1993.

M. Diether, Wavelet estimation in diffusions with periodicity, Statistical Inference for Stochastic Processes, vol.18, issue.3, pp.257-284, 2012.
DOI : 10.1007/978-1-4471-3267-7

P. Diggle, P. Heagerty, K. Liang, and S. Zeger, Analysis of Longitudinal Data., Biometrics, vol.53, issue.2, 2002.
DOI : 10.2307/2533983

C. Dion, New adaptive strategies for nonparametric estimation in linear mixed models, Journal of Statistical Planning and Inference, vol.150, pp.30-48, 2014.
DOI : 10.1016/j.jspi.2014.03.006

URL : https://hal.archives-ouvertes.fr/hal-00906379

C. Dion, Nonparametric estimation in a mixed-effect Ornstein???Uhlenbeck model, Metrika, vol.24, issue.3, pp.1-33, 2016.
DOI : 10.1523/JNEUROSCI.4897-03.2004

URL : https://hal.archives-ouvertes.fr/hal-01023300

C. Dion and V. Genon-catalot, Bidimensional random effect estimation in mixed stochastic differential model, Stochastic Inference for Stochastic Processes, pp.1-28, 2015.
DOI : 10.1007/b13794

URL : https://hal.archives-ouvertes.fr/hal-01103303

C. Dion, S. Hermann, and A. Samson, Mixedsde : a R package to fit mixed stochastic differential equations, p.1305574, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305574

S. Ditlevsen and A. De-gaetano, Mixed effects in stochastic differential equation. REVS- TAT, Statistical Journal, vol.3, pp.137-153, 2005.

S. Ditlevsen and P. Lansky, Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model, Physical Review E, vol.1, issue.1, p.11907, 2005.
DOI : 10.1017/CBO9780511813658

S. Ditlevsen and A. Samson, Estimation in the partially observed stochastic Morris???Lecar neuronal model with particle filter and stochastic approximation methods, The Annals of Applied Statistics, vol.8, issue.2, pp.674-702, 2014.
DOI : 10.1214/14-AOAS729

URL : https://hal.archives-ouvertes.fr/hal-00712331

S. Donnet, J. Foulley, and A. Samson, Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations, Biometrics, vol.10, issue.3, pp.733-741, 2010.
DOI : 10.1007/BF02595823

URL : https://hal.archives-ouvertes.fr/hal-00360111

S. Donnet and A. Samson, Parametric inference for mixed models defined by stochastic differential equations, ESAIM: Probability and Statistics, vol.80, pp.196-218, 2008.
DOI : 10.1093/biomet/80.4.791

URL : https://hal.archives-ouvertes.fr/hal-00263515

S. Donnet and A. Samson, A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamic models, Advanced Drug Delivery Reviews, vol.65, issue.7, pp.929-939, 2013.
DOI : 10.1016/j.addr.2013.03.005

URL : https://hal.archives-ouvertes.fr/hal-00777774

S. Donnet and A. Samson, Using PMCMC in EM algorithm for stochastic mixed models : theoretical and practical issues, Journal de la Société Française de Statistique, vol.155, pp.49-72, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01606789

D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, Density estimation by wavelet thresholding, The Annals of Statistics, vol.24, issue.2, pp.183-218, 1996.
DOI : 10.1214/aos/1032894451

B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

B. V. Es, P. Spreij, and H. V. Zanten, Nonparametric volatility density estimation for discrete time models, Journal of Nonparametric Statistics, vol.17, pp.237-249, 2005.

J. Fan, On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems, The Annals of Statistics, vol.19, issue.3, pp.1257-1272, 1991.
DOI : 10.1214/aos/1176348248

V. Genon-catalot and J. Jacod, On the estimation of the diffusion coefficient for multidimensional diffusion processes, Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques, pp.119-151, 1993.

V. Genon-catalot, T. Jeantheau, and C. Larédo, Stochastic Volatility Models as Hidden Markov Models and Statistical Applications, Bernoulli, vol.6, issue.6, pp.1051-1079, 2000.
DOI : 10.2307/3318471

URL : https://hal.archives-ouvertes.fr/hal-00693752

V. Genon-catalot and C. Larédo, Estimation for stochastic differential equations with mixed effects, Statistics, vol.3, issue.5, 2016.
DOI : 10.1007/s11203-015-9122-0

URL : https://hal.archives-ouvertes.fr/hal-00807258

I. Gikhman and A. Skorokhod, Introduction to the Theory of Random Processes, 1969.

A. Goldenshluger and O. Lepski, Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality, The Annals of Statistics, vol.39, issue.3, pp.1608-1632, 2011.
DOI : 10.1214/11-AOS883

URL : https://hal.archives-ouvertes.fr/hal-01265258

J. Gurland, Inversion Formulae for the Distribution of Ratios, The Annals of Mathematical Statistics, vol.19, issue.2, pp.228-237, 1948.
DOI : 10.1214/aoms/1177730247

A. Hansen, A. Duun-henriksen, R. Juhl, S. Schmidt, K. Norgaard et al., Predicting Plasma Glucose From Interstitial Glucose Observations Using Bayesian Methods, Journal of Diabetes Science and Technology, vol.130, issue.10, pp.321-330, 2014.
DOI : 10.1177/193229681000400127

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4455396/pdf

R. Hasminskii, Stochastic stability of differential equations, 1980.
DOI : 10.1007/978-94-009-9121-7

S. Hermann, K. Ickstadt, and C. Müller, Bayesian prediction of crack growth based on a hierarchical, 2015.

M. Hoffmann, Adaptive estimation in diffusion processes, Stochastic Processes and their Applications, pp.135-163, 1999.
DOI : 10.1016/S0304-4149(98)00074-X

R. Höpfner, On a set of data for the membrane potential in a neuron, Mathematical Biosciences, vol.207, issue.2, pp.275-301, 2007.
DOI : 10.1016/j.mbs.2006.10.009

R. Höpfner and K. Brodda, A stochastic model and a functional central limit theorem for information processing in large systems of neurons, Journal of Mathematical Biology, vol.52, issue.4, pp.439-457, 2006.
DOI : 10.1007/s00285-005-0361-3

R. Höpfner and Y. Kutoyants, Estimating a periodicity parameter in the drift of a time inhomogeneous diffusion, Mathematical Methods of Statistics, vol.20, issue.1, pp.58-74, 2011.
DOI : 10.3103/S1066530711010042

R. Höpfner and Y. A. Kutoyants, On frequency estimation for a periodic ergodic diffusion process, Problems of Information Transmission, vol.48, issue.2, pp.127-141, 2012.
DOI : 10.1134/S0032946012020032

S. Iacus, Simulation and Inference for stochastic differential equation, 2008.
DOI : 10.1007/978-0-387-75839-8

URL : https://link.springer.com/content/pdf/bfm%3A978-0-387-75839-8%2F1.pdf

E. Iversen, J. Morales, J. Moller, and H. Madsen, Probabilistic forecasts of solar irradiance using stochastic differential equations, Environmetrics, vol.16, issue.3, pp.152-164, 2014.
DOI : 10.1002/we.1496

E. Izhikevich, Simple model of spiking neurons, IEEE Transactions on Neural Networks, vol.14, issue.6, pp.1569-1572, 2003.
DOI : 10.1109/TNN.2003.820440

P. Jahn, R. Berg, J. Hounsgaard, and S. Ditlevsen, Motoneuron membrane potentials follow a time inhomogeneous jump diffusion process, Journal of Computational Neuroscience, vol.21, issue.11, pp.563-579, 2011.
DOI : 10.1162/neco.2009.06-08-807

J. Kappus and G. Mabon, Adaptive density estimation in deconvolution problems with unknown error distribution, Electronic Journal of Statistics, vol.8, issue.2, pp.2879-2904, 2014.
DOI : 10.1214/14-EJS976

URL : https://hal.archives-ouvertes.fr/hal-00915982

I. Karatzas and S. Shreve, Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.133, 1988.

S. Karlin and H. Taylor, A Second Course in Stochastic Processes, 1981.

G. Kerkyacharian, O. Lepski, and D. Picard, Nonlinear estimation in anisotropic multiindex denoising, Theory Probab. Appl, vol.52, pp.150-171, 2007.

M. Kessler, A. Lindner, and M. Sorensen, Statistical methods for stochastic differential equations, 2012.

M. Klein, T. Mathew, and B. Sinha, A comparison of statistical disclosure control methods : Multiple imputation versus noise multiplication, 2013.

P. Kloeden and E. Platen, Numerical solution of stochastic differential equations, 1992.

A. Komárek and E. Lesaffre, Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution, Computational Statistics & Data Analysis, vol.52, issue.7, pp.3441-3458, 2008.
DOI : 10.1016/j.csda.2007.10.024

J. Kuelbs and J. Zinn, Limit theorems for quantile and depth regions for stochastic processes. High dimensional probability VII-Progress in Probabiliy, 2015.
DOI : 10.1007/978-3-319-40519-3_11

Y. Kutoyants, Statistical Inference for Ergodic Diffusion Processes, 2004.
DOI : 10.1007/978-1-4471-3866-2

C. Lacour, Rates of convergence for nonparametric deconvolution, Comptes Rendus Mathematique, vol.342, issue.11, pp.877-882, 2006.
DOI : 10.1016/j.crma.2006.04.006

URL : https://hal.archives-ouvertes.fr/hal-00115610

C. Lacour and P. Massart, Minimal penalty for Goldenshluger-Lepski method. Stochastic Processes and their Applications URL http, 2016.
DOI : 10.1016/j.spa.2016.04.015

URL : https://hal.archives-ouvertes.fr/hal-01121989

D. Lamberton and B. Lapeyre, Introduction au Calcul Stochastique AppliquéAppliquéà la Finance, Broché, 2012.

P. Lansky, P. Sanda, and J. He, The parameters of the stochastic leaky integrate-and-fire neuronal model, Journal of Computational Neuroscience, vol.21, issue.2, pp.211-223, 2006.
DOI : 10.1007/s10827-006-8527-6

L. Lapicque, Recherches quantitatives sur l'excitationélectriqueexcitationélectrique des nerfs traitée comme une polarisation, J. Physiol. Pathol. Gen, pp.620-635, 1907.

L. Gall and J. , Calcul stochastique et processus de markov, 2010.

G. Leborgne, IntroductionàIntroductionà la théorie des distributions. Notes de cours URL http, 2013.

N. Lerner, Lecture notes on real analysis, 2008.

R. Lipster and A. Shiryaev, Statistics for random processes I, 2001.

G. Mabon, Adaptive deconvolution of linear functionals on the nonnegative real line, Journal of Statistical Planning and Inference, vol.178, pp.5-2015, 2015.
DOI : 10.1016/j.jspi.2016.04.006

URL : https://hal.archives-ouvertes.fr/hal-01195711

G. Mabon, Adaptive estimation of marginal random-effects densities in linear mixed-effects models, Mathematical Methods of Statistics, vol.24, issue.2, pp.81-102, 2015.
DOI : 10.3103/S1066530715020015

URL : https://hal.archives-ouvertes.fr/hal-00958905

C. Mallows, Comments on C p, Technometrics, vol.15, pp.661-675, 1973.
DOI : 10.2307/1271437

P. Massart, Concentration inequalities and model selection, Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilité de St-Flour 2003, 2007.

A. Meister and M. H. Neumann, Deconvolution from non-standard error densities under replicated measurements, Statist. Sinica, vol.20, pp.1609-1636, 2010.
DOI : 10.1088/0266-5611/24/1/015003

G. Miermont, Théorème limites et processus de Poisson, 2012.

M. Neumann, On the effect of estimating the error density in nonparametric deconvolution, Journal of Nonparametric Statistics, vol.46, issue.4, pp.307-330, 1997.
DOI : 10.1007/978-1-4899-4493-1

S. Nikol-'skii, Approximation of functions of several variables and imbedding theorems, 1975.

Z. Oravecz, F. Tuerlinckx, and J. Vandekerckhove, A Hierarchical Ornstein???Uhlenbeck Model for Continuous Repeated Measurement Data, Psychometrika, vol.89, issue.3, pp.395-418, 2009.
DOI : 10.1093/acprof:oso/9780195173444.001.0001

G. Papageorgiou and J. Hinde, Multivariate generalized linear mixed models with??semi-nonparametric and smooth nonparametric random effects densities, Statistics and Computing, vol.57, issue.3, pp.79-92, 2012.
DOI : 10.1111/j.0006-341X.2001.00795.x

E. Parzen, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, vol.33, issue.3, pp.1065-1076, 1962.
DOI : 10.1214/aoms/1177704472

M. Pensky and B. Vidakovic, Adaptative wavelet estimator for nonparametric density deconvolution, Ann. Statist, vol.27, pp.2033-2053, 1999.

U. Picchini, D. Gaetano, A. Ditlevsen, and S. , Stochastic Differential Mixed-Effects Models, Scandinavian Journal of Statistics, vol.51, issue.1, pp.67-90, 2010.
DOI : 10.1017/S0266466600012044

U. Picchini and S. Ditlevsen, Practical estimation of high dimensional stochastic differential mixed-effects models, Computational Statistics & Data Analysis, vol.55, issue.3, pp.1426-1444, 2011.
DOI : 10.1016/j.csda.2010.10.003

U. Picchini, S. Ditlevsen, D. Gaetano, A. Lansky, and P. , Parameters of the Diffusion Leaky Integrate-and-Fire Neuronal Model for a Slowly Fluctuating Signal, Neural Computation, vol.75, issue.2, pp.2696-2714, 2008.
DOI : 10.1523/JNEUROSCI.4897-03.2004

J. Pinheiro and D. Bates, Mixed-effect models in S and Splus, 2000.

D. Revuz and M. Yor, Continuous martingales and Brownian motion, 1999.

C. Robert, O. Papaspiliopoulos, and A. Stuart, Nonparametric estimation of diffusions : a differential equation approach, pp.1-21, 2012.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2004.

J. Rosenthal, Optimal proposal distributions and adaptive mcmc. Handbook of Markov Chain Monte Carlo pp, pp.93-112, 2011.
DOI : 10.1201/b10905-5

D. Ruppert, Statistics and Data Analysis for Financial Engineering, 2011.
DOI : 10.1007/978-1-4939-2614-5

P. Rup?ys, Generalized fixed-effects and mixed-effects parameters height???diameter models with diffusion processes, International Journal of Biomathematics, vol.91, issue.05, p.1550060, 2015.
DOI : 10.1016/0304-405X(77)90016-2

K. Sato, Lévy processes and infinitely divisible distributions, 1999.

E. Schmisser, Penalized nonparametric drift estimation for a multidimensional diffusion process, Statistics, vol.29, issue.3, pp.61-84, 2013.
DOI : 10.1214/aos/1009210692

URL : https://hal.archives-ouvertes.fr/hal-00358410

E. Schmisser, Nonparametric adaptive estimation of the drift for a jump diffusion process, Stochastic Processes and ther Applications pp, pp.883-914, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00704637

E. Schmisser, Nonparametric estimation of coefficients of a diffusion with jumps, 2014.

M. Schwarz, S. Van-bellegem, and J. Florens, Nonparametric Frontier Estimation from Noisy Data, Exploring Research Frontiers in Contemporary Statistics and Econometrics, pp.45-64, 2011.
DOI : 10.1007/978-3-7908-2349-3_3

URL : http://www.ecore.be/DPs/dp_1284546598.pdf

S. Sheather, Density Estimation, Statistical Science, vol.19, issue.4, pp.588-597, 2004.
DOI : 10.1214/088342304000000297

A. N. Shiryaev, Probability of Graduate Texts in Mathematics, 1980.

B. Sinha, T. K. Nayak, and L. Zayatz, Privacy protection and quantile estimation from noise multiplied data, Sankhya B, vol.27, issue.2, pp.297-315, 2011.
DOI : 10.1007/978-1-4613-0121-9

C. J. Stone, Optimal Rates of Convergence for Nonparametric Estimators, The Annals of Statistics, vol.8, issue.6, pp.1348-1360, 1980.
DOI : 10.1214/aos/1176345206

M. Talagrand, New concentration inequalities in product spaces, Inventiones Mathematicae, vol.126, issue.3, pp.505-563, 1996.
DOI : 10.1007/s002220050108

A. Tsybakov, Introduction to nonparametric estimation Springer Series in Satistics, 2009.

H. Tuckwell and W. Richter, Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical parameters, Journal of Theoretical Biology, vol.71, issue.2, pp.167-183, 1978.
DOI : 10.1016/0022-5193(78)90265-5

B. Van-es, C. Klaassen, and K. Oudshoorn, Survival analysis under cross-sectional sampling: length bias and multiplicative censoring, Prague Workshop on Perspectives in Modern Statistical Inference : Parametrics, Semiparametrics, pp.295-312, 1998.
DOI : 10.1016/S0378-3758(00)00183-X

Y. Vardi, Multiplicative censoring, renewal processes, deconvolution and decreasing density: Nonparametric estimation, Biometrika, vol.76, issue.4, pp.751-761, 1989.
DOI : 10.1093/biomet/76.4.751

Y. Vardi and C. Zhang, Large Sample Study of Empirical Distributions in a Random-Multiplicative Censoring Model, The Annals of Statistics, vol.20, issue.2, pp.1022-1039, 1992.
DOI : 10.1214/aos/1176348668

O. Vasicek and H. Gifford-fong, Term Structure Modeling Using Exponential Splines, The Journal of Finance, vol.37, issue.2, pp.339-348, 1982.
DOI : 10.1016/0304-405X(77)90016-2

C. Wu, A Cross-Validation Bandwidth Choice for Kernel Density Estimates with Selection Biased Data, Journal of Multivariate Analysis, vol.61, issue.1, pp.38-60, 1997.
DOI : 10.1006/jmva.1997.1659

P. Wu and L. Zhu, An Orthogonality-Based Estimation of Moments for Linear Mixed Models, Scandinavian Journal of Statistics, vol.37, issue.2, pp.253-263, 2010.
DOI : 10.1093/biomet/54.1-2.93

Y. Yu, Y. Xiong, Y. Chan, and J. He, Corticofugal Gating of Auditory Information in the Thalamus: An In Vivo Intracellular Recording Study, Journal of Neuroscience, vol.24, issue.12, pp.3060-3069, 2004.
DOI : 10.1523/JNEUROSCI.4897-03.2004

Y. Zuo and R. Serfling, General notions of statistical depth function, The Annals of Statistics, vol.28, issue.2, pp.461-482, 2000.
DOI : 10.1214/aos/1016218226