J. C. Hzqt, 1 Hz

1. and C. Ar, 83 (s, 1H, H3 13 C NMR (100 MHz, CD 3 OD) ? ppm 14, pp.24-31

J. Dd, 1. =m, and C. Ar, 83 (s, 1H, H3 13 C NMR (100 MHz, CD 3 OD) ? ppm 14, 1943.

]. +. M+na, HRMS (ESI+) m/z calc. for C 53 H 74

1. Hz, Hz, 1H, Hf'b), 4.47-4, 2 Ph), pp.4-13

1. Ph and C. Ar, 23 (dd, J = 9.5, 9.5 Hz, 1H, pp.27-34

1. and C. Ar, 83 (s, 1H, H3 13 C NMR (100 MHz, CD 3 OD) ? ppm 14, pp.5-21

1. , N. , and C. Ar, 55 (s, 1H, H3 13 C NMR (100 MHz, CDCl 3 ) ? ppm 14

1. Hz and H. , 24-3.38 (m, 3H, He', Hc, p.71

. Mhz, CDCl 3 ) ? ppm 14

1. and C. Ar, 82 (s, 1H, CH triazole ) 13 C NMR (100 MHz, CD 3 OD) ? ppm 20, pp.25-32, 1943.

+. Hrms, ESI+) m/z calc. for C 52 H 70, p.47674760

1. Hz, 4.59-4.71 (m, 5H, H2', H1, p.13

. Mhz, CD 3 OD) ? ppm 14, pp.28-33

1. Hz, 04 (m, 1H, glucosyl-OCH 2 ), 4.21-4.28 (m, 1H, glucosyl-OCH 2 ), 1H, H2), pp.3-96

1. and C. Triazole, 13 C NMR (125 MHz, CD 3 OD) ? ppm 27, CH 2 -C triazole, pp.8-09

. Obn, 80 mmol) After purification by column chromatography on silica gel (cyclohexane/EtOAc 8:2 to 7:3), the pure product (4.07 g, 8.41 mmol, 94%) was obtained as a white solid, CDCl 3 ) ? ppm 1.42 (s, 9H, -C(CH 3 ) 3 ), 1.90-2.02 (m, 1H, H3a), pp.11-222

1. and C. Ar, 11 (s, 2H, C1-OCH 2 Ph), 5.15 (s, 2H, C2'-OCH 2 Ph, 1H, H1'b), 4.21-4.36 (m, 1H, H4)(CH 3 ) 3 ), pp.25-32

. Mhz, CDCl 3 ) ? ppm 0.87 (t, J = 6.9 Hz, 6H

. Mhz, CD 3 OD) ? ppm 14, pp.29-32

J. =. Dd, CDCl 3 ) ? ppm 3.83 (s, 3H, Partie expe rimentale 131-134 o C. 1 H NMR (400 MHz 7.18 (d, J = 8.7 Hz, 1H, H7) (s, 1H, H2), 8.42 (d, J = 1.8 Hz, 1H, H4), 9.91 (s, 1H, CH=O). 13 C NMR (100 MHz, p.5, 1962.

. Etoac, CDCl 3 ) ? ppm 0.89-1.03 (m, 2H23 (m, 3H, H3'a, H4'a, H5'a), 1.53-1.76 (m, 5H, H2'b, H3'b, H4'b, H5'b, H6'b), 1.76-1.89 (m, 1H, o C. 1 H NMR (400 MHz Hz, 1H, H6), 7.60 (s, 1H, H2), 8.41 (d, J = 2.0 Hz, 1H, H4), 9.90 (s, 1H, CH=O). 13 C NMR (100 MHz, CDCl 3 ) ? ppm 25.7 (C3'', C5''), pp.89-9205

+. Hrms, ESI+) m/z calc. for C 17 H 16 NO 2 266, pp.1181-266

1. Hz, 85 (s, 1H, CH=O) 13 C NMR (100 MHz, CDCl 3 ) ? ppm 33

+. Hrms, ESI+) m/z calc. for C 11 H 12 NO 2 190, p.868

. Etoac, CDCl 3 ) ? ppm 2.61 (s, 3H, C3-CH 3 ), 3.70 (s, 3H, O-CH 3 ), 5.73 (s, 2H, pp.131-134

). Br, HRMS (ESI+) m/z calc, pp.381-2100497

1. Hz, 10 (s, 1H, 10.73 (s, 1H, OH), 10.75 (s, 1H, OH). 13 C NMR (100 MHz, DMSO-d 6 ) ? ppm 25

(. Lrms, HRMS (ESI+) m/z calc, 90) [M( 81 Br)+H] +, pp.381-353

1. Hz, 04 (s, 1H69 (bs, 1H, OH), 10.70 (bs, 1H, OH). 13 C NMR (100 MHz, DMSO-d 6 ) ? ppm 33, p.3

. Mmol, After purification by column chromatography on silica gel (DCM to DCM/MeOH 98:2) and recrystallization in acetonitrile, the pure product (91 mg, 0.20 mmol, 71%) was obtained as a red powder. R f = 0, pp.4-148

3. Mhz and O. , 33 (s, 3H47 (s, 2H, pp.3-64

1. Hz, 13 C NMR (100 MHz, Acetone-d 6 ) ? ppm 14

1. Bs, 13 C NMR (100 MHz, CDCl 3 ) ? ppm 25, cyclohexane/EtOAc). 1 H NMR (400 MHz 1H, H1''), 3.92 (s, 3H, O-CH 3 ), 4.00 (d, J = 7.3 Hz, 2H, N-CH 2 ) H4'), 7.31 (s, 1H, -CH=), 7.35 (d, J = 2.4 Hz, 1H, pp.97-98

5. H2-''b, . H3-''b, . H4-''b, and H. H5-''b, 'b), 1.82-1.98 (m, 1H, H1''), 3.92 (s, 3H, O-CH 3 ), 3.93 (s, 3H, O-CH 3 ), 3.97 (s, 3H, O-CH 3 ), 3.98 (d, J = 7.2 Hz, filtered and concentrated under reduced pressure. After purification by recrystallization in MeOH, the pure product (300 mg, 0.81 mmol, 77%) was obtained as a yellow powder. R f = 0, °C. 1 H NMR (400 MHz ) ? ppm 3.93 (s, 3H, CH 3 ), 6.69 (dd, J = 8.4, 1.9 Hz, 1H, H5), pp.96-97

1. Hz, 24 (s, 1H, p.13

2. Hz, 13 C NMR (100 MHz, CDCl 3 ) ? ppm 25, pp.145-77, 2002.

2. Hz, 13 C NMR (100 MHz, CDCl 3 ) ? ppm 25.8 (2xC3'', 2xC5, pp.106-113

J. =. (-t, 89 (s, 6H, 2xN-CH 3 ), 4.27 (t, J = 4.4 Hz, dd, J = 8.6, 2.1 Hz, 2H, H5), 7.03 (d, J = 2.1 Hz, 2H, H7), p.1938

2. Hz, 16 (s, 2H23 (d, J = 1.8 Hz, 2H, H7'). 13 C NMR (100 MHz, DMSO-d 6 ) ? ppm 33, p.75

2. Hz, CDCl 3 ) ? ppm 33, 13 C NMR (100 MHz

2. Hz, 13 C NMR (100 MHz, CDCl 3 ) ? ppm 33

2. Hz, 13 C NMR (125 MHz, CDCl 3 ) ? ppm 33, Hz, vol.78, issue.1812xC3, p.7

J. P. Overington, B. Al-lazikani, and A. L. Hopkins, How many drug targets are there?, Nature Reviews Drug Discovery, vol.355, issue.12, pp.993-996, 2006.
DOI : 10.1016/S0140-6736(05)74775-9

D. U. Silverthorn, Human Physiology -An Integrated Approach, 2010.

B. E. Gorter and F. , ON BIMOLECULAR LAYERS OF LIPOIDS ON THE CHROMOCYTES OF THE BLOOD, Journal of Experimental Medicine, vol.41, issue.4, pp.439-443, 1925.
DOI : 10.1084/jem.41.4.439

G. Cooper, The Cell: A Molecular Approach, 2000.

A. Oberai, Y. Ihm, S. Kim, and J. U. Bowie, A limited universe of membrane protein families and folds, Protein Science, vol.7, issue.7, pp.1723-1757, 2006.
DOI : 10.1110/ps.9.1.197

S. J. Singer and G. L. Nicolson, The Fluid Mosaic Model of the Structure of Cell Membranes, Science, vol.175, issue.4023, pp.720-751, 1972.
DOI : 10.1126/science.175.4023.720

S. Mukherjee and F. R. Maxfield, MEMBRANE DOMAINS, Annual Review of Cell and Developmental Biology, vol.20, issue.1, pp.839-866, 2004.
DOI : 10.1146/annurev.cellbio.20.010403.095451

D. Lingwood and K. Simons, Lipid Rafts As a Membrane-Organizing Principle, Science, vol.5, issue.8, pp.46-50, 2010.
DOI : 10.1038/ncb0803-684

A. P. Russ and S. , The druggable genome: an update, Drug Discovery Today, vol.10, issue.23-24, pp.1607-1610, 2005.
DOI : 10.1016/S1359-6446(05)03666-4

M. B. Ulmschneider, M. S. Sansom, and A. D. Nola, Properties of integral membrane protein structures: Derivation of an implicit membrane potential, Proteins: Structure, Function, and Bioinformatics, vol.66, issue.2, pp.252-265, 2005.
DOI : 10.1016/S0304-4157(98)00021-5

J. Nilsson, B. Persson, and G. Von-heijne, Comparative analysis of amino acid distributions in integral membrane proteins from 107 genomes, Proteins: Structure, Function, and Bioinformatics, vol.29, issue.4, pp.606-616, 2005.
DOI : 10.1021/ci010263s

S. G. Rasmussen, B. T. Devree, Y. Zou, A. C. Kruse, K. Y. Chung et al., Crystal structure of the ??2 adrenergic receptor???Gs protein complex, Nature, vol.61, issue.7366, pp.549-555, 2011.
DOI : 10.1124/mol.61.1.65

L. Fagerberg, K. Jonasson, G. Von-heijne, M. Uhlén, and L. Berglund, Prediction of the human membrane proteome, PROTEOMICS, vol.340, issue.6, pp.1141-1149, 2010.
DOI : 10.1074/mcp.M700325-MCP200

D. E. Warschawski, A. A. Arnold, M. Beaugrand, A. Gravel, É. Chartrand et al., Choosing membrane mimetics for NMR structural studies of transmembrane proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1808, issue.8, pp.1957-1974, 2011.
DOI : 10.1016/j.bbamem.2011.03.016

S. J. Opella, Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy, Annual Review of Analytical Chemistry, vol.6, issue.1, pp.305-328
DOI : 10.1146/annurev-anchem-062012-092631

H. Stahlberg, N. Biyani, and A. Engel, 3D reconstruction of two-dimensional crystals, Archives of Biochemistry and Biophysics, vol.581, pp.68-77, 2015.
DOI : 10.1016/j.abb.2015.06.006

Z. E. Newby, J. D. O-'connell, F. Gruswitz, F. A. Hays, W. E. Harries et al., A general protocol for the crystallization of membrane proteins for X-ray structural investigation, Nature Protocols, vol.189, issue.5, pp.619-656, 2009.
DOI : 10.1128/jb.177.14.4121-4130.1995

W. A. Hendrickson, Atomic-level analysis of membrane-protein structure, Nature Structural & Molecular Biology, vol.347, issue.6, pp.464-467, 2016.
DOI : 10.1126/science.aaa1534

F. Junge, B. Schneider, S. Reckel, D. Schwarz, V. Dötsch et al., Large-scale production of functional membrane proteins, Cellular and Molecular Life Sciences, vol.65, issue.11, pp.1729-1755, 2008.
DOI : 10.1007/s00018-008-8067-5

R. M. Bill, P. J. Henderson, S. Iwata, E. R. Kunji, H. Michel et al., Overcoming barriers to membrane protein structure determination, Nature Biotechnology, vol.103, issue.4, pp.335-340, 2011.
DOI : 10.1073/pnas.0607640103

URL : http://publications.aston.ac.uk/19052/1/Overcoming_barriers_to_membrane_protein_structure_determination.pdf

M. Zoonens, J. Comer, S. Masscheleyn, E. Pebay-peyroula, C. Chipot et al., Dangerous Liaisons between Detergents and Membrane Proteins. The Case of Mitochondrial Uncoupling Protein 2, Journal of the American Chemical Society, vol.135, issue.40, pp.15174-15182, 2013.
DOI : 10.1021/ja407424v

E. E. Matthews, M. Zoonens, and D. M. Engelman, Dynamic Helix Interactions in Transmembrane Signaling, Cell, vol.127, issue.3, pp.447-450, 2006.
DOI : 10.1016/j.cell.2006.10.016

URL : https://doi.org/10.1016/j.cell.2006.10.016

J. Shonberg, R. C. Kling, P. Gmeiner, and S. Löber, GPCR crystal structures: Medicinal chemistry in the pocket, Bioorganic & Medicinal Chemistry, vol.23, issue.14, pp.3880-3906, 2015.
DOI : 10.1016/j.bmc.2014.12.034

S. Schlegel, M. Klepsch, D. Gialama, D. Wickström, D. J. Slotboom et al., Revolutionizing membrane protein overexpression in bacteria, Microbial Biotechnology, vol.7, issue.4, pp.403-414, 2010.
DOI : 10.1002/pro.5560070420

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1751-7915.2009.00148.x/pdf

M. Fogeron, V. Jirasko, S. Penzel, D. Paul, R. Montserret et al., Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus, Journal of Biomolecular NMR, vol.108, issue.89, pp.87-98, 2016.
DOI : 10.1016/j.bpj.2015.02.018

X. Zheng, S. Dong, J. Zheng, D. Li, and F. Li, Expression, stabilization and purification of membrane proteins via diverse protein synthesis systems and detergents involving cell-free associated with self-assembly peptide surfactants, Biotechnology Advances, vol.32, issue.3, pp.564-574, 2014.
DOI : 10.1016/j.biotechadv.2014.02.003

D. J. Scott, L. Kummer, D. Tremmel, and A. Plückthun, Stabilizing membrane proteins through protein engineering, Current Opinion in Chemical Biology, vol.17, issue.3, pp.427-435, 2013.
DOI : 10.1016/j.cbpa.2013.04.002

L. Esser, F. Zhou, K. M. Pluchino, J. Shiloach, J. Ma et al., Structures of the Multidrug Transporter P-glycoprotein Reveal Asymmetric ATP Binding and the Mechanism of Polyspecificity, Journal of Biological Chemistry, vol.7, issue.2, pp.446-461, 2016.
DOI : 10.1107/S0907444904019158

T. Hino, S. Iwata, and T. Murata, Generation of functional antibodies for mammalian membrane protein crystallography, Current Opinion in Structural Biology, vol.23, issue.4, pp.563-568, 2013.
DOI : 10.1016/j.sbi.2013.04.007

G. G. Privé, G. E. Verner, C. Weitzman, K. H. Zen, D. Eisenberg et al., Fusion proteins as tools for crystallization: the lactose permease from Escherichia coli, Acta Crystallographica Section D Biological Crystallography, vol.50, issue.4, pp.375-379, 1994.
DOI : 10.1107/S0907444993014301

E. Chun, A. A. Thompson, W. Liu, C. B. Roth, M. T. Griffith et al., Fusion Partner Toolchest for the Stabilization and Crystallization of G Protein-Coupled Receptors, Structure, vol.20, issue.6, pp.967-976, 2012.
DOI : 10.1016/j.str.2012.04.010

P. Simeonov, S. Werner, C. Haupt, M. Tanabe, and K. Bacia, Membrane protein reconstitution into liposomes guided by dual-color fluorescence cross-correlation spectroscopy, Biophysical Chemistry, vol.184, pp.37-43, 2013.
DOI : 10.1016/j.bpc.2013.08.003

URL : https://doi.org/10.1016/j.bpc.2013.08.003

E. R. Geertsma, N. , B. Nik-mahmood, G. K. Schuurman-wolters, and B. Poolman, Membrane reconstitution of ABC transporters and assays of translocator function, Nature Protocols, vol.691, issue.2, pp.256-266, 2008.
DOI : 10.1016/j.febslet.2005.09.063

C. R. Sanders and G. C. Landis, Reconstitution of Membrane Proteins into Lipid-Rich Bilayered Mixed Micelles for NMR Studies, Biochemistry, vol.34, issue.12, pp.4030-4040, 1995.
DOI : 10.1021/bi00012a022

C. R. Sanders, B. J. Hare, K. P. Howard, and J. H. Prestegard, Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.26, pp.421-444, 1994.
DOI : 10.1016/0079-6565(94)80012-X

S. Faham and J. U. Bowie, Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure, Journal of Molecular Biology, vol.316, issue.1, pp.1-6, 2002.
DOI : 10.1006/jmbi.2001.5295

S. G. Rasmussen, H. Choi, D. M. Rosenbaum, T. S. Kobilka, F. S. Thian et al., Crystal structure of the human ??2 adrenergic G-protein-coupled receptor, Nature, vol.54, issue.7168, pp.383-387, 2007.
DOI : 10.1016/j.bbamem.2006.10.021

F. Hagn, M. Etzkorn, T. Raschle, and G. Wagner, Optimized Phospholipid Bilayer Nanodiscs Facilitate High-Resolution Structure Determination of Membrane Proteins, Journal of the American Chemical Society, vol.135, issue.5, pp.1919-1925, 2013.
DOI : 10.1021/ja310901f

J. M. Dörr, S. Scheidelaar, M. C. Koorengevel, J. J. Dominguez, M. Schäfer et al., The styrene???maleic acid copolymer: a versatile tool in membrane research, European Biophysics Journal, vol.135, issue.11, pp.3-21, 2016.
DOI : 10.1021/ja407424v

J. Frauenfeld, R. Löving, J. Armache, A. F. Sonnen, F. Guettou et al., A saposin-lipoprotein nanoparticle system for membrane proteins, Nature Methods, vol.109, issue.4, pp.345-51, 2016.
DOI : 10.1073/pnas.1118125109

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4894539/pdf

J. L. Popot, T. Althoff, D. Bagnard, J. L. Baneres, P. Bazzacco et al., Amphipols From A to Z*, Annual Review of Biophysics, vol.40, issue.1, pp.379-408, 2011.
DOI : 10.1146/annurev-biophys-042910-155219

J. L. Popot, E. A. Berry, D. Charvolin, C. Creuzenet, C. Ebel et al., Amphipols: polymeric surfactants for membrane biology research, Cellular and Molecular Life Sciences (CMLS), vol.60, issue.8, pp.1559-1574, 2003.
DOI : 10.1007/s00018-003-3169-6

URL : http://www.yale.edu/engelman/PDF/Popot-2003.pdf

K. Haga, A. C. Kruse, H. Asada, T. Yurugi-kobayashi, M. Shiroishi et al., Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist, Nature, vol.61, issue.7386, pp.547-551, 2012.
DOI : 10.1107/S0907444905007894

D. Lichtenberg, H. Ahyayauch, and F. M. Goñi, The Mechanism of Detergent Solubilization of Lipid Bilayers, Biophysical Journal, vol.105, issue.2, pp.289-299, 2013.
DOI : 10.1016/j.bpj.2013.06.007

P. V. Escribá, Membrane-lipid therapy: a new approach in molecular medicine, Trends in Molecular Medicine, vol.12, issue.1, pp.34-43, 2006.
DOI : 10.1016/j.molmed.2005.11.004

D. A. Kallick, M. R. Tessmer, C. R. Watts, and C. Y. Li, The Use of Dodecylphosphocholine Micelles in Solution NMR, Journal of Magnetic Resonance, Series B, vol.109, issue.1, pp.60-65, 1995.
DOI : 10.1006/jmrb.1995.1146

C. Klammt, F. Löhr, B. Schäfer, W. Haase, V. Dötsch et al., High level cell-free expression and specific labeling of integral membrane proteins, European Journal of Biochemistry, vol.4, issue.3, pp.568-580, 2004.
DOI : 10.1016/S1367-5931(02)00019-4

Y. He, K. Wang, and N. Yan, The recombinant expression systems for structure determination of eukaryotic membrane proteins, Protein & Cell, vol.30, issue.6112, pp.658-672, 2014.
DOI : 10.1016/j.biotechadv.2011.08.022

C. Baron, Solubilization of bacterial membrane proteins using alkyl glucosides and dioctanoyl phosphatidylcholine, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.382, issue.3, pp.276-285, 1975.
DOI : 10.1016/0005-2736(75)90270-9

T. Vanaken, S. Foxall-vanaken, S. Castleman, and S. Ferguson-miller, [3] Alkyl glycoside detergents: Synthesis and applications to the study of membrane proteins, Methods Enzymol, vol.125, pp.27-35, 1986.
DOI : 10.1016/S0076-6879(86)25005-3

P. S. Chae, S. G. Rasmussen, R. Rana, K. Gotfryd, R. Chandra et al., Maltose???neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins, Nature Methods, vol.62, issue.12, pp.1003-1008, 2011.
DOI : 10.1016/j.pep.2008.08.002

K. H. Cho, M. Husri, A. Amin, K. Gotfryd, H. J. Lee et al., Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study, The Analyst, vol.9, issue.9, pp.3157-3163, 2015.
DOI : 10.1039/c3mb25584k

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4497825/pdf

D. T. Mcquade, M. A. Quinn, S. M. Yu, A. S. Polans, M. P. Krebs et al., Rigid Amphiphiles for Membrane Protein Manipulation, Angewandte Chemie International Edition, vol.39, issue.4, pp.758-761, 2000.
DOI : 10.1002/(SICI)1521-3773(20000218)39:4<758::AID-ANIE758>3.0.CO;2-V

Q. Zhang, X. Ma, A. Ward, W. X. Hong, V. P. Jaakola et al., Designing Facial Amphiphiles for the Stabilization of Integral Membrane Proteins, Angewandte Chemie International Edition, vol.336, issue.37, pp.7023-7025, 2007.
DOI : 10.1002/anie.200701556

G. G. Privé, Lipopeptide detergents for membrane protein studies, Current Opinion in Structural Biology, vol.19, issue.4, pp.379-385, 2009.
DOI : 10.1016/j.sbi.2009.07.008

H. Tao, S. C. Lee, A. Moeller, R. S. Roy, F. Yiu et al., Engineered nanostructured ??-sheet peptides protect membrane proteins, Nature Methods, vol.116, issue.8, pp.759-761, 2013.
DOI : 10.1006/jsbi.1996.0030

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753066/pdf

M. Abla, G. Durand, and B. Pucci, Glucose-Based Surfactants with Hydrogenated, Fluorinated, or Hemifluorinated Tails: Synthesis and Comparative Physical-Chemical Characterization, The Journal of Organic Chemistry, vol.73, issue.21, pp.8142-8153, 2008.
DOI : 10.1021/jo801379e

R. Zana, Dynamics of Surfactant Self-Assemblies, 2005.
DOI : 10.1201/9781420028225

V. Shevchenko, I. Gushchin, V. Polovinkin, E. Round, V. Borshchevskiy et al., Crystal Structure of Escherichia coli-Expressed Haloarcula marismortui Bacteriorhodopsin I in the Trimeric Form, PLoS ONE, vol.256, issue.12, p.112873, 2014.
DOI : 10.1371/journal.pone.0112873.t002

URL : https://hal.archives-ouvertes.fr/hal-01573009

R. M. Garavito and S. Ferguson-miller, Detergents as Tools in Membrane Biochemistry, Journal of Biological Chemistry, vol.378, issue.35, pp.32403-32406, 2001.
DOI : 10.1074/jbc.R100008200

URL : http://www.jbc.org/content/276/35/32403.full.pdf

S. Lee, A. Mao, S. Bhattacharya, N. Robertson, R. Grisshammer et al., How Do Short Chain Nonionic Detergents Destabilize G-Protein-Coupled Receptors?, Journal of the American Chemical Society, vol.138, issue.47, pp.15425-15433, 2016.
DOI : 10.1021/jacs.6b08742

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5148649/pdf

P. S. Chae, H. E. Bae, and M. Das, Adamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation, Chem. Commun., vol.97, issue.82, pp.12300-12303, 2014.
DOI : 10.1016/j.bpj.2009.05.053

A. Sadaf, J. S. Mortensen, S. Capaldi, E. Tikhonova, P. Hariharan et al., A class of rigid linker-bearing glucosides for membrane protein structural study, Chemical Science, vol.465, issue.3, pp.1933-1939, 2016.
DOI : 10.1038/nature09057

H. Hussain, Y. Du, N. J. Scull, J. S. Mortensen, J. Tarrasch et al., Accessible Mannitol-Based Amphiphiles (MNAs) for Membrane Protein Solubilisation and Stabilisation, Chemistry - A European Journal, vol.348, issue.21, pp.7068-7073, 2016.
DOI : 10.1126/science.aab1576

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5500234/pdf

M. Ehsan, Y. Du, N. J. Scull, E. Tikhonova, J. Tarrasch et al., Highly Branched Pentasaccharide-Bearing Amphiphiles for Membrane Protein Studies, Journal of the American Chemical Society, vol.138, issue.11, pp.3789-3796, 2016.
DOI : 10.1021/jacs.5b13233

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906958/pdf

K. H. Cho, Y. Du, N. J. Scull, P. Hariharan, K. Gotfryd et al., Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation, Chemistry - A European Journal, vol.19, issue.28, pp.10008-10013, 2015.
DOI : 10.1002/chem.201301423

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4493440/pdf

G. Von-heijne, Membrane-protein topology, Nature Reviews Molecular Cell Biology, vol.13, issue.12, pp.909-918, 2006.
DOI : 10.1091/mbc.11.9.2973

M. Amel and . Synthèse-de-biomolécules, Agissant Comme Inhibiteurs de l'ARN Polymérase ARN-Dépendante Du Virus de L'hépatite C et Développement de Nouveaux Surfactants Comme Stabilisants Des Protéines Membranaires Par Réseaux de Ponts Salins, Th : Chimie-Biologie, vol.206, 2015.

H. C. Kolb, M. G. Finn, and K. B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angewandte Chemie International Edition, vol.36, issue.6, pp.2004-2021, 2001.
DOI : 10.1016/B978-008096518-5.00095-2

P. Thirumurugan, D. Matosiuk, and K. Jozwiak, Click Chemistry for Drug Development and Diverse Chemical???Biology Applications, Chemical Reviews, vol.113, issue.7, pp.4905-4979, 2013.
DOI : 10.1021/cr200409f

H. C. Kolb and K. B. Sharpless, The growing impact of click chemistry on drug discovery, Drug Discovery Today, vol.8, issue.24, pp.1128-1137, 2003.
DOI : 10.1016/S1359-6446(03)02933-7

M. Goodman and W. J. Mcgahren, Mechanistic studies of peptide oxazolone racemization, Tetrahedron, vol.23, issue.5, pp.2031-2050, 1967.
DOI : 10.1016/0040-4020(67)80037-1

M. Goodman and L. Levine, Active Esters. IV. Racemization and Ring-Opening Reactions of Opitcally Active Oxazolones, Journal of the American Chemical Society, vol.86, issue.14, pp.2918-2922, 1964.
DOI : 10.1021/ja01068a030

A. Ohta, N. Ozawa, S. Nakashima, T. Asakawa, and S. Miyagishi, Krafft temperature and enthalpy of solution of N-acyl amino acid surfactants and their racemic modifications: effect of the amino acid residue, Colloid and Polymer Science, vol.281, issue.4, pp.363-369, 2003.
DOI : 10.1007/s00396-002-0784-y

M. P. Glenn, L. K. Pattenden, R. C. Reid, D. P. Tyssen, J. D. Tyndall et al., ??-Strand Mimicking Macrocyclic Amino Acids:?? Templates for Protease Inhibitors with Antiviral Activity, Journal of Medicinal Chemistry, vol.45, issue.2, pp.371-381, 2002.
DOI : 10.1021/jm010414i

M. Munteanu, S. Choi, and H. Ritter, Cyclodextrin Methacrylate via Microwave-Assisted Click Reaction, Macromolecules, vol.41, issue.24, pp.9619-9623, 2008.
DOI : 10.1021/ma8018975

C. Shao, X. Wang, Q. Zhang, S. Luo, J. Zhao et al., Acid???Base Jointly Promoted Copper(I)-Catalyzed Azide???Alkyne Cycloaddition, The Journal of Organic Chemistry, vol.76, issue.16, pp.6832-6836, 2011.
DOI : 10.1021/jo200869a

C. Shao, X. Wang, J. Xu, J. Zhao, Q. Zhang et al., Carboxylic Acid-Promoted Copper(I)-Catalyzed Azide???Alkyne Cycloaddition, The Journal of Organic Chemistry, vol.75, issue.20, pp.7002-7005, 2010.
DOI : 10.1021/jo101495k

H. Yamamoto, M. Oda, M. Nakano, N. Watanabe, K. Yabiku et al., Development of Vizantin, a Safe Immunostimulant, Based on the Structure???Activity Relationship of Trehalose-6,6???-dicorynomycolate, Journal of Medicinal Chemistry, vol.56, issue.1, pp.381-385, 2013.
DOI : 10.1021/jm3016443

A. Chattopadhyay and E. London, Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge, Analytical Biochemistry, vol.139, issue.2, pp.408-412, 1984.
DOI : 10.1016/0003-2697(84)90026-5

S. Ravaud, M. Cao, M. Jidenko, C. Ebel, M. Le-maire et al., is a functional dimer when in a detergent-solubilized state, Biochemical Journal, vol.395, issue.2, pp.345-53, 2006.
DOI : 10.1042/BJ20051719

URL : https://hal.archives-ouvertes.fr/hal-00313530

K. J. Linton and C. F. Higgins, Pflügers Arch. -Eur, J. Physiol, vol.453, pp.555-567, 2007.

M. A. Seeger, A. Schiefner, T. Eicher, F. Verrey, K. Diederichs et al., Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism, Science, vol.313, issue.5791, pp.1295-1298, 2006.
DOI : 10.1126/science.1131542

M. De-lera-ruiz, Y. Lim, and J. Zheng, Receptor as a Drug Discovery Target, Journal of Medicinal Chemistry, vol.57, issue.9, pp.3623-3650, 2014.
DOI : 10.1021/jm4011669

A. S. Doré, N. Robertson, J. C. Errey, I. Ng, K. Hollenstein et al., Structure of the Adenosine A2A Receptor in Complex with ZM241385 and the Xanthines XAC and Caffeine, Structure, vol.19, issue.9, pp.1283-1293, 2011.
DOI : 10.1016/j.str.2011.06.014

V. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. Chien et al., The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist, Science, vol.4, issue.16, pp.1211-1217, 2008.
DOI : 10.1074/jbc.270.23.13987

Y. Ashok, R. T. Nanekar, and V. Jaakola, Crystallogenesis of Adenosine A2A Receptor???T4 Lysozyme Fusion Protein, Methods Enzymol, vol.520, pp.175-198, 2013.
DOI : 10.1016/B978-0-12-391861-1.00008-3

F. Xu, H. Wu, V. Katritch, G. W. Han, K. A. Jacobson et al., Structure of an Agonist-Bound Human A2A Adenosine Receptor, Science, vol.106, issue.23, pp.322-327, 2011.
DOI : 10.1073/pnas.0811437106

G. Psakis, J. Polaczek, and L. Essen, AcrB et al.: Obstinate contaminants in a picogram scale. One more bottleneck in the membrane protein structure pipeline, Journal of Structural Biology, vol.166, issue.1, pp.107-111, 2009.
DOI : 10.1016/j.jsb.2008.12.007

I. E. Valverde, F. Lecaille, G. Lalmanach, V. Aucagne, and A. F. Delmas, Synthesis of a Biologically Active Triazole-Containing Analogue of Cystatin???A Through Successive Peptidomimetic Alkyne-Azide Ligations, Angewandte Chemie International Edition, vol.284, issue.3, pp.718-722, 2012.
DOI : 10.1074/jbc.M806891200

URL : https://hal.archives-ouvertes.fr/hal-00726293

G. Lebon, T. Warne, P. C. Edwards, K. Bennett, C. J. Langmead et al., Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation, Nature, vol.60, issue.7352, pp.521-525, 2011.
DOI : 10.1016/j.neuropharm.2010.07.001

R. Allikmets, B. Gerrard, A. Hutchinson, and M. Dean, Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database, Human Molecular Genetics, vol.5, issue.10, pp.1649-1655, 1996.
DOI : 10.1093/hmg/5.10.1649

E. Baiceanu, G. Crisan, F. Loghin, and P. Falson, Modulators of the human ABCC2: hope from natural sources?, Future Medicinal Chemistry, vol.57, issue.16, pp.2041-2063, 2015.
DOI : 10.1021/np200906s

K. Jemnitz, K. Heredi-szabo, J. Janossy, E. Ioja, L. Vereczkey et al., ABCC2/Abcc2: a multispecific transporter with dominant excretory functions, Drug Metabolism Reviews, vol.5, issue.3, pp.402-436, 2010.
DOI : 10.1111/j.1478-3231.2005.01033.x

I. N. Dubin and F. B. Johnson, CHRONIC IDIOPATHIC JAUNDICE WITH UNIDENTIFIED PIGMENT IN LIVER CELLS, Medicine, vol.33, issue.3, pp.155-97, 1954.
DOI : 10.1097/00005792-195409000-00001

J. Rengelshausen, C. Göggelmann, J. Burhenne, K. Riedel, J. Ludwig et al., Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin-clarithromycin interaction, British Journal of Clinical Pharmacology, vol.72, issue.1, pp.32-40, 2003.
DOI : 10.1111/j.1476-5381.1996.tb15550.x

P. K. Smitherman, A. J. Townsend, T. E. Kute, and C. S. Morrow, Role of Multidrug Resistance Protein 2 (MRP2, ABCC2) in Alkylating Agent Detoxification: MRP2 Potentiates Glutathione S-Transferase A1-1-Mediated Resistance to Chlorambucil Cytotoxicity, Journal of Pharmacology and Experimental Therapeutics, vol.308, issue.1, pp.260-267, 2003.
DOI : 10.1124/jpet.103.057729

J. Hulot, E. Villard, A. Maguy, V. Morel, L. Mir et al., A mutation in the drug transporter gene ABCC2 associated with impaired methotrexate elimination, Pharmacogenetics and Genomics, vol.15, issue.5, pp.277-85, 2005.
DOI : 10.1097/01213011-200505000-00002

R. K. Vadlapatla, A. D. Vadlapudi, D. Kwatra, D. Pal, and A. K. Mitra, Differential effect of P-gp and MRP2 on cellular translocation of gemifloxacin, International Journal of Pharmaceutics, vol.420, issue.1, pp.26-33, 2011.
DOI : 10.1016/j.ijpharm.2011.08.009

S. Huang, J. M. Strong, L. Zhang, K. S. Reynolds, S. Nallani et al., New Era in Drug Interaction Evaluation: US Food and Drug Administration Update on CYP Enzymes, Transporters, and the Guidance Process, The Journal of Clinical Pharmacology, vol.75, issue.6, pp.662-670, 2008.
DOI : 10.1016/j.clpt.2003.09.013

K. M. Giacomini, S. Huang, D. J. Tweedie, L. Z. Benet, K. L. Brouwer et al., Membrane transporters in drug development, Nature Reviews Drug Discovery, vol.20, issue.3, pp.215-236, 2010.
DOI : 10.1038/clpt.1992.37

A. Boumendjel, S. Macalou, G. Valdameri, A. Pozza, C. Gauthier et al., Targeting the Multidrug ABCG2 Transporter with Flavonoidic Inhibitors: In Vitro Optimization and In Vivo Validation, Current Medicinal Chemistry, vol.18, issue.22, pp.3387-3401, 2011.
DOI : 10.2174/092986711796504736

URL : https://hal.archives-ouvertes.fr/hal-00781835

G. Valdameri, E. Genoux-bastide, B. Peres, C. Gauthier, J. Guitton et al., Substituted Chromones as Highly Potent Nontoxic Inhibitors, Specific for the Breast Cancer Resistance Protein, Journal of Medicinal Chemistry, vol.55, issue.2, pp.966-970, 2012.
DOI : 10.1021/jm201404w

E. Winter, P. Devantier-neuenfeldt, L. D. Chiaradia-delatorre, C. Gauthier, R. A. Yunes et al., Symmetric Bis-chalcones as a New Type of Breast Cancer Resistance Protein Inhibitors with a Mechanism Different from That of Chromones, Journal of Medicinal Chemistry, vol.57, issue.7, pp.2930-2941, 2014.
DOI : 10.1021/jm401879z

O. Arnaud, A. Koubeissi, L. Ettouati, R. Terreux, G. Alamé et al., Potent and Fully Noncompetitive Peptidomimetic Inhibitor of Multidrug Resistance P-Glycoprotein, Journal of Medicinal Chemistry, vol.53, issue.18, pp.6720-6729, 2010.
DOI : 10.1021/jm100839w

URL : https://hal.archives-ouvertes.fr/hal-01653683

H. Sekizaki, )-benzofuran-3-ones (Aurones) by Oxidation of 2???-Hydroxychalcones with Mercury(II) Acetate, Bulletin of the Chemical Society of Japan, vol.61, issue.4, pp.1407-1409, 1988.
DOI : 10.1246/bcsj.61.1407

H. Harkat, A. Blanc, J. Weibel, and P. Pale, -Catalyzed Cyclization, The Journal of Organic Chemistry, vol.73, issue.4, pp.1620-1623, 2008.
DOI : 10.1021/jo702197b

S. Okombi, D. Rival, S. Bonnet, A. M. Mariotte, E. Perrier et al., )-one (Aurones) as Inhibitors of Tyrosinase Derived from Human Melanocytes, Journal of Medicinal Chemistry, vol.49, issue.1, pp.329-333, 2006.
DOI : 10.1021/jm050715i

T. A. Geissman and J. B. Harborne, Anthochlor Pigments. X. Aureusin and Cernuoside, Journal of the American Chemical Society, vol.77, issue.17, pp.4622-4624, 1955.
DOI : 10.1021/ja01622a054

H. Romain, Pharmacochimie Des Aurones Pour La Modulation D'enzymes. Th : Chimie-Biologie ; Grenoble, p.293, 2011.

C. L. Sutton, Z. E. Taylor, M. B. Farone, and S. T. Handy, Antifungal activity of substituted aurones, Bioorganic & Medicinal Chemistry Letters, vol.27, issue.4, pp.901-903, 2017.
DOI : 10.1016/j.bmcl.2017.01.012

L. Lunven, H. Bonnet, S. Yahiaoui, W. Yi, M. Peuchmaur et al., Disruption of Fibers from the Tau Model AcPHF6 by Naturally Occurring Aurones and Synthetic Analogues, ACS Chemical Neuroscience, vol.7, issue.7, pp.995-1003, 2016.
DOI : 10.1021/acschemneuro.6b00102

URL : https://hal.archives-ouvertes.fr/hal-01644834

R. Haudecoeur, M. Carotti, A. Gouron, M. Maresca, E. Buitrago et al., -oxide-Embedded Aurones as Potent Human Tyrosinase Inhibitors, ACS Medicinal Chemistry Letters, vol.8, issue.1, pp.55-60, 2016.
DOI : 10.1021/acsmedchemlett.6b00369

A. Meguellati, A. Ahmed-belkacem, W. Yi, R. Haudecoeur, M. Crouillère et al., B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNA-dependent RNA polymerase, European Journal of Medicinal Chemistry, vol.80, pp.579-592, 2014.
DOI : 10.1016/j.ejmech.2014.04.005

H. M. Sim, K. Y. Loh, W. K. Yeo, C. Y. Lee, and M. L. Go, Aurones as Modulators of ABCG2 and ABCB1: Synthesis and Structure-Activity Relationships, ChemMedChem, vol.16, issue.4, pp.713-724, 2011.
DOI : 10.1016/j.bmc.2007.10.006

H. Sim, C. Wu, S. V. Ambudkar, and M. Go, In vitro and in vivo modulation of ABCG2 by functionalized aurones and structurally related analogs, Biochemical Pharmacology, vol.82, issue.11, pp.1562-1571, 2011.
DOI : 10.1016/j.bcp.2011.08.002

Z. E. Sauna, M. B. Andrus, T. M. Turner, and S. V. Ambudkar, Biochemical Basis of Polyvalency as a Strategy for Enhancing the Efficacy of P-Glycoprotein (ABCB1) Modulators:?? Stipiamide Homodimers Separated with Defined-Length Spacers Reverse Drug Efflux with Greater Efficacy, Biochemistry, vol.43, issue.8, pp.2262-2271, 2004.
DOI : 10.1021/bi035965k

K. F. Chan, Y. Zhao, B. A. Burkett, I. L. Wong, L. M. Chow et al., Flavonoid Dimers as Bivalent Modulators for P-Glycoprotein-Based Multidrug Resistance:?? Synthetic Apigenin Homodimers Linked with Defined-Length Poly(ethylene glycol) Spacers Increase Drug Retention and Enhance Chemosensitivity in Resistant Cancer Cells, Journal of Medicinal Chemistry, vol.49, issue.23, pp.6742-6759, 2006.
DOI : 10.1021/jm060593+

I. L. Wong, K. F. Chan, H. T. Ka, Y. L. Chi, Y. Zhao et al., Modulation of Multidrug Resistance Protein 1 (MRP1/ABCC1)-Mediated Multidrug Resistance by Bivalent Apigenin Homodimers and Their Derivatives, Journal of Medicinal Chemistry, vol.52, issue.17, pp.5311-5322, 2009.
DOI : 10.1021/jm900194w

F. Corzana, J. H. Busto, G. Jiménez-osés, J. L. Asensio, J. Jiménez-barbero et al., New Insights into ??-GalNAc???Ser Motif:?? Influence of Hydrogen Bonding versus Solvent Interactions on the Preferred Conformation, Journal of the American Chemical Society, vol.128, issue.45, pp.14640-14648, 2006.
DOI : 10.1021/ja064539u

C. Boyère, G. Broze, C. Blecker, C. Jérôme, and A. Debuigne, Monocatenary, branched, double-headed, and bolaform surface active carbohydrate esters via photochemical thiol-ene/-yne reactions, Carbohydrate Research, vol.380, pp.29-36, 2013.
DOI : 10.1016/j.carres.2013.07.003

G. Milkereit and V. Vill, ???glycopyranoside Lipids and Characterization of Their Mesogenic Properties, Journal of Carbohydrate Chemistry, vol.187, issue.8-9, pp.615-632, 2006.
DOI : 10.1016/S0009-3084(02)00102-0

P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner et al., Measurement of protein using bicinchoninic acid, Analytical Biochemistry, vol.150, issue.1, pp.76-85, 1985.
DOI : 10.1016/0003-2697(85)90442-7

E. Desuzinges-mandon, M. Agez, R. Pellegrin, S. Igonet, and A. Jawhari, Novel systematic detergent screening method for membrane proteins solubilization, Analytical Biochemistry, vol.517, pp.40-49, 2017.
DOI : 10.1016/j.ab.2016.11.008

P. R. Evans and G. N. Murshudov, How good are my data and what is the resolution?, Acta Crystallographica Section D Biological Crystallography, vol.67, issue.7, pp.1204-1214, 2013.
DOI : 10.1107/S0907444910045749

URL : http://journals.iucr.org/d/issues/2013/07/00/ba5190/ba5190.pdf