M. J. Adams, Chemometrics in analytical spectroscopy, Royal Society of Chemistry, 1995.

A. Ahmed and E. P. Xing, Recovering time-varying networks of dependencies in social and biological studies, Proceedings of the National Academy of Sciences, pp.11878-11883, 2009.
DOI : 10.1126/science.1072152

R. M. Balabin, R. Z. Safieva, and E. I. Lomakina, Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques, Analytica Chimica Acta, vol.671, issue.1-2, pp.27-35, 2010.
DOI : 10.1016/j.aca.2010.05.013

R. Beale and T. Jackson, Neural Computing : An introduction, 1990.
DOI : 10.1887/0852742622

A. Beck and M. Teboulle, Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems, IEEE Transactions on Image Processing, vol.18, issue.11, pp.2419-2434, 2009.
DOI : 10.1109/TIP.2009.2028250

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Beck and M. Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, pp.183-202, 2009.
DOI : 10.1137/080716542

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Belmerhnia, E. Djermoune, and D. Brie, Greedy methods for simultaneous sparse approximation, 2014 22nd European Signal Processing Conference (EUSIPCO), pp.1851-1855, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01092575

L. Belmerhnia, E. Djermoune, C. Carteret, and D. Brie, Simultaneous regularized sparse approximation for wood wastes NIR spectra features selection, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.437-440, 2015.
DOI : 10.1109/CAMSAP.2015.7383830

URL : https://hal.archives-ouvertes.fr/hal-01241851

K. P. Bennett and O. L. Mangasarian, Robust linear programming discrimination of two linearly inseparable sets, Optimization Methods and Software, vol.1, issue.1, pp.23-34, 1992.
DOI : 10.1080/10556789208805504

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. D. Blanchard, C. Cartis, J. Tanner, and A. Thompson, Phase transitions for greedy sparse approximation algorithms, Applied and Computational Harmonic Analysis, vol.30, issue.2, pp.188-203, 2011.
DOI : 10.1016/j.acha.2010.07.001

URL : http://doi.org/10.1016/j.acha.2010.07.001

J. D. Blanchard, M. Cermak, D. Hanle, and Y. Jing, Greedy Algorithms for Joint Sparse Recovery, IEEE Transactions on Signal Processing, vol.62, issue.7, pp.1694-1704, 2014.
DOI : 10.1109/TSP.2014.2301980

J. D. Blanchard and A. Thompson, On support sizes of restricted isometry constants, Applied and Computational Harmonic Analysis, vol.29, issue.3, pp.382-390, 2010.
DOI : 10.1016/j.acha.2010.05.001

URL : http://doi.org/10.1016/j.acha.2010.05.001

T. Blumensath and M. Davies, On the difference between orthogonal matching pursuit and orthogonal least squares, 2007.

T. Blumensath and M. E. Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, vol.27, issue.3, pp.265-274, 2009.
DOI : 10.1016/j.acha.2009.04.002

URL : http://doi.org/10.1016/j.acha.2009.04.002

T. Blumensath and M. E. Davies, Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance, IEEE Journal of Selected Topics in Signal Processing, vol.4, issue.2, pp.298-309, 2010.
DOI : 10.1109/JSTSP.2010.2042411

M. A. Bouslamti, Identification et évaluation des différents types et niveaux des contaminants chimiques dans les bois recyclés

P. S. Bradley and O. L. Mangasarian, Massive data discrimination via linear support vector machines . Optimization Methods and Software, pp.1-10, 2000.
DOI : 10.1080/10556780008805771

N. Bratchell, Cluster analysis. Chemometrics and Intelligent Laboratory Systems, pp.105-125, 1989.

R. Brereton, Chemometrics : data analysis for the laboratory and chemical plant, 2003.
DOI : 10.1002/0470863242

C. C. Bridges, Hierarchical Cluster Analysis, Psychological Reports, vol.38, issue.3, pp.851-854, 1966.
DOI : 10.2466/pr0.1966.18.3.851

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.
DOI : 10.1023/A:1009715923555

M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson, E. Holmes et al., OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, Journal of Chemometrics, vol.87, issue.8-10, pp.8-10341, 2006.
DOI : 10.1002/cem.1006

T. T. Cai, G. Xu, and J. Zhang, On Recovery of Sparse Signals Via <formula formulatype="inline"> <tex Notation="TeX">$\ell _{1}$</tex></formula> Minimization, IEEE Transactions on Information Theory, vol.55, issue.7, pp.3388-3397, 2009.
DOI : 10.1109/TIT.2009.2021377

E. J. Candès, J. Romberg, and T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Communications on Pure and Applied Mathematics, vol.7, issue.8, pp.1207-1223, 2006.
DOI : 10.1017/CBO9780511804441

A. B. Chan, N. Vasconcelos, and G. R. Lanckriet, Direct convex relaxations of sparse SVM, Proceedings of the 24th international conference on Machine learning, ICML '07, pp.145-153, 2007.
DOI : 10.1145/1273496.1273515

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Chen and X. Huo, Theoretical Results on Sparse Representations of Multiple-Measurement Vectors, IEEE Transactions on Signal Processing, vol.54, issue.12, pp.4634-4643, 2006.
DOI : 10.1109/TSP.2006.881263

Q. Chen, P. Montesinos, Q. S. Sun, and P. A. Heng, Adaptive total variation denoising based on difference curvature, Image and Vision Computing, vol.28, issue.3, pp.298-306, 2010.
DOI : 10.1016/j.imavis.2009.04.012

Q. Chen, J. Zhao, H. Zhang, and X. Wang, Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration, Analytica Chimica Acta, vol.572, issue.1, pp.77-84, 2006.
DOI : 10.1016/j.aca.2006.05.007

S. Chen, S. A. Billings, and W. Luo, Orthogonal least squares methods and their application to non-linear system identification, Signals, Systems and Computers Conference Record of the Twenty-Eighth Asilomar Conference on, pp.1873-1896, 1989.
DOI : 10.2307/2284566

Y. Chen, N. M. Nasrabadi, and T. D. Tran, Hyperspectral Image Classification Using Dictionary-Based Sparse Representation, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.10, pp.493973-3985, 2011.
DOI : 10.1109/TGRS.2011.2129595

S. F. Cotter, Multiple snapshot matching pursuit for direction of arrival (DOA) estimation, Signal Processing Conference 15th European, pp.247-251, 2007.

S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-delgado, Sparse solutions to linear inverse problems with multiple measurement vectors, IEEE Transactions on Signal Processing, vol.53, issue.7, pp.2477-2488, 2005.
DOI : 10.1109/TSP.2005.849172

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Cover and P. Hart, Nearest neighbor pattern classification, IEEE Transactions on Information Theory, vol.13, issue.1, pp.21-27, 1967.
DOI : 10.1109/TIT.1967.1053964

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Craig, O. Cloarec, E. Holmes, J. K. Nicholson, and J. C. Lindon, Scaling and Normalization Effects in NMR Spectroscopic Metabonomic Data Sets, Analytical Chemistry, vol.78, issue.7, pp.2262-2267, 2006.
DOI : 10.1021/ac0519312

D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, vol.52, issue.4, pp.1289-1306, 2006.
DOI : 10.1109/TIT.2006.871582

URL : https://hal.archives-ouvertes.fr/inria-00369486

D. L. Donoho, M. Elad, and V. N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Transactions on Information Theory, vol.52, issue.1, pp.6-18, 2006.
DOI : 10.1109/TIT.2005.860430

D. L. Donoho and I. M. Johnstone, Adapting to Unknown Smoothness via Wavelet Shrinkage, Journal of the American Statistical Association, vol.31, issue.432, pp.1200-1224, 1995.
DOI : 10.1007/978-3-0346-0416-1

URL : http://citeseerx.ist.psu.edu/viewdoc/download?doi=

D. L. Donoho and J. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression. The Annals of Statistics, pp.407-499, 2004.

M. Elad and M. Aharon, Image Denoising Via Learned Dictionaries and Sparse representation, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 1 (CVPR'06), pp.895-900, 2006.
DOI : 10.1109/CVPR.2006.142

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Elmasry, M. Kamruzzaman, D. W. Sun, and P. Allen, Principles and Applications of Hyperspectral Imaging in Quality Evaluation of Agro-Food Products: A Review, Critical Reviews in Food Science and Nutrition, vol.3, issue.1, pp.999-1023, 2012.
DOI : 10.1016/j.tifs.2006.06.005

L. Eriksson, J. Rosén, E. Johansson, and J. Trygg, Orthogonal PLS (OPLS) Modeling for Improved Analysis and Interpretation in Drug Design, Molecular Informatics, vol.6, issue.6-7, pp.31-37, 2012.
DOI : 10.1002/cem.1009

A. Evgeniou and M. Pontil, Multi-task feature learning, Advances in Neural Information Processing Systems, vol.19, p.41, 2007.

E. Fix and J. L. Hodges-jr, Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties, International Statistical Review / Revue Internationale de Statistique, vol.57, issue.3, 1951.
DOI : 10.2307/1403797

R. Flamary, N. Jrad, R. Phlypo, M. Congedo, and A. Rakotomamonjy, Mixed-Norm Regularization for Brain Decoding, Computational and Mathematical Methods in Medicine, vol.5, issue.5, 2014.
DOI : 10.1111/j.1467-9280.1994.tb00630.x

URL : https://hal.archives-ouvertes.fr/hal-00708243

W. J. Foley, A. Mcilwee, I. Lawler, L. Aragones, A. P. Woolnough et al., Ecological applications of near infrared reflectance spectroscopy - a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance, Oecologia, vol.116, issue.3, pp.293-305, 1998.
DOI : 10.1007/s004420050591

S. Foucart, Hard Thresholding Pursuit: An Algorithm for Compressive Sensing, SIAM Journal on Numerical Analysis, vol.49, issue.6, pp.2543-2563, 2011.
DOI : 10.1137/100806278

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Foucart and M. J. Lai, Sparsest solutions of underdetermined linear systems via <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msub><mml:mi>???</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math>-minimization for <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mn>0</mml:mn><mml:mo><</mml:mo><mml:mi>q</mml:mi><mml:mo>???</mml:mo><mml:mn>1</mml:mn></mml:math>, Applied and Computational Harmonic Analysis, vol.26, issue.3, pp.395-407, 2009.
DOI : 10.1016/j.acha.2008.09.001

I. E. Frank and S. Lanteri, Classification models : discriminant analysis, SIMCA, CART. Chemometrics and Intelligent Laboratory Systems, pp.247-256, 1989.
DOI : 10.1016/0169-7439(89)80052-8

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, The Annals of Applied Statistics, vol.1, issue.2, pp.302-332, 2007.
DOI : 10.1214/07-AOAS131

URL : http://arxiv.org/abs/0708.1485

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 2001.

J. H. Friedman, Greedy function approximation : a gradient boosting machine, Annals of Statistics, pp.1189-1232, 2001.

J. Friedrich, Spatial Modeling in Natural Sciences and Engineering : Software Development and Implementation, 2004.
DOI : 10.1007/978-3-642-18877-0

G. M. Furnival and R. W. Wilson, Regressions by Leaps and Bounds, Technometrics, vol.60, issue.1, pp.69-79, 2000.
DOI : 10.2307/1267353

J. Gabrielsson, H. Jonsson, C. Airiau, B. Schmidt, R. Escott et al., OPLS methodology for analysis of pre-processing effects on spectroscopic data, Chemometrics and Intelligent Laboratory Systems, vol.84, issue.1-2, pp.153-158, 2006.
DOI : 10.1016/j.chemolab.2006.03.013

A. Giacomino, O. Abollino, M. Malandrino, M. Karthik, and V. Murugesan, Determination and assessment of the contents of essential and potentially toxic elements in Ayurvedic medicine formulations by inductively coupled plasma-optical emission spectrometry, Microchemical Journal, vol.99, issue.1, pp.2-6, 2011.
DOI : 10.1016/j.microc.2011.01.002

P. E. Gill, W. Murray, and M. A. Saunders, User's guide for SNOPT 5.3 : A Fortran package for large-scale nonlinear programming, 1998.

S. Girard, A nonlinear PCA based on manifold approximation, Computational Statistics, vol.15, issue.2, pp.145-167, 2000.
DOI : 10.1007/s001800000025

URL : https://hal.archives-ouvertes.fr/hal-00724764

J. A. Gualtieri, R. F. Cromp, I. Guyon, J. Weston, S. Barnhill et al., Support vector machines for hyperspectral remote sensing classification Gene selection for cancer classification using support vector machines, The 27th AIPR Workshop : Advances in Computer-Assisted Recognition Machine Learning, pp.221-2321, 1999.

X. Hang and F. X. Wu, Sparse Representation for Classification of Tumors Using Gene Expression Data, Journal of Biomedicine and Biotechnology, vol.63, issue.7, 2009.
DOI : 10.1073/pnas.191368598

M. Harz, P. Rösch, K. D. Peschke, O. Ronneberger, H. Burkhardt et al., Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions, The Analyst, vol.25, issue.662, pp.1301543-1550, 2005.
DOI : 10.1099/00221287-137-1-69

T. Hastie and W. Stuetzle, Principal Curves, Journal of the American Statistical Association, vol.26, issue.406, pp.502-516, 1989.
DOI : 10.1080/03610927508827223

M. Hebiri, Regularization with the smooth-lasso procedure. arXiv preprint arXiv :0803.0668, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00260816

M. Hedenström, S. Wiklund, B. Sundberg, and U. Edlund, Visualization and interpretation of OPLS models based on 2D NMR data, Chemometrics and Intelligent Laboratory Systems, vol.92, issue.2, pp.110-117, 2008.
DOI : 10.1016/j.chemolab.2008.01.003

M. E. Hellman, The Nearest Neighbor Classification Rule with a Reject Option, IEEE Transactions on Systems Science and Cybernetics, vol.6, issue.3, pp.179-185, 1970.
DOI : 10.1109/TSSC.1970.300339

H. Hoefling, A Path Algorithm for the Fused Lasso Signal Approximator, Journal of Computational and Graphical Statistics, vol.19, issue.4, pp.984-1006, 2010.
DOI : 10.1198/jcgs.2010.09208

A. E. Hoerl and R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

C. Huang, L. S. Davis, and J. R. Townshend, An assessment of support vector machines for land cover classification, International Journal of Remote Sensing, vol.20, issue.4, pp.725-749, 2002.
DOI : 10.1080/01431169408954326

K. Huang and S. Aviyente, Sparse representation for signal classification, Advances in Neural Information Processing Systems, pp.609-616, 2006.

G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Transactions on Information Theory, vol.14, issue.1, pp.55-63, 1968.
DOI : 10.1109/TIT.1968.1054102

M. D. Iordache, J. Bioucas-dias, and A. Plaza, Sparse Unmixing of Hyperspectral Data, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.6, pp.2014-2039, 2011.
DOI : 10.1109/TGRS.2010.2098413

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. D. Iordache, J. M. Bioucas-dias, A. Plaza, and B. Somers, MUSIC-CSR: Hyperspectral Unmixing via Multiple Signal Classification and Collaborative Sparse Regression, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.7, pp.4364-4382, 2014.
DOI : 10.1109/TGRS.2013.2281589

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, 2002.

I. Jolliffe, Principal component analysis, Wiley Online Library, 2005.

I. T. Jolliffe, N. T. Trendafilov, and M. Uddin, A Modified Principal Component Technique Based on the LASSO, Journal of Computational and Graphical Statistics, vol.12, issue.3, pp.531-547, 2003.
DOI : 10.1198/1061860032148

P. Jonsson, S. J. Bruce, T. Moritz, J. Trygg, M. Sjöström et al., Extraction, interpretation and validation of information for comparing samples in metabolic LC/MS data sets, The Analyst, vol.16, issue.11, pp.130701-707, 2005.
DOI : 10.1002/cem.695

H. R. Keller and D. L. Massart, Evolving factor analysis, Chemometrics and Intelligent Laboratory Systems, vol.12, issue.3, pp.209-224, 1991.
DOI : 10.1016/0169-7439(92)80002-L

J. Kim and H. Park, Sparse nonnegative matrix factorization for clustering, 2008.

M. Kokalj, J. Kolar, T. Trafela, and S. Kreft, Differences Among Epilobium and Hypericum Species Revealed by four IR Spectroscopy Modes: Transmission, KBr Tablet, Diffuse Reflectance and ATR, Phytochemical Analysis, vol.18, issue.5, pp.541-546, 2011.
DOI : 10.1002/pca.957

P. Li and S. Xu, Support vector machine and kernel function characteristic analysis in pattern recognition, Computer Engineering and Design, vol.26, issue.2, pp.302-304, 2005.

Y. Li, A. Cichocki, and S. Amari, Analysis of Sparse Representation and Blind Source Separation, Neural Computation, vol.401, issue.21, pp.1193-1234, 2004.
DOI : 10.1162/089976601300014385

J. Liu and J. Ye, Moreau-Yosida regularization for grouped tree structure learning, Advances in Neural Information Processing Systems, pp.1459-1467, 2010.

J. Liu, L. Yuan, and J. Ye, An efficient algorithm for a class of fused lasso problems, Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pp.323-332, 2010.
DOI : 10.1145/1835804.1835847

D. Lorente, N. Aleixos, J. Gómez-sanchis, S. Cubero, O. L. García-navarrete et al., Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment, Food and Bioprocess Technology, vol.3, issue.1, pp.1121-1142, 2012.
DOI : 10.1016/j.compag.2006.12.002

J. F. Macgregor and T. Kourti, Statistical process control of multivariate processes, Control Engineering Practice, vol.3, issue.3, pp.403-414, 1995.
DOI : 10.1016/0967-0661(95)00014-L

D. M. Malioutov, M. Cetin, and A. S. Willsky, Homotopy continuation for sparse signal representation, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005., p.733, 2005.
DOI : 10.1109/ICASSP.2005.1416408

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Marill and D. Green, On the effectiveness of receptors in recognition systems, IEEE Transactions on Information Theory, vol.9, issue.1, pp.11-17, 1963.
DOI : 10.1109/TIT.1963.1057810

H. Martens and M. Martens, Multivariate Analysis of Quality. An Introduction, Measurement Science and Technology, vol.12, issue.10, 2001.
DOI : 10.1088/0957-0233/12/10/708

E. B. Martin and A. J. Morris, An overview of multivariate statistical process control in continuous and batch process performance monitoring, Transactions of the Institute of Measurement and Control, vol.142, issue.6, pp.51-60, 1996.
DOI : 10.1049/ip-cta:19952255

V. Mazet, C. Carteret, D. Brie, J. Idier, B. Humbert et al., Background removal from spectra by designing and minimising a non-quadratic cost function. Chemometrics and Intelligent Laboratory Systems Examining large databases : a chemometric approach using principal component analysis, Marine Chemistry, vol.76, issue.39, pp.121-1331, 1992.
DOI : 10.1016/j.chemolab.2004.10.003

L. Meier, S. Van-de-geer, and P. Bühlmann, The group lasso for logistic regression, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.68, issue.1, pp.53-71, 2008.
DOI : 10.1093/oxfordjournals.pan.a004868

F. Melgani and L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing, vol.42, issue.8, pp.1778-1790, 2004.
DOI : 10.1109/TGRS.2004.831865

W. J. Melssen, J. R. Smits, L. M. Buydens, and G. Kateman, Using artificial neural networks for solving chemical problems, Chemometrics and Intelligent Laboratory Systems, vol.23, issue.2, pp.267-291, 1994.
DOI : 10.1016/0169-7439(93)E0036-4

G. Mercier and M. Lennon, Support vector machines for hyperspectral image classification with spectral-based kernels, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), pp.288-290, 2003.
DOI : 10.1109/IGARSS.2003.1293752

A. J. Miller, Subset selection in regression, 1990.

Q. Mo and Y. Shen, A Remark on the Restricted Isometry Property in Orthogonal Matching Pursuit, IEEE Transactions on Information Theory, vol.58, issue.6, pp.3654-3656, 2012.
DOI : 10.1109/TIT.2012.2185923

M. Mohammadi, M. Nezamabadi, R. S. Berns, and L. A. Taplin, Spectral imaging target development based on hierarchical cluster analysis, Color and Imaging Conference, pp.59-64, 2004.

B. K. Natarajan, Sparse Approximate Solutions to Linear Systems, SIAM Journal on Computing, vol.24, issue.2, pp.227-234, 1995.
DOI : 10.1137/S0097539792240406

D. Naumann, V. Fijala, H. Labischinski, and P. Giesbrecht, The rapid differentiation and identification of pathogenic bacteria using Fourier transform infrared spectroscopic and multivariate statistical analysis, Journal of Molecular Structure, vol.174, pp.165-170, 1988.
DOI : 10.1016/0022-2860(88)80152-2

D. Naumann, D. Helm, and H. Labischinski, Microbiological characterizations by FT-IR spectroscopy, Nature, vol.351, issue.6321, pp.81-82, 1991.
DOI : 10.1038/351081a0

D. Needell and J. A. Tropp, CoSaMP, Communications of the ACM, vol.53, issue.12, pp.301-321, 2009.
DOI : 10.1145/1859204.1859229

Y. Nesterov, A method of solving a convex programming problem with convergence rate

Y. Ni, Y. Peng, and S. Kokot, Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics, Analytica Chimica Acta, vol.616, issue.1, pp.19-27, 2008.
DOI : 10.1016/j.aca.2008.04.015

G. Obozinski, B. Taskar, and M. Jordan, Joint covariate selection for grouped classification, 2007.
DOI : 10.1007/s11222-008-9111-x

URL : https://link.springer.com/content/pdf/10.1007%2Fs11222-008-9111-x.pdf

M. R. Osborne, B. Presnell, and B. A. Turlach, A new approach to variable selection in least squares problems, IMA Journal of Numerical Analysis, vol.20, issue.3, pp.389-403, 2000.
DOI : 10.1093/imanum/20.3.389

M. Pérez-enciso and M. Tenenhaus, Prediction of clinical outcome with microarray data : a partial least squares discriminant analysis (PLS-DA) approach, Human Genetics, vol.112, pp.5-6581, 2003.

M. J. Piovoso and K. A. Kosanovich, Applications of multivariate statistical methods to process monitoring and controller design, International Journal of Control, vol.62, issue.3, pp.743-765, 1994.
DOI : 10.1002/aic.690351106

M. M. Plichta, S. Heinzel, A. C. Ehlis, P. Pauli, and A. J. Fallgatter, Model-based analysis of rapid event-related functional near-infrared spectroscopy (NIRS) data: A parametric validation study, NeuroImage, vol.35, issue.2
DOI : 10.1016/j.neuroimage.2006.11.028

M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies, Sparse Representations in Audio and Music: From Coding to Source Separation, Proceedings of the IEEE, pp.995-1005, 2010.
DOI : 10.1109/JPROC.2009.2030345

URL : https://hal.archives-ouvertes.fr/inria-00489524

A. Rakotomamonjy, Variable selection using SVM-based criteria, Journal of Machine Learning Research, vol.3, pp.1357-1370, 2003.

S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. H. Yeang et al., Multiclass cancer diagnosis using tumor gene expression signatures, Proceedings of the National Academy of Sciences, vol.61, issue.20, pp.9815149-15154, 2001.
DOI : 10.1073/pnas.191368598

URL : http://www.pnas.org/content/98/26/15149.full.pdf

M. Rantalainen, O. Cloarec, O. Beckonert, I. D. Wilson, D. Jackson et al., Statistically Integrated Metabonomic???Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice, Journal of Proteome Research, vol.5, issue.10, pp.2642-2655, 2006.
DOI : 10.1021/pr060124w

R. Saab and Ö. Y?lmaz, Sparse recovery by non-convex optimization ??? instance optimality, Applied and Computational Harmonic Analysis, vol.29, issue.1, pp.30-48, 2010.
DOI : 10.1016/j.acha.2009.08.002

URL : http://doi.org/10.1016/j.acha.2009.08.002

S. ?a?ic and Y. Ozaki, Short-Wave Near-Infrared Spectroscopy of Biological Fluids. 1. Quantitative Analysis of Fat, Protein, and Lactose in Raw Milk by Partial Least-Squares Regression and Band Assignment, Analytical Chemistry, vol.73, issue.1, pp.64-71, 2001.
DOI : 10.1021/ac000469c

P. Schniter, L. C. Potter, and J. Ziniel, Fast bayesian matching pursuit, 2008 Information Theory and Applications Workshop, pp.326-333, 2008.
DOI : 10.1109/ITA.2008.4601068

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Schölkopf, A. Smola, and K. R. Müller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, vol.20, issue.5, pp.1299-1319, 1998.
DOI : 10.1007/BF02281970

V. H. Segtnan, ?. ?a?ic, T. Isaksson, and Y. Ozaki, Studies on the structure of water using twodimensional near-infrared correlation spectroscopy and principal component analysis, Analytical chemistry, issue.13, pp.733153-3161, 2001.

S. Serranti, A. Gargiulo, and G. Bonifazi, Classification of polyolefins from building and construction waste using NIR hyperspectral imaging system. Resources, Conservation and Recycling, pp.52-58, 2012.

H. W. Siesler, Y. Ozaki, S. Kawata, and H. M. Heise, Near-infrared spectroscopy : principles, instruments, applications From Bernoulli?Gaussian deconvolution to sparse signal restoration, IEEE Transactions on Signal Processing, issue.10, pp.594572-4584, 2008.
DOI : 10.1002/9783527612666

J. L. Starck, F. Murtagh, and J. M. Fadili, Sparse image and signal processing : wavelets, curvelets, morphological diversity, 2010.
DOI : 10.1017/CBO9780511730344

URL : https://hal.archives-ouvertes.fr/hal-01132685

B. Stuart, Infrared spectroscopy, 2005.

P. Tatzer, M. Wolf, and T. Panner, Industrial application for inline material sorting using hyperspectral imaging in the NIR range, Real-Time Imaging, vol.11, issue.2, pp.99-107, 2005.
DOI : 10.1016/j.rti.2005.04.003

R. Tibshirani, Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.
DOI : 10.1111/j.1467-9868.2011.00771.x

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, Sparsity and smoothness via the fused lasso, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.99, issue.1, pp.91-108, 2005.
DOI : 10.1016/S0140-6736(02)07746-2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. J. Tibshirani, J. E. Taylor, E. J. Candès, and T. Hastie, The solution path of the generalized lasso, The Annals of Statistics, vol.39, issue.3, 2011.
DOI : 10.1214/11-AOS878SUPP

D. F. Toh, L. S. New, H. L. Koh, and E. C. Chan, Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed Panax notoginseng, Journal of Pharmaceutical and Biomedical Analysis, vol.52, issue.1, pp.43-50, 2010.
DOI : 10.1016/j.jpba.2009.12.005

J. A. Tropp, Greed is Good: Algorithmic Results for Sparse Approximation, IEEE Transactions on Information Theory, vol.50, issue.10, pp.2231-2242, 2004.
DOI : 10.1109/TIT.2004.834793

URL : http://authors.library.caltech.edu/9035/1/TROieeetit04a.pdf

J. A. Tropp, Just relax : Convex programming methods for subset selection and sparse approximation, 2004.
DOI : 10.1109/tit.2005.864420

URL : http://authors.library.caltech.edu/9040/1/TROieeetit06.pdf

J. A. Tropp, Algorithms for simultaneous sparse approximation. Part II: Convex relaxation, Signal Processing, vol.86, issue.3, pp.589-602, 2006.
DOI : 10.1016/j.sigpro.2005.05.031

J. A. Tropp, A. C. Gilbert, and M. J. Strauss, Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit, Signal Processing, vol.86, issue.3, pp.572-588, 2006.
DOI : 10.1016/j.sigpro.2005.05.030

J. A. Tropp and S. J. Wright, Computational methods for sparse solution of linear inverse problems, Proceedings of the IEEE, pp.948-958, 2010.

J. Trygg, E. Holmes, and T. Lundstedt, Chemometrics in Metabonomics, Journal of Proteome Research, vol.6, issue.2, pp.469-479, 2007.
DOI : 10.1021/pr060594q

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Trygg and S. Wold, Orthogonal projections to latent structures (O-PLS), Journal of Chemometrics, vol.10, issue.3, pp.119-128, 2002.
DOI : 10.1002/(SICI)1099-128X(199609)10:5/6<453::AID-CEM444>3.0.CO;2-P

B. A. Turlach, On algorithms for solving least squares problems under an 1 penalty or an 1 constraint, Proceedings of the American Statistical Association ; Statistical Computing Section [CD-ROM], pp.2572-2577, 2004.

B. A. Turlach, W. N. Venables, and S. J. Wright, Simultaneous Variable Selection, Technometrics, vol.47, issue.3, pp.349-363, 2005.
DOI : 10.1198/004017005000000139

G. Tzagkarakis, D. Milioris, and P. Tsakalides, Multiple-measurement Bayesian compressed sensing using GSM priors for DOA estimation, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.2610-2613, 2010.
DOI : 10.1109/ICASSP.2010.5496269

URL : http://www.ics.forth.gr/~tsakalid/PAPERS/CNFRS/2010-ICASSP2.pdf

J. A. Van-leeuwen, R. J. Jonker, and R. Gill, Octane number prediction based on gas chromatographic analysis with non-linear regression techniques, Chemometrics and Intelligent Laboratory Systems, vol.25, issue.2, pp.325-340, 1994.
DOI : 10.1016/0169-7439(94)85051-8

V. N. Vapnik and V. Vapnik, Statistical learning theory, 1998.

N. Vlachos, Y. Skopelitis, M. Psaroudaki, V. Konstantinidou, A. Chatzilazarou et al., Applications of Fourier transform-infrared spectroscopy to edible oils, Analytica Chimica Acta, vol.573, issue.574, pp.459-465, 2006.
DOI : 10.1016/j.aca.2006.05.034

H. W. Wang and Y. Q. Liu, Evaluation of trace and toxic element concentrations in Paris polyphylla from China with empirical and chemometric approaches, Food Chemistry, vol.121, issue.3, pp.887-892, 2010.
DOI : 10.1016/j.foodchem.2010.01.012

J. Weston and C. Watkins, Support vector machines for multi-class pattern recognition, 7th European Symposium on Artificial Neural Networks, pp.219-224, 1999.

D. P. Wipf and B. D. Rao, Sparse Bayesian Learning for Basis Selection, IEEE Transactions on Signal Processing, vol.52, issue.8, pp.2153-2164, 2004.
DOI : 10.1109/TSP.2004.831016

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Wold, Pattern recognition by means of disjoint principal components models, Pattern Recognition, vol.8, issue.3, pp.127-139, 1976.
DOI : 10.1016/0031-3203(76)90014-5

S. Wold, H. Martens, and H. Wold, The multivariate calibration problem in chemistry solved by the PLS method, Proceedings of the Conference on Matrix Pencils, pp.286-293, 1983.
DOI : 10.1080/00401706.1978.10489693

S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses, SIAM Journal on Scientific and Statistical Computing, vol.5, issue.3, pp.735-743, 1984.
DOI : 10.1137/0905052

S. Wold, M. Sjöström, and L. Eriksson, PLS-regression: a basic tool of chemometrics, Chemometrics and Intelligent Laboratory Systems, vol.58, issue.2, pp.109-130, 2001.
DOI : 10.1016/S0169-7439(01)00155-1

J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, Robust Face Recognition via Sparse Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, issue.2, pp.210-227, 2009.
DOI : 10.1109/TPAMI.2008.79

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. C. Wu and A. L. Swindlehurst, Matching pursuit and source deflation for sparse EEG/MEG dipole moment estimation, IEEE Transactions on Biomedical Engineering, vol.60, issue.8, pp.2280-2288, 2013.

W. Wu, B. Walczak, D. L. Massart, S. Heuerding, F. Erni et al., Artificial neural networks in classification of NIR spectral data : design of the training set Variables selection methods in near-infrared spectroscopy, Chemometrics and Intelligent Laboratory Systems Z. Xiaobo, Z. Jiewen, M. J. Povey, M. Holmes, and M. Hanpin. Analytica Chimica Acta, vol.33154, issue.6671, pp.35-4614, 1996.

B. Xin, Y. Kawahara, Y. Wang, and W. Gao, Efficient generalized fused lasso and its application to the diagnosis of Alzheimer's disease, Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.2163-2169, 2014.

S. C. Yoon, B. Park, K. C. Lawrence, W. R. Windham, and G. W. Heitschmidt, Line-scan hyperspectral imaging system for real-time inspection of poultry carcasses with fecal material and ingesta, Computers and Electronics in Agriculture, vol.79, issue.2, pp.159-168, 2011.
DOI : 10.1016/j.compag.2011.09.008

M. Yuan and Y. Lin, Model selection and estimation in regression with grouped variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.58, issue.1, pp.49-67, 2006.
DOI : 10.1198/016214502753479356

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Zahri, Analyse quantitative et qualitative des substances chimiques responsables des durabilités naturelle et conférée des bois de chêne européen et de pin maritime par la spectroscopie dans le proche infrarouge, 2007.

J. Zhou, J. Liu, V. A. Narayan, and J. Ye, Modeling disease progression via fused sparse group lasso, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.1095-1103, 2012.
DOI : 10.1145/2339530.2339702

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191837

Y. Zhou, T. Liu, J. Li, and Z. Chen, Rapid identification of edible oil and swill-cooked dirty oil by using near-infrared spectroscopy and sparse representation classification, Anal. Methods, vol.7, issue.6, pp.2367-2372, 2015.
DOI : 10.1016/j.aca.2014.05.057

J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani, 1-norm support vector machines, Advances in Neural Information Processing Systems, pp.49-56, 2004.

M. Zibulevsky, P. Kisilev, Y. Y. Zeevi, and B. A. Pearlmutter, Blind source separation via multinode sparse representation, Advances in Neural Information Processing Systems 14, pp.1049-1056, 2002.

H. Zou, T. Hastie, and R. Tibshirani, Sparse Principal Component Analysis, Journal of Computational and Graphical Statistics, vol.15, issue.2, pp.265-286, 2006.
DOI : 10.1198/106186006X113430

J. Zupan, M. Novi?, and I. Ruisánchez, Kohonen and counterpropagation artificial neural networks in analytical chemistry, Chemometrics and Intelligent Laboratory Systems, vol.38, issue.1, pp.1-23, 1997.
DOI : 10.1016/S0169-7439(97)00030-0