]. R. Abmar, J. Abraham, and . Marsden, Foundations of mechanics, 1978.

M. Arnaud, On the type of certain periodic orbits minimizing the Lagrangian action, Nonlinearity, vol.11, issue.1, pp.143-150, 1998.
DOI : 10.1088/0951-7715/11/1/009

]. V. Ar and . Arnold, 1. Methodes mathematiques de la Mecanique classique. MIR, Moscou. 2. On a characteristic class entering in quantization conditions, Funct. Anal. Appl.p, pp.1-13, 1967.
URL : https://hal.archives-ouvertes.fr/hal-00139740

]. V. Balaz, V. Babich, and . Lazutkin, Eigenfunctions concentrated near a closed geodesic, Consultants' Bureau, pp.9-18, 1968.

A. Bahri and H. Beresticki, Forced vibrations of superquadratic Hamiltonian systems, Acta Mathematica, vol.152, issue.0
DOI : 10.1007/BF02392196

]. S. Batwe, A. Bates, and . Weinstein, Lectures on the geometry of quantization

G. D. Birkhoff and E. B. Bogomolny, Semi-classical quantization of multi-dimensional systems, Dynamical Systems, pp.91-108, 1927.

]. S. Bol and . Bolotin, Libration motions of natural dynamical systems

]. P. Brcodu, J. M. Briet, P. Combes, and . Duclos, On the location of resonances for Schrödinger operators in the semi-classical limit. 1. I. Resonance free domains II. Barrier top resonancesBryuno. 1. The normal form of an Hamiltonian system Normalization of a Hamiltonian system near an invariant cycle or torus, J.Math .Anal. Appl. Comm. Part. Diff. Eq. Russian Math. Surveys Russian Math. Surveys, vol.126, issue.442, pp.90-99201, 1987.

]. A. Caketobr, B. Cattaneo, C. Keller, and . Torosian, ABruguì eres, 2005.

]. J. Cha and . Chazarain, Spectre d'un Hamiltonien quantique et Mécanique classique, Comm. Part. Diff. Eq. No6, pp.595-644, 1980.

. Anal, Quantum monodromy and non-concentration near a closed semi-hyperbolic orbit, Trans. Amer. Math. Soc, vol.246, issue.3637, pp.145-19533733438, 2007.

]. C. Coze, E. Conley, and . Zehnder, Morse-type Index Theory for Flows and Periodic Solutions for Hamiltonian Equations A global fixed point theorem for symplectic maps and sub-harmonic solutions of Hamiltonian equations on tori, Proc. Symp. Pure Math. 45, pp.207-253283, 1984.

]. M. Disj, J. Dimassi, and . Sjöstrand, Spectral Asymptotics in the semi-classical limit, 1999.

]. S. Doro, M. Dobrokhotov, and . Rouleux, 1. The semi-classical Maupertuis-Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory
URL : https://hal.archives-ouvertes.fr/in2p3-01351743

. Asympt, The semi-classical Jacobi-Maupertuis correspondence: stable and unstable spectra, Proceedings " Days of Diffraction 2012, pp.33-7359, 2011.

]. D. Mcdusa, D. Mcduff, and . Salamon, Introduction to symplectic topology, 1995.

]. J. Du and . Duistermaat, 1. Oscillatory integrals, Lagrangian immersions and unfolding of singularities On the Morse index in variational calculus, Comm. Pure Appl. Math. Adv.in Math, vol.27, issue.21, pp.207-281173, 1974.
URL : https://hal.archives-ouvertes.fr/medihal-00831897

]. J. Dugu, V. Duistermaat, and . Guillemin, The spectrum of positive elliptic operators and periodic geo-desics

]. H. Faloro, H. Fadhlaoui, M. Louati, and . Rouleux, Hyperbolic Hamiltonian flows and the semiclassical Poincaré map, Proceedings " Days of Diffraction 2013, pp.53-58

]. C. Ge and . Gérard, Asymptotique des pôles de la matrice de scattering pour 2 obstacles strictement convexes, pp.1-146, 1988.

]. C. Gesj, J. Gérard, and . Sjöstrand, 1. Semiclassical resonances generated by a closed trajectory of hyperbolic type Resonances en limite semiclassique et exposants de Lyapunov, Comm. Math. Phys. Comm. Math. Phys, vol.108, issue.116, pp.391-421193, 1987.

]. I. Gelli, V. M. Gelfand, and . Lidskii, On the structure of stability of linear canonical systems of differential equations with periodic coefficients, Trans. A.M.S, vol.8, issue.2, pp.143-181, 1958.

]. S. Gr and . Graff, On the conservation of hyperbolic invariant tori for Hamiltonian systems, J. Diff.Eqs, vol.15, pp.1-69, 1974.

]. V. Gupa, T. Guillemin, and . Paul, Some remarks about semiclassical trace invariants and quantum normal forms, Comm. Math. Phys, vol.294, issue.1, p.119, 2010.

]. V. Guwe, A. Guillemin, and . Weinstein, Eigenvalues associated with a closed geodesic, Bull. AMS, vol.82, pp.92-94, 1976.

B. Helffer and J. Sjöstrand, R??sonances en limite semi-classique, Mémoires de la Société mathématique de France, vol.1, issue.3, 1986.
DOI : 10.24033/msmf.327

]. B. Hero, D. Helffer, and . Robert, 1 Comportement semi-classique du spectre des Hamiltoniens quantiques elliptiques. Ann. Institut Fourier Puits de potentiel generalisés et asymptotique semi-classique, Annales Inst. H.Poincaré (Physique Théorique), vol.41, issue.3 2 3, pp.31169-223291, 1981.

L. Hörmander, 1 Fourier Integral Operators I. Acta Math The Analysis of Partial Differential Operators I,III, pp.79-183, 1971.

]. A. Iasj, J. Iantchenko, and . Sjöstrand, Birkhoff normal forms for Fourier integral operators II

]. A. Ifaro, M. Ifa, and . Rouleux, Regular Bohr-Sommerfeld quantization rules for a h-pseudodifferential operator: the method of positive commutators ARIMA, Int. Conference Euro-Maghreb Laboratory of Math. and their Interfaces, pp.21-2016

M. Ikawa, On the existence of the poles of the scattering matrix for several convex bodies, Proceedings of the Japan Academy, Series A, Mathematical Sciences, vol.64, issue.4
DOI : 10.3792/pjaa.64.91

]. N. Kake, . Kaidi, . Ph, and . Kerdelhue, Forme normale de Birkhoff et résonances, Asympt. Analysis, vol.23, pp.1-21, 2000.

]. N. Karo, M. Kaidi, and . Rouleux, Quasi-invariant tori and semi-excited states for Schrödinger operators I, Asymptotics. Comm. in Part. Diff. Equations, vol.279, pp.1695-1750, 2002.

T. Kato, Pertubation theory for linears operators, 1980.

]. B. Lassj, J. Lascar, and . Sjöstrand, Equation de Schrodinger et propagation des singularités pour des OPDàOPDà caractéristiques de multiplicité variable, I (Astérisque No, and II (Comm. PDE's, 1982.

]. G. Leb and . Lebeau, Notes d'un CoursàCoursà Orsay, 1988.

Y. Long, Index theory for symplectic paths with applications
DOI : 10.1007/978-3-0348-8175-3

]. M. Leoffbuko, D. Lewis, P. Offin, M. Buono, and . Kovacic, Instability of the periodic hip-hop orbit in the 2N -body problem with equal masses, Disc. Cont. Dyn. Syst, vol.33, issue.3, pp.1137-1155, 2013.

]. A. Ma and . Martinez, An introduction to Semiclassical and Microlocal Analysis, 2001.

]. A. Mesj, J. Melin, and . Sjöstrand, 1. Fourier Integral Operators with complex valued phase functions Determinants of pseudodifferential operators and complex deformations of phase space Bohr- Sommerfeld quantization condition for non-self-adjoint operators in dimension 2, Springer Lect. Notes in Math, pp.120-223181, 1974.

]. J. Mozh, E. Moser, and . Zehnder, Notes on Dynamical systems, American Math. Soc., Courant Inst. Math. Sci, vol.12, 2005.

]. S. Nosjzw, J. Nonnenmacher, M. Sjöstrand, and . Zworski, From Open Quantum Systems to Open Quantum maps, Comm. Math. Phys, vol.304, pp.1-48, 2011.

P. Rabinowitz, On subharmonic solutions of hamiltonian systems, Communications on Pure and Applied Mathematics, vol.11, issue.5, pp.609-633, 1980.
DOI : 10.1016/B978-0-12-195250-1.50017-5

]. J. Ra and . Ralston, On the construction of quasi-modes associated with periodic orbits, Comm. Math. Phys, vol.51, issue.3, pp.219-242, 1976.

M. Reed and B. Simon, Methods of modern mathematical physics IV, 1975.

]. K. Riwi, D. Richtert, and . Wintgent, Analysis of classical motion on the Wannier ridge, J. Phys

]. D. Rob and . Robert, Autour de lapproximation semi-classique, Progress in Mathematics, vol.68, 1987.

M. Rouleux, Resonances for semi-classical Schrödinger operators of Gevrey type

H. J. Math, ]. D. Saze, E. Salamon, and . Zehnder, Semiclassical integrability, hyperbolic flows, and the Birkhoff normal form, Morse Theory for Periodic Solutions of Hamiltonian Systems and the Maslov Index, pp.475-517, 1992.

]. J. Sj and . Sjöstrand, 1. Singularites analytiques microlocales Astérisque No 95, 1982. 2. Semiclassical resonances generated by a non-degenerate critical point
URL : https://hal.archives-ouvertes.fr/hal-00144765

]. J. Sjzw, M. Sjöstrand, and . Zworski, Quantum monodromy and semi-classical trace formulae, Souriau. Construction explicite de l'indice de Maslov. Applications Group theoretical methods in Physics, pp.1-33, 1976.

]. A. Tip and . Tip, Atoms in circularly polarised fields: the dilation-analytic approach, Journal of Physics A: Mathematical and General, vol.16, issue.14, pp.3237-3259, 1983.
DOI : 10.1088/0305-4470/16/14/018

A. Voros, 1. Semi-classical approximations, Ann. Inst. H.Poincaré, vol.24, pp.31-90, 1976.
URL : https://hal.archives-ouvertes.fr/hal-00087757

]. W. Zi and . Ziller, Geometry of the Katok examples, Ergod. Theor. Dyn. Sys, vol.3, pp.135-157, 1982.