P. Miller, E. Decanini, and C. Afonso, Newcastle disease: Evolution of genotypes and the related diagnostic challenges, Infection, Genetics and Evolution, vol.10, issue.1, pp.26-35, 2010.
DOI : 10.1016/j.meegid.2009.09.012

Y. Nagai, T. Yoshida, M. Hamaguchi, H. Naruse, M. Iinuma et al., The Pathogenicity of Newcastle Disease Virus Isolated from Migrating and Domestic Ducks and the Susceptibility of the Viral Glycoproteins to Proteolytic Cleavage, Microbiology and Immunology, vol.31, issue.2, pp.173-177, 1980.
DOI : 10.7883/yoken1952.31.407

D. Alexander, Newcastle Disease Diagnosis, pp.147-160, 1988.
DOI : 10.1007/978-1-4613-1759-3_9

F. Biancifiori and A. Fioroni, An occurrence of Newcastle disease in pigeons: Virological and serological studies on the isolates, Comparative Immunology, Microbiology and Infectious Diseases, vol.6, issue.3, pp.247-252, 1983.
DOI : 10.1016/0147-9571(83)90017-6

P. Desingu, S. Singh, K. Dhama, O. Kumar, Y. Malik et al., Clinicopathological characterization of experimental infection in chickens with sub-genotype VIIi Newcastle disease virus isolated from peafowl, Microbial Pathogenesis, vol.105, pp.8-12, 2017.
DOI : 10.1016/j.micpath.2017.01.057

M. Liu, Y. Qu, F. Wang, S. Liu, and H. Sun, Genotypic and pathotypic characterization of Newcastle disease virus isolated from racing pigeons in China, Poultry Science, vol.94, issue.7, pp.1476-1482, 2015.
DOI : 10.3382/ps/pev106

K. Swanson, X. Wen, G. Leser, R. Paterson, R. Lamb et al., Structure of the Newcastle disease virus F protein in the post-fusion conformation, Virology, vol.402, issue.2, pp.372-379, 2010.
DOI : 10.1016/j.virol.2010.03.050

M. Lawrence, The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion, Structure, vol.9, pp.255-266, 2001.

P. Yuan, K. Swanson, G. Leser, R. Paterson, R. Lamb et al., Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk, Proceedings of the National Academy of Sciences, vol.32, issue.suppl_2, pp.14920-14925, 2011.
DOI : 10.1093/nar/gkh434

M. Boursnell, P. Green, A. Samson, J. Campbell, A. Deuter et al., A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge NDV, Virology, vol.178, issue.1, pp.297-300, 1990.
DOI : 10.1016/0042-6822(90)90408-J

F. Cosset, J. Bouquet, A. Drynda, Y. Chebloune, A. Rey-senelonge et al., Newcastle disease virus (NDV) vaccine based on immunization with avian cells expressing the NDV hemagglutinin-beuraminidase glycoprotein, Virology, vol.185, issue.2, pp.862-866, 1991.
DOI : 10.1016/0042-6822(91)90560-X

K. Karaca, J. Sharma, B. Winslow, D. Junker, S. Reddy et al., Recombinant fowlpox viruses coexpressing chicken type I IFN and Newcastle disease virus HN and F genes: influence of IFN on protective efficacy and humoral responses of chickens following in ovo or post-hatch administration of recombinant viruses, Vaccine, vol.16, issue.16, pp.1496-1503, 1998.
DOI : 10.1016/S0264-410X(97)00295-8

G. Meulemans, C. Letellier, M. Gonze, M. Carlier, and A. Burny, Newcastle disease virus f glycoprotein expressed from a recombinant vaccinia virus vector protects chickens against livevirus challenge, 1988.
DOI : 10.1080/03079458808436504

URL : http://www.tandfonline.com/doi/pdf/10.1080/03079458808436504?needAccess=true

S. Kumar, B. Nayak, P. Collins, and S. Samal, Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens, Journal of Virology, vol.85, issue.13, 2011.
DOI : 10.1128/JVI.00367-11

T. Takimoto and A. Portner, Molecular mechanism of paramyxovirus budding, Virus Research, vol.106, issue.2, pp.133-145, 2004.
DOI : 10.1016/j.virusres.2004.08.010

S. Crennell, T. Takimoto, A. Portner, and G. Taylor, Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase, Nat Struct Mol Biol, vol.7, pp.1068-1074, 2000.

M. Porotto, M. Fornabaio, O. Greengard, M. Murrell, G. Kellogg et al., Paramyxovirus Receptor-Binding Molecules: Engagement of One Site on the Hemagglutinin-Neuraminidase Protein Modulates Activity at the Second Site, Journal of Virology, vol.80, issue.3, pp.1204-1213, 2006.
DOI : 10.1128/JVI.80.3.1204-1213.2006

H. Connaris, T. Takimoto, R. Russell, S. Crennell, I. Moustafa et al., Probing the Sialic Acid Binding Site of the Hemagglutinin-Neuraminidase of Newcastle Disease Virus: Identification of Key Amino Acids Involved in Cell Binding, Catalysis, and Fusion, Journal of Virology, vol.76, issue.4, pp.1816-1824, 2002.
DOI : 10.1128/JVI.76.4.1816-1824.2002

V. Zaitsev, M. Von-itzstein, D. Groves, M. Kiefel, T. Takimoto et al., Second Sialic Acid Binding Site in Newcastle Disease Virus Hemagglutinin-Neuraminidase: Implications for Fusion, Journal of Virology, vol.78, issue.7, pp.3733-3741, 2004.
DOI : 10.1128/JVI.78.7.3733-3741.2004

M. Brindley, R. Suter, I. Schestak, G. Kiss, E. Wright et al., A Stabilized Headless Measles Virus Attachment Protein Stalk Efficiently Triggers Membrane Fusion, Journal of Virology, vol.87, issue.21, pp.11693-11703, 2013.
DOI : 10.1128/JVI.01945-13

URL : http://jvi.asm.org/content/87/21/11693.full.pdf

Q. Liu, J. Stone, B. Bradel-tretheway, J. Dabundo, J. Montano et al., Unraveling a Three-Step Spatiotemporal Mechanism of Triggering of Receptor-Induced Nipah Virus Fusion and Cell Entry, PLoS Pathogens, vol.4, issue.21, p.1003770, 2013.
DOI : 10.1371/journal.ppat.1003770.s001

S. Bose, A. Zokarkar, B. Welch, G. Leser, T. Jardetzky et al., Fusion activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk suggests a modular mechanism for triggering, Proceedings of the National Academy of Sciences, vol.209, issue.36, pp.2625-2634, 2012.
DOI : 10.1006/viro.1995.1278

S. Bose, A. Song, T. Jardetzky, and R. Lamb, Fusion Activation through Attachment Protein Stalk Domains Indicates a Conserved Core Mechanism of Paramyxovirus Entry into Cells, Journal of Virology, vol.88, issue.8, pp.3925-3941, 2014.
DOI : 10.1128/JVI.03741-13

H. Yin, X. Wen, R. Paterson, R. Lamb, and T. Jardetzky, Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation, Nature, vol.47, issue.7072, pp.38-44, 2006.
DOI : 10.1107/S0108767390010224

T. Poor, L. Jones, A. Sood, G. Leser, M. Plasencia et al., Probing the paramyxovirus fusion (F) protein-refolding event from pre- to postfusion by oxidative footprinting, Proceedings of the National Academy of Sciences, vol.98, issue.5, pp.2596-2605, 2014.
DOI : 10.1063/1.464397

Y. Kim, J. Donald, G. Grigoryan, G. Leser, A. Fadeev et al., Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5, Proceedings of the National Academy of Sciences, vol.248, issue.7, pp.20992-20997, 2011.
DOI : 10.1006/viro.1998.9242

B. Peeters, Y. Gruijthuijsen, D. Leeuw, O. Gielkens, and A. , Genome replication of Newcastle disease virus: involvement of the rule-of-six, Archives of Virology, vol.145, issue.9, pp.1829-1845, 2000.
DOI : 10.1007/s007050070059

Z. Zhang, W. Zhao, D. Li, J. Yang, L. Zsak et al., Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism, Journal of General Virology, vol.96, issue.8, pp.2028-2035, 2015.
DOI : 10.1099/vir.0.000142

M. Alayyoubi, G. Leser, C. Kors, and R. Lamb, Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein???RNA complex, Proceedings of the National Academy of Sciences, vol.14, issue.5, pp.1792-1799, 2015.
DOI : 10.1107/S0907444909042073

R. Cox, A. Pickar, S. Qiu, J. Tsao, C. Rodenburg et al., Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein, Proceedings of the National Academy of Sciences, vol.20, issue.3, pp.15208-15213, 2014.
DOI : 10.1016/j.jsb.2006.07.003

S. Reich, D. Guilligay, A. Pflug, H. Malet, I. Berger et al., Structural insight into cap-snatching and RNA synthesis by influenza polymerase, Nature, vol.85, issue.7531, pp.361-366, 2014.
DOI : 10.1128/JVI.02375-10

URL : https://hal.archives-ouvertes.fr/hal-01132328

M. Lukarska, G. Fournier, A. Pflug, P. Resa-infante, S. Reich et al., Structural basis of an essential interaction between influenza polymerase and Pol II CTD, Nature, vol.102, issue.480, pp.117-121, 2017.
DOI : 10.1073/pnas.0507415102

W. Errington and P. Emmerson, Assembly of recombinant Newcastle disease virus nucleocapsid protein into nucleocapsid-like structures is inhibited by the phosphoprotein., Journal of General Virology, vol.78, issue.9, pp.2335-2339, 1997.
DOI : 10.1099/0022-1317-78-9-2335

C. Kho, W. Tan, B. Tey, and K. Yusoff, Newcastle disease virus nucleocapsid protein: self-assembly and length-determination domains, Journal of General Virology, vol.84, issue.8, pp.2163-2168, 2003.
DOI : 10.1099/vir.0.19107-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/84/8/2163.pdf?itemId=/content/journal/jgv/10.1099/vir.0.19107-0&mimeType=pdf&isFastTrackArticle=

L. Liljeroos, M. Krzyzaniak, A. Helenius, and S. Butcher, Architecture of respiratory syncytial virus revealed by electron cryotomography, Proceedings of the National Academy of Sciences, vol.94, issue.Pt_8, pp.11133-11138, 2013.
DOI : 10.1099/vir.0.053025-0

Z. Huang, A. Panda, S. Elankumaran, D. Govindarajan, D. Rockemann et al., The Hemagglutinin-Neuraminidase Protein of Newcastle Disease Virus Determines Tropism and Virulence, Journal of Virology, vol.78, issue.8, pp.4176-4184, 2004.
DOI : 10.1128/JVI.78.8.4176-4184.2004

O. De-leeuw, G. Koch, L. Hartog, N. Ravenshorst, and B. Peeters, Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein, Journal of General Virology, vol.86, issue.6, pp.1759-1769, 2005.
DOI : 10.1099/vir.0.80822-0

Z. Duan, J. Li, J. Zhu, J. Chen, H. Xu et al., A single amino acid mutation, R42A, in the Newcastle disease virus matrix protein abrogates its nuclear localization and attenuates viral replication and pathogenicity, Journal of General Virology, vol.95, issue.Pt_5, pp.1067-1073, 2014.
DOI : 10.1099/vir.0.062992-0

H. Xu, Q. Song, J. Zhu, J. Liu, X. Cheng et al., A single R36Q mutation in the matrix protein of pigeon paramyxovirus type 1 reduces virus replication and shedding in pigeons, Archives of Virology, vol.28, issue.2, pp.1949-1955, 2016.
DOI : 10.1023/A:1023495615729

H. Xu, Z. Duan, Y. Chen, J. Liu, X. Cheng et al., Simultaneous mutation of G275A and P276A in the matrix protein of Newcastle disease virus decreases virus replication and budding, Archives of Virology, vol.30, issue.12, pp.3527-3533, 2016.
DOI : 10.1080/03079450120078626

M. Park, M. Shaw, J. Muñoz-jordan, J. Cros, T. Nakaya et al., Newcastle Disease Virus (NDV)-Based Assay Demonstrates Interferon-Antagonist Activity for the NDV V Protein and the Nipah Virus V, W, and C Proteins, Journal of Virology, vol.77, issue.2, pp.1501-1511, 2003.
DOI : 10.1128/JVI.77.2.1501-1511.2003

M. Park, A. García-sastre, J. Cros, C. Basler, and P. Palese, Newcastle Disease Virus V Protein Is a Determinant of Host Range Restriction, Journal of Virology, vol.77, issue.17, pp.9522-9532, 2003.
DOI : 10.1128/JVI.77.17.9522-9532.2003

Z. Huang, S. Krishnamurthy, A. Panda, and S. Samal, Newcastle Disease Virus V Protein Is Associated with Viral Pathogenesis and Functions as an Alpha Interferon Antagonist, Journal of Virology, vol.77, issue.16, pp.8676-8685, 2003.
DOI : 10.1128/JVI.77.16.8676-8685.2003

URL : http://jvi.asm.org/content/77/16/8676.full.pdf

X. Qiu, Q. Fu, C. Meng, S. Yu, Y. Zhan et al., Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling, PLOS ONE, vol.85, issue.3, p.148560, 2016.
DOI : 10.1371/journal.pone.0148560.s001

URL : https://doi.org/10.1371/journal.pone.0148560

Y. Yan and S. Samal, Role of Intergenic Sequences in Newcastle Disease Virus RNA Transcription and Pathogenesis, Journal of Virology, vol.82, issue.3, pp.1323-1331, 2008.
DOI : 10.1128/JVI.01989-07

Y. Yan, S. Rout, S. Kim, and S. Samal, Role of Untranslated Regions of the Hemagglutinin-Neuraminidase Gene in Replication and Pathogenicity of Newcastle Disease Virus, Journal of Virology, vol.83, issue.11, pp.5943-5946, 2009.
DOI : 10.1128/JVI.00188-09

S. Oh, K. Onomoto, M. Wakimoto, K. Onoguchi, F. Ishidate et al., Leader-Containing Uncapped Viral Transcript Activates RIG-I in Antiviral Stress Granules, PLOS Pathogens, vol.29, issue.4, p.1005444, 2016.
DOI : 10.1371/journal.ppat.1005444.s017

URL : https://doi.org/10.1371/journal.ppat.1005444

M. Van-boven, A. Bouma, T. Fabri, E. Katsma, L. Hartog et al., Herd immunity to Newcastle disease virus in poultry by vaccination, Avian Pathology, vol.119, issue.1, pp.1-5, 2008.
DOI : 10.1080/01652176.1987.9694074

M. Onapa, H. Christensen, G. Mukiibi, and M. Bisgaard, A preliminary study of the role of ducks in the transmission of Newcastle disease virus to in-contact rural free-range chickens, Tropical Animal Health and Production, vol.5, issue.4, pp.285-289, 2006.
DOI : 10.1007/978-1-4613-1759-3_12

H. , M. Allan, W. Dark, F. Harper, and G. , The evidence for the airborne spread of Newcastle disease, Epidemiol Infect, vol.71, pp.325-339, 1973.

I. Capua, M. Scacchia, T. Toscani, and V. Caporale, Unexpected Isolation of Virulent Newcastle Disease Virus from Commercial Embryonated Fowls' Eggs, Journal of Veterinary Medicine, Series B, vol.11, issue.1-10, pp.609-612, 1993.
DOI : 10.3382/ps.0330880

J. Chen and C. Wang, Clinical Epidemiologic and Experimental Evidence for the Transmission of Newcastle Disease Virus Through Eggs, Avian Diseases, vol.46, issue.2, pp.461-465, 2002.
DOI : 10.1637/0005-2086(2002)046[0461:CEAEEF]2.0.CO;2

H. Thacore and J. Youngner, Cells Persistently Infected with Newcastle Disease Virus I. Properties of Mutants Isolated from Persistently Infected L Cells, J Virol, vol.4, pp.244-251, 1969.

S. Chia, K. Yusoff, and N. Shafee, Viral persistence in colorectal cancer cells infected by Newcastle disease virus, Virology Journal, vol.11, issue.1, p.91, 2014.
DOI : 10.1016/j.rvsc.2008.05.013

URL : https://virologyj.biomedcentral.com/track/pdf/10.1186/1743-422X-11-91?site=virologyj.biomedcentral.com

U. Rangaswamy, W. Wang, X. Cheng, P. Mctamney, D. Carroll et al., ABSTRACT, Journal of Virology, vol.91, issue.16, pp.770-00717, 2017.
DOI : 10.1128/JVI.00770-17

D. Voss-rech, I. Trevisol, L. Brentano, V. Silva, R. Rebelatto et al., Impact of treatments for recycled broiler litter on the viability and infectivity of microorganisms, Veterinary Microbiology, vol.203, pp.308-314, 2017.
DOI : 10.1016/j.vetmic.2017.03.020

D. Alexander, G. Parsons, and R. Marshall, Infection of fowls with Newcastle disease virus by food contaminated with pigeon faeces, Veterinary Record, vol.115, issue.23, pp.601-602, 1984.
DOI : 10.1136/vr.115.23.601

D. Alexander, Newcastle Disease : Methods of Spread, pp.256-272, 1988.
DOI : 10.1007/978-1-4613-1759-3_14

M. Burridge, H. Riemann, and W. Utterback, Methods of Spread of Velogenic Viscerotropic Newcastle Disease Virus in the Southern Californian Epidemic of 1971-1973, Avian Diseases, vol.19, issue.4, pp.666-678, 1975.
DOI : 10.2307/1589178

L. Kim, D. King, P. Curry, D. Suarez, D. Swayne et al., Phylogenetic Diversity among Low-Virulence Newcastle Disease Viruses from Waterfowl and Shorebirds and Comparison of Genotype Distributions to Those of Poultry-Origin Isolates, Journal of Virology, vol.81, issue.22, pp.12641-12653, 2007.
DOI : 10.1128/JVI.00843-07

G. Erickson, M. Brugh, and C. Beard, Viscerotropic Velogenic Newcastle Disease in Pigeons: Clinical Disease and Immunization, Avian Diseases, vol.24, issue.1, pp.257-267, 1980.
DOI : 10.2307/1589785

Y. Kang, B. Xiang, R. Yuan, X. Zhao, M. Feng et al., Phylogenetic and Pathotypic Characterization of Newcastle Disease Viruses Circulating in South China and Transmission in Different Birds, Frontiers in Microbiology, vol.11, issue.1283, 2016.
DOI : 10.1186/s12985-014-0211-2

Q. Sattentau, Avoiding the void: cell-to-cell spread of human viruses, Nature Reviews Microbiology, vol.73, issue.11, pp.815-826, 2008.
DOI : 10.4049/jimmunol.178.5.3177

P. Zhong, L. Agosto, J. Munro, and W. Mothes, Cell-to-cell transmission of viruses, Current Opinion in Virology, vol.3, issue.1, pp.44-50, 2013.
DOI : 10.1016/j.coviro.2012.11.004

W. Mothes, N. Sherer, J. J. Zhong, and P. , Virus Cell-to-Cell Transmission, Journal of Virology, vol.84, issue.17, pp.8360-8368, 2010.
DOI : 10.1128/JVI.00443-10

URL : http://jvi.asm.org/content/84/17/8360.full.pdf

S. Xiao, B. Nayak, A. Samuel, A. Paldurai, M. Kanabagattebasavarajappa et al., Generation by Reverse Genetics of an Effective, Stable, Live-Attenuated Newcastle Disease Virus Vaccine Based on a Currently Circulating, Highly Virulent Indonesian Strain, PLoS ONE, vol.301, issue.1, p.52751, 2012.
DOI : 10.1371/journal.pone.0052751.t007

C. Horvath, R. Paterson, M. Shaughnessy, R. Wood, and R. Lamb, Biological activity of paramyxovirus fusion proteins: factors influencing formation of syncytia, J Virol, vol.66, pp.4564-4569, 1992.

N. Makhortova, P. Askovich, C. Patterson, L. Gechman, N. Gerard et al., Neurokinin-1 enables measles virus trans-synaptic spread in neurons, Virology, vol.362, issue.1, pp.235-244, 2007.
DOI : 10.1016/j.virol.2007.02.033

URL : https://doi.org/10.1016/j.virol.2007.02.033

D. Lawrence, C. Patterson, T. Gales, D. Orazio, J. Vaughn et al., Measles Virus Spread between Neurons Requires Cell Contact but Not CD46 Expression, Syncytium Formation, or Extracellular Virus Production, Journal of Virology, vol.74, issue.4, pp.1908-1918, 2000.
DOI : 10.1128/JVI.74.4.1908-1918.2000

URL : http://jvi.asm.org/content/74/4/1908.full.pdf

J. Jin, N. Sherer, G. Heidecker, D. Derse, and W. Mothes, Assembly of the Murine Leukemia Virus Is Directed towards Sites of Cell???Cell Contact, PLoS Biology, vol.104, issue.12, p.1000163, 2009.
DOI : 10.1371/journal.pbio.1000163.s018

E. Najjar, F. Cifuentes-muñoz, N. Chen, J. Zhu, H. Buchholz et al., Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread, PLOS Pathogens, vol.9, issue.9, 2016.
DOI : 10.1371/journal.ppat.1005922.s002

M. Mehedi, T. Mccarty, S. Martin, L. Nouën, C. Buehler et al., Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread, PLOS Pathogens, vol.7, issue.12, p.1006062, 2016.
DOI : 10.1371/journal.ppat.1006062.s020

URL : https://doi.org/10.1371/journal.ppat.1006062

K. Roberts, B. Manicassamy, and R. Lamb, ABSTRACT, Journal of Virology, vol.89, issue.3, pp.1537-1549, 2015.
DOI : 10.1128/JVI.03306-14

F. Xiao, I. Fofana, L. Heydmann, H. Barth, E. Soulier et al., Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents, PLoS Pathogens, vol.104, issue.5, p.1004128, 2014.
DOI : 10.1371/journal.ppat.1004128.s009

URL : https://doi.org/10.1371/journal.ppat.1004128

S. Iwami, J. Takeuchi, S. Nakaoka, F. Mammano, F. Clavel et al., Author response image 1. Punctual model for parameter estimation., eLife, vol.8, p.8150, 2015.
DOI : 10.7554/eLife.08150.017

Z. Qin, L. Sun, B. Ma, Z. Cui, Y. Zhu et al., F gene recombination between genotype II and VII Newcastle disease virus, Virus Research, vol.131, issue.2, pp.299-303, 2008.
DOI : 10.1016/j.virusres.2007.10.001

C. Baumann and W. Neubert, Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection, Archives of Virology, vol.13, issue.2, pp.217-227, 2010.
DOI : 10.1099/0022-1317-79-4-683

I. Huang, W. Li, J. Sui, W. Marasco, H. Choe et al., Influenza A Virus Neuraminidase Limits Viral Superinfection, Journal of Virology, vol.82, issue.10, pp.4834-4843, 2008.
DOI : 10.1128/JVI.00079-08

URL : http://jvi.asm.org/content/82/10/4834.full.pdf

J. Dortmans, G. Koch, P. Rottier, and B. Peeters, A comparative infection study of pigeon and avian paramyxovirus type 1 viruses in pigeons: evaluation of clinical signs, virus shedding and seroconversion, Avian Pathology, vol.27, issue.2, pp.125-130, 2011.
DOI : 10.1080/03079459995082

URL : https://hal.archives-ouvertes.fr/hal-00687800

D. Kapczynski and D. King, Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak, Vaccine, vol.23, issue.26, pp.3424-3433, 2005.
DOI : 10.1016/j.vaccine.2005.01.140

S. Whelan, J. Barr, and G. Wertz, Transcription and replication of nonsegmented negative-strand RNA viruses Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics, pp.61-119, 2004.

R. Kingston, D. Hamel, L. Gay, F. Dahlquist, and B. Matthews, Structural basis for the attachment of a paramyxoviral polymerase to its template, Proceedings of the National Academy of Sciences, vol.26, issue.4, pp.8301-8306, 2004.
DOI : 10.1107/S0021889892009944

T. Green, M. Rowse, J. Tsao, J. Kang, P. Ge et al., Access to RNA Encapsidated in the Nucleocapsid of Vesicular Stomatitis Virus, Journal of Virology, vol.85, issue.6, pp.2714-2722, 2011.
DOI : 10.1128/JVI.01927-10

G. Neumann, M. Whitt, and Y. Kawaoka, A decade after the generation of a negative-sense RNA virus from cloned cDNA ??? what have we learned?, Journal of General Virology, vol.83, issue.11, pp.2635-2662, 2002.
DOI : 10.1099/0022-1317-83-11-2635

G. Neumann, K. Fujii, Y. Kino, and Y. Kawaoka, An improved reverse genetics system for influenza A virus generation and its implications for vaccine production, Proceedings of the National Academy of Sciences, vol.78, issue.4, pp.16825-16829, 2005.
DOI : 10.1128/JVI.78.4.1851-1857.2004

T. Kobayashi, L. Ooms, M. Ikizler, J. Chappell, and T. Dermody, An improved reverse genetics system for mammalian orthoreoviruses, Virology, vol.398, issue.2, pp.194-200, 2010.
DOI : 10.1016/j.virol.2009.11.037

URL : https://doi.org/10.1016/j.virol.2009.11.037

M. Mayo, A summary of taxonomic changes recently approved by ICTV, Archives of Virology, vol.147, issue.8, pp.1655-1656, 2002.
DOI : 10.1007/s007050200039

M. Mayo, Virus taxonomy-Houston, Arch, vol.147, pp.1071-1076, 2002.

O. De-leeuw and B. Peeters, Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae., Journal of General Virology, vol.80, issue.1, pp.131-136, 1999.
DOI : 10.1099/0022-1317-80-1-131

R. Phillips, A. Samson, and P. Emmerson, Nucleotide sequence of the 5???-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the ???rule of six???, Archives of Virology, vol.143, issue.10, pp.1993-2002, 1998.
DOI : 10.1007/s007050050435

S. Krishnamurthy and S. Samal, Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence., Journal of General Virology, vol.79, issue.10, pp.2419-2424, 1998.
DOI : 10.1099/0022-1317-79-10-2419

Q. Sattentau, Avoiding the void: cell-to-cell spread of human viruses, Nature Reviews Microbiology, vol.73, issue.11, pp.815-826, 2008.
DOI : 10.4049/jimmunol.178.5.3177

P. Zhong, L. Agosto, J. Munro, and W. Mothes, Cell-to-cell transmission of viruses, Current Opinion in Virology, vol.3, issue.1, pp.44-50, 2013.
DOI : 10.1016/j.coviro.2012.11.004

W. Mothes, N. Sherer, J. J. Zhong, and P. , Virus Cell-to-Cell Transmission, Journal of Virology, vol.84, issue.17, pp.8360-8368, 2010.
DOI : 10.1128/JVI.00443-10

URL : http://jvi.asm.org/content/84/17/8360.full.pdf

M. Zinke, S. Kendl, K. Singethan, M. Fehrholz, D. Reuter et al., Clearance of Measles Virus from Persistently Infected Cells by Short Hairpin RNA, Journal of Virology, vol.83, issue.18, pp.9423-9431, 2009.
DOI : 10.1128/JVI.00846-09

D. Lawrence, C. Patterson, T. Gales, D. Orazio, J. Vaughn et al., Measles Virus Spread between Neurons Requires Cell Contact but Not CD46 Expression, Syncytium Formation, or Extracellular Virus Production, Journal of Virology, vol.74, issue.4, pp.1908-1918, 2000.
DOI : 10.1128/JVI.74.4.1908-1918.2000

URL : http://jvi.asm.org/content/74/4/1908.full.pdf

N. Makhortova, P. Askovich, C. Patterson, L. Gechman, N. Gerard et al., Neurokinin-1 enables measles virus trans-synaptic spread in neurons, Virology, vol.362, issue.1, pp.235-244, 2007.
DOI : 10.1016/j.virol.2007.02.033

URL : https://doi.org/10.1016/j.virol.2007.02.033

G. Smith, S. Gross, and L. Enquist, Herpesviruses use bidirectional fast-axonal transport to spread in sensory neurons, Proceedings of the National Academy of Sciences, vol.72, issue.6, pp.3466-3470, 2001.
DOI : 10.1016/S0966-842X(00)01824-2

URL : http://www.pnas.org/content/98/6/3466.full.pdf

N. Sherer, M. Lehmann, L. Jimenez-soto, C. Horensavitz, M. Pypaert et al., Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission, Nature Cell Biology, vol.177, issue.3, pp.310-315, 2007.
DOI : 10.1073/pnas.63.3.753

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2628976/pdf

J. Jin, N. Sherer, G. Heidecker, D. Derse, and W. Mothes, Assembly of the Murine Leukemia Virus Is Directed towards Sites of Cell???Cell Contact, PLoS Biology, vol.104, issue.12, p.1000163, 2009.
DOI : 10.1371/journal.pbio.1000163.s018

N. Sherer, J. J. Mothes, and W. , Directional Spread of Surface-Associated Retroviruses Regulated by Differential Virus-Cell Interactions, Journal of Virology, vol.84, issue.7, pp.3248-3258, 2010.
DOI : 10.1128/JVI.02155-09

E. Najjar, F. Cifuentes-muñoz, N. Chen, J. Zhu, H. Buchholz et al., Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread, PLOS Pathogens, vol.9, issue.9, 2016.
DOI : 10.1371/journal.ppat.1005922.s002

F. Xiao, I. Fofana, L. Heydmann, H. Barth, E. Soulier et al., Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents, PLoS Pathogens, vol.104, issue.5, p.1004128, 2014.
DOI : 10.1371/journal.ppat.1004128.s009

URL : https://doi.org/10.1371/journal.ppat.1004128

Y. Koyanagi, Cell-to-cell infection by HIV contributes over half of virus infection, Elife, vol.4, pp.8150-8164, 2015.

P. Zhong, L. Agosto, A. Ilinskaya, B. Dorjbal, R. Truong et al., Cell-to-Cell Transmission Can Overcome Multiple Donor and Target Cell Barriers Imposed on Cell-Free HIV, PLoS ONE, vol.269, issue.1, p.53138, 2013.
DOI : 10.1371/journal.pone.0053138.s006

URL : http://doi.org/10.1371/journal.pone.0053138

M. Mayo, A summary of taxonomic changes recently approved by ICTV, Archives of Virology, vol.147, issue.8, pp.1655-1656, 2002.
DOI : 10.1007/s007050200039

M. Mehedi, T. Mccarty, S. Martin, L. Nouën, C. Buehler et al., Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread, PLOS Pathogens, vol.7, issue.12, p.1006062, 2016.
DOI : 10.1371/journal.ppat.1006062.s020

URL : https://doi.org/10.1371/journal.ppat.1006062

K. Roberts, B. Manicassamy, and R. Lamb, ABSTRACT, Journal of Virology, vol.89, issue.3, pp.1537-1549, 2015.
DOI : 10.1128/JVI.03306-14

S. Crennell, T. Takimoto, A. Portner, and G. Taylor, Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase, Nat Struct Mol Biol, vol.7, pp.1068-1074, 2000.

P. Yuan, K. Swanson, G. Leser, R. Paterson, R. Lamb et al., Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk, Proceedings of the National Academy of Sciences, vol.32, issue.suppl_2, pp.14920-14925, 2011.
DOI : 10.1093/nar/gkh434

P. Yuan, R. Paterson, G. Leser, R. Lamb, and T. Jardetzky, Structure of the Ulster Strain Newcastle Disease Virus Hemagglutinin-Neuraminidase Reveals Auto-Inhibitory Interactions Associated with Low Virulence, PLoS Pathogens, vol.8, issue.8, p.1002855, 2012.
DOI : 10.1371/journal.ppat.1002855.t003

K. Swanson, X. Wen, G. Leser, R. Paterson, R. Lamb et al., Structure of the Newcastle disease virus F protein in the post-fusion conformation, Virology, vol.402, issue.2, pp.372-379, 2010.
DOI : 10.1016/j.virol.2010.03.050

H. Yin, X. Wen, R. Paterson, R. Lamb, and T. Jardetzky, Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation, Nature, vol.47, issue.7072, pp.38-44, 2006.
DOI : 10.1107/S0108767390010224

L. Mcginnes, K. Gravel, and T. Morrison, Newcastle Disease Virus HN Protein Alters the Conformation of the F Protein at Cell Surfaces, Journal of Virology, vol.76, issue.24, pp.12622-12633, 2002.
DOI : 10.1128/JVI.76.24.12622-12633.2002

M. Porotto, Z. Salah, I. Devito, A. Talekar, S. Palmer et al., The Second Receptor Binding Site of the Globular Head of the Newcastle Disease Virus Hemagglutinin-Neuraminidase Activates the Stalk of Multiple Paramyxovirus Receptor Binding Proteins To Trigger Fusion, Journal of Virology, vol.86, issue.10, pp.5730-5741, 2012.
DOI : 10.1128/JVI.06793-11

T. Takimoto and A. Portner, Molecular mechanism of paramyxovirus budding, Virus Research, vol.106, issue.2, pp.133-145, 2004.
DOI : 10.1016/j.virusres.2004.08.010

C. Meng, X. Qiu, S. Yu, C. Li, Y. Sun et al., ABSTRACT, Journal of Virology, vol.90, issue.4, pp.2052-2063, 2016.
DOI : 10.1128/JVI.01801-15

R. Glickman, R. Syddall, R. Iorio, J. Sheehan, and M. Bratt, Quantitative basic residue requirements in the cleavage-activation site of the fusion glycoprotein as a determinant of virulence for Newcastle disease virus, J Virol, vol.62, pp.354-356, 1988.

B. Peeters, O. De-leeuw, G. Koch, A. Gielkens, Z. Huang et al., Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence Role of fusion protein cleavage site in the virulence of Newcastle disease virus, J Virol Microbial pathogenesis, vol.73, issue.36, pp.5001-50091, 1999.

B. Welch, Y. Liu, C. Kors, G. Leser, T. Jardetzky et al., Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein, Proceedings of the National Academy of Sciences, vol.258, issue.4, pp.16672-16677, 2012.
DOI : 10.1006/viro.1999.9716

T. Morrison and L. Mcginnes, Avian cells expressing the newcastle disease virus hemagglutinin-neuraminidase protein are resistant to newcastle disease virus infection, Virology, vol.171, issue.1, pp.10-17, 1989.
DOI : 10.1016/0042-6822(89)90505-9

T. Bousse, G. Taylor, S. Krishnamurthy, A. Portner, S. Samal et al., Biological Significance of the Second Receptor Binding Site of Newcastle Disease Virus Hemagglutinin-Neuraminidase Protein, Journal of Virology, vol.78, issue.23, pp.13351-13355, 2004.
DOI : 10.1128/JVI.78.23.13351-13355.2004

C. Baumann and W. Neubert, Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection, Archives of Virology, vol.13, issue.2, pp.217-227, 2010.
DOI : 10.1099/0022-1317-79-4-683

M. Sato, M. Urade, H. Yoshida, N. Maeda, Y. Yura et al., Evidence for phenotypic mixing between Newcastle disease virus (NDV) and a latent virus of BHK21/WI-2 cells in the early passaged BHK21/WI-2 cells persistently infected with NDV, Archives of Virology, vol.16, issue.1-2, pp.157-162, 1978.
DOI : 10.1007/BF01317290

J. Cummiskey, J. Hallum, M. Skinner, and G. Leslie, Persistent Newcastle disease virus infection in embryonic chicken tracheal organ cultures, Infect Immun, vol.8, pp.657-664, 1973.

O. Preble and J. Youngner, Selection of temperature-sensitive mutants during persistent infection: role in maintenance of persistent Newcastle disease virus infections of L cells, J Virol, vol.12, pp.481-491, 1973.

S. Chia, K. Yusoff, N. Shafee, P. Gil, F. Briand et al., Viral persistence in colorectal cancer cells infected by Newcastle disease virus Newcastle disease virus in Madagascar: identification of an original genotype possibly deriving from a died out ancestor of genotype IV, Virol J PLoS One, vol.11, issue.5, p.13987, 2010.

H. Liu, A. E. Gil, P. Minet, C. De-almeida, and R. , Two-plasmid system to increase the rescue efficiency of paramyxoviruses by reverse genetics: The example of rescuing Newcastle Disease Virus, Virology, vol.509, pp.42-51, 2017.
DOI : 10.1016/j.virol.2017.06.003

B. Vallat and G. Allen, Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees) Paris: Office International Des Epizooties. 41. Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints, Am J Epidemiol, vol.27, pp.493-497, 2004.

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, p.671, 2012.
DOI : 10.2144/000112257

J. Dortmans, G. Koch, P. Rottier, and B. Peeters, Virulence of newcastle disease virus: what is known so far?, Veterinary Research, vol.42, issue.1, p.122, 2011.
DOI : 10.1128/JVI.79.22.14346-14354.2005

URL : https://veterinaryresearch.biomedcentral.com/track/pdf/10.1186/1297-9716-42-122?site=veterinaryresearch.biomedcentral.com

Z. Li, T. Sergel, E. Razvi, and T. Morrison, Effect of cleavage mutants on syncytium formation directed by the wild-type fusion protein of Newcastle disease virus, J Virol, vol.72, pp.3789-3795, 1998.

W. Liu, X. Wang, D. Clark, M. Lobigs, R. Hall et al., A Single Amino Acid Substitution in the West Nile Virus Nonstructural Protein NS2A Disables Its Ability To Inhibit Alpha/Beta Interferon Induction and Attenuates Virus Virulence in Mice, Journal of Virology, vol.80, issue.5, pp.2396-2404, 2006.
DOI : 10.1128/JVI.80.5.2396-2404.2006

K. Otsuki, H. Yamamoto, and M. Tsubokura, Studies on avian infectious bronchitis virus (IBV), Archives of Virology, vol.15, issue.supplement, pp.25-32, 1979.
DOI : 10.1007/BF01318094

P. Ellenberg, F. Linero, and L. Scolaro, Superinfection exclusion in BHK-21 cells persistently infected with Junin virus, Journal of General Virology, vol.88, issue.10, pp.2730-2739, 2007.
DOI : 10.1099/vir.0.83041-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/88/10/2730.pdf?itemId=/content/journal/jgv/10.1099/vir.0.83041-0&mimeType=pdf&isFastTrackArticle=

M. Hasegawa, A new Sendai virus vector deficient in the matrix gene does not form virus particles and shows extensive cell-to-cell spreading, J Virol, vol.77, pp.6419-6429, 2003.

T. Cathomen, B. Mrkic, D. Spehner, R. Drillien, R. Naef et al., A matrix-less measles virus is infectious and elicits extensive cell fusion: consequences for propagation in the brain, The EMBO Journal, vol.17, issue.14, pp.3899-3908, 1998.
DOI : 10.1093/emboj/17.14.3899

E. Dietzel, L. Kolesnikova, B. Sawatsky, A. Heiner, M. Weis et al., ABSTRACT, Journal of Virology, vol.90, issue.5, pp.2514-2522, 2016.
DOI : 10.1128/JVI.02920-15

M. Ludlow, S. Mcquaid, S. Cosby, R. Cattaneo, B. Rima et al., Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells, Journal of General Virology, vol.86, issue.8, pp.2291-2303, 2005.
DOI : 10.1099/vir.0.81052-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/86/8/2291.pdf?itemId=/content/journal/jgv/10.1099/vir.0.81052-0&mimeType=pdf&isFastTrackArticle=

D. Aiutolo, A. Coto, and C. , Vero cells persistently infected with tacaribe virus: role of interfering particles in the establishment of the infection, Virus Research, vol.6, issue.3, pp.235-244, 1986.
DOI : 10.1016/0168-1702(86)90072-9

P. Ellenberg, M. Edreira, and L. Scolaro, Resistance to superinfection of Vero cells persistently infected with Junin virus, Archives of Virology, vol.149, issue.3, pp.507-522, 2004.
DOI : 10.1007/s00705-003-0227-1

S. Yoon, S. Lee, S. Won, S. Park, S. Park et al., Characterization of homologous defective interfering RNA during persistent infection of Vero cells with Japanese encephalitis virus, Mol Cells, vol.21, 2006.

R. Sarmiento, T. Ro, and G. Bz, Characteristics of a respiratory syncytial virus persistently infected macrophage-like culture, Virus Research, vol.84, issue.1-2, pp.45-58, 2002.
DOI : 10.1016/S0168-1702(01)00420-8

S. Park, E. Choi, and Y. Jeong, Integrative effect of defective interfering RNA accumulation and helper virus attenuation is responsible for the persistent infection of Japanese encephalitis virus in BHK-21 cells, Journal of Medical Virology, vol.86, issue.11, 1990.
DOI : 10.1099/vir.0.80638-0

Y. Zheng, T. Stamminger, and P. Hearing, E2F/Rb Family Proteins Mediate Interferon Induced Repression of Adenovirus Immediate Early Transcription to Promote Persistent Viral Infection, PLOS Pathogens, vol.1089, issue.1, p.1005415, 2016.
DOI : 10.1371/journal.ppat.1005415.s006

L. Susta, Y. He, J. Hutcheson, Y. Lu, F. West et al., Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection, Virology Journal, vol.72, issue.2, p.205, 2016.
DOI : 10.1016/0042-6822(76)90178-1

J. Jimenez, Ad26/MVA therapeutic vaccination with TLR7 stimulation in SIV-infected rhesus monkeys, Nature, vol.540, pp.284-287, 2016.

C. Fletcher, K. Staskus, S. Wietgrefe, M. Rothenberger, C. Reilly et al., Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues, Proceedings of the National Academy of Sciences, vol.111, issue.6, pp.2307-2312, 2014.
DOI : 10.1086/315178

URL : http://www.pnas.org/content/111/6/2307.full.pdf

R. Lorenzo-redondo, H. Fryer, T. Bedford, E. Kim, J. Archer et al., Persistent HIV-1 replication maintains the tissue reservoir during therapy, Nature, vol.22, issue.7588, pp.51-56
DOI : 10.1007/BF02101694

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4865637/pdf

W. Lin, R. Kouyos, R. Adams, B. Grenfell, D. Griffin et al., Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics, Proceedings of the National Academy of Sciences, vol.24, issue.4, pp.14989-1499417982, 2008.
DOI : 10.1128/JVI.02167-06

S. Bose, A. Song, T. Jardetzky, and R. Lamb, Fusion Activation through Attachment Protein Stalk Domains Indicates a Conserved Core Mechanism of Paramyxovirus Entry into Cells, Journal of Virology, vol.88, issue.8, pp.3925-3941, 2014.
DOI : 10.1128/JVI.03741-13

T. Takimoto, G. Taylor, H. Connaris, S. Crennell, and A. Portner, Role of the Hemagglutinin-Neuraminidase Protein in the Mechanism of Paramyxovirus-Cell Membrane Fusion, Journal of Virology, vol.76, issue.24, pp.13028-13033, 2002.
DOI : 10.1128/JVI.76.24.13028-13033.2002

H. Connaris, T. Takimoto, R. Russell, S. Crennell, I. Moustafa et al., Probing the Sialic Acid Binding Site of the Hemagglutinin-Neuraminidase of Newcastle Disease Virus: Identification of Key Amino Acids Involved in Cell Binding, Catalysis, and Fusion, Journal of Virology, vol.76, issue.4, pp.1816-1824, 2002.
DOI : 10.1128/JVI.76.4.1816-1824.2002

L. Tan, Y. Zhang, Y. Zhan, Y. Yuan, Y. Sun et al., Newcastle disease virus employs macropinocytosis and Rab5a-dependent intracellular trafficking to infect DF-1 cells, Oncotarget, 2016.
DOI : 10.18632/oncotarget.13345

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=13345&path%5B%5D=42357

E. Simon-loriere and E. Holmes, Why do RNA viruses recombine?, Nature Reviews Microbiology, vol.23, issue.8, pp.617-626, 2011.
DOI : 10.1038/sj.onc.1208077

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324781/pdf

N. Marshall, L. Priyamvada, Z. Ende, J. Steel, and A. Lowen, Influenza Virus Reassortment Occurs with High Frequency in the Absence of Segment Mismatch, PLoS Pathogens, vol.79, issue.6, p.1003421, 2013.
DOI : 10.1371/journal.ppat.1003421.s001

J. Li, H. Hu, Q. Yu, D. Diel, D. Li et al., Generation and characterization of a recombinant Newcastle disease virus expressing the red fluorescent protein for use in co-infection studies, Virology Journal, vol.9, issue.1, p.227, 2012.
DOI : 10.1099/0022-1317-43-1-247

I. Huang, W. Li, J. Sui, W. Marasco, H. Choe et al., Influenza A Virus Neuraminidase Limits Viral Superinfection, Journal of Virology, vol.82, issue.10, pp.4834-4843, 2008.
DOI : 10.1128/JVI.00079-08

URL : http://jvi.asm.org/content/82/10/4834.full.pdf

Z. Qin, L. Sun, B. Ma, Z. Cui, Y. Zhu et al., F gene recombination between genotype II and VII Newcastle disease virus, Virus Research, vol.131, issue.2, pp.299-303, 2008.
DOI : 10.1016/j.virusres.2007.10.001

Y. Chong, A. Padhi, P. Hudson, and M. Poss, The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1, PLoS Pathogens, vol.155, issue.9, p.1000872, 2010.
DOI : 10.1371/journal.ppat.1000872.s004

M. Bergua, M. Zwart, C. El-mohtar, T. Shilts, S. Elena et al., A Viral Protein Mediates Superinfection Exclusion at the Whole-Organism Level but Is Not Required for Exclusion at the Cellular Level, Journal of Virology, vol.88, issue.19, pp.11327-11338, 2014.
DOI : 10.1128/JVI.01612-14

O. Atallah, S. Kang, C. El-mohtar, T. Shilts, M. Bergua et al., A 5???-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion, Virology, vol.489, pp.108-115, 2016.
DOI : 10.1016/j.virol.2015.12.008

R. Gaudin and T. Kirchhausen, Superinfection exclusion is absent during acute Junin virus infection of Vero and A549 cells, Scientific Reports, vol.25, issue.1, pp.15990-15990, 2014.
DOI : 10.1091/mbc.E14-07-1240

D. Vijaykrishna, L. Poon, H. Zhu, S. Ma, O. Li et al., Reassortment of Pandemic H1N1/2009 Influenza A Virus in Swine, Science, vol.106, issue.28, pp.1529-1529, 2010.
DOI : 10.1073/pnas.0904991106

E. Holmes, E. Ghedin, N. Miller, J. Taylor, Y. Bao et al., Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses, PLoS Biology, vol.100, issue.9, p.300, 2005.
DOI : 10.1371/journal.pbio.0030300.st002

M. Nelson, C. Viboud, L. Simonsen, R. Bennett, S. Griesemer et al., Multiple Reassortment Events in the Evolutionary History of H1N1 Influenza A Virus Since 1918, PLoS Pathogens, vol.14, issue.2, p.1000012, 1918.
DOI : 10.1371/journal.ppat.1000012.s001

C. Li, M. Hatta, C. Nidom, Y. Muramoto, S. Watanabe et al., Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence, Proceedings of the National Academy of Sciences, vol.81, issue.1, pp.4687-4692, 2010.
DOI : 10.1128/JVI.01434-06

URL : http://www.pnas.org/content/107/10/4687.full.pdf

L. Cui, D. Liu, W. Shi, J. Pan, X. Qi et al., Dynamic reassortments and genetic heterogeneity of the human-infecting influenza A (H7N9) virus, Nature Communications, vol.7, 2014.
DOI : 10.1073/pnas.081068098

G. Han, C. He, N. Ding, and L. Ma, Identification of a natural multi-recombinant of Newcastle disease virus, Virology, vol.371, issue.1, pp.54-60, 2008.
DOI : 10.1016/j.virol.2007.09.038

D. A. Satharasinghe, K. Murulitharan, S. W. Tan, S. K. Yeap, M. Munir et al., Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform, Frontiers in Microbiology, vol.151, 2016.
DOI : 10.1016/j.virusres.2010.03.015

Q. Song, Y. Cao, Q. Li, M. Gu, L. Zhong et al., Artificial Recombination May Influence the Evolutionary Analysis of Newcastle Disease Virus, Journal of Virology, vol.85, issue.19, pp.10409-10414, 2011.
DOI : 10.1128/JVI.00544-11

D. Alexander, Newcastle Disease Diagnosis, pp.147-160, 1988.
DOI : 10.1007/978-1-4613-1759-3_9

P. Miller, E. Decanini, and C. Afonso, Newcastle disease: Evolution of genotypes and the related diagnostic challenges, Infection, Genetics and Evolution, vol.10, issue.1, pp.26-35, 2010.
DOI : 10.1016/j.meegid.2009.09.012

O. De-leeuw and B. Peeters, Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae., Journal of General Virology, vol.80, issue.1, pp.131-136, 1999.
DOI : 10.1099/0022-1317-80-1-131

S. Krishnamurthy and S. Samal, Nucleotide sequences of the trailer, nucleocapsid protein gene and intergenic regions of Newcastle disease virus strain Beaudette C and completion of the entire genome sequence., Journal of General Virology, vol.79, issue.10, pp.2419-2424, 1998.
DOI : 10.1099/0022-1317-79-10-2419

R. Phillips, A. Samson, and P. Emmerson, Nucleotide sequence of the 5???-terminus of Newcastle disease virus and assembly of the complete genomic sequence: agreement with the ???rule of six???, Archives of Virology, vol.143, issue.10, pp.1993-2002, 1998.
DOI : 10.1007/s007050050435

J. Dortmans, P. Rottier, G. Koch, and B. Peeters, The Viral Replication Complex Is Associated with the Virulence of Newcastle Disease Virus, Journal of Virology, vol.84, issue.19, pp.10113-10120, 2010.
DOI : 10.1128/JVI.00097-10

M. Steward, I. Vipond, N. Millar, and P. Emmerson, RNA editing in Newcastle disease virus, Journal of General Virology, vol.74, issue.12, pp.2539-2547, 1993.
DOI : 10.1099/0022-1317-74-12-2539

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/74/12/JV0740122539.pdf?itemId=/content/journal/jgv/10.1099/0022-1317-74-12-2539&mimeType=pdf&isFastTrackArticle=

S. Crennell, T. Takimoto, A. Portner, and G. Taylor, Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase, Nat Struct Mol Biol, vol.7, pp.1068-1074, 2000.

S. Bose, A. Song, T. Jardetzky, and R. Lamb, Fusion Activation through Attachment Protein Stalk Domains Indicates a Conserved Core Mechanism of Paramyxovirus Entry into Cells, Journal of Virology, vol.88, issue.8, pp.3925-3941, 2014.
DOI : 10.1128/JVI.03741-13

K. Ganar, M. Das, S. Sinha, and S. Kumar, Newcastle disease virus: Current status and our understanding, Virus Research, vol.184, pp.71-81, 2014.
DOI : 10.1016/j.virusres.2014.02.016

T. Takimoto and A. Portner, Molecular mechanism of paramyxovirus budding, Virus Research, vol.106, issue.2, pp.133-145, 2004.
DOI : 10.1016/j.virusres.2004.08.010

H. Pantua, L. Mcginnes, M. Peeples, and T. Morrison, Requirements for the Assembly and Release of Newcastle Disease Virus-Like Particles, Journal of Virology, vol.80, issue.22, pp.11062-11073, 2006.
DOI : 10.1128/JVI.00726-06

M. Lawrence, The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion, Structure, vol.9, pp.255-266, 2001.

P. Yuan, K. Swanson, G. Leser, R. Paterson, R. Lamb et al., Structure of the Newcastle disease virus hemagglutinin-neuraminidase (HN) ectodomain reveals a four-helix bundle stalk, Proceedings of the National Academy of Sciences, vol.32, issue.suppl_2, pp.14920-14925, 2011.
DOI : 10.1093/nar/gkh434

M. Boursnell, P. Green, A. Samson, J. Campbell, A. Deuter et al., A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge NDV, Virology, vol.178, issue.1, pp.297-300, 1990.
DOI : 10.1016/0042-6822(90)90408-J

F. Cosset, J. Bouquet, A. Drynda, Y. Chebloune, A. Rey-senelonge et al., Newcastle disease virus (NDV) vaccine based on immunization with avian cells expressing the NDV hemagglutinin-beuraminidase glycoprotein, Virology, vol.185, issue.2, pp.862-866, 1991.
DOI : 10.1016/0042-6822(91)90560-X

G. Meulemans, C. Letellier, M. Gonze, M. Carlier, and A. Burny, Newcastle disease virus f glycoprotein expressed from a recombinant vaccinia virus vector protects chickens against livevirus challenge, 1988.
DOI : 10.1080/03079458808436504

URL : http://www.tandfonline.com/doi/pdf/10.1080/03079458808436504?needAccess=true

E. Nagy, P. Krell, G. Dulac, and J. Derbyshire, Vaccination against Newcastle Disease with a Recombinant Baculovirus Hemagglutinin-Neuraminidase Subunit Vaccine, Avian Diseases, vol.35, issue.3, pp.585-590, 1991.
DOI : 10.2307/1591224

K. Dimitrov, C. Afonso, Q. Yu, and P. Miller, Newcastle disease vaccines???A solved problem or a continuous challenge?, Veterinary Microbiology, vol.206, 2016.
DOI : 10.1016/j.vetmic.2016.12.019

URL : https://doi.org/10.1016/j.vetmic.2016.12.019

K. Dimitrov, A. Ramey, X. Qiu, J. Bahl, and C. Afonso, Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus), Infection, Genetics and Evolution, vol.39, pp.22-34, 2016.
DOI : 10.1016/j.meegid.2016.01.008

D. Alexander, R. Manvell, J. Lowings, K. Frost, M. Collins et al., Antigenic diversity and similarities detected in avian paramyxovirus type 1 (Newcastle disease virus) isolates using monoclonal antibodies, Avian Pathology, vol.26, issue.2, pp.399-418, 1997.
DOI : 10.2307/1590422

URL : http://www.tandfonline.com/doi/pdf/10.1080/03079459708419222?needAccess=true

S. Xiao, B. Nayak, A. Samuel, A. Paldurai, M. Kanabagattebasavarajappa et al., Generation by Reverse Genetics of an Effective, Stable, Live-Attenuated Newcastle Disease Virus Vaccine Based on a Currently Circulating, Highly Virulent Indonesian Strain, PLoS ONE, vol.301, issue.1, p.52751, 2012.
DOI : 10.1371/journal.pone.0052751.t007

M. Liu, J. Cheng, X. Yu, Z. Qin, F. Tian et al., Generation by reverse genetics of an effective attenuated Newcastle disease virus vaccine based on a prevalent highly virulent Chinese strain, Biotechnology Letters, vol.21, issue.6, p.1287, 2015.
DOI : 10.1016/j.meegid.2013.12.003

S. Hu, H. Ma, Y. Wu, W. Liu, X. Wang et al., A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics, Vaccine, vol.27, issue.6, pp.904-910, 2009.
DOI : 10.1016/j.vaccine.2008.11.091

S. Kim, N. Wanasen, A. Paldurai, S. Xiao, P. Collins et al., Newcastle Disease Virus Fusion Protein Is the Major Contributor to Protective Immunity of Genotype-Matched Vaccine, PLoS ONE, vol.348, issue.8, p.74022, 2013.
DOI : 10.1371/journal.pone.0074022.g006

A. Samuel, B. Nayak, A. Paldurai, S. Xiao, G. Aplogan et al., Phylogenetic and Pathotypic Characterization of Newcastle Disease Viruses Circulating in West Africa and Efficacy of a Current Vaccine, Journal of Clinical Microbiology, vol.51, issue.3, pp.771-781, 2013.
DOI : 10.1128/JCM.02750-12

O. Maminiaina, P. Gil, F. Briand, A. E. Keita, D. Andriamanivo et al., Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV, PLoS ONE, vol.16, issue.Pt 9, p.13987, 2010.
DOI : 10.1371/journal.pone.0013987.s002

B. Peeters, O. De-leeuw, G. Koch, and A. Gielkens, Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence, J Virol, vol.73, pp.5001-5009, 1999.

C. Meng, X. Qiu, S. Yu, C. Li, Y. Sun et al., ABSTRACT, Journal of Virology, vol.90, issue.4, pp.2052-2063, 2016.
DOI : 10.1128/JVI.01801-15

R. Servan-de-almeida, S. Hammoumi, P. Gil, F. Briand, S. Molia et al., New Avian Paramyxoviruses Type I Strains Identified in Africa Provide New Outcomes for Phylogeny Reconstruction and Genotype Classification, PLoS ONE, vol.48, issue.1, 2013.
DOI : 10.1371/journal.pone.0076413.s009

H. Liu, A. E. Gil, P. Minet, C. De-almeida, and R. , Two-plasmid system to increase the rescue efficiency of paramyxoviruses by reverse genetics: The example of rescuing Newcastle Disease Virus, Virology, vol.509, pp.42-51, 2017.
DOI : 10.1016/j.virol.2017.06.003

L. Reed and H. Muench, A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12, American Journal of Epidemiology, vol.27, issue.3, pp.493-497, 1938.
DOI : 10.1093/oxfordjournals.aje.a118408

B. Vallat and G. Allen, Manual of diagnostic tests and vaccines for terrestrial animals (mammals, birds and bees), 2004.

K. Dimitrov, D. Lee, D. Williams-coplin, T. Olivier, P. Miller et al., Newcastle Disease Viruses Causing Recent Outbreaks Worldwide Show Unexpectedly High Genetic Similarity to Historical Virulent Isolates from the 1940s, Journal of Clinical Microbiology, vol.54, issue.5, pp.1228-1235, 2016.
DOI : 10.1128/JCM.03044-15

Y. Shengqing, N. Kishida, H. Ito, H. Kida, K. Otsuki et al., Generation of Velogenic Newcastle Disease Viruses from a Nonpathogenic Waterfowl Isolate by Passaging in Chickens, Virology, vol.301, issue.2, pp.206-211, 2002.
DOI : 10.1006/viro.2002.1539

O. De-leeuw, L. Hartog, G. Koch, and B. Peeters, Effect of fusion protein cleavage site mutations on virulence of Newcastle disease virus: non-virulent cleavage site mutants revert to virulence after one passage in chicken brain, Journal of General Virology, vol.84, issue.2, pp.475-484, 2003.
DOI : 10.1099/vir.0.18714-0

Y. Chong, A. Padhi, P. Hudson, and M. Poss, The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1, PLoS Pathogens, vol.155, issue.9, p.1000872, 2010.
DOI : 10.1371/journal.ppat.1000872.s004

G. Han, C. He, N. Ding, and L. Ma, Identification of a natural multi-recombinant of Newcastle disease virus, Virology, vol.371, issue.1, pp.54-60, 2008.
DOI : 10.1016/j.virol.2007.09.038

D. Satharasinghe, K. Murulitharan, S. Tan, S. Yeap, M. Munir et al., Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform, Frontiers in Microbiology, vol.151, 2016.
DOI : 10.1016/j.virusres.2010.03.015

Z. Qin, L. Sun, B. Ma, Z. Cui, Y. Zhu et al., F gene recombination between genotype II and VII Newcastle disease virus, Virus Research, vol.131, issue.2, pp.299-303, 2008.
DOI : 10.1016/j.virusres.2007.10.001

P. Miller, D. King, C. Afonso, and D. Suarez, Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge, Vaccine, vol.25, issue.41, pp.7238-7246, 2007.
DOI : 10.1016/j.vaccine.2007.07.017

J. Fellah, T. Jaffredo, and D. Dunon, Development of the Avian Immune System, Avian Immunology, vol.4, pp.51-66, 2008.

X. Wang, X. Wang, Y. Jia, C. Wang, Q. Han et al., Adenoviral-expressed recombinant granulocyte monocyte colony-stimulating factor (GM-CSF) enhances protective immunity induced by inactivated Newcastle Disease Virus (NDV) vaccine, Antiviral Research, vol.144, pp.322-329, 2017.
DOI : 10.1016/j.antiviral.2017.07.004

J. Dortmans, B. Peeters, and G. Koch, Newcastle disease virus outbreaks: Vaccine mismatch or inadequate application?, Veterinary Microbiology, vol.160, issue.1-2, pp.17-22, 2012.
DOI : 10.1016/j.vetmic.2012.05.003

S. Cardenas-garcia, D. Diel, L. Susta, E. Lucio-decanini, Q. Yu et al., Development of an improved vaccine evaluation protocol to compare the efficacy of Newcastle disease vaccines, Biologicals, vol.43, issue.2, pp.136-145, 2015.
DOI : 10.1016/j.biologicals.2014.11.003

S. Kumar, B. Nayak, P. Collins, and S. Samal, Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens, Journal of Virology, vol.85, issue.13, 2011.
DOI : 10.1128/JVI.00367-11

S. Bhatt, Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic, Nature, vol.459, p.1122, 2009.

A. Bukreyev and P. Collins, Newcastle disease virus as a vaccine vector for humans, Curr Opin Mol Ther, vol.10, pp.46-55, 2008.

K. Dimitrov, A. Ramey, X. Qiu, J. Bahl, and C. Afonso, Temporal, geographic, and host distribution of avian paramyxovirus 1 (Newcastle disease virus), Infection, Genetics and Evolution, vol.39, pp.22-34, 2016.
DOI : 10.1016/j.meegid.2016.01.008

K. Dimitrov, C. Afonso, Q. Yu, and P. Miller, Newcastle disease vaccines???A solved problem or a continuous challenge?, Veterinary Microbiology, vol.206, 2016.
DOI : 10.1016/j.vetmic.2016.12.019

URL : https://doi.org/10.1016/j.vetmic.2016.12.019

G. Gallili and D. Ben-nathan, Newcastle disease vaccines, Biotechnology Advances, vol.16, issue.2, pp.343-366, 1998.
DOI : 10.1016/S0734-9750(97)00081-5

M. Boursnell, P. Green, J. Campbell, A. Deuter, R. Peters et al., Insertion of the fusion gene from Newcastle disease virus into a non-essential region in the terminal repeats of fowlpox virus and demonstration of protective immunity induced by the recombinant, Journal of General Virology, vol.71, issue.3, pp.621-628, 1990.
DOI : 10.1099/0022-1317-71-3-621

R. Morgan, G. Jr, J. Schreurs, C. Lütticken, D. Rosenberger et al., Protection of Chickens from Newcastle and Marek's Diseases with a Recombinant Herpesvirus of Turkeys Vaccine Expressing the Newcastle Disease Virus Fusion Protein, Avian Diseases, vol.36, issue.4, pp.858-870, 1992.
DOI : 10.2307/1591544

S. Keeble and J. Wade, Inactivated newcastle disease vaccine, Journal of Comparative Pathology and Therapeutics, vol.73, pp.186-200, 1963.
DOI : 10.1016/S0368-1742(63)80022-3

R. Maas, M. Komen, M. Van-diepen, H. Oei, and I. Claassen, Correlation of haemagglutinin-neuraminidase and fusion protein content with protective antibody response after immunisation with inactivated Newcastle disease vaccines, Vaccine, vol.21, issue.23, pp.3137-3142, 2003.
DOI : 10.1016/S0264-410X(03)00249-4

P. Miller, C. Estevez, Q. Yu, D. Suarez, and D. King, Comparison of Viral Shedding Following Vaccination With Inactivated and Live Newcastle Disease Vaccines Formulated With Wild-Type and Recombinant Viruses, Avian Diseases, vol.53, issue.1, pp.39-49, 2009.
DOI : 10.1637/8407-071208-Reg.1

M. Boursnell, P. Green, A. Samson, J. Campbell, A. Deuter et al., A recombinant fowlpox virus expressing the hemagglutinin-neuraminidase gene of Newcastle disease virus (NDV) protects chickens against challenge NDV, Virology, vol.178, issue.1, pp.297-300, 1990.
DOI : 10.1016/0042-6822(90)90408-J

F. Cosset, J. Bouquet, A. Drynda, Y. Chebloune, A. Rey-senelonge et al., Newcastle disease virus (NDV) vaccine based on immunization with avian cells expressing the NDV hemagglutinin-beuraminidase glycoprotein, Virology, vol.185, issue.2, pp.862-866, 1991.
DOI : 10.1016/0042-6822(91)90560-X

G. Meulemans, C. Letellier, M. Gonze, M. Carlier, and A. Burny, Newcastle disease virus f glycoprotein expressed from a recombinant vaccinia virus vector protects chickens against livevirus challenge, 1988.
DOI : 10.1080/03079458808436504

URL : http://www.tandfonline.com/doi/pdf/10.1080/03079458808436504?needAccess=true

E. Nagy, P. Krell, G. Dulac, and J. Derbyshire, Vaccination against Newcastle Disease with a Recombinant Baculovirus Hemagglutinin-Neuraminidase Subunit Vaccine, Avian Diseases, vol.35, issue.3, pp.585-590, 1991.
DOI : 10.2307/1591224

S. Kumar, B. Nayak, P. Collins, and S. Samal, Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens, Journal of Virology, vol.85, issue.13, 2011.
DOI : 10.1128/JVI.00367-11

L. Gros, F. Dancer, A. Giacomini, C. Pizzoni, L. Bublot et al., Field efficacy trial of a novel HVT-IBD vector vaccine for 1-day-old broilers, Vaccine, vol.27, issue.4, pp.592-596, 2009.
DOI : 10.1016/j.vaccine.2008.10.094

O. Faulkner, C. Estevez, Q. Yu, and D. Suarez, Passive antibody transfer in chickens to model maternal antibody after avian influenza vaccination, Veterinary Immunology and Immunopathology, vol.152, issue.3-4, pp.341-347, 2013.
DOI : 10.1016/j.vetimm.2013.01.006

M. Bublot, N. Pritchard, D. Swayne, P. Selleck, K. Karaca et al., Development and Use of Fowlpox Vectored Vaccines for Avian Influenza, Annals of the New York Academy of Sciences, vol.306, issue.1, pp.193-201, 2006.
DOI : 10.1196/annals.1373.023

K. Ganar, M. Das, S. Sinha, and S. Kumar, Newcastle disease virus: Current status and our understanding, Virus Research, vol.184, pp.71-81, 2014.
DOI : 10.1016/j.virusres.2014.02.016

P. Zhang, G. Xie, X. Liu, A. L. Chen, Y. Meng et al., ABSTRACT, Applied and Environmental Microbiology, vol.82, issue.5, pp.1530-1536, 2016.
DOI : 10.1128/AEM.03402-15

URL : https://hal.archives-ouvertes.fr/hal-01126336

Y. Zhang, M. Shao, X. Yu, J. Zhao, and G. Zhang, Molecular characterization of chicken-derived genotype VIId Newcastle disease virus isolates in China during 2005???2012 reveals a new length in hemagglutinin???neuraminidase, Infection, Genetics and Evolution, vol.21, pp.359-366, 2014.
DOI : 10.1016/j.meegid.2013.12.003

M. Abbas, Genetic diversity of Newcastle disease virus in Pakistan: a countrywide perspective, Virol J, vol.10, p.170, 2013.

E. Kaleta and C. Baldauf, Newcastle Disease in Free-Living and Pet Birds, pp.197-246, 1988.
DOI : 10.1007/978-1-4613-1759-3_12

J. Wang, H. Liu, W. Liu, D. Zheng, Y. Zhao et al., Genomic characterizations of six pigeon paramyxovirus type 1 viruses isolated from live bird markets in China during, PLoS One, vol.10, p.124261, 2011.

H. Liu, P. Zhang, P. Wu, S. Chen, G. Mu et al., Phylogenetic characterization and virulence of two Newcastle disease viruses isolated from wild birds in China, Infection, Genetics and Evolution, vol.20, pp.215-224, 2013.
DOI : 10.1016/j.meegid.2013.08.021

M. Munir, M. Shabbir, T. Yaqub, M. Shabbir, N. Mukhtar et al., Complete Genome Sequence of a Velogenic Neurotropic Avian Paramyxovirus 1 Isolated from Peacocks (Pavo cristatus) in a Wildlife Park in Pakistan, Journal of Virology, vol.86, issue.23, pp.13113-13114, 2012.
DOI : 10.1128/JVI.02358-12

D. Alexander, S. Napp, A. Alba, A. Rocha, A. Sánchez et al., Newcastle disease in wild water birds in western Canada Six-year surveillance of Newcastle disease virus in wild birds in north-eastern Spain (Catalonia), Can Vet J, vol.34, issue.30, p.353, 1990.

L. Kim, D. King, P. Curry, D. Suarez, D. Swayne et al., Phylogenetic Diversity among Low-Virulence Newcastle Disease Viruses from Waterfowl and Shorebirds and Comparison of Genotype Distributions to Those of Poultry-Origin Isolates, Journal of Virology, vol.81, issue.22, pp.12641-12653, 2007.
DOI : 10.1128/JVI.00843-07

D. Diel, L. Susta, S. Garcia, M. Killian, C. Brown et al., Complete Genome and Clinicopathological Characterization of a Virulent Newcastle Disease Virus Isolate from South America, Journal of Clinical Microbiology, vol.50, issue.2, pp.378-387, 2012.
DOI : 10.1128/JCM.06018-11

O. Maminiaina, P. Gil, F. Briand, A. E. Keita, D. Andriamanivo et al., Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died Out Ancestor of Genotype IV, PLoS ONE, vol.16, issue.Pt 9, pp.13987-14022, 2010.
DOI : 10.1371/journal.pone.0013987.s002

J. Koffi, Emergence of a new genetic lineage of Newcastle disease virus in West and Central Africa?implications for diagnosis and control, Vet Microbiol, vol.142, pp.168-176, 2010.

P. Miller, D. King, C. Afonso, and D. Suarez, Antigenic differences among Newcastle disease virus strains of different genotypes used in vaccine formulation affect viral shedding after a virulent challenge, Vaccine, vol.25, issue.41, pp.7238-7246, 2007.
DOI : 10.1016/j.vaccine.2007.07.017

S. Kim, N. Wanasen, A. Paldurai, S. Xiao, P. Collins et al., Newcastle Disease Virus Fusion Protein Is the Major Contributor to Protective Immunity of Genotype-Matched Vaccine, PLoS ONE, vol.348, issue.8, p.74022, 2013.
DOI : 10.1371/journal.pone.0074022.g006

D. Kapczynski and D. King, Protection of chickens against overt clinical disease and determination of viral shedding following vaccination with commercially available Newcastle disease virus vaccines upon challenge with highly virulent virus from the California 2002 exotic Newcastle disease outbreak, Vaccine, vol.23, issue.26, pp.3424-3433, 2005.
DOI : 10.1016/j.vaccine.2005.01.140

W. Jeon, E. Lee, Y. Lee, O. Jeong, Y. Kim et al., Protective efficacy of commercial inactivated Newcastle disease virus vaccines in chickens against a recent Korean epizootic strain, Journal of Veterinary Science, vol.9, issue.3, pp.295-300, 2008.
DOI : 10.4142/jvs.2008.9.3.295

M. Van-boven, A. Bouma, T. Fabri, E. Katsma, L. Hartog et al., Herd immunity to Newcastle disease virus in poultry by vaccination, Avian Pathology, vol.119, issue.1, pp.1-5, 2008.
DOI : 10.1080/01652176.1987.9694074

J. Dortmans, B. Peeters, and G. Koch, Newcastle disease virus outbreaks: Vaccine mismatch or inadequate application?, Veterinary Microbiology, vol.160, issue.1-2, pp.17-22, 2012.
DOI : 10.1016/j.vetmic.2012.05.003

I. Cornax, P. Miller, and C. Afonso, Characterization of Live LaSota Vaccine Strain???Induced Protection in Chickens upon Early Challenge with a Virulent Newcastle Disease Virus of Heterologous Genotype, Avian Diseases, vol.56, issue.3, pp.464-470, 2012.
DOI : 10.1637/10043-122011-Reg.1

G. Meulemans, Control by Vaccination, pp.318-332, 1988.
DOI : 10.1007/978-1-4613-1759-3_17

F. Perozo, R. Marcano, and C. Afonso, Biological and Phylogenetic Characterization of a Genotype VII Newcastle Disease Virus from Venezuela: Efficacy of Field Vaccination, Journal of Clinical Microbiology, vol.50, issue.4, pp.1204-1208, 2012.
DOI : 10.1128/JCM.06506-11

J. Zhu, S. Hu, H. Xu, J. Liu, Z. Zhao et al., Characterization of virulent Newcastle disease viruses from vaccinated chicken flocks in Eastern China, BMC Veterinary Research, vol.55, issue.1, p.113, 2016.
DOI : 10.1637/9633-122410-Reg.1

B. Peeters, O. De-leeuw, G. Koch, A. Gielkens, Z. Huang et al., Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence Role of fusion protein cleavage site in the virulence of Newcastle disease virus, J Virol Microb Pathog, vol.73, issue.36, pp.5001-50091, 1999.

O. De-leeuw, G. Koch, L. Hartog, N. Ravenshorst, and B. Peeters, Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein, Journal of General Virology, vol.86, issue.6, pp.1759-1769, 2005.
DOI : 10.1099/vir.0.80822-0

J. Dortmans, G. Koch, P. Rottier, and B. Peeters, Virulence of newcastle disease virus: what is known so far?, Veterinary Research, vol.42, issue.1, p.122, 2011.
DOI : 10.1128/JVI.79.22.14346-14354.2005

M. Liu, J. Cheng, X. Yu, Z. Qin, F. Tian et al., Generation by reverse genetics of an effective attenuated Newcastle disease virus vaccine based on a prevalent highly virulent Chinese strain, Biotechnology Letters, vol.21, issue.6, p.1287, 2015.
DOI : 10.1016/j.meegid.2013.12.003

S. Hu, H. Ma, Y. Wu, W. Liu, X. Wang et al., A vaccine candidate of attenuated genotype VII Newcastle disease virus generated by reverse genetics, Vaccine, vol.27, issue.6, pp.904-910, 2009.
DOI : 10.1016/j.vaccine.2008.11.091

Z. Hu, S. Hu, C. Meng, X. Wang, J. Zhu et al., Generation of a Genotype VII Newcastle Disease Virus Vaccine Candidate with High Yield in Embryonated Chicken Eggs, Avian Diseases, vol.55, issue.3, pp.391-397, 2011.
DOI : 10.1637/9633-122410-Reg.1

S. Xiao, B. Nayak, A. Samuel, A. Paldurai, M. Kanabagattebasavarajappa et al., Generation by Reverse Genetics of an Effective, Stable, Live-Attenuated Newcastle Disease Virus Vaccine Based on a Currently Circulating, Highly Virulent Indonesian Strain, PLoS ONE, vol.301, issue.1, p.52751, 2012.
DOI : 10.1371/journal.pone.0052751.t007

C. Meng, X. Qiu, S. Yu, C. Li, Y. Sun et al., ABSTRACT, Journal of Virology, vol.90, issue.4, pp.2052-2063, 2016.
DOI : 10.1128/JVI.01801-15

Y. Shengqing, N. Kishida, H. Ito, H. Kida, K. Otsuki et al., Generation of Velogenic Newcastle Disease Viruses from a Nonpathogenic Waterfowl Isolate by Passaging in Chickens, Virology, vol.301, issue.2, pp.206-211, 2002.
DOI : 10.1006/viro.2002.1539

M. Liu, J. Cheng, X. Yu, Z. Qin, F. Tian et al., Generation by reverse genetics of an effective attenuated Newcastle disease virus vaccine based on a prevalent highly virulent Chinese strain, Biotechnology Letters, vol.21, issue.6, pp.1287-1296, 2015.
DOI : 10.1016/j.meegid.2013.12.003

M. Schnell, T. Mebatsion, and K. Conzelmann, Infectious rabies viruses from cloned cDNA, EMBO J, vol.13, p.4195, 1994.

U. Schneider, M. Schwemmle, and P. Staeheli, Genome trimming: A unique strategy for replication control employed by Borna disease virus, Proceedings of the National Academy of Sciences, vol.74, issue.3, pp.3441-3446, 2005.
DOI : 10.1128/JVI.74.3.1321-1331.2000

V. Volchkov, V. Volchkova, E. Mühlberger, L. Kolesnikova, M. Weik et al., Recovery of Infectious Ebola Virus from Complementary DNA: RNA Editing of the GP Gene and Viral Cytotoxicity, Science, vol.291, issue.5510, pp.1965-1969, 2001.
DOI : 10.1126/science.1057269

M. Herrel, L. Haag, J. Nilsson, P. Staeheli, and U. Schneider, Reverse Genetics Identifies the Product of Open Reading Frame 4 as an Essential Particle Assembly Factor of Nyamanini Virus, Journal of Virology, vol.87, issue.14, pp.8257-8260, 2013.
DOI : 10.1128/JVI.00163-13

M. Yoneda, V. Guillaume, F. Ikeda, Y. Sakuma, H. Sato et al., Establishment of a Nipah virus rescue system, Proceedings of the National Academy of Sciences, vol.78, issue.12, pp.16508-16513, 2006.
DOI : 10.1128/JVI.78.12.6676-6681.2004

M. Baron and T. Barrett, Rescue of rinderpest virus from cloned cDNA, J Virol, vol.71, pp.1265-1271, 1997.

D. Garcin, T. Pelet, P. Calain, L. Roux, J. Curran et al., A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy-back nondefective interfering virus, EMBO J, vol.14, p.6087, 1995.

B. He, R. Paterson, C. Ward, and R. Lamb, Recovery of Infectious SV5 from Cloned DNA and Expression of a Foreign Gene, Virology, vol.237, issue.2, pp.249-260, 1997.
DOI : 10.1006/viro.1997.8801

S. Biacchesi, M. Skiadopoulos, K. Tran, B. Murphy, P. Collins et al., Recovery of human metapneumovirus from cDNA: optimization of growth in vitro and expression of additional genes, Virology, vol.321, issue.2, pp.247-259, 2004.
DOI : 10.1016/j.virol.2003.12.020

P. Collins, M. Hill, E. Camargo, H. Grosfeld, R. Chanock et al., Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5' proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development., Proceedings of the National Academy of Sciences, vol.92, issue.25, pp.11563-11567, 1995.
DOI : 10.1073/pnas.92.25.11563

R. Kormelink, M. Garcia, M. Goodin, T. Sasaya, and A. Haenni, Negative-strand RNA viruses: The plant-infecting counterparts, Virus Research, vol.162, issue.1-2, pp.184-202, 2011.
DOI : 10.1016/j.virusres.2011.09.028

URL : https://hal.archives-ouvertes.fr/hal-00658370

S. Biacchesi, M. Thoulouze, M. Béarzotti, Y. Yu, and M. Brémont, Recovery of NV Knockout Infectious Hematopoietic Necrosis Virus Expressing Foreign Genes, Journal of Virology, vol.74, issue.23, pp.11247-11253, 2000.
DOI : 10.1128/JVI.74.23.11247-11253.2000

N. Lawson, E. Stillman, M. Whitt, and J. Rose, Recombinant vesicular stomatitis viruses from DNA., Proceedings of the National Academy of Sciences, vol.92, issue.10, pp.4477-4481, 1995.
DOI : 10.1073/pnas.92.10.4477

L. Mercier, P. Jacob, Y. Tanner, K. Tordo, and N. , A Novel Expression Cassette of Lyssavirus Shows that the Distantly Related Mokola Virus Can Rescue a Defective Rabies Virus Genome, Journal of Virology, vol.76, issue.4, pp.2024-2027, 2002.
DOI : 10.1128/JVI.76.4.2024-2027.2002

URL : https://hal.archives-ouvertes.fr/pasteur-00174707

T. Yun, A. Park, T. Hill, O. Pernet, S. Beaty et al., ABSTRACT, Journal of Virology, vol.73, issue.2, pp.1242-1253, 2015.
DOI : 10.1371/journal.pntd.0002024

A. Römer-oberdörfer, E. Mundt, T. Mebatsion, U. Buchholz, and T. Mettenleiter, Generation of recombinant lentogenic Newcastle disease virus from cDNA, Journal of General Virology, vol.80, issue.11, pp.2987-2995, 1999.
DOI : 10.1099/0022-1317-80-11-2987

X. Zhang, H. Liu, P. Liu, B. Peeters, C. Zhao et al., Recovery of avirulent, thermostable Newcastle disease virus strain NDV4-C from cloned cDNA and stable expression of an inserted foreign gene, Archives of Virology, vol.31, issue.Pt 12, pp.2115-2120, 2013.
DOI : 10.1179/174313208X325218

A. Martin, P. Staeheli, and U. Schneider, RNA Polymerase II-Controlled Expression of Antigenomic RNA Enhances the Rescue Efficacies of Two Different Members of the Mononegavirales Independently of the Site of Viral Genome Replication, Journal of Virology, vol.80, issue.12, pp.5708-5715, 2006.
DOI : 10.1128/JVI.02389-05

J. Wang, C. Wang, N. Feng, H. Wang, X. Zheng et al., Development of a reverse genetics system based on RNA polymerase II for Newcastle disease virus genotype VII, Virus Genes, vol.145, issue.9, pp.152-155, 2015.
DOI : 10.1007/s007050070059

B. Li, X. Li, X. Lan, X. Yin, Z. Li et al., Rescue of Newcastle disease virus from cloned cDNA using an RNA polymerase II promoter, Archives of Virology, vol.103, issue.6, pp.979-986, 2011.
DOI : 10.1073/pnas.0602461103

F. Radecke, P. Spielhofer, H. Schneider, K. Kaelin, M. Huber et al., Rescue of measles viruses from cloned DNA, EMBO J, vol.14, p.5773, 1995.

G. Neumann, K. Fujii, Y. Kino, and Y. Kawaoka, An improved reverse genetics system for influenza A virus generation and its implications for vaccine production, Proceedings of the National Academy of Sciences, vol.78, issue.4, pp.16825-16829, 2005.
DOI : 10.1128/JVI.78.4.1851-1857.2004

X. Zhang, W. Kong, S. Ashraf, and R. Curtiss, A One-Plasmid System To Generate Influenza Virus in Cultured Chicken Cells for Potential Use in Influenza Vaccine, Journal of Virology, vol.83, issue.18, pp.9296-9303, 2009.
DOI : 10.1128/JVI.00781-09

X. Zhang and R. Curtiss, Efficient generation of influenza virus with a mouse RNA polymerase I-driven all-in-one plasmid, Virology Journal, vol.11, issue.Suppl 2, p.95, 2015.
DOI : 10.1186/1471-2180-11-31

T. Kobayashi, L. Ooms, M. Ikizler, J. Chappell, and T. Dermody, An improved reverse genetics system for mammalian orthoreoviruses, Virology, vol.398, issue.2, pp.194-200, 2010.
DOI : 10.1016/j.virol.2009.11.037

S. Gurke, J. Barroso, and H. Gerdes, The art of cellular communication: tunneling nanotubes bridge the divide, Histochemistry and Cell Biology, vol.118, issue.5, pp.539-550, 2008.
DOI : 10.4049/jimmunol.177.12.8476

P. Rørth, Communication by Touch, Cell, vol.112, issue.5, pp.595-598, 2003.
DOI : 10.1016/S0092-8674(03)00156-9

R. Fink and L. Heimer, Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system, Brain Research, vol.4, issue.4, pp.369-374, 1967.
DOI : 10.1016/0006-8993(67)90166-7

A. Rustom, R. Saffrich, I. Markovic, P. Walther, and H. Gerdes, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1010, 2004.
DOI : 10.1126/science.1093133

C. Nobes and A. Hall, Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, vol.81, issue.1, pp.53-62, 1995.
DOI : 10.1016/0092-8674(95)90370-4

J. Zhang, P. Czabotar, A. Policheni, I. Caminschi, S. Wan et al., The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin Filaments, Immunity, vol.36, issue.4, pp.646-657, 2012.
DOI : 10.1016/j.immuni.2012.03.009

F. Edwards, A. Gibb, and D. Colquhoun, ATP receptor-mediated synaptic currents in the central nervous system, Nature, vol.359, issue.6391, pp.144-147, 1992.
DOI : 10.1038/359144a0

N. Makhortova, P. Askovich, C. Patterson, L. Gechman, N. Gerard et al., Neurokinin-1 enables measles virus trans-synaptic spread in neurons, Virology, vol.362, issue.1, pp.235-244, 2007.
DOI : 10.1016/j.virol.2007.02.033

D. Lawrence, C. Patterson, T. Gales, D. Orazio, J. Vaughn et al., Measles Virus Spread between Neurons Requires Cell Contact but Not CD46 Expression, Syncytium Formation, or Extracellular Virus Production, Journal of Virology, vol.74, issue.4, pp.1908-1918, 2000.
DOI : 10.1128/JVI.74.4.1908-1918.2000

E. Najjar, F. Cifuentes-muñoz, N. Chen, J. Zhu, H. Buchholz et al., Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread, PLOS Pathogens, vol.9, issue.9, 2016.
DOI : 10.1371/journal.ppat.1005922.s002

M. Mehedi, T. Mccarty, S. Martin, L. Nouën, C. Buehler et al., Actin-Related Protein 2 (ARP2) and Virus-Induced Filopodia Facilitate Human Respiratory Syncytial Virus Spread, PLOS Pathogens, vol.7, issue.12, p.1006062, 2016.
DOI : 10.1371/journal.ppat.1006062.s020

M. Martinez and M. Kielian, Intercellular Extensions Are Induced by the Alphavirus Structural Proteins and Mediate Virus Transmission, PLOS Pathogens, vol.64, issue.12, p.1006061, 2016.
DOI : 10.1371/journal.ppat.1006061.s008

V. Doceul, M. Hollinshead, L. Van-der-linden, and G. Smith, Repulsion of Superinfecting Virions: A Mechanism for Rapid Virus Spread, Science, vol.73, issue.5, pp.873-876, 2010.
DOI : 10.1073/pnas.38.8.747

K. Roberts, B. Manicassamy, and R. Lamb, ABSTRACT, Journal of Virology, vol.89, issue.3, pp.1537-1549, 2015.
DOI : 10.1128/JVI.03306-14

S. Sowinski, C. Jolly, O. Berninghausen, M. Purbhoo, A. Chauveau et al., Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-219, 2008.
DOI : 10.1074/jbc.C400046200

S. Iwami, J. Takeuchi, S. Nakaoka, F. Mammano, F. Clavel et al., Author response image 1. Punctual model for parameter estimation., eLife, vol.8, p.8150, 2015.
DOI : 10.7554/eLife.08150.017

F. Xiao, I. Fofana, L. Heydmann, H. Barth, E. Soulier et al., Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents, PLoS Pathogens, vol.104, issue.5, p.1004128, 2014.
DOI : 10.1371/journal.ppat.1004128.s009

URL : https://doi.org/10.1371/journal.ppat.1004128

D. Tscherne, M. Evans, T. Von-hahn, C. Jones, Z. Stamataki et al., Superinfection Exclusion in Cells Infected with Hepatitis C Virus, Journal of Virology, vol.81, issue.8, pp.3693-3703, 2007.
DOI : 10.1128/JVI.01748-06

A. Karpf, E. Lenches, E. Strauss, J. Strauss, and D. Brown, Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus, J Virol, vol.71, pp.7119-7123, 1997.

Y. Lee, D. Tscherne, S. Yun, I. Frolov, and C. Rice, Dual Mechanisms of Pestiviral Superinfection Exclusion at Entry and RNA Replication, Journal of Virology, vol.79, issue.6, pp.3231-3242, 2005.
DOI : 10.1128/JVI.79.6.3231-3242.2005

S. Folimonova, Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein, Journal of Virology, vol.86, issue.10, pp.5554-5561, 2012.
DOI : 10.1128/JVI.00310-12

P. Whitaker-dowling, J. Ungner, C. Widnell, and D. Wilcox, Superinfect on exclusion by vesicular stomatitis virus, Virology, vol.131, issue.1, pp.137-143, 1983.
DOI : 10.1016/0042-6822(83)90540-8

K. Simon, J. Cardamone, P. Whitaker-dowling, J. Youngner, and C. Widnell, Cellular mechanisms in the superinfection exclusion of vesicular stomatitis virus, Virology, vol.177, issue.1, pp.375-379, 1990.
DOI : 10.1016/0042-6822(90)90494-C

M. Bergua, M. Zwart, C. El-mohtar, T. Shilts, S. Elena et al., A Viral Protein Mediates Superinfection Exclusion at the Whole-Organism Level but Is Not Required for Exclusion at the Cellular Level, Journal of Virology, vol.88, issue.19, pp.11327-11338, 2014.
DOI : 10.1128/JVI.01612-14

J. Laliberte and B. Moss, A Novel Mode of Poxvirus Superinfection Exclusion That Prevents Fusion of the Lipid Bilayers of Viral and Cellular Membranes, Journal of Virology, vol.88, issue.17, pp.9751-9768, 2014.
DOI : 10.1128/JVI.00816-14

O. Atallah, S. Kang, C. El-mohtar, T. Shilts, M. Bergua et al., A 5???-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion, Virology, vol.489, pp.108-115, 2016.
DOI : 10.1016/j.virol.2015.12.008

C. Campbell, D. Smith, I. Sanchez-vargas, B. Zhang, P. Shi et al., A positively selected mutation in the WNV 2K peptide confers resistance to superinfection exclusion in vivo, Virology, vol.464, issue.465, pp.228-232, 2014.
DOI : 10.1016/j.virol.2014.07.009

S. Folimonova, S. Harper, M. Leonard, E. Triplett, and T. Shilts, Superinfection exclusion by Citrus tristeza virus does not correlate with the production of viral small RNAs, Virology, vol.468, issue.470, pp.462-471, 2014.
DOI : 10.1016/j.virol.2014.08.031

X. Zhang, R. Sun, Q. Guo, S. Zhang, T. Meulia et al., A self-perpetuating repressive state of a viral replication protein blocks superinfection by the same virus, PLOS Pathogens, vol.51, issue.3, pp.1006253-149, 2017.
DOI : 10.1371/journal.ppat.1006253.s006

C. Baumann and W. Neubert, Neuraminidase-deficient Sendai virus HN mutants provide protection from homologous superinfection, Archives of Virology, vol.13, issue.2, pp.217-227, 2010.
DOI : 10.1099/0022-1317-79-4-683

M. Ludlow, S. Mcquaid, S. Cosby, R. Cattaneo, B. Rima et al., Measles virus superinfection immunity and receptor redistribution in persistently infected NT2 cells, Journal of General Virology, vol.86, issue.8, pp.2291-2303, 2005.
DOI : 10.1099/vir.0.81052-0

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/86/8/2291.pdf?itemId=/content/journal/jgv/10.1099/vir.0.81052-0&mimeType=pdf&isFastTrackArticle=

I. Huang, W. Li, J. Sui, W. Marasco, H. Choe et al., Influenza A Virus Neuraminidase Limits Viral Superinfection, Journal of Virology, vol.82, issue.10, pp.4834-4843, 2008.
DOI : 10.1128/JVI.00079-08

URL : http://jvi.asm.org/content/82/10/4834.full.pdf

T. Morrison and L. Mcginnes, Avian cells expressing the newcastle disease virus hemagglutinin-neuraminidase protein are resistant to newcastle disease virus infection, Virology, vol.171, issue.1, pp.10-17, 1989.
DOI : 10.1016/0042-6822(89)90505-9

G. Han, C. He, N. Ding, and L. Ma, Identification of a natural multi-recombinant of Newcastle disease virus, Virology, vol.371, issue.1, pp.54-60, 2008.
DOI : 10.1016/j.virol.2007.09.038

D. Satharasinghe, K. Murulitharan, S. Tan, S. Yeap, M. Munir et al., Detection of Inter-Lineage Natural Recombination in Avian Paramyxovirus Serotype 1 Using Simplified Deep Sequencing Platform, Frontiers in Microbiology, vol.151, 2016.
DOI : 10.1016/j.virusres.2010.03.015

Z. Qin, L. Sun, B. Ma, Z. Cui, Y. Zhu et al., F gene recombination between genotype II and VII Newcastle disease virus, Virus Research, vol.131, issue.2, pp.299-303, 2008.
DOI : 10.1016/j.virusres.2007.10.001

Y. Chong, A. Padhi, P. Hudson, and M. Poss, The Effect of Vaccination on the Evolution and Population Dynamics of Avian Paramyxovirus-1, PLoS Pathogens, vol.155, issue.9, p.1000872, 2010.
DOI : 10.1371/journal.ppat.1000872.s004