Skip to Main content Skip to Navigation

Dissection de TFIID, un facteur de transcription général humain : Études structurales etfonctionnelles des sous-ensembles du TFIID human

Abstract : Eukaryotic genomes are highly complex and can be very large. For example, the human genome contains approximately 20,000-25,000 protein coding genes. Expression of these genes needs to be tightly regulated at many levels, including chromatin organization, gene transcription, mRNA processing and export and translation, for proper functioning of cellular machinery. Many proteins and protein complexes are involved in these essential regulatory processes, examples include chromatin remodelers, transcriptional activators and coactivators, transcriptional repressors and notably the general transcription machinery. Transcription of protein coding genes in eukaryotes is called Class II gene transcription, and is catalyzed by RNA polymerase II (Pol II). Gene transcription by Pol II requires the cooperative interaction of multiple proteins and protein complexes to facilitate the assembly of a preinitiation complex (PIC) at the core promoter. The PIC comprises Pol II and the General Transcription Factors (GTFs)- TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, together with the Mediator complex and a large variety of transcriptional coactivators.A fundamental step in PIC assembly is recognition of the core promoter by GTF TFIID, a magdalton sized multiprotein complex. In humans, TFIID comprises about twenty subunits made up of 14 different proteins – the TATA box binding protein (TBP) and its associated factors (TAFs, numbered 1 to 13). A range of studies on human TFIID and its subassemblies have been carried out since its discovery more than two decades ago, to understand the structure and mechanism of this essential GTF, but the architecture of TFIID, its activities, its functions, its inner workings and the mechanisms of its cellular assembly have eluded detailed understanding to date.This thesis describes biochemical, biophysical, structural and functional studies carried out on three distinct human TFIID subassemblies. We used a number of structural biology techniques, including crystallization, nuclear magnetic resonance (NMR) spectroscopy and small angle X-ray scattering (SAXS) to analyse a complex formed by the human TBP associated factors TAF1 and TAF7. These structural studies provide detailed insights into the intricate interaction interface formed by TAF1 and TAF7, and, together with other data available from the literature, highlight the dynamic nature of the TAF1/TAF7 interaction in the human TFIID complex.In a second study, we analyzed a novel complex formed by TAF11, TAF13 and TBP using a range of biophysical and biochemical methods including electrophoretic mobility shift assay (EMSA), analytical ultracentrifugation (AUC), size exclusion chromatography (SEC) analysis, pull-down assay, native mass-spectroscopy and chemical cross-linking mass spectroscopy (CLMS). This complex is reminiscent of a so-called TATA-box mimicry discovered previously in a TAF1/TBP complex.As part of the ongoing efforts in the Berger laboratory to determine the structure of human holo-TFIID, we furthermore produced and purified a large (~900 kDa) TFIID subassembly called 9TAF, which is composed of nine different TBP associated factors. We carried out negative stain EM studies and random conical tilt (RCT) analysis on 9TAF to obtain low resolution structural information. These studies set the stage for future cryo-EM studies of this 9TAF complex to obtain a high(er) resolution model to decipher the inner workings of human TFIID.
Complete list of metadatas

Cited literature [45 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Monday, January 15, 2018 - 12:11:06 PM
Last modification on : Monday, May 18, 2020 - 8:22:54 PM
Long-term archiving on: : Saturday, May 5, 2018 - 6:41:55 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01684208, version 1



Kapil Gupta. Dissection de TFIID, un facteur de transcription général humain : Études structurales etfonctionnelles des sous-ensembles du TFIID human. Biologie structurale [q-bio.BM]. Université Grenoble Alpes, 2015. Français. ⟨NNT : 2015GREAV051⟩. ⟨tel-01684208⟩



Record views


Files downloads