I. La-base-de-données and . Avait-Été-construite-dans-cet-esprit, mais, par exemple, certaines images n'étaient pas de bonne qualité et au final, pour les questions d'intérêt que l'on propose d'étudier ici, le nombre de patients était faible. Ou encore, de nouvelles approches pour la sélection de la fonction d'entrée artérielle nécessitent l'accès à l'image de phase de l'IRM de perfusion

S. Aja-fernández and A. A. Tristán-vega, outil de gestion de bases de données qui a été développé est donnée à l'adresse suivante : http ://spiralconnect.univ-lyon1 A review on statistical noise models for magnetic resonance imaging, 2013.

]. Amblard and O. J. Michel, The Relation between Granger Causality and Directed Information Theory: A Review, Entropy, vol.23, issue.1, pp.15-113, 2012.
DOI : 10.1016/j.jneumeth.2008.04.011

URL : https://hal.archives-ouvertes.fr/hal-00777584

I. K. Andersen, A. Szymkowiak, C. E. Rasmussen, L. Hanson, J. Marstrand et al., Perfusion quantification using Gaussian process deconvolution, Magnetic Resonance in Medicine, vol.19, issue.2, pp.48-351, 2002.
DOI : 10.1097/00004647-199906000-00013

URL : http://onlinelibrary.wiley.com/doi/10.1002/mrm.10213/pdf

J. F. Arenillas, Á. Rovira, C. A. Molina, E. Grivé, J. Montaner et al., Prediction of Early Neurological Deterioration Using Diffusion- and Perfusion-Weighted Imaging in Hyperacute Middle Cerebral Artery Ischemic Stroke * Editorial Comment, Stroke, vol.33, issue.9, pp.33-2197, 2002.
DOI : 10.1161/01.STR.0000027861.75884.DF

N. Asdaghi, L. A. Pearce, M. Nakajima, T. S. Field, C. Bazan et al., Clinical Correlates of Infarct Shape and Volume in Lacunar Strokes, Stroke, vol.45, issue.10, pp.45-2952, 2014.
DOI : 10.1161/STROKEAHA.114.005211

H. Ay, E. M. Arsava, M. Vangel, B. Oner, M. Zhu et al., Interexaminer difference in infarct volume measurements on MRI : a source of variance in stroke research Predicting final extent of ischemic infarction using artificial neural network analysis of multi-parametric MRI in patients with stroke, Collateral circulation in ischemic stroke, pp.39-1171, 2008.

O. Y. Bang, P. H. Lee, K. G. Heo, U. S. Joo, S. R. Yoon et al., Specific DWI lesion patterns predict prognosis after acute ischaemic stroke within the MCA territory, Journal of Neurology, Neurosurgery & Psychiatry, vol.76, issue.9, pp.76-1222, 2005.
DOI : 10.1136/jnnp.2004.059998

O. Y. Bang, J. L. Saver, S. J. Kim, G. Kim, C. Chung et al., Collateral Flow Predicts Response to Endovascular Therapy for Acute Ischemic Stroke, Stroke, vol.42, issue.3, p.110, 2011.
DOI : 10.1161/STROKEAHA.110.595256

R. W. Barnes, J. F. Toole, J. Nelson, and A. V. Howard, Neural Networks for Ischemic Stroke, Neural networks for ischemic stroke, pp.223-227, 2006.
DOI : 10.1016/j.jstrokecerebrovasdis.2006.05.008

F. Bauer and M. A. Lukas, Comparingparameter choice methods for regularization of ill-posed problems, Mathematics and Computers in Simulation, vol.81, issue.9, pp.1795-1841, 2011.
DOI : 10.1016/j.matcom.2011.01.016

D. Bedekar, T. Jensen, and A. K. Schmainda, Standardization of relative cerebral blood volume (rCBV) image maps for ease of both inter-and intrapatient comparisons, Magnetic resonance in medicine, pp.907-913, 2010.

M. Belge, M. E. Kilmer, and A. E. Miller, Efficient determination of multiple regularization parameters in a generalized L-curve framework, Inverse Problems, vol.18, issue.4, pp.1161-1183, 2002.
DOI : 10.1088/0266-5611/18/4/314

H. Benoit-cattin, G. Collewet, B. Belaroussi, H. Saint-jalmes, and A. C. Odet, The SIMRI project: a versatile and interactive MRI simulator, Journal of Magnetic Resonance, vol.173, issue.1, pp.97-115, 2005.
DOI : 10.1016/j.jmr.2004.09.027

W. Bialek, I. Nemenman, A. N. Tishby, and . Predictability, Predictability, Complexity, and Learning, Neural Computation, vol.49, issue.11, pp.2409-2463, 2001.
DOI : 10.1214/aos/1176324524

A. Bjørnerud and K. E. Emblem, A Fully Automated Method for Quantitative Cerebral Hemodynamic Analysis Using DSC???MRI, Journal of Cerebral Blood Flow & Metabolism, vol.27, issue.5, pp.1066-1078, 2010.
DOI : 10.1002/mrm.21975

D. H. Brooks, G. F. Ahmad, R. S. Macleod, and A. G. Maratos, Inverse electrocardiography by simultaneous imposition of multiple constraints, IEEE Transactions on Biomedical Engineering, vol.46, issue.1, pp.46-49, 1999.
DOI : 10.1109/10.736746

D. Bulte, P. Chiarelli, R. Wise, and A. P. Jezzard, Measurement of cerebral blood volume in humans using hyperoxic MRI contrast, Journal of Magnetic Resonance Imaging, vol.2, issue.4, pp.894-899, 2007.
DOI : 10.1038/jcbfm.1987.9

F. Calamante, Arterial input function in perfusion MRI : A comprehensive review, Progress in nuclear magnetic resonance spectroscopy, pp.1-32, 2013.

F. A. Calamante, . Connelly, and . Dsc-mri, How accurate does the arterial input function need to be in practice ?, Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM), 15th Annual Meeting, pp.19-25, 2007.

F. Calamante, A. Connelly, and A. M. Van-osch, Nonlinear ?r* 2 effects in perfusion quantification using bolus-tracking MRI, Magnetic resonance in medicine, pp.61-486, 2009.

F. Calamante, D. G. Gadian, and A. A. Connelly, Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization, Magnetic Resonance in Medicine, vol.98, issue.6, pp.1237-1247, 2003.
DOI : 10.1002/mrm.10643

F. Calamante, D. L. Thomas, G. S. Pell, J. Wiersma, and A. R. Turner, Measuring Cerebral Blood Flow Using Magnetic Resonance Imaging Techniques, Journal of Cerebral Blood Flow & Metabolism, vol.15, issue.7, pp.701-735, 1999.
DOI : 10.1161/01.RES.16.4.309

URL : http://journals.sagepub.com/doi/pdf/10.1097/00004647-199907000-00001

F. Calamante, E. Vonken, and A. M. Van-osch, Contrast agent concentration measurements affecting quantification of bolus-tracking perfusion MRI, Magnetic Resonance in Medicine, vol.41, issue.3, pp.544-553, 2007.
DOI : 10.1148/radiology.193.3.7972800

B. C. Campbell, S. Christensen, B. M. Tress, L. Churilov, P. M. Desmond et al., Failure of Collateral Blood Flow is Associated with Infarct Growth in Ischemic Stroke, Journal of Cerebral Blood Flow & Metabolism, vol.26, issue.8, pp.33-1168, 2013.
DOI : 10.1161/STROKEAHA.109.552513

V. Caviness, N. Makris, E. Montinaro, N. Sahin, J. Bates et al., Anatomy of stroke, part I, Stroke, pp.33-2549, 2002.

P. Charbonnier, L. Blanc-féraud, G. Aubert, and A. M. Barlaud, Deterministic edge-preserving regularization in computed imaging, Image Processing, IEEE Transactions on, vol.6, pp.298-311, 1997.

T. Christen, N. Pannetier, W. Ni, D. Qiu, M. Moseley et al., MR vascular fingerprinting: A new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain, NeuroImage, vol.89, pp.89-262, 2014.
DOI : 10.1016/j.neuroimage.2013.11.052

S. Christensen, K. Mouridsen, O. Wu, N. Hjort, H. Karstoft et al., Comparison of 10 Perfusion MRI Parameters in 97 Sub-6-Hour Stroke Patients Using Voxel-Based Receiver Operating Characteristics Analysis, Stroke, vol.40, issue.6, pp.40-2055, 2009.
DOI : 10.1161/STROKEAHA.108.546069

T. M. Cover and J. A. Thomas, Elements of information theory, 2012.

C. Daviller, M. Giacalone, C. Frindel, T. Boutelier, P. Croisille et al., Évaluation de méthodes de quantification de la perfusion cardiaque : Approches bayésiennes et spatio-temporelles, RITS 2017, 2017.

S. Davis, M. Fisher, and A. S. Warach, Magnetic resonance imaging in stroke, 2003.

B. M. Ellingson, T. Zaw, T. F. Cloughesy, K. M. Naeini, S. Lalezari et al., Comparison between intensity normalization techniques for dynamic susceptibility contrast (DSC)-MRI estimates of cerebral blood volume (CBV) in human gliomas, Journal of Magnetic Resonance Imaging, vol.43, issue.6, pp.35-1472, 2012.
DOI : 10.1002/1522-2594(200006)43:6<820::AID-MRM7>3.0.CO;2-F

T. D. Farr-and-s and . Wegener, Use of Magnetic Resonance Imaging to Predict Outcome after Stroke: A Review of Experimental and Clinical Evidence, Journal of Cerebral Blood Flow & Metabolism, vol.20, issue.4, pp.703-717, 2010.
DOI : 10.1016/S0730-725X(98)00192-1

J. Ferré, E. Bannier, H. Raoult, G. Mineur, B. Carsin-nicol et al., Arterial spin labeling (ASL) perfusion : techniques and clinical use, Diagnostic and interventional imaging, pp.94-1211, 2013.

A. Fieselmann, M. Kowarschik, A. Ganguly, J. Hornegger, and A. R. Fahrig, Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and Practical Implementation Details, International Journal of Biomedical Imaging, vol.26, issue.6, pp.2011-141, 2011.
DOI : 10.3174/ajnr.A1274

URL : https://doi.org/10.1155/2011/467563

C. Frindel, M. C. Robini, and A. D. Rousseau, A 3-D spatio-temporal deconvolution approach for MR perfusion in the brain, Medical Image Analysis, vol.18, issue.1, pp.144-160, 2014.
DOI : 10.1016/j.media.2013.10.004

URL : https://hal.archives-ouvertes.fr/hal-00977610

C. Frindel, A. Rouanet, M. Giacalone, T. Cho, L. Østergaard et al., Validity of Shape as a Predictive Biomarker of Final Infarct Volume in Acute Ischemic Stroke, Stroke, vol.46, issue.4, pp.46-976, 2015.
DOI : 10.1161/STROKEAHA.114.008046

URL : https://hal.archives-ouvertes.fr/hal-01131822

C. Frindel, D. Rousseau, T. Cho, Y. Berthezène, M. Wiart et al., Application d'une mesure de similarité locale pour la segmentation du système ventriculaire cérébral en IRM de perfusion, Congrès inaugural de la Société Française de Résonance Magnétique en Biologie et Médecine (SFRMBM), 2012.

P. Gall, P. Emerich, B. F. Kjølby, E. Kellner, I. Mader et al., On the design of filters for Fourier and oSVDbased deconvolution in bolus tracking perfusion MRI, Magnetic Resonance Materials in Physics Biology and Medicine, pp.23-187, 2010.

M. Giacalone, M. C. Ángel, C. Frindel, F. Cervenansky, M. Robini et al., Suite logicielle pour l'imagerie de perfusion dans l'étude de l'accident vasculaire cérébral, RITS 2017, 2017.

M. Giacalone, C. Frindel, E. Grenier, and A. D. Rousseau, Multicomponent and Longitudinal Imaging Seen as a Communication Channel???An Application to Stroke, Entropy, vol.6454, issue.5, pp.19-187, 2017.
DOI : 10.1371/journal.pone.0022626

URL : https://hal.archives-ouvertes.fr/hal-01517001

M. Giacalone, C. Frindel, M. Robini, F. Cervenansky, E. Grenier et al., Robustness of spatio-temporal regularization in perfusion MRI deconvolution: An application to acute ischemic stroke, Magnetic Resonance in Medicine, vol.170, issue.5, 2016.
DOI : 10.1016/j.jmr.2004.05.021

URL : https://hal.archives-ouvertes.fr/hal-01571763

M. Giacalone, C. Frindel, M. Robini, and A. D. Rousseau, Interest of non-negativity constraint in perfusion DSC-MRI deconvolution for acute stroke, 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), pp.1-4, 2016.
DOI : 10.1109/IWSSIP.2016.7502711

URL : https://hal.archives-ouvertes.fr/hal-01571798

M. Giacalone, C. Frindel, M. C. Robini, E. Grenier, and A. D. Rousseau, Simulations numériques en IRM de perfusion cérébrale : bruit log-ricien ou bruit gaussien ?, XXV ème GRETSI, pp.1-4, 2015.

M. Giacalone, C. Frindel, and A. D. Rousseau, An unsupervised spatio-temporal regularization for perfusion MRI deconvolution in acute stroke, 2016 24th European Signal Processing Conference (EUSIPCO), pp.1708-1712, 2016.
DOI : 10.1109/EUSIPCO.2016.7760540

URL : https://hal.archives-ouvertes.fr/hal-01571796

M. Giacalone, C. Frindel, R. Zagala, T. Cho, Y. Berthezène et al., On the Influence of Normalization Strategies for Perfusion MRI in Acute Stroke, Current Developments in Stroke, pp.176-190, 2017.
DOI : 10.2174/9781681084213117010011

URL : https://hal.archives-ouvertes.fr/hal-01572121

T. Glatard, C. Lartizien, B. Gibaud, R. Ferreira-da-silva, G. Forestier et al., A Virtual Imaging Platform for Multi-Modality Medical Image Simulation, IEEE Transactions on Medical Imaging, vol.32, issue.1, pp.32-110, 2013.
DOI : 10.1109/TMI.2012.2220154

URL : https://hal.archives-ouvertes.fr/inserm-00762497

D. Goldberg-zimring, A. Achiron, C. R. Guttmann, and A. H. Azhari, Three-dimensional analysis of the geometry of individual multiple sclerosis lesions: Detection of shape changes over time using spherical harmonics, Journal of Magnetic Resonance Imaging, vol.216, issue.3, pp.18-291, 2003.
DOI : 10.1002/jmri.10365

C. B. Grandin, A. Bol, A. M. Smith, C. Michel, and A. G. Cosnard, Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: Repeatabilily and comparison with PET in humans, NeuroImage, pp.26-525, 2005.
DOI : 10.1016/j.neuroimage.2005.02.028

S. M. Greenberg, M. W. Vernooij, C. Cordonnier, A. Viswanathan, R. A. Salman et al., Cerebral microbleeds : a guide to detection and interpretation, The Lancet Neurology, pp.165-174, 2009.

R. Grüner-and-t and . Taxt, Iterative blind deconvolution in magnetic resonance brain perfusion imaging, Magnetic resonance in medicine, pp.805-815, 2006.

H. Gudbjartsson-and-s and . Patz, The rician distribution of noisy mri data, Magnetic Resonance in Medicine, vol.3, issue.6, pp.910-914, 1995.
DOI : 10.1002/j.1538-7305.1944.tb00874.x

T. Hachaj and M. R. Ogiela, Application of neural networks in detection of abnormal brain perfusion regions, Neurocomputing, vol.122, pp.33-42, 2013.
DOI : 10.1016/j.neucom.2013.04.030

P. C. Hansen and D. P. O-'leary, The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems, SIAM Journal on Scientific Computing, vol.14, issue.6, pp.1487-1503, 1993.
DOI : 10.1137/0914086

H. Autorité and D. Santé, Accident vasculaire cérébral : prise en charge précoce (alerte, phase préhospitalière, phase hospitalière initiale, indications de la thrombolyse), Recommandations de bonnes pratiques, 2009.

L. He, B. Orten, S. Do, W. C. Karl, A. Kambadakone et al., A spatio-temporal deconvolution method to improve perfusion CT quantification, Medical Imaging, IEEE Transactions on, pp.29-1182, 2010.

L. Hermitte, T. Cho, B. Ozenne, N. Nighoghossian, I. K. Mikkelsen et al., Very Low Cerebral Blood Volume Predicts Parenchymal Hematoma in Acute Ischemic Stroke, Stroke, vol.44, issue.8, pp.44-2318, 2013.
DOI : 10.1161/STROKEAHA.113.001751

D. Hervé, J. F. Mangin, N. Molko, M. G. Bousser, and A. H. Chabriat, Shape and Volume of Lacunar Infarcts: A 3D MRI Study in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy, Stroke, vol.36, issue.11, pp.36-2384, 2005.
DOI : 10.1161/01.STR.0000185678.26296.38

K. C. Ho, S. El-saden, F. Scalzo, A. A. Bui, A. C. Arnold et al., Predicting acute ischemic stroke tissue fate using deep learning on source perfusion MRI, Stroke, pp.47-88, 2016.

S. Huang, Q. Shen, and A. T. Duong, Artificial Neural Network Prediction of Ischemic Tissue Fate in Acute Stroke Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.23, issue.9, pp.1661-1670, 2010.
DOI : 10.1016/j.neucom.2007.08.033

M. Ibaraki, H. Ito, E. Shimosegawa, H. Toyoshima, K. Ishigame et al., Cerebral Vascular Mean Transit Time in Healthy Humans: A Comparative Study with PET and Dynamic Susceptibility Contrast-Enhanced MRI, Journal of Cerebral Blood Flow & Metabolism, vol.24, issue.2, pp.27-404, 2007.
DOI : 10.1161/01.STR.29.1.98

D. Ichwan, F. Scalzo, D. Liu, B. Bergsneider, A. Anderson et al., Abstract t mp52 : Probabilistic atlasing of acute ischemic stroke topology, 2015.

K. Jafari-khouzani, K. E. Emblem, J. Kalpathy-cramer, A. Bjørnerud, M. G. Vangel et al., Repeatability of Cerebral Perfusion Using Dynamic Susceptibility Contrast MRI in Glioblastoma Patients, Translational Oncology, vol.8, issue.3, pp.137-146, 2015.
DOI : 10.1016/j.tranon.2015.03.002

G. Jahng, K. Li, L. Østergaard, and A. F. Calamante, Perfusion Magnetic Resonance Imaging: A Comprehensive Update on Principles and Techniques, Korean Journal of Radiology, vol.15, issue.5, pp.554-577, 2014.
DOI : 10.3348/kjr.2014.15.5.554

T. H. Jochimsen, R. D. Newbould, S. T. Skare, D. B. Clayton, G. W. Albers et al., Identifying systematic errors in quantitative dynamic-susceptibility contrast perfusion imaging by high-resolution multi-echo parallel EPI, NMR in Biomedicine, vol.46, issue.4, pp.20-429, 2007.
DOI : 10.1161/01.STR.28.10.1998

T. H. Jochimsen, M. Von, and . Mengershausen, ODIN???Object-oriented Development Interface for NMR, Journal of Magnetic Resonance, vol.170, issue.1, pp.67-78, 2004.
DOI : 10.1016/j.jmr.2004.05.021

K. Y. Jonsdottir, L. Østergaard, and A. K. Mouridsen, Predicting tissue outcome from acute stroke magnetic resonance imaging, Stroke, pp.40-3006, 2009.

D. Kang, J. A. Chalela, M. A. Ezzeddine, and A. S. Warach, Association of Ischemic Lesion Patterns on Early Diffusion-Weighted Imaging With TOAST Stroke Subtypes, Archives of Neurology, vol.60, issue.12, pp.1730-1734, 2003.
DOI : 10.1001/archneur.60.12.1730

H. Karnath, R. Zopf, L. Johannsen, M. F. Berger, T. Nägele et al., Normalized perfusion MRI to identify common areas of dysfunction: patients with basal ganglia neglect, Brain, vol.128, issue.10, pp.128-2462, 2005.
DOI : 10.1093/brain/awh629

S. J. Kim, J. P. Son, S. Ryoo, M. Lee, J. Cha et al., A novel magnetic resonance imaging approach to collateral flow imaging in ischemic stroke, Annals of Neurology, vol.43, issue.3, pp.76-356, 2014.
DOI : 10.1161/STROKEAHA.111.643932

S. Koch, M. S. Mcclendon, and A. R. Bhatia, Imaging evolution of acute lacunar infarction: Leukoariosis or lacune?, Neurology, vol.77, issue.11, pp.77-1091, 2011.
DOI : 10.1212/WNL.0b013e31822e1470

T. Kucinski, C. Koch, B. Eckert, V. Becker, H. Kr et al., Collateral circulation is an independent radiological predictor of outcome after thrombolysis in acute ischaemic stroke, Neuroradiology, vol.45, issue.1, pp.45-56, 2003.
DOI : 10.1007/s00234-002-0881-0

K. Kudo, S. Christensen, M. Sasaki, L. Østergaard, H. Shirato et al., Accuracy and Reliability Assessment of CT and MR Perfusion Analysis Software Using a Digital Phantom, Radiology, vol.267, issue.1, pp.267-201, 2013.
DOI : 10.1148/radiol.12112618

M. Law, A. M. Saindane, Y. Ge, J. S. Babb, G. Johnson et al., Microvascular Abnormality in Relapsing-Remitting Multiple Sclerosis: Perfusion MR Imaging Findings in Normal-appearing White Matter, Radiology, vol.231, issue.3, pp.231-645, 2004.
DOI : 10.1148/radiol.2313030996

M. Law, R. Young, J. Babb, E. Pollack, and A. G. Johnson, Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas, American Journal of Neuroradiology, pp.28-761, 2007.

K. Leenders, D. Perani, A. Lammertsma, J. Heather, P. Buckingham et al., CEREBRAL BLOOD FLOW, BLOOD VOLUME AND OXYGEN UTILIZATION, Brain, vol.113, issue.1, pp.113-140, 1990.
DOI : 10.1093/brain/113.1.27

W. Lin, A. Celik, C. Derdeyn, H. An, Y. Lee et al., Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: A PET and MR study, Journal of Magnetic Resonance Imaging, vol.7, issue.6, pp.14-659, 2001.
DOI : 10.1038/jcbfm.1987.102

H. Liu, Y. Pu, Y. Liu, L. Nickerson, T. Andrews et al., Cerebral blood flow measurement by dynamic contrast MRI using singular value decomposition with an adaptive threshold, Magnetic Resonance in Medicine, vol.113, issue.1, pp.42-167, 1999.
DOI : 10.1148/radiology.193.3.7972800

M. T. Madsen, A simplified formulation of the gamma variate function, Physics in Medicine and Biology, vol.37, issue.7, pp.1597-1600, 1992.
DOI : 10.1088/0031-9155/37/7/010

O. Maier, B. H. Menze, J. Von-der-gablentz, L. Häni, M. P. Heinrich et al., ISLES 2015-A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI, Medical image analysis, pp.35-250, 2017.

A. Mehndiratta, F. Calamante, B. J. Macintosh, D. E. Crane, S. J. Payne et al., Modeling the residue function in DSC-MRI simulations: Analytical approximation to in vivo data, Magnetic Resonance in Medicine, vol.22, issue.5, pp.72-1486, 2014.
DOI : 10.1002/jmri.20454

A. Mehndiratta, B. J. Macintosh, D. E. Crane, S. J. Payne, and A. M. Chappell, A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI, NeuroImage, vol.64, pp.64-560, 2013.
DOI : 10.1016/j.neuroimage.2012.08.083

M. Meijs, S. Christensen, M. G. Lansberg, G. W. Albers, and A. F. Calamante, Analysis of perfusion MRI in stroke : To deconvolve , or not to deconvolve, Magnetic resonance in medicine, 2015.

A. Mohammad-djafari, Entropy, Information Theory, Information Geometry and Bayesian Inference in Data, Signal and Image Processing and Inverse Problems, Entropy, vol.1641, issue.6, pp.17-3989, 2015.
DOI : 10.1109/CISP.2008.6

URL : https://hal.archives-ouvertes.fr/hal-01266142

M. Moskowitz, E. Lo, and A. C. Iadecola, The science of stroke : mechanisms in search of treatments, Neuron, pp.67-181, 2010.

K. Mouridsen, K. Friston, N. Hjort, L. Gyldensted, L. Østergaard et al., Bayesian estimation of cerebral perfusion using a physiological model of microvasculature, NeuroImage, vol.33, issue.2, pp.33-570, 2006.
DOI : 10.1016/j.neuroimage.2006.06.015

G. , M. Hermier, T. Kucinski, E. Larsson, L. Sørensen et al., Interrater agreement for final infarct MRI lesion delineation, Stroke, pp.40-3768, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00443373

V. H. Nguyen, G. Cooperman, N. Menenzes, C. J. Lopez, C. Melinosky et al., Stroke tissue outcome prediction using a spatially-correlated model, Program and Proceedings of PPIC, pp.238-241, 2008.

T. Ogata, Y. Nagakane, S. Christensen, H. Ma, B. C. Campbell et al., A Topographic Study of the Evolution of the MR DWI/PWI Mismatch Pattern and Its Clinical Impact: A Study by the EPITHET and DEFUSE Investigators, Stroke, vol.42, issue.6, pp.42-1596, 2011.
DOI : 10.1161/STROKEAHA.110.609016

T. Ojala, M. Pietikäinen, and A. D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

T. Ojala, M. Pietikainen, and A. T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

URL : http://www.ee.oulu.fi/research/imag/texture/publications/show_pdf.php?ID=94

J. M. Olivot, M. Mlynash, V. Thijs, A. Purushotham, S. Kemp et al., Geography, Structure, and Evolution of Diffusion and Perfusion Lesions in Diffusion and Perfusion Imaging Evaluation For Understanding Stroke Evolution (DEFUSE), Stroke, vol.40, issue.10, pp.40-3245, 2009.
DOI : 10.1161/STROKEAHA.109.558635

C. J. Oppenheim and . Méder, Irm de diffusion du parenchyme cérébral ischémique aigu, Correspondance en neurologie vasculaire, pp.82-86, 2002.

L. Østergaard, K. Ý. Jónsdóttir, and A. K. Mouridsen, Predicting tissue outcome in stroke: new approaches, Current Opinion in Neurology, vol.22, issue.1, pp.54-59, 2009.
DOI : 10.1097/WCO.0b013e328320d297

L. Østergaard, A. G. Sorensen, K. K. Kwong, R. M. Weisskoff, C. Gyldensted et al., High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results, Magnetic Resonance in Medicine, vol.23, issue.5, pp.36-726, 1996.
DOI : 10.1038/jcbfm.1984.47

L. Østergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and A. B. Rosen, High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis, Magnetic Resonance in Medicine, vol.20, issue.5, pp.36-715, 1996.
DOI : 10.1161/01.RES.19.5.879

E. S. Paulson and K. M. Schmainda, Comparison of Dynamic Susceptibility-weighted Contrast-enhanced MR Methods: Recommendations for Measuring Relative Cerebral Blood Volume in Brain Tumors, Radiology, vol.249, issue.2, pp.249-601, 2008.
DOI : 10.1148/radiol.2492071659

S. Pedraza, J. Puig, G. Blasco, J. Daunis-i-estadella, I. Boada et al., Magnetic resonance imaging biomarkers of ischemic stroke : criteria for the validation of primary imaging biomarkers, Drug News Perspect, pp.22-481, 2009.

J. E. Perthen, F. Calamante, D. G. Gadian, and A. A. Connelly, Is quantification of bolus tracking MRI reliable without deconvolution?, Magnetic Resonance in Medicine, vol.19, issue.1, pp.47-61, 2002.
DOI : 10.1097/00004647-199906000-00013

D. Peruzzo, M. Castellaro, M. Calabrese, E. Veronese, F. Rinaldi et al., Heterogeneity of Cortical Lesions in Multiple Sclerosis: An MRI Perfusion Study, Journal of Cerebral Blood Flow & Metabolism, vol.67, issue.3, pp.33-457, 2013.
DOI : 10.1002/ana.22320

M. Pietikäinen-and-g and . Zhao, Two decades of local binary patterns, pp.175-210, 2015.
DOI : 10.1016/B978-0-12-802806-3.00009-9

L. Popoola, G. Babagana, and A. A. Susu, Thrombo-embolic stroke prediction and diagnosis using artificial neural network and genetic algorithm, International Journal of Research and Reviews in Applied Sciences, vol.14, pp.655-661, 2013.

M. Prah, S. Stufflebeam, E. Paulson, J. Kalpathy-cramer, E. Gerstner et al., Repeatability of Standardized and Normalized Relative CBV in Patients with Newly Diagnosed Glioblastoma, American Journal of Neuroradiology, vol.7, issue.7, pp.36-1654, 2015.
DOI : 10.1593/tlo.13838

N. D. Prins-and-p and . Scheltens, White matter hyperintensities, cognitive impairment and dementia: an update, Nature Reviews Neurology, vol.76, issue.3, pp.157-165, 2015.
DOI : 10.1136/jnnp.2004.053686

I. Rekik, S. Allassonniére, T. Carpenter, and A. J. Wardlaw, Medical image analysis methods in MR/CT-imaged acute-subacute ischemic stroke lesion: Segmentation, prediction and insights into dynamic evolution simulation models. A critical appraisal, NeuroImage: Clinical, vol.1, issue.1, pp.164-178, 2012.
DOI : 10.1016/j.nicl.2012.10.003

K. A. Rempp, G. Brix, F. Wenz, C. R. Becker, F. Gückel et al., Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging., Radiology, vol.193, issue.3, pp.193-637, 1994.
DOI : 10.1148/radiology.193.3.7972800

T. Ritzenthaler, T. H. Cho, M. Wiart, J. Berthiller, L. Ostergaard et al., Assessment of baseline hemodynamic parameters within infarct progression areas in acute stroke patients using perfusion-weighted MRI, Neuroradiology, vol.50, issue.8, pp.53-571, 2011.
DOI : 10.1212/WNL.50.3.599

C. S. Rivers, J. M. Wardlaw, P. A. Armitage, M. E. Bastin, P. J. Hand et al., Acute Ischemic Stroke Lesion Measurement on Diffusion-weighted Imaging???Important Considerations in Designing Acute Stroke Trials With Magnetic Resonance Imaging, Journal of Stroke and Cerebrovascular Diseases, vol.16, issue.2, pp.16-64, 2007.
DOI : 10.1016/j.jstrokecerebrovasdis.2006.11.003

M. Robini, Y. Zhu, X. Lv, and A. W. Liu, Inexact half-quadratic optimization for image reconstruction, 2016 IEEE International Conference on Image Processing (ICIP), pp.3513-3517, 2016.
DOI : 10.1109/ICIP.2016.7533013

F. Rosas, V. Ntranos, C. J. Ellison, S. Pollin, and A. M. Verhelst, Understanding Interdependency Through Complex Information Sharing, Entropy, vol.5, issue.2, pp.18-38, 2016.
DOI : 10.2307/2322600

URL : http://www.mdpi.com/1099-4300/18/2/38/pdf

C. Rosso, N. Hevia-montiel, S. Deltour, E. Bardinet, D. Dormont et al., Prediction of Infarct Growth Based on Apparent Diffusion Coefficients: Penumbral Assessment without Intravenous Contrast Material, Radiology, vol.250, issue.1, pp.250-184, 2009.
DOI : 10.1148/radiol.2493080107

URL : https://hal.archives-ouvertes.fr/hal-00805406

F. E. Ruiz, P. S. Pérez, and A. B. Bonev, Information theory in computer vision and pattern recognition, 2009.

K. E. Sakaie, W. Shin, K. R. Curtin, R. M. Mccarthy, T. A. Cashen et al., Method for improving the accuracy of quantitative cerebral perfusion imaging, Journal of Magnetic Resonance Imaging, vol.37, issue.5, pp.512-519, 2005.
DOI : 10.1148/radiology.175.2.2326480

J. L. Saver, Time Is Brain--Quantified, Stroke, vol.37, issue.1, pp.37-263, 2006.
DOI : 10.1161/01.STR.0000196957.55928.ab

URL : http://stroke.ahajournals.org/content/strokeaha/37/1/263.full.pdf

F. Scalzo, Q. Hao, J. R. Alger, X. Hu, and A. D. Liebeskind, Tissue Fate Prediction in Acute Ischemic Stroke Using Cuboid Models, Advances in Visual Computing, ISVC 2010, pp.292-301, 2010.
DOI : 10.1214/ss/1177013622

F. Scalzo, Q. Hao, J. R. Alger, X. Hu, and A. D. Liebeskind, Regional Prediction of Tissue Fate in Acute Ischemic Stroke, Annals of Biomedical Engineering, vol.41, issue.4, pp.40-2177, 2012.
DOI : 10.1161/STROKEAHA.110.582874

P. W. Schaefer, G. J. Hunter, J. He, L. M. Hamberg, A. G. Sorensen et al., Predicting cerebral ischemic infarct volume with diffusion and perfusion MR imaging, American Journal of Neuroradiology, vol.23, pp.1785-1794, 2002.

V. J. Schmid, Voxel-Based Adaptive Spatio-Temporal Modelling of Perfusion Cardiovascular MRI, IEEE Transactions on Medical Imaging, vol.30, issue.7, pp.1305-1313, 2011.
DOI : 10.1109/TMI.2011.2109733

V. J. Schmid, B. Whitcher, A. R. Padhani, N. J. Taylor, and A. G. Yang, Bayesian Methods for Pharmacokinetic Models in Dynamic Contrast-Enhanced Magnetic Resonance Imaging, IEEE Transactions on Medical Imaging, vol.25, issue.12, pp.25-1627, 2006.
DOI : 10.1109/TMI.2006.884210

T. Schreiber, Measuring information transfer, Physical review letters, p.461, 2000.

W. G. Schreiber, F. Gückel, P. Stritzke, P. Schmiedek, A. Schwartz et al., Cerebral Blood Flow and Cerebrovascular Reserve Capacity: Estimation by Dynamic Magnetic Resonance Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.144, issue.10, pp.18-1143, 1998.
DOI : 10.1161/01.RES.10.3.393

URL : http://journals.sagepub.com/doi/pdf/10.1097/00004647-199810000-00011

C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

Q. Shen, H. Ren, M. Fisher, and A. T. Duong, Statistical Prediction of Tissue Fate in Acute Ischemic Brain Injury, Journal of Cerebral Blood Flow & Metabolism, vol.23, issue.10, pp.25-1336, 2005.
DOI : 10.1097/00004647-199712000-00003

O. C. Singer, R. D. De-rochemont, C. Foerch, A. Stengel, H. Lanfermann et al., Relation between Relative Cerebral Blood Flow, Relative Cerebral Blood Volume, and Mean Transit Time in Patients with Acute Ischemic Stroke Determined by Perfusion-Weighted MRI, Journal of Cerebral Blood Flow & Metabolism, vol.58, issue.5, pp.23-605, 2003.
DOI : 10.1093/brain/106.1.197

M. R. Smith, H. Lu, and A. R. Frayne, Signal-to-noise ratio effects in quantitative cerebral perfusion using dynamic susceptibility contrast agents, Magnetic resonance in medicine, pp.122-128, 2003.

J. Sobesky, O. Z. Weber, F. Lehnhardt, V. Hesselmann, M. Neveling et al., Does the Mismatch Match the Penumbra?: Magnetic Resonance Imaging and Positron Emission Tomography in Early Ischemic Stroke, Stroke, vol.36, issue.5, pp.36-980, 2005.
DOI : 10.1161/01.STR.0000160751.79241.a3

J. M. Srour, W. Shin, S. Shah, A. Sen, A. T. Carroll et al., SCALE-PWI: A Pulse Sequence for Absolute Quantitative Cerebral Perfusion Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.22, issue.5, pp.31-1272, 2011.
DOI : 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4

N. Stier, N. Vincent, D. Liebeskind, and A. F. Scalzo, Deep learning of tissue fate features in acute ischemic stroke, 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp.1316-1321, 2015.
DOI : 10.1109/BIBM.2015.7359869

A. , E. A. Warburton, L. Østergaard, and A. J. Baron, How reliable is perfusion MR in acute stroke ? validation and determination of the penumbra threshold against quantitative PET, Stroke, pp.39-870, 2008.

H. Thomsen, E. Steffensen, and A. Larsson, Perfusion MRI (dynamic susceptibility contrast imaging) with different measurement approaches for the evaluation of blood flow and blood volume in human gliomas, Acta Radiologica, vol.15, issue.1, pp.53-95, 2012.
DOI : 10.3174/ajnr.A1182

R. Van, R. Boom, M. T. Manniesing, W. Oei, E. J. Van-der-woude et al., A 4D digital phantom for patient-specific simulation of brain CT perfusion protocols, Medical physics, pp.41-071907, 2014.

E. Vonken, F. J. Beekman, C. J. Bakker, and A. M. Viergever, Maximum likelihood estimation of cerebral blood flow in dynamic susceptibility contrast MRI, Magnetic Resonance in Medicine, vol.7, issue.2, pp.41-343, 1999.
DOI : 10.1364/JOSAA.7.001266

J. M. Wardlaw, Neuroimaging in acute ischaemic stroke: insights into unanswered questions of pathophysiology, Journal of Internal Medicine, vol.22, issue.Suppl. 6, pp.172-190, 2010.
DOI : 10.1161/01.STR.22.8.1078

J. M. Wardlaw, E. E. Smith, G. J. Biessels, C. Cordonnier, F. Fazekas et al., Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration , The Lancet Neurology, pp.12-822, 2013.

M. Wiart, Imagerie par resonance magnetique (IRM) de la perfusion cerebrale : modelisation de la cinetique d'un produit de contraste pour la quantification de la perfusion (doctorat : biol. hum, Thèse de doctorat dirigée par Berthezène, 2000.

M. Wiart, S. Carme, W. Maï, H. B. Larsson, B. Neyran et al., In vivo quantification of regional myocardial blood flow: Validity of the fast-exchange approximation for intravascularT1 contrast agent and long inversion time, Magnetic Resonance in Medicine, vol.19, issue.2, pp.56-340, 2006.
DOI : 10.1148/radiology.204.2.9240523

L. Willats-and-f and . Calamante, The 39 steps: evading error and deciphering the secrets for accurate dynamic susceptibility contrast MRI, NMR in Biomedicine, vol.21, issue.8, pp.913-931, 2013.
DOI : 10.1002/jmri.20305

L. Willats, A. Connelly, and A. F. Calamante, Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion, Magnetic resonance in medicine, pp.146-156, 2006.

L. Willats, A. Connelly, S. Christensen, G. A. Donnan, S. M. Davis et al., The Role of Bolus Delay and Dispersion in Predictor Models for Stroke, Stroke, vol.43, issue.4, pp.43-1025, 2012.
DOI : 10.1161/STROKEAHA.111.635888

M. Wintermark and A. , Acute Stroke Imaging Research Roadmap II, Stroke, vol.44, issue.9, pp.44-2628, 2013.
DOI : 10.1161/STROKEAHA.113.002015

URL : http://stroke.ahajournals.org/content/44/9/2628.full.pdf

R. Wirestam, L. Andersson, L. Østergaard, M. Bolling, J. Aunola et al., Assessment of regional cerebral blood flow by dynamic susceptibility contrast MRI using different deconvolution techniques, Magnetic Resonance in Medicine, vol.18, issue.5, pp.43-691, 2000.
DOI : 10.1097/00004647-199809000-00002

O. Wu, S. Christensen, N. Hjort, R. M. Dijkhuizen, T. Kucinski et al., Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI, Brain, vol.129, issue.9, pp.129-2384, 2006.
DOI : 10.1093/brain/awl183

S. , R. M. Weisskoff, and E. A. , Predicting tissue outcome in acute human cerebral ischemia using combined diffusion-and perfusion-weighted MR imaging, Stroke, pp.32-933, 2001.

O. Wu, L. Østergaard, R. M. Weisskoff, T. Benner, B. R. Rosen et al., Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix, Magnetic Resonance in Medicine, vol.32, issue.1, pp.50-164, 2003.
DOI : 10.1097/00004728-200007000-00003

B. Xu, P. Spincemaille, T. Liu, M. R. Prince, S. Dutruel et al., Quantification of cerebral perfusion using dynamic quantitative susceptibility mapping, Magnetic Resonance in Medicine, vol.40, issue.4, pp.73-1540, 2015.
DOI : 10.1002/jmri.24365

F. Zanderigo, A. Bertoldo, G. Pillonetto, and A. C. Cobelli, Nonlinear Stochastic Regularization to Characterize Tissue Residue Function in Bolus-Tracking MRI: Assessment and Comparison With SVD, Block-Circulant SVD, and Tikhonov, IEEE Transactions on Biomedical Engineering, vol.56, issue.5, pp.56-1287, 2009.
DOI : 10.1109/TBME.2009.2013820

O. Zaro-weber, W. Moeller-hartmann, W. Heiss, and A. J. Sobesky, Influence of the arterial input function on absolute and relative perfusion-weighted imaging penumbral flow detection, Stroke, pp.43-378, 2012.

R. Zopf, U. Klose, and A. Karnath, Evaluation of methods for detecting perfusion abnormalities after stroke in dysfunctional brain regions, Brain Structure and Function, vol.33, issue.Pt 6, pp.667-675, 2012.
DOI : 10.1161/hs0102.101893