L. Ambrosio, N. Fusco, and D. , Pallara : Functions of bounded variation and free discontinuity problems, 2000.

S. Angenent and S. Haker, Tannenbaum : Minimizing ows for the monge kantorovich problem, SIAM journal on mathematical analysis, vol.35, issue.1, p.6197, 2003.

P. Appell, Mémoire sur les déblais et les remblais des systèmes continus ou discontinus : présenté à l'Académie des Sciences pour le concours du prix Bordin pour 1884, Académie des Sciences de l'Institut National de France, 1887.

G. Battle and P. Federbush, Divergence-free vector wavelets., The Michigan Mathematical Journal, vol.40, issue.1
DOI : 10.1307/mmj/1029004682

H. H. Bauschke and P. L. , Combettes : Convex analysis and monotone operator theory in Hilbert spaces, 2011.
DOI : 10.1007/978-3-319-48311-5

J. Benamou and Y. , Brenier : A computational uid mechanics solution to the monge-kantorovich mass transfer problem, Numerische Mathematik, vol.84, issue.3, p.375393, 2000.

J. Benamou and B. Froese, Oberman : Numerical solution of the optimal transportation problem using the mongeampere equation, Journal of Computational Physics, vol.260, p.107126, 2014.

N. Bonneel, J. Rabin, G. Peyré, and H. Pfister, Sliced and Radon Wasserstein Barycenters of Measures, Journal of Mathematical Imaging and Vision, vol.11, issue.1, p.2245, 2015.
DOI : 10.1023/A:1018366000512

URL : https://hal.archives-ouvertes.fr/hal-00881872

A. Bouharguane and A. Iollo, Weynans : Numerical solution of the mongekantorovich problem by density lift-up continuation, ESAIM : Mathematical Modelling and Numerical Analysis, vol.49, issue.6, p.15771592, 2015.

A. Bouharguane, E. Maitre, and E. Oudet, Papadakis : Multiphysics optimal transportation and image analysis. hal preprint, p.740671, 2012.

Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Communications on Pure and Applied Mathematics, vol.117, issue.4, p.375417, 1991.
DOI : 10.1002/cpa.3160440402

P. Cardaliaguet, G. Carlier, and B. Nazaret, Geodesics for a class of distances in the space of probability measures. Calculus of Variations and Partial Dierential Equations Moll : Numerical simulation of diusive and aggregation phenomena in nonlinear continuity equations by evolving dieomorphismss, SIAM J. Sci. Comput, vol.48, issue.31, p.39542043054329, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00686908

A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical imaging and vision, vol.20, issue.12, p.8997, 2004.

A. Chambolle, Pock : A rst-order primal-dual algorithm for convex problems with applications to imaging, Journal of Mathematical Imaging and Vision, vol.40, issue.1, p.120145, 2011.

R. Chartrand, B. Wohlberg, K. Vixie, and E. Bollt, A gradient descent solution to the monge-kantorovich problem, Applied Mathematical Sciences, vol.3, issue.22, pp.1071-1080, 2009.

P. Chiappori, R. J. Mccann, and L. P. Nesheim, Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness, Economic Theory, vol.77, issue.1, p.317354, 2010.
DOI : 10.1017/CCOL052139015X

L. Chizat, B. Schmitzer, G. Peyré, and F. , Vialard : An interpolating distance between optimal transport and scher-rao. arXiv preprint, 2015.
DOI : 10.1007/s10208-016-9331-y

A. Cohen, I. Daubechies, and J. , Biorthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematics, vol.10, issue.5, pp.485-560, 1992.
DOI : 10.1002/cpa.3160450502

P. L. Combettes, L. Condat, J. C. Pesquet, and B. C. , Vu : A forward-backward view of some primal-dual optimization methods in image recovery, 21st IEEE International Conference on Image Processing (ICIP), p.41414145, 2014.

P. L. Combettes and J. Pesquet, Proximal splitting methods in signal processing In Fixed-point algorithms for inverse problems in science and engineering, p.185212, 2011.

P. L. Combettes and V. R. , Wajs : Signal recovery by proximal forward-backward splitting, Multiscale Modeling & Simulation, vol.4, issue.4, p.11681200, 2005.
DOI : 10.1137/050626090

M. Cullen and W. Gangbo, A variational approach for the 2-dimensional semigeostrophic shallow water equations. Archive for rational mechanics and analysis, p.241273, 2001.

I. Daubechies, Ten lectures on wavelets, SIAM, vol.61, 1992.
DOI : 10.1121/1.406784

E. Deriaz, Ondelettes pour la Simulation des Ecoulements Fluides Incompressibles en Turbulence, Thèse de doctorat, 2006.
URL : https://hal.archives-ouvertes.fr/tel-00381649

E. Deriaz and V. Perrier, Divergence-free and curl-free wavelets in two dimensions and three dimensions: application to turbulent flows, Journal of Turbulence, vol.319, issue.7, 2006.
DOI : 10.1002/cpa.3160450502

B. Desjardins, A few remarks on ordinary dierential equations, Communications in Partial Dierential Equations, vol.21, pp.11-12, 1996.

E. Esser, X. Zhang, and T. Chan, A general framework for a class of rst order primal-dual algorithms for tv minimization, UCLA CAM Report, p.967, 2009.

L. C. Evans and R. F. Gariepy, Measure theory and ne properties of functions, 1992.

N. Feyeux, Optimal transport for data assimilation from images, Thèse de doctorat, 2016.

A. Figalli and N. Gigli, A new transportation distance between non-negative measures, with applications to gradients ows with Dirichlet boundary conditions, Journal de mathématiques pures et appliquées, vol.94, issue.2, p.107130, 2010.

J. H. Fitschen and F. Laus, Steidl : Dynamic optimal transport with mixed boundary condition for color image processing, 2015.

J. H. Fitschen and F. Laus, Steidl : Transport between rgb images motivated by dynamic optimal transport, 2015.
DOI : 10.1007/s10851-016-0644-x

URL : http://arxiv.org/pdf/1509.06142

W. Gangbo and R. J. Mccann, The geometry of optimal transportation, Acta Mathematica, vol.177, issue.2, p.113161, 1996.
DOI : 10.1007/BF02392620

V. Girault and P. , Raviart : Finite element methods for Navier-Stokes equations : theory and algorithms, 1986.

E. Giusti, Minimal surfaces and functions of bounded variation. Numéro 80, 1984.

A. Gramfort, G. Peyré, and M. Cuturi, Fast Optimal Transport Averaging of Neuroimaging Data, 2015.
DOI : 10.1007/978-3-319-19992-4_20

URL : https://hal.archives-ouvertes.fr/hal-01135198

K. Guittet, Contributions à la résolution numérique de problèmes de transport optimal de masse, Thèse de doctorat, 2003.

K. Guittet, On the Time-Continuous Mass Transport Problem and Its Approximation by Augmented Lagrangian Techniques, SIAM Journal on Numerical Analysis, vol.41, issue.1, p.382399, 2003.
DOI : 10.1137/S0036142901386069

E. Haber, T. Rehman, and A. Tannenbaum, An ecient numerical method for the solution of the l_2 optimal mass transfer problem, SIAM Journal on Scientic Computing, vol.32, issue.1, p.197211, 2010.

E. Haber, T. Rehman, and A. Tannenbaum, An ecient numerical method for the solution of the l_2 optimal mass transfer problem, SIAM Journal on Scientic Computing, vol.32, issue.1, p.197211, 2010.

B. He and X. Yuan, Convergence analysis of primal-dual algorithms for total variation image restoration Rapport technique, Citeseer, 2010. BIBLIOGRAPHIE [46] R. Hug : Transport optimal sous contrainte, algorithmes numériques et applications à l'assimilation, Thèse de doctorat, 2016.

R. Hug, E. Maitre, and N. Et-papadakis, Multi-physics optimal transportation and image interpolation, ESAIM : M2AN, p.16711692, 2015.
DOI : 10.1007/978-1-4419-9467-7

URL : https://hal.archives-ouvertes.fr/hal-00998370

R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the fokkerplanck equation, SIAM journal on mathematical analysis, vol.29, issue.1, p.117, 1998.

A. Jouini and P. Lemarié-rieusset, Analyse multi-r??solution bi-orthogonale sur l???intervalle et applications, Annales de l'IHP Analyse non linéaire, p.453476, 1993.
DOI : 10.1016/S0294-1449(16)30212-8

S. and K. Harouna, Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressible, Thèse de doctorat, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00544373

S. , K. Harouna, and V. Perrier, Eective construction of divergence-free wavelets on the square, Journal of Computational and Applied Mathematics, vol.240, pp.74-86, 2013.

K. Harouna and V. Perrier, Divergence-free wavelet projection method for incompressible viscous ow on the square, Multiscale Modeling & Simulation, vol.13, issue.1, p.399422, 2015.

L. V. Kantorovich, On the transfer of masses, Dokl. Akad. Nauk. SSSR, vol.37, issue.7 8, p.227229, 1942.

L. V. Kantorovich, On the Translocation of Masses, Journal of Mathematical Sciences, vol.133, issue.4, 1942.
DOI : 10.1007/s10958-006-0049-2

L. V. Kantorovich, On a Problem of Monge, Journal of Mathematical Sciences, vol.133, issue.4, p.13831383, 2006.
DOI : 10.1007/s10958-006-0050-9

S. Kondratyev and L. Monsaingeon, Vorotnikov : A new optimal transport distance on the space of nite radon measures, 2015.

D. Lombardi and E. Maitre, Eulerian models and algorithms for unbalanced optimal transport, ESAIM: Mathematical Modelling and Numerical Analysis, vol.49, issue.6, p.17171744, 2015.
DOI : 10.1090/gsm/058

URL : https://hal.archives-ouvertes.fr/hal-00976501

S. Mallat, A wavelet tour of signal processing. Academic press, 1999.

R. Masson, BIORTHOGONAL SPLINE WAVELETS ON THE INTERVAL FOR THE RESOLUTION OF BOUNDARY PROBLEMS, Mathematical Models and Methods in Applied Sciences, vol.06, issue.06, p.749791, 1996.
DOI : 10.1142/S0218202596000328

R. J. Mccann, Existence and uniqueness of monotone measure-preserving maps, Duke Mathematical Journal, vol.80, issue.2, p.309324, 1995.
DOI : 10.1215/S0012-7094-95-08013-2

R. J. Mccann, A convexity principle for interacting gases Advances in mathematics, p.153179, 1997.

Y. Meyer, Ondelettes and opérateurs, 1990.

P. Monasse and V. Perrier, Orthonormal wavelet bases adapted for partial dierential equations with boundary conditions, SIAM journal on mathematical analysis, vol.29, issue.4, p.10401065, 1998.
DOI : 10.1137/s0036141095295127

G. Monge, Mémoire sur la théorie des déblais et des remblais, pp.666704-1781

J. Moreau, Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France, p.273299, 1965.
DOI : 10.24033/bsmf.1625

K. Ni, X. Bresson, T. Chan, and S. Esedoglu, Local Histogram Based Segmentation Using the Wasserstein Distance, International Journal of Computer Vision, vol.18, issue.9, pp.97-111, 2009.
DOI : 10.1090/gsm/058

N. Papadakis, G. Peyré, and E. Oudet, Optimal Transport with Proximal Splitting, SIAM Journal on Imaging Sciences, vol.7, issue.1, p.212238, 2014.
DOI : 10.1137/130920058

URL : https://hal.archives-ouvertes.fr/hal-00918460

G. Peyré, J. Fadili, and J. Rabin, Wasserstein active contours, 2012 19th IEEE International Conference on Image Processing, p.25412544, 2012.
DOI : 10.1109/ICIP.2012.6467416

J. Rabin, S. Ferradans, and N. Papadakis, Adaptive color transfer with relaxed optimal transport, 2014 IEEE International Conference on Image Processing (ICIP), p.48524856, 2014.
DOI : 10.1109/ICIP.2014.7025983

URL : https://hal.archives-ouvertes.fr/hal-01002830

J. Rabin, G. Peyré, J. Delon, and M. Bernot, Wasserstein Barycenter and Its Application to Texture Mixing, p.435446, 2012.
DOI : 10.1109/18.119725

S. T. Rachev and L. Rüschendorf, Mass Transportation Problems : Volume I : Theory, 1998.

R. T. Rockafellar, Convex analysis, 1997.
DOI : 10.1515/9781400873173

Y. Rubner, C. Tomasi, and L. J. , Guibas : A metric for distributions with applications to image databases, Computer Vision Sixth International Conference on, p.5966, 1998.

Y. Rubner, C. Tomasi, and L. J. Guibas, The earth mover's distance as a metric for image retrieval, International journal of computer vision, vol.40, issue.2, p.99121, 2000.

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, p.259268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

L. Saumier, M. Agueh, and B. Khouider, An ecient numerical algorithm for the l2 optimal transport problem with applications to image processing. arXiv preprint arXiv :1009, BIBLIOGRAPHIE [81] C. S. Smith et M. Knott : Note on the optimal transportation of distributions, p.323329, 1987.

T. Valkonen, A primal???dual hybrid gradient method for nonlinear operators with applications to MRI, Inverse Problems, vol.30, issue.5, p.55012, 2014.
DOI : 10.1088/0266-5611/30/5/055012

C. Villani, Topics in optimal transportation. Numéro 58, 2003.