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Abstract

Static analysis concerns itself with deriving program properties which hold universally forall
program executions. Such properties are used forproving program properties (e.g. there never
occurs an over�ow or other runtime error regardless of a particular execution) and are almost
invariably established using inductive invariants : properties which hold for the initial state and
imply themselves under the program transition, and thus hold universally due to induction.

A traditional approach for �nding numerical invariants is using abstract interpretation,
which can be seen as interpreting the program in theabstract domain of choice, only tracking
properties of interest. Yet even in the intervals abstract domain (upper and lower bounds for
each variable) such computation does not necessarily converge, and the analysis has to resort to
the use ofwidenings to enforce convergence at the cost of precision.

An alternative game-theoretic approach calledpolicy iteration , guaranteesto �nd the least
inductive invariant in the chosen abstract domain under the �nite number of iterations. Yet the
original description of the algorithm includes a number of drawbacks: it requires converting the
entire program to an equation system, does not easily integrate with other approaches, and
does not directly bene�t from known results for Kleene iteration (e.g. iteration order).

Our new algorithm for running local policy iteration ( LPI ) instead formulates policy iteration
as traditional Kleene iteration, with a widening operator that guaranteesto return the least
inductive invariant in the domain after �nitely many applications. Local policy iteration runs in
template linear constraint domains which requires setting in advance the �shape� of the derived
invariant (e.g. x + 2 y for deriving x + 2y � 10). Our second theoretical contribution involves
development and comparison of a number of di�erent templatesynthesisstrategies, and their
evaluation when used with LPI . Additionally, we present an approach for generating abstract
reachability trees using abstract interpretation, enabling the construction of counterexample
traces, which in turns lets us to generate new templates using Craig interpolants.

In our third contribution we bring our attention to interprocedural and potentially recursive
programs. We develop an algorithm parameterizable with any abstract interpretation for
summary generation, and we study it's parameterization with LPI . The resulting approach is
able to generate least inductive invariants in the domain for a�xed number of summaries for
recursive programs.

Our �nal theoretical contribution is a �formula slicing� method for �nding potentially
disjunctive inductive invariants from program fragments obtained by symbolic execution.

We implement all of these techniques in the open-source state-of-the-artCPAchecker

program analysis framework, enabling collaboration between di�erent analyses.
The techniques mentioned above rely onsatis�ability modulo theories solvers, which are

capable of giving solutions to �rst-order formulas over certain theories or showing that none
exists. In order to simplify communication with such tools we present theJavaSMT library,
which provides a generic interface for such communication. The library has shown itself to be a
valuable tool, and is already used by many researchers.
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Résumé

L'analyse statique correcte d'un programme consiste à obtenir des propriétés vraies detoute
exécution de ce programme. Celles-ci sont utiles pour démontrer des caractéristiques appréciables
du logiciel, telles que l'absence de dépassement de capacité ou autre erreur à l'exécution quelle
que soient les entrées du programme. Elles sont presque toujours établies à l'aide d'invariants
inductifs : des propriétés vraies de l'état initial et telles que si elles sont vraies à une étape de
calcul, alors elles restent vraies à l'étape suivante de la transition de calcul, donc sont toujours
vraies par récurrence.

L' interprétation abstraite est une approche traditionnelle de la recherche d'invariants
numériques, que l'on peut exprimer comme une interprétation non-standard du programme dans
un domaine abstrait choisi et ne tenant compte que de certaines propriétés intéressantes. Même
dans un domaine aussi simple que lesintervalles (un minorant et un majorant pour chaque
variable), ce calcul ne converge pas nécessairement, et l'analyse doit recourir à desopérateurs
d'élargissementpour forcer la convergence au détriment de la précision.

Une autre approche, appeléeitération de politique et inspirée par la théorie des jeux, garantit
de trouver le plus fort invariant inductif dans le domaine abstrait choisi après un nombre
�ni d'itérations. Cependant, la description originale de cet algorithme sou�rait de quelques
faiblesses: elle se basait sur une conversion totale du programme en un système d'équations,
sans intégration ni synergie avec les autres méthodes d'analyse.

Notre nouvel algorithme est une formelocale de l'itération de politique, qui la replace dans
l'itération de Kleene mais avec un opérateur d'élargissement spécial qui garantit d'obtenir le
plus petit invariant inductif dans le domaine abstrait après un nombre �ni de ses applications.
L'itération de politique locale opère dans les domaines de contraintes linéaires données par
patron, qui demandent de �xer d'avance la � forme � de l'invariant (p.ex. x + 2y pour obtenir
x + 2 y � 10). Notre seconde contribution théorique est le développement et la comparaison
de plusieurs stratégies de synthèse de patrons, utilisées en conjonction avec l'itération locale
de politiques. De plus, nous présentons une méthode pour générer des arbres d'accessibilité
abstraite par interprétation abstraite, permettant la génération de traces de contre-exemples, et
ensuite la génération de nouveaux patrons à partir d'interpolants de Craig.

Notre troisième contribution concerne l'analyse interprocédurale de programmes, éventuelle-
ment récursifs. Nous proposons un algorithme qui génère pour chaque procédure unrésumé,
applicable à toute interprétation abstraite et notamment à l'itération de politique locale. Nous
pouvons ainsi générer les invariants inductifs les plus forts dans le domaine pour un nombre
�xé de résumés pour un programme récursif.

Notre dernière contribution théorique est une méthode d'a�aiblissement permettant de
trouver des invariants inductifs, éventuellement disjonctifs, à partir de formules obtenues par
exécution symbolique.

Nous avons mis en ÷uvre toutes ces approches dans le système d'analyse statiqueCPAchecker ,
un logiciel libre, ce qui permet des communications et collaborations entre analyses.

7



Nos techniques utilisent des résolveurs de satis�abilité modulo théorie, capables, étant donné
une formule de logique du premier ordre sur certaines théories, d'en donner un modèle ou
de démontrer qu'aucun n'existe. A�n de simpli�er les communications avec ces outils, nous
présentons la bibliothèqueJavaSMT , fournissant une interface générique. Cette bibliothèque a
déjà démontré son utilité pour de nombreux chercheurs.
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Chapter 1

Introduction

1.1 Motivation: Software Systems Complexity

Every day computerized systems are becoming more ubiquitous in human life. While just
two decades ago computers were thought of as stationary standalone devices dedicated to a
particular task, today it is di�cult to �nd a device which does not have a computer inside.
Computerized devices exist on all scales and in all areas of the industry, starting from phones
and Raspberry Pi chips, to rockets and nuclear power stations.

The complexity and the scope of those systems has experienced a dramatic growth, which
magni�es the possibility of damage from errors in the software. Traditionally, quality assurance
was performed by extensive testing and having a large amount of redundancy, yet these
approaches can not give anyguaranteesof conformance to the speci�cation, which becomes a
necessity for large-scale systems.

Yet despite the fact that the formal methods research dates back to 1960's, until very
recently the adoption of the formal tools in the industry remained weak. However, currently
this trend starts to change. Many large companies have started using formal methods during
the development of large software solutions. For example, Amazon has adopted the usage of
TLA+ speci�cation language for designing systems, which has �added signi�cant value� by
��nding subtle bugs� or proving correctness after �aggressive performance optimizations� [New14;
New+15]. In the embedded system domain, theB Method was used to design correct by
construction safety critical controller for automated screen doors for subway, with no bugs
found after twenty years of deployment [Lec08]. Acknowledging the growing importance of
formal methods, the recently published DO-178C [RTC11] document, which is used a basis for
certi�cation authorities on commercial software-based aerospace systems, allows the application
of formal methods to replace certain forms of testing.

Chapter Outline We consider the question that given aspeci�cation S and a program
P, how to automatically check whetherP conforms to S. We start by outlining traditional
approaches for checking correctness in Section 1.2. In Section 1.3 we give an informal de�nition
of a speci�cation. We outline the approaches for conformance checking Section 1.4, and in
Section 1.5 we describe the outputs software analysis tools provide, and the practical implications
of the possible verdicts. Finally, in Section 1.6 we list the contributions of this thesis which
shape the following chapters.
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Chapter 1 Introduction

1.2 Traditional Approaches for Ensuring Reliability

Extensive testing, either manual or automated through unit-tests is often the most preferred
approach for ensuring the reliability of software. Clearly, if a unit-testing suite exposes a bug,
an underlying program is buggy, yet if all tests pass we do not know whether there exists an
input causing a problematic behavior. Traditionally, test engineers have been using the measure
of coverage(a percentage of lines of code executed by the test) to assess the completeness of a
test data. However, coverage is only a good metric while it is below 100%, as it gives a direction
for improvement. Once the full coverage is achieved, there are no guarantees on whether the
program contains problematic behavior, as not the entire input state space is covered; in words
of Dijkstra [Dij69]: �testing is good for �nding bugs, yet is woefully inadequate for showing
their absence�.

Both manual integration testing are costly and time consuming, even though they do not
provide any guarantees on the resulting product. Research ontest generation aims to generate
the test input automatically instead. A notable success story, especially in the security domain,
is a simple approach calledfuzzing [MFS90]. The idea of fuzzing is to randomly change (mutate)
user-provided seeddata, and to feed it to the input program, until a crash (or a speci�cation
violation) is encountered. More sophisticated fuzzers such asAFL [Zal] additionally rely on
genetic programming to generate new inputs, where the �tness function is determined by
the coverage the generated input achieves for the program under test. Despite the technique
simplicity, (or perhaps, due to) fuzzing has achieved enormous success in the security community,
where a large fraction of vulnerabilities discovered today are found using fuzzing, including the
heartbleed[CVE13] bug found in the OpenSSL stack.

Automated test generation can be especially successful when coupled withruntime veri�ca-
tion [Bar+01; HG08] approaches which dynamically analyze the program during the execution,
and report if the speci�cation is violated. Examples of popular and in�uential runtime veri�ca-
tion tools include ThreadSanitizer [SI09] andAddressSanitizer [Ser+12].

1.3 What is a Speci�cation?

Informally, the speci�cation de�nes what the software should do (e.g. store and retrieve data,
drive a car, often referred to as afunctional requirement), as well ashow it should do it (e.g.
do not crash, have a certain uptime, often referred to as anonfunctional requirement).

Research into de�ning a formal language for expressing formal (and formally checkable)
speci�cation dates back to 1960's and includes languages such asE-ACSL [DKS13] and
TLA+ [Cha+08] which allow the veri�cation engineer to formally state checkable requirements
the system has to ful�ll. Yet today most software systems do not have such formally de�ned
speci�cations, and their behavior is de�ned using a combination of prose and UML diagrams.

Generating a formal speci�cation is a challenging task, additionally complicated by the fact
that speci�cation is written in a separate language software engineers are not familiar with.
Thus, many approaches have been proposed to lessen the fundamental alienation between the
code and the speci�cation. For example, theDafny [Lei10] programming language proposed
by Leino et al., allows software engineers to embed the speci�cation inside the code using
usual language constructs, making the system more approachable for software engineers. Many
correct-by-construction systems were designed usingDafny [Haw+14]. This follows the idea
that speci�cation is, fundamentally, not di�erent from the code, and one should re�ne the other.
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Section 1.4 The Halting Problem and the Program Analysis Landscape

1.3.1 Safety and Liveness

Temporal language allows exactly stating how system should evolve with time, supporting a
very rich set of properties. These properties are divided into two distinct groups:safety and
liveness[MP91]. Fundamentally, a safety property establishes that no bad behavior happens,
while livenessis used to express the property that somethinggood eventually happens1. For
example, safety deals with properties such as �no integer over�ow�, or �no assertion violation�,
or �no unde�ned behavior according to C11 standard�, while the most famous liveness property
is �the program has to be terminating�, followed by more properties speci�c to concurrent
systems, such as �parent thread eventually gains control�.

In this thesis we only concern ourselves with safety properties, and we assume that a
speci�cation is already given in the form of a set of a program states which are considered
to be erroneous. Examples of such speci�cation includeassert statement violations, as well
as violations of implicit speci�cation imposed by the language standard. In case of C that
means lack of unde�ned behavior, which includes properties such as signed integer over�ow,
bu�er over�ow, null pointer dereference, use-after-free, and many others. Even though such a
speci�cation might seem simplistic, security exploits are regularly found in programs resulting
from unde�ned behavior.

1.4 The Halting Problem and the Program Analysis Landscape

A decision procedure issound if and only if it never returns false answers. Similarly, a decision
procedure iscomplete, if it is able to return a verdict for all inputs.

The Halting problem [Tur36] states that it is impossibleto construct an algorithm which
would would state whether a given input program terminates for all possible inputs: that is,
the underlying decision problem isundecidable. Rice's theorem [Ric53] generalizes this result
further to the undecidability of yielding any sound and complete non-trivial statements about
the computation result of any program written in a Turing-complete [Tur36] programming
language.

These results shape the entire �eld of program analysis, stating that it isimpossibleto derive
a sound and complete algorithm �nding even the simplest property. However it can be also seen
as the theorem which pushes the �eld towards being more applied: as applied mathematicians
can not analytically solve most of the di�erential equations they deal with, it does not stop
them from computing very good numerical approximations.

Similarly, the absence of soundness and completeness in no way precludes the possibility of
software engineering tools which provideuseful statements about the program. In this section
we brie�y outline the landscape of the software analysis �eld, and how di�erent approaches get
around the halting problem in order to reason about the software.

1.4.1 Finite Space Exploration

Technically, the halting problem does not apply to software running on physical hardware,
as it is executed on machines with �nite memory, making the entire system �nite state. In
practice though, total enumeration of all possible inputs is impractical, even for the simplest
programs. For example, just iterating over all possible values for asingle 64-bit integer requires
264 = 2106 � 1036

= 1018 CPU cycles, taking decades on modern computers. Yet security

1Somewhat confusingly, liveness properties are not directly related to live variables [ASU86], though a variable
may be considered alive if some operation depending on the variable valueeventually happens.
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researchers are often capable to achievetotal coverage just by testing on systems with smaller
bit width.

Additionally, many useful systems can be modelled asautomatons which do have �nite
state-space, which can be exhaustively explored. Notably, Clarke and Emerson [CE82] (and
independently Sifakis and Queille [QS82]) have published a in�uential idea that for a system
represented as a Kripke structure [Kri63] and a speci�cation given as anCTL formula, it is
possible to construct an algorithm checking the conformance to the speci�cation. Intuitively,
the construction is performed by reducing both the system and the speci�cation to a Büchi
automaton, and then constructing the combination of the program automaton, and the negation
of the property, and checking it for emptiness. From a high level it can be seen as an exhaustive
state space exploration, which attempts to perform many reductions. The approach was
successfully adapted for e�ciently analyzing many �nite state systems and protocols.

1.4.2 Correct By Construction Software

Instead of considering agiven software artifact and attempting to construct a proof or �nding
a counter-example, such approaches aim to build a correct software in the �rst place, often
embedding the proof in the produced software artifact.

A variable type can be considered an arbitrary predicate over the contents of the variable.
From that perspective most type systems found in mainstream programming languages are very
simple, and let the programmer express only the most basic predicates (e.g. in Java if a variable
is declared as anInteger , a compiler will only compile the source code if it can prove that a
variable indeed either points to an integer or to null ). However, very complicated type systems
including dependent types also exist, withCoq [CH85] being a notable example. InCoq , a proof
of a theorem is constructed using types, and due to the Curry-Howard correspondence [How80],
executable, correct-by-constructionOCaml code can be lifted once the proof is �nished. The
Coq theorem prover is very successful, with veri�ed C compiler [Bol+13] being one of the most
prominent success stories.

1.4.3 Under-Approximating Approaches

Using under-approximation one can explore some subset of the reachable state space, stopping
whenever some bound (time limit, size, input complexity) is reached. Such veri�cation techniques
veri�cation include symbolic execution [Kin76], concolic execution [SMA05], bounded model
checking [Bie+03] and others. An advantage of such techniques include the ability to generate
the unit test triggering the fault on the discovery of the error state.

1.4.4 Over-Approximating Approaches

Approaches based on over-approximation sacri�cecompletenessin favor of soundness. For
instance, an over-approximating checker for assertion violations can prove absence of errors for
some input programs, while reporting anUNKNOWNverdict for others. Though many software
engineers might see this as an unacceptable compromise, such a tool can still be very useful
in practice: for example, terminating programs usually terminate for a simple intuitive reason
which could be then found by the approach.

Over-approximating approaches usually rely onabstraction to shrink the program state
space, making the full exploration feasible. Use of abstraction may result inspurious behaviors
which the real system does not exhibit, causing the incompleteness. Such approaches include
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data�ow [Kil73] analysis which predates the formal methods �eld, and later generalization into
abstract interpretation [CC77a]. One of the biggest success stories of abstract interpretation is
using Astrée [Bla+03] static analyzer for verifying lack of implicit errors in Airbus �y-by-wire
controller.

In the rest of this thesis we mainly concern ourselves with over-approximating approaches,
which are sound, but incomplete.

1.5 What is a Veri�er Output?

Tools used for veri�cation normally have three possible outputs for a given program and a
speci�cation:

ˆ TRUE, signifying that the program conforms to the speci�cation.

ˆ FALSE, meaning that a counterexample was found.

ˆ UNKNOWN, meaning that the analysis results are insu�cient to draw a conclusion.

The UNKNOWNverdict is imposed by the halting problem (Section 1.4), and in practice often
manifests itself as a timeout.

The FALSEverdict indicate that the tool has found a program trace violating the speci�cation.
Such a trace can be given e.g. as a deterministicre�nement of the original program which
replaces all user inputs and non-deterministic choices by given values, e�ectively generating a
test vector [Bey+04] that can be compiled and executed with the original program. A reliable
FALSEverdict is valued by software engineers, as it provides a reproducible bug which can be
recorded in the bug tracker and eventually �xed, thus increasing the software quality.

The TRUEverdict means that the program does not contain any speci�cation violations,
and it was successfullyveri�ed . Despite its usefulness,trusting such a veri�cation verdict
in a business setting is often quite challenging. Firstly, the speci�cation is often incomplete
and potentially incorrect, and many bugs in safety critical software during the last decade
were present in the speci�cation. Secondly, software engineers often raise the classical point
�who veri�es the veri�er�, doubting the verdict due to the possibility of bugs in the software
performing the analysis. Finally, while speci�cation violation can be presented as a set of inputs
to a given program, it is a lot more di�cult to give veri�cation certi�cate back to the end
user, especially in a human-readable form. We believe that all three of these problems are
fundamentally solvable. While speci�cation does not have to be complete, verifying partial, or
implicit (no crashes) correctness already increases a level of safety of the program. Secondly,
the veri�er can be either built in a correct-by-construction system such as Coq [CH85], or it
can produce checkablecerti�cates which can be independently veri�ed by a separate tool.

1.6 Contributions and Thesis Outline

Generally, over-approximating approaches prove properties usinginductive strengthening: �nding
an invariant which makes the desired property inductive under all program transitions, e�ectively
giving a proof by induction. Such a strengthening is called aninductive invariant , as it establishes
a universally valid fact for all program executions. Inductive invariants are very useful in all
branches of program analysis, including compiler optimizations, veri�cation and automated
bug-hunting.
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In this thesis we address the task of generating inductive invariants for the purpose of
program veri�cation : that is, a construction of veri�cation algorithms which can present the
TRUEverdict for a given input program and a safety speci�cation. We concern ourselves with
�nding small inductive invariants, which can be used to prove the desired property of interest.
Our work follows the tradition of static analysis and abstract interpretation [CC77a], yet we
heavily use logic and solvers for boolean formulas over an arithmetic theory.

Computing even simplest numeric properties (e.g. intervals, x 2 [1; 5]) with abstract
interpretation is not guaranteed to converge in a �nite time. As a result, a widening operator is
used, which enforces convergence at a cost of precision. There exist many heuristics to recover
this precision, yet they are inherently very brittle. A di�erent approach called policy iteration ,
derived from game theory, provides aguaranteethat the resulting inductive invariant is smallest
possible in the given domain. Yet, policy iteration is rarely used in a program analysis �eld
due to the complexity of the algorithm, high running cost, limitation to certain domains, and
inability to cooperate with other analyses.

In this thesis we tackle these problems by extending the original algorithm, providing
new strategies for generating abstract domains, and adapting policy iteration to summary
computation. Additionally, we provide a new algorithm for computing potentially disjunctive
inductive invariants, which is aimed to complement the analysis by policy iteration.

1.6.1 Theoretical Contributions

ˆ In Chapter 3 we present thelocal policy iteration algorithm, which combines the precision
of policy iteration with versatility of the traditional Kleene iteration approach. We study
the properties of the new algorithm, we describe various extensions, and we provide
extensive empirical evaluation. This contribution is a signi�cantly improved version of
the previously published result [KMW16], which also includes extended background on
max-policy iteration.

ˆ Local policy iteration �nds the least inductive invariant (Section 2.5.1) in the template
constraints domain (Section 2.8.3), which requires already present template annotations
de�ning the shapeof the possible inductive invariant. We present various approaches for
generating templateswith respect to the property we wish to prove in Chapter 4. This
contribution was not published.

ˆ In Chapter 5 we present a new framework for using intraprocedural analysis forsummary
computation, which potentially drastically improves the performance of the analysis,
and makes it applicable to recursive programs. We study the parameterization of this
framework with local policy iteration, its properties, and we provide an empirical evaluation.
This contribution was not published.

ˆ Local policy iteration technique excels at �nding convex inductive invariants for the given
program, yet many safety properties require non-convex inductive strengthening. We
complement our LPI algorithm by the formula slicing approach for �nding disjunctive
inductive invariants. This approach is presented in Chapter 6 and was published in �Haifa
Veri�cation Conference� [KM16].
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1.6.2 Engineering Contributions

A major goal of our work is to present working, practical tools which can be used both by
end-users for program veri�cation, and by the veri�cation community for comparing di�erent
invariant synthesis approaches. Thus we present the following engineering contributions:

ˆ LPI and Slicer modules for automated software analysis as presented for Software
Veri�cation Competition, described in Chapter 7 and published in �Tools for Algorithm
Construction And Synthesis� [Kar16].

ˆ JavaSMT library for interacting with SMT solvers, heavily used by our tools, de-
scribed in Chapter 8 and published in �Veri�ed Software: Tools, Techniques and Evalua-
tions� [KBF16].
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Chapter 2

Background

2.1 Introduction

In this chapter we introduce the concept of an inductive invariant, and we state its importance
for proving program safety. We provide an overview for existing techniques for �nding inductive
invariants along with necessary prerequisites.

2.1.1 Chapter Outline

We start by �xing the notation in Section 2.1.2, and giving a formal de�nition of a program in
Section 2.2. We then proceed to describe how both the program and the speci�cation can be
encoded as boolean formulas in Section 2.3. In Section 2.5 we show how safety properties are
proven using inductive invariants. We give extensive background for abstract interpretation in
Section 2.7, which can be seen as a framework for deriving inductive invariants, and we give an
overview of a number of di�erent abstract domains in Section 2.8. We outline the large block
encoding technique which we use extensively in the rest of this thesis in Section 2.9. Finally, in
Section 2.10 we show how di�erent approaches can be uni�ed (on the theoretical and on the
implementation level) in the con�gurable program analysis (CPA ) framework.

2.1.2 Notation and De�nitions

We denote sets using capital Latin letters, e.g.A; B; C; D , and for elements of these sets we use
lowercase letters, e.g.a 2 A. We usebold letters in order to indicate vectors: x . To distinguish
between the program lines, as written by the software engineer, and mathematical expressions
representing these, we usetypewriter font for program statements, e.g. x := x + 1, and math
font for mathematical expressions, e.g.x0 = x + 1 .

Usual sets of numbers will be denoted with blackboard letters, such asR for reals, Q for
rationals, Z for integers and N for natural numbers. Let B = f> ; ?g denote the set of the
boolean values, where> stands for �true�, and ? stands for �false�. We de�ne the set of extended
real numbers as reals with positive and negative in�nities adjoined as�R � R [ f + 1 ; �1g . We
use extended real numbers only for comparison and upper bound operations, and thus we do
not de�ne paradoxical operations (that is, we never evaluate e.g.1 � 1 ).

We denote a projection operator returning a one-indexedi th element from a tuple of values
v as vj i (e.g. (3; 4; 5)j2 = 4 ). This notation is naturally extended to sets of indexes (e.g.
(3; 4; 5)jf 2;3g = (4 ; 5)), and variables by using quanti�er elimination, e.g. (y = 3 ^ x = y)jx �
9y: (y = 3 ^ x = y) � (x = 3) . We shall also use basic linear algebra notation:x> denotes the
transpose ofx, and thus x> y is the inner product of x and y: e.g. (1; 2; 3)> (x; y; z) = x +2y+3z.
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We denote the disjoint union operation using the coproduct symbol: that is,A
`

B evaluates
to A [ B , and additionally states that A and B are disjoint.

We make use of lambda calculus notation for de�ning functions, e.g. a function which
squares its input is de�ned as�s: s 2.

2.2 Program Formalization

We assign formal meaning to programs by mathematically modelling the programseman-
tics [Flo67]. We formalize the program as a control �ow automaton (CFA ), which is equivalent
to a program in a simple programming language with no procedures and no heap access1. This
form is very similar to traditional control �ow graph representation in compiler theory [ASU86],
yet we associate statements with program edges.

Non-heap-manipulating programs in an imperative programming language with no recursion
and no function pointers can be trivially converted to such a format by inlining functions and
removing aliasing2.

We de�ne x to be a tuple of all program variables. For simplicity, we do not model variable
types (even though they are supported by our implementation), and we assume that every
variable is assigned a value fromR.

De�nition 2.1 (Concrete Data State). A concrete data stateis a map x ! R which assigns
a real value to every program variable, and corresponds to a snapshot of a program memory
during execution, excluding the program counter.

The set of all concrete data states is denoted byC. A set r � C , describing multiple concrete
data states, is called aregion. The set of all regions is denoted byR � 2C. In order to model
the program counter, we introduce the setnodesof all possible program location.

De�nition 2.2 (Concrete State). A concrete statec is a tuple (m; n) where m is a concrete
data state, and n 2 nodes is a program location. A concrete state corresponds to the whole
memory snapshot, su�cient to reconstruct the entire program state.

A set of edgesdescribes all possible transitions within a program. Each edgee 2 edgesis a
tuple (a; OP; b), modelling the constraints on a transition from a to b, where f a; bg � nodes, and
OPis an operation performed on a transition, which is either a guard or an assignment. We
formalize the analyzed language in Figure 2.1.

With the grammar for the language given, we de�ne the formal semantics for the operators.
As we are primarily interested in sets of concrete states, we only give the de�nition of the
collecting semanticsR ! R , which describes the transformation caused by an operator to an
entire set of states.

The semantics of a numerical expression evaluation

J<expr>K: R ! 2R

is given by the usual evaluation rules on concrete data states contained in the input region,
and the subsequent union of all resulting states. For example:

Jx + yK(ff x : 1; y : 1g; f x : 2; y : 2gg) = f 2; 4g

1We extend the program model to allow for function calls in Chapter 5.
2 In practice, our implementation supports both, as described in Chapter 7.
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hstmti ::= hidenti :̀= ' hexpri // Assignment to a single variable
| hidenti :̀= ' `input() ' // Non-deterministic assignment
| `assume' `( ' hbool_expri )̀ ' // Guard
| hemptyi // No-op

hbool_expri ::= hexpri hcmp_opi hconsti
| hbool_expri `or ' hbool_expri
| hbool_expri `and' hbool_expri
| `not ' hbool_expri

hexpri ::= hidenti
| hconsti // Numerical Constant
| `( ' hexpri )̀ '
| hexpri hopi hexpri
| `- ' hexpri

hopi ::= `+' | `- ' | `* ' | `/ '

hcmp_opi ::= `<=' | `<' | `>' | `>=' | `!= ' | `=='

Figure 2.1: BNF Grammar of the Analyzed Language

If the evaluation process results in an invalid operation, such as division by zero, the output
is 2R, corresponding to all possible values (also referred to as> ). For example:

Jx / y K(ff x : 1; y : 0gg) = >

Thus, the semantics for an assignment statement is given by the union of the assignment
application on all concrete states contained inside the region:

J<ident> := <expr> K� �r:
[ �

x : c0 if x = <ident> elses[x] j x 2 x ^ s 2 r ^ c0 2 J<expr>K(s)
	

For example:

Jx := x + yK(ff x : 1; y : 0g; f x : 0; y : 1gg) = ff x : 1; y : 0g; f x : 1; y : 1gg

Similarly, the semantics for a non-deterministic input is given by:

J<ident> := input() K� �r:
[ �

x : c0 if x = <ident> elses[x] j x 2 x ^ s 2 r ^ c0 2 R
	

We de�ne the helper semantics for Boolean expressions as a functionC ! B, which performs
evaluation under the usual rules, returning �true� if and only if there exists a concrete state in
a region making the value of the expression �true�. Assume statements �lter the input region,
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letting only the conforming concrete states through:

Jassume(<bool_expr>)K� �r:
[

f s j s 2 r ^ J<bool_expr>K(s)g (2.1)

For example, Jx <= 5K(ff x : 1g; f x : 6gg) = ff x : 5gg.
We have de�ned the collecting semantics naturally assuming that the program performs

execution forward, which corresponds to the actual execution process (strongest postcondition).
Dually, the semantics can be also de�ned using theweakest precondition: for an output region
r 0 and an operator OPit gives the largest region which maps intor 0 under JOPK. In this thesis
we stick to the strongest postcondition semantics.

De�nition 2.3 (Control Flow Automaton) . A CFA is a tuple (nodes; edges; n0; x ), wherenodes
is a set of program control states modelling the program counter,n0 2 nodes is a program
starting point, x is a set of program variables, andedges� nodes� OPS� nodes, where OPSis a
set of all possible program operators.

De�nition 2.4 (Program Path) . A program path is a sequence of concrete stateshc0; : : : ; cn i
where c0 = ( m0; n0) and for any two consecutive statesci = (mi ; ni ) and ci +1 = (mi +1 ; ni +1 )
there exists an edge(ni ; OP; ni +1 ) 2 edgessuch that ni +1 2 JOPK(ni ).

A concrete state si = (m; n), and the associated noden, are both called reachablei� there
exists a program path which containssi .

2.3 Logic in Program Analysis

So far, we have introducedregions and operators: sets of states and functions from regions to
regions. We shall now useformulas to succinctly represent both, as well as thespeci�cation
(Section 1.3) the program is expected to conform to.

We operate over �rst-order logic formulas within a theory T such that the problem of deciding
the satis�ability of a quanti�er-free formula is NP-hard. Suitable theories include propositional
reasoning, linear real arithmetic, and linear integer arithmetic (Presburger arithmetic). A set of
all such formulas over a set of free variables is denoted byF .

A formula is said to be an atom if it does not contain any logical connectives (e.g. it is a
comparisonx � y between integer variables), aliteral if it is an atom or its negation, a clauseif
it is a disjunction of literals, and a cubeif it is a conjunction of literals. A formula is in negation
normal form (NNF) if negations are applied only to atoms, and it is in conjunctive normal form
(CNF) if it is a conjunction of clauses.

We abuse the notation by con�ating the set of program variablesx de�ned in Section 2.2,
and the set of free variablesx appearing inside the formula. For a set of variablesx, we denote
by x0 a set of primed variables where the prime symbol was added to all the elements ofx .
With � [a1=a2] we denote the formula� after all free occurrences of the variablea1 have been
replaced bya2. This notation is extended to sets of variables:� [x=x0] denotes the formula�
after all occurrences of the free variables fromx were replaced with corresponding free variables
from x0. For brevity, a formula � [x=x0] may be denoted by� 0. We use the brackets notation to
indicate what free variables can occur in a formula: e.g.� (x ) can only contain free variables
in x. The brackets can be dropped if the context is obvious.

A formula � 2 F is called satis�able if there exists a variable assignmentM (referred to as
model) such that � [x=M ] is a tautology (written as M j = � ). For example, f a : > ; b : >g j= a^ b.
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Note that models associated with formulas overx are isomorphic to concrete data states, and
we abuse the notation by treating them interchangeably.

Checking a formula for satis�ability (�nding a model or proving that none exists) is a
classical NP-complete problem [Coo71] even in the absence of extra theories (all variables are
boolean). However, modern SMT (satis�ability modulo theories) solvers (notably Z3 [MB08],
CVC4 [Bar+11], Yices [DM06]) often perform these checks very e�ciently in practice, e.g. Z3
is routinely capable of dealing with formulas which are too large to �t into the machine RAM.
This paradoxical property is very similar to the halting problem stated in the introduction
(Section 1.4): the computational complexity is de�ned for the worst case, which is not necessarily
relevant for the actual queries posed to the solver.

2.3.1 Conversion to Formulas

Semantics of a formula � (x) de�nes a region of all concrete data states which it models
(J� K� f c j c j= � g). This allows us to treat formulas over x as regions.

We represent an operatorOP2 OPSas a formula � (x [ x0) over the initial variables x
(representing a valid from-state) and primed variablesx0 (representing a valid to-state) such that
for every pair of models(M 1; M 2) we haveM 2 2 JOPK(M 1) if and only if (M 1 [M 2[x=x0]) j= � .
Intuitively, a formula is satis�able over (M 1 [ M 2) if an operator applied to M 1 generatesM 2

modulo priming renamings.

E.g. for a program over variablesx, y a guard x <= 9 is represented by a formula
x � 9 ^ x0 = x ^ y0 = y, and an assignmentx := x + 2 is represented byx0 = x + 2 ^ y0 = y.
Note that as the number of variables increases, so does the number offrame assignments which
state that all unmodi�ed variables remain the same. The problem of dealing with a large
number of such spurious assignments is remarkably similar to theframe problem [Hay71] in
the arti�cial intelligence �eld. Consequently, in practice instead of having a large number of
spurious assignments a single static assignment form (SSA) [Cyt+91] is used, which avoids the
problem by renaming variables in such a way that every variable is assigned exactly once.

For example, the programx=0; y =1; z =1; x =x+y; x =x+z; is converted into the program
x_0=0; y_0=1; z_0=1; x_1=x_0+y_0; x_2=x_1+z_0; which is represented by the formulax0 =
0 ^ y0 = 1 ^ z0 = 1 ^ x1 = x0 + y0 ^ x2 = x1 + z0.

Finally, by converting regions and operators to formulas we can also encode the strongest
postcondition. For a region represented by� (x) and a transition given by � (x [ x0) a region
corresponding to the strongest postcondition is(9x: � (x ) ^ � (x [ x0))[x0=x]. For example, the
postcondition of a region x > 5 under a transition x0 = x + 1 is given by (9x: x > 5 ^ x0 =
x + 1)[ x0=x] which simpli�es to x > 6.

2.4 Finding Bugs with Formula Encoding

The logic based encoding gives rise to several approaches for automatically �ndings error
properties. Symbolic execution[Kin76] runs the program while keeping the variables symbolic:
this is equivalent to dynamically encoding the formula after each step. Symbolic execution
has been often used in practice to �nd many bugs in real world software [CDE08]. A symbolic
and concrete execution hybridconcolic execution [GKS05], which uses concrete program values
where the constraint solving is intractable, has been successfully used at Microsoft to �nd many
bugs in released products [GLM08].

35



Chapter 2 Background

Bounded model checking [Bie+99] takes a di�erent encoding approach, and proves that the
program satis�es the property for all traces of length � n, where n is increased from1 up to
the user-supplied bound (or until the timeout is reached). CBMC [CKL04] is one of the most
successful tools based on this approach.

2.5 Proving Safety

For programs without loops, applying the formula encoding stated in Section 2.3.1 gives a
straightforward way for checking safety: the entire program is converted to a formula� (x) by
iteratively applying the strongest postcondition encoding, the desired property is converted to
a formula P(x), and an SMT solver is queried for the satis�ability of � (x) ^ : P(x). If the
formula is unsatis�able, the program is safe (assuming our program encoding is sound), and
otherwise the modelM j = � (x) ^ : P(x) gives us thecounterexamplewhich can be used to
automatically generate a failing testcase [Bey+04] (assuming our encoding is complete).

This procedure is not directly applicable for programs where the maximum execution
length is unbounded. For certain structures of loops, it is possible to �nd atransitive closure
representing the loop e�ect in a sound and complete way: then the e�ect of the program can be
still represented by a single formula. Such a summarization is performed by approaches based
on acceleration [Boi98].

Yet in general it is not possible to summarizea loop with a �rst order formula within a decid-
able theory. Thus safety is generally proven for in�nite systems usinginductive invariants [Tur49;
Flo67].

2.5.1 Inductive Invariants

Consider a general safety property: prove that some region is unreachable at some set of program
locations. By encoding the program counter as a regular variable we can encode the program
using a single locationn, and two transitions I (x0) and � (x [ x0) representing the initial state
and the transition relation respectively.

In general, � represents a complex, non-deterministic recurrent relation for which due to
the halting problem it is impossible to obtain a computable analytic solution. Properties of
such discrete systems are almost invariably proven byinduction. That is, in order to establish
a property P universally we �rst show that it holds at the initial state, and then that it is
preserved under the transition relation.

The negation of the error : E (x) is a natural property to check for inductiveness. However,
even if : E holds universally, it is rarely inductive with respect to the transition relation. Thus
it is important to distinguish between invariants and inductive invariants.

De�nition 2.5 (Invariant) . A property I (x ) is an invariant for a CFA P if and only if for all
program paths (De�nition 2.4) for P, for all elements (m; n) of a program path, m j= I holds.

De�nition 2.6 (Inductive Invariant) . A property E(x) is an inductive invariant for the
CFA P represented by the initial state I and the transition relation � if and only if E
satis�es the initial condition I and is inductive under the single-state encoding ofP (that is,
8x; x0: E (x) ^ � (x [ x0) =) E(x0)).

By de�nition, a set R of all reachableCFA states is an inductive invariant. Such a set is a
least invariant, and a least inductive invariant at the same time. However, as we have previously
mentioned, R is not computable in general due to the halting problem. All over-approximations
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float x = 0;
float y = 1;
while (input()) {

x=0.8*x+0.6*y;
y=-0.6*x+0.8*y;

}

(a) program listing: each iter-
ation rotates (x; y) clockwise

x

y

(b) the circle is an inductive invari-
ant, �tting �rst ten concrete states

x

y

(c) the box is a non-inductive in-
variant: a corner is mapped outside

Figure 2.2: Example of a non-inductive invariant. A program shown in Figure 2.2a at each
iteration multiplies the vector (x; y) by a rotation matrix given by an angle � � sin� 1(� 0:6) � � 37� .
That e�ectively rotates (x; y) by � 37 degrees clockwise for a non-deterministic number of iterations
starting from the point (0; 1). An inductive invariant for such a program is a circle of radius 1
centered at the origin, as shown in Figure 2.2b. The box of size2 centered at the origin is a
non-inductive invariant, as shown in Figure 2.2c: despite the fact that the box contains all the
reachable points, it is not inductive under the transition relation, due the existence of points which
are mapped outside by the rotation.

O � R
`

E of R are invariants, but not all of them are inductive, as states in E can give rise to
spurious transitions not contained in O. An example of such a non-inductive invariant is shown
in Figure 2.2.

Both de�nitions are not constructive: they tell us nothing about how such a property can
be found. Moreover, the �rst de�nition is not even certi�able : while counterexamples(program
paths which contain a property violation) can be used to rule out non-invariant properties, we
have no way to check whether the given property is actually an invariant. This is expected,
since a sound and complete procedure for testing whether a given property is an invariant would
violate the Rice's theorem. Such a check can be however easily performed for aninductive
invariant by testing it for inductiveness, as we show in the next section. Furthermore, a
standard procedure to prove that a given property P is an invariant, is to �nd a strengthening
S such that S ^ P is an inductive invariant. In 1969, Manna [Man69] has shown that for
intraprocedural programs it is is always possible to �nd such an inductive strengthening, a result
which was later extended to interprocedural programs with recursive procedures by Bakker and
Meertens [BM75].

In the rest of this thesis we shall deal exclusively with inductive invariants: furthermore, the
theoretical contributions of this manuscript are new methods for inductive invariant synthesis.

2.5.2 Showing Inductiveness

Inductivenesscan be shown for a property with the help of the formula encoding for properties
and SMT solvers (Section 2.3). Given a formula� (x ) representing the desired property, transition
relation � (x [ x0) and a set of initial states I (x), � is inductive if and only if the following is
valid for all x ; x0:

Initiation: I (x ) =) � (x )

Consecution: � (x ) ^ � (x [ x0) =) � 0(x0)
(2.2)

Universal properties are traditionally proven using negation. That is, in order to prove the
consecution condition from Equation 2.2 the query in Equation 2.3 is posed to the solver, which
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is unsatis�able if and only if the consecution is valid for all possible values ofx ; x0.

� (x ) ^ � (x [ x0) ^ : � 0(x0) (2.3)

For a quanti�er-free formula � inductiveness checking is co-NP-complete. However, if�
is existentially quanti�ed, the problem is � p

2-complete due to the fact that outer existential
quanti�ers (which can be normally removed using Skolemization [KS08]) become universal
under negation. Thus in the rest of this thesis we shall assume that the property� representing
the candidate inductive invariant is quanti�er-free.

2.5.3 Inductive Assertion Map

De�nition 2.6 and the check in Equation 2.2 give us a way for checking a given property for
inductiveness. However, such a direct check is often very inconvenient, as it requires re-encoding
the entire program as a single-loop transition system. Instead we use theinductive assertion
map formalism [SSM05], which represents the inductive invariant as a map, and associates a
separate property to each program location. We shall also refer to such maps as inductive
invariants.

De�nition 2.7 (Inductive Assertion Map) . A mapping I : nodes ! F (x) is an inductive
assertion map(also referred to as an inductive invariant) for a CFA (nodes; edges; n0; x ) if and
only if it satis�es the following conditions for initiation and consecution:

Initiation: I (n0) = >

Consecution: for all edges(a; �; b) 2 edges, for all x ; x0

I (a)(x) ^ � (x [ x0) =) (I (b))0(x0)

(2.4)

The Equation 2.4 is referred to as a system ofsemantic equationsfor a CFA . Intuitively,
the initiation condition dictates that the initial program state at n0 is covered byI , and the
consecution condition dictates that under all transitions I should map into itself. Similarly
to Equation 2.3, the consecution condition in Equation 2.4 can be veri�ed by checking the
negation for unsatis�ability.

2.5.4 k-Induction

In many cases, a property of interest is not inductive under the transition relation, but is
inductive under multiple compositions of it: f � f on the operator level, or � [x0=x̂ ] ^ � [x=x̂ ] on
the formula level. For example consider the program in Figure 2.3. The assertion0 � x � 5 is
not inductive under the loop transition relation, due to the possibility of the transition from
f x : 5; y : 0g to f x : 6; y : 1g. Yet it is inductive for the modi�ed program where the loop
transition is unrolled �ve times. Of course, a stronger invariant x = y ^ 0 � x � 5 is simply
inductive, but it is not readily available as an error property. In general, from a k-inductive
invariant it is always possible to extract an inductive invariant, yet sometimes at the cost of the
exponential explosion.

This observation has led to the technique calledk-induction [Don+11] where the given
invariant candidate (usually, negation of an error property, potentially strengthened with
an inductive invariant [KT11]) is repeatedly tested for inductiveness where the value ofk
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int x = 0;
int y = 0;
while (input()) {

x++;
y++;
if (y == 5) {

x = 0;
y = 0;

}
}
assert(0 <= x && x <= 5);

Figure 2.3: k-Induction Motivation

(corresponding to the number of compositions of the transition relation) is incremented at each
step. At the extreme, for �nite-state systems every invariant is k-inductive for a su�ciently
large k, making the framework especially suitable for state machine encodings.

2.5.5 Back to Safety

In order to prove that a property P universally holds, we need to �nd a strengthening S such
that P ^ S is an inductive invariant. It is important to note that once an inductive invariant is
found it is irrelevant in which way it was generated: due to intuition, because a �little bird� has
told us, or simply because of an intelligent guess, once we establish the inductiveness, we have
a formal checkableproof of the fact that the invariant universally holds. In later chapters of
this thesis we develop techniques for generating inductive invariants.

2.6 Inductive Invariants from Counterexamples to Induction

Equation 2.4 lets us test a desired propertyP for inductiveness, and the output is either an
UNSATverdict corresponding to the case where the property is inductive, or acounterexample
to induction, represented by the modelM (X [ X 0). Such a modelM not only states that P
is not inductive, but it also gives us a reasonwhy: it speci�es a precise state insideP from
which the �jump� to : P0 is possible. Many approaches for invariant synthesis rely on using
such counterexamples-to-induction in order to generate an inductive invariant.

Aaron Bradley in his seminal work on property directed reachability [Bra07] presents a way
for generating new lemmas which can be used to strengthen the initial candidate invariant from
the counterexample to induction. Such method leads to an e�cient IC3 algorithm for SAT
checking without unrolling [Bra11].

2.7 Inductive Invariants by Abstract Interpretation

The line of research concerned with proving program properties by �nding inductive invariants
goes back to compiler research and classical data�ow [Kil73] analysis techniques, including live
variables [ASU86] calculation, location reachability, constant propagation, and others3.

However, it took a fundamental work of Cousot and Cousot [CC77a] to generalize the
underlying notion of abstract domain, and consequentlyabstract interpretation to unify and

3 Indeed, despite the fact that the term �inductive invariant� was not traditionally used in data�ow analysis,
and a di�erent CFG formalism is used, the analysis runs in a loop until a �xed point is reached: that is, further
propagation results in no updates � which is an inductive invariant by de�nition.
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extend the previously used approaches. As usual, we start by describing abstract interpretation
intuitively, and we give the formal notions in Section 2.7.1.

The aim of the abstract interpretation is to compute an inductive invariant in the abstract
domain. Intuitively, an abstract domain is a set equipped with a partial order, where every
element groups concrete states by the property of interest. E.g. for a program with a single
variable x an interval abstract state [0; 10] concretizesto a set of concrete data states where
the value of x is between0 and 10: J[0; 10]K= ff x : vg j v 2 [0; 10]g. The set of such properties
(the set of intervals in our example) is called anabstract domain, and a function mapping an
abstract elementto a region is calledconcretization and is traditionally denoted by 
 . Dually,
the function from a region r 2 R to the smallest element of the abstract domaina, such that
r � 
 (a) is called anabstraction � 4. Intuitively, an element of the abstract domain succinctly
represents a region of variable values (Section 2.2). In order for the abstraction to exist the
abstract domain needs to satisfy certain criteria which we cover in this section: e.g. in the
intervals example if we de�ne the abstract domain as the setR � R it would be impossible to
construct the abstraction function, as there would be no valid abstraction for a region where
the value of x is not bounded.

Given an abstract domain, an inductive invariant can be constructed using Kleene �xpoint
iterations [Kle52]. Kleene iterations can be seen as running the program in the abstract
interpreter , while recording intermediate values (invariant candidates) associated with di�erent
program locations (CFA nodes). The iteration process starts by assigning to eachCFA node
the smallest invariant candidate ? corresponding to an unreachable value, and assigning the
invariant candidate > to program entry (corresponding to the largest possible region, as the
memory is not initialized at the program start). At each step, an abstract value is propagated
through the CFA edges, withabstract transformer being applied (running the program with
abstract values instead of the concrete ones, usingabstract semantics). E.g. the interval
x 2 [0; 10] under the operation x++ is transformed into x 2 [1; 11]. If after the propagation two
abstract values exist at the same location, they arejoined � that is, replaced with the least
element in the abstract domain which is greater than both of the joined elements. E.g. intervals
x 2 [0; 3] and x 2 [4; 5] can be joined to a new intervalx 2 [0; 5]. The process repeats until the
iterations converge: that is, propagation and joining steps do not change the previous invariant
candidate. The obtained result, provided that the iteration has converged in �nite time, is an
inductive invariant .

2.7.1 Formal De�nitions

De�nition 2.8 (Lattice) . A lattice L is a set equipped with a re�exive, antisymmetric and
transitive partial order relation � L .

De�nition 2.9 (Complete Lattice) . A complete lattice L is a lattice where every subset in
L has a supremum and in�mum under � L in L . That is, there exists a unique join operator
t L : 2L ! L , and the meet operator uL : 2L ! L , which compute supremum and in�mum
respectively for any subset ofL : 8a 2 L: a � L t L and 8a 2 L: uL L � a.

The set of regions, representing groups of concrete program states de�ned in Section 2.2 is a
complete lattice using the inclusion relation as a partial order, and set union and intersection
as join and meet operators respectively.

4Though later we show that it is possible to have a useful abstract domain for which a function � does not
exist.
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?

f 0gZx< 0 Zx> 0

Zx6=0 Zx� 0Zx� 0

>

Figure 2.4: Hasse Diagram for Sign Abstract Domain over Integers

De�nition 2.10 (Abstract Domain) . An abstract domain is a tuple (D; �; 
 ) where D is a
complete lattice equipped with a partial order � D , � : R ! D is an abstraction function,
converting a regionr to an element ofD, and 
 : D ! R is a concretization function, converting
an element of the abstract domain a to a region. The tuple (�; 
 ) has to form a Galois
connection [CC92], that is the following has to hold:

8a 2 D : 8r 2 R : � (r ) � D a () r � 
 (a) (2.5)

Intuitively, an abstract domain is a grouping of concrete states by the property of interest.
Thus we canabstract from the region description as a set of concrete states into the chosen
domain of properties we choose to care about. Having such a de�nition allows us to reason
about regions ful�lling certain properties: e.g. a region where the value of a certain variable is
never zero.

Example 2.1 (Sign Abstract Domain) . Consider the sign abstract domain over a single integer
variable x. The domain element states whether the variable is zero, strictly less than zero,
strictly greater than zero, or a join or a meet over these. The lattice associated with this domain
is shown in Figure 2.4. Note the values> and ? denoting �all are values possible� and �empty
region� respectively. Concretization function for this domain corresponds to the element label
in Figure 2.4, and abstraction maps a regionr to the smallest abstract element a for which
r � 
 (a). E.g. � (f 1; 2; 3; 4; 5g) = Zx> 0, and 
 (f 0g) = f 0g.

Example 2.2 (Intervals Abstract Domain) . The interval abstract domain is a mapping x !
( �R � �R), which unlike R2 forms a complete lattice. An element of the abstract domain
f x : (a; b)g concretizes to a setf c j c[x] � b^ c[x] � � ag, and the comparison is given using the
usual component-wise comparison on tuples, applied component-wise to maps.

We are interested in self-mapsf : L ! L where L is a complete lattice which is both
a domain and a codomain. Such a functionf is called monotone if it is order preserving:
a � b =) f (a) � b. A point a 2 L is called a �xed point (or a �xpoint ) if and only if
f (a) = a. Tarski's �xed point theorem states that the set of �xpoints of a monotone function
f on a complete lattice L is a complete lattice L f itself [Tar55], which consequently has least
and largest element. By�f we denote the least �xed point of f on L , and � j � af denotes the
least �xed point which is larger or equal to a. We use the power notationf i to indicate the
continuous application of f multiple times ( f (f (f (: : : ))) ).

Recall the de�nition of collecting semantics given in Section 2.2. A collecting semantics
function JOPK: R ! R is a monotone self-map, and its �xed points correspond to inductive
invariants. Yet as even storing these �xed points is often infeasible (all concrete data states
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reachable at a givenCFA node), we are interested in least �xed point of abstract semantics
instead.

De�nition 2.11 (Abstract Semantics). Abstract semantics function J:K] for an abstract domain
(D; �; 
 ) and a program operator OPyields a function D ! D which satis�es the following
equation for all regionsr :

JOPK(r ) � 
 (JOPK] (� (r ))) (2.6)

That is, the abstract transformer has to be sound: it has to include all states given by the
collecting semantics. Thebest abstract transformerwhich returns the smallest abstract state for
a given input and a given operatorOPwhile satisfying the soundness condition in Equation 2.6
for an abstract domain de�ned by (�; 
 ) is:

f � �a: � (JOPK(
 (a))) (2.7)

2.7.2 Abstract Value Transformer

Abstract semantics de�nes how the value in the abstract domain is transformed by the operator.
E.g. if we operate in the abstract domain of the intervals over a single program variablex,
showing only the bound on the variablex for clarity, we have Jx <= 9K] ([0; 10]) = [0; 9], and
Jx += 1K] ([0; 1]) = [1 ; 2]. Yet we are interested in the abstract domain element resulting from
the join over all possible abstract domain elements at allCFA nodes. We start by generalizing
the abstract semantics to a function next which acts on the entire CFA at the same time, by
combining the e�ect of the update of all the incoming edges for every node:

next : (nodes! D ) ! (nodes! D )

next � �S:
n

n : t
n

JeK] (S[n0]) j (n0; e; n) 2 edges
o

j n 2 nodes
o (2.8)

Furthermore, we interested in all values possible at the given point, and we generalizenext
further to a function update with the same signature whichcombinesthe previous result with
new values at all CFA nodes.

update � �S:
n

n : S[n] t
n

JeK] (S[n0]) j (n0; e; n) 2 edges
o

j n 2 nodes
o

(2.9)

Unlike abstract semantics, the output of a function update is always greater or equal to
its input: for all input elements d it holds that update(d) � d. Kleene's theorem [Kle52]
states that for a monotone increasing self-map on a complete lattice continuous applications
starting from the least element can converge only at the least �xed point. Hence least inductive
invariant in the abstract domain can be found as iterative application of the function update
(update(? ); update(update(? )) ; : : :). Such iterative application is referred to asKleene iteration.

The least �xed point under the abstract semantics which covers the input state is referred
to as the least inductive invariant in the abstract domain, or just least inductive invariant when
the domain is apparent from the context. The Kleene iteration process for an inputCFA is
formalized with the worklist algorithm in Algorithm 2.1. Results on chaotic iterations [Bou93]
state that the resulting invariant does not depend on the precise iteration order.

Example 2.3 (Abstract Interpretation Run) . Consider running abstract interpretation with
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Algorithm 2.1 Kleene Worklist Iteration Algorithm.

1: Input: CFA (nodes; edges; n0; x ), abstract domain (D; �; 
 ), abstract transformer J:K]

2: . Inductive assertion map nodes! D
3: map  fg

4: . Initial state associated with starting location.
5: map(n0)  >
6: for all n 2 nodesn n0 do

7: . All other nodes are initially considered unreachable.
8: map(n)  ?
9: end for

10: . Worklist for nodes which should be expanded.
11: q  f n0g
12: while q 6= ; do
13: Pop n from q
14: for all (n; OP; n0) 2 edgesdo

15: . Previously held value.
16: prev  map(n0)
17: map(n0)  JOPK] (map(n)) t prev
18: if map(n0) � prev then

19: . Add n0 to worklist if the value is not covered.
20: q  q [ f n0g
21: end if
22: end for
23: end while
24: return map

intervals on a trivial counter program shown in Figure 2.5. As we have only one variable and
only one CFA location an invariant candidate can be represented by a single interval[a; b]. The
abstract transformer associated with the assignmentx := 0 sets the output interval to [0; 0]
regardless of the input. Similarly, the transformer associated withx < 10; x++ increments
both bounds as long as they are smaller than10. Thus we get the following run of abstract
interpretation:

ˆ ? initially.

ˆ [0; 0] t ? = [0 ; 0] after the �rst update.

ˆ [1; 1] t [0; 0] = [0; 1] after the �rst increment.

ˆ [0; 1] t [1; 2] = [0; 2] after the second increment.

ˆ : : :

ˆ [0; 10] t [10; 10] = [0; 10] the iteration reaches the �xed point.

2.7.3 Convergence and Widening

From Kleene �xed point theorem we know that iterations shown in Algorithm 2.1 can converge
only to the least �xed point of the abstract domain. We introduce the notion of the lattice
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1 int x = 0;
2 while (x < 10) {
3 x++;
4 }

n0

na

x := 0;

x < 10; x++;

Figure 2.5: A simple counter program and the correspondingCFA .

height in order to give the convergence results.

De�nition 2.12 (Complete Lattice Height) . A sequence of elementss � (s1; s2; s3; : : :) in a
lattice L is called achain if and only if every subsequent element is greater than the previous
one: 8i: s i � si +1 . The size of the largest possible chain is referred to as a latticeheight, and is
denoted askLk. The abstract domain height is de�ned as the height of the underlying lattice,
and is similarly denoted askDk.

In the Example 2.1 the height of the sign abstract domain is4. With the height of the
domain being de�ned, we can state the result on Kleene iteration termination and precision:

Theorem 2.1 (Kleene Iteration Termination) . For an input CFA (nodes; edges; n0; X ) and the
analysis domainD, the run of Kleene iteration in D requires at most O(kDkknodesk) iterations
and converges with the least inductive invariant in D.

The proof is trivial and immediately follows from Kleene's and Tarski's theorems. However,
the simplistic trace in Example 2.3 already highlights an important limitation of such an
approach on in�nite height lattice, such as the lattice of intervals. If the guard x < 10 is
removed from the transition relation, the analysis run does not terminate and continues happily
incrementing the bounds forever.

In order to address this problem, Cousot and Cousot [CC77a] introduce thewidening
operator r : D � D ! D , which enforces the termination after �nitely many applications even
for a lattice of in�nite height. The widening operator has to be de�ned in such a way that for
any input values any sequence of widening applications eventually converges at a single value.
For example, widening on interval domain is de�ned to set themoving constraint to in�nity,
e.g. [0; 1]r [0; 2] = [0; 1 ]. The modi�cation of Algorithm 2.1 which includes widening requires
updating the right hand side of Line 17 to prevr (JOPK] (map(n)) t prev): that is, the widening
is applied after joining. Such a change results in dramatic precision loss, as the interval[0; 10]
can no longer be recovered for the program in Example 2.3. In order to address this imprecision
the narrowing operator � : D � D ! D is introduced which repeats another round of �xed
point iterations updates after the widening, which is often enough to restore the precision (as
in the running example).

2.8 Further Examples Of Abstract Domains

A great many abstract domains were proposed to track di�erent program properties.

2.8.1 Octagons

The intervals abstract domain introduced in the previous section is scalable, but is notrelational :
it is not capable of expressing relations between the variables, such asx = y. A more expressive

44



Section 2.8 Further Examples Of Abstract Domains

octagons [Min06] abstract domain was proposed by Miné. An element of the octagons abstract
domain is the set of bounds on expressions� x � y for each pair of program variablesx; y 2 X .
The resulting shape of an arbitrary non-degenerate domain element for two variables is an
octagon, which gives the domain its name. An abstract transformer for the octagon abstract
domain can be implemented using Floyd-Warshall algorithm [Min06], and the widening operator
can be de�ned by eliminating all moving constraints.

2.8.2 Polyhedra

The polyhedra abstract domain [CH78] generalizes the convex abstract states further, by allowing
an abstract domain element to be anyconvex polyhedron5 over the program variables. Such an
abstract domain can e�ectively present any linear convex property (such asx + y+ z � 1^ x � 5),
however, it requires a well constructed widening operator in order to work e�ciently. A
comparison of the expressive power of the intervals, octagons and polyhedra abstract domain is
shown in Figure 2.6.

Note that this abstract domain is not a complete lattice and does not form a Galois
connection, as the least element does not always exist for all sets of polyhedra (e.g. consider a
set of all polyhedra which contain a non-empty circle). Hence it is not possible to construct
least abstract transformer for polyhedra. This limitation is acceptable in practice, since due to
the usage of widening operators the invariant obtained by abstract interpretation is usually not
the smallest possible one.

Many highly optimized libraries such as PPL [BHZ08] are available for abstract interpreters
which can perform the required transformations on polyhedra, such as convex hull or projection.

x

y

(a) intervals domain

x

y

(b) octagons domain

x

y

(c) polyhedra domain

Figure 2.6: Comparison of intervals, octagons and polyhedra abstract domains. Black points
represent a set of concrete data statesff x : 1; y : 1g; f x : 1; y : 3g; f x : 3; y : 1g; f x : 3; y : 2gg over
two integral variables f x; yg, and red shaded lines represent the abstraction in the corresponding
abstract domain.

2.8.3 Template Constraints Domains

The family of template constraints domainswas proposed in a work by Sankaranarayanan [SSM05]
et al. as a way to o�er a con�gurable compromise between the scalability and precision.

Unlike the interval and octagon domains, where the shape of propagated constraints is
de�ned by the domain itself, and the polyhedra abstract domain, where the analysis tries to

5Some textbooks prefer the namepolytope for such structures in higher-dimensional space, in this thesis we
stick to the name polyhedron.
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track all the possible linear constraints, a givenTCD is parameterized in advance by a vector
of functions over x (templates, e.g. x + 3y and 2x + y), and an element of a domain is a vector
of bounds on those functions (e.g.(1; 5) representsx + 3y � 1 and 2x + y � 5).

An abstract state of a TCD is a vector (d1; : : : ; dm ) 2 �Rn . The original publication [SSM05]
presents the case where all templates are linear and can be de�ned by a matrixT 2 Rn�k x k (a
vector d concretizes to a set of concrete states which satisfy the constraintTx � d), and later
articles generalize the domain further to non-linear templates [AGG10]. In this thesis we shall
operate only over linear templates, and an abstract stated concretizes tof x j

V
i t>

i x � d i g,
where the domain is de�ned by a matrix of templates T (which we shall also treat like a set of
templates).

We allow the use of1 and �1 in the bound in order to represent unbound templates, and
unreachable states respectively. A vector(1 ; : : : ; 1 ) corresponds to the> element of aTCD ,
while a vector containing at least one�1 entry represents the bottom element? . An example
abstract state of a TCD is given in Figure 2.7.

The domain of products of intervals is one instance ofTCD , where the templates are
� x i � ci for program variables x i . The domain of octagons[Min06] is another, with templates
� x i � x j and � x i . Any template constraints domain where all templates are linear is a subset
of the domain of convex polyhedra [CH78].

x

y

Figure 2.7: Example of an element of the template constraints domain de�ned by a vector
of templates T � (� x; � y; x; y; x + y) with bounds d � (0; 0; 3; 3; 4), which describes the region
0 � x � 3 ^ 0 � y � 3 ^ x + y � 4. Observe how the lower bound is expressed as an upper bound
on a negated expression.

The abstraction in a TCD is de�ned using a maximization operator: maximizing all templates
subject to the constraints introduced by a region. Formally, � (r ) i � max t>

i x s.t. x 2 r . If all
templates are linear, abstraction can be performed using linear programming.

Abstract semantics can be also de�ned directly using maximization modulo the constraints
introduced by the previous state and the transition relation. For an operator OPthe abstract
semantics is given by:

JOPK] (d)j i � max t>
i x0 s.t. x0 2 JOPK(
 (d)) (2.10)

For example, for the abstract state i � 0^ j � 0 under the transition i 0 = i + 1 ^ i � 10 the new
abstract state is i � di ^ y � dj , where di = max i 0 s.t. i � 0^ j � 0^ i 0 = i + 1 ^ i < 10^ j 0 = j
and dj is the result of maximizing j 0 subject to the same constraints. This gets simpli�ed to
i � 1 ^ j � 0.

The templates abstract domain provides a con�gurable compromise in expressivity for the
domains described above. The weakness and the strength of a template constraints domain is
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its con�gurable precision: a small set of templates gives rise to an imprecise, yet very e�cient
analysis, while a larger set can get higher precision at the cost of a more expensive runtime.

As we shall show in Chapter 4, such a con�gurability can be used to create a re�nement in
the CEGAR [Cla+00] fashion, which combines both high precision and fast runtime.

2.8.4 Disjunctive Domains

The domains described above areconvex: abstract states describe convex structures in the
program variable state space. However, many programs give rise to non-convex invariants, most
notably from boolean variables representing �ags (e.g.b =) p � 0 _ : b =) p � 0).

Many extensions (e.g. trace partitioning [MR05]) were proposed to the abstract interpretation
framework in order to address this limitation. One of the possible approaches is theboxes[CGS09]
domain, where each abstract state represents aset of potentially disjoint intervals. Such a
domain can naturally capture disjoint sets of states, such as the disjunction of implications
example in the previous paragraph, but it comes with a cost, as there are no �natural� join
and widening operators, and heuristics have to be used. These heuristics often result innon-
monotone behavior, where moreprecise candidate invariant at one location can result in less
precise invariant at the end.

In this thesis we are primarily interested in convex abstract domain, however, it was
shown [San+06] that it is possible to obtain a disjunctive inductive invariant in a convex
abstract domain by splitting the analyzed states (Section 2.10).

2.8.5 Abstract Domain of Numerical Congruences

Another non-convex property which is often relevant for program is congruence: integer
remainder after dividing a linear expression by an integer constant. Many programs rely on
the modulus operator to e.g. achieve a wrap-around e�ect or execute a certain action on
every nth iteration of the loop. Consequently, the congruence [Gra91] was proposed to track
such information. In addition, some polyhedra libraries [BHZ08] allow the use of congruence
constraints de�ning the point cloud contained inside the polyhedra (e.g. abstract states
representing all points wherex + y = 0 mod 2 and x + y � 5). Our implementation makes use
of a simple congruence domain, as described in Section 7.7.1.

2.8.6 Predicate Abstract Domain

The predicate abstract domain was introduced in a seminal work by Graf and Saïdi [GS97] as a
way to further extend the expressiveness of the abstract domain to arbitrarypredicates. Let L
be a �nite, �xed, set of quanti�er-free �rst order formulas.

We de�ne the abstract domain D � 2L [ f?g to be a powerset ofL , with a partial order
de�ned by the inclusion relation, and the fact that ? is the least element. The concretization of
an elementd 2 D is a region where every concrete state models the conjunction of all constraints
in d. Similarly, the abstraction of a region r is the smallest element ofD describing every state
in r .

Abstraction can be computed using anSMT solver by checking whether a given predicatep
is guaranteed to hold at a state described by a formula� (whether : (� =) p) is unsatis�able),
and returning a set of all implied predicated.

Observe that D forms a complete lattice with meet and join de�ned as intersection and union
respectively, and usingsyntactical equality for comparing individual formulas. The syntactic
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comparison is an over-approximation as it does not take the formula semantics into account,
yet it generates a complete lattice of heightkLk + 1 .

Boolean and Cartesian Abstraction The powerset domain over the set of predicates is
referred to as acartesian [BPR03] predicate domain. Another possible predicate abstract
domain is a booleanone, for which the abstraction is adisjunction over all possible conjunctions
over predicates (e.g.p1 ^ p2 _: p1 ^ : p2, which is not expressible using the cartesian abstraction).
Such a domain is considerably more expressive: in fact Ball et al. [BPR03] prove that it is
the most expressive abstract domain where all atoms are in the language of the given set of
predicates. The abstraction for such a domain is considerably more costly, and is performed
using the ALL-SAT algorithm: �nding all models over the set of predicates which are implied
by the formula � (it is performed by �nding one cube over predicates, blocking it with the
additional clause, and iterating until the constraint set becomes unsatis�able). The ALL-SAT
procedure potentially requires evaluating up to 2kLk SMT queries.

CEGAR and Interpolation Choosing the right predicates can be a di�cult trade-o�
between precision and performance. Many simple properties can be proven by using only a few
predicates, yet a large number might be required for verifying intricate manipulations. Clarke
et al. have suggested acounterexample-guided abstraction re�nement(CEGAR [Cla+00])
approach, which combines precision and performance by starting with a most coarse abstraction,
and then gradually re�ning it, if it gives rise to a spurious (caused by abstraction imprecision)
counterexample to property.

Ken McMillan published an in�uential paper [McM03] advocating the use of Craig inter-
polants [Cra57] to dynamically generate predicates from the infeasible counterexamples.

De�nition 2.13 (Interpolant) . For two satis�able formulas a, b where a ^ b is unsatis�able,
Craig interpolant c is a new formula which has only shared symbols froma and b, and for which
a =) c, and c =) : b.

Intuitively, Craig interpolant gives the reason for why a and b are unsatis�able together.
SMT solvers can generate Craig interpolants e.g. from proofs of unsatis�ability [Hen+04]
of concrete error traces. Many approaches in program analysis [McM06] perform predicate
abstraction with interpolants, as it provides a semi-decidable procedure for proving safety
and �nding counterexamples, and doesn't have inherent limitations of many abstract domains
described in this section, such as convexity.

2.8.7 Other Domains

All domains described so far were trackingnumeric properties of the software. However, this is
not a conceptual limitation of abstract interpretation: for a example, the domain of symbolic
memory graphs[DPV13] allows to e�ciently analyze many datastructures, and to prove an
absence of memory errors in the program.

2.9 Path Focusing and Large-Block Encoding

Traditionally, abstract interpreters store invariant candidates as mappings from CFA nodes
to abstract states. As shown in Algorithm 2.1, this is maintained by joining (with subsequent
widening) multiple states �arriving to� the same node from di�erent locations. In convex
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1 int x = input();
2 int out;
3 if (x < 0) {
4 out = -x;
5 } else {
6 out = x;
7 }
8 assume(out >= 1);
9 assert(x != 0);

ns

ni

nbna

nc

ne

x := ?

x >= 0

out := x

x < 0

out := -x

out >= 1

Figure 2.8: Motivating Example for Path Focusing

abstract domains, such join often corresponds to a convex hull operator, often resulting in large
loss of precision. For example, consider the motivating program and itsCFA in Figure 2.8. The
program is very simple: it computes the absolute value, and asserts that if the absolute value
is bigger than 1, the input must have been non-zero. This assertion represents the invariant
stating that x 6= 0 holds universally at ne.

Consider generating inductive invariants using abstract interpretations in the octagons
domain for the motivating program. Following the path (ns; ni ; na; nc) the analysis obtains
the abstract state x � 0 ^ out = x, and following the path (ns; ni ; nb; nc) the result is x <
0 ^ out = � x. The merge of this two states is howeverout � 0 ^ out � x, which becomes
out � 1 ^ out � x, at the node ne, insu�cient for proving x 6= 0 .

However, the loss of precision is completely unnecessary: as we have shown in Section 2.3,
programs with no looping constructs can be converted to a single formula, for which the
intersection with an error state may be checked directly using a singleSMT query.

Monniaux and Gonnord have shown [MG11] how abstract interpretation can avoid such
a precision loss by reducing the number of �intermediate� abstract states and de�ning the
semantics of CFA edges using existentially quanti�ed formulas. A simpli�ed version of the
transformation can be done using the following two steps: initially, for each edge, each operator
OPis replaced with a formula over (x [ x0) representing its semantics. After that the operations
shown in Figure 2.9 are applied until a �xed point is reached.

A B C
� 1(x [ x0) � 2(x [ x0)

A C
9x̂ : � 1[x0=x̂ ] ^ � 2[x=x̂ ]

A B

� 1(x [ x0)

� 2(x [ x0)

A C
� 1 _ � 2

Figure 2.9: Transformations required for Large Block Encoding

Observe that sinceSMT formulas are represented as directed acyclic graphs which can
share subformulas, both of these transformations donot copy the input formulas, and can be
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ns

ne

x0 � 0 ^ out = x0_ x0 < 0 ^ out = � x0^ out � 1

Figure 2.10: Motivating Example after Path Focusing Transformation

performed in O(1) time and space.
For a well-structured [ASU86] CFA , repeating this transformation in a �xpoint manner (until

no more edges can be merged) leads to a newCFA where the only remaining nodes are start,
end, and loop heads. The original publication [MG11] de�nes a more complex transformation
which guarantees that the only remaining nodes form the cut set [Sha79] of an arbitrary input
CFA .

The program shown in motivating example after path focusing transformation has two
nodes, as shown in Figure 2.10.

As shown in our motivating example, the path focusing procedure can signi�cantly improve
the analysis precision. Counterintuitively, it was also shown to often improve the analysis
performance [HMM12] by avoiding the creation of intermediate states.

Independently, a similar algorithm was published by Beyer et al. [Bey+09] calledlarge block
encoding. Unlike path focusing, large block encoding is applied in the context of predicate
abstraction with interpolants, or bounded model checking, where the edge semantics is already
encoded as a formula. Similarly, the procedure was shown to result in a precision and performance
gain.

2.10 Con�gurable Program Analysis

In this chapter we have described various approach for program analysis: bounded model
checking and symbolic execution (Section 2.4), predicate abstraction (Section 2.8.6) and abstract
interpretation (Section 2.7). The algorithms used for these approaches seem di�erent, but
the underlying theme remains the same: there exists an abstract domainD, and the analysis
performs some �xed point iteration for an input CFA P.

Beyer et al. have published a paper describing the Con�gurable Program Analysis [BHT07]
(CPA ) algorithm, which describes aparametrizable algorithm which can be used to express
previously independent approaches to code analysis in the uni�ed framework. The authors show
that the primary di�erence in model checking-based approaches (BMC, symbolic execution, lazy
abstraction and others) and the abstract interpretation-based approaches is the choice of the
merge operator. In the abstract interpretation approach (and earlier, for data�ow analysis),
two states corresponding to the same node have to be merged (cf. Algorithm 2.1), which often
leads to over-approximation, but guarantees convergence. In contrast, model checking based
approaches do not join and leave the states separate: as a result, the run of a model-checking-
based tool can be presented as areachability tree. By giving each analysis a choice of a merge
operator, di�erent algorithms could be presented within the uni�ed CPA framework, running
the CPA algorithm shown for completeness in Algorithm 2.2.

The algorithm input is determined by the parametrization chosen by the clientCPA , which

50



Section 2.10 Con�gurable Program Analysis

Algorithm 2.2 CPA Algorithm (taken from [BHT07])

1: Input : a CPA (D; transfer ; merge; stop)
2: Initial abstract state e0 2 D
3: Output : a set of reachable abstract states
4: Variables : a set reached� D , a set waitlist � E
5: waitlist  f e0g
6: reached f e0g
7: while waitlist 6= ; do
8: Pop e from waitlist
9: for all e0 2 transfer (e) do

10: for all e002 reacheddo

11: . Combine with existing abstract state
12: enew  merge(e0; e00)
13: if enew 6= e00then
14: waitlist  (waitlist [ f enewg) n f e00g
15: reached (reached[ f enewg) n f e00g
16: end if
17: end for

18: . Whether e0 is already covered by existing states
19: if : stop(e0; reached) then
20: waitlist  waitlist [ f e0g
21: reached reached[ f e0g
22: end if
23: end for
24: end while
25: return reached

consists of the following components:

ˆ Transfer relation: a function D ! 2D , de�ning the abstract semantics (for generality,
every state is allowed to have zero or more successors).

ˆ Stop operator: a function D� 2D ! B, de�ning whether one state iscoveredby a collection
of other states.

ˆ Merge operator: a function D � D ! D generalizing the join operator. If the merge
produces the state which does not subsume the input arguments, both states are kept.

Like for Kleene iteration, the overall loop performs the �xed point iterations which iteratively
expands the states contained in thewaitlist (line 7). For each states, all successors under the
transfer relation are found (line 9), and each successor is merged with states already in the
reached set, representing the existing candidate invariant (line 12). If the result of the merge
operation does not equal to the successor (line 13), which is the code for �no join�, the successor
element is replaced with the result of the merge. Finally, if the result of the operation is not
covered by the existing elements (line 19), the result is added towaitlist and to the reached set.

The algorithm shown in Algorithm 2.2 is extremely general: it does not specify whether the
analysis runs backwards or forwards (setting the transfer function to weakest precondition, the
initial state to the exit node and changing the merge function to perform intersection instead
is su�cient to reverse the direction), or whether the analysis states should be grouped by the
CFA node, which makes it suitable for describing a large set of program analysis algorithms.
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Relation to Abstract Interpretation With a merge operator set to always perform a join,
an instance of a con�gurable program analysis can be seen as an abstract interpretation, de�ned
using the initial state n0 2 D , transfer relation given by strongest postcondition, join operator
t D , and a coverage check� D . Observe that such de�nition does not require explicitly de�ning
neither the abstraction � : R ! D , nor the concretization 
 : D ! R , nor even the concrete
collecting semanticsR ! R . This property makes the CPA framework suitable for describing
abstract domains which do not even have a well-de�ned abstraction operators, such as the
polyhedra domain (Section 2.8.2).

Disjunctive Abstract Domains using Splitting Moreover, the CPA framework allows
one to perform analysis in the disjunctive powerset domain while using only the convex abstract
transformer by strategically splitting the states using the merge operator. For example, using
the abstract transformer associated with the interval abstract domain, and the merge operator
which always splits the candidate invariant states e�ectively performs analysis in the disjunctive
interval domain.

2.10.1 Composite Con�gurable Program Analysis

An analysis is usually performed using multipleCPA s, by making use of theCompositeCPA
parameterization, which wraps a tuple of CPA objects. Such an analysis de�nes the abstract
domain as the product of contained abstract domains, abstract semantics is applied respectively
to each component. Themerge operator joins if all the contained CPA s decide to do so, and
splits otherwise, and thestop operator checks coverage component-wise. Thus,CompositeCPA
allows the user to perform the analysis in multiple abstract domains which canstrengthen
each other [CCF13], resulting in the greater overall precision while preserving modularity. For
example, the following sub-analyses are often used:

ˆ LocationCPAbinds successor computation to the outgoing edges, and only allows to merge
the states corresponding to the sameCFA node.

ˆ CallstackCPA keeps track of callstack and performs the dynamic inlining.

ˆ FunctionPointerCPA keeps an abstract over-approximation of what functions function
pointers can point to, and returns all possible successors on function pointer call.

ˆ LoopstackCPAperforms dynamic loop unrolling.

The CPA concept is implemented in theCPAchecker [BK11] framework, which includes
implementations for many program analysis approaches asCPA parameterizations. All the
algorithms presented in the contributions of this thesis are implemented as separateCPA
parameterizations inside theCPAchecker tool.
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Chapter 3

Local Policy Iteration

3.1 Introduction

In this thesis we focus on thenumerical abstract domains, equipped with a lattice of an in�nite
height. Such abstract domains require an application of widening operators for guaranteeing
the convergence when performing the analysis in abstract interpretation. Many approaches
were proposed to combat the imprecision caused by widenings necessary for analysis in such
domains, e.g. using more sophisticated widening [GR06], or narrowing iterations [HH12].

However, the majority of such approaches are heuristical and do not give any optimality
guarantees. In contrast, thepolicy iteration (also referred to asstrategy iteration) approach
was proposed to address the imprecision, with a promise of �nding theleast inductive invariant
expressible in the given abstract domain.

The policy iteration technique dates back to an arti�cial intelligence research for �nding
the optimal strategy or policy in a game expressed by a Markov decision process [How60]. For
example, this technique was used in order to program a poker-playing AI [HHS11]. In contrast to
value iteration (Kleene �xpoint iteration described in Section 2.7), the policy iteration approach
iterates on possiblepolicies, and converges to the optimal solution in the given abstract domain.
Such guarantees come at a cost of imposed restrictions on the abstract semantics and the
abstract domain.

In this chapter we present our results on local policy iteration, which is a signi�cantly
improved version from the previously published results [KMW16]. Additionally, we present
extended background of the policy iteration method for �nding inductive invariants.

3.1.1 Motivation

Consider classical abstract interpretation with intervals over the program presented in Figure 3.1.

1 int i = 0;
2 while (i < 1000000) {
3 i ++;
4 }

Figure 3.1: Motivating Example

After the �rst instruction, the analyzer has a candidate invariant i 2 [0; 0]. Going through
the loop body it gets i 2 [1; 1], thus by least upper bound with the previous state [0; 0] the new
candidate invariant is i 2 [0; 1]. SubsequentKleene iterations yield [0; 2], [0; 3] etc. In order to
enforce convergence within a reasonable time, awidening operator is used, which extrapolates
this sequence to[0; + 1 ). Then, a narrowing iteration returns a post-image of[0; + 1 ] under
the constraint i < 1000000yielding [0; 99999].
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1 int i = 0;
2 while (i != 1000000) {
3 i ++;
4 }

Figure 3.2: Example of Narrowing Breaking Down

In this case, the invariant �nally obtained is the best possible, but the same approach yields
the suboptimal invariant [0; + 1 ) for the slight program modi�cation in Figure 3.2, as the
post-image of the interval [0; + 1 ) under the constraint i 6= 1000000 is still [0; + 1 ).

Of course more sophisticated narrowing heuristics can deal with the modi�ed program from
Figure 3.2. Yet in general, widenings and narrowings are brittle: a small program change may
result in a di�erent analysis behavior. Their result is non-monotone: a locally more precise
invariant at one point may result in a less precise one elsewhere.

3.1.2 Max-policy iteration

In contrast, max-policy iteration [GS07b] is guaranteed to compute the leastinductive invariant
in the given abstract domain. Note that it does not necessarily output the strongest (potentially
non-inductive) invariant in an abstract domain, which in general entails solving the halting
problem. To compute the bound d of the invariant i � d for the initial example above, it
considers that d must satisfy d = max i 0 s.t. (i 0 = 0) _ (i 0 = i + 1 ^ i < 10000000̂ i � d) and
computes the least inductive solution of this equation by successively considering separate cases:

ˆ d = ( max i 0 s.t. i 0 = 0) = 0 , which is not inductive, since one can iterate fromi = 0 to
i = 1 .

ˆ d = ( max i 0 s.t. i 0 = i + 1 ^ i < 1000000̂ i � d) = 1000000, which is inductive and
consequently a least upper bound oni .

Earlier presentations of policy iteration solve a sequence of global convex optimization
problems whose unknowns are the bounds (hered) at every program location. Further re�ne-
ments [GM12] allowed restricting abstraction to a cut-set [Sha79] of program locations (a set
of program points such that the control-�ow graph contains no cycle once these points are
removed), through a combination with satis�ability modulo theory (SMT ) solving. Nevertheless,
a global view of the program was needed, hampering scalability and combinations with other
analyses.

Contribution We present the new local-policy-iteration algorithm (LPI ) for computing
inductive invariants using policy iteration. Our implementation is integrated inside the open-
sourceCPAchecker [BK11] framework for software veri�cation and uses the maximization-
modulo-theory solver �Z [BPF15]. To the best of our knowledge, this is the �rst policy-
iteration implementation that is capable of dealing with C code. We evaluateLPI and show
its competitiveness with state-of-the-art analyzers using benchmarks from the International
Competition on Software Veri�cation ( SV-COMP ).

Our solution improves on earlier max-policy approaches:

ˆ Scalability: LPI constructs optimization queries that are at most of the size of the largest
loop in the program. At every step we only solve the optimization problem necessary
for deriving the local candidate invariant. Moreover, casting the algorithm in terms of
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standard Kleene worklist iteration allows us to use existing results on optimal iteration
orders, improving the performance by avoiding redundant computations.

ˆ Ability to cooperate with other analyses: LPI is de�ned within the Con�gurable Program
Analysis (CPA ) [BHT07] framework. This establishes a common ground with other
approaches and allows communicating with other analyses.

ˆ Precision: LPI uses large-block encoding [Bey+09], and thus bene�ts from the precision
o�ered by SMT solvers, e�ectively checking executions of loop-free program segments. In
Chapter 7 we show how to useLPI with adjustable block encoding [BKW10], which does
not require pre-processing, making inter-analysis communicatino easier.

ˆ Counterexample traces: in Section 4.4.1 we show how to generate an abstract reachability
tree from the run of LPI analysis, thus obtaining the abstract counterexample trace.

3.1.3 Related Work

Policy iteration is not as widely used as classic abstract interpretation and (bounded) model
checking. Roux and Garoche [RG13] addressed a similar problem of embedding the policy-
iteration procedure inside an abstract interpreter, however their work has a di�erent focus
(�nding quadratic invariants on relatively small programs) and the policy-iteration algorithm
remains fundamentally unaltered. The tool ReaVer [MS14] also performs policy iteration, but
focuses on e�ciently dealing with logico-numerical abstract domains; it only operates on Lustre
programs. The tool 2LS [Bra+15] applies an approach inspired by policy iteration, combined
with k-induction and bounded model checking, yet it does not change the fundamental policy
iteration algorithm. The ability to apply policy iteration on strongly connected components one
by one was (brie�y) mentioned before [Gau+07]. Our work takes the approach much further,
as our value-determination problem is more succinct, we apply the principle of locality to the
policy-improvement phase, and we formulate policy iteration as a classic �xpoint-iteration
algorithm, enabling better performance and communication with other analyses. Finally, it
is possible to express the search for an inductive invariant as a nonlinear constraint solving
problem [CSS03] or as a quanti�er elimination problem [Mon10], but both of these approaches
scale poorly.

While this chapter is concerned with max-policy iterations, a similar min-policy [Cos+05]
algorithm was developed by Goubault et al., which performs descending iterations, continuously
re�ning the inductive invariant. Unlike max-policy, min-policy approaches do not guarantee
achieving the global optimum, however every iteration step is an over-approximation and thus
the iterations can be terminated early, and furthermore, min-policy was experimentally shown
to be more e�ective for computing invariants over quadratic templates [RG14].

3.1.4 Chapter Overview

We start by deriving the background necessary for the policy iteration algorithm in Section 3.2.
Our background presentation is largely unique to this work, and provides a complete and
su�cient introduction to policy iteration (original complete presentation of policy iteration and
background is also available in the journal paper [GS14] by Gawlitza and Seidl). In Section 3.3
we present the local policy iteration algorithm (LPI ), which is an e�cient policy iteration
implementation stated in the abstract interpretation framework (e�ectively, we are synthesizing
a widening operator which is guaranteed to converge with a least inductive invariant after
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�nitely many iterations). We outline the extensions and optimizations we have developed
for LPI in Section 3.4. Finally, in Section 3.5 we present experimental evaluation of ourLPI

implementation, and we conclude in Section 3.6.

3.2 Background

3.2.1 De�nitions

A vector spaceS is called convex if the line segment between any two points inS lies solely
in S: 8a; b 2 S; k 2 [0; 1]: ka + (1 � k)b 2 S. A function f : Rn ! R is called convex if and
only if for all x ; y 2 Rn the following holds: 8k 2 R: f (kx + (1 � k)y) � kf (x) + (1 � k)f (y).
A function f : Rn ! R is called concaveif and only if � f is convex.

For two vectors a; b 2 Rn , a � b holds i� b � a 2 Rn
+ : that is, the comparison � holds for

all components ofa; b. We say that a strict inequality a � b holds i� a � b, and there exists
an i < n such that aj i < bj i . Additionally, we de�ne a � b to state that the strict inequality
< holds component-wise forall components ofa; b. Lattice operators t : Rn ! Rn ! Rn and
u : Rn ! Rn ! Rn , are de�ned to return vectors of pairwise maximums or minimums of all
input components respectively.

A function f : Rn ! R is called monotone if and only if for all a; b 2 Rn , a � b implies
f (a) � f (b). A function f : Rn ! Rm is called monotone if and only if every component off is
monotone. Strongest postcondition operator for a domain where the partial order is given by the
element-wise vector comparison is always monotone, as larger elements have larger post-images.
A function f : Rn ! Rm is called convex if and only if every componentf i : Rn ! R is convex.

A function f : Rn ! R is a pointwise maximum over a family of functions F with the
same signature if and only if for all x 2 Rn , f (x ) = maxg2 F g(x). We generalize this notion to
functions Rn ! Rn by requiring that for all x 2 Rn , there exists g 2 F such that for all g0 2 F ,
f (x) = g(x) � g0(x)). We refer to functions which are a pointwise maximum over a �nite set
F as having aselection property: that is, such a function f for every input x 2 Rn e�ectively
selectsg 2 F to produce an output (f (x ) = g(x)).

Consider the general optimization problem:

min f (x) s.t. a(x) � 0 ^ b(x) = 0 (3.1)

The problem (3.1) is referred to as aconvex optimization problemif and only if both the
objective function f , and a function a de�ning the feasible setare convex, and a functionb is
a�ne. Many important classes of convex optimization problems, such as positive semide�nite
programming (SDP, the constraint set is given by a positive semide�nite matrix), or linear
programming (LP , both the objective and the feasible set are a�ne) are solvable in polynomial
time. Modern solvers can analyze convex problems with tens of thousands of variables [Gur16;
IBM10].

3.2.2 Least Invariant as a Convex Optimization Problem

The classical problem in program analysis is searching for the smallest inductive invariant in
the domain D. We assumeD � �Rn ( �R � R [ f + 1 ; �1g ): that is, each domain element is
representable as a tuple ofn extended reals (e.g. a template constraints domain, Section 2.8.3).
Consider analyzing a program with a single initial state a0 2 D , and a single transition � with
abstract semantics given by� ] : D ! D (Section 2.7.2).
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In order to make the problem of �nding the least invariant decidable, we need to introduce
restrictions both on the abstract domain and the transition relation. We require � ] (a0) > a0 ,
which holds unlessa0 is an inductive invariant.

Additionally, we restrict the allowed abstract transformers to a set of concave functions
�Rn ! �Rn . In Section 3.2.3 we shall show that linear programs over rationals in a template
constraints domain satisfy the requirement.

Traditionally, abstract interpretation attempts to �nd the least �xed point by explicitly
computing the sequencea0 ; a0 t � ] (a0); a0 t � ] (a0) t � ] (� ] (a0)) ; : : : until a �xed point, potentially
using widening to enforce convergence (cf. Algorithm 2.1). Such a computation is referred to as
value iteration.

In contrast, we aim to �nd the least inductive invariant exactly by exploiting the concavity
property. In order to �nd the least post- a0 �xed point d � of a concave function� ] : Rn ! Rn

we need to solve the following optimization problem1:

d � � min d s.t. � ] (d) � d ^ a0 � d (3.2)

Minimizing vectors is not a well de�ned operation, as Rn only imposes a partial order.
However, from Tarski's �xed point theorem [Tar55] for monotone functions on complete lattices
we know that such a minimum denoting least �xpoint larger than a0 exists.

The feasible set of Equation 3.2 is neither concave nor convex. Yet consider the following
optimization problem, which �nds the largest �xpoint [Tar55]:

d̂ � � max d s.t. � ] (d) � d (3.3)

Equation 3.3 is a convex optimization problem, as� � ] is convex, a�ne function d does not
a�ect the convexity, and any sub-level set of a convex function is convex. Furthermore, for a
monotone and concave function these �xed points coincide.

Theorem 3.1. For a monotone concavef : Rn ! Rn , satisfying f (a) � a there exists at most
one �xed point b for which b � a holds.

Proof. Without loss of generality, let b be the least �xed point of f . As f (a) � a, from
Kleene [Kle52] theorem we haveb � f (a). Consider a line l from a to b. As a � f (a) � b
holds, all coordinates strictly increase alongl in the direction of b � a. Suppose there exists a
�xpoint c 6= b. Without loss of generality we can assume thatc � b (as (c t b) � b is also a
�xed point by Tarski [Tar55] theorem).

As l is increasing in all coordinates, there exists a pointd 2 l such that d � c and moreover
for some dimensionj the equality dj j = cj j holds. Then necessarily havecj j > bj j , as otherwise
dj j = cj j = bj j implies that d and b coincide (as all dimensions increase alongl), which
contradicts the fact that d � c > b.

From concavity, f (d)j j < dj j (as there exists a strictly smaller pre-�xpoint on the same
line). Yet from monotonicity f (d)j j � f (c)j j = cj j = dj j , yielding a contradiction dj j < dj j .
Thus the �xpoint c 6= b does not exist, andb is the unique post-a �xpoint.

Thus we can �nd the least �xed point by solving the convex optimization problem of
Equation 3.3.

1For precise treatment of in�nities an interested reader can refer to [GS14].

59



Chapter 3 Local Policy Iteration

3.2.3 Template Constraints Domains

In this section we describe under which conditions the abstract transformer de�ned by aCFA
P and a template constraints domain described in Section 2.8.3 is concave.

Recall that abstract semantics for an operatorOPand a TCD de�ned using a vector of
templates (t1; : : : ; tn ) is:

JOPK] (d) i � supt>
i x0 s.t. x0 2 JOPK(
 (d)) (3.4)

In order to prove the concavity of Equation 3.4, we give the formal abstract semantics
de�nition for the programming language de�ned in Figure 2.1.

Firstly, we de�ne the helper evaluation function eval for numerical and boolean expressions:
eval(<expr>) : (x ! R) ! R. This function performs the usual evaluation on a vector of values
representing program variables. We de�ne evaluation of boolean expressions in the same way:
eval(<bool_expr>) : (x ! R) ! B. The evaluation of a boolean expression is a function which
takes the value for all program variables and returns �true� if and only if the set of constraints is
satis�ed. With the helper eval function in place we de�ne the evaluation of a statement to return
a formula over x [ x0 which evaluates to> if and only if the assignment to primed and unprimed
variables corresponds to a valid transition. Formally, eval(<stmt>) : (x ! R) ! (x0 ! R) ! B.
Thus we de�ne the following evaluation rules (two input arguments represent regions over
unprimed and primed variables respectively):

eval(x := input() ) � �r; r 0:
�
8v 2 (x n x): r (v) = r 0(v)

�

eval(x := e) � �r; r 0:
�
r 0(x) = eval(e)( r ) ^ (8v 2 (x n x): r (v) = r 0(v))

�

eval(assume(c)) � �r; r 0:
�
eval(c)( r ) ^ (8v 2 x: r (v) = r 0(v))

�
(3.5)

Hence we can de�ne the abstract semantics of a template constraints domain for a given
statement (smallest upper bound for each template after the statement execution given the upper
bounds on each templates before the execution) without resorting to the concrete semantics:

JOPK] : Rn ! Rn

JOPK]
i � � d: supt>

i x0 s.t. eval(OP)(x [ x0) ^
^

k

t>
k x � dk

(3.6)

The de�nition above allows us to formulate the condition for abstract semantics concavity.

Theorem 3.2 (TCD Concavity) . The abstract semantics of a template constraints domain is a
concave function if all the template functions are linear, the only allowed comparison operators
are >=, ==, boolean expressions do not contain any disjunctions or negations, and theeval
function de�ned in (3.5) is linear for all numerical expressions occurring in the program.

With the constraints introduced in Theorem 3.2 the optimization problem in Equation 3.5
is a parametric linear program. The concavity proof for such a function is given in [GS14,
Lemma 25].
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3.2.4 Examples of Solvable Programs

For a restricted set of program semantics and initial conditions, we have shown how the problem
of �nding a least inductive invariant is equivalent to a convex optimization problem, which can
be often directly solved by anLP or SDP solver. Let us consider the implications of this result
and the programs for which we can now obtain explicit �xed points immediately.

Example 3.1 (Single A�ne Transition) . Programs with a single looping transition consisting
of a linear guard and any number of updates fall into this category. Consider analyzing the
following program in the template constraints domain with a single template x:

1 int x = 0;
2 while (x < 100)
3 x++;

The abstract semantics of the loop transition including the guard and the update is given
as a function from a previous to the new upper bound onx:

f (d) � (max x0 s.t. x0 = x + 1 ^ x � 99^ x � d) (3.7)

Using Theorem 3.1, the �xed point representing the upper bound may be found by solving
the following optimization problem:

f (d) � (max f (x) s.t. f (x) � x) (3.8)

By combining Equation 3.7 and Equation 3.8 and dropping inner maximization due to
redundancy we get the followingLP :

max x0 s.t. x0 � x ^ x0 = x + 1 ^ x � 99 (3.9)

resulting in the upper bound x � 100. The lower bound is 0, given by the upper bound on the
template � x, derived from the initial condition, and inductive under the loop.

Of course, the example program in Example 3.1 is trivial. However, using Theorem 3.1 we
can already �nd interesting invariants not readily available to standard abstract interpretation
techniques:

Example 3.2 (A More Interesting Invariant) . Again, consider analyzing in intervals the follow-
ing program with a single variable, which performs a non-deterministic number of iterations:

1 double x = 0;
2 while (input()) {
3 x = x / 2 + 1;
4 }

The lower bound inductively stays at zero, while in order to �nd the upper bound d we have to
solve anotherLP problem, obtained in the same way as in the Example 3.1:

d � (max x0 s.t. x0 � x ^ x0 = x=2 + 1) (3.10)

resulting in a non-trivial inductive invariant x 2 [0; 2].

3.2.5 Max Policy Iteration Algorithm

The class of programs for which an inductive invariant can be found with a single optimization
query is very small, as an overall transition relation � ] is seldom concave. For example, consider
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int x = 0;
while (input()) {

if (x <= 10) {
x++;

} else if (x >= 10
&& x <= 20) {

x += 2;
}

}

n0

na

x := 0

assume(x <= 10);
x := x + 1

assume(x >= 10
&& x <= 20);

x += 2

Figure 3.3: Example Program for Policy Iteration Demonstration

analyzing a program shown in Figure 3.3 with a single templateT � f xg. Let � ]
1 : R ! R and

� ]
2 : R ! R denote the abstract semantics of statements associated with the �rst and second

conditions in the loop respectively (recall that abstract semantics gives a new upper bound on
x as a function of a previous upper bound after one transition). Their de�nition is:

� ]
1(d) � max x0 s.t. x � 10^ x0 = x + 1 ^ x � d

� ]
2(d) � max x0 s.t. x � 10^ x � 20^ x0 = x + 2 ^ x � d

(3.11)

And the resulting abstract transition � ] is a maximum over � ]
1; � ]

2:

� ] (d) � maxf � ]
1(d); � ]

2(d)g (3.12)

By de�nition, � ] is a pointwise maximum over functions� ]
1; � ]

2 which are both monotone and
concave. Observe that this is the case for programs with a single node and a single template,
where multiple concave transitions are allowed. In this section we show how the policy iteration
algorithm �nds the least inductive invariant for programs where the abstract semantics of the
transition relation is a pointwise maximum over a �nite set of concave functions. We refer to
such functions aspolicies or under-approximations of � ] .

In general, we are looking for the least �xed point d � 2 Rn of a function � ] which is greater
than the initial state a0 2 Rn . By adding the initial policy � ]

0 � � d: a0 to F , we can ignore the
initiation condition d � � a0 , as it would be implied by the consecution requirement� ] (d) � d,
resulting in the following optimization problem:

d � � min kdk s.t. � ] (d) � d (3.13)

The function � ] is not concave and instead is given as pointwise maximum of a setF of
�nitely many policies (� ]

1; : : : ; � ]
n ):

� ] � max F (3.14)

Lemma 3.1. For any d̂ � d � for which d̂ � � ] (d̂) holds, there exists � ]
i 2 F such that

d̂ � � ]
i (d̂) and furthermore d �

i �
�

max kdk s.t. � ]
i (d) � d

�
is less or equal tod � .

Proof. The function � ] is a pointwise maximum overF . From selection property, there exists
� ]

i 2 F , such that � ]
i (d̂) = � ] (d̂). By Theorem 3.1, d �

i is equal to � � d̂ � ]
i . Then � ] (d �

i ) � d �
i (as

for all d, � ] (d) � � ]
i (d)), from which we get d � � d �

i , as d � is the least �xed point of � ] .

Lemma 3.1 gives us a way of solving the non-convex optimization problem in Equation 3.13:
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Algorithm 3.1 Policy Iteration Algorithm

1: Input : set of policiesF � (f 0; : : : ; f n ), initial policy f 0 � � x : x0 , f 0 2 F .
2: Output : x � � min kxk s.t. (max F )(x) � x
3: f i  f 0

4: x �
i = x0

5: while : (x �
i � f (x �

i )) do

6: . Policy Improvement
7: f i  function in F for which f i (x �

i ) = f (x �
i )

8: . Value Determination
9: x �

i  max kxk s.t. x � f i (x )
10: end while
11: return x �

i

if we have a point d̂ a priori known to be smaller then d � , we can �nd the corresponding � ]
i

and its post-d̂ �xed point, which is also known to be smaller or equal to d � . Each such� ]
i we

encounter during the iteration process is called afeasible policy. Thus the process can continue
until we converge to the policy � ] � from which we can �nally deduce d � . This process is known
as a policy iteration , and the step of choosing a new� ]

i (any policy � ]
i for which � ]

i (d̂) � d
can be chosen) is calledpolicy improvement while the step of generating newd �

i is called value
determination. We show the pseudocode for this process in Algorithm 3.1.

We revisit our example from Figure 3.3 with the policy iteration algorithm. We start with a
value 0. The initial feasible policy is:

� ]
1(d) � max x0 s.t. x � 10^ x0 = x + 1 ^ x � d

as � ]
1(0) = 1 which is a strict improvement over 0. The value determination process on� ]

1 solves
a linear programming problem:

max x0 s.t. x � 10^ x0 = x + 1 ^ x0 � x

yielding a new value of11. With this value, the policy � ]
2 becomes feasible, as it� ]

2(11) = 12. In
order to �nd the value of � ]

2 we solve the second linear programming problem:

max x0 s.t. x � 10^ x � 20^ x0 = x + 2 ^ x0 � x

which returns a new bound22. There are no new feasible policies, and the resultx � 22 is the
least inductive invariant expressible in the given domain.

For illustration purposes, we additionally present a detailed application of a policy iteration
algorithm on a non-convex optimization problem consisting of �ve policies in Figure 3.4. For
comparison, we perform value iterations on the same problem, visualized in Figure 3.9.

Theorem 3.3 (Policy Iteration Convergence). The algorithm shown in Algorithm 3.1 converges
within at most kFk convex optimization queries with the smallest post-x0 �xed point.

Proof. The optimality follows from Lemma 3.1, as none of the intermediate �xed points can
overshoot x � . The convergence follows from the fact that for any two subsequent intermediate
values x �

i , x �
i+ 1 it follows that x �

i+ 1 � x �
i , by de�nition. As there is only a such �xed point for

eachf 2 F it imposes an order on policies, and each policy is considered at most once.
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y

x

y = x

y = p0(x) � x0

y = p1(x)

y = p2(x)

y = p3(x)

y = p4(x)

x1

x2

y = f (x)
f (x) � maxf p0; p1; p2; p3; p4g(x)

x � = min x s.t. x � f (x)

Figure 3.4: Visualization of the policy iteration algorithm. We are minimizing x subject to
the constraint x � f (x), where f (x) : R ! R is a point-wise maximum of �ve concave functions
(referred to as policies) p0, p1, p2, p3, and p4. The function p0 is a constant and represents the
initial condition. Observe that adding the initial condition to the list of policies makes the initiation
condition x � x0 redundant, as universally x � f (x) � x0. The iteration starts at the initial
policy p0 which is convex, and its value isx0 for all inputs. However, by checking whetherf (x0) is
smaller than x0 we discover that the inductiveness condition does not hold. Asf has the selection
property (for all x, f (x) = pi (x) for somei ), we can �nd our next policy from f (x0). Suppose this
is p1. Using Theorem 3.1 we �nd the local optimum by solving the convex optimization problem
max x s.t. x � p1(x). This gives us the point x1 shown on the �gure, referred to as thevalue of
the policy. Again, by substituting x1 into f , we observe thatf (x1) > x 1, from which we derive the
third policy p2. For p2 we �nd the local value x2, and we again discover that it does not satisfy
x � f (x). We again �nd the local optimum x � for the policy p3, but now by substitution we get
f (x � ) = x � , hencex � is the global optimum. Observe that we did not need to examine the policy
p4, and that moreover, the value of the policy p4 is larger than the global optimum x � .
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int x = 0;
int y = 0;
while (x < 10) {

x++;
y++;

}

n0

na

x := 0; y := 0

assume(x < 10);
x := x + 1;
y := y + 1;

Figure 3.5: Program Requiring Di�erent Policy Per Each Template

3.2.6 Selecting Multiple Policies

The assumption that � ] is a pointwise maximum over a set of transitions associated with
separate statements we have used in Section 3.2.5 is too restrictive, and does not hold in general
in the presence of multiple templates. In this section we relax this assumption by allowing
the iteration process to select a di�erent policy per each template (and additionally per each
node) provided that the feasibility criterion (application of a new policy gives the value strictly
greater than the current one) is satis�ed for each policy.

As usual, we start with a motivating example. Consider analyzing the program shown in
Figure 3.5 with a template set T � f x; x � yg. By the initialization condition, the templates
are always unbounded at theCFA node n0, and we are only interested in the bounds atna.
The abstract semantics function

� ] : R2 ! R2 (3.15)

returns new bounds onx and x � y given previous bounds onx and x � y respectively as an
input.

Even though the abstract semantics of each transition associated with each edge is concave,
the function � ] is not due to a disjunction caused by the two incoming transitions:

ci � (x0 = 0 ^ y0 = 0)

cl � (x < 10^ x0 = x + 1 ^ y0 = y + 1)

� ] (d1; d2)j1 � max x0 s.t. (ci _ cl ) ^ x � d1 ^ x � y � d2

� ] (d1; d2)j2 � max x0� y0 s.t. (ci _ cl ) ^ x � d1 ^ x � y � d2

(3.16)

Let � i : R2 ! R2 and � l : R2 ! R2 be the functions representing abstract transition relation
for the initial and looping transition relations respectively:

� i (d1; d2) � (0; 0)

� l (d1; d2)j1 � max x0 s.t. cl ^ x � d1 ^ x � y � d2

� l (d1; d2)j2 � max x0� y0 s.t. cl ^ x � d1 ^ x � y � d2)

(3.17)

Observe that abstract semantics� ] is not a pointwise maximum over F � f � i ; � l g due to
the fact that maximums for di�erent templates may be reached on the di�erent elements ofF .
For example � ] (0; � 1) = (1 ; 0), while � i (0; � 1) = (0 ; 0) and � l (0; � 1) = (1 ; � 1). This happens
as di�erent optimization directions interfere, and the optimum occurs on di�erent disjuncts for
di�erent objectives. Hence we can not useF as a set of possible policies.

Instead, we construct a new set of policiesF which is constructed from all possible combi-
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nations of templates and the elements ofF .
We �rst de�ne a new tuple of objective functions o where all objectives are guaranteed

to be independentand not share variables. The tupleo is generated fromT by priming and
pre�xing each variable in each template with a fresh index corresponding to the template: e.g.
o � (x0

1; x0
2 � y0

2) in our example.
Let M � T � F be the set of all possible mappings fromT to F :

M �
n

f x : � i ; x � y : � i g; f x : � i ; x � y : � l g; f x : � l ; x � y : � i g; f x : � l ; x � y : � l g
o

(3.18)

From each m 2 M we generate a new element� m of F :

� m � max o s.t.
^

(t i 7! ci )2 m

ci [x=ti :x ] (3.19)

where the a renaming adds a pre�x derived fromt i to every free variable in ci .
For example, the mappingf x : � i ; x � y : � i g 2 M gets converted to the following policy (for

readability, the pre�x 1 corresponds to the templatex, and the pre�x 2 corresponds to the
template x � y):

� (� i ;� i ) (d1; d2) � max(x0
1; x0

2 � y0
2) s.t. x0

1 = 0 ^ y0
1 = 0 ^ x0

2 = 0 ^ y0
2 = 0 (3.20)

The full set of policies
F � f � � i ;� i ; � � i ;� l ; � � l ;� i ; � � l ;� l g (3.21)

is given in Equation 3.22 using a set of helper constraint variablesc:

ci
1 � x0

1 = 0 ^ y0
1 = 0

ci
2 � x0

2 = 0 ^ y0
2 = 0

cl
1 � x1 < 10^ x1 � d1 ^ (x1 � y1) � d2 ^ x0

1 = x1 + 1 ^ y0
1 = y1 + 1

cl
2 � x2 < 10^ x2 � d1 ^ (x2 � y2) � d2 ^ x0

2 = x2 + 1 ^ y0
2 = y2 + 1

� � i ;� i (d1; d2) � max(x0
1; x0

2 � y0
2) s.t. ci

1 ^ ci
2

� � i ;� l (d1; d2) � max(x0
1; x0

2 � y0
2) s.t. ci

1 ^ cl
2

� � l ;� i (d1; d2) � max(x0
1; x0

2 � y0
2) s.t. cl

1 ^ ci
2

� � l ;� l (d1; d2) � max(x0
1; x0

2 � y0
2) s.t. cl

1 ^ cl
2

(3.22)

Observe that by creating a set of fresh variables per each optimization objective we have
stopped the objectives from �interfering� with each other, thus the function � ] is equal to the
pointwise maximum over the set of policiesF :

� ] = max F (3.23)

We abuse the notation and treat F as the set of constraints of the contained functions, as all
the optimization objectives contained in o are the same. Then we can drop the inner maximum
due to redundancy and write Equation 3.23 as:

� ] � max(x0
1; x0

2 � y0
2) s.t. F (3.24)

Generating F comes at a cost: the size of the set of exploded policies is exponential in the
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1 int i =0;
2 while (input()) {
3 int k=0;
4 while (input()) {
5 assert(k <= 1000);
6 if (k == 1000) break;
7 k++;
8 }
9 assert(i <= 1000);

10 if (i == 1000) break;
11 i ++;
12 }

n0

na

nb

i 0 = 0

k0 = 0
^

i 0 = i

i 6= 1000
^

i 0 = i + 1

k 6= 1000 ^ k0 = k + 1 ^ i 0 = i

Figure 3.6: Running Example: C program and the correspondingCFA after the application of
large block encoding (Section 2.9).

number of templates. Yet we do not generateF explicitly, but instead we create it implicitly
during the iteration , by choosing a di�erent (partial) policy for each template during each policy
improvement step2. The value determination step is performed on a function fromF , as it
needs to combine di�erent policies in a single linear programming query. We apply the same
approach for generating di�erent invariants at di�erent CFA nodes, by allowing a di�erent
policy to be selected per each node and per each template.

Going back to out example, the iteration process proceeds as follows: we start with an
initial value (0; 0). The bound for the template x � y can not be increased any further, and
stays associated with the (partial) policy � i . For the bound for x we choose a new policy� l

based on a local improvement1 > 0. We run value determination on the policy � � l ;� i given by
the map f x : � i ; x � y : � l g, which requires solving the optimization problem

max(d1; d2) s.t. � (� l ;� i ) ^ d1 � x0
1 ^ d2 � (x0

2 � y0
2) (3.25)

yielding the �nal inductive invariant x � 10^ x � y � 0.

Non-Strict Improvement Properties Observe that if we allow choosing a di�erent policy
per each template, we may often end up in a situation where the values for some templates
are updated, while others remain constant. That has actually happened in our example, when
the bound on x was increased, but the bound onx � y was left constant, which violates the
required condition of Lemma 3.1. In our example, we have found the �xed point by only using
the value determination on the partial policies which were updated, and leaving the values
which remained the same constant.

The proof of correctness for such a case is considerably more complicated, and can be found
by an interesting reader in the original work by Gawlitza and Seidl [GS14].

3.2.7 Analyzing the Running Example with Policy Iteration

2Strictly speaking, the chosen function is not a policy, but the mapping from templates to chosen functions
de�nes one. Yet we abuse the notation by calling �partial policies� policies as well.
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Example 3.3 (Policy Iteration on Program in Figure 3.6) . We analyze this program with a set
of templates f i; k g, and we look for the least inductive invariant d � (di

a; di
b; dk

b) that subsumes
the upper bound for the variables i, k for all possible program executions on nodesna and nb

respectively.

Thus we minimize (di
a; di

b; dk
b) subject to the consecution condition, stating that the set of

states represented byd is larger or equal to their strongest postcondition:

min(di
a; di

b) s.t.

8
>>>>>>>>>>><

>>>>>>>>>>>:

di
a � supi 0

a s. t. (i 0
a = 0)

_(i a � di
b ^ i a 6= 1000 ^ i 0

a = i a + 1) _ ?

di
b � supi 0

b s. t. (i b � di
a ^ i 0

b = i b ^ k0
b = 0)

_(i b � di
b ^ kb � dk

b ^ kb 6= 1000 ^ k0
b = kb + 1 ^ i 0

b = i b) _ ?

di
b � supk0

b s. t. (i b � di
a ^ i 0

b = i b ^ k0
b = 0)

_(i b � di
b ^ kb � dk

b ^ kb 6= 1000 ^ k0
b = kb + 1 ^ i 0

b = i b) _ ?

(3.26)

In the constraints above, disjunctions arise from multiple incoming edges to each node, and
an extra argument ? is added, which represents the case where the associated node is not
reachable (in that case, the bound on the template is�1 ).

Each policy for the program in Figure 3.6 is an under-approximation of Equation 3.26, where
each disjunction is replaced by one contained disjunct.

For example, for the policy �

di
a � supi 0

a s. t. (i 0
a = 0)

di
b � supi 0

b s. t. (i b � di
a ^ i 0

b = i b ^ k0
b = 0)

dk
b � supk0

b s. t. (i b � di
a ^ i 0

b = i b ^ k0
b = 0)

(3.27)

from Theorem 3.1 we know that the correspondingvalue (smallest (di
a; di

b; dk
b)) can be found by

solving a single linear programming query derived from Equation 3.27 by changing the lower
bound to upper bound, maximizing for (di

a + di
b + dk

b), namespacing variables according to
associated nodes and templates (Section 3.2.6), and dropping the inner supremum operator due
to redundancy:

max di
a + di

b + dk
b s.t.

^
di

a � i 0
i;a ^ i 0

i;a = 0

di
b � i 0

i;b ^ i i;b � di
a ^ i 0

i;b = i i;b ^ k0
i;b = 0

dk
b � k0

k;b ^ i k;b � di
a ^ i 0

k;b = i k;b ^ k0
k;b = 0

(3.28)

yielding the expected value(0; 0; 0).

In order to test the policy � from Equation 3.27 for the possibility of improvement, we
compute its local value, by substituting the unknowns (di

a; di
b; dk

b) on the right hand side of the
global optimization problem in Equation 3.26 with the value obtained from � , and checking
whether the system of constraints holds. In our example, the right hand sides evaluate to
(1; 0; 1) and as0 � 1 does not hold, � can be improved for the template i at na, and for the
template k at nb.

Thus we generate a new policy, obtained by replacing the right hand side of each constraint
of Equation 3.26 with the disjunct which evaluates to the value causing the inequality. The
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resulting new policy is:

di
a � supi 0

a s. t. i a � di
b ^ i a 6= 1000 ^ i 0

a = i a + 1

di
b � supi 0

b s. t. (i b � di
a ^ i 0

b = i b ^ k0
b = 0)

dk
b � supk0

b s. t. i b � di
b ^ kb � dk

b ^ kb 6= 1000 ^ k0
b = kb + 1 ^ i 0

b = i b

(3.29)

Recall that the iteration process terminates when the least solution can not be improved
any further.

We give the full trace of the policy iteration algorithm on the running example. As
disjunctions in Equation 3.26 arise from multiple incoming edges per each node, a policy can
be de�ned by a choice of an incoming edge per node per template, or? if no such choice is
feasible. We represent a policy symbolically as a 3-tuple of predecessor nodes (or? ), as there
are two nodes, with a single policy to be chosen for each node. The order corresponds to the
order of the tuple of the unknowns. The initial policy p0 is (? ; ? ; ? ) with the corresponding
value v0 = ( �1 ; �1 ; �1 ).

The trace on the example is:

1. Policy improvement: p1 = ( n0; ? ), obtained with a local value (0; �1 ; �1 ). The value
determination yields the value corresponds to the initial condition: d1 = (0 ; �1 ; �1 ).

2. Policy improvement �nd a feasible policy for nb: p2 = ( n0; na; na), with value determina-
tion yielding d2 = (0 ; 0; 0). The value corresponds to the initialization condition for both
nodes.

3. Policy improvement selects the looping edge for bothna and nb: p3 = ( nb; na; nb), resulting
in a value d3 = (1000; 1000; 1000).

4. Finally, the policy cannot be improved any further and the iteration converges with an
invariant i � 1000at na, and k � 1000^ i � 1000at nb, which is strong enough to verify
the asserts.

Each policy improvement requires at least three localSMT queries, and each value determi-
nation requires one globalLP query.

3.3 Local Policy Iteration ( LPI )

There are algorithm ine�ciencies which can be seen even in the toy example: the policy should
be improved only on templates where the new information is locally available (there is no
point in re-computing the same bound multiple times), and value determination should only be
computed once any of the relevant policies was improved, and only on the strongly connected
component given by the variable dependencies associated with the improved policy. Furthermore,
in the presence of multiple dependencies between the variables the performance of the policy
iteration algorithm crucially depends on the iteration order: e.g. if we don't stabilize the inner
cycle before propagating the information further, many recomputations might be required.

While keeping track of variable dependencies and identifying strongly connected components
is possible even for the framework given by Algorithm 3.1 [Gau+07], forcing an algorithm which
operates over a system of equations to follow an iteration order de�ned by the structure of a
CFA is non-trivial. Moreover, combining policy iteration with other analyses and exchanging
invariant candidates during runtime also can not be done in an obvious way.
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Yet the classical Kleene worklist iteration algorithm (Algorithm 2.1) addresses all of these
concerns: it allows making use of optimal iteration orders, keeping track of the updates
propagating through the CFA , and combining the intermediate results between multiple
analyses.

We develop a new policy-iteration-based algorithm, based on the principle oflocality, which
aims to address the scalability issues and the problem of communicating invariants with other
analyses. We call it local policy iteration or LPI . To make it scalable, we consider the structure
of a CFA being analyzed, and we aim to exploit itssparsity.

Our formulation is based on the following observation: policy iterations can be seen as
standard Kleene iterations in the template constraints domain, where the abstract state apart
from the bounds contains the meta-information which can be used to reconstruct the used policy.
With this meta-information available, value determination can be de�ned as a widening operator,
which converges to theleast �xed point after �nitely many iterations, and no narrowing steps
are required.

3.3.1 LPI Formalization

In order to formalize LPI we de�ne the lattice of abstract states L , strongest postcondition
operator L ! F (x [ x0) ! L , and a join operator L ! L ! L . We assume that the large
block encoding pre-processing (Section 2.9) was performed on the inputCFA , and that each
transition relation is encoded as an existentially quanti�ed formula f 2 F (x [ x0) within a
decidable theory.

An LPI abstract state is an element of a template constraints domain with meta-information
added to record thepolicy used for generating the state.

De�nition 3.1 (LPI Abstract State) . An LPI abstract state is either a bottom state ? , or a
mapping from the externally given set T of templates to tuples (d;policy; backpointer), where
d 2 R is a bound for the associated templatet (the represented property ist(x ) � d), policy is a
formula representing the policy that was used for derivingd (policy has to represent a concave
function connecting primed and unprimed variables), andbackpointer is another LPI abstract
state that is a starting point for the policy (base case is a top state associated with a program
entry, modelled by an empty mapping fg ).

Note that the bound d is redundant, as it can be re-derived from policy and backpointer by
solving the optimization query

max t> x0 s.t. policy(x [ x0) ^ JbackpointerK] (x ) (3.30)

We include the bound in the tuple as an optimization for performing quick coverage checks and
postcondition computations.

Observe that we do not need to include positive or negative in�nities in the abstract state,
as a single mapping to�1 implies that the entire state is ? and therefore unreachable, and
mapping any template to 1 does not add any constraints, and thus can be discarded. The partial
order over L is de�ned by component-wise comparison of bounds associated with respective
templates (lack of a bound corresponds to an unbounded template). The concretization is given
by the conjunction of represented template linear constraints, ignoringpolicy and backpointer
meta-information. For example, an abstract state f x : (10; _ ; _ )g (underscores represent
information irrelevant to the example) concretizes to f c j c[x] � 10g, and the initial state fg
concretizes to all concrete states.
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Algorithm 3.2 LPI Postcondition Computation

1: Input: state a0, transition relation � (x [ x0), set of templatesT
2: Output: new state
3: new  empty map
4: �̂  � with disjunctions annotated using a set of marking variablesM

5: . Formula describing the state space at a destination location.
6: � (x0)  9 x : 
 (a0)(x ) ^ �̂ (x [ x0)

7: . Perform abstraction on � .
8: for all template t 2 T do

9: . Maximize subject to the constraints introduced by the formula
10: . and the starting state.
11: d  max t> x0 s.t. � (x0)
12: M  model at the optimum point

13: . Replace marking variablesM in �̂ with their value from the model M ,
14: . generating a concave relation representing the policy.
15: Policy   �̂ [M=Mj M ]
16: new[t]  (d;  ; a 0)
17: end for
18: return new

The postcondition computation (Algorithm 3.2) operates by maximizing all templates t 2 T
subject to the constraints introduced by a0 and the transition relation � (x [ x0) representing
a (combination of) CFA operators. Backpointer and apolicy are produced from the SMT
model M , corresponding to the resulting from the maximization query. The selected policy is
a concave under-approximation of� , obtained by replacing all disjunctions (

W
D) with their

arguments (d 2 D), such that the chosen disjunct is modelled at the optimum (M j = d). To do
so, we annotate� with marking variables (line 4): each disjunction � 1 _ � 2 in � is replaced by
(p ^ � 1) _ (: p ^ � 2) where p is a fresh propositional variable. A policy associated to a bound is
then identi�ed by the values of the marking variables at the optimum (subject to the constraints
introduced by � and a0), and is obtained by replacing the marking variables in � with their
values from M (line 15). Thus the LPI postcondition computation e�ectively performs the
policy-improvement operation for the given node, as only the policies which are feasible with
respect to the current candidate invariant (given by the previous abstract state) are selected.

Example 3.4 (Postcondition Computation as a Policy Improvement). We start with a state a:

a =
n

x : (100; > ; fg )
o

which concretizes tof c j c[x] � 100g, and a setT � f xg of templates.
We wish to compute a postcondition after traversing the following fragment:

x = (x <= 10) ? x + 1 : 0;

This line generates a formula� � (x � 10 ^ x0 = x + 1 _ x > 10 ^ x0 = 0) . Firstly, we
annotate � with marking variables, which are used to identify the selected policy, obtaining
�̂ � x � 10^ x0 = x + 1 ^ m1 _ x > 10^ x0 = 0 ^ : m1. Then we optimize �̂ , together with the
constraints from the starting state a for the highest value of the template. This amounts to a

71



Chapter 3 Local Policy Iteration

single maximization modulo SMT query:

supx0 s.t. x � 100^ (x � 10^ x0 = x + 1 ^ m1 _ x > 10^ x0 = 0 ^ : m1)

The query is satis�able with a maximum of 11, and an SMT model:

M � f x0 : 11; m1 : > ; x : 10g

Replacing the marking variable m1 in � with its value in M gives us a disjunction-free
formula x � 10^ x0 = x + 1 , which we store as apolicy. Finally, the newly created state is
f x : (11; x � 10^ x0 = x + 1 ; a)g.

In LPI , we use the join operator (Algorithm 3.3) to optionally perform the value determination
which computes the �xpoint value for the given policy. This can be seen as anexact widening
operator, which converges after �nitely many steps. Multiple iterations through the loop might
be necessary to �nd the optimal policy and reach the global �xpoint. In the presence of nested
loops, the process is repeated in a �xpoint manner: we �close� the inner loop, �close� the
outer loop with the new information from the inner loop available, and repeat the process
until convergence. Each iteration selects a new policy, thus the number of possible iterations is
bounded.

The join operator �rst computes the component-wise maximum (line 12), choosing the
new bound only if it is strictly larger. Then it computes a strongly connected component of
variable dependencies for value determination (line 23) If a non-empty SCC is found, the value
determination step (Algorithm 3.4) is launched. It computes the least �xpoint for the chosen
policy across the entire strongly connected component where the current noden lies. From the
map M , the algorithm generates a global optimization problem, where the set of fresh variables
dt

n i
represents the maximal value a templatet can obtain at the node ni using the policies

selected. Variabledt
n i

is made equal to the namespaced3 output value of the policy  (x [ x0)
chosen fort at ni (line 13). For each policy  and the associated backpointera0, we constrain the
input variables of  using a set of variablesdt0

n0
representing bounds at the noden0 associated

with a0 (line 16). This set of �input constraints� for value determination results in a quadratic
number of constraints in terms of the number of selected policies. Finally, for each templatet
we maximize for dt

n (line 23), which is the maximum possible value fort at node n under the
current policy, and we record the bound in the generated state (line 24), keeping the old policy
and backpointer.

The local-value-determination algorithm is almost identical to the max-strategy evalua-
tion [GM12], except for two changes: we only add potentially relevant constraints from the
�closed� loop (found by traversing backpointers associated with policies), and we maximize
objectives one by one, not for their sum (which avoids special casing in�nities, and enables
optimizations outlined in Section 3.4). Unlike classic policy iteration, we only run local value de-
termination after merges on loop heads, because in other cases the value obtained by abstraction
is the same as the value which could be obtained by value determination.

3.3.2 Properties of LPI

Property 3.1 (Soundness). LPI terminates with an inductive invariant.

3Namespacing means creating fresh copies by attaching a certainpre�x to variable names.
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Algorithm 3.3 LPI Join Operator

1: Input: node n, previous abstract state a0, new abstract state a1, set of templatesT
2: Output: new joined state a0

3: a0  fg
4: updated ;
5: for all template t 2 T do
6: if t 62a0 _ t 62a1 then

7: . The value of t is unbounded
8: continue
9: end if

10: (bound v0; policy p0; backpointer b0)  a0[t]
11: (bound v1; policy p1; backpointer b1)  a1[t]
12: if v1 > v 0 then

13: . The new value is strictly larger
14: . we should update to the new policy.
15: a0[t]  (v1; p1; b1)
16: updated updated[ f tg
17: else

18: . Otherwise keep using the old policy.
19: a0[t]  (v0; p0; b0)
20: end if
21: end for

22: . Strongly connected component of variable dependencies
23: scc  strongly connected component in the graph de�ned by policy backpointers which

contains a0.
24: if scc 6= ; then
25: M  map from nodes to the corresponding states inscc
26: a0  LocalValueDetermination (n; scc; T)
27: end if
28: return a0

Proof. LPI terminates when no more updates can be performed, and newly produced abstract
states are subsumed (in the preorder de�ned by the lattice) by the already discovered ones.
Thus, it is an inductive invariant: the produced abstract states satisfy the initial condition and
all successor states are subsumed by the existing invariant.

Property 3.2 (Termination) . LPI terminates on any input program.

Proof. An in�nite sequence of produced states would have to repeat at least one node in�nitely
often. However, each subsequent abstraction on the same node must choose a di�erent policy
to obtain a successively higher value, but the number of policies is �nite. An in�nite sequence
is thus impossible, hence a run ofLPI is always guaranteed to terminate.

Property 3.3 (Optimality) . In rationals, LPI terminates with the smallest inductive invariant
expressible in the given domain.

Proof Outline. LPI can be seen as an e�cient oracle for selecting the next policy to update
(note that policies selected byLPI are always feasiblewith respect to the current invariant
candidate). Skipping value-determination steps when they have no e�ect, and attempting to
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Algorithm 3.4 Local Value Determination

1: Input: node n, map M from nodes to states, setT of templates
2: Output: generated statenew
3: constraints  ;
4: for all node ni 2 M do
5: state s  M [ni ]
6: for all template t 2 s do
7: (bound d;policy  ; backpointer a0)  s[t]
8: Generate a unique stringnamespace

9: . Pre�x all variables in  .
10: . x0

namespace; xnamespace is a set of namespaced output/input variables for .
11: constraints  constraints [ f  [x=xnamespace][x0=x0

namespace]g
12: dt

n i
 fresh variable (upper bound ont at n)

13: constraints  constraints [
n

dt
n i

� t(x0
namespace)

o

14: n0  location associated witha0

15: for all t0 2 a0 do
16: constraints  constraints [

�
t0(xnamespace) � dt0

n0

	

17: end for
18: end for
19: end for
20: new  empty state
21: for all templates t 2 T do
22: (d0;  ; a 0)  M [n]
23: d  max dt

n subject to constraints
24: new[t]  (d;  ; a 0)
25: end for
26: return new

include only relevant constraints in the value-determination problem do not alter the values of
obtained �xed points.

Example 3.5 (LPI Trace on the Running Example). We revisit the running example (Figure 3.6)
with the local version of policy iteration:

1. We start with an empty state a0 � fg .

2. We compute the postcondition for the edge(n0; i 0 = 0 ; na), producing a new statea1,
de�ning the region i � 0:

f i : (0; i 0 = 0 ; a0)g

Observe that the resulting policy for the template i is equal to the formula associated
with an input edge, as it does not contain any disjunctions. This calculation requires
solving oneLP problem.

3. We explore the incoming edge tonb, resulting in a new abstract state a2:

a2 � f i : (0; i 0 = i ^ k0 = 0 ; a1); k : (0; i 0 = i ^ k0 = 0 ; a1)g

This calculation requires two LP queries.
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4. Exploring the looping edge onnb results in a new state

a3 � f i : (0; k 6= 1000 ^ k0 = k + 1 ^ i 0 = i; a2); k : (1; k 6= 1000 ^ k0 = k + 1 ^ i 0 = i; a2)g

again requiring two LP queries.

5. The join on nodenb mergesa2 and a3, yielding:

a4 � f i : (0; i 0 = i ^ k0 = 0 ; a1); k : (1; k 6= 1000 ^ k0 = k + 1 ^ i 0 = i; a2)g

Value determination �closes� the loop, producing a new state:

a5 � f i : (0; i 0 = i ^ k0 = 0 ; a1); k : (1000; k 6= 1000 ^ k0 = k + 1 ^ i 0 = i; a2)g

which requires solving oneLP problem.

6. Postcondition under the edge(nb; i 6= 1000 ^ i 0 = i 0+ 1 ; na) generates the state

a6 � f i : (1; i 6= 1000 ^ i 0 = i + 1 ; a5)g

This is performed by solving a singleLP problems.

7. Join of states a6 and a1 and the subsequent value determination yields the new state
associated withna:

a7 � f i : (1000; i 6= 1000 ^ i 0 = i + 1 ; a6)g

8. Finally, the �nal postcondition computation under the edge (na; k0 = 0 ^ i 0 = i; n b) yields:

a9 � f i : (1000; i 0 = i ^ k0 = 0 ; a7); k : (1000; k 6= 1000 ^ k0 = k + 1 ^ i 0 = i; a2)g

which subsumesa5 and concludes the iteration.

Compared to the original algorithm there are two value-determination problems instead of
three, both on considerably smaller scale. The improvement in performance is more than a
�xed constant: if the suboptimal iteration order was picked for a larger problem, the increase
might be exponential.

3.4 Extensions and Optimizations

3.4.1 Extending to Integers

Original publications on max-policy iteration in template constraints domain deal exclusively
with reals, whereas C programs operate primarily on integers4. Excessively naive handling of
integers leads to poor results: with an initial condition x = 0 , x 2 [0; 4] is inductive for the
transition system x0 = x + 1 ^ x 6= 4 in integers, but not in rationals, due to the possibility of
the transition x = 3 :5 to x = 4 :5. An heuristical workaround is to rewrite each strict inequality
a < b into a � b� 1: on this example, the transition becomesx = x + 1 ^ (x � 3 _ x � 5) and

4Previous work [GS07a] deals with �nding the exact interval invariants for programs involving integers, but
only for a very restricted program semantics.
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1 int x, x_new;
2 x=0;
3 x_new=input();
4 while (2 * x_new== x+2) {
5 x = x_new;
6 x_new= input();
7 }

Figure 3.7: Integer Imprecision in Policy Iteration

x 2 [0; 4] becomes inductive on rationals. However, such a heuristic is not capable of capturing
a congruenceinformation, e.g. proving that a statement guarded by 2 * x == 2 * y + 1 is
unreachable over integral variables, as an even number can not be equal to an odd one. Thus
we form all our OPT-SMT queries in the logic sorts similar to the variable types: integers for
machine integers, and rationals for �oats.

Use of integers has an additional bene�t: in the implementation we run a parallel congruence
analysis (Section 7.7.1), and we inject the obtained invariants into the value determination and
postcondition computation queries, making the resulting invariant more precise.

Linear relations over the integers are not convex or concave, which is a requirement for the
least �xpoint property of policy iteration. Thus the encoding described above may still result
in an over-approximation. E.g. consider the program shown in Figure 3.7.LPI terminates with
a �xpoint x � 2, yet the least �xpoint is x � 1. We have not found the imprecision over the
integers to be a large problem in practice: the resulting algorithm is still more precise than
traditional abstract interpretation, and gives much better results than rational relaxation for
all variables. Moreover, empirically we have found that interesting invariants about integer
variables often involve congruence facts which are better obtained explicitly with a separate
congruence analysis, e.g.x + y = 1 ( mod 2).

3.4.2 Extending to Uninterpreted Functions

In program analysis the theory of uninterpreted functions [KS08] (or UF s) is often used: e.g.
for encoding pointer arithmetic operations, or complex non-linear operations which can not
be modelled directly. Like linear integer arithmetic, the theory of uninterpreted functions is
not convex and a direct LPI application might result in a suboptimal invariant. However,
uninterpreted functions can be removed usingAckermann reduction [KS08], which instantiates
a number of fresh variables, and encodes the function axioms explicitly. For example, the
transition relation � � (p(x) = p(y)+1 ^ x = y) can be converted to(px = py +1 ^ x = y ^ ((x =
y) =) px = py). The Ackermann reduction pre-processing potentially results in a quadratic
increase in a formula size, yet allowsLPI to produce least inductive invariants over the theory
involving uninterpreted functions.

3.4.3 Reducing the Number of Value Determination Constraints

In Section 3.3 we have described the local value-determination algorithm which adds a quadratic
number of constraints in terms of policies. In practice this is often prohibitively expensive. The
quadratic blow-up results from the �input� constraints to each policy, which determine the
bounds on the input variables. We propose multiple optimization heuristics which increase the
performance.

As a motivation example, consider a long trace ending with an assignmentx = 1. If this
trace is feasible and chosen as a policy for the templatex, the output bound will be 1, regardless
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of the input. With that example in mind, consider further the postcondition computation
(Algorithm 3.2) from which we derive the bound d for the template t. Let a0; � (x [ x0) be the
function input.

Syntactic Check We perform the slicing based on variable dependencies oft(x0) in � and
in the formula generated by a0, and we only follow the backpointers for the templates which
can potentially a�ect the resulting value of the template. When computing the strongly
connected component of relevant states for the value determination problem, we only follow the
backpointers for the policies which were syntactically shown to be capable of a�ecting the �nal
bound. E.g. for a transition � � x0 = x + 1 and a template t � x, the resulting bound on x
after performing value determination is independent of templates associated witha0 which do
not contain the variable x. Thus when performing value determination at this node, we do not
follow the backpointers for such templates. Moreover, if from the syntactic analysis we know
that none of the variables of t occur in � , we can skip the optimization step altogether, and
return the bound a0[t]. For example, for a template t � x and a transition relation � � y � 5,
the resulting bound on t is not modi�ed by � and is given by a0[t].

Semantic Check Suppose the strongest postcondition computation has returned the bound
d for the template t. We check the satis�ability of � (x [ x0) ^ t> x0 > d ; if the result is
unsatis�able, then the bound of t is input-independent, that is, it is always d if the trace is
feasible. Thus we do not add theinput constraints for the associated policy in the value-
determination stage. Also, when computing the strongly connected component of relevant states
for the value-determination problem, we do not follow the backpointers for input-independent
policies, potentially drastically shrinking the resulting constraint set. For example, for t � x
and the transition relation � � x0 = 1 , the resulting bound is always1, regardless of values
associated witha0. Thus when performing value determination we do not follow backpointers
at all for the template t at such a node.

3.4.4 Merging the Unknowns

Furthermore, we limit the size of the value-determination LP by merging some of the unknowns.
Namely, when multiple templates associated with the same state share the same policy, we
do not create fresh namespaced copies for each of those templates, but share the same set of
variables between them. This is equivalent to equating these variables, thus strengthening the
constraints. The result thus under-approximates the �xed point of the selected policy. If it is
less than the policy �xed point (not inductive with respect to the policy), we fall back to the
normal value determination. An example of such an optimization is shown in Example 3.6:
note that unlike classical value determination our procedure requireskTk optimization queries
instead of 1, yet they are often performed on a much simpler constraint set.

Example 3.6 (Merging Unknowns for Value Determination). We revisit the example in
Figure 3.5 with the template set T � f x; yg. We are running value determination for the policy
given by selecting the looping transition � l for both templates. The construction of the value
determination problem given in Section 3.2.6 requires us to solve the following optimization
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problem:

max(d1; d2) s.t. d1 � x0
1 ^ d2 � y0

2 ^ x1 � d1 ^ y1 � d2 ^ x0
1 = x1 + 1 ^ y0

1 = y1 + 1 ^ x1 < 10

^ x2 � d1 ^ y2 � d2 ^ x0
2 = x2 + 1 ^ y0

2 = y2 + 1 ^ x2 < 10
(3.31)

The Equation 3.31 contains the constraint set resulting from the looping transition twice
with two di�erent namespaces. Instead, we optimize for a simpler constraint set by merging
the variables associated with templates �sharing� the looping policy, and we get the following
constraint set:

C � d1 � x0^ d2 � y0^ x � d1 ^ y � d2 ^ x0 = x + 1 ^ y0 = y + 1 ^ x < 10 (3.32)

In order to recover the bounds, we optimize ford1 and d2 in separate optimization queries
with respect to the constraints in C. In our example (and as we have seen empirically, in many
others), the resulting value of the objective function remains the same.

The resulting constraint set is, in general, stronger than the one originally associated with
the value determination problem, and may even be unsatis�able. Thus we switch to the more
expensive procedure if the obtained invariant candidate is not inductive with respect to the
chosen policies, preserving soundness.

3.4.5 Shrinking the Search Space

Additionally, during maximization we add a redundant lemma to the set of constraints that
speci�es that the resultant value has to be strictly larger than the current bound. This
signi�cantly speeds up the maximization by shrinking the search space.

Unfortunately, this approach does not combine well with the convex-hull based template
synthesis, described in Section 4.5, as the redundant lower bounds might be required for the
correct computation of the convex hull.

3.4.6 Ordering the Optimization Objectives

Consider emulating the octagon domain and synthesizing a set of templates� x � y for all
variables x; y 2 x. For most programs this set will be redundant: for instance, for describing the
�cube� 8v 2 f x; y; zg: 0 � v � 1 only six templates are required: x; � x; y; � y; z; � z. Yet the
octagons abstract domain would generate36 templates instead, most of themredundant. We
call an optimization objective redundant if it's value can be derived from the already computed
objectives. In our example, the bound on e.g.x + y is simply the sum of the bound onx
and the bound on y. Fortunately, an optimization solver based on simplex can exploit this
redundancy, as in our example the underlying simplextableau will not require any further pivots
for computing the bound on x + y after the bounds on x and y were computed.

Thus we apply a length-based ordering to optimization objectives in the abstraction step
(optimizing for objectives with fewer variables �rst).
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vs. PAGAI LPI BLAST CPAchecker Unique Veri�ed Incorrect

PAGAI 4 13 15 1 52 1
LPI 13 20 20 7 61 1
BLAST 6 4 8 0 45 1
CPAchecker 21 17 21 12 58 2

Table 3.1: Number of veri�ed programs for di�erent tools. The �rst �ve columns represent
di�erences between approaches: the cell corresponding to the row A and a column B (read �A vs.
B�) displays the number of programs A could verify and B could not. In the column Unique we
show the number of programs only the given tool could verify (out of the analyzers included in the
comparison). The columnVeri�ed shows the total number of programs a tool could verify. The
column Incorrect shows false positives: programs that contained a bug, yet were deemed correct by
the tool.

3.5 Experiments

We have evaluated our tool on the benchmarks from the category �Loops� of the International
Competition on Software Veri�cation (SV-COMP'15) [Bey15] consisting of 142 C programs,
93 of which are correct (the error property is unreachable). We have chosen this category
for evaluation because its programs contain numerical assertions about variables modi�ed in
loops, whereas other categories of SV-COMP mostly involve variables with a small �nite set of
possible values that can be enumerated e�ectively. All experiments were performed with the
following resource bounds: an Intel Core i7-4770 quad-core CPU with 3.40 GHz, and limits of
5 GB RAM, 100 s CPU time, and 4 cores per program. Our implementation is described in
detail in Chapter 7, along with installation and usage instructions.

We compareLPI (with templates synthesis algorithms described in Chapter 4) with four
tools representing di�erent approaches to program analysis:

ˆ BLAST [SMM12] running lazy abstraction with interpolants. The version used is v2.7.3.

ˆ PAGAI [HMM12], git hash 254c2fc693, running abstract interpretation with path focusing.

ˆ CPAchecker [BK11], version v.1.3.10-svcomp15, the winner of SV-COMP 2015 category
�Overall�, which uses an ensemble of di�erent techniques: explicit value, k-induction, and
lazy predicate abstraction.

For LPI we use theCPAchecker version 1.4.10-lpi-vmcai16 .
BecauseLPI is an incomplete approach, it can only produce safety proofs (no counter-

examples). Thus in Table 3.1 we present the statistics on the number of safety proofs produced
by di�erent tools, with LPI running in abstraction re�nement mode. From it we see that LPI

veri�es more examples than other tools can, including seven programs that no other tool could.

3.5.1 Timing Results

In Section 3.4 we have described the various possible con�gurations ofLPI . As trying all possible
combinations of features is exponential, tested con�gurations represent cumulative stacking of
features. We present the timing comparison across those in the quantile plot in Figure 3.8a,
and in the legend we report the number of programs each con�guration could verify.

The quantile plot for timing comparison across di�erent tools is shown in Figure 3.8b.
We have included two LPI con�gurations in the comparison: fastest (LPI -Intervals) and the
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Figure 3.8: Quantile timing plots demonstrating the performance of di�erent program analysis
approach. Each data point corresponds to a processed veri�cation task, withy coordinate given by
the time taken to analyze the task, andx coordinate given by the program number (each series is
sorted by time separately for each tool). Intuitively, the lower the line the faster the tool is. For
readability there are less markers than programs, and all runtimes less than one second have been
rounded up.

most precise one (LPI -Re�nement, switches to a more expensive strategy out of the ones in
Figure 3.8a if the program cannot be veri�ed). From the plot we can see thatLPI performance
compares favorably with lazy abstraction, but that it is considerably outperformed by abstract
interpretation. The initial di�erence in the analysis time between the CPAchecker -based tools
and others is due toJVM start-up time of about 2 seconds.

3.6 Conclusion

In this chapter we have demonstrated that LPI is a valuable method for code analysis, which
can compete with the existing state-of-the-art techniques.

3.6.1 Future Work

Extending to Min-Policy Iteration The �ndings present in this chapter can not be directly
applied to min-policy [Cos+05], as the CPA algorithm terminates whenever the candidate
invariant is inductive, and thus stating the descending iterations is problematic (as even the
starting state satis�es the coverage condition).

Supporting Non-Linear Templates A certain class of non-linear templates can be handled
within the max-policy iteration framework by using semi-de�nite programming [VB96] during
the value determination step. However, as value determination problems can be very large,
max-policy approach with non-linear templates has troubles scaling to large programs [RG14].

Handling Non-Concave Operators Non-linear operations can be handled in usual ways,
by e.g. using intervalization to replace them with a sound over-approximation.
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y

x

y = x

y = p0(x) � x0

y = p1(x)

y = p2(x)

y = p3(x)

y = p4(x)

x1

x2

f ( x 0 )

f ( f ( x 0 ))

f ( f ( f ( x 0 )))

f 4 ( x 0 )

y = f (x)
f (x) � maxf p0; p1; p2; p3; p4g(x)

x � = min x s.t. x � f (x)

Figure 3.9: For comparison with policy iteration shown in Figure 3.4 we visualize value iterations
(iteratively applying f until convergence) using red arrows. Observe that in our example value
iteration does not converge in �nite time and widening might be required.
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Chapter 4

Template Synthesis

4.1 Introduction

As before, we are working on a task of synthesizing an inductive invariantI which entails
unreachability of an error property E for a program modelled by aCFA P. Such an inductive
invariant is called separating. In order to generate these invariants, we use abstract interpretation
in a template constraints domain (TCD ) initially presented in Section 2.8.3, as it o�ers a
parameterizable compromise between precision and performance, and can be used in conjunction
with policy iteration (Chapter 3).

An analysis in a TCD requires atemplate annotation for an input program. Each control
location to which an inductive invariant is associated has to be annotated with a set of
templates T, which de�nes the expressibleinvariants during the analysis. E.g. for T � f x + y; yg
expressible inductive invariants are of the shapex + y � d1 ^ y � d2 for d1; d2 2 �R (recall that
�R � R [ f + 1 ; �1g , which is used to denote unreachable states and unbounded templates).
The set T is a parameter de�ning the precision to performance ratio: if T is too large, the
analysis may become unfeasible, yet ifT does not contain templates required for stating a
separating inductive invariant, the property could not be proven even if it does hold.

In this chapter we present di�erent techniques for generating a set of templates for a program,
along with the evaluation and comparison. Each such technique is described in a separate,
self-contained section. This work is performed in the context of using the resulting templates
for the local policy iteration developed in Chapter 3, but the presented algorithms can be
generalized to the problem of template synthesis in general.

Chapter Outline We develop an enumerative template synthesis algorithm and we study its
properties in Section 4.2. In order to reduce the number of synthesized templates, in Section 4.3
we present an algorithm for �ltering the templates based on the livenessdata obtained from a
separate data�ow analysis, and we describe its e�ect on the completeness property. In Section 4.4
we go further by using interpolants to synthesize the templates relevant to the property being
proven. The last two algorithms we present use polyhedral analysis for template synthesis,
and are given in Section 4.5. Unlike the previous approaches, the algorithm in Section 4.5.3
adds new templates on the �y (while other approaches require analysis restarts inCEGAR
fashion). Finally, we present the evaluation comparing all of the approaches in Section 4.6, and
we conclude in Section 4.7.

4.1.1 Related Work

The problem of choosing an abstract domain which is expressive enough to prove the desired
property, yet e�cient enough to be scalable is addressed in a in�uential paper [Cla+00]
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on counterexample-guided abstraction re�nement (CEGAR ) by Clarke et al. Most of the
algorithms we present are based on this idea. The approaches we present in sections 4.2 and
4.5.2 both perform abstraction re�nement, yet not guided by the counterexample, while the
interpolation-based approach (Section 4.4) does perform classicalCEGAR re�nement.

The octagons abstract domain described in Section 2.8.1 can be seen as an instance of a
template constraints domain, as it tracks upper bounds on equalities� x � y for all program
variables x; y 2 x � x . In order to avoid having a quadratic number of constraints at each
abstract state, the original publication [Min06] proposes variablepacking, where according to a
heuristical syntactic criteria variables are grouped into multiple sets, and octagonal constraints
are tracked separately for each group.

The approach [Oh+14] of Oh et al. takes the packing further: they propose running a
pre-analysis on a small, �nite domain, from the result of which they extract the grouping of
variables. Neither of the approaches is proven to have the same expressive power as the full
octagonal analysis with no reductions.

Gawlitza et al. proposeparametric policy iteration [SGS14] which �nds the least solution
for the set of semantical equations for all possible values of the parameters using theregion
tree datastructure. Their problem is more general, as they allow parameters to occur in the
analyzed program, and the output of the analysis can be a non-convex inductive invariant.

4.2 Enumerative Template Synthesis

Observe that performing an analysis in the intervals domain can be emulated inTCD by
synthesizing templates � x at every program location n for every program variable x 2 x.
An octagon domain [Min06] can be emulated in a similar way, enlarging the synthesized
template space to� x � y. In this section we extend this enumerative synthesis method for
synthesizing arbitrary templates with coe�cients over Z in a way inspired by syntax-guided
synthesis [Alu+13].

For a template t let ktk denote the template size, which is a number of variables occurring
in a template (e.g. 3 for x + y + z). Observe that for a �xed set of program variables x, a
template size is always less thankxk, as there is at most one coe�cient associated to each
variable. Using an integern 2 N de�ning the magnitude of the largest allowed coe�cient, we
generate a set of templates based on linear expressions of size� k xk, where all coe�cients
are in the set f c j c 2 Z ^ j cj � ng. For a �nite set of program variables x the resulting
set T is �nite. Observe that by continuously increasing n we can eventually synthesize all
templates required for expressing any linear polyhedra with integral coe�cients. Furthermore,
this approach e�ectively generates all templates with rational coe�cients, as a template over
rationals could be represented in integers by multiplying all coe�cients by a greatest common
denominator (e.g. a templatex=3 + y=2 has equivalent expressive power to2x + 3y).

Re�nement synthesis procedure parameterized by an abstract interpretation in a template
constraints domain forms a (semi) algorithm for safety checking of the error property, which we
state in Algorithm 4.1. For a given set of templates we can �nd the least inductive invariant using
policy iteration (line 8), and then if it does not provide separation from the error property we can
perform re�nement (line 12), extending the set of allowed templates. Note that algorithm 4.1
does not guarantee termination: in fact, it never terminates on programs where the error
property is reachable and no separating inductive invariant exists in the domain of convex
polyhedra with rational coe�cients. In practice, we enforce termination by having a threshold
on the largest possible value ofn, and terminating with an UNKNOWNverdict once this threshold
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Algorithm 4.1 Semialgorithm for Finding Separating Inductive Invariant

1: Input: CFA P � (nodes; edges; n0; x ), error state E
2: Output: separating inductive invariant I : nodes! F (x)
3: n  1
4: while true do
5: T  set of all templates with integral coe�cients of absolute size less thann

6: . Generate an inductive invariant for P
7: . running abstract interpretation in the TCD T.
8: I  Analyze (P; T)
9: if I entails unreachability of E then

10: break
11: end if
12: n  n + 1
13: end while
14: return I

is reached.

4.2.1 Beyond Rationals

Background We rely on basic number classi�cation: a real numbern 2 R is called rational
(n 2 Q) i� it can be written as a fraction p=qwhere p is a positive integer, andq is a non-zero
integer. A number n is called algebraic i� it is a root of a polynomial in one variable with
rational coe�cients. Algebraic numbers can be programmatically de�ned using the polynomial
for which they represent roots, and manipulated programmatically. Non-algebraic real numbers
(e.g. � ) are called transcendental.

Recall that policy iteration, described in Chapter 3, guarantees to �nd the least inductive
invariant in a given template constraints domain. This begs the question of whether the
parameterization of Algorithm 4.1 with policy iteration gives a semidecidable approach for �nding
a separating linear inductive invariant, as for a given set of templates such a parameterization
always �nds the least inductive invariant. In turn, this depends on whether Algorithm 4.1
guarantees to eventually synthesize all templates required for expressing an arbitrary separating
inductive invariant. In this section we show that the answer is �no�, as there exist programs
where all the coe�cients are integral and all operations are linear, yet every non-trivial linear
inductive invariant has irrational coe�cients. Nevertheless, Algorithm 4.1 allows us to derive
useful safety conditions for many programs.

Theorem 4.1 (Templates are Expressible Using Algebraic Numbers). If there is a linear
inductive invariant I expressed using real coe�cients for aCFA P where all transitions are
linear and involve only rational numbers, then there exists an invariant I 0 for P such that
I 0 =) I and I 0 is expressible in algebraic numbers.

Proof. If I is linear, then it is expressible as a conjunction of linear inequalities over a set of
templates T. For a �xed number of templates (given by kTk) and a CFA P all inductive
invariants have to satisfy the �rst-order arithmetic constraints generated from P [CSS03]. Such
a system of constraints is satis�able over reals, and is consequently satis�able over any real
closed �eld, such as algebraic reals. As the obtained invariantI 0 is the least possible one
expressible inkTk templates, it has to imply the original invariant I .
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As algebraic numbers are countable (cf. [Niv56], Theorem 7.5), the re�nement approach
(Algorithm 4.1) can be extended to synthesizingall possible templates, and consequently a
semidecidable algorithm for proving safety, yet such an enumeration would be unfeasible in
practice.

1 int x = 1;
2 int y = 0;
3 while (input()) {
4 x = -x + y;
5 y = x + y;
6 }

Figure 4.1: Program Requiring Irrational Coe�cients for Expressing Inductive Invariant

Example 4.1 (Irrational Coe�cients in Templates) . Consider a programP shown in Figure 4.1.
The only non-trivial linear inductive invariant it admits is:

y � (1 �
p

2)x ^ y � (1 +
p

2)x

This result is counter-intuitive, as for many programs inductive invariants of interest are
trivial and may be even already syntactically present in form of guards.

We now explain from where the inductive invariants from Example 4.1 come from, and
why they are unique. Consider a programP consisting of a single loop performing an update
x = Ax0, where A is a square matrix of dimensionkxk. The evolution of the values of program
variables of P corresponds to the dynamics of the di�erence equation, and is determined by
the eigenvalues and eigenvectors of the matrixA [Ela96]. The phase portrait of the di�erence
equation corresponding to the program discussed in Example 4.1 is shown in Figure 4.2. It is
easy to see that for a two-by-two matrix A with eigenvalues of di�erent signs the only possible
linear convex inductive invariants are given by the eigenvectors ofA. As the eigenvalues can be
calculated by solving the characteristic polynomial det[A � �I ] = 0 , which requires �nding the
roots of the polynomial of degree of the size ofA, irrational numbers may appear in eigenvalues
and consequently in eigenvectors.

4.3 Filtering Templates Using Live-Variables Analysis

The template generation scheme in Algorithm 4.1 generates a very large number of templates.
However, for real programs most of those templates are redundant, or irrelevant for proving
the target property. Intuitively, the information about the variables which are not going to be
used again should not be relevant for the safety invariant generation. Thus we use the data
obtained from the live variables analysis to reduce the number of considered templates. Recall
that the variable x is alive at a CFA node n, i� there exists an execution proceeding fromn
which depends on the value ofx (either directly through read, or indirectly using pointers).

Unfortunately, not considering templates containing dead variables can a�ect the precision
when relational templates are used: that is, templates with more than one variable, where
the bound on one template may in�uence the other. For example, consider the program in
Figure 4.3. Suppose the program is analyzed using a set of templatesT consisting of all possible
templates of size up to three, containing only constantsf 0; 1; � 1g. Using such a set of templates,
the assertion violation in the considered program can be proven to be unreachable using the
invariant a = b+ c, which requires supporting templates � (a � b� c). Observe that if those
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x0

� 2 � 1 0 1 2
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0
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y

Figure 4.2: Phase Portrait showing evolution of variable values of program in Figure 4.1. Red
lines show the directions of eigenvectors, which de�ne the linear inductive invariants with irrational
coe�cients. Grey vectors show the evolution step: the next value of a point at the arrow origin
corresponds to one application of the loop iteration. Black point shows the initial state.

templates are removed fromT, a separating inductive invariant can no longer be found, even
though the variable a is not live at the loop entry.

1 int b = input();
2 int c = input();
3 int a = b + c;
4 int d = 2 * a;
5 while (input()) {
6 b++;
7 c-- ;
8 assert(d * d = 4 * (b + c) * (b + c));
9 }

Figure 4.3: Example of Relevance of Dead Variables for Template Generation

The loss of the precision may be avoided by performing theprojection operation on the
dead variables �rst. As any TCD is a subset of the polyhedra domain, any variables can be
projected away without the loss of precision with respect to other variables. Thus our example
in Figure 4.3 can be proven using templates� (d � 2 � (b+ c)) , which are given by projecting
the dead variablea out.

Furthermore, in two important cases the projection operation is not necessary. In the
intervals domain, the template set is not relational, and all dead templates can be discarded. In
the octagons domain, as the projection of an octagon is always an octagon [Min06], performing
the projection is not necessary if all the supporting templates for the octagon are already
speci�ed.

In short, liveness �ltering provides a large increase in performance (cf. Section 4.6.1) without
any precision penalty in case of octagonal and interval templates, or at the cost of a projection
operation.
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4.4 Interpolation-Based Template Synthesis

Consider proving the unreachability of an error property E using an inductive invariant. In
this context, we are not interested in �nding the smallest inductive invariant, but merely one
which is strong enough to show the unreachability ofE . We are additionally interested in
�nding such inductive invariants for programs so large, that even emulating the intervals domain
(using templates � x for every program variable x) becomes too expensive, especially in the
context of running policy iteration (Chapter 3). Intuitively, only a fraction of the program
variables are relevant to the property, and in this section we aim to �nd templates relevant to
the unreachability proof of E .

Background Many approaches exist for usinginterpolants (De�nition 2.13) in order to
perform abstract domain re�nement, both in the context of predicate abstraction [McM06] and
explicit value analysis [BL13]. Recall that for two formulas � and  such that the conjunction
� ^  is unsatis�able an interpolant I is a formula over the shared variables of� and  such
that � =) I and I =) :  both hold. This de�nition is extended to sequences[McM06]: for
a sequence of formulasS � (s1; : : : ; sn ) where

V
S is unsatis�able, a sequenceI � (i 1; : : : ; i n )

is an interpolant for S if and only i� i 1 = > , i n = ? , for all i 2 [1; n] i i � 1 ^ si =) i i and
additionally, i i only contains the shared symbols of

V
i 2 [1;i ] si and

V
i 2 [i +1 ;n] si . If all formulas

in S are quanti�er free, such a sequenceI exists for many theories, including linear rational
arithmetic [McM05].

We present an algorithm for generating new templates from interpolants. Two di�culties
arise when applying an interpolation-based re�nement to an abstract interpretation running over
a template constraints domain. Firstly, template constraints domain is restricted to the linear
expressions over program variables, and can not be re�ned directly using arbitrary predicates
contained in an interpolant. Secondly, the output of an abstract interpretation in case the
separating inductive invariant could not be found does not contain a path from the program
start to the property violation. The second limitation extends to most analyses based on
abstract interpretation.

We present two simple solutions to these problems. In Section 4.4.1 we provide an algorithm
for dynamically generating an abstract reachability tree from a given abstract interpretation
analysis. This allows us to generate interpolants from analysis runs, as discussed in Section 4.4.2.
In Section 4.4.3 we describe and evaluate a method forguiding the interpolation procedure
towards less over�tting interpolants by weakening the formulas given to the solver.

4.4.1 Abstract Reachability Tree Generation

We describe an algorithm for generating an abstract reachability tree [Bey+07] from an analysis
formulated as an abstract interpretation. Such a generation can not be done in an obvious way,
as abstract interpretation relies on the presence of joins between multiple states for convergence,
and an ART -generating analysis can not perform joins (as otherwise the resulting graph might
contain cycles). Instead, weemulate the joins in the postcondition operator: if during the
postcondition calculation resulting in a state s1 we can �nd a state s0 on the same tree �branch�
associated with the sameCFA node (we call such a state a �neighbour�), instead of returning
s1 we return the joined state s0 t s1. Such a construction allows us to guarantee termination,
while generating abstract counterexample traces.
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De�nition 4.1 (Abstract Reachability Tree) . An ART for a CFA (nodes; edges; n0; x ) is a set
of tree nodesN . Each tree noden 2 N is a triple, consisting of a CFA node p 2 nodes, de�ning
which location n corresponds to, an abstract domain elementd 2 D , de�ning the reachable
state space atn, and a pointer to the parent node ofb 2 (N [ f;g ) (; for the tree root), de�ning
the tree structure. The starting tree node is (n0; > ; ; ).

An ART N is sound i� the output of each transition over-approximates the strongest
postcondition: that is, for each tree noden � (a; d; b) 2 N where b = ( a0; d0; b0) 6= ; , there
exists an edge(a0; OP; a) 2 edges, and the abstract state d associated withn over-approximates
the strongest post-condition of b under OP: JOPK] (d0) � d. A node n � (a; d0; b0) 2 N is fully
expandedi� for all edges (a; OP; c) � edgeswhereJOPK] (d0) 6= ? there exists a node(c; d; n) 2 N ,
where JOPK] (d0) � d. A node (a; d1; b1) 2 N covers another node (a; d2; b2) 2 N i� d2 � d1.
A sound ART where all nodes are either fully expanded or covered represents an inductive
invariant.

Tree Generation Algorithm We generate a tree for any analysis de�ned by an abstract
domain D equipped with a partial order � , strongest postconditionJOPK] : D ! D parameterized
by an operator OP2 OPS, join function t D : D ! D ! D , and an initial state d0 2 D .

An algorithm listing for generating an abstract reachability tree given such a parametrization
is shown in Algorithm 4.2. We maintain three stateful datastructures: a set of all tree nodes
N , a set of expanded nodesE and a set of covered nodesC (line 5). Then for all tree nodes
which are not expanded and not covered (line 8) we calculate the postcondition using the
parameterized analysis, and then check the coverage with respect to existing nodes (line 13).

To generate the postcondition for an elementn � (na; d; b) under a givenCFA edge, we �rst
generate an abstract stated0 using the abstract interpretation postcondition operator (line 28).
Then we traverse a chain of �parent� pointers upwards from n (line 36), until we either hit the
tree root, or a �neighbour� element s � (na; d0; b0) (two tree noes are called neighbours if they
share aCFA node). If such ans exists, we return the result of the join application to d0 and d0

(line 32). Otherwise, we simply return the element with an abstract state given byd0.

Property 4.1 (Termination) . Algorithm 4.2 is guaranteed to terminate whenever D has
�nite height (and termination can be enforced by using widenings during the join application
otherwise).

Proof. For any ART branch B , for any sequenceS of ART states associated to the same
CFA node, all elements ofS apart from the �rst one were created using the join function
application. As any in�nite sequence of states would have to repeat aCFA node in�nitely often,
and repeatedly applying joins in a �nite-height domain ensures convergence, this forces the tree
height (size of the largest branch) to be �nite. The tree width is also �nite for a �nite CFA , as
at each tree level we only create as many neighbours as there are outgoingCFA edges for a
processed node. As every iteration of Algorithm 4.2 creates a newART node, the �niteness of
the resulting tree guarantees the algorithm termination.

Example 4.2 (Abstract Reachability Tree Generation Example). We show the run of the
Algorithm 4.2, for the input program in Figure 4.4, parametrized with an analysis running local
policy iteration ( LPI , Chapter 3) in the template constraints domain T � f� x; � y; � (x � y)g
(recall that negating the template gives us the lower bound). The resulting reachability tree
describes the progress of the analysis computation and is shown in Figure 4.5. In order to
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Algorithm 4.2 Abstract Reachability Tree Generation

1: Input: CFA (nodes; edges; n0; x ), postcondition operator J:K] : OPS! D ! D ,
2: join operator t D : D ! D ! D , initial state d0 2 D
3: N  f (n0; d0; ; )g
4: E  ;
5: C  ;
6: while 9n � (node a; abstract state d;backpointer b) 2 (N n E n C) do

7: . Expand all outgoing edges fromn.
8: for all edgee � (node a; operator OP; node c) 2 edgesdo
9: n0 � (c; d0; n)  Post (a; OP; nb; d; n)

10: if d0 6= ? then
11: N  N [ f n0g

12: . Check Coverage.
13: for all n0 � (node a; abstract state d0; backpointer b0) 2 (N n C) do
14: if d0 � d0 then

15: . Newly created tree node coversn0.
16: C  C [ f n0g
17: end if
18: if d0 � d0 then

19: . Newly created tree node is covered byn0.
20: C  C [ f n0g
21: end if
22: end for
23: end if
24: end for
25: E  E [ f ng
26: end while
27: function Post (node na; operator OP; node nb; abstract state d;ART node n)
28: d0  JOPK] (d)
29: neighbour s � (na; d0; b0)  FindNeighbour (b; na)
30: if s 6= ; then

31: . If a neighbour was found, set output to the merge result.
32: d0  d0t D d0

33: end if
34: return (nb; d0; n)
35: end function
36: function FindNeighbour (state b � (node n0; abstract state d;backpointer b0), nodena)
37: if n0 = na then
38: return b
39: else if b0 = ; then
40: return ;
41: else
42: return FindNeighbour (b0; na)
43: end if
44: end function
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1 int x = 0;
2 int y = 0;
3 while (x < 10 && y < 10) {
4 x++;
5 y++;
6 }
7 assert(x <= 10);

na

x = 0;
y = 0

assume(x < 10 && y < 10); x++; y++

Figure 4.4: Two Counter Program Example

save space, inside eachART node we only display the correspondingLPI invariant, as all the
generated nodes correspond to theCFA node na. After the �rst transition we generate the
LPI state x = 0 ^ y = 0 , given by the loop precondition. The secondART node is given by
taking the looping transition, and performing the join with the �rst ART node, resulting in
x 2 [0; 1] ^ y 2 [0; 1] ^ x = y. After taking the third transition, LPI runs value determination on
join, resulting in the state x 2 [0; 10]^ y 2 [0; 10]^ x = y which is �nally inductive, as indicated
by the coverage relation with respect to its successor.

x = 0
y = 0

0 � x � 1
0 � y � 1

x = y

0 � x � 10
0 � y � 10

x = y

0 � x � 10
0 � y � 10

x = y

x=0; y=0

assume(x<10 && y<10); x++; y++

assume(x<10 && y<10); x++; y++

assume(x<10 && y<10); x++; y++covered by

Figure 4.5: ART generated by local policy iteration algorithm for the input program in Figure 4.4.

4.4.2 Generating Templates from Interpolants

The overall algorithm for generating templates from anART generation algorithm parameterized
by an abstract interpretation and an interpolation procedure is given in Algorithm 4.3. As
before in Algorithm 4.1, we start with an empty set of templates and repeatedly restart the
analysis with an updated set (line 8). If the ART -generating analysis produces an abstract
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Algorithm 4.3 Template Re�nement Using Interpolants

1: Input: CFA P, error property E
2: Output: veri�cation verdict

3: . Set of TCD templates
4: T  ;
5: while true do

6: . Generate a sound fully expandedART for P
7: . by abstract interpretation in the TCD T.
8: A  ARTAnalyze (P; T)
9: if E is not reachable inA then

10: return TRUE
11: else
12: P  path from root to E in A

13: . Concrete semantics ofCFA transitions in P
14: �  JPK
15: if � ^ E is feasiblethen
16: return FALSE
17: else
18: I  interpolation sequence over elements of� and E
19: T0  T [ GenerateTemplates (I )
20: if T0 = T then

21: . No further re�nements are possible
22: return UNKNOWN
23: else
24: T  T0

25: end if
26: end if
27: end if
28: end while

reachability tree entailing the unreachability of the error property, we conclude that the program
is safe (line 10). Otherwise, we can �nd apath in the generated tree from the initial to the
error state (line 12). In CEGAR [Cla+00] spirit, if the path is feasible(that is, composition of
concrete semantics along the path returns a non-empty set of states), we have found a concrete
counterexample (line 16). Otherwise, we generateinterpolants from the unfeasible sequence of
formulas associated withconcrete transitions along the tree branch, and the �nal error state
(line 18). We enforce termination by requiring that each iteration updates the set of templates
(line 24), and adding a size restriction on templates generated from interpolants (line 19).

Again, consider analyzing the program in Figure 4.4 using an empty set of templates
T � ; . Suppose we wish to verify the propertyP � x � 10. In that case, performing the
postcondition computation after the very �rst edge yields an abstract state > , which violates P.
Thus we ask anSMT solver to generate sequential interpolants for the sequence of formulas
x0 = 0 ^ y0 = 0 ; x0 > 10. A possible interpolant is I � x0 = 0 .

In order to synthesize a new set of templates fromI we consider all variables occurring inI ,
and we perform enumerative template synthesis on those. In our example, that simply means
adding the templates f x; � xg to T. Rerunning the analysis with the updated template set lets
us verify that universally at na we havex � 10.
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4.4.3 Guiding the Interpolation Procedure

Unlike predicate abstraction or explicit state model checking, theabstract transitions in abstract
interpretation between two consecutive states in the generatedART may result from the
widening transition (or value determination in case of LPI ), which might not correspond
to a concrete transition regardless of what templates are included in T. In our running
example, a transition from ART node with an associated statex � 1 to a new node with
a state x � 10 always remains unfeasible. This is similar to theleaping counterexamplesof
LoopFrog [Kro+08].

Unfortunately, such jumps have the potential to confuse the interpolation procedure. We
continue with the running example in Figure 4.4, verifying the property P � x � 5 _ y � 10
with a set of templates T � f xg. The analysis generates the path over the states(x = 0 ; 0 � x �
1; 0 � x � 10) before the property violation happens. Thus we perform sequence interpolation
over S:

S � (x = 0 ^ y = 0 ; x0 = x + 1 ^ y0 = y + 1 ; x00= x0+ 1 ^ y00= y0+ 1 ; x00> 5 ^ y00> 10) (4.1)

Unfortunately, due to the �leaping� transition from x � 1 to x � 10, a valid interpolation
sequence forS may be:

I � (x = 0 ; x0 = 1 ; x00= 2) (4.2)

In this case, I contains only the variable x, and our re�nement procedure can not proceed.
We address this issue by performingweakeningon the formulas used for interpolation. Consider
computing an interpolant I for a path given by a semantics of a sequence of edges� 0 : : : � n . Let
T be a set of templates describing the usedTCD , and let V be the set of all variables occurring
in T. As we computeI for the purpose ofmining it for the interesting variables not already
present in V , we would like to enforceI not to contain variables from V in the �rst place. We
do so by replacing each formula� i with its weakening 9V: � i , which enforces the interpolant to
only contain the variables from x n V .

Going back to our example, after performing the weakening and quanti�er elimination, the
sequence given to the interpolation procedure is:

S � (y = 0 ; y0 = y + 1 ; y00= y + 1 ; y00> 10) (4.3)

which forces a solver to generate an interpolant overy.
Such a modi�cation increases the applicability of our technique, yet raises the question of

completeness: in general, using the interpolant-based invariant synthesis, can we eventually
synthesize all templates which would be given by the enumerative invariant synthesis? Unfortu-
nately, the result is negative even for a non-relational domain, as we can still get an interpolant
giving no useful re�nement, which is demonstrated in Example 4.3.

Example 4.3 (Lack of Completeness). Again, consider analyzing a modi�ed two-counter
program P from the Figure 4.6. We wish to establish a propertyy � 10. Such a program can be
veri�ed using abstract interpretation with the set of templates T � f x; y; z; � zg, as it supports
to generate an inductive invariant x � 10^ y � 10^ z = 0 , as the looping transition relation
already �connects� the values of x, y and z.

Consider starting to analyze P with a template constraints domain T � f y; � yg. The
analysis produces a sequence of statesy = 0 ; 0 � y � 1; y � 0 before a property violation
happens. After applying the weakening, this gives a following sequence to the interpolation
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1 int x = 0;
2 int y = 0;
3 int z = 0;
4 while (x < 10) {
5 x++;
6 y++;
7 z = x - y;
8 }
9 assert(y <= 10);

Figure 4.6: Modi�ed Two-Counter Program
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Figure 4.7: Generating Templates from Convex Hull. Consider analyzing the program in
Figure 4.4 in a template constraints domainT � f� x; � yg. The constraints associated with two
produced statess1 and s2, corresponding to the initialization and a single loop transition respectively
are shown in Figure 4.7a. When performing the join in the domain given byT we end up with a
box x 2 [1; 2] ^ y 2 [1; 2] as shown in Figure 4.7b. However, if we instead �nd the convex hull of
the constraints associated withs1 and s2 we get a stronger constraintx = y ^ x 2 [1; 2] shown in
Figure 4.7c.

procedure, again generated from the concrete semantics ofCFA edges and the property violation:

S � (x = 0 ^ z = 0 ; x0 = x + 1 ; x00= x0+ 1 ; y00> 10) (4.4)

Unfortunately, at this point the interpolation procedure is stuck, as the weakened sequence
becomes feasible, and no new interpolant can be produced.

We present the evaluation of interpolation-based template synthesis in Section 4.6.3, which
shows its e�ectiveness as compared to a re�nement-based approach.

4.5 Template Synthesis Using Convex Hull

As a motivating example, we analyze the program shown in Figure 4.4 in the template constraints
domain T � f� x; � yg. Compared to the polyhedral abstract interpretation, our analysis arrives
at a suboptimal invariant.

We present two approaches for synthesizing templates by performing polyhedral manip-
ulations. Our o�ine approach, described in Section 4.5.2, records the templates generated
using convex hull, and then restarts the exploration if the previous precision was not su�cient
for proving the target property. The online approach, described in Section 4.5.3, instead
injects the discovered templatesduring the analysis, by heavily modifying the postcondition
and join operation, e�ectively running a hybrid of local policy iteration in TCD and abstract
interpretation in polyhedra.
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4.5.1 Background: Abstract Interpretation in Polyhedra Domain

A polyhedron P with n constraints over m variables could be de�ned using aconstraint -based
representation by a matrix A 2 Mat n� m and a vector b 2 Rn :

Ax � b (4.5)

Alternatively, P can be de�ned using agenerator-based description, using a set of points
S � Rm and a set ofrays R � Rm , where P is de�ned to be a convex hull overS and R.

Traditional polyhedral abstract interpretation [CH78] proceeds as follows. The post-image
computation requires constraint representation, and adds a new constraint on the existing
polyhedron imposed by the processed statement. For example, the post-image of the polyhedron
P � x > 0 under the transition assume(y > 10)is a new polyhedronP0 � x > 0 ^ y > 10.
Projection can be performed on the result to get rid of the constraints associated with dead
variables.

The join on two input polyhedra P1 and P2 is performed by computing the convex hull over
the two: e.g. the join of P1 � x = 1 ^ y = 1 and P2 � x = 2 ^ y = 2 is x = y ^ 1 � x � 2, as
demonstrated in Figure 4.7. As seen from this example, the result of the join is not obvious from
the constraints representation, and traditionally the polyhedra are converted to the generator
form �rst [CH78]. However, recently new algorithms were proposed for performing join purely
in the constraints representation [FB14].

Let T be the set of templates which appear in the constraints representation ofP (e.g. x +3y
for a constraint x + 3 y � 10). Now consider how new templates can appear inT throughout
the analysis, if P is regularly updated to the value of a candidate inductive invariant:

ˆ Postcondition: the postcondition computation for assignments and guards generates the
constraint syntactically present in the guard: e.g. processing a statementx = y + z
results in a constraint x = y + z supported by templates � (x � y � z).

ˆ Projection : as described in Section 4.3, new directions can be generated by performing
the projection operation on a candidate invariant in order to remove irrelevant variables
and reduce the number of constraints. For example, projecting away the variabley from
a constraint system y = 2z ^ x = y generates the new templates� (x � 2z).

ˆ Convex Hull: the result of the convex hull computation gives rise to new templates
not originally syntactically present in the program. Such new templates can be seen as
generalizations, aiming to extrapolate the evolution under the loop.

4.5.2 O�ine Re�nement Approach

Consider analyzing a programP with an abstract interpretation in a template constraints
domain in order to prover a property : E over a set of templatesT. In the o�ine re�nement
approach, during each join operation overTCD states s0; s1 we compute the convex hull over
their associated constraints, resulting in the polyhedronH . We widen H with respect to a set
of constraints appearing in s0 and then convert the result to a constraints-based representation
C. Let T0 be the set of all templates which appear inC during the analysis. If the found
inductive invariant does not imply : E , we restart the analysis with a set of templatesT [ T0.
The re�nement continues until either the desired property can be proven, or no new templates
are generated. Consider applying the o�ine re�nement algorithm to the running example in
Figure 4.4 and starting with a template set T � f� x; � yg in order to prove the property x = y.
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Figure 4.8: Illustration of the precision loss when analyzing the program in Figure 4.9 with the
template set T � f x; yg. States � 1 and � 2 denote the least convex invariant on program variables
after one and two iterations respectively, whiles1 and s2 are their abstractions in the template
constraints domain.

The �rst analysis run returns an invariant 0 � x � 10^ 0 � y � 10 and a new set of templates
T0 � f� (x � y)g derived from the convex hull, as shown in Figure 4.7. After restarting the
algorithm with a template set T [ T0 � f� x; � y; � (x � y)g the required property x = y is
proven.

4.5.3 Online Injection Approach

The o�ine approach as presented in Section 4.5.2 is potentially wasteful, as it may require
many restarts, recomputing the same invariant many times over. Thus it is more desirable to
use the templates discovered from the convex hull operationduring the analysis. Let s1 and s2

be two TCD states on which we are performing the join, and lets0 be the resulting state. The
set T0 denotes templates which appear in the convex hullh of states s1; s2. We want to include
a bound on a templatet 2 T0 in state s0.

Though it seems natural to sets0[t] to h[t] (the bound on the template t in the constraint-
based representation of the convex hull), such a construction leads to a precision loss, as shown
in Figure 4.8. The loss is caused by the fact that the new templatet is discoveredtoo late: by
the time we are calculating the join, the analysis has already propagated the over-approximating
bound on t, potentially even reporting spurious reachability of the error property. Thus in order
to keep the precision of the polyhedra domain, more fundamental modi�cations to the analysis
are required.

Recall that we are primarily interested in the template constraints domain as it can be
analyzed using policy iteration (Chapter 3). In this section we show instead how abstract
interpretation in the polyhedra abstract domain can be modi�ed to bene�t from the precision
resulting from the policy iteration algorithm. Unlike the previous sections, a familiarity with
Chapter 3 is necessary for understanding.

Policy Iteration in Polyhedra Abstract Domain To address this loss of precision, we
modify the local policy iteration algorithm to perform di�erent strongest postcondition and
join operations.

We modify the postcondition computation (previously described in Algorithm 3.2) to return
the least abstraction in the polyhedra domain using the path focusing [MG11] approach. Recall
that the smallest polyhedral abstraction does not exist in general (Section 2.8.2), but itdoesin
case all atoms of the abstracted formula� are linear constraints over program variables, This
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1 int x = input();
2 assume(0<= x && x <= 1);
3 int y = input();
4 assume(x == y);
5 while (input()) {
6 x++;
7 y++;
8 }
9 assert(x == y);

Figure 4.9: Example Program For Online Convex Hull Synthesis

Algorithm 4.4 Exact Postcondition for Template Constraints Domain

1: Input: LPI state s0, transition � (x [ x0)
2: Output: LPI state s0

3: � 0  9 x : Js0K(x) ^ � (x [ x0)
4: s0  ?
5: while 9M : M j = � 0 ^ : Js0Kdo
6: �  disjunction-free strengthening of � 0 ^ : Js0Kmodelled by M
7: h  ConvexHull (s0; � )
8: constraints  ToConstraints (h)
9: for all (template t; bound d) 2 constraints do

10: if s0[t] < d then
11: s0[t]  (d; �; s 0)
12: end if
13: end for
14: end while
15: return s0

can be seen by converting� into a DNF form: then each disjunct represents a polyhedra, and
a union over a �nitely many polyhedrons admits a polyhedral convex hull.

Our postcondition algorithm constructs an output LPI state s0 (De�nition 3.1) from an
input LPI state s0 and a transition relation � . Recall that in order to construct an LPI state,
we need to reconstruct the policy for each template. As before, we reconstruct the policies from
models returned by the solver.

In Algorithm 4.4 we start by converting the input state to a formula (line 3), and by
temporarily setting an output s0 to an empty state ? (line 4). Then while there exists a
vector M inside � 0 but outside of s0 (line 5), we derive a disjunction free strengthening� of � 0

modelled by M . The procedure for generating� described in Algorithm 3.2 (e�ectively, � is a
policy): basically, each disjunction in � 0 is recursively replaced with a disjunct modelled by a
M . For example, for � 0 � x > 10_ x = 0 and M � f x : 11g, we have� � x > 10. Observe
that for a formula � 0 where all atoms are linear inequalities,� is a polyhedron.

We proceed to compute a convex hullh of � with a state space described bys0 (line 7).
Then for each template t and its corresponding boundd in the constraints based representation
of h which are not already subsumed bys0, we grow s0 by adding a mapping from t to the
new bound d and the policy � , where the backpointer is the previous states0 by de�nition
(line 11). The process is repeated until a �xed point is reached. Algorithm 4.4 has the following
properties:

ˆ Termination: at each iteration the algorithm selects anew under-approximation � of � 0,
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Algorithm 4.5 Online Re�nement Join Operator

1: Input: node n, previous abstract state a0, associated formula� 0, new abstract state a1,
associated formula� 1

2: Output: new joined state a0

3: . Join in the template constraints domain, Algorithm 3.3.
4: a0  Join (n; a0; a1)

5: . Convex hull in constraints representation.
6: h  ConvexHull (a0; a1) r a1

7: for all template t 2 h do
8: d  max t> x s.t. � 0

9: �  policy used to derived
10: a0[t]  (d; �; a 0)
11: end for
12: return a0

and as there are only �nitely many such under-approximations (�nitely many policies),
the algorithm terminates.

ˆ Precision: the algorithm computes the convex hull of all polyhedrons in the disjunctive
normal form of � 0, which is its least polyhedral abstraction.

Once we have changed the strongest postcondition operator to perform a modi�ed version
of path in the polyhedra domain, we can change the �Join� operator (previously de�ned in
Algorithm 3.3) of the local policy iteration to insert the newly derived templates without the
precision loss. The new algorithm listing is given in Algorithm 4.5. We start by calling the join
operation in the template constraints domain, which simply computes pairwise upper bound for
each template (line 4). Then we compute the convex hull of two input states (line 6), and we
perform polyhedra widening of the resulting state with a1 in order to enforce termination. For
all templates t occurring in h, we derive the new bound for the resulting state by performing
maximization of � 0 in the direction of t (line 8), deriving the new policy from the resulting
model (same approach as before). Finally, the generated statea0 is returned.

The resulting algorithm de�ned by the new join and postcondition operators, e�ectively
runs abstract interpretation in the polyhedra domain, using value determination as a more
precise widening. The widening operation is used to avoid generating in�nitely many templates.

Example 4.4 (Online Injection Approach for Figure 4.9). Applying the online injection
approach to the motivating example leads to the following sequence of steps:

ˆ Initial postcondition: computing the post-image of the initial state a0 � fg under the
transition relation � i � 0 � x0 � 1 ^ y0 = x0 using Algorithm 4.4 generates a newLPI

state:

a1 � f x : (1; � i ; a0); � x : (0; � i ; a0); y : (1; � i ; a0); � y : (0; � i ; a0);

y � x : (0; � i ; a0); x � y : (0; � i ; a0)g

which represents the polyhedral abstraction0 � x � 1 ^ y = x of � i , and records the
policy meta-information.
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ˆ Postcondition after looping transition: the post-image of a1 under � l � x0 = x+1 ^ y0 = y+1
results in a state:

a2 � f x : (2; � l ; a0); � x : (1; � l ; a1); y : (2; � l ; a1); � y : (1; � l ; a1);

y � x : (0; � l ; a1); x � y : (0; � l ; a1)g

ˆ Join of a0 and a1 keeps the bound on� (x � y), while the value determination widens the
bounds on� x; � y to + 1 , resulting in a state a3:

a3 � f y � x : (0; � i ; a0); x � y : (0; � i ; a0)g

ˆ The new postcondition computation produces the state subsumed bya3, and the compu-
tation converges. The resulting precision is su�cient to verify the assert statement.

4.5.4 Algorithm Properties

As stated in Section 2.8.2, least inductive invariant may not exist even for a linear transition
system, and thus our re�nement algorithm can not in principle �nd the tightest inductive
invariant (unlike the case for a �xed set of templates T).

Observe that the termination of both approaches is ensured by the use of polyhedra
widening operators, and as widening on a single location can be applied only �nitely many
times (cf. Section 2.7.3), the analysis sequence guaranteed to converge.

4.6 Evaluation

All experiments were performed on a cluster of machines with Intel Xeon E5-2650 CPU @
2.60 GhZ, 32 cores and 135 GB of RAM.

4.6.1 Live Variables

We compare three di�erent �ltering strategies for templates derived from the enumerative
template synthesis (Algorithm 4.1):

All Live Synthesize only those templates where all variables are alive.

One Live Synthesize only those templates where at least one variable is alive.

No Filtering Synthesize all templates, do not take liveness into account.

As before in Section 3.5, the experiments were performed on the �Loops� category of
SV-COMP . For evaluation, each veri�cation task was given a time limit of 200 seconds and
a memory limit of 16GB. The quantile plot comparing these �ltering approaches is shown in
Figure 4.10, with the number of programs each approach could successfully verify in brackets.
The di�erence in time clearly shows a large performance gain when only the templates consisting
purely of live variables were considered. Surprisingly, experiments show only little performance
di�erence between �All live� and �One Live� strategies, perhaps due to the relatively small
program size in the considered dataset.
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Figure 4.10: Timing evaluation for liveness �ltering. Each data point corresponds to every �fth
analyzed program, each data series is sorted separately.

0 20 40 60 80 100 120 140

101

102

Programs

W
al

lT
im

e
(s

)

Enumerative Synthesis (veri�ed: 46)
Convex Hull Synthesis (veri�ed: 57)

Figure 4.11: Timing evaluation for convex hull template synthesis against re�nement-based
template generation.

4.6.2 Convex Hull Template Synthesis

We compare the template synthesis using the o�ine convex-hull based re�nement described
in Section 4.5.2 against enumerative synthesis template synthesis from Section 4.2 �ltered
by liveness. Again, the experiments were run on the �Loops� category ofSV-COMP , with
a time limit of 200 seconds per veri�cation task. The resulting quantile plot is shown in
Figure 4.11. The graph shows us that the convex-hull based approach is slower, as it requires
more re�nements, yet it could successfully verify considerably more programs.

Due to the lack of time, the online injection approach was not implemented.

4.6.3 Interpolation-Based Template Synthesis

We compare the analysis within intervals abstract domain (�ltered by liveness) against the
interpolation-based re�nement on the �DeviceDrivers64� benchmarks set of SV-COMP . We
have chosen this benchmark set as it contains large programs (many thousands of lines of code),
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vs. Interval vs. Re�nement Veri�ed

Interval Domain 40 1047
Interpolation Re�nement 60 1067

Table 4.1: Results for Interpolation Re�nement

the interval domain is su�cient for proving many properties, and due to the program size plain
LPI fails to analyze many programs under the time limit even using the intervals. Unlike the
other evaluation data sets, we set the time limit to 100 seconds per benchmark. The results
are shown in Figure 4.12. We can see from the graph that applying the interpolation-based
synthesis speeds up the performance, which lets the analysis handle more programs before the
time limit. From the results in Table 4.1 we can see that the re�nement-based approach is able
to prove 60 benchmarksLPI with the intervals domain could not handle under the time limit.
Yet the procedure diverges for40 programs which could have been proven before.

0 500 1;000 1;500 2;000 2;500

101

102

Programs

W
al

lT
im

e
(s

)

Interval Domain
Interpolation Re�nement

Figure 4.12: Timing evaluation for interpolation-based template synthesis against the intervals
domain simulation.

4.7 Conclusion

In this chapter we have shown that even most naive template synthesis approaches based on
brute-force enumeration can be surprisingly e�ective for program veri�cation in combination
with LPI . We have demonstrated that subsequent �ltering based on liveness can greatly increase
the performance without any loss in precision, and that template synthesis using interpolation
may be used to successfully verify large programs.

The algorithms presented in Section 4.5 bridge the gap between template-based approaches
requiring manual annotation, and polyhedra-based approaches which can synthesize new direc-
tions automatically, and can be applied outside of the context ofLPI .

Practical implementation of the online injection-based template synthesis approach remains
an item for future work.
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Chapter 5

Generating Summaries Using Policy
Iteration

5.1 Introduction

As discussed in the previous chapters, traditional approaches based on abstract interpretation
compute an inductive assertion map (Section 2.5.3) fromCFA nodes to predicates over the
program variables. Such an analysis is calledintra procedural, as it only considers the states
inside the analyzed procedure.

A naïve approach for supporting inter procedural analysis is to simply encode function calls
and returns as ordinary CFA edges, and to obtain an inductive assertion map for a resulting
CFA . Yet such an encoding results in a large precision loss, as shown in Figure 5.1. A value of
the variable a is always 2 at the program location n4, yet due to the spurious program path
(De�nition 2.4) � � (n0; n1; n5; n4) being feasible in the shownCFA , an analysis would not be
able to prove the assert statement.

1 void log () {}
2 int main () {
3 int a = 1;
4 log();
5 a = 2;
6 log();
7 assert(a == 2);
8 }

(a) analyzed program

function main

function log

n0

n1

a := 1

n2

n3

a := 2

n4

n5

(b) naive CFA encoding

Figure 5.1: Example of precision loss due togoto function call encoding.
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f Pgb = f (a)f Qg ` f P ^ p = agB f f Q ^ p = a ^ b = r g
f Pgb = f (a)f Qg

Figure 5.2: Hoare rule for summary instantiation. Recall that a triple f PgOPSf Qg states that �if
P holds, and the control passes through the statementOPS, then Q holds. The variable p denotes
the set of parameters off , r is a set of return values off , and B f is the set of instructions contained
in the body of f . The rule states that if the fact that all calls to f are described by the pair(P; Q)
entails the fact that body of the function f (B f ) also satis�es (P; Q) (subject to the parameter and
return variable renaming), then (P; Q) summarizes the e�ect of f .

The path � is spurious as it can never occur during the execution of the program 5.1, due to
the fact that the control has to return to the calling context in the node n2 instead of jumping
to n4. A program path is called valid if it respects that each procedure returns to the site of
the most recent call. Thus in interprocedural program analysis we are interested in �nding
smallest invariants which are inductive with respect to all valid program paths.

The classical paper of Sharir and Pnueli [SP81] proposes two solutions for �nding such
invariants: the summary approach, and thecallstrings approach. In the callstring approach, an
abstract state is extended to include the traversed call-sites, which allows an analysis to only
propagate the information along the valid program paths. Observe that without applying an
abstraction this amounts to dynamically inlining the program during the analysis, as we store
a separate invariant candidate per each program location and callstack. While inlining does
o�er fully context sensitive interprocedural analysis, the obvious downsides include inability to
handle recursive programs, and exponential state-space explosion for large programs with many
procedures.

The summary approach, which we use in this chapter, is based on computing atwo-state
invariant for each function f , which over-approximates all possible transitions within f . Instead
of associating a predicate overx with each program location, summary-based approaches
associate predicates overinput variables x and output variables x0 with program functions.
As opposed to stating all possible values for variables at a given location, summaries over-
approximate all possible transitions through the function: e.g. a summaryx � 0 ^ x0 = x + 1
states that the program variable x is always positive at the function entry, and is incremented
by one by the time control reaches the function exit.

The Hoare rule for proving programs using summaries [Hoa71] is shown in Figure 5.2. It
states that if a body of a recursive function f satis�es the Hoare tuple (P; Q) assuming that S
holds for all recursive calls, thenf satis�es (P; Q). Such a summary(P; Q) is called inductive.

For example, for a recursive function

int sum( int i) { return i <= 0 ? i : i + sum(i - 1)}

a summary i � 0 =) r � 0 is inductive (r models the returned variable), while a summary
r � 0 is not, due to the possibility of returning a negative value when the input is negative,
even assuming that all recursive calls satisfyr � 0.

Once a summarys for a function f has been computed, a summary based analysis e�ectively
replaces every callo = f (p) with a statement o = input(); assume( s(o; p)) , where input is
function returning kok non-deterministic values.
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Section 5.2 Related Work

5.1.1 Contribution

The contributions of this chapter are two-fold. Firstly, we develop a top-down algorithm for
summary generation using an intraprocedural abstract interpretation analysis. Our algorithm
computes a single summary per each called procedure which has a union of all feasible calling
contexts in the analyzed program as a precondition (that is, we only summarize behaviors
which were deemed feasible by our analysis). We rely on the �top-down� summary generation
approach, where summaries are derived from the memoized under-approximating invariant
candidates, which assume that all nested function calls satisfy the existing summaries. In
many ways our algorithm is similar to a context-sensitive interprocedural approach described
in Principles of Program Analysis [NNH99, Figure 2.10], yet it is performed in a more general
context of abstract interpretation with a relational domain of a potentially in�nite height.

We develop the algorithm in a framework which assumes pass-by-value semantics (no aliasing)
and lack of global variables (modelled using implicit return of to-return variables at function
exit). No further restrictions are introduced (we support loops, recursion, mutual recursion,
etc.), and furthermore in Section 5.9 we extend the framework to global variables, and in
Section 5.9.4 we outline how multiple summaries can be supported.

The second contribution is that we provide an e�cient application of policy iteration to
the summary generation problem by parameterizing the developed algorithm with the local
policy iteration ( LPI , Chapter 3). Such a parameterization guarantees that the resulting
inductive invariant is smallest possible for the chosen summary structure1, and a better result
is unattainable inside the given abstract domain.

Chapter Outline We start by developing a new formalism for interprocedural programs in
Section 5.3.1. In Section 5.3.2 we state a computation model for such programs, rede�ning the
notion of a program path and subsequently of an invariant. Then in Section 5.3.3 we specify
the equation system predicates over program states andsummaries have to satisfy in order to
form an inductive invariant for an interprocedural program. In Section 5.4 we get back into the
abstract interpretation domain, restating the notion of an inductive invariant assuming both
summaries and candidate invariants are represented as elements of an abstract domain.

We show how pure policy iteration (Chapter 3) can be applied to solve an equation system
describing such an inductive summary in Section 5.5; this part can be skipped by a reader only
interested in the overall summary generation algorithm.

In Section 5.6 we state Algorithm 5.1 for summary generation using an intraprocedural
analysis (including LPI ), and we revisit our running example with it. Then we discuss the
algorithm properties in Section 5.7 and our implementation in Section 5.8. We describe a
number of extensions and optimizations in Section 5.9. Finally, we evaluate our algorithm on
the SV-COMP dataset in Section 5.10, and we conclude in Section 5.11.

5.2 Related Work

The literature on traditional abstract interpretation contains a large body of works on inter-
procedural analysis. The key di�erence for many such approaches is that in a case of a �nite
lattice and associative program operators it is possible to �nd the least inductive invariant with

1 In this chapter we mostly assume the simplest structure where a single summary is generated per function.
Naturally, generating more summaries (e.g. one summary per callsite per function) can achieve greater precision,
as discussed in Section 5.9.4.
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respect to all valid program paths exactly, even in polynomial time, as done in an in�uential
paper by Reps et al. [RHS95]. Many of such approaches are summarized in a bookPrinciples
of Program Analysis [NNH99].

Ball and Rajamani [BR00] extend the summary generation algorithm on a �nite lattice of
data�ow facts to make it path-sensitiveby including the strongest postcondition implied by all
procedure calls in the summary. Their approach relies on strongest postcondition computation.

The �rst extension of abstract interpretation to recursive procedures [CC77b] dates back to
the same year abstract interpretation was introduced.

A top-down algorithm for context-sensitive summary generation in an in�nite abstract
domain was proposed by Apinis et al. [ASV12]. The authors generate fully context sensitive
summaries (e�ectively, a new summary for each new di�erent abstract state at a callsite), and
propose constraints-with-side e�ects as a formalism for expressing such analysis. Their work
is similar to ours, with a number of key di�erences. Firstly, we focus on arelational domain,
where often a single summary per procedure can provide a desired result (e.g. �a return value
is one bigger than the input parameter�). Thus our main algorithm description only generates
a single summary, yet we demonstrate an extension to multiple summaries in Section 5.9.4.
During the computation procedure, at each step we compute theoutgoing successorsof each
state (as opposed to re-calculating constraints on each state subject to incoming edges), which
avoids the problem of �in�nite number of variables a�ecting the constraint� [ASV12] entirely
and does not require any additional formalism.

Ancourt et al. [ACI10] propose computing summaries in a �bottom-up� manner: each
program statement is seen as a block which can be summarized, and by composing these blocks
the summaries are obtained for all procedures, and eventually for the entire program. Their
approach scales better than top-down summaries, yet su�ers from the fact that no context
information is available during the summary computation, and summaries can potentially include
spurious behaviors which never occur during the run of a program. Zhang et al. [Zha+14]
propose a combination of a top-down and a bottom-up analysis, which combines performance
and precision of the two.

M. Müller-Olm and H. Seidl present a precise context-aware inter-procedural algorithm for
inductive invariant generation in linear arithmetic [MS04], yet they heavily over-approximate
the program semantics by abstracting away all program guards.

In a predicate abstraction domain, the Spacer algorithm [Kom+13] was proposed by
Komuravelli et al. which uses predicates derived interpolants as well as a mixture of under- and
over-approximations to e�ectively synthesize summaries for recursive procedures.

The constraint system we create in order to describe the summary applicability is very
similar to a Horn clause encoding of programs with procedure calls [Bjø+15].

5.3 Background

In order to support interprocedural analysis we extend the program model from Section 2.2
with the de�nitions of a program and a function.

5.3.1 Interprocedural Program Model

The function de�nition extends that of a control �ow automaton (De�nition 2.3) by adding a
set of calledgesassociated with function calls, a set of input and output variables, and a unique
return point.
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function gncall

nret

nen

nex

r = s(p1, p2)

return r

g bodyS(p1; p2; r )

Figure 5.3: Illustration of a function call edge (g; ncall ; nret ; f p1; p2g; f r g). A call edge speci�es
the location of a function call, a�ected variables, and a return location. A valid over-approximation
of semantics of a function call is an over-approximating summaryS(p1; p2; r ) over the function
parameters and the return value.

De�nition 5.1 (Function) . A function f is a tuple (nodes; edges; calledges; x ; x i ; x r ; nen; nex)
where nodesis a set of control states modelling the program counter,nex 2 nodesis a unique
function entry point, and nex 2 nodesis a unique exit point. The set edges� nodes� OPS� nodes
denotes all possible transitions within the function together with their corresponding operators.
The set x denotes all variables local tof , additionally x i � x is a tuple of input parameters,
and x r � x is a tuple of returned variables. We assume that none of the parameters inx i are
modi�ed by any transition in edges, which can be easily enforced by copying the parameter
variables at the function start. The set calledgesdescribes all function calls fromf , where for
each (g; a; b;xp; xo) 2 calledgesan elementg 2 F is a called function, a 2 nodes is a callsite,
b 2 nodes is a return node: a node to which the control return once the function �nishes its
execution, xp � x is a tuple of passed parameters, andxo � x is a tuple of variables which
assume the value given by the return variables ofg after the function call.

An example of a call edge is given in Figure 5.3. We use the following vocabulary when
referring to the nodes involved in a function call: the node from which there is an outgoing
function call is called a callsite, the �rst node of a function is called an entry node, the last
node is referred as anexit node, and �nally the control gets back to the return node.

De�nition 5.2 (Program). A program is a tuple (F; f m ) where F is a set of functions, and
f m 2 F is a function which is run on a program start.

Note that our language does not have global variables, and writes to globals are modelled
using multiple return values. Additionally, we do not de�ne a return operator, as for a function
(nodes; edges; x ; x i ; x r ; nen; nex) all variables in x r are returned once the control reachesnr .

5.3.2 Invariants and the Computation Model

Recall that we have previously de�ned the invariant (De�nition 2.5) with respect to all possible
program paths (De�nition 2.4). As demonstrated in the example of Figure 5.1 this de�nition
is not su�cient for an interprocedural program, as it does not take the fact that the control
must return to the node associated with the most recent function call into account. Thus we
introduce a notion of a valid interprocedural path which respects the nesting of function calls.

We �rst have to extend the de�nition of a concrete state (De�nition 2.2) to model the
program callstack. We de�ne a stack frame to be a tuple consisting of a concrete state and
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a program call-edge (call-edge is replaced by an empty set for the �rst frame representing
the program entry). A program state is a �nite sequence of stack framesp � h f 0; : : : ; f n i . In
order to refer to the last frame of a program statep we use the notationpjhead, and a program
state consisting of all other elements is referred to aspjrest . Two frames c1 � ((m1; n1); e1),
c2 � ((m2; n2); e2) (recall that a concrete state is a product of a variable-to-values mapping and
a CFA node) can occur consequently inp only if n1 belongs to a function f , n2 belongs to a
function g, and there exists a call-edgee2 � (g; n1; n3; xp; x r ) in f .

De�nition 5.3 (Interprocedural Program Path) . An interprocedural program path is a sequence
of program stateshp0; : : : ; pm i where p0 � h (m0; n0)i and for any two consecutive statespi ; pi +1

we have that one of the following holds:

ˆ Consecution: pi jrest = pi +1 jrest , and pi jhead � ((m1; n1); e1), pi +1 jhead � ((m2; n2); e1),
and nodesn1; n2 belong to the same functionf , and there exists an edge(n1; OP; n2),
such that m2 2 JOPK(m1). Informally, only the head of the two stacks di�ers, and the
transition taken from pi to pi +1 happens insidef .

ˆ Function Call: pi +1 jrest = pi , and pi jhead � ((m1; ncall ); e1), pi +1 jhead � ((m2; nen); e2),
ncall belongs to a function f , nen belong to a function g, and e2 � (g; ncall ; nret ; xp; xo) is
a call-edge inf , such that m1jx p [xp=xg

i ] = m2, where xg
i is a tuple of input parameters

of g (recall that mja denotes the projection of a state described bym to the variables
present in a). Informally, the transition represents a call of a function g from f using the
call-edgee2, where we create a new element on the stack such that it is equal to the head
of the previous stack, modulo projection to the parameter variables, and renaming of the
passed parameters to the input variables ofg.

ˆ Function Return: pi +1 = pi jrest , and pi jhead � ((m1; nex); e1), pi +1 jhead � ((m2; nret ); e2),
pi +1 jrest jhead � ((m3; ncall ); e2) nex belongs to a functiong, nret belongs to a function f ,
and e2 � (g; ncall ; nret ; xp; xo) is a call-edge inf , such that m1jx g

r
[xg

r =xo]
`

m3jx nx o = m2,
where xg

r is a tuple of return variables of g, and
`

operator performs the disjoint union
of two maps. Informally, the transition represents the return from g to f , where we pop
from the stack, and the new assignment to variables is given by a disjoint union of two
maps: the one containing the assignment to variables modi�ed by the function call (state
at the return value of the function, projected to return variables, and renamed to output
variables of the call-edge), and the one containing the assignment to all the untouched
variables (state at the callsite, projected to all local variables excluding those modi�ed by
the function call).

Finally, we are equipped to introduce aninterprocedural invariant de�nition: a property I
is an interprocedural invariant for a program P if and only if for all interprocedural program
paths for P, for all program states of these paths, for all framesf � ((m; n); e) contained
in program states, we havem j= I . Note that as all feasible intraprocedural program paths
over-approximate all feasible interprocedural program paths, every intraprocedural invariant is
also interprocedural. Yet the converse does not necessarily hold. In this chapter we shall refer
to an interprocedural invariant as simply an �invariant�.

5.3.3 Inductive Invariant and Semantics Equations

Recall that during an intraprocedural analysis we were looking for an invariant de�ned using
an inductive assertion map (De�nition 2.7), which is a mapping from CFA nodes to predicates
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over program variables, satisfying the constraints of Equation 2.4. As before, we have to adapt
the inductive invariant de�nition to the interprocedural analysis. We perform the analysis
using summaries, which are predicates over the input and return variables for each procedure,
over-approximating all possible transitions.

De�nition 5.4 (Summary). A predicate S(x i [ x r ) is a summary for a function

f = ( nodes; edges; calledges; x ; x i ; x r ; nen; nex)

occurring in a program P if and only if in all for all valid interprocedural program paths in P,
for all program states of those paths, for all framesf � ((m; nex); e) contained in those states
mjx i [ x r j= S.

Note that our summaries are only a�ected by the concrete data states associated with the
function exit node. This is done for the following reasons: (i) we do not wish to summarize
program paths which never leave the procedure due to endless loops or recursion; (ii) as our
intraprocedural operators do not change the input parameters, it is su�cient to look at the
states associated with the exit node.

For example, a summaryp � 0 ^ r � 0 for a function where the set of parameters is� f pg
and the set of return variables isf r g states that �the function is only called with a positive
input, and the output for such calls is always positive�. Note that De�nition 5.4 states that
the summary has to over-approximate all possible states within the functionwith respect to
all valid program paths: that is, the summary doesnot over-approximate all behaviours of the
procedure, if those behaviours do not actually occur in the program.

We de�ne an inductive invariant for an interprocedural program using a set of summaries,
one per function, and a set of inductive assertion maps, also one per function2. As before, every
inductive program invariant is a program invariant.

De�nition 5.5 (Inductive Program Invariant) . A set of summariesSf indexed by the function
name, and a set of inductive assertion mapsI f also indexed by the function name, form an
inductive invariant for a program P � (F; f m ) if and only if the following rules universally hold
for all functions f = ( nodes; edges; calledges; x ; x i ; x r ; nen; nex) and all values ofx :

Program Initiation: I f m (nf m
i ) = >

Consecution: for all (a; OPS; b) 2 edges:

I f (a)(x) ^ JOPSK(x [ x0) =) I 0
f (b)(x0)

Function Call: for all (g; ncall ; nret ; xp; xo) 2 calledges:
�
9(x n xp

�
: I f (ncall )(x ))[xp=xg

i ] =) I g(ng
en)(xg

i )

Summary Coverage:9x n (x i [ x r ): I f (nex)(x ) =) Sf (x i [ x r )

Function Application: for all (g; ncall ; nret ; xp; xo) 2 calledges:

9xo: I f (ncall ) ^ Sg[xg
r =xo][xg

i =xp] =) I f (nret )

(5.1)

In the rules above, we use existential quanti�cation in order to perform projection: existen-
tially quantifying a variable is equivalent to performing a projection on all other variables.

The �Program Initiation� and �Consecution� rule simply mirror those of Equation 2.4,
stating that the invariant is inductive with respect to intraprocedural transitions and the

2 In Section 5.9 we show how the model can be extended to support multiple summaries.
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initiation condition is ful�lled. The �Function Call� rule ensures that the invariant associated
with the function entry of the called function subsumes the invariant associated with the calling
context (after projecting to parameter variables and renaming).

In the �Summary Coverage� rule we state that the invariant associated with the function
entry (recall that we have postulated that function parameters can not be modi�ed inside the
function) and the function exit are both smaller than the corresponding summary. This fact
ensures that all function calls which occur in a program are captured by the existing summaries,
and that existing summaries capture all possible transitions expressed by the inductive assertion
map associated within the called functions. The �Function Application� rule requires that if
we replace a function call by its summary, the invariant at the return site will subsume the
summary application to the callsite (given by conjunction of the invariant at the callsite with
variables xo projected out, and the summary application with input and parameter variables
renamed).

5.4 Summaries as Abstract States

We would like to �nd the least inductive invariant for an interprocedural program in a given
abstract domain D. That is, we are looking for the smallest set of inductive assertion maps
I f : nodes! D wherenodesis a set of nodes inf , and all summaries are elements of the domain
D as well.

Consequently, all inductive assertion maps for a programP � (F; f m ) are represented as a
set of unknownsI n

f 2 D for a corresponding functionf 2 F and for all n in the set of the nodes
of f . A summary for a function f is represented as an unknownSf 2 D .

We proceed to rewrite Equation 5.1 with those assumptions. We replace the implica-
tion with a � partial order relation associated with D, we use the abstract semantics for
the intraprocedural operator application, and we use the intersection operator in place of
conjunction. Additionally, we replace existential quanti�cation with an explicit projection
operation. We obtain the following constraint set for a program P, which holds for every
f � (nodes; edges; calledges; x ; x i ; x r ; nen; nex) in F (let m be the starting node for the main
function f m ):

Program Initiation: I m
f m

= >

Consecution: for all (a; OPS; b) 2 edges:

JOPSK] (I a
f ) � I b

f

Function Call: for all (g; ncall ; nret ; xp; xo) 2 calledges:

I ncall
f jx p [xp=xg

i ] � I nen
f

Summary Coverage:I nex
f jx i [ x r � Sf

Function Application: for all (g; ncall ; nret ; xp; xo) 2 calledges:

I ncall
f jx nx o u Sg[xg

i =xp][xg
r =xo] � I n ret

f

(5.2)

5.5 Applying Policy Iteration

Finding the smallest inductive assertion maps subject to the constraints of Equation 5.2 is
solvable by policy iteration (Chapter 3) in case where an abstract domain is an instance of a
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1 int main () {
2 int o = sum(input());
3 }
4

5 int sum( int i) {
6 int r, t;
7 if (i <= 0) {
8 r = 0;
9 } else {

10 t = sum(i - 1);
11 r = i + t;
12 }
13 return r;
14 }

(a) source code

function main

function sum

ne

nr

nc

n j

ns

nq

i <= 0; r := 0

i > 0

r := i + t

i := i - 1

t := r

t = sum(i - 1)
o = sum(input())

i := input()

o := r

(b) interprocedural data�ow graph

Figure 5.4: Running Example: Recursive Sum Program

template constraints domain (Section 2.8.3). The resulting inductive invariant and the summary
are the strongest possiblefor a given program expressed in a given domain. The optimization
problem which policy iteration is solving corresponds to minimizing a �nite set of unknowns
used to represent abstract statesI n

f in a complete lattice where the right hand side of every
equation contains a monotone concave expression.

Example 5.1 (Running Example for Summary Generation). We demonstrate the application
of policy iteration for summary generation using the running example of Figure 5.4. We
analyze the given program using the template� i at node nc, templates � i; � t at nj , templates
� i; � r; � (r � i ) at nr , and a single template� o at nq. Recall that negated templates are simply
used to obtain the lower bounds on expressions. We do not add any templates to nodesns or
ne as the associated invariant is always> .

A summary S(i; r ) is used to model the application of a functionsum, and it is also tracked
using the templates � i , � r and � (r � i ).

In order to perform the minimization, we write down the system of semantical equations for
control locations with a non-zero number of templates, using unknownsdn

t for each location n
and template t, and additionally unknowns st for each t mentioned in the summary. Thus we
are looking for the smallest tuple

d � (dc
� i ; dj

� i ; dj
� t ; dr

� i ; dr
� r ; dr

� (r � i ) ; dq
� o; s� r ; s� (r � i ) ) (5.3)
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satisfying the constraints of Equation 5.4:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dc
� i � sup� i s.t. ? _ i > 0

dj
� i � sup� i s.t. ? _ � i � dc

� i ^ � t � s� r ^ � (t � (i � 1)) � s� (r � i )

dj
� t � sup� t s.t. ? _ � i � dc

� i ^ � t � s� r ^ � (t � (i � 1)) � s� (r � i )

dr
� i � sup� i s.t. ? _ i � 0 ^ r = 0

_ � i � dj
� i ^ � t � dj

� t ^ r 0 = i + t

dr
� r � sup� r s.t. ? _ i � 0 ^ r = 0

_ � i � dj
� i ^ � t � dj

� t ^ r 0 = i + t

dr
� (r � i ) � sup� (r � i ) s.t. ? _ i � 0 ^ r = 0

_ � i � dj
� i ^ � t � dj

� t ^ r 0 = i + t

dq
� o � sup� o s.t. ? _ � o � s� r

s� r � dr
� r

s� (r � i ) � dr
� (r � i )

(5.4)

The constraint set of Equation 5.4 was generated from Equation 5.2 in a following way:
the �Program Initiation� rule is implicitly ful�lled by the lack of templates associated with
the program entry point, which therefore can take any value. Similarly, the �Function Call�
rule is also ful�lled implicitly, as the starting invariant candidate associated with the node ne

is already > . The �Consecution� rule is satis�ed by encoding the transition relations in the
constraint system along with the previous abstract value, as previously performed in Example 3.3.
Similarly, the �Function Application� rule is satis�ed by adding the constraints resulting from
the summary modulo renaming to the unknowns associated with return nodes (nr and nq).
Finally, we satisfy the �Summary Coverage� rule using the last two constraints. That entails
that the policies associated with the summary are given by the policies associated with the
function exit node, which are usually the choice between the base case and the recursive case
for a simple recursive function.

We solve the given optimization problem by using policy iteration, which proceeds through
the following steps (the order on the elements ofd corresponds to the order given in Equa-
tion 5.3, similarly to Example 3.3 the policy is given by a tuple of nodes and> ; ? elements).
For readability, both policies and values are grouped by the node they refer to (the tuple
representation can be reconstructed by maintaining the order and ignoring the keys).

1. Initial policy, given by the initiation rule:

p =
�
nc : (? ); nj : (? ; ? ); nr : (? ; ? ; ? ); nq : (? ); s : (? ; ? )

	

2. Value determination:

d =
�
nc : (�1 ); nj : (�1 ; �1 ); nr : (�1 ; �1 ; �1 ); nq : (�1 ); s : (�1 ; �1 )

	

3. Policy improvement, the nodesnr and nc becomes reachable:

p =
�
nc : (ne); nj : (? ; ? ); nr : (ne; ne; ne); nq : (? ); s : (? ; ? )
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4. Value determination:

d =
�
nc : (0); nj : (�1 ; �1 ); nr : (0; 0; 0); nq : (�1 ); s : (�1 ; �1 )

	

5. Policy improvement, we can determine the lower bound on the variablei at the �join�
node. Additionally, we get new policies for the summary:

p =
�
nc : (ne); nj : (? ; ? ); nr : (ne; ne; ne); nq : (? ); s : (nr ; nr )

	

6. Value determination, we get �nite bounds for the summary:

d =
�
nc : (0); nj : (? ; ? ); nr : (? ; ? ; ? ); nq : (? ); s : (0; 0);

	

7. Policy improvement:

p =
�
nc : (ne); nj : (nc; s� r ); nr : (ne; ne; ne); nq : (? ); s : (nr ; nr )

	

8. Value determination:

d =
�
nc : (0); nj : (0; 0); nr : (0; 0; 0); nq : (�1 ); s : (0; 0);

	

9. Policy improvement, we are �nally able to select the policy for nq:

p =
�
nc : (ne); nj : (nc; s� r ); nr : (ne; ne; ne); nq : (s); s : (nr ; nr )

	

10. Value determination:

d =
�
nc : (0); nj : (0; 0); nr : (0; 0; 0); nq : (0); s : (0; 0);

	

11. The policy can not be improved any further, and the iteration converges.

Let's reconstruct the meaning of the last tuple obtained by value determination. The �rst
value gives the upper bound on� i (or, equivalently the negated lower bound oni ) at the node
nc, stating that it is always greater than zero. Similarly, the next two values give (negated)
lower bounds on expressionsi and t at node nj , stating that � i and t are always greater than
zero�. Again, the next three values repeat the same statement about the nodenr , adding that
�the value of r is always greater or equal than the value ofi . The value associated withnq

simply states that o is always positive. Finally, the last two values give the resulting summary,
which states �the output of sumis always greater or equal to zero and is always greater or equal
to its input�.

5.6 Generating Summaries using Intraprocedural Analysis

As before, in order to get an e�cient local analysis procedure we want to apply policy iteration
to the program directly, without converting it �rst to a set of semantical equations. To perform
that, we develop an algorithm for generating summaries from the results of the intraprocedural
analysis. Our algorithm is not speci�c to policy iteration, and can be parameterized with
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any abstract interpretation equipped with strongest postcondition operator and convergence
guarantees, in particular the LPI algorithm developed in Chapter 3 .

We say that a summary Sf for a function f � (nodes; edges; calledges; x ; x i ; x r ; nen; nex) is
generatedby an inductive assertion mapI f : nodes! D i� Sf represents the strongest invariant
in D implying the invariant at the return node I f (nr ), and implied by the invariant at the function
start I f (ni ). For example, for a function f � (f a; bg; f (a; r = x + 1 ; b)g; ; ; f r; x g; f xg; f r g; a; b)
the inductive assertion map f a : x � 0; b : x � 0 ^ r � 1 ^ r � x = 1 g generates the summary
x � 0 ^ r � 1 ^ r � x = 1 .

E�ectively, our summaries are given by intraprocedural abstract states associated with the
function exit, with variables local to a function projected out. Thus instead of storing summaries
explicitly, we use the (projection of) the abstract state associated with the return location of each
function during the summary application. Applying this rule leads to Algorithm 5.1, which is
essentially the generalization of the Kleene worklist algorithm from background (Algorithm 2.1)
to the interprocedural case.

Algorithm Description Algorithm 5.1 can be parameterized with any abstract interpretation
which provides a partial order, a strongest postcondition operator, an intersection operator,
and a join operator, including LPI , making scalable application of policy iteration possible.

The algorithm operates over two stateful datastructures: a mapping from all program to
nodes to associated abstract statesI , and a waitlist of nodes Q from which the information
was not yet propagated. Initially, we associate each node with an unreachable state? (line 9),
except for the entry point of the main function, which is set to > (line 13). During the main
�xed point computation, while the waitlist is not empty (line 14) we pop a new node from Q.

Firstly, we process all outgoing intraprocedural edges (line 18): as in usual abstract inter-
pretation, the output state is given by the application of the abstract semantics of the operator.
Then, a helper �update� function (line 40) merges the new abstract state with the one previously
associated with the new node, and updates the waitlist, unless the new state is subsumed by
the already existing one.

Afterwards, we check whethern is the exit node of a function (line 22). In such a case, we
use the function application rule, and the new state is given by the intersection of the calling
context with output variables of the call projected out, and our state with parameter and return
variables renamed. Similarly, the �update� function is called to propagate the information.

Finally, we process all the outgoing call edges (line 30). The new state is derived by
projecting the processed state on the parameter variables and subsequent renaming to the called
function g input parameters. As before, we call the �update� function to join the new state with
the existing one associated with the entry node ofg. Furthermore, we update the return site
nret of the calling edge using the existing summary. Observe how we had to apply the function
application rule for the second time: that happens because if the update to the called function
entry state is subsumed by an existing invariant, we can not rely on the previous �if� statement
to perform the application, as the update will not be propagated up to the function exit.

Once the iteration converges, our algorithm returns a global mapping from nodes to abstract
states.

Revisiting Running Example Similarly to Example 3.5, we are in the position to revisit
the running example from Figure 5.4 with Algorithm 5.1 parameterized with LPI . We use the
same template mapping we have previously used in Example 5.1.

114



Section 5.6 Generating Summaries using Intraprocedural Analysis

Algorithm 5.1 Summary Generation

1: Input: program P � (F; f m ), abstract domain D,
2: partial order � : D ! D ! B,
3: strongest postcondition operatorJ:K] : D ! OPS! D ! D ,
4: join operator t : D ! D ! D ,
5: intersection operator u : D ! D ! D
6: Output: map I from nodes ofP to D
7: allnodes all nodes ofP
8: allcalledges all call edges ofP
9: map from nodes to abstract statesI  f n : ? j n 2 allnodesg

10: queue of nodesQ  ;
11: m  starting node of f m

12: I [m]  >
13: Q  Q [ f mg
14: while Q 6= ; do
15: n  pop from Q
16: s  I (n)
17: f � (nodes; edges; calledges; x ; x i ; x r ; nen; nex)  function containing n
18: for all (n; OP; n0) 2 edgesdo
19: s0  JOPK] (s)
20: Update (n0; s0)
21: end for
22: if n = nex then

23: . update on summary entails updates on all return sites of calling edges
24: for all c � (f; n call ; nret ; xp; xo) 2 allcalledgesdo
25: (gnodes; gedges; gcalledges; xg; xg

i ; xg
r ; ng

en; ng
ex)  function containing c

26: s0  sjx i [ x r [x i =xp][x r =xo] u I (ncall )jx g nx o

27: Update (nret ; s0)
28: end for
29: end if
30: for all c � (g; n; nret ; xp; xo) 2 calledgesdo

31: . n is a callsite for a function g
32: (gnodes; gedges; gcalledges; xg; xg

i ; xg
r ; ng

en; ng
ex)  g

33: s0  sjx p [xp=xg
i ]

34: Update (s0; ng
en)

35: . use the existing summary
36: s00 I (ng

ex)jx g
i [ x g

r
[xg

i =xp][xg
r =xo] u sjx nx o

37: Update (s00; nret )
38: end for
39: end while
40: function Update (node n, state s)
41: if s � I (n) then
42: I (n)  I (n) t s
43: Q  Q [ f ng
44: end if
45: end function
46: return I
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Note that in the presence of large block encoding (Section 2.9), the abstraction has to be
performed at call- and return- nodes: in our example that entails calculating abstraction at
each node.

Example 5.2 (Re-Analyzing the Running Example with Interprocedural LPI ). 1. We start
with an empty state a0 � fg associated with the nodens.

2. Following the function call (sum; ns; nq; ; ; f og) produces another top statea1 � fg associ-
ated with ne.

3. From the intraprocedural edge(ne; i � 0^ r 0 = 0 ^ i 0 = i; n r ) we get the statea2 associated
with the node nr :

� 1 � i � 0 ^ r 0 = 0 ^ i 0 = 0

a2 � f� i : (0; �; a 1); � r : (0; �; a 1); � (r � i ) : (0; �; a 1)g

Note how we have introduced a helper relation� 1 to record the policy.

4. By following another intraprocedural edge (ne; i > 0 ^ i 0 = 0 ; nc) we get the following
state a3 associated with the nodenc:

a3 � f� i : (0; i > 0 ^ i 0 = 0 ; a1)g

5. The function call from nc is subsumed by existing abstract state> associated withne.

6. We perform the summary application at the node nc and arrive at the new abstract state
a4 associated withnj :

a4 � f� i : (0; i 0 = i; a3); � t : (0; t0 = r; a2)g

Note that the identity assignment i 0 = i is generated as a policy in order to propagate the
bound from the callsite.

7. After traversing the intraprocedural edge (nj ; r 0 = i + t; n r ) we get the statea5:

� 2 � r 0 = i + t

a5 � f� i : (0; �; a 4) � r : (0; �; a 4) � (r � i ) : (0; �; a 4)g

Again, we have used an auxiliary relation� 2 to record the used policy. Asa4 is subsumed
by a2 no updates are generated.

8. Finally, we perform the function application for sumat the node ns. The generated
abstract state associated withnq is:

f� o : (0; o0 = r; a2)g

No new updates are possible, and the exploration is concluded. The returned invariant is:

f ns : > ; ne : > ; nc : a3; nj : a4; nr : a2; nq : a5g

Despite the fact that the amount of steps is the same as for Example 5.1, each step is
considerably simpler and only involves the local updates, and the exploration progress can be
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seen much easier.

The exploration in Example 5.2 is remarkably similar to the one which would happen if
the naive goto encoding shown in Figure 5.1 was used. The crucial di�erence is that we only
pass the relevant parameters along the call and return edges, and we perform merge instead of
intersection at the return site. Applying the goto encoding directly to the example in Figure 5.4
would not less us prove thati is always positive at the nodenj , which is crucial for establishing
that the return value is always greater or equal than the input in the sumsummary.

5.7 Algorithm Properties

Property 5.1 (Soundness). The invariant map computed by Algorithm 5.1 satis�es the
constraints of Equation 5.2.

Proof. Setting the abstract state associated with the program entry to > ful�ls the �Program
Initiation� rule, as the invariant map is updated only through the �update� function, which only
enlarges the contained states. The �Consecution� rule is satis�ed due to the intraprocedural
update in line 18. The updates associated with call edges in line 30 guarantee the �Function Call�
rule, and the �Function Application� rule is ful�lled by treating the exit node in line 22. The
�Summary Coverage� rule is satis�ed implicitly, as our summaries are given by the (projection
of) the abstract states associated with exit nodes.

Property 5.2 (Termination) . Algorithm 5.1 is guaranteed to terminate if the abstract inter-
pretation parameterization terminates after �nitely many join applications (which may include
widening) with the growing invariant sequence of abstract states.

Proof. Updates causing the main �xpoint loop to run are only performed in the �update�
function (line 40), which only happens when the new abstract state is not subsumed by the old
one, and a join is subsequently performed. If such a sequence converges for every node, the
algorithm terminates.

In particular, Property 5.2 entails that LPI parameterization of Algorithm 5.1 terminates in
time bounded by the number of policies in Equation 5.1.

Property 5.3 (Optimality) . If the parameterization of Algorithm 5.1 does not introduce any
imprecision during the join or the abstract postcondition calculation, the obtained invariant is
the strongest possible one in the given domain.

Similarly, Property 5.3 entails that LPI terminates with the strongest inductive invariant
satisfying the constraints.

Proof Outline. The proof is similar to that for the standard Kleene iteration algorithm: we are
simply performing the updates subject to the constraints we have to satisfy.

5.8 Implementation

We have implemented the parameterization of Algorithm 5.1 with LPI inside the CPAchecker

framework. As before, detailed installation and usage instructions are available in Chapter 7.
Our implementation provides a generic framework which can be implemented by any

con�gurable program analysis (Section 2.10) in order to support summary generation. To use
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the framework, the client CPA has to implement two methods: one for generating the entry
abstract state for the summary (applied in line 34) and one for applying the function summary
to the given callsite (applied in line 27 and line 37). The implementation consists of a top-level
con�gurable program analysis, which applies these two functions provided by the wrapped
analysis during the successor computation.

Our tool supports programs which modify global variables inside function, or modify the
parameter variables by running a pre-analysisCFA -to-CFA transformation which assigns the
current value of all modi�ed globals and parameters to a temporary variable, which may then
be used inside the summary. Aliasing is currently not supported.

5.9 Extensions

In this section we describe various extensions we have studied to increase the applicability,
precision and performance of our algorithm.

5.9.1 Supporting Parameter and Return Expressions

Our program de�nition (De�nition 5.2) only allows variables to be passed as parameters and
to be returned. Most C-like languages allow using arbitrary expressions for both, which may
even include function calls. Using the �Function Application� and �Function Call� rules from
Equation 5.2 becomes problematic as they require renaming operations which semantics is not
clear in the presence of such expressions.

Introducing temporary variables to hold the values of expressions the function is called with,
and expressions the function is returning solves the issue (e.g. replacingreturn a + b + c
with tmp = a + b + c; return tmp). Introducing auxiliary variables also allows our analysis
to support complex expressions involving function calls (e.g.a = b + f(c) is replaced with tmp
= f(c); a = b + tmp ).

5.9.2 Supporting Globals using Pre-Analysis

The program model we have described in Section 5.3 does not support global variables. This
simpli�es the summarization procedure, as each function explicitly returns all the variables
it modi�es. Globals can be easily removed using a syntactic transformation, which causes all
functions to accept and return all declared global variables. Yet for programs extensively using
globals that would not be very di�erent than the naive goto encoding, due to the joins arising
from spurious paths.

Instead, we run a pre-analysis which �nds an over-approximation of all variables which can
be a�ected by the function (or the functions called by it), and we extend the �output variables�
set xo associated with the call-edge with those.

5.9.3 Abstract Reachability Tree Generation

Recall the technique we have described in Section 4.4.1 for generating an abstract reachability
tree from the abstract interpretation run. The technique is still applicable in the presence of
summaries, yet the produced graph is no longer a tree, but a directed acyclic graph due to a
fact that the return-site has two predecessors: summary and a callsite. Acyclic counterexample
traces can be still found in a resultingDAG , and the domain can be re�ned using e.g. tree
interpolation [HHP10]. Additionally, the procedure for �nding �neighbour states� (Algorithm 4.2,
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line 36) has to be updated to perform a breadth-�rst-search instead of traversing a chain of
backpointers). Thus the interpolation-based template synthesis described in Section 4.4 is still
applicable for the approach described in this chapter, yet it was not implemented.

5.9.4 Generating Multiple Summaries

As shown by the benchmarks we have looked at, disjunctive summarize are often needed to
verify the properties of interest. Such summaries can be derived from convex abstract states by
generating a number of di�erent convex summaries, yet our description of Algorithm 5.1 only
generates a single summary per each function.

Yet Algorithm 5.1 can be trivially modi�ed to support multiple summaries. Let D0 be a
�nite partitioning of the abstract domain D, where we wish to generate a separate summary
for each element ofD0 (in general, D0 does not have to be �nite, yet the computation is not
guaranteed to converge if this is not the case).

In order to generate multiple summaries with such a partitioning, we require the analysis
to provide a function partition : D ! D 0, and we change the main stateful datastructure
I : nodes! D (line 9) storing the global inductive assertion map to I : nodes! D 0 ! D , where
the second argument is the calling context of the function (always> for the main function f m ).

When applying the �Entry� rule for creating a summary in line 34 we update the entry node
in the corresponding partition element, and likewise, when applying the summary application
rule in lines 27, 37 we apply the summary from the partition corresponding to the callsite.

In the extreme case where theD0 = D and partition is an identity function the precision of
the resultant algorithm is equal to that of inlining, yet it is not guaranteed to converge in the
presence of recursion.

Due to a lack of time, this extension was not implemented.

5.9.5 Large Block Encoding Support and Inlinement

Recall that LPI operates overCFA encoded using large block encoding (Section 2.9), which
can get both higher precision and performance by reducing the number of abstraction points.

In order to support this encoding, call-node and return-node for each summarized procedure
are added to the cut-set, which is su�cient for breaking all (interprocedural) cycles, potentially
caused by recursion.

However, extra abstraction can negatively a�ect precision and performance. Thus, like a
compiler, for each processed function we can apply a heuristic deciding whether it should be
inlined or summarized. Due to a lack of time, dynamic inlinement was not implemented.

5.10 Evaluation

We evaluate our implementation on programs in the �Recursive� category of the International
Competition on Software Veri�cation [Bey16]. All benchmarks were run using the following
resource bounds: Intel Xeon E5-2650 v2 @ 2.60 GHz, and a limit of 10 GB RAM and 100 s
CPU time per program.

The category contains98 veri�cation tasks (each task includes a program, property and a
veri�cation verdict), and in 53 of those the expected verdict is �true�. Our implementation was
able to verify 24 of those, with no incorrect verdicts produced. We present the quantile plot
showing the tool performance in Figure 5.5.
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For comparison, state of the art veri�cation tool SeaHorn [GKN15] using Spacer [Kom+13]
algorithm achieves a better result with 49 benchmarks veri�ed, mostly due to the ability
to generate non-convex summaries with predicates forming the abstract domain discovered
dynamically using interpolation. We believe this is partly caused by a dataset which does not
contain complex convex properties (e.g. proving lack of over�ows), and our approach could be
very useful in such cases.
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Figure 5.5: Quantile timing plots showing the performance of the summary generation algorithm
parameterized by LPI . As before, each data point corresponds to a processed veri�cation task, with
y coordinate given by the time taken to analyze the task, andx coordinate given by the program
number, with series sorted by time.

5.11 Conclusion and Future Work

We have developed an interprocedural analysis algorithm which can be parameterized by any
abstract interpretation. We have studied this algorithm in context of LPI parameterization, as it
guarantees �nding the least �xed point for the �xed number of summaries. The proof-of-concept
implementation was provided, and we have shown how it can be used to verify many recursive
benchmarks.

Our work is not directly applicable to the min-policy [Cos+05] approach, as greatest �xed
points are notoriously over-approximating for recursive procedures.

5.11.1 Future Work

While we have obtained interesting results, engineering work still needs to be done in order for
our algorithm to be applicable in practice. Firstly, the extensions described in Section 5.9.5 and
Section 5.9.4 were not implemented. Additionally, the problems of supporting function pointers
and aliasing in general have to be addressed.

Aliasing Support Unlike a bottom-up approach for summary generation, our algorithm has
an advantage of knowing the calling context during the summary generation, which can already
include aliasing information. This advantage can be used by e.g. deciding to generate a new
summary whenever a calling context has di�erent aliasing, obtaining greater precision.
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Supporting Function Pointers Function pointers can be supported in a usual way: namely,
either using a pre-analysis tracking which function each pointer can be aliased to, and then
trating the resulting call as a non-deterministic choice between di�erent possibly aliased functions,
or even tracking the aliasing directly in the analysis parameterization. Note that in a case of
function pointers the analysis �nding modi�ed and read global variables (Section 5.9.2) would
need a pre-analysis itself in order to resolve function pointers.
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Chapter 6

Formula Slicing: Inductive Invariants
from Preconditions

6.1 Introduction

In this chapter we present new method for invariant synthesis which we call �formula slicing�.
The �ndings were already published [KM16], and the chapter largely follows the publication
with some new results added.

Abstract-interpretation-based approaches restrict the class of expressible inductive invariants
to a prede�ned abstract domain, such as products of intervals, octagons, or convex polyhedra,
all of which can only express convex properties. Any candidate invariants which can not be
expressed in the chosen abstract domain get over-approximated. This is a severe restriction:
if a property �ows from the beginning of the program to a loop head, and holds inductively
after, but is not representable within the previously chosen abstract domain, it is discarded. In
contrast, our idea exploits the insight that many loops in the program a�ect only a small part
of the memory, and many invariants which were valid before the loop are still valid afterwards.

1 int x = input();
2 int p = input();
3 if (p) {
4 assume(x >= 0);
5 } else {
6 assume(x < 0);
7 }
8 for ( int i =0; i < input(); i ++) {
9 x *= 2;

10 }

Figure 6.1: Motivating Example for Finding Inductive Weakenings

Consider �nding an inductive invariant for the motivating example in Figure 6.1. Symbolic
execution up to the loop-head can precisely express all reachable states at the loop entry:

i = 0 ^ (p 6= 0 = ) x � 0) ^ (p = 0 = ) x < 0) (6.1)

Yet abstraction in a numeric convex domain at the loop head yieldsi = 0 , completely losing
the information that x is positive i� p 6= 0 . Observe that this information loss is not necessary,
as the sign ofx stays invariant under the multiplication by a positive constant (assuming
mathematical integers for the simplicity of exposition). To avoid this loss of precision, we
develop a �formula slicing� algorithm which computes inductive weakeningsof propagated
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formulas, allowing to propagate the formulas representing inductive invariantsacross loop heads.
In the motivating example, formula slicing computes an inductive weakening of the initial
condition in Equation 6.1), which is (p 6= 0 ) x � 0) ^ (p = 0 ) x < 0), and is thus true at
every iteration of the loop. The computation of inductive weakenings is performed by iteratively
�ltering out conjuncts falsi�ed by counterexamples-to-induction, derived using an SMT solver.
In the example, transition i = 1 from i = 0 falsi�es the constraint i = 0 , and the rest of the
conjuncts are inductive.

The formula slicing �xpoint computation algorithm is based on performing abstract inter-
pretation on the lattice of conjunctions over a �nite set of predicates. The computation starts
with a seed invariant which necessarilyholds at the given location on the �rst time the control
reaches it, and during the computation it is iteratively weakened until inductiveness.

6.1.1 Contributions

We present a novel insight for generating inductive invariants, and a method for creating a
lattice of weakenings from an arbitrary formula describing the loop precondition using arelaxed
conjunctive normal form (De�nition 6.1) and best-e�ort quanti�er elimination (Section 6.2.1).

We evaluate (Section 6.6) our implementation of the formula slicing algorithm on the �Device
Drivers� benchmarks from the International Competition on Software Veri�cation [Bey16], and
we demonstrate that it can successfully verify large, real-world programs which can not be
handled with traditional numeric abstract interpretation, and that it is competitive with state
of the art techniques.

6.1.2 Related Work

The Houdini [FL01] algorithm mines the program for a set of predicates, and then �nds
the largest inductive subset, dropping the candidate non-inductive lemmas until the overall
inductiveness is achieved. The optimality proof for Houdini is present in the companion
paper [FJL01]. A very similar algorithm is used by Bradley et al. [BM07] to generate the
inductive invariants from negations of the counter-examples to induction.

Inductive weakening based on counterexamples-to-induction can be seen as an algorithm
for performing predicate abstraction [GS97]. Generalizing inductive weakening tobest abstract
postcondition computation Reps et al. [RSY04] use the weakening approach for computing the
best abstract transformer for any �nite-height domain, which we also perform in Section 6.1.4.

Generating inductive invariants from a number of heuristically generated lemmas is a
recurrent theme in the veri�cation �eld. In automatic abstraction [Kom+13] a set of predicates
is found for the simpli�ed program with a capped number of loop iterations, and is �ltered
until the remaining invariants are inductive for the original, unmodi�ed program. A similar
approach is used for synthesizing bit-precise invariants by Gur�nkel et al. [GBM14].

The complexity of the inductive weakening and that of the related template abstraction
problem are analyzed by Lahiri and Qadeer [LQ09].

6.1.3 Counterexample-to-Induction Weakening Algorithm

The approaches [BM07; FL01; GBM14; Kom+13] mentioned in Section 6.1.2 are all based
on using counterexamples to induction for �ltering the input set of candidate lemmas. For
completeness, we restate this approach in Algorithm 6.1.
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Figure 6.2: Formula � (x ) � L 1(x ) ^ L 2(x ) is tested for inductiveness under� (x [ x0). Model M
identi�es a counter-example to induction. From M j = : L 0

2(x0) we know that the lemma L 2 has to
be dropped. As weakening progresses, the shaded region in the left box is growing, while the shaded
region in the right box is shrinking, until there are no more counterexamples to induction.

In order to perform the weakening without syntactically modifying � during the intermediate
queries, we performselector variablesannotation: we replace each lemmal i 2 � with a
disjunction si _ l i , using a fresh boolean variablesi . Observe that if all selector variables are
assumed to be false the annotated formula� annotated is equivalent to � , and that assuming any
individual selector si is equivalent to removing (replacing with > ) the corresponding lemmal i
from � . Such an annotation allows us to make use ofincrementality support by SMT solvers,
by using the solving with assumptionsfeature.

Algorithm 6.1 iteratively checks input formula � for inductiveness using Equation 2.3
(line 14). The solver will either report that the constraint is unsatis�able, in which case � is
inductive, or provide a counterexample-to-induction represented by a modelM (x [ x0) (line 15).
The counterexample-driven algorithm usesM to �nd the set of lemmas which should be removed
from � , by removing the lemmas modelled byM in : � 0 (line 21). The visualization of such a
�ltering step for a formula � consisting of two lemmas is given in Figure 6.2.

Algorithm 6.1 terminates with the strongest possible weakening [FJL01] within the linear
number of SMT calls with respect to k� annotated k.

6.1.4 From Weakenings to Abstract Postconditions

As shown by Reps et al. [RSY04], the inductive weakening algorithm can be generalized for the
abstract postcondition computation for any �nite-height lattice.

For given formulas  (x), � (x [ x0), and � (x) consider the problem of �nding a weakening
�̂ � � , such that all feasible transitions from  through � end up in �̂ . This is an abstract
postcondition of  under � in the lattice of all weakenings of � (Section 2.8.6). The problem
of �nding it is very similar to the problem of �nding an inductive weakening, as we can check
whether a given weakening of� is a postcondition of  under � using Equation 6.2,

 (x ) ^ � (x [ x0) ^ : � 0
annotated (x0) (6.2)

Algorithm 6.1 can be adapted for �nding the strongest postcondition in the abstract domain
of weakenings of the input formula with very minor modi�cations. The required changes are
accepting an extra parameter , and changing the queried constraint (line 6) to Equation 6.2.
The found postcondition is indeed strongest [RSY04].
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Algorithm 6.1 Counterexample-Driven Weakening.

1: Input: Formula � (x) to weaken in RCNF , transition relation � (x [ x0)
2: Output: Inductive �̂ � �

3: . Annotate lemmas with selectors,S is a mapping from selectors to lemmas they annotate.
4: S; � annotated  Annotate (� )
5: context  new context of SMT solver
6: query  � annotated ^ � ^ : � 0

annotated
7: Assert query in context
8: assumptions ;
9: removed ;

10: . In the beginning, all of the lemmas are present
11: for all (selector; lemma) 2 S do
12: assumptions assumptions[ f: selectorg
13: end for
14: while context is satis�able with assumptionsdo
15: M  model of context
16: assumptions ;
17: for all (selector; lemma) 2 S do
18: if M j = : lemma0 or lemma0 is irrelevant to satis�ability then

19: . lemma has to be removed.
20: assumptions assumptions[ f selectorg
21: removed removed[ f lemmag
22: else
23: assumptions assumptions[ f: selectorg
24: end if
25: end for
26: end while

27: . Remove all lemmas which were �ltered out
28: return � [removed=> ]

This adaptation e�ectively runs a modi�ed version of cartesian [BPR03] predicate abstrac-
tion [GS97]. Unlike a classical approach where the negation of each predicate is tested for
unsatis�ability (like in [BPR03]), we test the negation of the disjunction over all the predicates,
and we used the model to �lter out multiple predicates at once, thereby speeding up the
convergence.

6.2 The Space of All Possible Weakenings

We wish to �nd a weakeningof a set of states represented by� (x), such that it is inductive
under a given transition � (x [ x0). For a single-nodeCFA de�ned by an initial condition � and
a loop transition � such a weakening would constitute aninductive invariant as by de�nition of
weakening it satis�es the initial condition and is inductive.

We start with an observation that for a formula in NNF replacing any subset of literals
with > results in an over-approximation, as both conjunction and disjunction are monotone
operators. E.g. for a formula � � (la ^ lb) _ lc such possible weakenings are> , lb _ lc, and la _ lc.

The set of weakenings de�ned in the previous paragraph is redundant, as it does not take the
formula structure into account � e.g. in the given example if lc is replaced with > it is irrelevant
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what other literals are replaced, as the entire formula simpli�es to > . The most obvious way to
address this redundancy is to convert� to CNF and to de�ne the set of all possible weakenings
as conjunctions over the subsets of clauses in� CNF . E.g. for the formula � � la ^ lb ^ lc possible
weakenings arela ^ lb, lb ^ lc, and la ^ lc. This method is appealing due to the fact that for a set
of lemmas thestrongest (implying all other possible inductive weakenings) inductive subset can
be found using a linear number of SMT checks [BM07]. However (Section 2.3) polynomial-sized
CNF conversion (e.g. Tseitin encoding) requires introducing existentially quanti�ed boolean
variables which make inductiveness checking� p

2-hard.
The arising complexity of �nding inductive weakenings is inherent to the problem: in fact,

the problem of �nding any non-trivial ( 6= > ) weakening within the search space described above
is � p

2-hard (see proof in Section 6.7).
Thus instead we use an over-approximating set of weakenings, de�ned by all possible subsets

of lemmas present in� after the conversion to relaxed conjunctive normal form.

De�nition 6.1 (Relaxed Conjunctive Normal Form (RCNF )) . A formula � (x) is in relaxed
conjunctive normal form if it is a conjunction of quanti�er-free formulas (lemmas).

For example, the formula � � la ^ (lb _ (lc ^ ld)) is in RCNF . The over-approximation comes
from the fact that non-atomic parts of the formula are grouped together: the only possible
non-trivial weakenings for � are la and lb _ (lc ^ ld), and it is impossible to expressla ^ (lb _ lc)
within the de�ned search space.

We may abuse the notation by treating � in RCNF as a set of its conjuncts, and writing
l 2 � for a lemma l which is an argument of the parent conjunction of � , or � 1 � � 2 to indicate
that all lemmas in � 1 are contained in � 2, or k� k for the number of lemmas in� . For � in RCNF
we de�ne a set of all possibleweakeningsas conjunctions over all sets of lemmas contained in
� . We use an existing, optimal counter-example based algorithm in order to �nd thestrongest
weakening of� with respect to � in the next section.

A trivially correct conversion to a relaxed conjunctive normal is to convert an input formula
� to a conjunction

V
f � g. However, this conversion is not very interesting, as it gives rise to

a very small set of weakenings:� and > . Consequently, with such a conversion, if� is not
inductive with respect to the transition of interest, no non-trivial weakening can be found. On
the other extreme, � can be converted toCNF explicitly using associativity and distributivity
laws, giving rise to a very large set of possible weakenings. However, the output of such a
conversion is exponentially large.

We present an algorithm which convert � into a polynomially-sized conjunction of lemmas.
Our conversion algorithm applies the following rules recursively until a �xpoint is reached:

ˆ Flattening: all nested conjunctions are �attened. E.g. a ^ (b^ c) is converted to a ^ b^ c.

ˆ Factorization: when processing a disjunction over multiple conjunctions we �nd and
extract a common factor. E.g. (a ^ b) _ (b^ c) is converted to b^ (a _ c)

ˆ Explicit expansion with size limit: a disjunction
W

L , where eachl 2 L is a conjunction, is
converted to a conjunction over disjunctions over all elements in the cross product overL .
E.g. (a ^ b) _ (c ^ d) is rewritten to (a _ c) ^ (a _ d) ^ (b_ c) ^ (b_ d).

Applying such an expansion results in an exponential blow-up, but we only perform it if
the resulting formula size is smaller than a �xed constant, and we limit the expansion
depth to one.
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6.2.1 Eliminating Existentially Quanti�ed Variables

The formulas resulting form large block encoding (Section 2.9) may have intermediate (neither
input nor output), existentially bound variables. In general, existential quanti�er elimination
(with e.g. Fourier-Motzkin) is exponential. However, for many cases such as simple deterministic
assignments, existential quanti�er elimination is easy: e.g. 9t: x 0 = t + 3 ^ t = x + 2 can be
trivially replaced by x0 = x + 5 using substitution.

We use a two-step method to remove the quanti�ed variables: we run a best-e�ort pattern-
matching approach, removing the bound variables which can be eliminated in polynomial time,
and in the second step we drop all the lemmas which still contain the existentially bound
variables. The resulting formula is an over-approximation of the original one.

6.3 Formula Slicing: Overall Algorithm

We develop theformula slicing algorithm in order to apply the inductive weakening approach
for generating inductive invariants in large, potentially non-reducible programs with nested
loops.

�Classical� Houdini-based algorithms consist of two steps: candidate lemmas generation,
followed by counterexample-to-induction-based �ltering. However, in our case candidate lemmas
representing postconditions depend on previous �ltering steps, and careful consideration is
required in order to generateunique candidate lemmas which do not depend on the chosen
iteration order.

6.3.1 Abstract Reachability Tree

In order to solve this problem we use an algorithm for abstract reachability tree generation, as
given in Section 4.4.1.

The transfer relation for the formula slicing is given in Algorithm 6.2. In order to generate
a successor for an element(na; d; b), and an edge(na; �; n b) we �rst traverse the chain of
backpointers up the tree. If we can �nd a �neighbour� element s where sj1 = na

1 by following
the backpointers, we weakens until inductiveness (line 4) relative to the new incoming transition
� , and return that as a postcondition. Such an operation e�ectively performs widening [CC77a]
to enforce convergence. If no such neighbour exists, we convert9x: JdK(x) ^ � (x [ x0) to RCNF
form (line 6), and this becomes a new element of the abstract domain.

Observe that our approach for generating initial candidate invariants ensures monotonicity
and reproducibility, even in the case of a non-reducibleCFA . As a downside, tree representation
may lead to the exponential state-space explosion (as a single node in aCFA may correspond
to many nodes in anART ). However, from our experience in the evaluation (Section 6.6), with
a good iteration order (stabilizing inner components �rst [Bou93]) this problem does not occur
in practice.

1 In the implementation, the neighbour is de�ned by a combination of a callstack, a CFA node and a loopstack.
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Algorithm 6.2 Formula Slicing: Postcondition Computation.

1: function Post (edgee � (na; �; n b), state t � (na; d; b))
2: neighbour s  FindNeighbour (b; n0)
3: if s 6= ; then

4: . Abstract postcondition of d under � in weakenings ofs (Section 6.1.4).
5: e  Weaken (d, � ^ nb, s)
6: else

7: . Convert the current invariant candidate to RCNF .
8: e  ToRCNF (JdK^ � )
9: end if

10: return (nb; e; t)
11: end function

6.3.2 Example Formula Slicing Run

Consider running formula slicing on the program in Figure 6.3, which contains two nested loops.
The corresponding edge encoding is given in Equation 6.3:

� 1 � x0 = 0 ^ y0 = 0 ^ (p0 = 1 ^ s0_ p0 = 2 ^ : s0)

� 2 � x0 = x + 1 ^ c0 = 100

� 3 � (p 6= 1 ^ p 6= 2 = ) c0 = 0) ^ y0 = y + 1 ^ p0 = p

� 4 � x0 = x ^ y0 = y ^ p0 = p ^ c0 = c

(6.3)

1 int p, c, s =input(), x = 0, y = 0;
2 p = s ? 1 : 2;
3 while (input()) { // A
4 x++;
5 c = 100;
6 while (input()) { // B
7 if (p != 1 && p != 2) {
8 c = 0;
9 }

10 y++;
11 }
12 assert(c == 100);
13 }
14 assert((s && p == 1) || ( ! s && p == 2));

Figure 6.3: Example Program with Nested Loops: Listing andCFA .

Similarly to Equation 2.3, we can check candidate invariantsA(x); B (x) for inductiveness
by posing an SMT query shown in Equation 6.4. The constraint in Equation 6.4 is unsatis�able
i� f A : A(x); B : B (x)g is an inductive invariant (Section 2.5.3).

9x [ x0:
_

� 1(x0) ^ : A(x0)

A(x) ^ � 2(x [ x0) ^ : B (x0)

B (x) ^ � 3(x [ x0) ^ : B (x0)

B (x) ^ � 4(x [ x0) ^ : A(x0)

(6.4)
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Equation 6.4 is unsatis�able i� all of the disjunction arguments are unsatis�able, and
hence the checking can be split into multiple steps, one per analyzed edge. Each postcondition
computation (Algorithm 6.2) either generates an initial seed invariant candidate, or picks
one argument of Equation 6.4, and weakens the right hand side until the constraint becomes
unsatis�able. Run of the formula slicing algorithm on the example is given below:

ˆ Traversing � 1, we get the initial candidate invariant:

I (A)  
^

f x = 0 ; y = 0 ; s =) p = 1 ; : s =) p = 2g

ˆ Traversing � 2, the candidate invariant for B becomes:

I (B )  
^

f x = 1 ; y = 0 ; s =) p = 1 ; : s =) p = 2 ; c = 100g

ˆ After traversing � 3, we weaken the candidate invariantI (B ) by dropping the lemma y = 0
which gives rise to the counterexample to induction (y gets incremented). The result is:

I (B )  
^

f x = 1 ; s =) p = 1 ; : s =) p = 2 ; c = 100g

which is inductive under � 3.

ˆ The edge� 4 is an identity, and the postcondition computation results in lemmas x = 0
and y = 0 dropped from I (A), resulting in:

I (A)  
^

f y = 0 ; s =) p = 1 ; : s =) p = 2g

ˆ After traversing � 2, we obtain the weakening ofI (A) by dropping the lemma x = 1 from
I (B ), resulting in:

I (B )  
^

f s =) p = 1 ; : s =) p = 2 ; c = 100g

ˆ Finally, the iteration converges, as all further postconditions are already covered by
existing invariant candidates. Observe that the computed invariant is su�cient for proving
the asserted property.

6.4 Extensions

Syntactic Weakening Algorithm A syntactic-based approach is possible as a faster and
less precise alternative which does not require SMT queries. For an input formula� (x) in
RCNF , and a transition � (x [ x0), syntactic weakening returns a subset of lemmas in� , which
are not syntactically modi�ed by � : that is, none of the variables are modi�ed or have their
address taken. For example, the lemmax > 0 is not syntactically modi�ed by the transition
y0 = y + 1 ^ x � 1, but it is modi�ed by x0 = x + 1 .

Non-Nested Loop Handling When performing the inductive weakening (Algorithm 6.2,
line 4) on the edge(N; �; N ) we annotate and weaken the candidate invariants on both sides
(without modi�cations described in Section 6.1.4), and we cache the fact that the resulting
weakening is inductive under� .
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Liveness-Based Filtering We precompute live variables, and the candidate lemmas (Algo-
rithm 6.2, line 6) which only contain dead variables are discarded.

Extending the Set of Weakenings In a sense, every inductive invariant which could be
possibly found by a static analyzer is aweakeningof the initial condition. Our set of considered
weakenings is relatively small, as it only includes the weakenings obtained by dropping lemmas
from the RCNF form. This set can be extended using the following approaches:

ˆ Replacing the assignmenta = b in formulas with a set of constraints a � b^ a � b. This
gives us a richer set of weakenings, as each assignment may be weakened to an inequality
(as compared to the previous approach).

6.5 Implementation

We have developed theSlicer tool, which runs the formula slicing algorithm on an input C
program. Slicer performs inductive weakenings using theZ3 [MB08] SMT solver, and best-e�ort
quanti�er elimination using the qe-light Z3 tactic. Our tool can analyze a veri�cation task by
�nding an inductive invariant and reporting true if the found invariant separatesthe initial
state from the error property, and unknownotherwise. Additional usage details are described
further in Chapter 7.

6.6 Experiments and Evaluation

We have evaluated the formula slicing algorithm on the �Device Drivers� category from the
International Competition on Software Veri�cation ( SV-COMP ) [Bey16]. The dataset consists
of 2120 veri�cation tasks, of which 1857 are designated ascorrect (the error property is
unreachable), and the rest admit a counter-example. All the experiments were performed on
Intel Xeon E5-2650 with 2.6 GHz, and limits of 8 GB RAM, 2 cores, and 600 seconds CPU time
per program. We compare the following three approaches:

ˆ Slicer-CEX (rev 21098): formula slicing using counterexample-based weakening (Sec-
tion 6.1.3).

ˆ Slicer-Syntactic (rev 21098): formula slicing using syntactic weakening (Section 6.4).

ˆ Predicate Analysis : predicate abstraction with interpolants [McM06], as implemented
inside CPAchecker . We have chosen this approach for comparison as it represents
state-of-the-art in model checking, and was found especially suitable for analyzing device
drivers.

ˆ PAGAI [HMM12] (git hash e44910): abstract interpretation-based tool, which implements
the path focusing [MG11] approach.

In Table 6.1 we show overall precision and performance of the four compared approaches.
As formula slicing is inherently over-approximating, it is not capable of �nding counterexamples
to safety, and we only compare the number of produced safety proofs.

From the data in the table we can see that predicate analysis produces the most correct
proofs. This is expected since it can generate new predicates, and it isdriven by the target

131



Chapter 6 Formula Slicing: Inductive Invariants from Preconditions

Figure 6.4: Quantile plot showing performance of the compared approaches. Shows analysis
time for each benchmark, where the data series are sorted by time separately for each tool. For
readability, the dot is drawn for every 20th program, and the time is rounded up to one second.

Tool # proofs # incorrect # timeouts # memory outs

Slicer-CEX 1253 0 475 0
Slicer-Syntactic 1166 0 407 0
Predicate Analysis 1301 0 657 0
PAGAI 1214 3 409 240

Table 6.1: Evaluation results. The �# incorrect� column shows the number of safety proofs the
tool has produced where the analyzed program admitted a counterexample.

property. However, formula slicing and abstract interpretation have much less timeouts, and
they do not require target property annotation, making them more suitable for use in domains
where a single error property is not available (advanced compiler optimizations, multi-property
veri�cation, and boosting another analysis by providing an inductive invariant). The programs
veri�ed by di�erent approaches are also di�erent, and formula slicing veri�es 22 programs
predicate analysis could not.

The performance of the four analyzed approaches is shown in the quantile plot in Figure 6.4.
The plot shows that predicate analysis is considerably more time consuming than other analyzed
approaches. Initially, PAGAI is much faster than other tools, but around 15 seconds it gets
overtaken by both slicing approaches. Though the graph seems to indicate thatPAGAI
overtakes slicing again around100 seconds, in fact the bend is due to out of memory errors.
The �attening around 900 seconds for all tools corresponds to the grace period before the hard
timeout.

The quantile plot also shows that the time taken to perform inductive weakening does
not dominate the overall analysis time for formula slicing. This can be seen from the small
timing di�erence between the syntactic and counterexample-based approaches, as the syntactic
approach does not require querying the SMT solver for weakening.

Finally, we present data on the number of SMT calls required for computing inductive
weakenings in Figure 6.5. The distribution shows that the overwhelming majority of weakenings
can be found within just a few SMT queries.
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Figure 6.5: Distribution of the number of iterations of inductive weakening (Section 6.1.3)
required for convergence across all benchmarks. Horizontal axis represents the number of SMT calls
required for convergence of each weakening, and vertical axis represents the count of the number of
such weakenings.

6.7 Complexity of Finding a Non-Trivial Inductive Weakening
Over Literals

As we have mentioned in Section 6.2, a more expressive space of weakenings over formulas is
to consider replacing any subset of literals with> after a NNF conversion. In this section we
show that it leads to a number of undesirable properties, including the absence ofstrongest
inductive weakening (Example 6.1), and� p

2 complexity for �nding any non-trivial inductive
weakening (Theorem 6.1).

Example 6.1 (No Strongest Inductive Weakening). Consider a program over four Boolean
variables a; b; c; dand the transition relation � � a ^ b^ c ^ d ^ : a0^ b0^ : c0^ d0 (the only
possible transition is from a ^ b^ c ^ d to : a ^ b^ : c ^ d). Consider �nding the weakening of
� � (a ^ b) _ (c ^ d), Both the f ag-weakening (b_ (c ^ d)) and the f cg-weakening ((a ^ b) _ d)
are inductive, but their intersection (a ^ b) _ (b^ d) _ (c ^ d) (obviously inductive) is not a
weakening of� and there is no inductive weakening stronger than either of these.

Theorem 6.1 (� p
2-completeness). The problem of deciding, given quanti�er-free SMT formulas

� (x) and � (x [ x0), whether there exists a non-trivial (6� > ) weakening of � that is inductive
with respect to � is � p

2-complete.

Belonging to � p
2. Let S be some subset of literals of� . Let �̂ be the weakening of� where all

literals in S are replaced with > . Checking that �̂ is inductive with respect to � is in co-NP,
therefore the problem of �nding a non-trivial �̂ is in � p

2

We show completeness by constructing from an arbitrary closed9� 8� formula  a loop � and
a precondition I such that the existence of a non-trivial (6� > ) weakening of the precondition
is equivalent to the truth of  . Without loss of generality, let  have m Boolean variables
x0; : : : ; xm� 1 bound by the existential quanti�er and n Boolean variablesy0; : : : ; yn� 1 bound by
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b i t v e c t o r x = ? ;
boolean o = ? ;
while ( nondet ( ) ) {

// Non � d e t e r m i n i s t i c cho ice .
b i t v e c t o r y = nondet ( ) ;
i f ( not G(x; y) ) {

i f ( x == > ) {
// Set the ove r f l ow
// b i t .
o = > ;
x = nondet ( ) ;

} e lse {
// Increment a g iven
// b i t v e c t o r .
x = succ (x ) ;

}
}

}

Figure 6.6: Counter Program and Transition System

the universal one:

 �9 x0; : : : ; xm� 1:

8y0; : : : ; yn� 1: G(x0; : : : ; xm� 1; y0; : : : ; yn� 1)
(6.5)

Let us denote the bitvector (x0; : : : ; xm� 1) as x and the bitvector (y0; : : : ; yn� 1) as y. Let
enc : Bm ! [0; 2m � 1] denote the function for standard integer encoding of thex bitvector, x0

being the lowest-order bit and xm� 1 the highest-order one. Letsucc : Bm n f> m g ! Bm be the
successor function such thatenc(succ(x)) = 1+ enc(x), which is only de�ned for non-over�owing
values.

Now we de�ne the transition system over the set of bolean variablesx and the over�ow bit
o. Let the initial state I (x ; o) be x = ? ^ o = ? , and let the transition relation � (x ; x0; o; o0) to
be: �

: (8y: G(x; y))^

((x 6= > ^ x0 = succ(x) ^ o0 = o) _ (x = > ^ o0 = > ))
�

_ �
x0 = x ^ o0 = o

�
(6.6)

In plain terms, the transition relation may increment x as long as it is not over�owing and
the guard can be falsi�ed for somey, and x is forced to stay constant on over�ow or when it
reaches somêx such that 8y: G(x̂ ; y). Initialization and transition relation for the transition
system, and the corresponding program are shown in Figure 6.6.

Lemma 6.1. There exists a non-trivial (6� > ) inductive invariant for the program in Figure 6.6
if and only if  (Equation 6.5) is satis�able.

Observe that � can be satis�ed for all possible values ofx by a suitable choice ofx0. Let
f (x ) be the largest (underenc) possible value ofx0 which satis�es � (x ; x0; o; o0).

Proof. Su�cient Condition. Assume  is satis�able for somex̂ . Then x̂ is a �xed point under f
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(as it satis�es G for all values of y). Consider the set of values de�ned byR � : o^ enc(x) � x̂g.
It is inductive, since the largest value in R set maps to itself underf , and all other values map
to the �next� (under enc) value in R. It is also non-trivial, since the bit o is de�ned not to be
> .

Proof. Necessary Condition. Assume there exists a non-trivial inductive invariant for the
program in Figure 6.6. At every transition, x either stays constant or is incremented by1. Since
we have assumed the existence of a non-trivial inductive invariant, there existŝx such that it is
a �xpoint under f and enc(x̂ ) � 2m � 1 (otherwise the entire state space is reachable, and the
only possible inductive invariant is > ). This is only possible if 8y: G(x̂ ; y) (otherwise x̂ may be
incremented). But this is exactly the condition for  being satis�able.

Corollary 6.1. For every non-trivial inductive invariant of the program in Figure 6.6 there
exists somex̂ such that f x j enc(x) < enc(x̂ )g is inductive. Furthermore, the reachable state
space is exactly allx smaller (under enc) than x̂ , and f x j x 6= x̂ g is inductive (as the states
larger than x̂ are not reachable).

Now consider �nding inductive (with respect to � Figure 6.6) weakenings of the following
formula � :

� �
_

(x i ^ : x i ) (6.7)

Each x i representsi 'th bit of x . Observe that for any x̂ 2 [0; 2m � 1], we can weaken� to be
equivalent to x 6= x̂ , by making a suitable weakening choice for everyi 'th bit of x̂ (if the i -th
bit in x̂ is ? we replace: x i by > , if it is > we replacex i by > ).

From Corollary 6.1 we know that for every non-trivial inductive invariant there exists x̂ ,
s.t. the set of all x not equal to x̂ is inductive. Thus if a non-trivial inductive invariant exists,
there exists a non-trivial inductive weakening of � . In Lemma 6.1 we have shown that deciding
the existence of a non-trivial inductive invariant is as hard as deciding the satis�ability of an
arbitrary 9� 8� formula  , thus deciding an existence of a non-trivial inductive weakening is as
hard as well.

� p
2-completeness.Membership in � p

2 is proved in Lemma 6.1. Reduction from the� p
2-complete

problem is done from deciding the truth of 9� 8� propositional formulas [Sto76, Th. 4.1].
Transforming G into � can be done within a logarithmic working space.

Relationship to Template Abstraction Complexity Lahiri and Qadeer [LQ09] consider
the problem of template abstraction: given a precondition, a postcondition, a transition relation
and a formula � (C; X ), C and X being sets of Boolean variables, check whether an appropriate
choice ofC makes� an inductive invariant. They show this problem to be � p

2-complete as well.
Our class of problems is a strict subset of theirs (our weakening problems can be immediately
translated into template abstraction problems, but not all template abstraction problems
correspond to weakenings), but we still show completeness.

6.8 Conclusion and Future Work

We have proposed a �formula slicing� algorithm for e�ciently �nding potentially disjunctive
inductive invariants in programs, which performs abstract interpretation in the space of weak-
enings over the formulas representing the �initial� state for each node. We have demonstrated
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that it could verify many programs other approaches could not, and that the cost of running
the algorithm in practice is surprisingly cheap.

The motivation for our approach is addressing the limitation of abstract interpretation
which forces it to perform abstraction after each analysis step, which often results in a very
rough over-approximation. Thus we believe our method is well-suited for augmenting numeric
abstract interpretation.

6.8.1 Future Work

As with any new inductive invariant generation technique, a possible future work is investigating
whether formula slicing can be used for increasing the performance and precision of other
program analysis techniques, such ask-induction, predicate abstraction or property-directed
reachability. An obvious extension is feeding the generated invariants to an analysis running
policy iteration (Chapter 3).

Furthermore, the inductive weakening approach could also be used for the generalization
of the k-induction algorithm over multiple properties. If we check a set of propertiesP for
inductiveness under the loop transition � , and not all properties are inductive, the weakening
approach can �nd the largest inductive subset.

The conversion to the RCNF form is currently done syntactically, but it can be also done
using the counterexamples to induction.
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Chapter 7

Implementation

7.1 Introduction

In the course of this thesis we have developed two novel tools,LPI (http://lpi.metaworld.me ),
which performs the local policy iteration described in Chapter 3, andSlicer (http://slicer.
metaworld.me), which performs the formula slicing as described in Chapter 6. Both tools
compute an inductive invariant for an input C program, and are implemented asCPA s inside
the CPAchecker [BK11] framework.

In this chapter we describe various features of those tools, architecture, strength and
weaknesses, usage instructions, and describe the various extensions.

7.2 Software Architecture

Simpli�ed CPAchecker architecture is shown in Figure 7.1. The end user speci�es a program
to be analyzed and a safety property of interest, which is converted into aCFA (De�nition 2.3)
using EclipseCDT [Fou] parser. The CFA is subsequently analyzed using a �xed pointCPA
algorithm (Algorithm 2.2), parameterized by a con�gurable program analysis (Section 2.10)
provided by the developer. In turn, the analysis module often relies on the C to Formula
package which converts a sequence of C statements into an SMT formula (Section 2.3), and on
the JavaSMT (Chapter 8) engine for dispatching the formulas to the solver.

Our main technical contributions include LPI (Chapter 3) and Slicer (Chapter 6) which can
be run by the CPAAlgorithm either in standalone mode, or combined with other analyses.
Additionally, we were heavily involved in the creation of the JavaSMT library, described further
in Chapter 8, and have contributed a very large number of patches across the entireCPAchecker

codebase.

7.3 Installation Instructions

Contributed tools are present in the CPAchecker source code, which makes the installation
from source remarkably simple, assuming the client machine has Java 8 and GIT installed:

> git clone https://github.com/sosy-lab/cpachecker.git
> cd cpachecker
> ant

The call to ant would fetch all the required dependencies, including the solver binaries. More
detailed installation instruction are available at the website: http://cpachecker.sosy-lab.org .
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Figure 7.1: CPAchecker Architecture

7.4 Usage Instructions

1 #include <assert.h>
2 extern int __VERIFIER_nondet_int ();
3 extern int __VERIFIER_assume( int condition);
4 int main () {
5 int sum= 0;
6 int bound = __VERIFIER_nondet_int();
7 __VERIFIER_assume(bound>= 0);
8

9 for ( int i =0; i <bound; i ++) {
10 sum++;
11 }
12 assert(sum == bound);
13 }

Figure 7.2: Sample C Program

Consider using LPI on a program shown in Figure 7.2. Note the following features of
the example: external function with no body __VERIFIER_nondet_int() is used to model non-
deterministic input and the function __VERIFIER_assume(int condition) is used to restrict
the input space. The default LPI con�guration is called -policy and it can be launched as
follows from the CPAchecker directory:

> ./scripts/cpa.sh -preprocess -policy program.c

After running this �le, the user get the log output from the tool, followed by the message that
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the program was veri�ed successfully: that is, the program analysis module was able to prove
that no speci�cation violations are reachable.

7.4.1 Con�guration Options

When we have calledCPAchecker we have used two command line options:-preprocess
and -policy . The -preprocess command line switch tells CPAchecker to pre-run the C
preprocessor on the program, which is necessary for parsing#include calls. Note that we
have not explicitly speci�ed the speci�cation against which we are verifying: by default the
speci�cation looks for assertion violations. The -policy switch selects thecon�guration to be
used for analysis, and is simply a shortcut to select one of the �les in theconfig directory. The
LPI tool is shipped with the following con�gurations:

ˆ -policy standard LPI con�guration, synthesizes octagonal templates.

ˆ -policy-intervals a faster con�guration, which only uses interval templates.

ˆ -policy-refinement a con�guration which uses the template re�nement procedure (Chap-
ter 4): the set of templates is continuously increased until the property can be proven.

ˆ -policy-k-induction An analysis which runs k-induction, as described in Section 7.7.2,
and usesLPI for the invariant generation. The -policy-refinement con�guration is used
for invariant generation.

ˆ -policy-summaries An analysis performing summary generation with no inlining, capable
of dealing with recursive programs, as described in Chapter 5. As of writing only available
on the summariesbranch.

The following con�guration options are available for the Slicer tool:

ˆ -formula-slicing generate inductive invariants from preconditions usingSMT solver.

ˆ -formula-slicing-k-induction The con�guration which gives the invariant above to
k-induction.

The usage of more detailed options is documented in the �ledoc/ConfigurationOptions.txt ,
shipped with CPAchecker . The options speci�c to LPI are grouped under the keycpa.lpi
and the options speci�c to Slicer are grouped undercpa.formula_slicing .

7.4.2 Looking at the Output Further

After the run of the tool the output folder is generated which contains various output artifact
describing the obtained results. If the client wishes to examine the inductive invariant embedded
into the program as assumestatements, the following command can be used:

> ./scripts/cpa.sh -preprocess -policy -setprop cinvariants.export =true program.c

That generates the �le output/inv-program.c with the assumecall specifying the inductive
invariant embedded into the loop body shown in Figure 7.3.

Additionally, either to inspect the path to the property violation, or to look at the graphical
representation of the invariant, the �le output/ARG.dot might be useful (or for large �les, often
output/ARGSimplified.dot ). This is explained in more detail in Section 7.6.
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1 #include <assert.h>
2 extern int __VERIFIER_nondet_int ();
3 extern int __VERIFIER_assume( int condition);
4 int main () {
5 int sum= 0;
6 int bound = __VERIFIER_nondet_int();
7 __VERIFIER_assume(bound>= 0);
8

9 for ( int i =0; i <bound; i ++) {
10 __VERIFIER_assume(i>= 0 && i == sum&& i < bound);
11 sum++;
12 }
13 assert(sum == bound);
14 return 1;
15 }

Figure 7.3: Sample Program for Inductive Invariant Generation

7.5 CPA Formulation

In this section we give precise con�gurable program analysis de�nition for both Slicer and
LPI . For both analyses, in order to avoid losing precision due to intermediate abstractions,
we do not express the invariant as an abstract state at every node: instead the transfer
relation operates on formulas and we only perform over-approximation at certainabstraction
points (which correspond to loop heads in a well-structuredCFA ). This approach is inspired
by adjustable-block encoding [BKW10], which performs the same operation for predicate
abstraction.

Thus we introduce two lattices for each analysis: abstracted states(not to be confused
with abstract statesin general: both intermediate and abstracted states areabstract) for states
associated with abstraction points (which can only express abstract states in the corresponding
lattice) and intermediate states for all others (which can express regions using decidableSMT
formulas).

Intermediate states represent reachable state-spaces using formulas directly, together with
the meta-information to record the parent(s)1 abstracted state.

De�nition 7.1 (Intermediate State). An intermediate state is a tuple (a0; � ), where a0 is a
parent abstracted state, and � (x [ x0) is a formula over a set of input variablesx and output
variables x0.

For two intermediate states (a1; � 1) and (a2; � 2) with a1 identical to a2 the merge operator
returns the disjunction (a1; � 1 _ � 2). Otherwise, the states are kept separate. The coverage on
intermediate states is de�ned using syntactic comparison on formulas:(a1; � 1) � (a2; � 2) i� � 1

is syntactically equivalent to � 2 and a1 � a2 under the de�ned ordering on abstracted states.
Such a coverage check is an over-approximation, yet can be implemented e�ciently.

The postcondition computation runs symbolic execution: the successor of an intermediate
state (a; � (x [ x0)) under the edge(A; � (x [ x0); B ) is the intermediate state (a; � 0(x [ x0)) with
� 0(x [ x0) � 9 x̂ : � (x ; x̂ ) ^ � (x̂ ; x0). Postcondition is only computed for intermediate state: in
order to compute a postcondition of the abstracted statea, it is �rst converted to an intermediate

1 If the summary computation described in Chapter 5 is enabled, intermediate states associated with return
nodes havetwo parents: a state associated with a callsite, and a state associated with a summary. In such a case,
the de�nitions reads as below, yet all operations on the parent state are done element-wise.
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state (a; > ). If after the postcondition computation the successor node is a loop head, then
abstraction is performed on the resulting state. We now proceed to describe abstracted state,
join operator over them, and the abstraction operator for both LPI and Slicer .

7.5.1 Abstraction for LPI

De�nition 7.2 (LPI Abstracted State). An LPI abstracted state is a tuple (i; A ) where i is
an intermediate state, and A is LPI abstracted state (De�nition 3.1). E�ectively to support
adjustable block encoding we extend the abstract state de�nition with a meta-information
recording the generating intermediate state.

The abstraction operator was de�ned in Algorithm 3.2, line 7, and the join in Algorithm 3.3.
The partial order on abstracted states is de�ned by component-wise comparison of bounds
associated with respective templates (Section 3.3.1).

7.5.2 Abstraction for Slicer

De�nition 7.3 (Slicer Abstracted State). A Slicer abstracted state is either an empty set;
denoting > , or a tuple (i; � ), where i is an intermediate state (generating backpointer), and�
is a set of lemmas inRCNF form over x .

The abstraction operation converts � to a set of lemmas inRCNF form, and the merge
operation performs weakening of the old state with respect to the new one. The comparison
on two Slicer abstracted state is given by containment relation on the set of lemmas, using
syntactical comparison on individual formulas.

7.6 Abstract Reachability Graph Generation

Both LPI and Slicer can be seen as traditional static analyses: all abstracted states are joined,
and some form of widening (either value determination or inductive weakening) is used to
enforce convergence. This approach has the following downsides:

ˆ Combination with analyses which requiresplitting states (such an explicit value analysis
or predicate abstraction with interpolants) inside CompositeCPA(Section 2.10.1) is prob-
lematic, due to the fact that LPI / Slicer can not split states, as it depends on the join
step to enforce convergence, and an analysis which depends on splitting can not join, as
that would severely a�ect the precision.

ˆ It is not possible to generate the abstract reachability tree, which visualizes the analysis
progression.

ˆ It is not possible to get an abstract path for the property violation, which greatly enhances
user's experience, and can be additionally used for interpolation.

We handle these issues using ourjoin emulation approach, which produces an abstract
reachability tree, as described in Section 4.4.1. Such an algorithm overcomes the disadvantages
outlined above, and we lay the groundwork for combination with CPA s which rely on keeping
the states separate.
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1 extern int __VERIFIER_nondet_int ();
2 extern int __VERIFIER_assume( int condition);
3 extern void __VERIFIER_assert( int condition);
4 int main () {
5 int sum= 0;
6 int bound = __VERIFIER_nondet_int();
7 for ( int i =0; i <bound; i ++) {
8 sum++;
9 }

10 assert(sum == bound);
11 }

Figure 7.4: Sample Program forARG Generation

Example 7.1 (Using ARG for Veri�cation Feedback) . Consider proving the assertion for the
program shown in Figure 7.4. When launchingLPI with a default con�guration we get a
message that the property could not be proven. In order to investigate why this is the case an
obtain the abstract path to an error we can consult the generatedARG (by default generated
in output/ARG.dot), shown in Figure 7.6. By visualizing the �ow to the error, and checking a
possible concretization of values at the error location, it can be quickly seen that an error is in
the program: we have not ensured thatboundhas to be positive.

After modifying the program and adding a statement __VERIFIER_assert(bound>= 0);
below an assignment tobound, LPI can verify the new task successfully. Again, we can visualize
the produced proof by consulting theARG , which is shown in Figure 7.5.

7.7 Extensions

Finding Non-Termination We have implemented an extension which allows to use our
analyses for having an over-approximating check for the non-terminating behavior. If after the
analysis was �nished the set of reachable states does not contain anyexiting state (exit call,
return from main, assertion violation, etc) we report that the program is not terminating for
any input.

Iteration Order In our experiments, we have found performance to depend on the iteration
order. Experimentally, we have determined a good iteration order to be the recursive iteration
strategy using the weak topological ordering [Bou93].

7.7.1 Combination with Other Con�gurable Program Analyses

One of the main advantages of theCPAchecker architecture is the ability to run multiple
�sibling� analyses together, using a CompositeCPA(Section 2.10.1). For our tools we have found
the combinations with the following analyses to be helpful:

Location Analysis (LocationCPA, not written by us, enabled by default) for generality, even
keeping track of location in CPAchecker is a separate con�gurable program analysis.

Callstack Analysis (CallstackCPA, not written by us, enabled by default) unless summary
generation is enabled (Chapter 5), the analysis with aCallstackCPA performs dynamic inlining :
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Figure 7.5: ARG For a Successfully Veri�ed Program
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Figure 7.6: ARG Demonstrating an Error Path
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procedures are inlined as they are explored (which can be often exponentially more performant
than inlining all procedure calls upfront).

Loopstack Analysis (LoopstackCPA, not written by us, enabled by default) similarly to the
callstack analysis, loopstackCPA can perform dynamic loop unwinding, which unwinds the
loop until a certain criteria is met.

Function Pointer Analysis (FunctionPointerCPA, not written by us, enabled by default)
Simple abstract interpretation-based analysis: each function pointer in the abstract domain is
represented by a possible location it can be aliased to (undecidability of the aliasing problem
does not arise as we use over-approximation). At each function pointer call the abstract value
is constructed and all possible aliasing locations are explored. Note that the abstract domain is
not relational and does not track the information on the conditions under which a function
pointer may be aliased.

Congruence Analysis (CongruenceCPA, written by us, enabled by default) A congruence
analysis which tracks whether a variable is even or odd (a more general congruence analysis
may be used, but we did not �nd the need for it on our examples). During the abstraction step,
the congruence information is conjoined to the formula being maximized, and the bounds from
�sibling� CPA s are used for the congruence analysis.

Basic Backwards Reachability (TargetReachabilityCPA, written by us, not enabled by
default) We apply a basic reachability check from the error nodes: we do not traverse the nodes
from which the error location can not be syntactically reached (there is no backwards path from
the error location to those nodes). This enhancement can be seen as a combination of forward
invariant-generating analysis with a very simple backwards location-based analyzer.

Value Analysis (ValueCPA, not written by us, not enabled by default) For some examples
we have found a combination with explicit value analysis [BL13] to be useful: whileLPI can
e�ciently reason about variables involved in arithmetic operations, the explicit value analysis
can track variables which can assume only a small number of discrete values.

7.7.2 Combination with k-Induction

The basic backwards reachability, described in Section 7.7.1, restricts the search space to the
backwards reachable nodes. However, the backwards search is purely location-based and does not
take the property into account. Thus it can be extended to k-induction with invariants [KT11]
which checks whether the negation of the error property, supported by the invariants, is inductive.

As the output of both Slicer and LPI tools is an inductive invariant, they can be nat-
urally augmented with k-induction. The invariant produced by our tools is fed to the k-
induction [BDW15] procedure, already present in CPAchecker . For a given value of k,
k-induction performs two checks: whether the error state is reachable from the initial one in
k steps (forward reachability), and whether the negation of the error property isk-inductive,
subject to the strengthening by the invariant produced by the analysis. Invariant generation
(including continuous re�nement) runs asynchronously to the k-induction procedure, and they
are both continuously re�ned (number of templates is increasing, and so is the value ofk).
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We have usedk-induction as it is a natural �t to our invariant generation procedure due
to support for continuously re�ned invariants. LPI and Slicer improve the precision of pure
k-induction, as the inductiveness check may fail due to counterexamples-to-induction which are
not reachable in the selected abstract domain.

Moreover, from our experience, when using an invariant-generating method for veri�cation
there is no point in not using it together with k-induction, as it strictly increases the precision
(by combining forward and backwards reachability analyses) often at a rather small time cost.
Additionally, it allows the tool to perform bug�nding using bounded model checking with depth
k, which can also bene�t from the produced invariant.

7.8 Conclusion

During the course of this thesis, we have implemented a number of di�erent analysis within
the CPAchecker framework. Although using an existing framework has certain limitations,
the overall experience was far outweighed by a number of advantages, including much shorter
iteration time (once the framework is learned it is possible to write a new analysis in a very
short timeframe), and a potentially larger impact (users are more likely to use an existing tool
with a new con�guration, rather than switching to a new tool entirely).

7.8.1 Software Project and Contributors

The Slicer and LPI code was written by George Karpenkov.CPAchecker is mainly developed
by the Software Systems Lab at the University of Passau/Ludwig-Maximilian University of
Munich. The k-induction module was developed by Matthias Dangl. All the code mentioned in
this thesis is distributed under the Apache 2.0 license.

7.8.2 Future Work

Parallelization The approach for generating anART described in Section 7.6 has an ad-
ditional advantage, as it allows the parallelization of described analysis, both forSlicer and
LPI . The computations happening in di�erent branches, where one state is not a successor of
another, can not possibly in�uence each other, and thus can be safely parallelized.

We have not implemented such an extension, as it is a signi�cant implementation task
requiring a large engineering investment, including changing the core algorithms ofCPAchecker ,
and can only yield a constant-time speed up. Moreover, underlyingSMT solvers only support
parallelization with use of multiple contexts, which might require many copying steps for
formulas.
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Chapter 8

JavaSMT Library

8.1 Introduction

The tools described in this thesis heavily rely on the capabilities ofSMT solvers, as do many
other approaches for software veri�cation and automated bug �nding. This chapter presents a
new library which eases the communication withSMT solvers for programs written in the Java
language. A large part of this chapter was published [KBF16] in �Veri�ed Software: Techniques,
Tools and Evaluation� conference in 2016.

The SMT-LIB [BFT15] initiative de�nes a common interface language for SMT solvers,
much like SQL standardizes the interface to a relational database. However, from the perspective
of a tool developer, using the textual SMT-LIB communication channel is often suboptimal.
Firstly, it does not expose all features that modern solvers o�er: interpolation1, multiple
independent solvers, formula introspection, and optimization modulo theories are not included
in SMT-LIB 2.0. It is also not possible to conditionally store formulas for future reuse and
remove them when they are no longer needed.

Secondly, such a textual communication can be very ine�cient, because all queries to the
solver have to be serialized to strings, and all solver output has to be parsed. For a tool that
poses a large number of trivial queries (such as inPDR [BM08]), parsing and serialization can
become a bottleneck.

However, when using a solver API directly, users face the design problem of �solver lock-in�,
which makes it di�cult to switch to a di�erent solver without rewriting a large chunk of the
application.

We proposeJavaSMT , a library that exposes a common API layer across multiple backend
solvers. It is written in Java and is available as open source under the Apache 2.0 License
on GitHub at the URL https://github.com/sosy-lab/java-smt . JavaSMT communicates
with solvers using their API, and imposes only a minimal amount of overhead. For solvers
implemented in Java the exposed API is used directly, and for the solvers in other languages we
integrated JNI bindings.

Chapter Outline We start by describing the library features in Section 8.2. In Section 8.3
we describe the project architecture, and in Section 8.4 we state the memory handling strategies
used for formulas. Finally, in Section 8.5 we present implementation of theHoudini algorithm
as a case study presenting the library features, followed by related work outline in Section 8.6
and conclusion in Section 8.7.

1A proposal draft [CH12] exists since 2012.
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Table 8.1: Theories and features supported by di�erent SMT solvers
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Integer + + + + +
Rational + + + + -
Array + + + + +
Bitvector + + + - -
Float + + - - -

Unsat Core + + + + -
Partial Models - - + - +
Assumptions + + + + +
Quanti�ers - - + - +
Interpolation (Tree/Sequential) + + + + +
Optimization - + + - -
Incremental Solving + + + + +
SMT-LIB2 + + + + +

8.2 Features

JavaSMT currently provides access to �ve di�erent SMT solvers: MathSAT [Cim+13], Opti-

MathSAT [ST15], Z3 [MB08], SMTInterpol [CHN12], and Princess [Rüm12]. Table 8.1 lists
the theories and features that are supported by these solvers.

8.2.1 Formula Representation

To keep the memory overhead low,JavaSMT does not store an own internal representation of
the formulas, but keeps only one single pointer to each formula in the solver's memory, possibly
with an additional pointer to the current solver context. Consequently, the memory footprint of
JavaSMT is proportional to a small constant multiplied by the number of formulas that the
client application needs a reference to,regardlessof the size of the constructed formulas.

This choice ensures high performance, but obstructs transferring formulas between di�erent
contexts for di�erent operations, such as checking satis�ability with Z3 and performing interpo-
lation with SMTInterpol . For such inter-solver translations we use SMT-LIB serialization.

8.2.2 Type Safety

Using and enforcing types is bene�cial for a software library, because it guarantees the absence
of errors that are caused by incorrect type usageat compile time and can increase the level of
trust in the software. Improving such con�dence is particularly important for tools for software
veri�cation, because the verdict of such tools is only reliable if all components operate correctly
(�who veri�es the software veri�er�).

JavaSMT uses the Java type system to di�erentiate between the di�erent sorts of formulas
(e.g., BooleanFormulaand IntegerFormula ) and guarantees that all operations respect the
formula type. The typed interface avoids incorrect operations (such as adding integers to
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booleans), which would not pass the compiler. Type safety also extends to model evaluation: for
example, evaluating anIntegerFormula is guaranteed at compile time to return a BigInteger .

8.2.3 Formula Introspection

In many applications, formula introspection is a required feature. For instance, an analysis
might wish to re-encode expensive non-linear operations as uninterpreted functions, or �nd and
rename all variables used in the formula.

In our experience with formula introspection and transformation code inCPAchecker , we
have discovered that writing correct and robust formula-traversing code can be very challenging
both for the client and for the library, due to:

ˆ cases missed by the client, e.g., an unexpectedXOR,

ˆ incorrect assumptions by the client, such as assuming that the input formula has no
quanti�ers,

ˆ not performing memoization for recursive traversals, resulting in exponential blow-up on
formulas represented as directed acyclic graphs, or

ˆ performing recursive traversal using recursion is not optimal, because it can result in
stack-over�ow exceptions on large formulas.

In order to decrease the likelihood of such bugs, we use the Visitor design pattern [Gam+95]
for formula traversal and transformation. We expose two di�erent kinds of visitors, FormulaVisitor ,
supporting any sorts, and theBooleanVisitor . The boolean visitor requires implementations for
boolean primitives that can occur in the formulas (equality, implication, etc.) and matches all
other formulas as atoms. It is useful for transformation of the boolean structure of the formula,
such as a negated normal form conversion. TheFormulaVisitor does not explicitly require
matching each possible function, but provides an enumeration consisting of most common
function declarations (addition, subtraction, comparison, etc.) and can be used to recursively
traverse the entire formula, e.g., in order to �nd all used variables. Each visitor can be used in
three di�erent modes of operations: traversal, where only the root formula is visited, recursive
traversal, where each sub-term is visited exactly once, and recursive transformation, where a
visitor is supposed to create a new sub-term for each sub-term visited.

Our experience shows that a visitor-based approach leads to a considerably safer code as
compared to direct formula manipulation.

8.2.4 Handling Interruptions

SAT-solving is a canonical NP-complete problem, and extending the scope to support SMT
makes it even harder. The problems posed to the solvers often have very high complexity, and
a solver often becomes the most time-consuming component of the client application. With
such a complexity the ability to support interrupts becomes critical, as it might be undesirable
to kill the client application because the solver computation has diverged.

In order to solve this problem, JavaSMT uses aShutdownNotifier tool which allows it to
handle interrupts gracefully across all solvers. Any client component can request an interrupt
on any thread, and all solvers promptly terminate their computations.
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Figure 8.1: JavaSMT Architecture

8.2.5 Multithreading Support

JavaSMT provides two di�erent mechanisms for multithreading support. Firstly, as mentioned
in Section 8.2.4, any thread is allowed to interrupt the computations on any thread, including
the computations performed in native code. Additionally, the solving can proceed in parallel
even for the same solver, provided the computation is performed on di�erent solvercontexts.
JavaSMT provides the translation API which can be used to exchange the information between
di�erent threads.

8.3 Project Architecture

The overall structure of the library is shown in Figure 8.1. An interaction with the JavaSMT

library starts with a SolverContextFactory , which is used to create aSolverContext object,
encapsulating a context for a particular solver. All further interaction is performed through
the SolverContext class, which exposes the features outlined in Section 8.2. Instances of
SolverContext are not thread-safe, and should be accessed only from a single thread. However,
separate contexts are independent from each other and can be safely used from di�erent threads.

An interface to every represented solver is implemented as a separate package with an entry
class that implements theSolverContext API.

8.4 Memory Management

Di�erent SMT solvers resort to di�erent strategies for memory management. The solvers
running in managed environments (e.g.,SMTInterpol and Princess running on JVM) use
the available garbage collector, while solvers exposing a C API have to o�er the memory
management facilities to the user. The underlying problem is that for a library that exposes its
API through the native non-managed language, it is impossibleto know whether a previously
returned object is still referenced by the client application, or whether it can be deleted.

MathSAT and OptiMathSAT expose a �manual� garbage-collection interface, which removes
all formulas except those that are speci�cally requested to be kept. This requires an application
to keep track of created objects that can still be referenced.

Z3 uses a reference-counting approach, where an object is considered unreachable whenever
its reference count reaches zero. While this interface has an automatic memory management in
C++ (incrementing references in constructors, and decrementing in destructors) using it in an
e�cient and correct way is surprisingly di�cult from Java.
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Figure 8.2: Resource usage comparison across di�erent memory management strategies forZ3

The o�cial Z3 Java API is using Java �nalizers to decrement the references, explicitly
performing locking on the queue of references that need to be decremented. Unfortunately,
�nalizers are known to have a very severe memory and performance penalty [Blo08]. Thus we have
developed our ownZ3 JNI bindings with a memory strategy based on usingPhantomReference
and ReferenceQueue, provided by the JDK to get a more �ne-grained control over the garbage
collection.

We present the performance evaluation of three di�erent memory managing strategies forZ3:
(1) using the o�cial Z3 API, which relies on �nalizers, (2) using our phantom reference-based
implementation, and (3) not closing resources at all. We have chosen a benchmark setup that
runs a program analysis with local policy iteration [KMW16] on the SV-COMP [Bey16] data
set. Obtained results are shown in Figure 8.2. Unsurprisingly, the approach using �nalizers has
worst performance by far, with performance penalty often eclipsing the analysis time, and a
very large memory consumption. The no-GC approaches minimizes both memory and time
consumption. We attribute the high performance of no-GC approach to the hash-consing used
in Z3, which results in no additional memory consumption for ASTs that were previously already
constructed.

8.5 Case Study: Inductive Formula Weakening

To give a tour of the library, we present a small but usable implementation of the inductive-
invariant synthesis algorithm called Houdini [FL01]. In order to provide the context, we include
a brief background that explains the motivation and how the algorithm works.

8.5.1 Implementation Task

The Houdini algorithm �nds a maximal inductive subset of a given a setL of candidate lemmas.
It repeatedly checks

V
L for inductiveness, and updatesL to exclude the lemmas that give rise

to counterexamples-to-induction. At the end the algorithm terminates with an inductive subset
L I � L .

Counterexamples-to-induction are derived from themodel returned by an SMT solver in
response to an inductiveness checking query (such a model exists i� the conjunction of lemmas
is not inductive). Given a model M , the Houdini algorithm �lters out all lemmas l 2 L for
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1 public class HoudiniApp {
2 private final FormulaManager fmgr;
3 private final BooleanFormulaManager bfmgr;
4 private final SolverContext context ;
5

6 public HoudiniApp( String [] args) throws Exception {
7 Configuration config = Configuration . fromCmdLineArguments( args);
8 LogManager logger= newBasicLogManager( config );
9 ShutdownNotifier notifier = ShutdownManager. create (). getNotifier ();

10

11 context = SolverContextFactory . createSolverContext (
12 config , logger , notifier );
13 fmgr = context . getFormulaManager();
14 bfmgr = context . getFormulaManager(). getBooleanFormulaManager();
15 }
16 }

Figure 8.3: JavaSMT initialization

1 private BooleanFormula prime( BooleanFormula input) {
2 return fmgr. transformRecursively (
3 new FormulaTransformationVisitor <Formula>() {
4

5 @Override
6 public Formula visitFreeVariable( Formula f, String name) {
7 return fmgr. makeVariable(
8 fmgr. getFormulaType( f ), name+ " ' " );
9 }

10

11 }, input );
12 }

Figure 8.4: Transforming formulas with JavaSMT

which M j = : l(X 0) holds. After such �ltering is applied in a �xed-point manner, a (possibly
empty) inductive subset remains.

8.5.2 Implementation

Initialization: To initialize JavaSMT , we recommend to either pass the required classes
using dependency injection, or to initialize them in a constructor, as shown in Figure 8.3. This
code snippet generates a con�guration from passed command-line arguments (con�guration can
choose a solver, and tweak any of its options), generates a logger instance, and initializes the
solver context.

Formula Transformation: The Houdini algorithm gets a set of lemmas as input. However,
for checking inductiveness we needprimed versions of these lemmas, which we obtain by
renaming all free variables using a transformation visitor as shown in Figure 8.4.

Instead of directly removing asserted lemmas from the solver, we use annotation with
auxiliary selector variables. Each lemmal i is converted to l i _ si , where si is a fresh boolean
variable. After such an annotation, the lemma l i can be relaxed by asserting an assumptionsi .
The code for input-lemma annotation is shown in Figure 8.5. Finally, the main Houdini loop,
which performs lemma �ltering until inductiveness, is shown in Figure 8.6.
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1 public List <BooleanFormula> houdini(
2 List <BooleanFormula> lemmas, BooleanFormula transition )
3 throws Exception {
4 List <BooleanFormula> annotated = newArrayList <>();
5 List <BooleanFormula> annotatedPrimes = newArrayList <>();
6 Map<Integer , BooleanFormula> indexed = newHashMap<>();
7

8 for (int i = 0; i < lemmas. size (); i ++) {
9 BooleanFormula lemma= lemmas. get( i );

10 BooleanFormula primed= prime( lemma);
11

12 annotated. add( bfmgr. or ( getSelectorVar ( i ), lemma));
13 annotatedPrimes. add( bfmgr. or ( getSelectorVar ( i ), primed));
14 indexed. put ( i , lemma);
15 }
16

17 // ... Continuted Later ...
18 }
19

20 private BooleanFormula getSelectorVar(int idx ) {
21 return bfmgr. makeVariable( "SEL_" + idx );
22 }

Figure 8.5: Annotating formulas with JavaSMT

8.6 Related Work

The packagejSMTLIB [Cok13] is a solver-agnostic library for Java which uses SMT-LIB for
communication with the solvers, and thus has the associated restrictions outlined in Sect. 8.1,
including costly serialization overhead and a limitation to the features o�ered by SMT-LIB. In
contrast, our work presents a solver-independent library for Java which connects directly to the
solvers API.

The newly published jDart [Luc+16] tool bundles a jConstraints library that o�ers a
functionality similar to JavaSMT . However, JavaSMT has more features, communicates with
solvers using their API, and provides an e�cient memory-management strategy (jConstraints

uses the o�cial Z3 Java API, which relies on �nalizers). Additionally, our library provides
several solvers that can be installed automatically and one simple con�guration option to switch
between them.

For jConstraints , the user has to manually include and con�gure all the solver's bindings
and binaries. We have learned that these steps are complicated and error-prone, as the library
might be used as part of a bigger software system. Thus, our solvers and their bindings do not
require to setup any special environment.

The problem of creating such a library has also been tackled for Python inPySMT [GM15].
In contrast to our work, PySMT keeps the formula structure itself, while delegating the queries
to the solvers. While this allows for creating formulas without any solvers installed, and for
easier transfer of formulas between di�erent contexts, it incurs a large memory overhead.

8.7 Conclusion

We have presentedJavaSMT , a new library for e�cient and safe communication with SMT
solvers. The advantages of using such a library over communicating with SMT-LIB include
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1 try ( ProverEnvironment prover =
2 context . newProverEnvironment( ProverOptions. GENERATE_MODELS)) {
3 prover . addConstraint ( transition );
4 prover . addConstraint ( bfmgr. and( annotated));
5 prover . addConstraint ( bfmgr. not ( bfmgr. and( annotatedPrimes)));
6

7 while (! prover . isUnsat ()) {
8 Model m= prover . getModel();
9 for (int i = 0; i < annotatedPrimes. size (); i ++) {

10 BooleanFormula annotatedPrime= annotatedPrimes. get ( i );
11 if (! m. evaluate ( annotatedPrime)) {
12 prover . addConstraint ( getSelectorVar ( i ));
13 indexed. remove( i );
14 }
15 }
16 }
17 }
18 return new ArrayList <>(indexed. values());

Figure 8.6: Houdini main loop with JavaSMT

performance, access to new features, and the ability to control which formulas remain in scope
and which should be discarded. Some disadvantages exist as well � usingJavaSMT means
restricting to the supported solvers, and relying onJavaSMT developers to update the solvers
in time. Our experience with using SMT solvers is that for applications posing a few large,
monolithic queries communication usingSMT-LIB is more optimal, while for tools that post
many cheap, incremental queries, using the API viaJavaSMT is the better solution.

New editions of SMT-LIB could make missing features like interpolation available (proposed
draft already exists [CH12]), but giving the user control over memory management for formulas
(Sect. 8.4), or allowing e�cient communication without string serialization and parsing may
be far outside of the scope ofSMT-LIB initiative. So for users requiring such features, an
intermediate-layer library is always bene�cial.

8.7.1 Future Work

Currently we are collaborating with CVC4 developers to addCVC4 support to JavaSMT .
Additionally, there are plans to add support for Horn clauses, and add di�erent Horn clause
solvers as backends.
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Chapter 9

Conclusion

In this thesis we have developed new algorithms based on policy iteration for e�cient analysis
of inter- and intraprocedural programs. Our contribution is both theoretical, largely formulated
as new algorithms and their properties, and practical, provided as software artifacts.

9.1 Contributions Outline

In Chapter 3 we have presented extended background for max-policy iteration, and we have
developed the newlocal policy iteration algorithm ( LPI ). The LPI algorithm formulates policy
iteration as traditional abstract interpretation, by constructing a precise widening operator,
which guarantees the convergence to the least inductive invariant after �nitely many applications.

The algorithm operates within a template constraints abstract domain, where each abstract
state represents a convex polyhedra whichshapeis pre-speci�ed before the analysis. Thus in
Chapter 4 we have addressed thetemplate synthesisproblem by developing multiple algorithms
for generating template annotations, and we have performed extensive empirical comparison.
Additionally, we have presented an algorithm for generating an abstract reachability tree
representing a run of an arbitrary abstract interpretation, including LPI . Using abstract
reachability trees establishes an ability to re�ne the abstract domain using counterexample
traces in CEGAR spirit. We have shown how new templates can be generated from the results
of an interpolation procedure, and stated the associated results on the algorithm completeness.

In Chapter 5 we have approached the problem of generating invariants using policy iteration
for interprocedural, potentially recursive programs. We have developed a framework for
analyzing such programs using intraprocedural abstract interpretation, and we have studied
its parameterization under the LPI algorithm, which guarantees obtaining the least inductive
invariant for a pre-speci�ed summary structure.

Finally, in Chapter 6, we have formulated a new algorithm for augmenting abstract in-
terpretation by generating potentially non-convex inductive invariants derived from symbolic
execution and subsequent weakening.

The second part of our thesis was devoted to practical contributions: we have described our
implementation in Chapter 7, and the JavaSMT library in Chapter 8.

9.2 Importance of Engineering

In Chapter 1 we have stated that formal methods are often critized for not providing a cost-
e�ective amount of value to software engineers. Thus an important goal of this thesis was not
just developing new approaches and algorithms, but also providing e�cient implementations,
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which could be potentially used by software engineers. We have aimed to provide robust,
scalable, and well-engineered solutions, with plans for maintenance in the future.

With great help from CPAchecker [BK11] community, those goals were largely ful�lled:
our approaches were implemented in the state-of-the-art program analysis framework, with
a sizeable developer- and user-base. Additionally, as a result of our work,CPAchecker was
improved in many aspects.

Furthermore, the JavaSMT library we have developed makesSMT solvers more accessible
to the general community. As a result, it is already actively used by multiple researches, and
additional e�ort to integrate more solvers is underway.

9.3 Future Work and Research Directions

This thesis addresses problems at the intersection of multiple research areas: traditional data�ow
analysis, static program analysis with abstract interpretation, and logic-based model checking.
In the spirit of con�gurable program veri�cation this is another step towards removing the
borders between the domains, and generating new results using the combinations of approaches.

Combinations with Other Analyses Formulating policy iteration as an LPI enables
seamless combinations with other analyses, including lazy abstraction [McM06]. Intuitively,
invariants resulting from both approaches should be able to complement each other during the
analysis, resulting in a stronger precision than any of the analyses individually. We have only
done preliminary experiments in this area, and detailed experimental study of such combinations
(including formula slicing) remains an item for future work.

Using Weakest Precondition In this thesis we have focused exclusively on thestrongest
postcondition semantics, where the invariant is propagated forwards in the direction of the
program control �ow. Using weakest precondition semantics, which runsbackwardswith
respect to the program might be a better approach for verifying properties of interest. Initial
investigation has shown the approach to be challenging due to extra quanti�ers appearing in
combination with large block encoding.

Supporting Non-Convex Invariants A common theme we have found is that very often a
convex invariant is inherently insu�cient to verify a desired property. More work can be done
on using abstract interpretation approach to generate non-convex invariants based on properties
of programs which are to be veri�ed.

A promising direction which can be used in conjunction with abstract interpretation is
splitting states based on counterexample traces in the spirit of Sankaranarayanan et al. [San+06].

9.3.1 Towards Software Systems Veri�cation

In this thesis we have based our experiments exclusively on theSV-COMP dataset. Applying an
abstract interpretation-based tool to a large, annotated collection of programs has an advantage
of knowing whether the analysis result isuseful with respect to verifying the property of interest.

Yet on some level it is unsatisfying: while we have corrected a number of veri�cation verdicts
in the canonical benchmark source, most of the time, nonew bugs can be found and no new
veri�cation verdicts can be issued on the known data.
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Thus an important research avenue would be applying the developed approaches towards
actual programs with the goal of verifying properties of interest, such as lack of over�ows.

Such advances would enter the realm of commercial tools such as Coverity [Bes+10], yet
might be necessary for demonstrating the applicability of new methods.
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