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Abstract

Static analysis concerns itself with deriving program properties which hold universally for all
program executions. Such properties are used for proving program properties (e.g. there never
occurs an overflow or other runtime error regardless of a particular execution) and are almost
invariably established using inductive invariants: properties which hold for the initial state and
imply themselves under the program transition, and thus hold universally due to induction.

A traditional approach for finding numerical invariants is using abstract interpretation,
which can be seen as interpreting the program in the abstract domain of choice, only tracking
properties of interest. Yet even in the intervals abstract domain (upper and lower bounds for
each variable) such computation does not necessarily converge, and the analysis has to resort to
the use of widenings to enforce convergence at the cost of precision.

An alternative game-theoretic approach called policy iteration, guarantees to find the least
inductive invariant in the chosen abstract domain under the finite number of iterations. Yet the
original description of the algorithm includes a number of drawbacks: it requires converting the
entire program to an equation system, does not easily integrate with other approaches, and
does not directly benefit from known results for Kleene iteration (e.g. iteration order).

Our new algorithm for running local policy iteration (LPI) instead formulates policy iteration
as traditional Kleene iteration, with a widening operator that guarantees to return the least
inductive invariant in the domain after finitely many applications. Local policy iteration runs in
template linear constraint domains which requires setting in advance the “shape” of the derived
invariant (e.g. x+ 2y for deriving x+ 2y ≤ 10). Our second theoretical contribution involves
development and comparison of a number of different template synthesis strategies, and their
evaluation when used with LPI. Additionally, we present an approach for generating abstract
reachability trees using abstract interpretation, enabling the construction of counterexample
traces, which in turns lets us to generate new templates using Craig interpolants.

In our third contribution we bring our attention to interprocedural and potentially recursive
programs. We develop an algorithm parameterizable with any abstract interpretation for
summary generation, and we study it’s parameterization with LPI. The resulting approach is
able to generate least inductive invariants in the domain for a fixed number of summaries for
recursive programs.

Our final theoretical contribution is a “formula slicing” method for finding potentially
disjunctive inductive invariants from program fragments obtained by symbolic execution.

We implement all of these techniques in the open-source state-of-the-art CPAchecker
program analysis framework, enabling collaboration between different analyses.

The techniques mentioned above rely on satisfiability modulo theories solvers, which are
capable of giving solutions to first-order formulas over certain theories or showing that none
exists. In order to simplify communication with such tools we present the JavaSMT library,
which provides a generic interface for such communication. The library has shown itself to be a
valuable tool, and is already used by many researchers.
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Résumé

L’analyse statique correcte d’un programme consiste à obtenir des propriétés vraies de toute
exécution de ce programme. Celles-ci sont utiles pour démontrer des caractéristiques appréciables
du logiciel, telles que l’absence de dépassement de capacité ou autre erreur à l’exécution quelle
que soient les entrées du programme. Elles sont presque toujours établies à l’aide d’invariants
inductifs : des propriétés vraies de l’état initial et telles que si elles sont vraies à une étape de
calcul, alors elles restent vraies à l’étape suivante de la transition de calcul, donc sont toujours
vraies par récurrence.

L’interprétation abstraite est une approche traditionnelle de la recherche d’invariants
numériques, que l’on peut exprimer comme une interprétation non-standard du programme dans
un domaine abstrait choisi et ne tenant compte que de certaines propriétés intéressantes. Même
dans un domaine aussi simple que les intervalles (un minorant et un majorant pour chaque
variable), ce calcul ne converge pas nécessairement, et l’analyse doit recourir à des opérateurs
d’élargissement pour forcer la convergence au détriment de la précision.

Une autre approche, appelée itération de politique et inspirée par la théorie des jeux, garantit
de trouver le plus fort invariant inductif dans le domaine abstrait choisi après un nombre
fini d’itérations. Cependant, la description originale de cet algorithme souffrait de quelques
faiblesses: elle se basait sur une conversion totale du programme en un système d’équations,
sans intégration ni synergie avec les autres méthodes d’analyse.

Notre nouvel algorithme est une forme locale de l’itération de politique, qui la replace dans
l’itération de Kleene mais avec un opérateur d’élargissement spécial qui garantit d’obtenir le
plus petit invariant inductif dans le domaine abstrait après un nombre fini de ses applications.
L’itération de politique locale opère dans les domaines de contraintes linéaires données par
patron, qui demandent de fixer d’avance la « forme » de l’invariant (p.ex. x+ 2y pour obtenir
x + 2y ≤ 10). Notre seconde contribution théorique est le développement et la comparaison
de plusieurs stratégies de synthèse de patrons, utilisées en conjonction avec l’itération locale
de politiques. De plus, nous présentons une méthode pour générer des arbres d’accessibilité
abstraite par interprétation abstraite, permettant la génération de traces de contre-exemples, et
ensuite la génération de nouveaux patrons à partir d’interpolants de Craig.

Notre troisième contribution concerne l’analyse interprocédurale de programmes, éventuelle-
ment récursifs. Nous proposons un algorithme qui génère pour chaque procédure un résumé,
applicable à toute interprétation abstraite et notamment à l’itération de politique locale. Nous
pouvons ainsi générer les invariants inductifs les plus forts dans le domaine pour un nombre
fixé de résumés pour un programme récursif.

Notre dernière contribution théorique est une méthode d’affaiblissement permettant de
trouver des invariants inductifs, éventuellement disjonctifs, à partir de formules obtenues par
exécution symbolique.

Nous avons mis en œuvre toutes ces approches dans le système d’analyse statique CPAchecker,
un logiciel libre, ce qui permet des communications et collaborations entre analyses.
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Nos techniques utilisent des résolveurs de satisfiabilité modulo théorie, capables, étant donné
une formule de logique du premier ordre sur certaines théories, d’en donner un modèle ou
de démontrer qu’aucun n’existe. Afin de simplifier les communications avec ces outils, nous
présentons la bibliothèque JavaSMT, fournissant une interface générique. Cette bibliothèque a
déjà démontré son utilité pour de nombreux chercheurs.
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Chapter 1

Introduction

1.1 Motivation: Software Systems Complexity

Every day computerized systems are becoming more ubiquitous in human life. While just
two decades ago computers were thought of as stationary standalone devices dedicated to a
particular task, today it is difficult to find a device which does not have a computer inside.
Computerized devices exist on all scales and in all areas of the industry, starting from phones
and Raspberry Pi chips, to rockets and nuclear power stations.

The complexity and the scope of those systems has experienced a dramatic growth, which
magnifies the possibility of damage from errors in the software. Traditionally, quality assurance
was performed by extensive testing and having a large amount of redundancy, yet these
approaches can not give any guarantees of conformance to the specification, which becomes a
necessity for large-scale systems.

Yet despite the fact that the formal methods research dates back to 1960’s, until very
recently the adoption of the formal tools in the industry remained weak. However, currently
this trend starts to change. Many large companies have started using formal methods during
the development of large software solutions. For example, Amazon has adopted the usage of
TLA+ specification language for designing systems, which has “added significant value” by
“finding subtle bugs” or proving correctness after “aggressive performance optimizations” [New14;
New+15]. In the embedded system domain, the B Method was used to design correct by
construction safety critical controller for automated screen doors for subway, with no bugs
found after twenty years of deployment [Lec08]. Acknowledging the growing importance of
formal methods, the recently published DO-178C [RTC11] document, which is used a basis for
certification authorities on commercial software-based aerospace systems, allows the application
of formal methods to replace certain forms of testing.

Chapter Outline We consider the question that given a specification S and a program
P , how to automatically check whether P conforms to S. We start by outlining traditional
approaches for checking correctness in Section 1.2. In Section 1.3 we give an informal definition
of a specification. We outline the approaches for conformance checking Section 1.4, and in
Section 1.5 we describe the outputs software analysis tools provide, and the practical implications
of the possible verdicts. Finally, in Section 1.6 we list the contributions of this thesis which
shape the following chapters.
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1.2 Traditional Approaches for Ensuring Reliability

Extensive testing, either manual or automated through unit-tests is often the most preferred
approach for ensuring the reliability of software. Clearly, if a unit-testing suite exposes a bug,
an underlying program is buggy, yet if all tests pass we do not know whether there exists an
input causing a problematic behavior. Traditionally, test engineers have been using the measure
of coverage (a percentage of lines of code executed by the test) to assess the completeness of a
test data. However, coverage is only a good metric while it is below 100%, as it gives a direction
for improvement. Once the full coverage is achieved, there are no guarantees on whether the
program contains problematic behavior, as not the entire input state space is covered; in words
of Dijkstra [Dij69]: “testing is good for finding bugs, yet is woefully inadequate for showing
their absence”.

Both manual integration testing are costly and time consuming, even though they do not
provide any guarantees on the resulting product. Research on test generation aims to generate
the test input automatically instead. A notable success story, especially in the security domain,
is a simple approach called fuzzing [MFS90]. The idea of fuzzing is to randomly change (mutate)
user-provided seed data, and to feed it to the input program, until a crash (or a specification
violation) is encountered. More sophisticated fuzzers such as AFL [Zal] additionally rely on
genetic programming to generate new inputs, where the fitness function is determined by
the coverage the generated input achieves for the program under test. Despite the technique
simplicity, (or perhaps, due to) fuzzing has achieved enormous success in the security community,
where a large fraction of vulnerabilities discovered today are found using fuzzing, including the
heartbleed [CVE13] bug found in the OpenSSL stack.

Automated test generation can be especially successful when coupled with runtime verifica-
tion [Bar+01; HG08] approaches which dynamically analyze the program during the execution,
and report if the specification is violated. Examples of popular and influential runtime verifica-
tion tools include ThreadSanitizer [SI09] and AddressSanitizer [Ser+12].

1.3 What is a Specification?

Informally, the specification defines what the software should do (e.g. store and retrieve data,
drive a car, often referred to as a functional requirement), as well as how it should do it (e.g.
do not crash, have a certain uptime, often referred to as a nonfunctional requirement).

Research into defining a formal language for expressing formal (and formally checkable)
specification dates back to 1960’s and includes languages such as E-ACSL [DKS13] and
TLA+ [Cha+08] which allow the verification engineer to formally state checkable requirements
the system has to fulfill. Yet today most software systems do not have such formally defined
specifications, and their behavior is defined using a combination of prose and UML diagrams.

Generating a formal specification is a challenging task, additionally complicated by the fact
that specification is written in a separate language software engineers are not familiar with.
Thus, many approaches have been proposed to lessen the fundamental alienation between the
code and the specification. For example, the Dafny [Lei10] programming language proposed
by Leino et al., allows software engineers to embed the specification inside the code using
usual language constructs, making the system more approachable for software engineers. Many
correct-by-construction systems were designed using Dafny [Haw+14]. This follows the idea
that specification is, fundamentally, not different from the code, and one should refine the other.
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1.3.1 Safety and Liveness

Temporal language allows exactly stating how system should evolve with time, supporting a
very rich set of properties. These properties are divided into two distinct groups: safety and
liveness [MP91]. Fundamentally, a safety property establishes that no bad behavior happens,
while liveness is used to express the property that something good eventually happens1. For
example, safety deals with properties such as “no integer overflow”, or “no assertion violation”,
or “no undefined behavior according to C11 standard”, while the most famous liveness property
is “the program has to be terminating”, followed by more properties specific to concurrent
systems, such as “parent thread eventually gains control”.

In this thesis we only concern ourselves with safety properties, and we assume that a
specification is already given in the form of a set of a program states which are considered
to be erroneous. Examples of such specification include assert statement violations, as well
as violations of implicit specification imposed by the language standard. In case of C that
means lack of undefined behavior, which includes properties such as signed integer overflow,
buffer overflow, null pointer dereference, use-after-free, and many others. Even though such a
specification might seem simplistic, security exploits are regularly found in programs resulting
from undefined behavior.

1.4 The Halting Problem and the Program Analysis Landscape

A decision procedure is sound if and only if it never returns false answers. Similarly, a decision
procedure is complete, if it is able to return a verdict for all inputs.

The Halting problem [Tur36] states that it is impossible to construct an algorithm which
would would state whether a given input program terminates for all possible inputs: that is,
the underlying decision problem is undecidable. Rice’s theorem [Ric53] generalizes this result
further to the undecidability of yielding any sound and complete non-trivial statements about
the computation result of any program written in a Turing-complete [Tur36] programming
language.

These results shape the entire field of program analysis, stating that it is impossible to derive
a sound and complete algorithm finding even the simplest property. However it can be also seen
as the theorem which pushes the field towards being more applied: as applied mathematicians
can not analytically solve most of the differential equations they deal with, it does not stop
them from computing very good numerical approximations.

Similarly, the absence of soundness and completeness in no way precludes the possibility of
software engineering tools which provide useful statements about the program. In this section
we briefly outline the landscape of the software analysis field, and how different approaches get
around the halting problem in order to reason about the software.

1.4.1 Finite Space Exploration

Technically, the halting problem does not apply to software running on physical hardware,
as it is executed on machines with finite memory, making the entire system finite state. In
practice though, total enumeration of all possible inputs is impractical, even for the simplest
programs. For example, just iterating over all possible values for a single 64-bit integer requires
264 = 2106 ≈ 1036 = 1018 CPU cycles, taking decades on modern computers. Yet security

1Somewhat confusingly, liveness properties are not directly related to live variables [ASU86], though a variable
may be considered alive if some operation depending on the variable value eventually happens.
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researchers are often capable to achieve total coverage just by testing on systems with smaller
bit width.

Additionally, many useful systems can be modelled as automatons which do have finite
state-space, which can be exhaustively explored. Notably, Clarke and Emerson [CE82] (and
independently Sifakis and Queille [QS82]) have published a influential idea that for a system
represented as a Kripke structure [Kri63] and a specification given as an CTL formula, it is
possible to construct an algorithm checking the conformance to the specification. Intuitively,
the construction is performed by reducing both the system and the specification to a Büchi
automaton, and then constructing the combination of the program automaton, and the negation
of the property, and checking it for emptiness. From a high level it can be seen as an exhaustive
state space exploration, which attempts to perform many reductions. The approach was
successfully adapted for efficiently analyzing many finite state systems and protocols.

1.4.2 Correct By Construction Software

Instead of considering a given software artifact and attempting to construct a proof or finding
a counter-example, such approaches aim to build a correct software in the first place, often
embedding the proof in the produced software artifact.

A variable type can be considered an arbitrary predicate over the contents of the variable.
From that perspective most type systems found in mainstream programming languages are very
simple, and let the programmer express only the most basic predicates (e.g. in Java if a variable
is declared as an Integer, a compiler will only compile the source code if it can prove that a
variable indeed either points to an integer or to null). However, very complicated type systems
including dependent types also exist, with Coq [CH85] being a notable example. In Coq, a proof
of a theorem is constructed using types, and due to the Curry-Howard correspondence [How80],
executable, correct-by-construction OCaml code can be lifted once the proof is finished. The
Coq theorem prover is very successful, with verified C compiler [Bol+13] being one of the most
prominent success stories.

1.4.3 Under-Approximating Approaches

Using under-approximation one can explore some subset of the reachable state space, stopping
whenever some bound (time limit, size, input complexity) is reached. Such verification techniques
verification include symbolic execution [Kin76], concolic execution [SMA05], bounded model
checking [Bie+03] and others. An advantage of such techniques include the ability to generate
the unit test triggering the fault on the discovery of the error state.

1.4.4 Over-Approximating Approaches

Approaches based on over-approximation sacrifice completeness in favor of soundness. For
instance, an over-approximating checker for assertion violations can prove absence of errors for
some input programs, while reporting an UNKNOWN verdict for others. Though many software
engineers might see this as an unacceptable compromise, such a tool can still be very useful
in practice: for example, terminating programs usually terminate for a simple intuitive reason
which could be then found by the approach.

Over-approximating approaches usually rely on abstraction to shrink the program state
space, making the full exploration feasible. Use of abstraction may result in spurious behaviors
which the real system does not exhibit, causing the incompleteness. Such approaches include
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dataflow [Kil73] analysis which predates the formal methods field, and later generalization into
abstract interpretation [CC77a]. One of the biggest success stories of abstract interpretation is
using Astrée [Bla+03] static analyzer for verifying lack of implicit errors in Airbus fly-by-wire
controller.

In the rest of this thesis we mainly concern ourselves with over-approximating approaches,
which are sound, but incomplete.

1.5 What is a Verifier Output?

Tools used for verification normally have three possible outputs for a given program and a
specification:

• TRUE, signifying that the program conforms to the specification.

• FALSE, meaning that a counterexample was found.

• UNKNOWN, meaning that the analysis results are insufficient to draw a conclusion.

The UNKNOWN verdict is imposed by the halting problem (Section 1.4), and in practice often
manifests itself as a timeout.

The FALSE verdict indicate that the tool has found a program trace violating the specification.
Such a trace can be given e.g. as a deterministic refinement of the original program which
replaces all user inputs and non-deterministic choices by given values, effectively generating a
test vector [Bey+04] that can be compiled and executed with the original program. A reliable
FALSE verdict is valued by software engineers, as it provides a reproducible bug which can be
recorded in the bug tracker and eventually fixed, thus increasing the software quality.

The TRUE verdict means that the program does not contain any specification violations,
and it was successfully verified. Despite its usefulness, trusting such a verification verdict
in a business setting is often quite challenging. Firstly, the specification is often incomplete
and potentially incorrect, and many bugs in safety critical software during the last decade
were present in the specification. Secondly, software engineers often raise the classical point
“who verifies the verifier”, doubting the verdict due to the possibility of bugs in the software
performing the analysis. Finally, while specification violation can be presented as a set of inputs
to a given program, it is a lot more difficult to give verification certificate back to the end
user, especially in a human-readable form. We believe that all three of these problems are
fundamentally solvable. While specification does not have to be complete, verifying partial, or
implicit (no crashes) correctness already increases a level of safety of the program. Secondly,
the verifier can be either built in a correct-by-construction system such as Coq [CH85], or it
can produce checkable certificates which can be independently verified by a separate tool.

1.6 Contributions and Thesis Outline

Generally, over-approximating approaches prove properties using inductive strengthening: finding
an invariant which makes the desired property inductive under all program transitions, effectively
giving a proof by induction. Such a strengthening is called an inductive invariant, as it establishes
a universally valid fact for all program executions. Inductive invariants are very useful in all
branches of program analysis, including compiler optimizations, verification and automated
bug-hunting.
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In this thesis we address the task of generating inductive invariants for the purpose of
program verification: that is, a construction of verification algorithms which can present the
TRUE verdict for a given input program and a safety specification. We concern ourselves with
finding small inductive invariants, which can be used to prove the desired property of interest.
Our work follows the tradition of static analysis and abstract interpretation [CC77a], yet we
heavily use logic and solvers for boolean formulas over an arithmetic theory.

Computing even simplest numeric properties (e.g. intervals, x ∈ [1, 5]) with abstract
interpretation is not guaranteed to converge in a finite time. As a result, a widening operator is
used, which enforces convergence at a cost of precision. There exist many heuristics to recover
this precision, yet they are inherently very brittle. A different approach called policy iteration,
derived from game theory, provides a guarantee that the resulting inductive invariant is smallest
possible in the given domain. Yet, policy iteration is rarely used in a program analysis field
due to the complexity of the algorithm, high running cost, limitation to certain domains, and
inability to cooperate with other analyses.

In this thesis we tackle these problems by extending the original algorithm, providing
new strategies for generating abstract domains, and adapting policy iteration to summary
computation. Additionally, we provide a new algorithm for computing potentially disjunctive
inductive invariants, which is aimed to complement the analysis by policy iteration.

1.6.1 Theoretical Contributions

• In Chapter 3 we present the local policy iteration algorithm, which combines the precision
of policy iteration with versatility of the traditional Kleene iteration approach. We study
the properties of the new algorithm, we describe various extensions, and we provide
extensive empirical evaluation. This contribution is a significantly improved version of
the previously published result [KMW16], which also includes extended background on
max-policy iteration.

• Local policy iteration finds the least inductive invariant (Section 2.5.1) in the template
constraints domain (Section 2.8.3), which requires already present template annotations
defining the shape of the possible inductive invariant. We present various approaches for
generating templates with respect to the property we wish to prove in Chapter 4. This
contribution was not published.

• In Chapter 5 we present a new framework for using intraprocedural analysis for summary
computation, which potentially drastically improves the performance of the analysis,
and makes it applicable to recursive programs. We study the parameterization of this
framework with local policy iteration, its properties, and we provide an empirical evaluation.
This contribution was not published.

• Local policy iteration technique excels at finding convex inductive invariants for the given
program, yet many safety properties require non-convex inductive strengthening. We
complement our LPI algorithm by the formula slicing approach for finding disjunctive
inductive invariants. This approach is presented in Chapter 6 and was published in “Haifa
Verification Conference” [KM16].
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1.6.2 Engineering Contributions

A major goal of our work is to present working, practical tools which can be used both by
end-users for program verification, and by the verification community for comparing different
invariant synthesis approaches. Thus we present the following engineering contributions:

• LPI and Slicer modules for automated software analysis as presented for Software
Verification Competition, described in Chapter 7 and published in “Tools for Algorithm
Construction And Synthesis” [Kar16].

• JavaSMT library for interacting with SMT solvers, heavily used by our tools, de-
scribed in Chapter 8 and published in “Verified Software: Tools, Techniques and Evalua-
tions” [KBF16].
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Chapter 2

Background

2.1 Introduction

In this chapter we introduce the concept of an inductive invariant, and we state its importance
for proving program safety. We provide an overview for existing techniques for finding inductive
invariants along with necessary prerequisites.

2.1.1 Chapter Outline

We start by fixing the notation in Section 2.1.2, and giving a formal definition of a program in
Section 2.2. We then proceed to describe how both the program and the specification can be
encoded as boolean formulas in Section 2.3. In Section 2.5 we show how safety properties are
proven using inductive invariants. We give extensive background for abstract interpretation in
Section 2.7, which can be seen as a framework for deriving inductive invariants, and we give an
overview of a number of different abstract domains in Section 2.8. We outline the large block
encoding technique which we use extensively in the rest of this thesis in Section 2.9. Finally, in
Section 2.10 we show how different approaches can be unified (on the theoretical and on the
implementation level) in the configurable program analysis (CPA) framework.

2.1.2 Notation and Definitions

We denote sets using capital Latin letters, e.g. A,B,C,D, and for elements of these sets we use
lowercase letters, e.g. a ∈ A. We use bold letters in order to indicate vectors: x. To distinguish
between the program lines, as written by the software engineer, and mathematical expressions
representing these, we use typewriter font for program statements, e.g. x := x + 1, and math
font for mathematical expressions, e.g. x′ = x+ 1.

Usual sets of numbers will be denoted with blackboard letters, such as R for reals, Q for
rationals, Z for integers and N for natural numbers. Let B = {>,⊥} denote the set of the
boolean values, where > stands for “true”, and ⊥ stands for “false”. We define the set of extended
real numbers as reals with positive and negative infinities adjoined as R̄ ≡ R ∪ {+∞,−∞}. We
use extended real numbers only for comparison and upper bound operations, and thus we do
not define paradoxical operations (that is, we never evaluate e.g. ∞−∞).

We denote a projection operator returning a one-indexed ith element from a tuple of values
v as v|i (e.g. (3, 4, 5)|2 = 4). This notation is naturally extended to sets of indexes (e.g.
(3, 4, 5)|{2,3} = (4, 5)), and variables by using quantifier elimination, e.g. (y = 3 ∧ x = y)|x ≡
∃y. (y = 3 ∧ x = y) ≡ (x = 3). We shall also use basic linear algebra notation: x> denotes the
transpose of x, and thus x>y is the inner product of x and y: e.g. (1, 2, 3)>(x, y, z) = x+2y+3z.
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We denote the disjoint union operation using the coproduct symbol: that is, A∐B evaluates
to A ∪B, and additionally states that A and B are disjoint.

We make use of lambda calculus notation for defining functions, e.g. a function which
squares its input is defined as λs. s2.

2.2 Program Formalization

We assign formal meaning to programs by mathematically modelling the program seman-
tics [Flo67]. We formalize the program as a control flow automaton (CFA), which is equivalent
to a program in a simple programming language with no procedures and no heap access1. This
form is very similar to traditional control flow graph representation in compiler theory [ASU86],
yet we associate statements with program edges.

Non-heap-manipulating programs in an imperative programming language with no recursion
and no function pointers can be trivially converted to such a format by inlining functions and
removing aliasing2.

We define x to be a tuple of all program variables. For simplicity, we do not model variable
types (even though they are supported by our implementation), and we assume that every
variable is assigned a value from R.

Definition 2.1 (Concrete Data State). A concrete data state is a map x→ R which assigns
a real value to every program variable, and corresponds to a snapshot of a program memory
during execution, excluding the program counter.

The set of all concrete data states is denoted by C. A set r ⊆ C, describing multiple concrete
data states, is called a region. The set of all regions is denoted by R ≡ 2C . In order to model
the program counter, we introduce the set nodes of all possible program location.

Definition 2.2 (Concrete State). A concrete state c is a tuple (m,n) where m is a concrete
data state, and n ∈ nodes is a program location. A concrete state corresponds to the whole
memory snapshot, sufficient to reconstruct the entire program state.

A set of edges describes all possible transitions within a program. Each edge e ∈ edges is a
tuple (a, OP, b), modelling the constraints on a transition from a to b, where {a, b} ⊆ nodes, and
OP is an operation performed on a transition, which is either a guard or an assignment. We
formalize the analyzed language in Figure 2.1.

With the grammar for the language given, we define the formal semantics for the operators.
As we are primarily interested in sets of concrete states, we only give the definition of the
collecting semantics R → R, which describes the transformation caused by an operator to an
entire set of states.

The semantics of a numerical expression evaluation

J<expr>K : R → 2R

is given by the usual evaluation rules on concrete data states contained in the input region,
and the subsequent union of all resulting states. For example:

Jx + yK ({{x : 1, y : 1}, {x : 2, y : 2}}) = {2, 4}
1We extend the program model to allow for function calls in Chapter 5.
2In practice, our implementation supports both, as described in Chapter 7.
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〈stmt〉 ::= 〈ident〉 ‘:=’ 〈expr〉 // Assignment to a single variable
| 〈ident〉 ‘:=’ ‘input()’ // Non-deterministic assignment
| ‘assume’ ‘(’ 〈bool_expr〉 ‘)’ // Guard
| 〈empty〉 // No-op

〈bool_expr〉 ::= 〈expr〉 〈cmp_op〉 〈const〉
| 〈bool_expr〉 ‘or’ 〈bool_expr〉
| 〈bool_expr〉 ‘and’ 〈bool_expr〉
| ‘not’ 〈bool_expr〉

〈expr〉 ::= 〈ident〉
| 〈const〉 // Numerical Constant
| ‘(’ 〈expr〉 ‘)’
| 〈expr〉 〈op〉 〈expr〉
| ‘-’ 〈expr〉

〈op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’

〈cmp_op〉 ::= ‘<=’ | ‘<’ | ‘>’ | ‘>=’ | ‘!=’ | ‘==’

Figure 2.1: BNF Grammar of the Analyzed Language

If the evaluation process results in an invalid operation, such as division by zero, the output
is 2R, corresponding to all possible values (also referred to as >). For example:

Jx / yK ({{x : 1, y : 0}}) = >

Thus, the semantics for an assignment statement is given by the union of the assignment
application on all concrete states contained inside the region:

J<ident> := <expr>K ≡ λr.
⋃{

x : c′ if x = <ident> else s[x] | x ∈ x∧s ∈ r∧c′ ∈ J<expr>K (s)
}

For example:

Jx := x+ yK ({{x : 1, y : 0} , {x : 0, y : 1}}) = {{x : 1, y : 0} , {x : 1, y : 1}}

Similarly, the semantics for a non-deterministic input is given by:

J<ident> := input()K ≡ λr.
⋃{

x : c′ if x = <ident> else s[x] | x ∈ x ∧ s ∈ r ∧ c′ ∈ R}
We define the helper semantics for Boolean expressions as a function C → B, which performs

evaluation under the usual rules, returning “true” if and only if there exists a concrete state in
a region making the value of the expression “true”. Assume statements filter the input region,
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letting only the conforming concrete states through:

Jassume(<bool_expr>)K ≡ λr.
⋃
{s | s ∈ r ∧ J<bool_expr>K (s)} (2.1)

For example, Jx <= 5K ({{x : 1}, {x : 6}}) = {{x : 5}}.
We have defined the collecting semantics naturally assuming that the program performs

execution forward, which corresponds to the actual execution process (strongest postcondition).
Dually, the semantics can be also defined using the weakest precondition: for an output region
r′ and an operator OP it gives the largest region which maps into r′ under JOPK. In this thesis
we stick to the strongest postcondition semantics.

Definition 2.3 (Control Flow Automaton). A CFA is a tuple (nodes, edges, n0,x), where nodes
is a set of program control states modelling the program counter, n0 ∈ nodes is a program
starting point, x is a set of program variables, and edges ⊆ nodes × OPS× nodes, where OPS is a
set of all possible program operators.

Definition 2.4 (Program Path). A program path is a sequence of concrete states 〈c0, . . . , cn〉
where c0 = (m0, n0) and for any two consecutive states ci = (mi, ni) and ci+1 = (mi+1, ni+1)
there exists an edge (ni, OP, ni+1) ∈ edges such that ni+1 ∈ JOPK (ni).

A concrete state si = (m,n), and the associated node n, are both called reachable iff there
exists a program path which contains si.

2.3 Logic in Program Analysis

So far, we have introduced regions and operators: sets of states and functions from regions to
regions. We shall now use formulas to succinctly represent both, as well as the specification
(Section 1.3) the program is expected to conform to.

We operate over first-order logic formulas within a theory T such that the problem of deciding
the satisfiability of a quantifier-free formula is NP-hard. Suitable theories include propositional
reasoning, linear real arithmetic, and linear integer arithmetic (Presburger arithmetic). A set of
all such formulas over a set of free variables is denoted by F .

A formula is said to be an atom if it does not contain any logical connectives (e.g. it is a
comparison x ≤ y between integer variables), a literal if it is an atom or its negation, a clause if
it is a disjunction of literals, and a cube if it is a conjunction of literals. A formula is in negation
normal form (NNF) if negations are applied only to atoms, and it is in conjunctive normal form
(CNF) if it is a conjunction of clauses.

We abuse the notation by conflating the set of program variables x defined in Section 2.2,
and the set of free variables x appearing inside the formula. For a set of variables x, we denote
by x′ a set of primed variables where the prime symbol was added to all the elements of x.
With φ[a1/a2] we denote the formula φ after all free occurrences of the variable a1 have been
replaced by a2. This notation is extended to sets of variables: φ[x/x′] denotes the formula φ
after all occurrences of the free variables from x were replaced with corresponding free variables
from x′. For brevity, a formula φ[x/x′] may be denoted by φ′. We use the brackets notation to
indicate what free variables can occur in a formula: e.g. φ(x) can only contain free variables
in x. The brackets can be dropped if the context is obvious.

A formula φ ∈ F is called satisfiable if there exists a variable assignment M (referred to as
model) such that φ[x/M] is a tautology (written asM |= φ). For example, {a : >, b : >} |= a∧b.
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Note that models associated with formulas over x are isomorphic to concrete data states, and
we abuse the notation by treating them interchangeably.

Checking a formula for satisfiability (finding a model or proving that none exists) is a
classical NP-complete problem [Coo71] even in the absence of extra theories (all variables are
boolean). However, modern SMT (satisfiability modulo theories) solvers (notably Z3 [MB08],
CVC4 [Bar+11], Yices [DM06]) often perform these checks very efficiently in practice, e.g. Z3
is routinely capable of dealing with formulas which are too large to fit into the machine RAM.
This paradoxical property is very similar to the halting problem stated in the introduction
(Section 1.4): the computational complexity is defined for the worst case, which is not necessarily
relevant for the actual queries posed to the solver.

2.3.1 Conversion to Formulas

Semantics of a formula φ(x) defines a region of all concrete data states which it models
(JφK ≡ {c | c |= φ}). This allows us to treat formulas over x as regions.

We represent an operator OP ∈ OPS as a formula τ(x ∪ x′) over the initial variables x
(representing a valid from-state) and primed variables x′ (representing a valid to-state) such that
for every pair of models (M1,M2) we haveM2 ∈ JOPK (M1) if and only if (M1∪M2[x/x′]) |= τ .
Intuitively, a formula is satisfiable over (M1 ∪M2) if an operator applied toM1 generatesM2
modulo priming renamings.

E.g. for a program over variables x, y a guard x <= 9 is represented by a formula
x ≤ 9 ∧ x′ = x ∧ y′ = y, and an assignment x := x + 2 is represented by x′ = x+ 2 ∧ y′ = y.
Note that as the number of variables increases, so does the number of frame assignments which
state that all unmodified variables remain the same. The problem of dealing with a large
number of such spurious assignments is remarkably similar to the frame problem [Hay71] in
the artificial intelligence field. Consequently, in practice instead of having a large number of
spurious assignments a single static assignment form (SSA) [Cyt+91] is used, which avoids the
problem by renaming variables in such a way that every variable is assigned exactly once.

For example, the program x=0; y=1; z=1; x=x+y; x=x+z; is converted into the program
x_0=0; y_0=1; z_0=1; x_1=x_0+y_0; x_2=x_1+z_0; which is represented by the formula x0 =
0 ∧ y0 = 1 ∧ z0 = 1 ∧ x1 = x0 + y0 ∧ x2 = x1 + z0.

Finally, by converting regions and operators to formulas we can also encode the strongest
postcondition. For a region represented by φ(x) and a transition given by τ(x ∪ x′) a region
corresponding to the strongest postcondition is (∃x. φ(x) ∧ τ(x ∪ x′))[x′/x]. For example, the
postcondition of a region x > 5 under a transition x′ = x + 1 is given by (∃x. x > 5 ∧ x′ =
x+ 1)[x′/x] which simplifies to x > 6.

2.4 Finding Bugs with Formula Encoding

The logic based encoding gives rise to several approaches for automatically findings error
properties. Symbolic execution [Kin76] runs the program while keeping the variables symbolic:
this is equivalent to dynamically encoding the formula after each step. Symbolic execution
has been often used in practice to find many bugs in real world software [CDE08]. A symbolic
and concrete execution hybrid concolic execution [GKS05], which uses concrete program values
where the constraint solving is intractable, has been successfully used at Microsoft to find many
bugs in released products [GLM08].
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Bounded model checking [Bie+99] takes a different encoding approach, and proves that the
program satisfies the property for all traces of length ≤ n, where n is increased from 1 up to
the user-supplied bound (or until the timeout is reached). CBMC [CKL04] is one of the most
successful tools based on this approach.

2.5 Proving Safety

For programs without loops, applying the formula encoding stated in Section 2.3.1 gives a
straightforward way for checking safety: the entire program is converted to a formula φ(x) by
iteratively applying the strongest postcondition encoding, the desired property is converted to
a formula P (x), and an SMT solver is queried for the satisfiability of φ(x) ∧ ¬P (x). If the
formula is unsatisfiable, the program is safe (assuming our program encoding is sound), and
otherwise the model M |= φ(x) ∧ ¬P (x) gives us the counterexample which can be used to
automatically generate a failing testcase [Bey+04] (assuming our encoding is complete).

This procedure is not directly applicable for programs where the maximum execution
length is unbounded. For certain structures of loops, it is possible to find a transitive closure
representing the loop effect in a sound and complete way: then the effect of the program can be
still represented by a single formula. Such a summarization is performed by approaches based
on acceleration [Boi98].

Yet in general it is not possible to summarize a loop with a first order formula within a decid-
able theory. Thus safety is generally proven for infinite systems using inductive invariants [Tur49;
Flo67].

2.5.1 Inductive Invariants

Consider a general safety property: prove that some region is unreachable at some set of program
locations. By encoding the program counter as a regular variable we can encode the program
using a single location n, and two transitions I(x′) and τ(x ∪ x′) representing the initial state
and the transition relation respectively.

In general, τ represents a complex, non-deterministic recurrent relation for which due to
the halting problem it is impossible to obtain a computable analytic solution. Properties of
such discrete systems are almost invariably proven by induction. That is, in order to establish
a property P universally we first show that it holds at the initial state, and then that it is
preserved under the transition relation.

The negation of the error ¬E(x) is a natural property to check for inductiveness. However,
even if ¬E holds universally, it is rarely inductive with respect to the transition relation. Thus
it is important to distinguish between invariants and inductive invariants.

Definition 2.5 (Invariant). A property I(x) is an invariant for a CFA P if and only if for all
program paths (Definition 2.4) for P , for all elements (m,n) of a program path, m |= I holds.

Definition 2.6 (Inductive Invariant). A property E(x) is an inductive invariant for the
CFA P represented by the initial state I and the transition relation τ if and only if E
satisfies the initial condition I and is inductive under the single-state encoding of P (that is,
∀x,x′. E(x) ∧ τ(x ∪ x′) =⇒ E(x′)).

By definition, a set R of all reachable CFA states is an inductive invariant. Such a set is a
least invariant, and a least inductive invariant at the same time. However, as we have previously
mentioned, R is not computable in general due to the halting problem. All over-approximations
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float x = 0;
float y = 1;
while (input()) {

x=0.8*x+0.6*y;
y=-0.6*x+0.8*y;

}

(a) program listing: each iter-
ation rotates (x, y) clockwise

x

y

(b) the circle is an inductive invari-
ant, fitting first ten concrete states

x

y

(c) the box is a non-inductive in-
variant: a corner is mapped outside

Figure 2.2: Example of a non-inductive invariant. A program shown in Figure 2.2a at each
iteration multiplies the vector (x, y) by a rotation matrix given by an angle θ ≡ sin−1(−0.6) ≈ −37◦.
That effectively rotates (x, y) by ≈ 37 degrees clockwise for a non-deterministic number of iterations
starting from the point (0, 1). An inductive invariant for such a program is a circle of radius 1
centered at the origin, as shown in Figure 2.2b. The box of size 2 centered at the origin is a
non-inductive invariant, as shown in Figure 2.2c: despite the fact that the box contains all the
reachable points, it is not inductive under the transition relation, due the existence of points which
are mapped outside by the rotation.

O ≡ R∐E of R are invariants, but not all of them are inductive, as states in E can give rise to
spurious transitions not contained in O. An example of such a non-inductive invariant is shown
in Figure 2.2.

Both definitions are not constructive: they tell us nothing about how such a property can
be found. Moreover, the first definition is not even certifiable: while counterexamples (program
paths which contain a property violation) can be used to rule out non-invariant properties, we
have no way to check whether the given property is actually an invariant. This is expected,
since a sound and complete procedure for testing whether a given property is an invariant would
violate the Rice’s theorem. Such a check can be however easily performed for an inductive
invariant by testing it for inductiveness, as we show in the next section. Furthermore, a
standard procedure to prove that a given property P is an invariant, is to find a strengthening
S such that S ∧ P is an inductive invariant. In 1969, Manna [Man69] has shown that for
intraprocedural programs it is is always possible to find such an inductive strengthening, a result
which was later extended to interprocedural programs with recursive procedures by Bakker and
Meertens [BM75].

In the rest of this thesis we shall deal exclusively with inductive invariants: furthermore, the
theoretical contributions of this manuscript are new methods for inductive invariant synthesis.

2.5.2 Showing Inductiveness

Inductiveness can be shown for a property with the help of the formula encoding for properties
and SMT solvers (Section 2.3). Given a formula φ(x) representing the desired property, transition
relation τ(x ∪ x′) and a set of initial states I(x), φ is inductive if and only if the following is
valid for all x,x′:

Initiation: I(x) =⇒ φ(x)
Consecution: φ(x) ∧ τ(x ∪ x′) =⇒ φ′(x′)

(2.2)

Universal properties are traditionally proven using negation. That is, in order to prove the
consecution condition from Equation 2.2 the query in Equation 2.3 is posed to the solver, which
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is unsatisfiable if and only if the consecution is valid for all possible values of x,x′.

φ(x) ∧ τ(x ∪ x′) ∧ ¬φ′(x′) (2.3)

For a quantifier-free formula φ inductiveness checking is co-NP-complete. However, if φ
is existentially quantified, the problem is Πp

2-complete due to the fact that outer existential
quantifiers (which can be normally removed using Skolemization [KS08]) become universal
under negation. Thus in the rest of this thesis we shall assume that the property φ representing
the candidate inductive invariant is quantifier-free.

2.5.3 Inductive Assertion Map

Definition 2.6 and the check in Equation 2.2 give us a way for checking a given property for
inductiveness. However, such a direct check is often very inconvenient, as it requires re-encoding
the entire program as a single-loop transition system. Instead we use the inductive assertion
map formalism [SSM05], which represents the inductive invariant as a map, and associates a
separate property to each program location. We shall also refer to such maps as inductive
invariants.

Definition 2.7 (Inductive Assertion Map). A mapping I : nodes → F(x) is an inductive
assertion map (also referred to as an inductive invariant) for a CFA (nodes, edges, n0,x) if and
only if it satisfies the following conditions for initiation and consecution:

Initiation: I(n0) = >
Consecution: for all edges (a, τ, b) ∈ edges, for all x,x′

I(a)(x) ∧ τ(x ∪ x′) =⇒ (I(b))′(x′)
(2.4)

The Equation 2.4 is referred to as a system of semantic equations for a CFA. Intuitively,
the initiation condition dictates that the initial program state at n0 is covered by I, and the
consecution condition dictates that under all transitions I should map into itself. Similarly
to Equation 2.3, the consecution condition in Equation 2.4 can be verified by checking the
negation for unsatisfiability.

2.5.4 k-Induction

In many cases, a property of interest is not inductive under the transition relation, but is
inductive under multiple compositions of it: f ◦ f on the operator level, or τ [x′/x̂] ∧ τ [x/x̂] on
the formula level. For example consider the program in Figure 2.3. The assertion 0 ≤ x ≤ 5 is
not inductive under the loop transition relation, due to the possibility of the transition from
{x : 5, y : 0} to {x : 6, y : 1}. Yet it is inductive for the modified program where the loop
transition is unrolled five times. Of course, a stronger invariant x = y ∧ 0 ≤ x ≤ 5 is simply
inductive, but it is not readily available as an error property. In general, from a k-inductive
invariant it is always possible to extract an inductive invariant, yet sometimes at the cost of the
exponential explosion.

This observation has led to the technique called k-induction [Don+11] where the given
invariant candidate (usually, negation of an error property, potentially strengthened with
an inductive invariant [KT11]) is repeatedly tested for inductiveness where the value of k
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int x = 0;
int y = 0;
while (input()) {

x++;
y++;
if (y == 5) {

x = 0;
y = 0;

}
}
assert(0 <= x && x <= 5);

Figure 2.3: k-Induction Motivation

(corresponding to the number of compositions of the transition relation) is incremented at each
step. At the extreme, for finite-state systems every invariant is k-inductive for a sufficiently
large k, making the framework especially suitable for state machine encodings.

2.5.5 Back to Safety

In order to prove that a property P universally holds, we need to find a strengthening S such
that P ∧ S is an inductive invariant. It is important to note that once an inductive invariant is
found it is irrelevant in which way it was generated: due to intuition, because a “little bird” has
told us, or simply because of an intelligent guess, once we establish the inductiveness, we have
a formal checkable proof of the fact that the invariant universally holds. In later chapters of
this thesis we develop techniques for generating inductive invariants.

2.6 Inductive Invariants from Counterexamples to Induction

Equation 2.4 lets us test a desired property P for inductiveness, and the output is either an
UNSAT verdict corresponding to the case where the property is inductive, or a counterexample
to induction, represented by the modelM(X ∪X ′). Such a modelM not only states that P
is not inductive, but it also gives us a reason why: it specifies a precise state inside P from
which the “jump“ to ¬P ′ is possible. Many approaches for invariant synthesis rely on using
such counterexamples-to-induction in order to generate an inductive invariant.

Aaron Bradley in his seminal work on property directed reachability [Bra07] presents a way
for generating new lemmas which can be used to strengthen the initial candidate invariant from
the counterexample to induction. Such method leads to an efficient IC3 algorithm for SAT
checking without unrolling [Bra11].

2.7 Inductive Invariants by Abstract Interpretation

The line of research concerned with proving program properties by finding inductive invariants
goes back to compiler research and classical dataflow [Kil73] analysis techniques, including live
variables [ASU86] calculation, location reachability, constant propagation, and others3.

However, it took a fundamental work of Cousot and Cousot [CC77a] to generalize the
underlying notion of abstract domain, and consequently abstract interpretation to unify and

3Indeed, despite the fact that the term “inductive invariant” was not traditionally used in dataflow analysis,
and a different CFG formalism is used, the analysis runs in a loop until a fixed point is reached: that is, further
propagation results in no updates — which is an inductive invariant by definition.
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extend the previously used approaches. As usual, we start by describing abstract interpretation
intuitively, and we give the formal notions in Section 2.7.1.

The aim of the abstract interpretation is to compute an inductive invariant in the abstract
domain. Intuitively, an abstract domain is a set equipped with a partial order, where every
element groups concrete states by the property of interest. E.g. for a program with a single
variable x an interval abstract state [0, 10] concretizes to a set of concrete data states where
the value of x is between 0 and 10: J[0, 10]K = {{x : v} | v ∈ [0, 10]}. The set of such properties
(the set of intervals in our example) is called an abstract domain, and a function mapping an
abstract element to a region is called concretization and is traditionally denoted by γ. Dually,
the function from a region r ∈ R to the smallest element of the abstract domain a, such that
r � γ(a) is called an abstraction α4. Intuitively, an element of the abstract domain succinctly
represents a region of variable values (Section 2.2). In order for the abstraction to exist the
abstract domain needs to satisfy certain criteria which we cover in this section: e.g. in the
intervals example if we define the abstract domain as the set R× R it would be impossible to
construct the abstraction function, as there would be no valid abstraction for a region where
the value of x is not bounded.

Given an abstract domain, an inductive invariant can be constructed using Kleene fixpoint
iterations [Kle52]. Kleene iterations can be seen as running the program in the abstract
interpreter, while recording intermediate values (invariant candidates) associated with different
program locations (CFA nodes). The iteration process starts by assigning to each CFA node
the smallest invariant candidate ⊥ corresponding to an unreachable value, and assigning the
invariant candidate > to program entry (corresponding to the largest possible region, as the
memory is not initialized at the program start). At each step, an abstract value is propagated
through the CFA edges, with abstract transformer being applied (running the program with
abstract values instead of the concrete ones, using abstract semantics). E.g. the interval
x ∈ [0, 10] under the operation x++ is transformed into x ∈ [1, 11]. If after the propagation two
abstract values exist at the same location, they are joined — that is, replaced with the least
element in the abstract domain which is greater than both of the joined elements. E.g. intervals
x ∈ [0, 3] and x ∈ [4, 5] can be joined to a new interval x ∈ [0, 5]. The process repeats until the
iterations converge: that is, propagation and joining steps do not change the previous invariant
candidate. The obtained result, provided that the iteration has converged in finite time, is an
inductive invariant.

2.7.1 Formal Definitions

Definition 2.8 (Lattice). A lattice L is a set equipped with a reflexive, antisymmetric and
transitive partial order relation �L.

Definition 2.9 (Complete Lattice). A complete lattice L is a lattice where every subset in
L has a supremum and infimum under �L in L. That is, there exists a unique join operator
tL : 2L → L, and the meet operator uL : 2L → L, which compute supremum and infimum
respectively for any subset of L: ∀a ∈ L. a �L tL and ∀a ∈ L.uLL � a.

The set of regions, representing groups of concrete program states defined in Section 2.2 is a
complete lattice using the inclusion relation as a partial order, and set union and intersection
as join and meet operators respectively.

4Though later we show that it is possible to have a useful abstract domain for which a function α does not
exist.
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⊥

{0}Zx<0 Zx>0

Zx 6=0 Zx≥0Zx≤0

>

Figure 2.4: Hasse Diagram for Sign Abstract Domain over Integers

Definition 2.10 (Abstract Domain). An abstract domain is a tuple (D, α, γ) where D is a
complete lattice equipped with a partial order �D, α : R → D is an abstraction function,
converting a region r to an element of D, and γ : D → R is a concretization function, converting
an element of the abstract domain a to a region. The tuple (α, γ) has to form a Galois
connection [CC92], that is the following has to hold:

∀a ∈ D. ∀r ∈ R. α(r) �D a ⇐⇒ r ⊆ γ(a) (2.5)

Intuitively, an abstract domain is a grouping of concrete states by the property of interest.
Thus we can abstract from the region description as a set of concrete states into the chosen
domain of properties we choose to care about. Having such a definition allows us to reason
about regions fulfilling certain properties: e.g. a region where the value of a certain variable is
never zero.

Example 2.1 (Sign Abstract Domain). Consider the sign abstract domain over a single integer
variable x. The domain element states whether the variable is zero, strictly less than zero,
strictly greater than zero, or a join or a meet over these. The lattice associated with this domain
is shown in Figure 2.4. Note the values > and ⊥ denoting “all are values possible” and “empty
region” respectively. Concretization function for this domain corresponds to the element label
in Figure 2.4, and abstraction maps a region r to the smallest abstract element a for which
r ⊆ γ(a). E.g. α({1, 2, 3, 4, 5}) = Zx>0, and γ({0}) = {0}.

Example 2.2 (Intervals Abstract Domain). The interval abstract domain is a mapping x→
(R̄ × R̄), which unlike R2 forms a complete lattice. An element of the abstract domain
{x : (a, b)} concretizes to a set {c | c[x] ≤ b ∧ c[x] ≥ −a}, and the comparison is given using the
usual component-wise comparison on tuples, applied component-wise to maps.

We are interested in self-maps f : L → L where L is a complete lattice which is both
a domain and a codomain. Such a function f is called monotone if it is order preserving:
a � b =⇒ f(a) � b. A point a ∈ L is called a fixed point (or a fixpoint) if and only if
f(a) = a. Tarski’s fixed point theorem states that the set of fixpoints of a monotone function
f on a complete lattice L is a complete lattice Lf itself [Tar55], which consequently has least
and largest element. By µf we denote the least fixed point of f on L, and µ|≥af denotes the
least fixed point which is larger or equal to a. We use the power notation f i to indicate the
continuous application of f multiple times (f(f(f(. . . )))).

Recall the definition of collecting semantics given in Section 2.2. A collecting semantics
function JOPK : R → R is a monotone self-map, and its fixed points correspond to inductive
invariants. Yet as even storing these fixed points is often infeasible (all concrete data states
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reachable at a given CFA node), we are interested in least fixed point of abstract semantics
instead.

Definition 2.11 (Abstract Semantics). Abstract semantics function J.K] for an abstract domain
(D, α, γ) and a program operator OP yields a function D → D which satisfies the following
equation for all regions r:

JOPK (r) ⊆ γ(JOPK] (α(r))) (2.6)

That is, the abstract transformer has to be sound: it has to include all states given by the
collecting semantics. The best abstract transformer which returns the smallest abstract state for
a given input and a given operator OP while satisfying the soundness condition in Equation 2.6
for an abstract domain defined by (α, γ) is:

f ≡ λa. α(JOPK (γ(a))) (2.7)

2.7.2 Abstract Value Transformer

Abstract semantics defines how the value in the abstract domain is transformed by the operator.
E.g. if we operate in the abstract domain of the intervals over a single program variable x,
showing only the bound on the variable x for clarity, we have Jx <= 9K] ([0, 10]) = [0, 9], and
Jx += 1K] ([0, 1]) = [1, 2]. Yet we are interested in the abstract domain element resulting from
the join over all possible abstract domain elements at all CFA nodes. We start by generalizing
the abstract semantics to a function next which acts on the entire CFA at the same time, by
combining the effect of the update of all the incoming edges for every node:

next : (nodes → D)→ (nodes → D)

next ≡ λS.
{
n : t

{
JeK] (S[n0]) | (n0, e, n) ∈ edges

}
| n ∈ nodes

} (2.8)

Furthermore, we interested in all values possible at the given point, and we generalize next
further to a function update with the same signature which combines the previous result with
new values at all CFA nodes.

update ≡ λS.
{
n : S[n] t

{
JeK] (S[n0]) | (n0, e, n) ∈ edges

}
| n ∈ nodes

}
(2.9)

Unlike abstract semantics, the output of a function update is always greater or equal to
its input: for all input elements d it holds that update(d) � d. Kleene’s theorem [Kle52]
states that for a monotone increasing self-map on a complete lattice continuous applications
starting from the least element can converge only at the least fixed point. Hence least inductive
invariant in the abstract domain can be found as iterative application of the function update
(update(⊥), update(update(⊥)), . . .). Such iterative application is referred to as Kleene iteration.

The least fixed point under the abstract semantics which covers the input state is referred
to as the least inductive invariant in the abstract domain, or just least inductive invariant when
the domain is apparent from the context. The Kleene iteration process for an input CFA is
formalized with the worklist algorithm in Algorithm 2.1. Results on chaotic iterations [Bou93]
state that the resulting invariant does not depend on the precise iteration order.

Example 2.3 (Abstract Interpretation Run). Consider running abstract interpretation with
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Algorithm 2.1 Kleene Worklist Iteration Algorithm.

1: Input: CFA (nodes, edges, n0,x), abstract domain (D, α, γ), abstract transformer J.K]

2: . Inductive assertion map nodes → D
3: map ← {}
4: . Initial state associated with starting location.
5: map(n0)← >
6: for all n ∈ nodes \ n0 do
7: . All other nodes are initially considered unreachable.
8: map(n)← ⊥
9: end for

10: . Worklist for nodes which should be expanded.
11: q ← {n0}
12: while q 6= ∅ do
13: Pop n from q
14: for all (n, OP, n′) ∈ edges do
15: . Previously held value.
16: prev ← map(n′)
17: map(n′)← JOPK] (map(n)) t prev
18: if map(n′) � prev then
19: . Add n′ to worklist if the value is not covered.
20: q ← q ∪ {n′}
21: end if
22: end for
23: end while
24: return map

intervals on a trivial counter program shown in Figure 2.5. As we have only one variable and
only one CFA location an invariant candidate can be represented by a single interval [a, b]. The
abstract transformer associated with the assignment x := 0 sets the output interval to [0, 0]
regardless of the input. Similarly, the transformer associated with x < 10; x++ increments
both bounds as long as they are smaller than 10. Thus we get the following run of abstract
interpretation:

• ⊥ initially.

• [0, 0] t ⊥ = [0, 0] after the first update.

• [1, 1] t [0, 0] = [0, 1] after the first increment.

• [0, 1] t [1, 2] = [0, 2] after the second increment.

• . . .

• [0, 10] t [10, 10] = [0, 10] the iteration reaches the fixed point.

2.7.3 Convergence and Widening

From Kleene fixed point theorem we know that iterations shown in Algorithm 2.1 can converge
only to the least fixed point of the abstract domain. We introduce the notion of the lattice
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1 int x = 0;
2 while (x < 10) {
3 x++;
4 }

n0

na

x := 0;

x < 10; x++;

Figure 2.5: A simple counter program and the corresponding CFA.

height in order to give the convergence results.

Definition 2.12 (Complete Lattice Height). A sequence of elements s ≡ (s1, s2, s3, . . .) in a
lattice L is called a chain if and only if every subsequent element is greater than the previous
one: ∀i. si � si+1. The size of the largest possible chain is referred to as a lattice height, and is
denoted as ‖L‖. The abstract domain height is defined as the height of the underlying lattice,
and is similarly denoted as ‖D‖.

In the Example 2.1 the height of the sign abstract domain is 4. With the height of the
domain being defined, we can state the result on Kleene iteration termination and precision:

Theorem 2.1 (Kleene Iteration Termination). For an input CFA (nodes, edges, n0, X) and the
analysis domain D, the run of Kleene iteration in D requires at most O(‖D‖‖nodes‖) iterations
and converges with the least inductive invariant in D.

The proof is trivial and immediately follows from Kleene’s and Tarski’s theorems. However,
the simplistic trace in Example 2.3 already highlights an important limitation of such an
approach on infinite height lattice, such as the lattice of intervals. If the guard x < 10 is
removed from the transition relation, the analysis run does not terminate and continues happily
incrementing the bounds forever.

In order to address this problem, Cousot and Cousot [CC77a] introduce the widening
operator ∇ : D ×D → D, which enforces the termination after finitely many applications even
for a lattice of infinite height. The widening operator has to be defined in such a way that for
any input values any sequence of widening applications eventually converges at a single value.
For example, widening on interval domain is defined to set the moving constraint to infinity,
e.g. [0, 1]∇[0, 2] = [0,∞]. The modification of Algorithm 2.1 which includes widening requires
updating the right hand side of Line 17 to prev∇(JOPK] (map(n)) t prev): that is, the widening
is applied after joining. Such a change results in dramatic precision loss, as the interval [0, 10]
can no longer be recovered for the program in Example 2.3. In order to address this imprecision
the narrowing operator ∆ : D × D → D is introduced which repeats another round of fixed
point iterations updates after the widening, which is often enough to restore the precision (as
in the running example).

2.8 Further Examples Of Abstract Domains

A great many abstract domains were proposed to track different program properties.

2.8.1 Octagons

The intervals abstract domain introduced in the previous section is scalable, but is not relational:
it is not capable of expressing relations between the variables, such as x = y. A more expressive
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octagons [Min06] abstract domain was proposed by Miné. An element of the octagons abstract
domain is the set of bounds on expressions ±x± y for each pair of program variables x, y ∈ X.
The resulting shape of an arbitrary non-degenerate domain element for two variables is an
octagon, which gives the domain its name. An abstract transformer for the octagon abstract
domain can be implemented using Floyd-Warshall algorithm [Min06], and the widening operator
can be defined by eliminating all moving constraints.

2.8.2 Polyhedra

The polyhedra abstract domain [CH78] generalizes the convex abstract states further, by allowing
an abstract domain element to be any convex polyhedron5 over the program variables. Such an
abstract domain can effectively present any linear convex property (such as x+y+z ≤ 1∧x ≤ 5),
however, it requires a well constructed widening operator in order to work efficiently. A
comparison of the expressive power of the intervals, octagons and polyhedra abstract domain is
shown in Figure 2.6.

Note that this abstract domain is not a complete lattice and does not form a Galois
connection, as the least element does not always exist for all sets of polyhedra (e.g. consider a
set of all polyhedra which contain a non-empty circle). Hence it is not possible to construct
least abstract transformer for polyhedra. This limitation is acceptable in practice, since due to
the usage of widening operators the invariant obtained by abstract interpretation is usually not
the smallest possible one.

Many highly optimized libraries such as PPL [BHZ08] are available for abstract interpreters
which can perform the required transformations on polyhedra, such as convex hull or projection.

x

y

(a) intervals domain

x

y

(b) octagons domain

x

y

(c) polyhedra domain

Figure 2.6: Comparison of intervals, octagons and polyhedra abstract domains. Black points
represent a set of concrete data states {{x : 1, y : 1}, {x : 1, y : 3}, {x : 3, y : 1}, {x : 3, y : 2}} over
two integral variables {x, y}, and red shaded lines represent the abstraction in the corresponding
abstract domain.

2.8.3 Template Constraints Domains

The family of template constraints domains was proposed in a work by Sankaranarayanan [SSM05]
et al. as a way to offer a configurable compromise between the scalability and precision.

Unlike the interval and octagon domains, where the shape of propagated constraints is
defined by the domain itself, and the polyhedra abstract domain, where the analysis tries to

5Some textbooks prefer the name polytope for such structures in higher-dimensional space, in this thesis we
stick to the name polyhedron.
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track all the possible linear constraints, a given TCD is parameterized in advance by a vector
of functions over x (templates, e.g. x+ 3y and 2x+ y), and an element of a domain is a vector
of bounds on those functions (e.g. (1, 5) represents x+ 3y ≤ 1 and 2x+ y ≤ 5).

An abstract state of a TCD is a vector (d1, . . . , dm) ∈ R̄n. The original publication [SSM05]
presents the case where all templates are linear and can be defined by a matrix T ∈ Rn×‖x‖ (a
vector d concretizes to a set of concrete states which satisfy the constraint Tx � d), and later
articles generalize the domain further to non-linear templates [AGG10]. In this thesis we shall
operate only over linear templates, and an abstract state d concretizes to {x | ∧i t>i x ≤ di},
where the domain is defined by a matrix of templates T (which we shall also treat like a set of
templates).

We allow the use of ∞ and −∞ in the bound in order to represent unbound templates, and
unreachable states respectively. A vector (∞, . . . ,∞) corresponds to the > element of a TCD,
while a vector containing at least one −∞ entry represents the bottom element ⊥. An example
abstract state of a TCD is given in Figure 2.7.

The domain of products of intervals is one instance of TCD, where the templates are
±xi ≤ ci for program variables xi. The domain of octagons [Min06] is another, with templates
±xi ± xj and ±xi. Any template constraints domain where all templates are linear is a subset
of the domain of convex polyhedra [CH78].

x

y

Figure 2.7: Example of an element of the template constraints domain defined by a vector
of templates T ≡ (−x,−y, x, y, x + y) with bounds d ≡ (0, 0, 3, 3, 4), which describes the region
0 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 3 ∧ x+ y ≤ 4. Observe how the lower bound is expressed as an upper bound
on a negated expression.

The abstraction in a TCD is defined using a maximization operator: maximizing all templates
subject to the constraints introduced by a region. Formally, α(r)i ≡ max t>i x s.t. x ∈ r. If all
templates are linear, abstraction can be performed using linear programming.

Abstract semantics can be also defined directly using maximization modulo the constraints
introduced by the previous state and the transition relation. For an operator OP the abstract
semantics is given by:

JOPK] (d)|i ≡ max t>i x′ s.t. x′ ∈ JOPK (γ(d)) (2.10)

For example, for the abstract state i ≤ 0∧ j ≤ 0 under the transition i′ = i+ 1∧ i ≤ 10 the new
abstract state is i ≤ di ∧ y ≤ dj , where di = max i′ s.t. i ≤ 0∧ j ≤ 0∧ i′ = i+ 1∧ i < 10∧ j′ = j

and dj is the result of maximizing j′ subject to the same constraints. This gets simplified to
i ≤ 1 ∧ j ≤ 0.

The templates abstract domain provides a configurable compromise in expressivity for the
domains described above. The weakness and the strength of a template constraints domain is
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its configurable precision: a small set of templates gives rise to an imprecise, yet very efficient
analysis, while a larger set can get higher precision at the cost of a more expensive runtime.

As we shall show in Chapter 4, such a configurability can be used to create a refinement in
the CEGAR [Cla+00] fashion, which combines both high precision and fast runtime.

2.8.4 Disjunctive Domains

The domains described above are convex: abstract states describe convex structures in the
program variable state space. However, many programs give rise to non-convex invariants, most
notably from boolean variables representing flags (e.g. b =⇒ p ≤ 0 ∨ ¬b =⇒ p ≥ 0).

Many extensions (e.g. trace partitioning [MR05]) were proposed to the abstract interpretation
framework in order to address this limitation. One of the possible approaches is the boxes [CGS09]
domain, where each abstract state represents a set of potentially disjoint intervals. Such a
domain can naturally capture disjoint sets of states, such as the disjunction of implications
example in the previous paragraph, but it comes with a cost, as there are no “natural” join
and widening operators, and heuristics have to be used. These heuristics often result in non-
monotone behavior, where more precise candidate invariant at one location can result in less
precise invariant at the end.

In this thesis we are primarily interested in convex abstract domain, however, it was
shown [San+06] that it is possible to obtain a disjunctive inductive invariant in a convex
abstract domain by splitting the analyzed states (Section 2.10).

2.8.5 Abstract Domain of Numerical Congruences

Another non-convex property which is often relevant for program is congruence: integer
remainder after dividing a linear expression by an integer constant. Many programs rely on
the modulus operator to e.g. achieve a wrap-around effect or execute a certain action on
every nth iteration of the loop. Consequently, the congruence [Gra91] was proposed to track
such information. In addition, some polyhedra libraries [BHZ08] allow the use of congruence
constraints defining the point cloud contained inside the polyhedra (e.g. abstract states
representing all points where x+ y = 0 mod 2 and x+ y ≤ 5). Our implementation makes use
of a simple congruence domain, as described in Section 7.7.1.

2.8.6 Predicate Abstract Domain

The predicate abstract domain was introduced in a seminal work by Graf and Saïdi [GS97] as a
way to further extend the expressiveness of the abstract domain to arbitrary predicates. Let L
be a finite, fixed, set of quantifier-free first order formulas.

We define the abstract domain D ≡ 2L ∪ {⊥} to be a powerset of L, with a partial order
defined by the inclusion relation, and the fact that ⊥ is the least element. The concretization of
an element d ∈ D is a region where every concrete state models the conjunction of all constraints
in d. Similarly, the abstraction of a region r is the smallest element of D describing every state
in r.

Abstraction can be computed using an SMT solver by checking whether a given predicate p
is guaranteed to hold at a state described by a formula φ (whether ¬(φ =⇒ p) is unsatisfiable),
and returning a set of all implied predicated.

Observe that D forms a complete lattice with meet and join defined as intersection and union
respectively, and using syntactical equality for comparing individual formulas. The syntactic

47



Chapter 2 Background

comparison is an over-approximation as it does not take the formula semantics into account,
yet it generates a complete lattice of height ‖L‖+ 1.

Boolean and Cartesian Abstraction The powerset domain over the set of predicates is
referred to as a cartesian [BPR03] predicate domain. Another possible predicate abstract
domain is a boolean one, for which the abstraction is a disjunction over all possible conjunctions
over predicates (e.g. p1∧p2∨¬p1∧¬p2, which is not expressible using the cartesian abstraction).
Such a domain is considerably more expressive: in fact Ball et al. [BPR03] prove that it is
the most expressive abstract domain where all atoms are in the language of the given set of
predicates. The abstraction for such a domain is considerably more costly, and is performed
using the ALL-SAT algorithm: finding all models over the set of predicates which are implied
by the formula φ (it is performed by finding one cube over predicates, blocking it with the
additional clause, and iterating until the constraint set becomes unsatisfiable). The ALL-SAT
procedure potentially requires evaluating up to 2‖L‖ SMT queries.

CEGAR and Interpolation Choosing the right predicates can be a difficult trade-off
between precision and performance. Many simple properties can be proven by using only a few
predicates, yet a large number might be required for verifying intricate manipulations. Clarke
et al. have suggested a counterexample-guided abstraction refinement (CEGAR [Cla+00])
approach, which combines precision and performance by starting with a most coarse abstraction,
and then gradually refining it, if it gives rise to a spurious (caused by abstraction imprecision)
counterexample to property.

Ken McMillan published an influential paper [McM03] advocating the use of Craig inter-
polants [Cra57] to dynamically generate predicates from the infeasible counterexamples.

Definition 2.13 (Interpolant). For two satisfiable formulas a, b where a ∧ b is unsatisfiable,
Craig interpolant c is a new formula which has only shared symbols from a and b, and for which
a =⇒ c, and c =⇒ ¬b.

Intuitively, Craig interpolant gives the reason for why a and b are unsatisfiable together.
SMT solvers can generate Craig interpolants e.g. from proofs of unsatisfiability [Hen+04]
of concrete error traces. Many approaches in program analysis [McM06] perform predicate
abstraction with interpolants, as it provides a semi-decidable procedure for proving safety
and finding counterexamples, and doesn’t have inherent limitations of many abstract domains
described in this section, such as convexity.

2.8.7 Other Domains

All domains described so far were tracking numeric properties of the software. However, this is
not a conceptual limitation of abstract interpretation: for a example, the domain of symbolic
memory graphs [DPV13] allows to efficiently analyze many datastructures, and to prove an
absence of memory errors in the program.

2.9 Path Focusing and Large-Block Encoding

Traditionally, abstract interpreters store invariant candidates as mappings from CFA nodes
to abstract states. As shown in Algorithm 2.1, this is maintained by joining (with subsequent
widening) multiple states “arriving to” the same node from different locations. In convex
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1 int x = input();
2 int out;
3 if (x < 0) {
4 out = -x;
5 } else {
6 out = x;
7 }
8 assume(out >= 1);
9 assert(x != 0);

ns

ni

nbna

nc

ne

x := ?

x >= 0

out := x

x < 0

out := -x

out >= 1

Figure 2.8: Motivating Example for Path Focusing

abstract domains, such join often corresponds to a convex hull operator, often resulting in large
loss of precision. For example, consider the motivating program and its CFA in Figure 2.8. The
program is very simple: it computes the absolute value, and asserts that if the absolute value
is bigger than 1, the input must have been non-zero. This assertion represents the invariant
stating that x 6= 0 holds universally at ne.

Consider generating inductive invariants using abstract interpretations in the octagons
domain for the motivating program. Following the path (ns, ni, na, nc) the analysis obtains
the abstract state x ≥ 0 ∧ out = x, and following the path (ns, ni, nb, nc) the result is x <
0 ∧ out = −x. The merge of this two states is however out ≥ 0 ∧ out ≥ x, which becomes
out ≥ 1 ∧ out ≥ x, at the node ne, insufficient for proving x 6= 0.

However, the loss of precision is completely unnecessary: as we have shown in Section 2.3,
programs with no looping constructs can be converted to a single formula, for which the
intersection with an error state may be checked directly using a single SMT query.

Monniaux and Gonnord have shown [MG11] how abstract interpretation can avoid such
a precision loss by reducing the number of “intermediate” abstract states and defining the
semantics of CFA edges using existentially quantified formulas. A simplified version of the
transformation can be done using the following two steps: initially, for each edge, each operator
OP is replaced with a formula over (x ∪ x′) representing its semantics. After that the operations
shown in Figure 2.9 are applied until a fixed point is reached.

A B C
τ1(x ∪ x′) τ2(x ∪ x′)

A C
∃x̂. τ1[x′/x̂] ∧ τ2[x/x̂]

A B

τ1(x ∪ x′)

τ2(x ∪ x′)

A C
τ1 ∨ τ2

Figure 2.9: Transformations required for Large Block Encoding

Observe that since SMT formulas are represented as directed acyclic graphs which can
share subformulas, both of these transformations do not copy the input formulas, and can be

49



Chapter 2 Background

ns

ne

x′ ≥ 0 ∧ out = x′ ∨ x′ < 0 ∧ out = −x′ ∧ out ≥ 1

Figure 2.10: Motivating Example after Path Focusing Transformation

performed in O(1) time and space.
For a well-structured [ASU86] CFA, repeating this transformation in a fixpoint manner (until

no more edges can be merged) leads to a new CFA where the only remaining nodes are start,
end, and loop heads. The original publication [MG11] defines a more complex transformation
which guarantees that the only remaining nodes form the cut set [Sha79] of an arbitrary input
CFA.

The program shown in motivating example after path focusing transformation has two
nodes, as shown in Figure 2.10.

As shown in our motivating example, the path focusing procedure can significantly improve
the analysis precision. Counterintuitively, it was also shown to often improve the analysis
performance [HMM12] by avoiding the creation of intermediate states.

Independently, a similar algorithm was published by Beyer et al. [Bey+09] called large block
encoding. Unlike path focusing, large block encoding is applied in the context of predicate
abstraction with interpolants, or bounded model checking, where the edge semantics is already
encoded as a formula. Similarly, the procedure was shown to result in a precision and performance
gain.

2.10 Configurable Program Analysis

In this chapter we have described various approach for program analysis: bounded model
checking and symbolic execution (Section 2.4), predicate abstraction (Section 2.8.6) and abstract
interpretation (Section 2.7). The algorithms used for these approaches seem different, but
the underlying theme remains the same: there exists an abstract domain D, and the analysis
performs some fixed point iteration for an input CFA P .

Beyer et al. have published a paper describing the Configurable Program Analysis [BHT07]
(CPA) algorithm, which describes a parametrizable algorithm which can be used to express
previously independent approaches to code analysis in the unified framework. The authors show
that the primary difference in model checking-based approaches (BMC, symbolic execution, lazy
abstraction and others) and the abstract interpretation-based approaches is the choice of the
merge operator. In the abstract interpretation approach (and earlier, for dataflow analysis),
two states corresponding to the same node have to be merged (cf. Algorithm 2.1), which often
leads to over-approximation, but guarantees convergence. In contrast, model checking based
approaches do not join and leave the states separate: as a result, the run of a model-checking-
based tool can be presented as a reachability tree. By giving each analysis a choice of a merge
operator, different algorithms could be presented within the unified CPA framework, running
the CPA algorithm shown for completeness in Algorithm 2.2.

The algorithm input is determined by the parametrization chosen by the client CPA, which
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Algorithm 2.2 CPA Algorithm (taken from [BHT07])

1: Input: a CPA (D, transfer ,merge, stop)
2: Initial abstract state e0 ∈ D
3: Output: a set of reachable abstract states
4: Variables: a set reached ⊆ D, a set waitlist ⊆ E
5: waitlist ← {e0}
6: reached ← {e0}
7: while waitlist 6= ∅ do
8: Pop e from waitlist
9: for all e′ ∈ transfer(e) do

10: for all e′′ ∈ reached do
11: . Combine with existing abstract state
12: enew ← merge(e′, e′′)
13: if enew 6= e′′ then
14: waitlist ← (waitlist ∪ {enew}) \ {e′′}
15: reached ← (reached ∪ {enew}) \ {e′′}
16: end if
17: end for
18: . Whether e′ is already covered by existing states
19: if ¬stop(e′, reached) then
20: waitlist ← waitlist ∪ {e′}
21: reached ← reached ∪ {e′}
22: end if
23: end for
24: end while
25: return reached

consists of the following components:

• Transfer relation: a function D → 2D, defining the abstract semantics (for generality,
every state is allowed to have zero or more successors).

• Stop operator: a function D×2D → B, defining whether one state is covered by a collection
of other states.

• Merge operator: a function D × D → D generalizing the join operator. If the merge
produces the state which does not subsume the input arguments, both states are kept.

Like for Kleene iteration, the overall loop performs the fixed point iterations which iteratively
expands the states contained in the waitlist (line 7). For each states, all successors under the
transfer relation are found (line 9), and each successor is merged with states already in the
reached set, representing the existing candidate invariant (line 12). If the result of the merge
operation does not equal to the successor (line 13), which is the code for “no join”, the successor
element is replaced with the result of the merge. Finally, if the result of the operation is not
covered by the existing elements (line 19), the result is added to waitlist and to the reached set.

The algorithm shown in Algorithm 2.2 is extremely general: it does not specify whether the
analysis runs backwards or forwards (setting the transfer function to weakest precondition, the
initial state to the exit node and changing the merge function to perform intersection instead
is sufficient to reverse the direction), or whether the analysis states should be grouped by the
CFA node, which makes it suitable for describing a large set of program analysis algorithms.
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Relation to Abstract Interpretation With a merge operator set to always perform a join,
an instance of a configurable program analysis can be seen as an abstract interpretation, defined
using the initial state n0 ∈ D, transfer relation given by strongest postcondition, join operator
tD, and a coverage check �D. Observe that such definition does not require explicitly defining
neither the abstraction α : R → D, nor the concretization γ : D → R, nor even the concrete
collecting semantics R → R. This property makes the CPA framework suitable for describing
abstract domains which do not even have a well-defined abstraction operators, such as the
polyhedra domain (Section 2.8.2).

Disjunctive Abstract Domains using Splitting Moreover, the CPA framework allows
one to perform analysis in the disjunctive powerset domain while using only the convex abstract
transformer by strategically splitting the states using the merge operator. For example, using
the abstract transformer associated with the interval abstract domain, and the merge operator
which always splits the candidate invariant states effectively performs analysis in the disjunctive
interval domain.

2.10.1 Composite Configurable Program Analysis

An analysis is usually performed using multiple CPAs, by making use of the CompositeCPA

parameterization, which wraps a tuple of CPA objects. Such an analysis defines the abstract
domain as the product of contained abstract domains, abstract semantics is applied respectively
to each component. The merge operator joins if all the contained CPAs decide to do so, and
splits otherwise, and the stop operator checks coverage component-wise. Thus, CompositeCPA
allows the user to perform the analysis in multiple abstract domains which can strengthen
each other [CCF13], resulting in the greater overall precision while preserving modularity. For
example, the following sub-analyses are often used:

• LocationCPA binds successor computation to the outgoing edges, and only allows to merge
the states corresponding to the same CFA node.

• CallstackCPA keeps track of callstack and performs the dynamic inlining.

• FunctionPointerCPA keeps an abstract over-approximation of what functions function
pointers can point to, and returns all possible successors on function pointer call.

• LoopstackCPA performs dynamic loop unrolling.

The CPA concept is implemented in the CPAchecker [BK11] framework, which includes
implementations for many program analysis approaches as CPA parameterizations. All the
algorithms presented in the contributions of this thesis are implemented as separate CPA
parameterizations inside the CPAchecker tool.
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Chapter 3

Local Policy Iteration

3.1 Introduction

In this thesis we focus on the numerical abstract domains, equipped with a lattice of an infinite
height. Such abstract domains require an application of widening operators for guaranteeing
the convergence when performing the analysis in abstract interpretation. Many approaches
were proposed to combat the imprecision caused by widenings necessary for analysis in such
domains, e.g. using more sophisticated widening [GR06], or narrowing iterations [HH12].

However, the majority of such approaches are heuristical and do not give any optimality
guarantees. In contrast, the policy iteration (also referred to as strategy iteration) approach
was proposed to address the imprecision, with a promise of finding the least inductive invariant
expressible in the given abstract domain.

The policy iteration technique dates back to an artificial intelligence research for finding
the optimal strategy or policy in a game expressed by a Markov decision process [How60]. For
example, this technique was used in order to program a poker-playing AI [HHS11]. In contrast to
value iteration (Kleene fixpoint iteration described in Section 2.7), the policy iteration approach
iterates on possible policies, and converges to the optimal solution in the given abstract domain.
Such guarantees come at a cost of imposed restrictions on the abstract semantics and the
abstract domain.

In this chapter we present our results on local policy iteration, which is a significantly
improved version from the previously published results [KMW16]. Additionally, we present
extended background of the policy iteration method for finding inductive invariants.

3.1.1 Motivation

Consider classical abstract interpretation with intervals over the program presented in Figure 3.1.

1 int i = 0;
2 while (i < 1000000) {
3 i++;
4 }

Figure 3.1: Motivating Example

After the first instruction, the analyzer has a candidate invariant i ∈ [0, 0]. Going through
the loop body it gets i ∈ [1, 1], thus by least upper bound with the previous state [0, 0] the new
candidate invariant is i ∈ [0, 1]. Subsequent Kleene iterations yield [0, 2], [0, 3] etc. In order to
enforce convergence within a reasonable time, a widening operator is used, which extrapolates
this sequence to [0,+∞). Then, a narrowing iteration returns a post-image of [0,+∞] under
the constraint i < 1000000 yielding [0, 99999].
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1 int i = 0;
2 while (i != 1000000) {
3 i++;
4 }

Figure 3.2: Example of Narrowing Breaking Down

In this case, the invariant finally obtained is the best possible, but the same approach yields
the suboptimal invariant [0,+∞) for the slight program modification in Figure 3.2, as the
post-image of the interval [0,+∞) under the constraint i 6= 1000000 is still [0,+∞).

Of course more sophisticated narrowing heuristics can deal with the modified program from
Figure 3.2. Yet in general, widenings and narrowings are brittle: a small program change may
result in a different analysis behavior. Their result is non-monotone: a locally more precise
invariant at one point may result in a less precise one elsewhere.

3.1.2 Max-policy iteration

In contrast, max-policy iteration [GS07b] is guaranteed to compute the least inductive invariant
in the given abstract domain. Note that it does not necessarily output the strongest (potentially
non-inductive) invariant in an abstract domain, which in general entails solving the halting
problem. To compute the bound d of the invariant i ≤ d for the initial example above, it
considers that d must satisfy d = max i′ s.t. (i′ = 0) ∨ (i′ = i+ 1 ∧ i < 10000000 ∧ i ≤ d) and
computes the least inductive solution of this equation by successively considering separate cases:

• d = (max i′ s.t. i′ = 0) = 0, which is not inductive, since one can iterate from i = 0 to
i = 1.

• d = (max i′ s.t. i′ = i + 1 ∧ i < 1000000 ∧ i ≤ d) = 1000000, which is inductive and
consequently a least upper bound on i.

Earlier presentations of policy iteration solve a sequence of global convex optimization
problems whose unknowns are the bounds (here d) at every program location. Further refine-
ments [GM12] allowed restricting abstraction to a cut-set [Sha79] of program locations (a set
of program points such that the control-flow graph contains no cycle once these points are
removed), through a combination with satisfiability modulo theory (SMT) solving. Nevertheless,
a global view of the program was needed, hampering scalability and combinations with other
analyses.

Contribution We present the new local-policy-iteration algorithm (LPI) for computing
inductive invariants using policy iteration. Our implementation is integrated inside the open-
source CPAchecker [BK11] framework for software verification and uses the maximization-
modulo-theory solver νZ [BPF15]. To the best of our knowledge, this is the first policy-
iteration implementation that is capable of dealing with C code. We evaluate LPI and show
its competitiveness with state-of-the-art analyzers using benchmarks from the International
Competition on Software Verification (SV-COMP).

Our solution improves on earlier max-policy approaches:

• Scalability: LPI constructs optimization queries that are at most of the size of the largest
loop in the program. At every step we only solve the optimization problem necessary
for deriving the local candidate invariant. Moreover, casting the algorithm in terms of
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standard Kleene worklist iteration allows us to use existing results on optimal iteration
orders, improving the performance by avoiding redundant computations.

• Ability to cooperate with other analyses: LPI is defined within the Configurable Program
Analysis (CPA) [BHT07] framework. This establishes a common ground with other
approaches and allows communicating with other analyses.

• Precision: LPI uses large-block encoding [Bey+09], and thus benefits from the precision
offered by SMT solvers, effectively checking executions of loop-free program segments. In
Chapter 7 we show how to use LPI with adjustable block encoding [BKW10], which does
not require pre-processing, making inter-analysis communicatino easier.

• Counterexample traces: in Section 4.4.1 we show how to generate an abstract reachability
tree from the run of LPI analysis, thus obtaining the abstract counterexample trace.

3.1.3 Related Work

Policy iteration is not as widely used as classic abstract interpretation and (bounded) model
checking. Roux and Garoche [RG13] addressed a similar problem of embedding the policy-
iteration procedure inside an abstract interpreter, however their work has a different focus
(finding quadratic invariants on relatively small programs) and the policy-iteration algorithm
remains fundamentally unaltered. The tool ReaVer [MS14] also performs policy iteration, but
focuses on efficiently dealing with logico-numerical abstract domains; it only operates on Lustre
programs. The tool 2LS [Bra+15] applies an approach inspired by policy iteration, combined
with k-induction and bounded model checking, yet it does not change the fundamental policy
iteration algorithm. The ability to apply policy iteration on strongly connected components one
by one was (briefly) mentioned before [Gau+07]. Our work takes the approach much further,
as our value-determination problem is more succinct, we apply the principle of locality to the
policy-improvement phase, and we formulate policy iteration as a classic fixpoint-iteration
algorithm, enabling better performance and communication with other analyses. Finally, it
is possible to express the search for an inductive invariant as a nonlinear constraint solving
problem [CSS03] or as a quantifier elimination problem [Mon10], but both of these approaches
scale poorly.

While this chapter is concerned with max-policy iterations, a similar min-policy [Cos+05]
algorithm was developed by Goubault et al., which performs descending iterations, continuously
refining the inductive invariant. Unlike max-policy, min-policy approaches do not guarantee
achieving the global optimum, however every iteration step is an over-approximation and thus
the iterations can be terminated early, and furthermore, min-policy was experimentally shown
to be more effective for computing invariants over quadratic templates [RG14].

3.1.4 Chapter Overview

We start by deriving the background necessary for the policy iteration algorithm in Section 3.2.
Our background presentation is largely unique to this work, and provides a complete and
sufficient introduction to policy iteration (original complete presentation of policy iteration and
background is also available in the journal paper [GS14] by Gawlitza and Seidl). In Section 3.3
we present the local policy iteration algorithm (LPI), which is an efficient policy iteration
implementation stated in the abstract interpretation framework (effectively, we are synthesizing
a widening operator which is guaranteed to converge with a least inductive invariant after
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finitely many iterations). We outline the extensions and optimizations we have developed
for LPI in Section 3.4. Finally, in Section 3.5 we present experimental evaluation of our LPI
implementation, and we conclude in Section 3.6.

3.2 Background

3.2.1 Definitions

A vector space S is called convex if the line segment between any two points in S lies solely
in S: ∀a,b ∈ S, k ∈ [0, 1]. ka + (1 − k)b ∈ S. A function f : Rn → R is called convex if and
only if for all x,y ∈ Rn the following holds: ∀k ∈ R. f(kx + (1− k)y) ≤ kf(x) + (1− k)f(y).
A function f : Rn → R is called concave if and only if −f is convex.

For two vectors a,b ∈ Rn, a � b holds iff b− a ∈ Rn+: that is, the comparison ≤ holds for
all components of a,b. We say that a strict inequality a ≺ b holds iff a � b, and there exists
an i < n such that a|i < b|i. Additionally, we define a� b to state that the strict inequality
< holds component-wise for all components of a,b. Lattice operators t : Rn → Rn → Rn and
u : Rn → Rn → Rn, are defined to return vectors of pairwise maximums or minimums of all
input components respectively.

A function f : Rn → R is called monotone if and only if for all a, b ∈ Rn, a � b implies
f(a) ≤ f(b). A function f : Rn → Rm is called monotone if and only if every component of f is
monotone. Strongest postcondition operator for a domain where the partial order is given by the
element-wise vector comparison is always monotone, as larger elements have larger post-images.
A function f : Rn → Rm is called convex if and only if every component fi : Rn → R is convex.

A function f : Rn → R is a pointwise maximum over a family of functions F with the
same signature if and only if for all x ∈ Rn, f(x) = maxg∈F g(x). We generalize this notion to
functions Rn → Rn by requiring that for all x ∈ Rn, there exists g ∈ F such that for all g′ ∈ F ,
f(x) = g(x) � g′(x)). We refer to functions which are a pointwise maximum over a finite set
F as having a selection property: that is, such a function f for every input x ∈ Rn effectively
selects g ∈ F to produce an output (f(x) = g(x)).

Consider the general optimization problem:

min f(x) s.t. a(x) ≤ 0 ∧ b(x) = 0 (3.1)

The problem (3.1) is referred to as a convex optimization problem if and only if both the
objective function f , and a function a defining the feasible set are convex, and a function b is
affine. Many important classes of convex optimization problems, such as positive semidefinite
programming (SDP, the constraint set is given by a positive semidefinite matrix), or linear
programming (LP, both the objective and the feasible set are affine) are solvable in polynomial
time. Modern solvers can analyze convex problems with tens of thousands of variables [Gur16;
IBM10].

3.2.2 Least Invariant as a Convex Optimization Problem

The classical problem in program analysis is searching for the smallest inductive invariant in
the domain D. We assume D ⊆ R̄n (R̄ ≡ R ∪ {+∞,−∞}): that is, each domain element is
representable as a tuple of n extended reals (e.g. a template constraints domain, Section 2.8.3).
Consider analyzing a program with a single initial state a0 ∈ D, and a single transition τ with
abstract semantics given by τ ] : D → D (Section 2.7.2).
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In order to make the problem of finding the least invariant decidable, we need to introduce
restrictions both on the abstract domain and the transition relation. We require τ ](a0) > a0,
which holds unless a0 is an inductive invariant.

Additionally, we restrict the allowed abstract transformers to a set of concave functions
R̄n → R̄n. In Section 3.2.3 we shall show that linear programs over rationals in a template
constraints domain satisfy the requirement.

Traditionally, abstract interpretation attempts to find the least fixed point by explicitly
computing the sequence a0,a0tτ ](a0),a0tτ ](a0)tτ ](τ ](a0)), . . . until a fixed point, potentially
using widening to enforce convergence (cf. Algorithm 2.1). Such a computation is referred to as
value iteration.

In contrast, we aim to find the least inductive invariant exactly by exploiting the concavity
property. In order to find the least post-a0 fixed point d∗ of a concave function τ ] : Rn → Rn

we need to solve the following optimization problem1:

d∗ ≡ min d s.t. τ ](d) � d ∧ a0 � d (3.2)

Minimizing vectors is not a well defined operation, as Rn only imposes a partial order.
However, from Tarski’s fixed point theorem [Tar55] for monotone functions on complete lattices
we know that such a minimum denoting least fixpoint larger than a0 exists.

The feasible set of Equation 3.2 is neither concave nor convex. Yet consider the following
optimization problem, which finds the largest fixpoint [Tar55]:

d̂∗ ≡ max d s.t. τ ](d) � d (3.3)

Equation 3.3 is a convex optimization problem, as −τ ] is convex, affine function d does not
affect the convexity, and any sub-level set of a convex function is convex. Furthermore, for a
monotone and concave function these fixed points coincide.

Theorem 3.1. For a monotone concave f : Rn → Rn, satisfying f(a)� a there exists at most
one fixed point b for which b � a holds.

Proof. Without loss of generality, let b be the least fixed point of f . As f(a) � a, from
Kleene [Kle52] theorem we have b � f(a). Consider a line l from a to b. As a � f(a) � b
holds, all coordinates strictly increase along l in the direction of b− a. Suppose there exists a
fixpoint c 6= b. Without loss of generality we can assume that c � b (as (c t b) � b is also a
fixed point by Tarski [Tar55] theorem).

As l is increasing in all coordinates, there exists a point d ∈ l such that d � c and moreover
for some dimension j the equality d|j = c|j holds. Then necessarily have c|j > b|j , as otherwise
d|j = c|j = b|j implies that d and b coincide (as all dimensions increase along l), which
contradicts the fact that d � c > b.

From concavity, f(d)|j < d|j (as there exists a strictly smaller pre-fixpoint on the same
line). Yet from monotonicity f(d)|j ≥ f(c)|j = c|j = d|j , yielding a contradiction d|j < d|j .
Thus the fixpoint c 6= b does not exist, and b is the unique post-a fixpoint.

Thus we can find the least fixed point by solving the convex optimization problem of
Equation 3.3.

1For precise treatment of infinities an interested reader can refer to [GS14].
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3.2.3 Template Constraints Domains

In this section we describe under which conditions the abstract transformer defined by a CFA
P and a template constraints domain described in Section 2.8.3 is concave.

Recall that abstract semantics for an operator OP and a TCD defined using a vector of
templates (t1, . . . , tn) is:

JOPK] (d)i ≡ sup t>i x′ s.t. x′ ∈ JOPK (γ(d)) (3.4)

In order to prove the concavity of Equation 3.4, we give the formal abstract semantics
definition for the programming language defined in Figure 2.1.

Firstly, we define the helper evaluation function eval for numerical and boolean expressions:
eval(<expr>) : (x→ R)→ R. This function performs the usual evaluation on a vector of values
representing program variables. We define evaluation of boolean expressions in the same way:
eval(<bool_expr>) : (x→ R)→ B. The evaluation of a boolean expression is a function which
takes the value for all program variables and returns “true” if and only if the set of constraints is
satisfied. With the helper eval function in place we define the evaluation of a statement to return
a formula over x∪x′ which evaluates to > if and only if the assignment to primed and unprimed
variables corresponds to a valid transition. Formally, eval(<stmt>) : (x→ R)→ (x′ → R)→ B.
Thus we define the following evaluation rules (two input arguments represent regions over
unprimed and primed variables respectively):

eval(x := input()) ≡ λr, r′.
(
∀v ∈ (x \ x). r(v) = r′(v)

)
eval(x := e) ≡ λr, r′.

(
r′(x) = eval(e)(r) ∧ (∀v ∈ (x \ x). r(v) = r′(v))

)
eval(assume(c)) ≡ λr, r′.

(
eval(c)(r) ∧ (∀v ∈ x. r(v) = r′(v))

) (3.5)

Hence we can define the abstract semantics of a template constraints domain for a given
statement (smallest upper bound for each template after the statement execution given the upper
bounds on each templates before the execution) without resorting to the concrete semantics:

JOPK] : Rn → Rn

JOPK]i ≡ λd. sup t>i x′ s.t. eval(OP)(x ∪ x′) ∧
∧
k

t>k x ≤ dk (3.6)

The definition above allows us to formulate the condition for abstract semantics concavity.

Theorem 3.2 (TCD Concavity). The abstract semantics of a template constraints domain is a
concave function if all the template functions are linear, the only allowed comparison operators
are >=, ==, boolean expressions do not contain any disjunctions or negations, and the eval
function defined in (3.5) is linear for all numerical expressions occurring in the program.

With the constraints introduced in Theorem 3.2 the optimization problem in Equation 3.5
is a parametric linear program. The concavity proof for such a function is given in [GS14,
Lemma 25].
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3.2.4 Examples of Solvable Programs

For a restricted set of program semantics and initial conditions, we have shown how the problem
of finding a least inductive invariant is equivalent to a convex optimization problem, which can
be often directly solved by an LP or SDP solver. Let us consider the implications of this result
and the programs for which we can now obtain explicit fixed points immediately.
Example 3.1 (Single Affine Transition). Programs with a single looping transition consisting
of a linear guard and any number of updates fall into this category. Consider analyzing the
following program in the template constraints domain with a single template x:

1 int x = 0;

2 while (x < 100)

3 x++;

The abstract semantics of the loop transition including the guard and the update is given
as a function from a previous to the new upper bound on x:

f(d) ≡ (max x′ s.t. x′ = x+ 1 ∧ x ≤ 99 ∧ x ≤ d) (3.7)

Using Theorem 3.1, the fixed point representing the upper bound may be found by solving
the following optimization problem:

f(d) ≡ (max f(x) s.t. f(x) ≥ x) (3.8)

By combining Equation 3.7 and Equation 3.8 and dropping inner maximization due to
redundancy we get the following LP:

max x′ s.t. x′ ≥ x ∧ x′ = x+ 1 ∧ x ≤ 99 (3.9)

resulting in the upper bound x ≤ 100. The lower bound is 0, given by the upper bound on the
template −x, derived from the initial condition, and inductive under the loop.

Of course, the example program in Example 3.1 is trivial. However, using Theorem 3.1 we
can already find interesting invariants not readily available to standard abstract interpretation
techniques:
Example 3.2 (A More Interesting Invariant). Again, consider analyzing in intervals the follow-
ing program with a single variable, which performs a non-deterministic number of iterations:

1 double x = 0;

2 while (input()) {

3 x = x / 2 + 1;

4 }

The lower bound inductively stays at zero, while in order to find the upper bound d we have to
solve another LP problem, obtained in the same way as in the Example 3.1:

d ≡ (max x′ s.t. x′ ≥ x ∧ x′ = x/2 + 1) (3.10)

resulting in a non-trivial inductive invariant x ∈ [0, 2].

3.2.5 Max Policy Iteration Algorithm

The class of programs for which an inductive invariant can be found with a single optimization
query is very small, as an overall transition relation τ ] is seldom concave. For example, consider
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int x = 0;
while (input()) {

if (x <= 10) {
x++;

} else if (x >= 10
&& x <= 20) {
x += 2;

}
}

n0

na

x := 0

assume(x <= 10);

x := x + 1

assume(x >= 10

&& x <= 20);

x += 2

Figure 3.3: Example Program for Policy Iteration Demonstration

analyzing a program shown in Figure 3.3 with a single template T ≡ {x}. Let τ ]1 : R→ R and
τ ]2 : R→ R denote the abstract semantics of statements associated with the first and second
conditions in the loop respectively (recall that abstract semantics gives a new upper bound on
x as a function of a previous upper bound after one transition). Their definition is:

τ ]1(d) ≡ max x′ s.t. x ≤ 10 ∧ x′ = x+ 1 ∧ x ≤ d
τ ]2(d) ≡ max x′ s.t. x ≥ 10 ∧ x ≤ 20 ∧ x′ = x+ 2 ∧ x ≤ d

(3.11)

And the resulting abstract transition τ ] is a maximum over τ ]1, τ
]
2:

τ ](d) ≡ max{τ ]1(d), τ ]2(d)} (3.12)

By definition, τ ] is a pointwise maximum over functions τ ]1, τ
]
2 which are both monotone and

concave. Observe that this is the case for programs with a single node and a single template,
where multiple concave transitions are allowed. In this section we show how the policy iteration
algorithm finds the least inductive invariant for programs where the abstract semantics of the
transition relation is a pointwise maximum over a finite set of concave functions. We refer to
such functions as policies or under-approximations of τ ].

In general, we are looking for the least fixed point d∗ ∈ Rn of a function τ ] which is greater
than the initial state a0 ∈ Rn. By adding the initial policy τ ]0 ≡ λd.a0 to F , we can ignore the
initiation condition d∗ � a0, as it would be implied by the consecution requirement τ ](d) � d,
resulting in the following optimization problem:

d∗ ≡ min ‖d‖ s.t. τ ](d) � d (3.13)

The function τ ] is not concave and instead is given as pointwise maximum of a set F of
finitely many policies (τ ]1, . . . , τ ]n):

τ ] ≡ maxF (3.14)

Lemma 3.1. For any d̂ � d∗ for which d̂ � τ ](d̂) holds, there exists τ ]i ∈ F such that
d̂� τ ]i (d̂) and furthermore d∗i ≡

(
max ‖d‖ s.t. τ ]i (d) � d

)
is less or equal to d∗.

Proof. The function τ ] is a pointwise maximum over F . From selection property, there exists
τ ]i ∈ F , such that τ ]i (d̂) = τ ](d̂). By Theorem 3.1, d∗i is equal to µ�d̂τ

]
i . Then τ ](d∗i ) � d∗i (as

for all d, τ ](d) � τ ]i (d)), from which we get d∗ � d∗i , as d∗ is the least fixed point of τ ].

Lemma 3.1 gives us a way of solving the non-convex optimization problem in Equation 3.13:
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Algorithm 3.1 Policy Iteration Algorithm

1: Input: set of policies F ≡ (f0, . . . , fn), initial policy f0 ≡ λx.x0, f0 ∈ F .
2: Output: x∗ ≡ min ‖x‖ s.t. (maxF)(x) � x
3: fi ← f0
4: x∗i = x0
5: while ¬(x∗i � f(x∗i )) do
6: . Policy Improvement
7: fi ← function in F for which fi(x∗i ) = f(x∗i )
8: . Value Determination
9: x∗i ← max ‖x‖ s.t. x � fi(x)

10: end while
11: return x∗i

if we have a point d̂ a priori known to be smaller then d∗, we can find the corresponding τ ]i
and its post-d̂ fixed point, which is also known to be smaller or equal to d∗. Each such τ ]i we
encounter during the iteration process is called a feasible policy. Thus the process can continue
until we converge to the policy τ ]∗ from which we can finally deduce d∗. This process is known
as a policy iteration, and the step of choosing a new τ ]i (any policy τ ]i for which τ ]i (d̂) � d
can be chosen) is called policy improvement while the step of generating new d∗i is called value
determination. We show the pseudocode for this process in Algorithm 3.1.

We revisit our example from Figure 3.3 with the policy iteration algorithm. We start with a
value 0. The initial feasible policy is:

τ ]1(d) ≡ max x′ s.t. x ≤ 10 ∧ x′ = x+ 1 ∧ x ≤ d

as τ ]1(0) = 1 which is a strict improvement over 0. The value determination process on τ ]1 solves
a linear programming problem:

max x′ s.t. x ≤ 10 ∧ x′ = x+ 1 ∧ x′ ≥ x

yielding a new value of 11. With this value, the policy τ ]2 becomes feasible, as it τ ]2(11) = 12. In
order to find the value of τ ]2 we solve the second linear programming problem:

max x′ s.t. x ≤ 10 ∧ x ≤ 20 ∧ x′ = x+ 2 ∧ x′ ≥ x

which returns a new bound 22. There are no new feasible policies, and the result x ≤ 22 is the
least inductive invariant expressible in the given domain.

For illustration purposes, we additionally present a detailed application of a policy iteration
algorithm on a non-convex optimization problem consisting of five policies in Figure 3.4. For
comparison, we perform value iterations on the same problem, visualized in Figure 3.9.

Theorem 3.3 (Policy Iteration Convergence). The algorithm shown in Algorithm 3.1 converges
within at most ‖F‖ convex optimization queries with the smallest post-x0 fixed point.

Proof. The optimality follows from Lemma 3.1, as none of the intermediate fixed points can
overshoot x∗. The convergence follows from the fact that for any two subsequent intermediate
values x∗i , x∗i+1 it follows that x∗i+1 � x∗i , by definition. As there is only a such fixed point for
each f ∈ F it imposes an order on policies, and each policy is considered at most once.
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y

x

y = x

y = p0(x) ≡ x0

y = p1(x)

y = p2(x)

y = p3(x)

y = p4(x)

x1

x2

y = f(x)

f(x) ≡ max{p0, p1, p2, p3, p4}(x)
x∗ = minx s.t. x ≥ f(x)

Figure 3.4: Visualization of the policy iteration algorithm. We are minimizing x subject to
the constraint x ≥ f(x), where f(x) : R → R is a point-wise maximum of five concave functions
(referred to as policies) p0, p1, p2, p3, and p4. The function p0 is a constant and represents the
initial condition. Observe that adding the initial condition to the list of policies makes the initiation
condition x ≥ x0 redundant, as universally x ≥ f(x) ≥ x0. The iteration starts at the initial
policy p0 which is convex, and its value is x0 for all inputs. However, by checking whether f(x0) is
smaller than x0 we discover that the inductiveness condition does not hold. As f has the selection
property (for all x, f(x) = pi(x) for some i), we can find our next policy from f(x0). Suppose this
is p1. Using Theorem 3.1 we find the local optimum by solving the convex optimization problem
max x s.t. x ≥ p1(x). This gives us the point x1 shown on the figure, referred to as the value of
the policy. Again, by substituting x1 into f , we observe that f(x1) > x1, from which we derive the
third policy p2. For p2 we find the local value x2, and we again discover that it does not satisfy
x ≥ f(x). We again find the local optimum x∗ for the policy p3, but now by substitution we get
f(x∗) = x∗, hence x∗ is the global optimum. Observe that we did not need to examine the policy
p4, and that moreover, the value of the policy p4 is larger than the global optimum x∗.
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int x = 0;
int y = 0;
while (x < 10) {

x++;
y++;

}

n0

na

x := 0; y := 0

assume(x < 10);

x := x + 1;

y := y + 1;

Figure 3.5: Program Requiring Different Policy Per Each Template

3.2.6 Selecting Multiple Policies

The assumption that τ ] is a pointwise maximum over a set of transitions associated with
separate statements we have used in Section 3.2.5 is too restrictive, and does not hold in general
in the presence of multiple templates. In this section we relax this assumption by allowing
the iteration process to select a different policy per each template (and additionally per each
node) provided that the feasibility criterion (application of a new policy gives the value strictly
greater than the current one) is satisfied for each policy.

As usual, we start with a motivating example. Consider analyzing the program shown in
Figure 3.5 with a template set T ≡ {x, x− y}. By the initialization condition, the templates
are always unbounded at the CFA node n0, and we are only interested in the bounds at na.
The abstract semantics function

τ ] : R2 → R2 (3.15)

returns new bounds on x and x− y given previous bounds on x and x− y respectively as an
input.

Even though the abstract semantics of each transition associated with each edge is concave,
the function τ ] is not due to a disjunction caused by the two incoming transitions:

ci ≡ (x′ = 0 ∧ y′ = 0)
cl ≡ (x < 10 ∧ x′ = x+ 1 ∧ y′ = y + 1)

τ ](d1, d2)|1 ≡ max x′ s.t. (ci ∨ cl) ∧ x ≤ d1 ∧ x− y ≤ d2

τ ](d1, d2)|2 ≡ max x′ − y′ s.t. (ci ∨ cl) ∧ x ≤ d1 ∧ x− y ≤ d2

(3.16)

Let τi : R2 → R2 and τl : R2 → R2 be the functions representing abstract transition relation
for the initial and looping transition relations respectively:

τi(d1, d2) ≡ (0, 0)
τl(d1, d2)|1 ≡ max x′ s.t. cl ∧ x ≤ d1 ∧ x− y ≤ d2

τl(d1, d2)|2 ≡ max x′ − y′ s.t. cl ∧ x ≤ d1 ∧ x− y ≤ d2)
(3.17)

Observe that abstract semantics τ ] is not a pointwise maximum over F ≡ {τi, τl} due to
the fact that maximums for different templates may be reached on the different elements of F .
For example τ ](0,−1) = (1, 0), while τi(0,−1) = (0, 0) and τl(0,−1) = (1,−1). This happens
as different optimization directions interfere, and the optimum occurs on different disjuncts for
different objectives. Hence we can not use F as a set of possible policies.

Instead, we construct a new set of policies F which is constructed from all possible combi-
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nations of templates and the elements of F .
We first define a new tuple of objective functions o where all objectives are guaranteed

to be independent and not share variables. The tuple o is generated from T by priming and
prefixing each variable in each template with a fresh index corresponding to the template: e.g.
o ≡ (x′1, x′2 − y′2) in our example.

Let M ⊆ T × F be the set of all possible mappings from T to F :

M ≡
{
{x : τi, x− y : τi}, {x : τi, x− y : τl}, {x : τl, x− y : τi}, {x : τl, x− y : τl}

}
(3.18)

From each m ∈M we generate a new element πm of F :

πm ≡ max o s.t.
∧

(ti 7→ci)∈m
ci[x/ti.x] (3.19)

where the a renaming adds a prefix derived from ti to every free variable in ci.
For example, the mapping {x : τi, x− y : τi} ∈M gets converted to the following policy (for

readability, the prefix 1 corresponds to the template x, and the prefix 2 corresponds to the
template x− y):

π(τi,τi)(d1, d2) ≡ max(x′1, x′2 − y′2) s.t. x′1 = 0 ∧ y′1 = 0 ∧ x′2 = 0 ∧ y′2 = 0 (3.20)

The full set of policies
F ≡ {πτi,τi , πτi,τl

, πτl,τi , πτl,τl
} (3.21)

is given in Equation 3.22 using a set of helper constraint variables c:

ci1 ≡ x′1 = 0 ∧ y′1 = 0
ci2 ≡ x′2 = 0 ∧ y′2 = 0
cl1 ≡ x1 < 10 ∧ x1 ≤ d1 ∧ (x1 − y1) ≤ d2 ∧ x′1 = x1 + 1 ∧ y′1 = y1 + 1
cl2 ≡ x2 < 10 ∧ x2 ≤ d1 ∧ (x2 − y2) ≤ d2 ∧ x′2 = x2 + 1 ∧ y′2 = y2 + 1

πτi,τi(d1, d2) ≡ max(x′1, x′2 − y′2) s.t. ci1 ∧ ci2
πτi,τl

(d1, d2) ≡ max(x′1, x′2 − y′2) s.t. ci1 ∧ cl2
πτl,τi(d1, d2) ≡ max(x′1, x′2 − y′2) s.t. cl1 ∧ ci2
πτl,τl

(d1, d2) ≡ max(x′1, x′2 − y′2) s.t. cl1 ∧ cl2

(3.22)

Observe that by creating a set of fresh variables per each optimization objective we have
stopped the objectives from “interfering” with each other, thus the function τ ] is equal to the
pointwise maximum over the set of policies F :

τ ] = maxF (3.23)

We abuse the notation and treat F as the set of constraints of the contained functions, as all
the optimization objectives contained in o are the same. Then we can drop the inner maximum
due to redundancy and write Equation 3.23 as:

τ ] ≡ max(x′1, x′2 − y′2) s.t. F (3.24)

Generating F comes at a cost: the size of the set of exploded policies is exponential in the

66



Section 3.2 Background

1 int i=0;
2 while (input()) {
3 int k=0;
4 while (input()) {
5 assert(k <= 1000);
6 if (k == 1000) break;
7 k++;
8 }
9 assert(i <= 1000);

10 if (i == 1000) break;
11 i++;
12 }

n0

na

nb

i′ = 0

k′ = 0
∧

i′ = i

i 6= 1000
∧

i′ = i + 1

k 6= 1000 ∧ k′ = k + 1 ∧ i′ = i

Figure 3.6: Running Example: C program and the corresponding CFA after the application of
large block encoding (Section 2.9).

number of templates. Yet we do not generate F explicitly, but instead we create it implicitly
during the iteration, by choosing a different (partial) policy for each template during each policy
improvement step2. The value determination step is performed on a function from F , as it
needs to combine different policies in a single linear programming query. We apply the same
approach for generating different invariants at different CFA nodes, by allowing a different
policy to be selected per each node and per each template.

Going back to out example, the iteration process proceeds as follows: we start with an
initial value (0, 0). The bound for the template x − y can not be increased any further, and
stays associated with the (partial) policy τi. For the bound for x we choose a new policy τl
based on a local improvement 1 > 0. We run value determination on the policy πτl,τi given by
the map {x : τi, x− y : τl}, which requires solving the optimization problem

max(d1, d2) s.t. π(τl,τi) ∧ d1 ≤ x′1 ∧ d2 ≤ (x′2 − y′2) (3.25)

yielding the final inductive invariant x ≤ 10 ∧ x− y ≤ 0.

Non-Strict Improvement Properties Observe that if we allow choosing a different policy
per each template, we may often end up in a situation where the values for some templates
are updated, while others remain constant. That has actually happened in our example, when
the bound on x was increased, but the bound on x− y was left constant, which violates the
required condition of Lemma 3.1. In our example, we have found the fixed point by only using
the value determination on the partial policies which were updated, and leaving the values
which remained the same constant.

The proof of correctness for such a case is considerably more complicated, and can be found
by an interesting reader in the original work by Gawlitza and Seidl [GS14].

3.2.7 Analyzing the Running Example with Policy Iteration

2Strictly speaking, the chosen function is not a policy, but the mapping from templates to chosen functions
defines one. Yet we abuse the notation by calling “partial policies” policies as well.
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Example 3.3 (Policy Iteration on Program in Figure 3.6). We analyze this program with a set
of templates {i, k}, and we look for the least inductive invariant d ≡ (dia, dib, dkb ) that subsumes
the upper bound for the variables i, k for all possible program executions on nodes na and nb
respectively.

Thus we minimize (dia, dib, dkb ) subject to the consecution condition, stating that the set of
states represented by d is larger or equal to their strongest postcondition:

min(dia, dib) s.t.



dia ≥ sup i′a s. t. (i′a = 0)
∨(ia ≤ dib ∧ ia 6= 1000 ∧ i′a = ia + 1) ∨ ⊥

dib ≥ sup i′b s. t. (ib ≤ dia ∧ i′b = ib ∧ k′b = 0)
∨(ib ≤ dib ∧ kb ≤ dkb ∧ kb 6= 1000 ∧ k′b = kb + 1 ∧ i′b = ib) ∨ ⊥

dib ≥ sup k′b s. t. (ib ≤ dia ∧ i′b = ib ∧ k′b = 0)
∨(ib ≤ dib ∧ kb ≤ dkb ∧ kb 6= 1000 ∧ k′b = kb + 1 ∧ i′b = ib) ∨ ⊥

(3.26)

In the constraints above, disjunctions arise from multiple incoming edges to each node, and
an extra argument ⊥ is added, which represents the case where the associated node is not
reachable (in that case, the bound on the template is −∞).

Each policy for the program in Figure 3.6 is an under-approximation of Equation 3.26, where
each disjunction is replaced by one contained disjunct.

For example, for the policy π

dia ≥ sup i′a s. t. (i′a = 0)
dib ≥ sup i′b s. t. (ib ≤ dia ∧ i′b = ib ∧ k′b = 0)
dkb ≥ sup k′b s. t. (ib ≤ dia ∧ i′b = ib ∧ k′b = 0)

(3.27)

from Theorem 3.1 we know that the corresponding value (smallest (dia, dib, dkb )) can be found by
solving a single linear programming query derived from Equation 3.27 by changing the lower
bound to upper bound, maximizing for (dia + dib + dkb ), namespacing variables according to
associated nodes and templates (Section 3.2.6), and dropping the inner supremum operator due
to redundancy:

max dia + dib + dkb s.t.
∧ dia ≤ i′i,a ∧ i′i,a = 0

dib ≤ i′i,b ∧ ii,b ≤ dia ∧ i′i,b = ii,b ∧ k′i,b = 0
dkb ≤ k′k,b ∧ ik,b ≤ dia ∧ i′k,b = ik,b ∧ k′k,b = 0

(3.28)

yielding the expected value (0, 0, 0).

In order to test the policy π from Equation 3.27 for the possibility of improvement, we
compute its local value, by substituting the unknowns (dia, dib, dkb ) on the right hand side of the
global optimization problem in Equation 3.26 with the value obtained from π, and checking
whether the system of constraints holds. In our example, the right hand sides evaluate to
(1, 0, 1) and as 0 ≥ 1 does not hold, π can be improved for the template i at na, and for the
template k at nb.

Thus we generate a new policy, obtained by replacing the right hand side of each constraint
of Equation 3.26 with the disjunct which evaluates to the value causing the inequality. The
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resulting new policy is:

dia ≥ sup i′a s. t. ia ≤ dib ∧ ia 6= 1000 ∧ i′a = ia + 1
dib ≥ sup i′b s. t. (ib ≤ dia ∧ i′b = ib ∧ k′b = 0)
dkb ≥ sup k′b s. t. ib ≤ dib ∧ kb ≤ dkb ∧ kb 6= 1000 ∧ k′b = kb + 1 ∧ i′b = ib

(3.29)

Recall that the iteration process terminates when the least solution can not be improved
any further.

We give the full trace of the policy iteration algorithm on the running example. As
disjunctions in Equation 3.26 arise from multiple incoming edges per each node, a policy can
be defined by a choice of an incoming edge per node per template, or ⊥ if no such choice is
feasible. We represent a policy symbolically as a 3-tuple of predecessor nodes (or ⊥), as there
are two nodes, with a single policy to be chosen for each node. The order corresponds to the
order of the tuple of the unknowns. The initial policy p0 is (⊥,⊥,⊥) with the corresponding
value v0 = (−∞,−∞,−∞).

The trace on the example is:

1. Policy improvement: p1 = (n0,⊥), obtained with a local value (0,−∞,−∞). The value
determination yields the value corresponds to the initial condition: d1 = (0,−∞,−∞).

2. Policy improvement find a feasible policy for nb: p2 = (n0, na, na), with value determina-
tion yielding d2 = (0, 0, 0). The value corresponds to the initialization condition for both
nodes.

3. Policy improvement selects the looping edge for both na and nb: p3 = (nb, na, nb), resulting
in a value d3 = (1000, 1000, 1000).

4. Finally, the policy cannot be improved any further and the iteration converges with an
invariant i ≤ 1000 at na, and k ≤ 1000 ∧ i ≤ 1000 at nb, which is strong enough to verify
the asserts.

Each policy improvement requires at least three local SMT queries, and each value determi-
nation requires one global LP query.

3.3 Local Policy Iteration (LPI)

There are algorithm inefficiencies which can be seen even in the toy example: the policy should
be improved only on templates where the new information is locally available (there is no
point in re-computing the same bound multiple times), and value determination should only be
computed once any of the relevant policies was improved, and only on the strongly connected
component given by the variable dependencies associated with the improved policy. Furthermore,
in the presence of multiple dependencies between the variables the performance of the policy
iteration algorithm crucially depends on the iteration order: e.g. if we don’t stabilize the inner
cycle before propagating the information further, many recomputations might be required.

While keeping track of variable dependencies and identifying strongly connected components
is possible even for the framework given by Algorithm 3.1 [Gau+07], forcing an algorithm which
operates over a system of equations to follow an iteration order defined by the structure of a
CFA is non-trivial. Moreover, combining policy iteration with other analyses and exchanging
invariant candidates during runtime also can not be done in an obvious way.

69



Chapter 3 Local Policy Iteration

Yet the classical Kleene worklist iteration algorithm (Algorithm 2.1) addresses all of these
concerns: it allows making use of optimal iteration orders, keeping track of the updates
propagating through the CFA, and combining the intermediate results between multiple
analyses.

We develop a new policy-iteration-based algorithm, based on the principle of locality, which
aims to address the scalability issues and the problem of communicating invariants with other
analyses. We call it local policy iteration or LPI. To make it scalable, we consider the structure
of a CFA being analyzed, and we aim to exploit its sparsity.

Our formulation is based on the following observation: policy iterations can be seen as
standard Kleene iterations in the template constraints domain, where the abstract state apart
from the bounds contains the meta-information which can be used to reconstruct the used policy.
With this meta-information available, value determination can be defined as a widening operator,
which converges to the least fixed point after finitely many iterations, and no narrowing steps
are required.

3.3.1 LPI Formalization

In order to formalize LPI we define the lattice of abstract states L, strongest postcondition
operator L → F(x ∪ x′) → L, and a join operator L → L → L. We assume that the large
block encoding pre-processing (Section 2.9) was performed on the input CFA, and that each
transition relation is encoded as an existentially quantified formula f ∈ F(x ∪ x′) within a
decidable theory.

An LPI abstract state is an element of a template constraints domain with meta-information
added to record the policy used for generating the state.

Definition 3.1 (LPI Abstract State). An LPI abstract state is either a bottom state ⊥, or a
mapping from the externally given set T of templates to tuples (d, policy, backpointer), where
d ∈ R is a bound for the associated template t (the represented property is t(x) ≤ d), policy is a
formula representing the policy that was used for deriving d (policy has to represent a concave
function connecting primed and unprimed variables), and backpointer is another LPI abstract
state that is a starting point for the policy (base case is a top state associated with a program
entry, modelled by an empty mapping {}).

Note that the bound d is redundant, as it can be re-derived from policy and backpointer by
solving the optimization query

max t>x′ s.t. policy(x ∪ x′) ∧ JbackpointerK] (x) (3.30)

We include the bound in the tuple as an optimization for performing quick coverage checks and
postcondition computations.

Observe that we do not need to include positive or negative infinities in the abstract state,
as a single mapping to −∞ implies that the entire state is ⊥ and therefore unreachable, and
mapping any template to∞ does not add any constraints, and thus can be discarded. The partial
order over L is defined by component-wise comparison of bounds associated with respective
templates (lack of a bound corresponds to an unbounded template). The concretization is given
by the conjunction of represented template linear constraints, ignoring policy and backpointer
meta-information. For example, an abstract state {x : (10,_,_)} (underscores represent
information irrelevant to the example) concretizes to {c | c[x] ≤ 10}, and the initial state {}
concretizes to all concrete states.
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Algorithm 3.2 LPI Postcondition Computation

1: Input: state a0, transition relation τ(x ∪ x′), set of templates T
2: Output: new state
3: new ← empty map
4: τ̂ ← τ with disjunctions annotated using a set of marking variables M
5: . Formula describing the state space at a destination location.
6: φ(x′)← ∃x. γ(a0)(x) ∧ τ̂(x ∪ x′)
7: . Perform abstraction on φ.
8: for all template t ∈ T do
9: . Maximize subject to the constraints introduced by the formula

10: . and the starting state.
11: d← max t>x′ s.t. φ(x′)
12: M← model at the optimum point
13: . Replace marking variables M in τ̂ with their value from the modelM,
14: . generating a concave relation representing the policy.
15: Policy ψ ← τ̂ [M/M|M ]
16: new[t]← (d, ψ, a0)
17: end for
18: return new

The postcondition computation (Algorithm 3.2) operates by maximizing all templates t ∈ T
subject to the constraints introduced by a0 and the transition relation τ(x ∪ x′) representing
a (combination of) CFA operators. Backpointer and a policy are produced from the SMT
modelM, corresponding to the resulting from the maximization query. The selected policy is
a concave under-approximation of τ , obtained by replacing all disjunctions (∨D) with their
arguments (d ∈ D), such that the chosen disjunct is modelled at the optimum (M |= d). To do
so, we annotate τ with marking variables (line 4): each disjunction τ1 ∨ τ2 in τ is replaced by
(p ∧ τ1) ∨ (¬p ∧ τ2) where p is a fresh propositional variable. A policy associated to a bound is
then identified by the values of the marking variables at the optimum (subject to the constraints
introduced by τ and a0), and is obtained by replacing the marking variables in τ with their
values from M (line 15). Thus the LPI postcondition computation effectively performs the
policy-improvement operation for the given node, as only the policies which are feasible with
respect to the current candidate invariant (given by the previous abstract state) are selected.

Example 3.4 (Postcondition Computation as a Policy Improvement). We start with a state a:

a =
{
x : (100,>, {})

}
which concretizes to {c | c[x] ≤ 100}, and a set T ≡ {x} of templates.

We wish to compute a postcondition after traversing the following fragment:

x = (x <= 10) ? x + 1 : 0;

This line generates a formula τ ≡ (x ≤ 10 ∧ x′ = x + 1 ∨ x > 10 ∧ x′ = 0). Firstly, we
annotate τ with marking variables, which are used to identify the selected policy, obtaining
τ̂ ≡ x ≤ 10 ∧ x′ = x+ 1 ∧m1 ∨ x > 10 ∧ x′ = 0 ∧ ¬m1. Then we optimize τ̂ , together with the
constraints from the starting state a for the highest value of the template. This amounts to a
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single maximization modulo SMT query:

supx′ s.t. x ≤ 100 ∧ (x ≤ 10 ∧ x′ = x+ 1 ∧m1 ∨ x > 10 ∧ x′ = 0 ∧ ¬m1)

The query is satisfiable with a maximum of 11, and an SMT model:

M≡ {x′ : 11,m1 : >, x : 10}

Replacing the marking variable m1 in τ with its value in M gives us a disjunction-free
formula x ≤ 10 ∧ x′ = x + 1, which we store as a policy. Finally, the newly created state is
{x : (11, x ≤ 10 ∧ x′ = x+ 1, a)}.

In LPI, we use the join operator (Algorithm 3.3) to optionally perform the value determination
which computes the fixpoint value for the given policy. This can be seen as an exact widening
operator, which converges after finitely many steps. Multiple iterations through the loop might
be necessary to find the optimal policy and reach the global fixpoint. In the presence of nested
loops, the process is repeated in a fixpoint manner: we “close” the inner loop, “close” the
outer loop with the new information from the inner loop available, and repeat the process
until convergence. Each iteration selects a new policy, thus the number of possible iterations is
bounded.

The join operator first computes the component-wise maximum (line 12), choosing the
new bound only if it is strictly larger. Then it computes a strongly connected component of
variable dependencies for value determination (line 23) If a non-empty SCC is found, the value
determination step (Algorithm 3.4) is launched. It computes the least fixpoint for the chosen
policy across the entire strongly connected component where the current node n lies. From the
map M , the algorithm generates a global optimization problem, where the set of fresh variables
dtni

represents the maximal value a template t can obtain at the node ni using the policies
selected. Variable dtni

is made equal to the namespaced3 output value of the policy ψ(x ∪ x′)
chosen for t at ni (line 13). For each policy ψ and the associated backpointer a0, we constrain the
input variables of ψ using a set of variables dt0n0 representing bounds at the node n0 associated
with a0 (line 16). This set of “input constraints” for value determination results in a quadratic
number of constraints in terms of the number of selected policies. Finally, for each template t
we maximize for dtn (line 23), which is the maximum possible value for t at node n under the
current policy, and we record the bound in the generated state (line 24), keeping the old policy
and backpointer.

The local-value-determination algorithm is almost identical to the max-strategy evalua-
tion [GM12], except for two changes: we only add potentially relevant constraints from the
“closed” loop (found by traversing backpointers associated with policies), and we maximize
objectives one by one, not for their sum (which avoids special casing infinities, and enables
optimizations outlined in Section 3.4). Unlike classic policy iteration, we only run local value de-
termination after merges on loop heads, because in other cases the value obtained by abstraction
is the same as the value which could be obtained by value determination.

3.3.2 Properties of LPI

Property 3.1 (Soundness). LPI terminates with an inductive invariant.

3Namespacing means creating fresh copies by attaching a certain prefix to variable names.
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Algorithm 3.3 LPI Join Operator

1: Input: node n, previous abstract state a0, new abstract state a1, set of templates T
2: Output: new joined state a′
3: a′ ← {}
4: updated ← ∅
5: for all template t ∈ T do
6: if t 6∈ a0 ∨ t 6∈ a1 then
7: . The value of t is unbounded
8: continue
9: end if

10: (bound v0, policy p0, backpointer b0)← a0[t]
11: (bound v1, policy p1, backpointer b1)← a1[t]
12: if v1 > v0 then
13: . The new value is strictly larger
14: . we should update to the new policy.
15: a′[t]← (v1, p1, b1)
16: updated ← updated ∪ {t}
17: else
18: . Otherwise keep using the old policy.
19: a′[t]← (v0, p0, b0)
20: end if
21: end for
22: . Strongly connected component of variable dependencies
23: scc ← strongly connected component in the graph defined by policy backpointers which

contains a′.
24: if scc 6= ∅ then
25: M ← map from nodes to the corresponding states in scc
26: a′ ← LocalValueDetermination(n, scc, T )
27: end if
28: return a′

Proof. LPI terminates when no more updates can be performed, and newly produced abstract
states are subsumed (in the preorder defined by the lattice) by the already discovered ones.
Thus, it is an inductive invariant: the produced abstract states satisfy the initial condition and
all successor states are subsumed by the existing invariant.

Property 3.2 (Termination). LPI terminates on any input program.

Proof. An infinite sequence of produced states would have to repeat at least one node infinitely
often. However, each subsequent abstraction on the same node must choose a different policy
to obtain a successively higher value, but the number of policies is finite. An infinite sequence
is thus impossible, hence a run of LPI is always guaranteed to terminate.

Property 3.3 (Optimality). In rationals, LPI terminates with the smallest inductive invariant
expressible in the given domain.

Proof Outline. LPI can be seen as an efficient oracle for selecting the next policy to update
(note that policies selected by LPI are always feasible with respect to the current invariant
candidate). Skipping value-determination steps when they have no effect, and attempting to
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Algorithm 3.4 Local Value Determination

1: Input: node n, map M from nodes to states, set T of templates
2: Output: generated state new
3: constraints ← ∅
4: for all node ni ∈M do
5: state s←M [ni]
6: for all template t ∈ s do
7: (bound d, policy ψ,backpointer a0)← s[t]
8: Generate a unique string namespace
9: . Prefix all variables in ψ.

10: . x′namespace,xnamespace is a set of namespaced output/input variables for ψ.
11: constraints ← constraints ∪ {ψ[x/xnamespace][x′/x′namespace]}
12: dtni

← fresh variable (upper bound on t at n)
13: constraints ← constraints ∪

{
dtni
≤ t(x′namespace)

}
14: n0 ← location associated with a0
15: for all t0 ∈ a0 do
16: constraints ← constraints ∪ {t0(xnamespace) ≤ dt0n0

}
17: end for
18: end for
19: end for
20: new ← empty state
21: for all templates t ∈ T do
22: (d0, ψ, a0)←M [n]
23: d← max dtn subject to constraints
24: new[t]← (d, ψ, a0)
25: end for
26: return new

include only relevant constraints in the value-determination problem do not alter the values of
obtained fixed points.

Example 3.5 (LPI Trace on the Running Example). We revisit the running example (Figure 3.6)
with the local version of policy iteration:

1. We start with an empty state a0 ≡ {}.

2. We compute the postcondition for the edge (n0, i′ = 0, na), producing a new state a1,
defining the region i ≤ 0:

{i : (0, i′ = 0, a0)}

Observe that the resulting policy for the template i is equal to the formula associated
with an input edge, as it does not contain any disjunctions. This calculation requires
solving one LP problem.

3. We explore the incoming edge to nb, resulting in a new abstract state a2:

a2 ≡ {i : (0, i′ = i ∧ k′ = 0, a1), k : (0, i′ = i ∧ k′ = 0, a1)}

This calculation requires two LP queries.
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4. Exploring the looping edge on nb results in a new state

a3 ≡ {i : (0, k 6= 1000 ∧ k′ = k + 1 ∧ i′ = i, a2), k : (1, k 6= 1000 ∧ k′ = k + 1 ∧ i′ = i, a2)}

again requiring two LP queries.

5. The join on node nb merges a2 and a3, yielding:

a4 ≡ {i : (0, i′ = i ∧ k′ = 0, a1), k : (1, k 6= 1000 ∧ k′ = k + 1 ∧ i′ = i, a2)}

Value determination “closes” the loop, producing a new state:

a5 ≡ {i : (0, i′ = i ∧ k′ = 0, a1), k : (1000, k 6= 1000 ∧ k′ = k + 1 ∧ i′ = i, a2)}

which requires solving one LP problem.

6. Postcondition under the edge (nb, i 6= 1000 ∧ i′ = i′ + 1, na) generates the state

a6 ≡ {i : (1, i 6= 1000 ∧ i′ = i+ 1, a5)}

This is performed by solving a single LP problems.

7. Join of states a6 and a1 and the subsequent value determination yields the new state
associated with na:

a7 ≡ {i : (1000, i 6= 1000 ∧ i′ = i+ 1, a6)}

8. Finally, the final postcondition computation under the edge (na, k′ = 0 ∧ i′ = i, nb) yields:

a9 ≡ {i : (1000, i′ = i ∧ k′ = 0, a7), k : (1000, k 6= 1000 ∧ k′ = k + 1 ∧ i′ = i, a2)}

which subsumes a5 and concludes the iteration.

Compared to the original algorithm there are two value-determination problems instead of
three, both on considerably smaller scale. The improvement in performance is more than a
fixed constant: if the suboptimal iteration order was picked for a larger problem, the increase
might be exponential.

3.4 Extensions and Optimizations

3.4.1 Extending to Integers

Original publications on max-policy iteration in template constraints domain deal exclusively
with reals, whereas C programs operate primarily on integers4. Excessively naive handling of
integers leads to poor results: with an initial condition x = 0, x ∈ [0, 4] is inductive for the
transition system x′ = x+ 1 ∧ x 6= 4 in integers, but not in rationals, due to the possibility of
the transition x = 3.5 to x = 4.5. An heuristical workaround is to rewrite each strict inequality
a < b into a ≤ b− 1: on this example, the transition becomes x = x+ 1 ∧ (x ≤ 3 ∨ x ≥ 5) and

4Previous work [GS07a] deals with finding the exact interval invariants for programs involving integers, but
only for a very restricted program semantics.
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1 int x, x_new;
2 x=0;
3 x_new=input();
4 while (2 * x_new == x+2) {
5 x = x_new;
6 x_new = input();
7 }

Figure 3.7: Integer Imprecision in Policy Iteration

x ∈ [0, 4] becomes inductive on rationals. However, such a heuristic is not capable of capturing
a congruence information, e.g. proving that a statement guarded by 2 * x == 2 * y + 1 is
unreachable over integral variables, as an even number can not be equal to an odd one. Thus
we form all our OPT-SMT queries in the logic sorts similar to the variable types: integers for
machine integers, and rationals for floats.

Use of integers has an additional benefit: in the implementation we run a parallel congruence
analysis (Section 7.7.1), and we inject the obtained invariants into the value determination and
postcondition computation queries, making the resulting invariant more precise.

Linear relations over the integers are not convex or concave, which is a requirement for the
least fixpoint property of policy iteration. Thus the encoding described above may still result
in an over-approximation. E.g. consider the program shown in Figure 3.7. LPI terminates with
a fixpoint x ≤ 2, yet the least fixpoint is x ≤ 1. We have not found the imprecision over the
integers to be a large problem in practice: the resulting algorithm is still more precise than
traditional abstract interpretation, and gives much better results than rational relaxation for
all variables. Moreover, empirically we have found that interesting invariants about integer
variables often involve congruence facts which are better obtained explicitly with a separate
congruence analysis, e.g. x+ y = 1 (mod 2).

3.4.2 Extending to Uninterpreted Functions

In program analysis the theory of uninterpreted functions [KS08] (or UFs) is often used: e.g.
for encoding pointer arithmetic operations, or complex non-linear operations which can not
be modelled directly. Like linear integer arithmetic, the theory of uninterpreted functions is
not convex and a direct LPI application might result in a suboptimal invariant. However,
uninterpreted functions can be removed using Ackermann reduction [KS08], which instantiates
a number of fresh variables, and encodes the function axioms explicitly. For example, the
transition relation τ ≡ (p(x) = p(y)+1∧x = y) can be converted to (px = py +1∧x = y∧ ((x =
y) =⇒ px = py). The Ackermann reduction pre-processing potentially results in a quadratic
increase in a formula size, yet allows LPI to produce least inductive invariants over the theory
involving uninterpreted functions.

3.4.3 Reducing the Number of Value Determination Constraints

In Section 3.3 we have described the local value-determination algorithm which adds a quadratic
number of constraints in terms of policies. In practice this is often prohibitively expensive. The
quadratic blow-up results from the “input” constraints to each policy, which determine the
bounds on the input variables. We propose multiple optimization heuristics which increase the
performance.

As a motivation example, consider a long trace ending with an assignment x = 1. If this
trace is feasible and chosen as a policy for the template x, the output bound will be 1, regardless
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of the input. With that example in mind, consider further the postcondition computation
(Algorithm 3.2) from which we derive the bound d for the template t. Let a0, τ(x ∪ x′) be the
function input.

Syntactic Check We perform the slicing based on variable dependencies of t(x′) in τ and
in the formula generated by a0, and we only follow the backpointers for the templates which
can potentially affect the resulting value of the template. When computing the strongly
connected component of relevant states for the value determination problem, we only follow the
backpointers for the policies which were syntactically shown to be capable of affecting the final
bound. E.g. for a transition τ ≡ x′ = x + 1 and a template t ≡ x, the resulting bound on x
after performing value determination is independent of templates associated with a0 which do
not contain the variable x. Thus when performing value determination at this node, we do not
follow the backpointers for such templates. Moreover, if from the syntactic analysis we know
that none of the variables of t occur in τ , we can skip the optimization step altogether, and
return the bound a0[t]. For example, for a template t ≡ x and a transition relation τ ≡ y ≤ 5,
the resulting bound on t is not modified by τ and is given by a0[t].

Semantic Check Suppose the strongest postcondition computation has returned the bound
d for the template t. We check the satisfiability of τ(x ∪ x′) ∧ t>x′ > d; if the result is
unsatisfiable, then the bound of t is input-independent, that is, it is always d if the trace is
feasible. Thus we do not add the input constraints for the associated policy in the value-
determination stage. Also, when computing the strongly connected component of relevant states
for the value-determination problem, we do not follow the backpointers for input-independent
policies, potentially drastically shrinking the resulting constraint set. For example, for t ≡ x
and the transition relation τ ≡ x′ = 1, the resulting bound is always 1, regardless of values
associated with a0. Thus when performing value determination we do not follow backpointers
at all for the template t at such a node.

3.4.4 Merging the Unknowns

Furthermore, we limit the size of the value-determination LP by merging some of the unknowns.
Namely, when multiple templates associated with the same state share the same policy, we
do not create fresh namespaced copies for each of those templates, but share the same set of
variables between them. This is equivalent to equating these variables, thus strengthening the
constraints. The result thus under-approximates the fixed point of the selected policy. If it is
less than the policy fixed point (not inductive with respect to the policy), we fall back to the
normal value determination. An example of such an optimization is shown in Example 3.6:
note that unlike classical value determination our procedure requires ‖T‖ optimization queries
instead of 1, yet they are often performed on a much simpler constraint set.

Example 3.6 (Merging Unknowns for Value Determination). We revisit the example in
Figure 3.5 with the template set T ≡ {x, y}. We are running value determination for the policy
given by selecting the looping transition τl for both templates. The construction of the value
determination problem given in Section 3.2.6 requires us to solve the following optimization
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problem:

max(d1, d2) s.t. d1 ≤ x′1 ∧ d2 ≤ y′2 ∧ x1 ≤ d1 ∧ y1 ≤ d2 ∧ x′1 = x1 + 1 ∧ y′1 = y1 + 1 ∧ x1 < 10
∧ x2 ≤ d1 ∧ y2 ≤ d2 ∧ x′2 = x2 + 1 ∧ y′2 = y2 + 1 ∧ x2 < 10

(3.31)
The Equation 3.31 contains the constraint set resulting from the looping transition twice

with two different namespaces. Instead, we optimize for a simpler constraint set by merging
the variables associated with templates “sharing” the looping policy, and we get the following
constraint set:

C ≡ d1 ≤ x′ ∧ d2 ≤ y′ ∧ x ≤ d1 ∧ y ≤ d2 ∧ x′ = x+ 1 ∧ y′ = y + 1 ∧ x < 10 (3.32)

In order to recover the bounds, we optimize for d1 and d2 in separate optimization queries
with respect to the constraints in C. In our example (and as we have seen empirically, in many
others), the resulting value of the objective function remains the same.

The resulting constraint set is, in general, stronger than the one originally associated with
the value determination problem, and may even be unsatisfiable. Thus we switch to the more
expensive procedure if the obtained invariant candidate is not inductive with respect to the
chosen policies, preserving soundness.

3.4.5 Shrinking the Search Space

Additionally, during maximization we add a redundant lemma to the set of constraints that
specifies that the resultant value has to be strictly larger than the current bound. This
significantly speeds up the maximization by shrinking the search space.

Unfortunately, this approach does not combine well with the convex-hull based template
synthesis, described in Section 4.5, as the redundant lower bounds might be required for the
correct computation of the convex hull.

3.4.6 Ordering the Optimization Objectives

Consider emulating the octagon domain and synthesizing a set of templates ±x ± y for all
variables x, y ∈ x. For most programs this set will be redundant: for instance, for describing the
“cube” ∀v ∈ {x, y, z} . 0 ≤ v ≤ 1 only six templates are required: x,−x, y,−y, z,−z. Yet the
octagons abstract domain would generate 36 templates instead, most of them redundant. We
call an optimization objective redundant if it’s value can be derived from the already computed
objectives. In our example, the bound on e.g. x + y is simply the sum of the bound on x

and the bound on y. Fortunately, an optimization solver based on simplex can exploit this
redundancy, as in our example the underlying simplex tableau will not require any further pivots
for computing the bound on x+ y after the bounds on x and y were computed.

Thus we apply a length-based ordering to optimization objectives in the abstraction step
(optimizing for objectives with fewer variables first).
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vs. PAGAI LPI BLAST CPAchecker Unique Verified Incorrect
PAGAI 4 13 15 1 52 1
LPI 13 20 20 7 61 1
BLAST 6 4 8 0 45 1
CPAchecker 21 17 21 12 58 2

Table 3.1: Number of verified programs for different tools. The first five columns represent
differences between approaches: the cell corresponding to the row A and a column B (read “A vs.
B”) displays the number of programs A could verify and B could not. In the column Unique we
show the number of programs only the given tool could verify (out of the analyzers included in the
comparison). The column Verified shows the total number of programs a tool could verify. The
column Incorrect shows false positives: programs that contained a bug, yet were deemed correct by
the tool.

3.5 Experiments

We have evaluated our tool on the benchmarks from the category “Loops” of the International
Competition on Software Verification (SV-COMP’15) [Bey15] consisting of 142 C programs,
93 of which are correct (the error property is unreachable). We have chosen this category
for evaluation because its programs contain numerical assertions about variables modified in
loops, whereas other categories of SV-COMP mostly involve variables with a small finite set of
possible values that can be enumerated effectively. All experiments were performed with the
following resource bounds: an Intel Core i7-4770 quad-core CPU with 3.40GHz, and limits of
5GB RAM, 100 s CPU time, and 4 cores per program. Our implementation is described in
detail in Chapter 7, along with installation and usage instructions.

We compare LPI (with templates synthesis algorithms described in Chapter 4) with four
tools representing different approaches to program analysis:

• BLAST [SMM12] running lazy abstraction with interpolants. The version used is v2.7.3.

• PAGAI [HMM12], git hash 254c2fc693, running abstract interpretation with path focusing.

• CPAchecker [BK11], version v.1.3.10-svcomp15, the winner of SV-COMP 2015 category
“Overall”, which uses an ensemble of different techniques: explicit value, k-induction, and
lazy predicate abstraction.

For LPI we use the CPAchecker version 1.4.10-lpi-vmcai16.
Because LPI is an incomplete approach, it can only produce safety proofs (no counter-

examples). Thus in Table 3.1 we present the statistics on the number of safety proofs produced
by different tools, with LPI running in abstraction refinement mode. From it we see that LPI
verifies more examples than other tools can, including seven programs that no other tool could.

3.5.1 Timing Results

In Section 3.4 we have described the various possible configurations of LPI. As trying all possible
combinations of features is exponential, tested configurations represent cumulative stacking of
features. We present the timing comparison across those in the quantile plot in Figure 3.8a,
and in the legend we report the number of programs each configuration could verify.

The quantile plot for timing comparison across different tools is shown in Figure 3.8b.
We have included two LPI configurations in the comparison: fastest (LPI-Intervals) and the
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Figure 3.8: Quantile timing plots demonstrating the performance of different program analysis
approach. Each data point corresponds to a processed verification task, with y coordinate given by
the time taken to analyze the task, and x coordinate given by the program number (each series is
sorted by time separately for each tool). Intuitively, the lower the line the faster the tool is. For
readability there are less markers than programs, and all runtimes less than one second have been
rounded up.

most precise one (LPI-Refinement, switches to a more expensive strategy out of the ones in
Figure 3.8a if the program cannot be verified). From the plot we can see that LPI performance
compares favorably with lazy abstraction, but that it is considerably outperformed by abstract
interpretation. The initial difference in the analysis time between the CPAchecker-based tools
and others is due to JVM start-up time of about 2 seconds.

3.6 Conclusion

In this chapter we have demonstrated that LPI is a valuable method for code analysis, which
can compete with the existing state-of-the-art techniques.

3.6.1 Future Work

Extending to Min-Policy Iteration The findings present in this chapter can not be directly
applied to min-policy [Cos+05], as the CPA algorithm terminates whenever the candidate
invariant is inductive, and thus stating the descending iterations is problematic (as even the
starting state satisfies the coverage condition).

Supporting Non-Linear Templates A certain class of non-linear templates can be handled
within the max-policy iteration framework by using semi-definite programming [VB96] during
the value determination step. However, as value determination problems can be very large,
max-policy approach with non-linear templates has troubles scaling to large programs [RG14].

Handling Non-Concave Operators Non-linear operations can be handled in usual ways,
by e.g. using intervalization to replace them with a sound over-approximation.
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Figure 3.9: For comparison with policy iteration shown in Figure 3.4 we visualize value iterations
(iteratively applying f until convergence) using red arrows. Observe that in our example value
iteration does not converge in finite time and widening might be required.
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Chapter 4

Template Synthesis

4.1 Introduction

As before, we are working on a task of synthesizing an inductive invariant I which entails
unreachability of an error property E for a program modelled by a CFA P . Such an inductive
invariant is called separating. In order to generate these invariants, we use abstract interpretation
in a template constraints domain (TCD) initially presented in Section 2.8.3, as it offers a
parameterizable compromise between precision and performance, and can be used in conjunction
with policy iteration (Chapter 3).

An analysis in a TCD requires a template annotation for an input program. Each control
location to which an inductive invariant is associated has to be annotated with a set of
templates T , which defines the expressible invariants during the analysis. E.g. for T ≡ {x+y, y}
expressible inductive invariants are of the shape x+ y ≤ d1 ∧ y ≤ d2 for d1, d2 ∈ R̄ (recall that
R̄ ≡ R ∪ {+∞,−∞}, which is used to denote unreachable states and unbounded templates).
The set T is a parameter defining the precision to performance ratio: if T is too large, the
analysis may become unfeasible, yet if T does not contain templates required for stating a
separating inductive invariant, the property could not be proven even if it does hold.

In this chapter we present different techniques for generating a set of templates for a program,
along with the evaluation and comparison. Each such technique is described in a separate,
self-contained section. This work is performed in the context of using the resulting templates
for the local policy iteration developed in Chapter 3, but the presented algorithms can be
generalized to the problem of template synthesis in general.

Chapter Outline We develop an enumerative template synthesis algorithm and we study its
properties in Section 4.2. In order to reduce the number of synthesized templates, in Section 4.3
we present an algorithm for filtering the templates based on the liveness data obtained from a
separate dataflow analysis, and we describe its effect on the completeness property. In Section 4.4
we go further by using interpolants to synthesize the templates relevant to the property being
proven. The last two algorithms we present use polyhedral analysis for template synthesis,
and are given in Section 4.5. Unlike the previous approaches, the algorithm in Section 4.5.3
adds new templates on the fly (while other approaches require analysis restarts in CEGAR
fashion). Finally, we present the evaluation comparing all of the approaches in Section 4.6, and
we conclude in Section 4.7.

4.1.1 Related Work

The problem of choosing an abstract domain which is expressive enough to prove the desired
property, yet efficient enough to be scalable is addressed in a influential paper [Cla+00]
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on counterexample-guided abstraction refinement (CEGAR) by Clarke et al. Most of the
algorithms we present are based on this idea. The approaches we present in sections 4.2 and
4.5.2 both perform abstraction refinement, yet not guided by the counterexample, while the
interpolation-based approach (Section 4.4) does perform classical CEGAR refinement.

The octagons abstract domain described in Section 2.8.1 can be seen as an instance of a
template constraints domain, as it tracks upper bounds on equalities ±x± y for all program
variables x, y ∈ x × x. In order to avoid having a quadratic number of constraints at each
abstract state, the original publication [Min06] proposes variable packing, where according to a
heuristical syntactic criteria variables are grouped into multiple sets, and octagonal constraints
are tracked separately for each group.

The approach [Oh+14] of Oh et al. takes the packing further: they propose running a
pre-analysis on a small, finite domain, from the result of which they extract the grouping of
variables. Neither of the approaches is proven to have the same expressive power as the full
octagonal analysis with no reductions.

Gawlitza et al. propose parametric policy iteration [SGS14] which finds the least solution
for the set of semantical equations for all possible values of the parameters using the region
tree datastructure. Their problem is more general, as they allow parameters to occur in the
analyzed program, and the output of the analysis can be a non-convex inductive invariant.

4.2 Enumerative Template Synthesis

Observe that performing an analysis in the intervals domain can be emulated in TCD by
synthesizing templates ±x at every program location n for every program variable x ∈ x.
An octagon domain [Min06] can be emulated in a similar way, enlarging the synthesized
template space to ±x ± y. In this section we extend this enumerative synthesis method for
synthesizing arbitrary templates with coefficients over Z in a way inspired by syntax-guided
synthesis [Alu+13].

For a template t let ‖t‖ denote the template size, which is a number of variables occurring
in a template (e.g. 3 for x + y + z). Observe that for a fixed set of program variables x, a
template size is always less than ‖x‖, as there is at most one coefficient associated to each
variable. Using an integer n ∈ N defining the magnitude of the largest allowed coefficient, we
generate a set of templates based on linear expressions of size ≤ ‖x‖, where all coefficients
are in the set {c | c ∈ Z ∧ |c| ≤ n}. For a finite set of program variables x the resulting
set T is finite. Observe that by continuously increasing n we can eventually synthesize all
templates required for expressing any linear polyhedra with integral coefficients. Furthermore,
this approach effectively generates all templates with rational coefficients, as a template over
rationals could be represented in integers by multiplying all coefficients by a greatest common
denominator (e.g. a template x/3 + y/2 has equivalent expressive power to 2x+ 3y).

Refinement synthesis procedure parameterized by an abstract interpretation in a template
constraints domain forms a (semi) algorithm for safety checking of the error property, which we
state in Algorithm 4.1. For a given set of templates we can find the least inductive invariant using
policy iteration (line 8), and then if it does not provide separation from the error property we can
perform refinement (line 12), extending the set of allowed templates. Note that algorithm 4.1
does not guarantee termination: in fact, it never terminates on programs where the error
property is reachable and no separating inductive invariant exists in the domain of convex
polyhedra with rational coefficients. In practice, we enforce termination by having a threshold
on the largest possible value of n, and terminating with an UNKNOWN verdict once this threshold
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Algorithm 4.1 Semialgorithm for Finding Separating Inductive Invariant

1: Input: CFA P ≡ (nodes, edges, n0,x), error state E
2: Output: separating inductive invariant I : nodes → F(x)
3: n← 1
4: while true do
5: T ← set of all templates with integral coefficients of absolute size less than n
6: . Generate an inductive invariant for P
7: . running abstract interpretation in the TCD T .
8: I ← Analyze(P, T )
9: if I entails unreachability of E then

10: break
11: end if
12: n← n+ 1
13: end while
14: return I

is reached.

4.2.1 Beyond Rationals

Background We rely on basic number classification: a real number n ∈ R is called rational
(n ∈ Q) iff it can be written as a fraction p/q where p is a positive integer, and q is a non-zero
integer. A number n is called algebraic iff it is a root of a polynomial in one variable with
rational coefficients. Algebraic numbers can be programmatically defined using the polynomial
for which they represent roots, and manipulated programmatically. Non-algebraic real numbers
(e.g. π) are called transcendental.

Recall that policy iteration, described in Chapter 3, guarantees to find the least inductive
invariant in a given template constraints domain. This begs the question of whether the
parameterization of Algorithm 4.1 with policy iteration gives a semidecidable approach for finding
a separating linear inductive invariant, as for a given set of templates such a parameterization
always finds the least inductive invariant. In turn, this depends on whether Algorithm 4.1
guarantees to eventually synthesize all templates required for expressing an arbitrary separating
inductive invariant. In this section we show that the answer is “no”, as there exist programs
where all the coefficients are integral and all operations are linear, yet every non-trivial linear
inductive invariant has irrational coefficients. Nevertheless, Algorithm 4.1 allows us to derive
useful safety conditions for many programs.

Theorem 4.1 (Templates are Expressible Using Algebraic Numbers). If there is a linear
inductive invariant I expressed using real coefficients for a CFA P where all transitions are
linear and involve only rational numbers, then there exists an invariant I ′ for P such that
I ′ =⇒ I and I ′ is expressible in algebraic numbers.

Proof. If I is linear, then it is expressible as a conjunction of linear inequalities over a set of
templates T . For a fixed number of templates (given by ‖T‖) and a CFA P all inductive
invariants have to satisfy the first-order arithmetic constraints generated from P [CSS03]. Such
a system of constraints is satisfiable over reals, and is consequently satisfiable over any real
closed field, such as algebraic reals. As the obtained invariant I ′ is the least possible one
expressible in ‖T‖ templates, it has to imply the original invariant I.
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As algebraic numbers are countable (cf. [Niv56], Theorem 7.5), the refinement approach
(Algorithm 4.1) can be extended to synthesizing all possible templates, and consequently a
semidecidable algorithm for proving safety, yet such an enumeration would be unfeasible in
practice.

1 int x = 1;
2 int y = 0;
3 while (input()) {
4 x = -x + y;
5 y = x + y;
6 }

Figure 4.1: Program Requiring Irrational Coefficients for Expressing Inductive Invariant

Example 4.1 (Irrational Coefficients in Templates). Consider a program P shown in Figure 4.1.
The only non-trivial linear inductive invariant it admits is:

y ≥ (1−
√

2)x ∧ y ≤ (1 +
√

2)x

This result is counter-intuitive, as for many programs inductive invariants of interest are
trivial and may be even already syntactically present in form of guards.

We now explain from where the inductive invariants from Example 4.1 come from, and
why they are unique. Consider a program P consisting of a single loop performing an update
x = Ax′, where A is a square matrix of dimension ‖x‖. The evolution of the values of program
variables of P corresponds to the dynamics of the difference equation, and is determined by
the eigenvalues and eigenvectors of the matrix A [Ela96]. The phase portrait of the difference
equation corresponding to the program discussed in Example 4.1 is shown in Figure 4.2. It is
easy to see that for a two-by-two matrix A with eigenvalues of different signs the only possible
linear convex inductive invariants are given by the eigenvectors of A. As the eigenvalues can be
calculated by solving the characteristic polynomial det[A− λI] = 0, which requires finding the
roots of the polynomial of degree of the size of A, irrational numbers may appear in eigenvalues
and consequently in eigenvectors.

4.3 Filtering Templates Using Live-Variables Analysis

The template generation scheme in Algorithm 4.1 generates a very large number of templates.
However, for real programs most of those templates are redundant, or irrelevant for proving
the target property. Intuitively, the information about the variables which are not going to be
used again should not be relevant for the safety invariant generation. Thus we use the data
obtained from the live variables analysis to reduce the number of considered templates. Recall
that the variable x is alive at a CFA node n, iff there exists an execution proceeding from n

which depends on the value of x (either directly through read, or indirectly using pointers).
Unfortunately, not considering templates containing dead variables can affect the precision

when relational templates are used: that is, templates with more than one variable, where
the bound on one template may influence the other. For example, consider the program in
Figure 4.3. Suppose the program is analyzed using a set of templates T consisting of all possible
templates of size up to three, containing only constants {0, 1,−1}. Using such a set of templates,
the assertion violation in the considered program can be proven to be unreachable using the
invariant a = b+ c, which requires supporting templates ±(a− b− c). Observe that if those
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Figure 4.2: Phase Portrait showing evolution of variable values of program in Figure 4.1. Red
lines show the directions of eigenvectors, which define the linear inductive invariants with irrational
coefficients. Grey vectors show the evolution step: the next value of a point at the arrow origin
corresponds to one application of the loop iteration. Black point shows the initial state.

templates are removed from T , a separating inductive invariant can no longer be found, even
though the variable a is not live at the loop entry.

1 int b = input();
2 int c = input();
3 int a = b + c;
4 int d = 2 * a;
5 while (input()) {
6 b++;
7 c--;
8 assert(d * d = 4 * (b + c) * (b + c));
9 }

Figure 4.3: Example of Relevance of Dead Variables for Template Generation

The loss of the precision may be avoided by performing the projection operation on the
dead variables first. As any TCD is a subset of the polyhedra domain, any variables can be
projected away without the loss of precision with respect to other variables. Thus our example
in Figure 4.3 can be proven using templates ±(d− 2 ∗ (b+ c)), which are given by projecting
the dead variable a out.

Furthermore, in two important cases the projection operation is not necessary. In the
intervals domain, the template set is not relational, and all dead templates can be discarded. In
the octagons domain, as the projection of an octagon is always an octagon [Min06], performing
the projection is not necessary if all the supporting templates for the octagon are already
specified.

In short, liveness filtering provides a large increase in performance (cf. Section 4.6.1) without
any precision penalty in case of octagonal and interval templates, or at the cost of a projection
operation.
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4.4 Interpolation-Based Template Synthesis

Consider proving the unreachability of an error property E using an inductive invariant. In
this context, we are not interested in finding the smallest inductive invariant, but merely one
which is strong enough to show the unreachability of E. We are additionally interested in
finding such inductive invariants for programs so large, that even emulating the intervals domain
(using templates ±x for every program variable x) becomes too expensive, especially in the
context of running policy iteration (Chapter 3). Intuitively, only a fraction of the program
variables are relevant to the property, and in this section we aim to find templates relevant to
the unreachability proof of E.

Background Many approaches exist for using interpolants (Definition 2.13) in order to
perform abstract domain refinement, both in the context of predicate abstraction [McM06] and
explicit value analysis [BL13]. Recall that for two formulas φ and ψ such that the conjunction
φ ∧ ψ is unsatisfiable an interpolant I is a formula over the shared variables of φ and ψ such
that φ =⇒ I and I =⇒ ¬ψ both hold. This definition is extended to sequences [McM06]: for
a sequence of formulas S ≡ (s1, . . . , sn) where ∧S is unsatisfiable, a sequence I ≡ (i1, . . . , in)
is an interpolant for S if and only iff i1 = >, in = ⊥, for all i ∈ [1, n] ii−1 ∧ si =⇒ ii and
additionally, ii only contains the shared symbols of ∧i∈[1,i] si and

∧
i∈[i+1,n] si. If all formulas

in S are quantifier free, such a sequence I exists for many theories, including linear rational
arithmetic [McM05].

We present an algorithm for generating new templates from interpolants. Two difficulties
arise when applying an interpolation-based refinement to an abstract interpretation running over
a template constraints domain. Firstly, template constraints domain is restricted to the linear
expressions over program variables, and can not be refined directly using arbitrary predicates
contained in an interpolant. Secondly, the output of an abstract interpretation in case the
separating inductive invariant could not be found does not contain a path from the program
start to the property violation. The second limitation extends to most analyses based on
abstract interpretation.

We present two simple solutions to these problems. In Section 4.4.1 we provide an algorithm
for dynamically generating an abstract reachability tree from a given abstract interpretation
analysis. This allows us to generate interpolants from analysis runs, as discussed in Section 4.4.2.
In Section 4.4.3 we describe and evaluate a method for guiding the interpolation procedure
towards less overfitting interpolants by weakening the formulas given to the solver.

4.4.1 Abstract Reachability Tree Generation

We describe an algorithm for generating an abstract reachability tree [Bey+07] from an analysis
formulated as an abstract interpretation. Such a generation can not be done in an obvious way,
as abstract interpretation relies on the presence of joins between multiple states for convergence,
and an ART-generating analysis can not perform joins (as otherwise the resulting graph might
contain cycles). Instead, we emulate the joins in the postcondition operator: if during the
postcondition calculation resulting in a state s1 we can find a state s0 on the same tree “branch”
associated with the same CFA node (we call such a state a “neighbour”), instead of returning
s1 we return the joined state s0 t s1. Such a construction allows us to guarantee termination,
while generating abstract counterexample traces.
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Definition 4.1 (Abstract Reachability Tree). An ART for a CFA (nodes, edges, n0,x) is a set
of tree nodes N . Each tree node n ∈ N is a triple, consisting of a CFA node p ∈ nodes, defining
which location n corresponds to, an abstract domain element d ∈ D, defining the reachable
state space at n, and a pointer to the parent node of b ∈ (N ∪{∅}) (∅ for the tree root), defining
the tree structure. The starting tree node is (n0,>, ∅).

An ART N is sound iff the output of each transition over-approximates the strongest
postcondition: that is, for each tree node n ≡ (a, d, b) ∈ N where b = (a0, d0, b0) 6= ∅, there
exists an edge (a0, OP, a) ∈ edges, and the abstract state d associated with n over-approximates
the strongest post-condition of b under OP: JOPK] (d0) � d. A node n ≡ (a, d0, b0) ∈ N is fully
expanded iff for all edges (a, OP, c) ⊆ edges where JOPK] (d0) 6= ⊥ there exists a node (c, d, n) ∈ N ,
where JOPK] (d0) � d. A node (a, d1, b1) ∈ N covers another node (a, d2, b2) ∈ N iff d2 � d1.
A sound ART where all nodes are either fully expanded or covered represents an inductive
invariant.

Tree Generation Algorithm We generate a tree for any analysis defined by an abstract
domain D equipped with a partial order �, strongest postcondition JOPK] : D → D parameterized
by an operator OP ∈ OPS, join function tD : D → D → D, and an initial state d0 ∈ D.

An algorithm listing for generating an abstract reachability tree given such a parametrization
is shown in Algorithm 4.2. We maintain three stateful datastructures: a set of all tree nodes
N , a set of expanded nodes E and a set of covered nodes C (line 5). Then for all tree nodes
which are not expanded and not covered (line 8) we calculate the postcondition using the
parameterized analysis, and then check the coverage with respect to existing nodes (line 13).

To generate the postcondition for an element n ≡ (na, d, b) under a given CFA edge, we first
generate an abstract state d′ using the abstract interpretation postcondition operator (line 28).
Then we traverse a chain of “parent” pointers upwards from n (line 36), until we either hit the
tree root, or a “neighbour” element s ≡ (na, d0, b0) (two tree noes are called neighbours if they
share a CFA node). If such an s exists, we return the result of the join application to d0 and d′
(line 32). Otherwise, we simply return the element with an abstract state given by d′.

Property 4.1 (Termination). Algorithm 4.2 is guaranteed to terminate whenever D has
finite height (and termination can be enforced by using widenings during the join application
otherwise).

Proof. For any ART branch B, for any sequence S of ART states associated to the same
CFA node, all elements of S apart from the first one were created using the join function
application. As any infinite sequence of states would have to repeat a CFA node infinitely often,
and repeatedly applying joins in a finite-height domain ensures convergence, this forces the tree
height (size of the largest branch) to be finite. The tree width is also finite for a finite CFA, as
at each tree level we only create as many neighbours as there are outgoing CFA edges for a
processed node. As every iteration of Algorithm 4.2 creates a new ART node, the finiteness of
the resulting tree guarantees the algorithm termination.

Example 4.2 (Abstract Reachability Tree Generation Example). We show the run of the
Algorithm 4.2, for the input program in Figure 4.4, parametrized with an analysis running local
policy iteration (LPI, Chapter 3) in the template constraints domain T ≡ {±x,±y,±(x− y)}
(recall that negating the template gives us the lower bound). The resulting reachability tree
describes the progress of the analysis computation and is shown in Figure 4.5. In order to
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Algorithm 4.2 Abstract Reachability Tree Generation

1: Input: CFA (nodes, edges, n0,x), postcondition operator J.K] : OPS→ D → D,
2: join operator tD : D → D → D, initial state d0 ∈ D
3: N ← {(n0, d0, ∅)}
4: E ← ∅
5: C ← ∅
6: while ∃n ≡ (node a, abstract state d, backpointer b) ∈ (N \ E \ C) do
7: . Expand all outgoing edges from n.
8: for all edge e ≡ (node a, operator OP,node c) ∈ edges do
9: n′ ≡ (c, d′, n)← Post(a, OP, nb, d, n)

10: if d′ 6= ⊥ then
11: N ← N ∪ {n′}
12: . Check Coverage.
13: for all n0 ≡ (node a, abstract state d0, backpointer b0) ∈ (N \ C) do
14: if d0 � d′ then
15: . Newly created tree node covers n0.
16: C ← C ∪ {n0}
17: end if
18: if d′ � d0 then
19: . Newly created tree node is covered by n0.
20: C ← C ∪ {n′}
21: end if
22: end for
23: end if
24: end for
25: E ← E ∪ {n}
26: end while
27: function Post(node na, operator OP, node nb, abstract state d,ART node n)
28: d′ ← JOPK] (d)
29: neighbour s ≡ (na, d0, b0)← FindNeighbour(b, na)
30: if s 6= ∅ then
31: . If a neighbour was found, set output to the merge result.
32: d′ ← d′ tD d0
33: end if
34: return (nb, d′, n)
35: end function
36: function FindNeighbour(state b ≡ (node n0, abstract state d,backpointer b0), node na)
37: if n0 = na then
38: return b
39: else if b0 = ∅ then
40: return ∅
41: else
42: return FindNeighbour(b0, na)
43: end if
44: end function
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1 int x = 0;
2 int y = 0;
3 while (x < 10 && y < 10) {
4 x++;
5 y++;
6 }
7 assert(x <= 10);

na

x = 0;

y = 0

assume(x < 10 && y < 10); x++; y++

Figure 4.4: Two Counter Program Example

save space, inside each ART node we only display the corresponding LPI invariant, as all the
generated nodes correspond to the CFA node na. After the first transition we generate the
LPI state x = 0 ∧ y = 0, given by the loop precondition. The second ART node is given by
taking the looping transition, and performing the join with the first ART node, resulting in
x ∈ [0, 1]∧ y ∈ [0, 1]∧ x = y. After taking the third transition, LPI runs value determination on
join, resulting in the state x ∈ [0, 10]∧ y ∈ [0, 10]∧ x = y which is finally inductive, as indicated
by the coverage relation with respect to its successor.

x = 0
y = 0

0 ≤ x ≤ 1
0 ≤ y ≤ 1

x = y

0 ≤ x ≤ 10
0 ≤ y ≤ 10

x = y

0 ≤ x ≤ 10
0 ≤ y ≤ 10

x = y

x=0; y=0

assume(x<10 && y<10); x++; y++

assume(x<10 && y<10); x++; y++

assume(x<10 && y<10); x++; y++covered by

Figure 4.5: ART generated by local policy iteration algorithm for the input program in Figure 4.4.

4.4.2 Generating Templates from Interpolants

The overall algorithm for generating templates from an ART generation algorithm parameterized
by an abstract interpretation and an interpolation procedure is given in Algorithm 4.3. As
before in Algorithm 4.1, we start with an empty set of templates and repeatedly restart the
analysis with an updated set (line 8). If the ART-generating analysis produces an abstract
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Algorithm 4.3 Template Refinement Using Interpolants

1: Input: CFA P , error property E
2: Output: verification verdict
3: . Set of TCD templates
4: T ← ∅
5: while true do
6: . Generate a sound fully expanded ART for P
7: . by abstract interpretation in the TCD T .
8: A← ARTAnalyze(P, T )
9: if E is not reachable in A then

10: return TRUE
11: else
12: P ← path from root to E in A
13: . Concrete semantics of CFA transitions in P
14: π ← JP K
15: if π ∧ E is feasible then
16: return FALSE
17: else
18: I ← interpolation sequence over elements of π and E
19: T ′ ← T∪ GenerateTemplates(I)
20: if T ′ = T then
21: . No further refinements are possible
22: return UNKNOWN
23: else
24: T ← T ′

25: end if
26: end if
27: end if
28: end while

reachability tree entailing the unreachability of the error property, we conclude that the program
is safe (line 10). Otherwise, we can find a path in the generated tree from the initial to the
error state (line 12). In CEGAR [Cla+00] spirit, if the path is feasible (that is, composition of
concrete semantics along the path returns a non-empty set of states), we have found a concrete
counterexample (line 16). Otherwise, we generate interpolants from the unfeasible sequence of
formulas associated with concrete transitions along the tree branch, and the final error state
(line 18). We enforce termination by requiring that each iteration updates the set of templates
(line 24), and adding a size restriction on templates generated from interpolants (line 19).

Again, consider analyzing the program in Figure 4.4 using an empty set of templates
T ≡ ∅. Suppose we wish to verify the property P ≡ x ≤ 10. In that case, performing the
postcondition computation after the very first edge yields an abstract state >, which violates P .
Thus we ask an SMT solver to generate sequential interpolants for the sequence of formulas
x′ = 0 ∧ y′ = 0, x′ > 10. A possible interpolant is I ≡ x′ = 0.

In order to synthesize a new set of templates from I we consider all variables occurring in I,
and we perform enumerative template synthesis on those. In our example, that simply means
adding the templates {x,−x} to T . Rerunning the analysis with the updated template set lets
us verify that universally at na we have x ≤ 10.
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4.4.3 Guiding the Interpolation Procedure

Unlike predicate abstraction or explicit state model checking, the abstract transitions in abstract
interpretation between two consecutive states in the generated ART may result from the
widening transition (or value determination in case of LPI), which might not correspond
to a concrete transition regardless of what templates are included in T . In our running
example, a transition from ART node with an associated state x ≤ 1 to a new node with
a state x ≤ 10 always remains unfeasible. This is similar to the leaping counterexamples of
LoopFrog [Kro+08].

Unfortunately, such jumps have the potential to confuse the interpolation procedure. We
continue with the running example in Figure 4.4, verifying the property P ≡ x ≤ 5 ∨ y ≤ 10
with a set of templates T ≡ {x}. The analysis generates the path over the states (x = 0, 0 ≤ x ≤
1, 0 ≤ x ≤ 10) before the property violation happens. Thus we perform sequence interpolation
over S:

S ≡ (x = 0 ∧ y = 0, x′ = x+ 1 ∧ y′ = y + 1, x′′ = x′ + 1 ∧ y′′ = y′ + 1, x′′ > 5 ∧ y′′ > 10) (4.1)

Unfortunately, due to the “leaping” transition from x ≤ 1 to x ≤ 10, a valid interpolation
sequence for S may be:

I ≡ (x = 0, x′ = 1, x′′ = 2) (4.2)

In this case, I contains only the variable x, and our refinement procedure can not proceed.
We address this issue by performing weakening on the formulas used for interpolation. Consider
computing an interpolant I for a path given by a semantics of a sequence of edges τ0 . . . τn. Let
T be a set of templates describing the used TCD, and let V be the set of all variables occurring
in T . As we compute I for the purpose of mining it for the interesting variables not already
present in V , we would like to enforce I not to contain variables from V in the first place. We
do so by replacing each formula τi with its weakening ∃V. τi, which enforces the interpolant to
only contain the variables from x \ V .

Going back to our example, after performing the weakening and quantifier elimination, the
sequence given to the interpolation procedure is:

S ≡ (y = 0, y′ = y + 1, y′′ = y + 1, y′′ > 10) (4.3)

which forces a solver to generate an interpolant over y.
Such a modification increases the applicability of our technique, yet raises the question of

completeness: in general, using the interpolant-based invariant synthesis, can we eventually
synthesize all templates which would be given by the enumerative invariant synthesis? Unfortu-
nately, the result is negative even for a non-relational domain, as we can still get an interpolant
giving no useful refinement, which is demonstrated in Example 4.3.

Example 4.3 (Lack of Completeness). Again, consider analyzing a modified two-counter
program P from the Figure 4.6. We wish to establish a property y ≤ 10. Such a program can be
verified using abstract interpretation with the set of templates T ≡ {x, y, z,−z}, as it supports
to generate an inductive invariant x ≤ 10 ∧ y ≤ 10 ∧ z = 0, as the looping transition relation
already “connects” the values of x, y and z.

Consider starting to analyze P with a template constraints domain T ≡ {y,−y}. The
analysis produces a sequence of states y = 0, 0 ≤ y ≤ 1, y ≥ 0 before a property violation
happens. After applying the weakening, this gives a following sequence to the interpolation
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1 int x = 0;
2 int y = 0;
3 int z = 0;
4 while (x < 10) {
5 x++;
6 y++;
7 z = x - y;
8 }
9 assert(y <= 10);

Figure 4.6: Modified Two-Counter Program
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Figure 4.7: Generating Templates from Convex Hull. Consider analyzing the program in
Figure 4.4 in a template constraints domain T ≡ {±x,±y}. The constraints associated with two
produced states s1 and s2, corresponding to the initialization and a single loop transition respectively
are shown in Figure 4.7a. When performing the join in the domain given by T we end up with a
box x ∈ [1, 2] ∧ y ∈ [1, 2] as shown in Figure 4.7b. However, if we instead find the convex hull of
the constraints associated with s1 and s2 we get a stronger constraint x = y ∧ x ∈ [1, 2] shown in
Figure 4.7c.

procedure, again generated from the concrete semantics of CFA edges and the property violation:

S ≡ (x = 0 ∧ z = 0, x′ = x+ 1, x′′ = x′ + 1, y′′ > 10) (4.4)

Unfortunately, at this point the interpolation procedure is stuck, as the weakened sequence
becomes feasible, and no new interpolant can be produced.

We present the evaluation of interpolation-based template synthesis in Section 4.6.3, which
shows its effectiveness as compared to a refinement-based approach.

4.5 Template Synthesis Using Convex Hull

As a motivating example, we analyze the program shown in Figure 4.4 in the template constraints
domain T ≡ {±x,±y}. Compared to the polyhedral abstract interpretation, our analysis arrives
at a suboptimal invariant.

We present two approaches for synthesizing templates by performing polyhedral manip-
ulations. Our offline approach, described in Section 4.5.2, records the templates generated
using convex hull, and then restarts the exploration if the previous precision was not sufficient
for proving the target property. The online approach, described in Section 4.5.3, instead
injects the discovered templates during the analysis, by heavily modifying the postcondition
and join operation, effectively running a hybrid of local policy iteration in TCD and abstract
interpretation in polyhedra.
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4.5.1 Background: Abstract Interpretation in Polyhedra Domain

A polyhedron P with n constraints over m variables could be defined using a constraint-based
representation by a matrix A ∈ Matn×m and a vector b ∈ Rn:

Ax ≤ b (4.5)

Alternatively, P can be defined using a generator-based description, using a set of points
S ⊆ Rm and a set of rays R ⊆ Rm, where P is defined to be a convex hull over S and R.

Traditional polyhedral abstract interpretation [CH78] proceeds as follows. The post-image
computation requires constraint representation, and adds a new constraint on the existing
polyhedron imposed by the processed statement. For example, the post-image of the polyhedron
P ≡ x > 0 under the transition assume(y > 10) is a new polyhedron P ′ ≡ x > 0 ∧ y > 10.
Projection can be performed on the result to get rid of the constraints associated with dead
variables.

The join on two input polyhedra P1 and P2 is performed by computing the convex hull over
the two: e.g. the join of P1 ≡ x = 1 ∧ y = 1 and P2 ≡ x = 2 ∧ y = 2 is x = y ∧ 1 ≤ x ≤ 2, as
demonstrated in Figure 4.7. As seen from this example, the result of the join is not obvious from
the constraints representation, and traditionally the polyhedra are converted to the generator
form first [CH78]. However, recently new algorithms were proposed for performing join purely
in the constraints representation [FB14].

Let T be the set of templates which appear in the constraints representation of P (e.g. x+3y
for a constraint x+ 3y ≤ 10). Now consider how new templates can appear in T throughout
the analysis, if P is regularly updated to the value of a candidate inductive invariant:

• Postcondition: the postcondition computation for assignments and guards generates the
constraint syntactically present in the guard: e.g. processing a statement x = y + z

results in a constraint x = y + z supported by templates ±(x− y − z).

• Projection: as described in Section 4.3, new directions can be generated by performing
the projection operation on a candidate invariant in order to remove irrelevant variables
and reduce the number of constraints. For example, projecting away the variable y from
a constraint system y = 2z ∧ x = y generates the new templates ±(x− 2z).

• Convex Hull: the result of the convex hull computation gives rise to new templates
not originally syntactically present in the program. Such new templates can be seen as
generalizations, aiming to extrapolate the evolution under the loop.

4.5.2 Offline Refinement Approach

Consider analyzing a program P with an abstract interpretation in a template constraints
domain in order to prover a property ¬E over a set of templates T . In the offline refinement
approach, during each join operation over TCD states s0, s1 we compute the convex hull over
their associated constraints, resulting in the polyhedron H. We widen H with respect to a set
of constraints appearing in s0 and then convert the result to a constraints-based representation
C. Let T ′ be the set of all templates which appear in C during the analysis. If the found
inductive invariant does not imply ¬E, we restart the analysis with a set of templates T ∪ T ′.
The refinement continues until either the desired property can be proven, or no new templates
are generated. Consider applying the offline refinement algorithm to the running example in
Figure 4.4 and starting with a template set T ≡ {±x,±y} in order to prove the property x = y.
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Figure 4.8: Illustration of the precision loss when analyzing the program in Figure 4.9 with the
template set T ≡ {x, y}. States φ1 and φ2 denote the least convex invariant on program variables
after one and two iterations respectively, while s1 and s2 are their abstractions in the template
constraints domain.

The first analysis run returns an invariant 0 ≤ x ≤ 10 ∧ 0 ≤ y ≤ 10 and a new set of templates
T ′ ≡ {±(x − y)} derived from the convex hull, as shown in Figure 4.7. After restarting the
algorithm with a template set T ∪ T ′ ≡ {±x,±y,±(x − y)} the required property x = y is
proven.

4.5.3 Online Injection Approach

The offline approach as presented in Section 4.5.2 is potentially wasteful, as it may require
many restarts, recomputing the same invariant many times over. Thus it is more desirable to
use the templates discovered from the convex hull operation during the analysis. Let s1 and s2
be two TCD states on which we are performing the join, and let s′ be the resulting state. The
set T ′ denotes templates which appear in the convex hull h of states s1, s2. We want to include
a bound on a template t ∈ T ′ in state s′.

Though it seems natural to set s′[t] to h[t] (the bound on the template t in the constraint-
based representation of the convex hull), such a construction leads to a precision loss, as shown
in Figure 4.8. The loss is caused by the fact that the new template t is discovered too late: by
the time we are calculating the join, the analysis has already propagated the over-approximating
bound on t, potentially even reporting spurious reachability of the error property. Thus in order
to keep the precision of the polyhedra domain, more fundamental modifications to the analysis
are required.

Recall that we are primarily interested in the template constraints domain as it can be
analyzed using policy iteration (Chapter 3). In this section we show instead how abstract
interpretation in the polyhedra abstract domain can be modified to benefit from the precision
resulting from the policy iteration algorithm. Unlike the previous sections, a familiarity with
Chapter 3 is necessary for understanding.

Policy Iteration in Polyhedra Abstract Domain To address this loss of precision, we
modify the local policy iteration algorithm to perform different strongest postcondition and
join operations.

We modify the postcondition computation (previously described in Algorithm 3.2) to return
the least abstraction in the polyhedra domain using the path focusing [MG11] approach. Recall
that the smallest polyhedral abstraction does not exist in general (Section 2.8.2), but it does in
case all atoms of the abstracted formula τ are linear constraints over program variables, This
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1 int x = input();
2 assume(0 <= x && x <= 1);
3 int y = input();
4 assume(x == y);
5 while (input()) {
6 x++;
7 y++;
8 }
9 assert(x == y);

Figure 4.9: Example Program For Online Convex Hull Synthesis

Algorithm 4.4 Exact Postcondition for Template Constraints Domain

1: Input: LPI state s0, transition τ(x ∪ x′)
2: Output: LPI state s′
3: φ0 ← ∃x. Js0K (x) ∧ τ(x ∪ x′)
4: s′ ← ⊥
5: while ∃M.M |= φ0 ∧ ¬ Js′K do
6: π ← disjunction-free strengthening of φ0 ∧ ¬ Js′K modelled byM
7: h← ConvexHull(s′, π)
8: constraints ← ToConstraints(h)
9: for all (template t, bound d) ∈ constraints do

10: if s′[t] < d then
11: s′[t]← (d, π, s0)
12: end if
13: end for
14: end while
15: return s′

can be seen by converting τ into a DNF form: then each disjunct represents a polyhedra, and
a union over a finitely many polyhedrons admits a polyhedral convex hull.

Our postcondition algorithm constructs an output LPI state s′ (Definition 3.1) from an
input LPI state s0 and a transition relation τ . Recall that in order to construct an LPI state,
we need to reconstruct the policy for each template. As before, we reconstruct the policies from
models returned by the solver.

In Algorithm 4.4 we start by converting the input state to a formula (line 3), and by
temporarily setting an output s′ to an empty state ⊥ (line 4). Then while there exists a
vectorM inside φ0 but outside of s′ (line 5), we derive a disjunction free strengthening π of φ0
modelled byM. The procedure for generating π described in Algorithm 3.2 (effectively, π is a
policy): basically, each disjunction in φ0 is recursively replaced with a disjunct modelled by a
M. For example, for φ0 ≡ x > 10 ∨ x = 0 andM ≡ {x : 11}, we have π ≡ x > 10. Observe
that for a formula φ0 where all atoms are linear inequalities, π is a polyhedron.

We proceed to compute a convex hull h of π with a state space described by s′ (line 7).
Then for each template t and its corresponding bound d in the constraints based representation
of h which are not already subsumed by s′, we grow s′ by adding a mapping from t to the
new bound d and the policy π, where the backpointer is the previous state s0 by definition
(line 11). The process is repeated until a fixed point is reached. Algorithm 4.4 has the following
properties:

• Termination: at each iteration the algorithm selects a new under-approximation π of φ0,
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Algorithm 4.5 Online Refinement Join Operator

1: Input: node n, previous abstract state a0, associated formula φ0, new abstract state a1,
associated formula φ1

2: Output: new joined state a′

3: . Join in the template constraints domain, Algorithm 3.3.
4: a′ ← Join(n, a0, a1)
5: . Convex hull in constraints representation.
6: h← ConvexHull(a0, a1) ∇a1
7: for all template t ∈ h do
8: d← max t>x s.t. φ0
9: π ← policy used to derive d

10: a′[t]← (d, π, a0)
11: end for
12: return a′

and as there are only finitely many such under-approximations (finitely many policies),
the algorithm terminates.

• Precision: the algorithm computes the convex hull of all polyhedrons in the disjunctive
normal form of φ0, which is its least polyhedral abstraction.

Once we have changed the strongest postcondition operator to perform a modified version
of path in the polyhedra domain, we can change the “Join” operator (previously defined in
Algorithm 3.3) of the local policy iteration to insert the newly derived templates without the
precision loss. The new algorithm listing is given in Algorithm 4.5. We start by calling the join
operation in the template constraints domain, which simply computes pairwise upper bound for
each template (line 4). Then we compute the convex hull of two input states (line 6), and we
perform polyhedra widening of the resulting state with a1 in order to enforce termination. For
all templates t occurring in h, we derive the new bound for the resulting state by performing
maximization of φ0 in the direction of t (line 8), deriving the new policy from the resulting
model (same approach as before). Finally, the generated state a′ is returned.

The resulting algorithm defined by the new join and postcondition operators, effectively
runs abstract interpretation in the polyhedra domain, using value determination as a more
precise widening. The widening operation is used to avoid generating infinitely many templates.

Example 4.4 (Online Injection Approach for Figure 4.9). Applying the online injection
approach to the motivating example leads to the following sequence of steps:

• Initial postcondition: computing the post-image of the initial state a0 ≡ {} under the
transition relation τi ≡ 0 ≤ x′ ≤ 1 ∧ y′ = x′ using Algorithm 4.4 generates a new LPI
state:

a1 ≡ {x : (1, τi, a0),−x : (0, τi, a0), y : (1, τi, a0),−y : (0, τi, a0),
y − x : (0, τi, a0), x− y : (0, τi, a0)}

which represents the polyhedral abstraction 0 ≤ x ≤ 1 ∧ y = x of τi, and records the
policy meta-information.

98



Section 4.6 Evaluation

• Postcondition after looping transition: the post-image of a1 under τl ≡ x′ = x+1∧y′ = y+1
results in a state:

a2 ≡ {x : (2, τl, a0),−x : (1, τl, a1), y : (2, τl, a1),−y : (1, τl, a1),
y − x : (0, τl, a1), x− y : (0, τl, a1)}

• Join of a0 and a1 keeps the bound on ±(x− y), while the value determination widens the
bounds on ±x,±y to +∞, resulting in a state a3:

a3 ≡ {y − x : (0, τi, a0), x− y : (0, τi, a0)}

• The new postcondition computation produces the state subsumed by a3, and the compu-
tation converges. The resulting precision is sufficient to verify the assert statement.

4.5.4 Algorithm Properties

As stated in Section 2.8.2, least inductive invariant may not exist even for a linear transition
system, and thus our refinement algorithm can not in principle find the tightest inductive
invariant (unlike the case for a fixed set of templates T ).

Observe that the termination of both approaches is ensured by the use of polyhedra
widening operators, and as widening on a single location can be applied only finitely many
times (cf. Section 2.7.3), the analysis sequence guaranteed to converge.

4.6 Evaluation

All experiments were performed on a cluster of machines with Intel Xeon E5-2650 CPU @
2.60GhZ, 32 cores and 135GB of RAM.

4.6.1 Live Variables

We compare three different filtering strategies for templates derived from the enumerative
template synthesis (Algorithm 4.1):

All Live Synthesize only those templates where all variables are alive.

One Live Synthesize only those templates where at least one variable is alive.

No Filtering Synthesize all templates, do not take liveness into account.

As before in Section 3.5, the experiments were performed on the “Loops” category of
SV-COMP. For evaluation, each verification task was given a time limit of 200 seconds and
a memory limit of 16GB. The quantile plot comparing these filtering approaches is shown in
Figure 4.10, with the number of programs each approach could successfully verify in brackets.
The difference in time clearly shows a large performance gain when only the templates consisting
purely of live variables were considered. Surprisingly, experiments show only little performance
difference between “All live” and “One Live” strategies, perhaps due to the relatively small
program size in the considered dataset.
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Figure 4.10: Timing evaluation for liveness filtering. Each data point corresponds to every fifth
analyzed program, each data series is sorted separately.
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Figure 4.11: Timing evaluation for convex hull template synthesis against refinement-based
template generation.

4.6.2 Convex Hull Template Synthesis

We compare the template synthesis using the offline convex-hull based refinement described
in Section 4.5.2 against enumerative synthesis template synthesis from Section 4.2 filtered
by liveness. Again, the experiments were run on the “Loops” category of SV-COMP, with
a time limit of 200 seconds per verification task. The resulting quantile plot is shown in
Figure 4.11. The graph shows us that the convex-hull based approach is slower, as it requires
more refinements, yet it could successfully verify considerably more programs.

Due to the lack of time, the online injection approach was not implemented.

4.6.3 Interpolation-Based Template Synthesis

We compare the analysis within intervals abstract domain (filtered by liveness) against the
interpolation-based refinement on the “DeviceDrivers64” benchmarks set of SV-COMP. We
have chosen this benchmark set as it contains large programs (many thousands of lines of code),
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vs. Interval vs. Refinement Verified
Interval Domain 40 1047
Interpolation Refinement 60 1067

Table 4.1: Results for Interpolation Refinement

the interval domain is sufficient for proving many properties, and due to the program size plain
LPI fails to analyze many programs under the time limit even using the intervals. Unlike the
other evaluation data sets, we set the time limit to 100 seconds per benchmark. The results
are shown in Figure 4.12. We can see from the graph that applying the interpolation-based
synthesis speeds up the performance, which lets the analysis handle more programs before the
time limit. From the results in Table 4.1 we can see that the refinement-based approach is able
to prove 60 benchmarks LPI with the intervals domain could not handle under the time limit.
Yet the procedure diverges for 40 programs which could have been proven before.
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Figure 4.12: Timing evaluation for interpolation-based template synthesis against the intervals
domain simulation.

4.7 Conclusion

In this chapter we have shown that even most naive template synthesis approaches based on
brute-force enumeration can be surprisingly effective for program verification in combination
with LPI. We have demonstrated that subsequent filtering based on liveness can greatly increase
the performance without any loss in precision, and that template synthesis using interpolation
may be used to successfully verify large programs.

The algorithms presented in Section 4.5 bridge the gap between template-based approaches
requiring manual annotation, and polyhedra-based approaches which can synthesize new direc-
tions automatically, and can be applied outside of the context of LPI.

Practical implementation of the online injection-based template synthesis approach remains
an item for future work.

101



Chapter 4 Template Synthesis

102



Chapter 5

Generating Summaries Using Policy
Iteration

5.1 Introduction

As discussed in the previous chapters, traditional approaches based on abstract interpretation
compute an inductive assertion map (Section 2.5.3) from CFA nodes to predicates over the
program variables. Such an analysis is called intraprocedural, as it only considers the states
inside the analyzed procedure.

A naïve approach for supporting interprocedural analysis is to simply encode function calls
and returns as ordinary CFA edges, and to obtain an inductive assertion map for a resulting
CFA. Yet such an encoding results in a large precision loss, as shown in Figure 5.1. A value of
the variable a is always 2 at the program location n4, yet due to the spurious program path
(Definition 2.4) π ≡ (n0, n1, n5, n4) being feasible in the shown CFA, an analysis would not be
able to prove the assert statement.

1 void log() {}
2 int main() {
3 int a = 1;
4 log();
5 a = 2;
6 log();
7 assert(a == 2);
8 }

(a) analyzed program

function main

function log

n0

n1

a := 1

n2

n3

a := 2

n4

n5

(b) naive CFA encoding

Figure 5.1: Example of precision loss due to goto function call encoding.
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{P}b = f(a){Q} ` {P ∧ p = a}Bf{Q ∧ p = a ∧ b = r}
{P}b = f(a){Q}

Figure 5.2: Hoare rule for summary instantiation. Recall that a triple {P}OPS{Q} states that “if
P holds, and the control passes through the statement OPS, then Q holds. The variable p denotes
the set of parameters of f , r is a set of return values of f , and Bf is the set of instructions contained
in the body of f . The rule states that if the fact that all calls to f are described by the pair (P,Q)
entails the fact that body of the function f (Bf ) also satisfies (P,Q) (subject to the parameter and
return variable renaming), then (P,Q) summarizes the effect of f .

The path π is spurious as it can never occur during the execution of the program 5.1, due to
the fact that the control has to return to the calling context in the node n2 instead of jumping
to n4. A program path is called valid if it respects that each procedure returns to the site of
the most recent call. Thus in interprocedural program analysis we are interested in finding
smallest invariants which are inductive with respect to all valid program paths.

The classical paper of Sharir and Pnueli [SP81] proposes two solutions for finding such
invariants: the summary approach, and the callstrings approach. In the callstring approach, an
abstract state is extended to include the traversed call-sites, which allows an analysis to only
propagate the information along the valid program paths. Observe that without applying an
abstraction this amounts to dynamically inlining the program during the analysis, as we store
a separate invariant candidate per each program location and callstack. While inlining does
offer fully context sensitive interprocedural analysis, the obvious downsides include inability to
handle recursive programs, and exponential state-space explosion for large programs with many
procedures.

The summary approach, which we use in this chapter, is based on computing a two-state
invariant for each function f , which over-approximates all possible transitions within f . Instead
of associating a predicate over x with each program location, summary-based approaches
associate predicates over input variables x and output variables x′ with program functions.
As opposed to stating all possible values for variables at a given location, summaries over-
approximate all possible transitions through the function: e.g. a summary x ≥ 0 ∧ x′ = x+ 1
states that the program variable x is always positive at the function entry, and is incremented
by one by the time control reaches the function exit.

The Hoare rule for proving programs using summaries [Hoa71] is shown in Figure 5.2. It
states that if a body of a recursive function f satisfies the Hoare tuple (P,Q) assuming that S
holds for all recursive calls, then f satisfies (P,Q). Such a summary (P,Q) is called inductive.

For example, for a recursive function

int sum(int i) { return i <= 0 ? i : i + sum(i - 1)}

a summary i ≥ 0 =⇒ r ≥ 0 is inductive (r models the returned variable), while a summary
r ≥ 0 is not, due to the possibility of returning a negative value when the input is negative,
even assuming that all recursive calls satisfy r ≥ 0.

Once a summary s for a function f has been computed, a summary based analysis effectively
replaces every call o = f(p) with a statement o = input(); assume(s(o,p)), where input is
function returning ‖o‖ non-deterministic values.
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5.1.1 Contribution

The contributions of this chapter are two-fold. Firstly, we develop a top-down algorithm for
summary generation using an intraprocedural abstract interpretation analysis. Our algorithm
computes a single summary per each called procedure which has a union of all feasible calling
contexts in the analyzed program as a precondition (that is, we only summarize behaviors
which were deemed feasible by our analysis). We rely on the “top-down” summary generation
approach, where summaries are derived from the memoized under-approximating invariant
candidates, which assume that all nested function calls satisfy the existing summaries. In
many ways our algorithm is similar to a context-sensitive interprocedural approach described
in Principles of Program Analysis [NNH99, Figure 2.10], yet it is performed in a more general
context of abstract interpretation with a relational domain of a potentially infinite height.

We develop the algorithm in a framework which assumes pass-by-value semantics (no aliasing)
and lack of global variables (modelled using implicit return of to-return variables at function
exit). No further restrictions are introduced (we support loops, recursion, mutual recursion,
etc.), and furthermore in Section 5.9 we extend the framework to global variables, and in
Section 5.9.4 we outline how multiple summaries can be supported.

The second contribution is that we provide an efficient application of policy iteration to
the summary generation problem by parameterizing the developed algorithm with the local
policy iteration (LPI, Chapter 3). Such a parameterization guarantees that the resulting
inductive invariant is smallest possible for the chosen summary structure1, and a better result
is unattainable inside the given abstract domain.

Chapter Outline We start by developing a new formalism for interprocedural programs in
Section 5.3.1. In Section 5.3.2 we state a computation model for such programs, redefining the
notion of a program path and subsequently of an invariant. Then in Section 5.3.3 we specify
the equation system predicates over program states and summaries have to satisfy in order to
form an inductive invariant for an interprocedural program. In Section 5.4 we get back into the
abstract interpretation domain, restating the notion of an inductive invariant assuming both
summaries and candidate invariants are represented as elements of an abstract domain.

We show how pure policy iteration (Chapter 3) can be applied to solve an equation system
describing such an inductive summary in Section 5.5; this part can be skipped by a reader only
interested in the overall summary generation algorithm.

In Section 5.6 we state Algorithm 5.1 for summary generation using an intraprocedural
analysis (including LPI), and we revisit our running example with it. Then we discuss the
algorithm properties in Section 5.7 and our implementation in Section 5.8. We describe a
number of extensions and optimizations in Section 5.9. Finally, we evaluate our algorithm on
the SV-COMP dataset in Section 5.10, and we conclude in Section 5.11.

5.2 Related Work

The literature on traditional abstract interpretation contains a large body of works on inter-
procedural analysis. The key difference for many such approaches is that in a case of a finite
lattice and associative program operators it is possible to find the least inductive invariant with

1In this chapter we mostly assume the simplest structure where a single summary is generated per function.
Naturally, generating more summaries (e.g. one summary per callsite per function) can achieve greater precision,
as discussed in Section 5.9.4.
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respect to all valid program paths exactly, even in polynomial time, as done in an influential
paper by Reps et al. [RHS95]. Many of such approaches are summarized in a book Principles
of Program Analysis [NNH99].

Ball and Rajamani [BR00] extend the summary generation algorithm on a finite lattice of
dataflow facts to make it path-sensitive by including the strongest postcondition implied by all
procedure calls in the summary. Their approach relies on strongest postcondition computation.

The first extension of abstract interpretation to recursive procedures [CC77b] dates back to
the same year abstract interpretation was introduced.

A top-down algorithm for context-sensitive summary generation in an infinite abstract
domain was proposed by Apinis et al. [ASV12]. The authors generate fully context sensitive
summaries (effectively, a new summary for each new different abstract state at a callsite), and
propose constraints-with-side effects as a formalism for expressing such analysis. Their work
is similar to ours, with a number of key differences. Firstly, we focus on a relational domain,
where often a single summary per procedure can provide a desired result (e.g. “a return value
is one bigger than the input parameter”). Thus our main algorithm description only generates
a single summary, yet we demonstrate an extension to multiple summaries in Section 5.9.4.
During the computation procedure, at each step we compute the outgoing successors of each
state (as opposed to re-calculating constraints on each state subject to incoming edges), which
avoids the problem of “infinite number of variables affecting the constraint” [ASV12] entirely
and does not require any additional formalism.

Ancourt et al. [ACI10] propose computing summaries in a “bottom-up” manner: each
program statement is seen as a block which can be summarized, and by composing these blocks
the summaries are obtained for all procedures, and eventually for the entire program. Their
approach scales better than top-down summaries, yet suffers from the fact that no context
information is available during the summary computation, and summaries can potentially include
spurious behaviors which never occur during the run of a program. Zhang et al. [Zha+14]
propose a combination of a top-down and a bottom-up analysis, which combines performance
and precision of the two.

M. Müller-Olm and H. Seidl present a precise context-aware inter-procedural algorithm for
inductive invariant generation in linear arithmetic [MS04], yet they heavily over-approximate
the program semantics by abstracting away all program guards.

In a predicate abstraction domain, the Spacer algorithm [Kom+13] was proposed by
Komuravelli et al. which uses predicates derived interpolants as well as a mixture of under- and
over-approximations to effectively synthesize summaries for recursive procedures.

The constraint system we create in order to describe the summary applicability is very
similar to a Horn clause encoding of programs with procedure calls [Bjø+15].

5.3 Background

In order to support interprocedural analysis we extend the program model from Section 2.2
with the definitions of a program and a function.

5.3.1 Interprocedural Program Model

The function definition extends that of a control flow automaton (Definition 2.3) by adding a
set of calledges associated with function calls, a set of input and output variables, and a unique
return point.
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function g
ncall

nret

nen

nex

r = s(p1, p2)

return r

g bodyS(p1, p2, r)

Figure 5.3: Illustration of a function call edge (g, ncall, nret, {p1, p2}, {r}). A call edge specifies
the location of a function call, affected variables, and a return location. A valid over-approximation
of semantics of a function call is an over-approximating summary S(p1, p2, r) over the function
parameters and the return value.

Definition 5.1 (Function). A function f is a tuple (nodes, edges, calledges,x,xi,xr, nen, nex)
where nodes is a set of control states modelling the program counter, nex ∈ nodes is a unique
function entry point, and nex ∈ nodes is a unique exit point. The set edges ⊆ nodes×OPS×nodes
denotes all possible transitions within the function together with their corresponding operators.
The set x denotes all variables local to f , additionally xi ⊆ x is a tuple of input parameters,
and xr ⊆ x is a tuple of returned variables. We assume that none of the parameters in xi are
modified by any transition in edges, which can be easily enforced by copying the parameter
variables at the function start. The set calledges describes all function calls from f , where for
each (g, a, b,xp,xo) ∈ calledges an element g ∈ F is a called function, a ∈ nodes is a callsite,
b ∈ nodes is a return node: a node to which the control return once the function finishes its
execution, xp ⊆ x is a tuple of passed parameters, and xo ⊆ x is a tuple of variables which
assume the value given by the return variables of g after the function call.

An example of a call edge is given in Figure 5.3. We use the following vocabulary when
referring to the nodes involved in a function call: the node from which there is an outgoing
function call is called a callsite, the first node of a function is called an entry node, the last
node is referred as an exit node, and finally the control gets back to the return node.

Definition 5.2 (Program). A program is a tuple (F, fm) where F is a set of functions, and
fm ∈ F is a function which is run on a program start.

Note that our language does not have global variables, and writes to globals are modelled
using multiple return values. Additionally, we do not define a return operator, as for a function
(nodes, edges,x,xi,xr, nen, nex) all variables in xr are returned once the control reaches nr.

5.3.2 Invariants and the Computation Model

Recall that we have previously defined the invariant (Definition 2.5) with respect to all possible
program paths (Definition 2.4). As demonstrated in the example of Figure 5.1 this definition
is not sufficient for an interprocedural program, as it does not take the fact that the control
must return to the node associated with the most recent function call into account. Thus we
introduce a notion of a valid interprocedural path which respects the nesting of function calls.

We first have to extend the definition of a concrete state (Definition 2.2) to model the
program callstack. We define a stack frame to be a tuple consisting of a concrete state and
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a program call-edge (call-edge is replaced by an empty set for the first frame representing
the program entry). A program state is a finite sequence of stack frames p ≡ 〈f0, . . . , fn〉. In
order to refer to the last frame of a program state p we use the notation p|head, and a program
state consisting of all other elements is referred to as p|rest. Two frames c1 ≡ ((m1, n1), e1),
c2 ≡ ((m2, n2), e2) (recall that a concrete state is a product of a variable-to-values mapping and
a CFA node) can occur consequently in p only if n1 belongs to a function f , n2 belongs to a
function g, and there exists a call-edge e2 ≡ (g, n1, n3,xp,xr) in f .

Definition 5.3 (Interprocedural Program Path). An interprocedural program path is a sequence
of program states 〈p0, . . . , pm〉 where p0 ≡ 〈(m0, n0)〉 and for any two consecutive states pi, pi+1
we have that one of the following holds:

• Consecution: pi|rest = pi+1|rest, and pi|head ≡ ((m1, n1), e1), pi+1|head ≡ ((m2, n2), e1),
and nodes n1, n2 belong to the same function f , and there exists an edge (n1, OP, n2),
such that m2 ∈ JOPK (m1). Informally, only the head of the two stacks differs, and the
transition taken from pi to pi+1 happens inside f .

• Function Call: pi+1|rest = pi, and pi|head ≡ ((m1, ncall), e1), pi+1|head ≡ ((m2, nen), e2),
ncall belongs to a function f , nen belong to a function g, and e2 ≡ (g, ncall, nret,xp,xo) is
a call-edge in f , such that m1|xp [xp/xgi ] = m2, where xgi is a tuple of input parameters
of g (recall that m|a denotes the projection of a state described by m to the variables
present in a). Informally, the transition represents a call of a function g from f using the
call-edge e2, where we create a new element on the stack such that it is equal to the head
of the previous stack, modulo projection to the parameter variables, and renaming of the
passed parameters to the input variables of g.

• Function Return: pi+1 = pi|rest, and pi|head ≡ ((m1, nex), e1), pi+1|head ≡ ((m2, nret), e2),
pi+1|rest|head ≡ ((m3, ncall), e2) nex belongs to a function g, nret belongs to a function f ,
and e2 ≡ (g, ncall, nret,xp,xo) is a call-edge in f , such that m1|xg

r
[xgr/xo]

∐
m3|x\xo

= m2,
where xgr is a tuple of return variables of g, and ∐ operator performs the disjoint union
of two maps. Informally, the transition represents the return from g to f , where we pop
from the stack, and the new assignment to variables is given by a disjoint union of two
maps: the one containing the assignment to variables modified by the function call (state
at the return value of the function, projected to return variables, and renamed to output
variables of the call-edge), and the one containing the assignment to all the untouched
variables (state at the callsite, projected to all local variables excluding those modified by
the function call).

Finally, we are equipped to introduce an interprocedural invariant definition: a property I
is an interprocedural invariant for a program P if and only if for all interprocedural program
paths for P , for all program states of these paths, for all frames f ≡ ((m,n), e) contained
in program states, we have m |= I. Note that as all feasible intraprocedural program paths
over-approximate all feasible interprocedural program paths, every intraprocedural invariant is
also interprocedural. Yet the converse does not necessarily hold. In this chapter we shall refer
to an interprocedural invariant as simply an “invariant”.

5.3.3 Inductive Invariant and Semantics Equations

Recall that during an intraprocedural analysis we were looking for an invariant defined using
an inductive assertion map (Definition 2.7), which is a mapping from CFA nodes to predicates
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over program variables, satisfying the constraints of Equation 2.4. As before, we have to adapt
the inductive invariant definition to the interprocedural analysis. We perform the analysis
using summaries, which are predicates over the input and return variables for each procedure,
over-approximating all possible transitions.

Definition 5.4 (Summary). A predicate S(xi ∪ xr) is a summary for a function

f = (nodes, edges, calledges,x,xi,xr, nen, nex)

occurring in a program P if and only if in all for all valid interprocedural program paths in P ,
for all program states of those paths, for all frames f ≡ ((m,nex), e) contained in those states
m|xi∪xr |= S.

Note that our summaries are only affected by the concrete data states associated with the
function exit node. This is done for the following reasons: (i) we do not wish to summarize
program paths which never leave the procedure due to endless loops or recursion; (ii) as our
intraprocedural operators do not change the input parameters, it is sufficient to look at the
states associated with the exit node.

For example, a summary p ≥ 0 ∧ r ≥ 0 for a function where the set of parameters is ≡ {p}
and the set of return variables is {r} states that “the function is only called with a positive
input, and the output for such calls is always positive”. Note that Definition 5.4 states that
the summary has to over-approximate all possible states within the function with respect to
all valid program paths: that is, the summary does not over-approximate all behaviours of the
procedure, if those behaviours do not actually occur in the program.

We define an inductive invariant for an interprocedural program using a set of summaries,
one per function, and a set of inductive assertion maps, also one per function2. As before, every
inductive program invariant is a program invariant.

Definition 5.5 (Inductive Program Invariant). A set of summaries Sf indexed by the function
name, and a set of inductive assertion maps If also indexed by the function name, form an
inductive invariant for a program P ≡ (F, fm) if and only if the following rules universally hold
for all functions f = (nodes, edges, calledges,x,xi,xr, nen, nex) and all values of x:

Program Initiation: Ifm(nfm
i ) = >

Consecution: for all (a, OPS, b) ∈ edges:
If (a)(x) ∧ JOPSK (x ∪ x′) =⇒ I ′f (b)(x′)

Function Call: for all (g, ncall, nret,xp,xo) ∈ calledges:(∃(x \ xp
)
. If (ncall)(x))[xp/xgi ] =⇒ Ig(ngen)(xgi )

Summary Coverage: ∃x \ (xi ∪ xr). If (nex)(x) =⇒ Sf (xi ∪ xr)
Function Application: for all (g, ncall, nret,xp,xo) ∈ calledges:

∃xo. If (ncall) ∧ Sg[xgr/xo][xgi /xp] =⇒ If (nret)

(5.1)

In the rules above, we use existential quantification in order to perform projection: existen-
tially quantifying a variable is equivalent to performing a projection on all other variables.

The “Program Initiation” and “Consecution” rule simply mirror those of Equation 2.4,
stating that the invariant is inductive with respect to intraprocedural transitions and the

2In Section 5.9 we show how the model can be extended to support multiple summaries.
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initiation condition is fulfilled. The “Function Call” rule ensures that the invariant associated
with the function entry of the called function subsumes the invariant associated with the calling
context (after projecting to parameter variables and renaming).

In the “Summary Coverage” rule we state that the invariant associated with the function
entry (recall that we have postulated that function parameters can not be modified inside the
function) and the function exit are both smaller than the corresponding summary. This fact
ensures that all function calls which occur in a program are captured by the existing summaries,
and that existing summaries capture all possible transitions expressed by the inductive assertion
map associated within the called functions. The “Function Application” rule requires that if
we replace a function call by its summary, the invariant at the return site will subsume the
summary application to the callsite (given by conjunction of the invariant at the callsite with
variables xo projected out, and the summary application with input and parameter variables
renamed).

5.4 Summaries as Abstract States

We would like to find the least inductive invariant for an interprocedural program in a given
abstract domain D. That is, we are looking for the smallest set of inductive assertion maps
If : nodes → D where nodes is a set of nodes in f , and all summaries are elements of the domain
D as well.

Consequently, all inductive assertion maps for a program P ≡ (F, fm) are represented as a
set of unknowns Inf ∈ D for a corresponding function f ∈ F and for all n in the set of the nodes
of f . A summary for a function f is represented as an unknown Sf ∈ D.

We proceed to rewrite Equation 5.1 with those assumptions. We replace the implica-
tion with a � partial order relation associated with D, we use the abstract semantics for
the intraprocedural operator application, and we use the intersection operator in place of
conjunction. Additionally, we replace existential quantification with an explicit projection
operation. We obtain the following constraint set for a program P , which holds for every
f ≡ (nodes, edges, calledges,x,xi,xr, nen, nex) in F (let m be the starting node for the main
function fm):

Program Initiation: Imfm
= >

Consecution: for all (a, OPS, b) ∈ edges:
JOPSK] (Iaf ) � Ibf

Function Call: for all (g, ncall, nret,xp,xo) ∈ calledges:
Incall
f |xp [xp/xgi ] � Inen

f

Summary Coverage: Inex
f |xi∪xr � Sf

Function Application: for all (g, ncall, nret,xp,xo) ∈ calledges:
Incall
f |x\xo

u Sg[xgi /xp][xgr/xo] � Inret
f

(5.2)

5.5 Applying Policy Iteration

Finding the smallest inductive assertion maps subject to the constraints of Equation 5.2 is
solvable by policy iteration (Chapter 3) in case where an abstract domain is an instance of a

110



Section 5.5 Applying Policy Iteration

1 int main() {
2 int o = sum(input());
3 }
4

5 int sum(int i) {
6 int r, t;
7 if (i <= 0) {
8 r = 0;
9 } else {

10 t = sum(i - 1);
11 r = i + t;
12 }
13 return r;
14 }

(a) source code

function main

function sum

ne

nr

nc

nj

ns

nq

i <= 0; r := 0

i > 0

r := i + t

i := i - 1

t := r

t = sum(i - 1)
o = sum(input())

i := input()

o := r

(b) interprocedural dataflow graph

Figure 5.4: Running Example: Recursive Sum Program

template constraints domain (Section 2.8.3). The resulting inductive invariant and the summary
are the strongest possible for a given program expressed in a given domain. The optimization
problem which policy iteration is solving corresponds to minimizing a finite set of unknowns
used to represent abstract states Inf in a complete lattice where the right hand side of every
equation contains a monotone concave expression.

Example 5.1 (Running Example for Summary Generation). We demonstrate the application
of policy iteration for summary generation using the running example of Figure 5.4. We
analyze the given program using the template −i at node nc, templates −i,−t at nj , templates
−i,−r,−(r− i) at nr, and a single template −o at nq. Recall that negated templates are simply
used to obtain the lower bounds on expressions. We do not add any templates to nodes ns or
ne as the associated invariant is always >.

A summary S(i, r) is used to model the application of a function sum, and it is also tracked
using the templates −i, −r and −(r − i).

In order to perform the minimization, we write down the system of semantical equations for
control locations with a non-zero number of templates, using unknowns dnt for each location n
and template t, and additionally unknowns st for each t mentioned in the summary. Thus we
are looking for the smallest tuple

d ≡ (dc−i, d
j
−i, d

j
−t, d

r
−i, d

r
−r, d

r
−(r−i), d

q
−o, s−r, s−(r−i)) (5.3)
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satisfying the constraints of Equation 5.4:



dc−i ≥ sup−i s.t. ⊥ ∨ i > 0
dj−i ≥ sup−i s.t. ⊥ ∨−i ≤ dc−i ∧ −t ≤ s−r ∧ −(t− (i− 1)) ≤ s−(r−i)

dj−t ≥ sup−t s.t. ⊥ ∨−i ≤ dc−i ∧ −t ≤ s−r ∧ −(t− (i− 1)) ≤ s−(r−i)

dr−i ≥ sup−i s.t. ⊥ ∨ i ≤ 0 ∧ r = 0
∨ −i ≤ dj−i ∧ −t ≤ dj−t ∧ r′ = i+ t

dr−r ≥ sup−r s.t. ⊥ ∨ i ≤ 0 ∧ r = 0
∨ −i ≤ dj−i ∧ −t ≤ dj−t ∧ r′ = i+ t

dr−(r−i) ≥ sup−(r − i) s.t. ⊥ ∨ i ≤ 0 ∧ r = 0

∨ −i ≤ dj−i ∧ −t ≤ dj−t ∧ r′ = i+ t

dq−o ≥ sup−o s.t. ⊥ ∨−o ≤ s−r
s−r ≥ dr−r

s−(r−i) ≥ dr−(r−i)

(5.4)

The constraint set of Equation 5.4 was generated from Equation 5.2 in a following way:
the “Program Initiation” rule is implicitly fulfilled by the lack of templates associated with
the program entry point, which therefore can take any value. Similarly, the “Function Call”
rule is also fulfilled implicitly, as the starting invariant candidate associated with the node ne
is already >. The “Consecution” rule is satisfied by encoding the transition relations in the
constraint system along with the previous abstract value, as previously performed in Example 3.3.
Similarly, the “Function Application” rule is satisfied by adding the constraints resulting from
the summary modulo renaming to the unknowns associated with return nodes (nr and nq).
Finally, we satisfy the “Summary Coverage” rule using the last two constraints. That entails
that the policies associated with the summary are given by the policies associated with the
function exit node, which are usually the choice between the base case and the recursive case
for a simple recursive function.

We solve the given optimization problem by using policy iteration, which proceeds through
the following steps (the order on the elements of d corresponds to the order given in Equa-
tion 5.3, similarly to Example 3.3 the policy is given by a tuple of nodes and >,⊥ elements).
For readability, both policies and values are grouped by the node they refer to (the tuple
representation can be reconstructed by maintaining the order and ignoring the keys).

1. Initial policy, given by the initiation rule:

p =
{
nc : (⊥), nj : (⊥,⊥), nr : (⊥,⊥,⊥), nq : (⊥), s : (⊥,⊥)

}
2. Value determination:

d =
{
nc : (−∞), nj : (−∞,−∞), nr : (−∞,−∞,−∞), nq : (−∞), s : (−∞,−∞)

}
3. Policy improvement, the nodes nr and nc becomes reachable:

p =
{
nc : (ne), nj : (⊥,⊥), nr : (ne, ne, ne), nq : (⊥), s : (⊥,⊥)

}
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4. Value determination:

d =
{
nc : (0), nj : (−∞,−∞), nr : (0, 0, 0), nq : (−∞), s : (−∞,−∞)

}
5. Policy improvement, we can determine the lower bound on the variable i at the “join”

node. Additionally, we get new policies for the summary:

p =
{
nc : (ne), nj : (⊥,⊥), nr : (ne, ne, ne), nq : (⊥), s : (nr, nr)

}
6. Value determination, we get finite bounds for the summary:

d =
{
nc : (0), nj : (⊥,⊥), nr : (⊥,⊥,⊥), nq : (⊥), s : (0, 0),

}
7. Policy improvement:

p =
{
nc : (ne), nj : (nc, s−r), nr : (ne, ne, ne), nq : (⊥), s : (nr, nr)

}
8. Value determination:

d =
{
nc : (0), nj : (0, 0), nr : (0, 0, 0), nq : (−∞), s : (0, 0),

}
9. Policy improvement, we are finally able to select the policy for nq:

p =
{
nc : (ne), nj : (nc, s−r), nr : (ne, ne, ne), nq : (s), s : (nr, nr)

}
10. Value determination:

d =
{
nc : (0), nj : (0, 0), nr : (0, 0, 0), nq : (0), s : (0, 0),

}
11. The policy can not be improved any further, and the iteration converges.

Let’s reconstruct the meaning of the last tuple obtained by value determination. The first
value gives the upper bound on −i (or, equivalently the negated lower bound on i) at the node
nc, stating that it is always greater than zero. Similarly, the next two values give (negated)
lower bounds on expressions i and t at node nj , stating that “i and t are always greater than
zero”. Again, the next three values repeat the same statement about the node nr, adding that
“the value of r is always greater or equal than the value of i. The value associated with nq
simply states that o is always positive. Finally, the last two values give the resulting summary,
which states “the output of sum is always greater or equal to zero and is always greater or equal
to its input”.

5.6 Generating Summaries using Intraprocedural Analysis

As before, in order to get an efficient local analysis procedure we want to apply policy iteration
to the program directly, without converting it first to a set of semantical equations. To perform
that, we develop an algorithm for generating summaries from the results of the intraprocedural
analysis. Our algorithm is not specific to policy iteration, and can be parameterized with
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any abstract interpretation equipped with strongest postcondition operator and convergence
guarantees, in particular the LPI algorithm developed in Chapter 3 .

We say that a summary Sf for a function f ≡ (nodes, edges, calledges,x,xi,xr, nen, nex) is
generated by an inductive assertion map If : nodes → D iff Sf represents the strongest invariant
in D implying the invariant at the return node If (nr), and implied by the invariant at the function
start If (ni). For example, for a function f ≡ ({a, b}, {(a, r = x+ 1, b)}, ∅, {r, x}, {x}, {r}, a, b)
the inductive assertion map {a : x ≥ 0, b : x ≥ 0 ∧ r ≥ 1 ∧ r − x = 1} generates the summary
x ≥ 0 ∧ r ≥ 1 ∧ r − x = 1.

Effectively, our summaries are given by intraprocedural abstract states associated with the
function exit, with variables local to a function projected out. Thus instead of storing summaries
explicitly, we use the (projection of) the abstract state associated with the return location of each
function during the summary application. Applying this rule leads to Algorithm 5.1, which is
essentially the generalization of the Kleene worklist algorithm from background (Algorithm 2.1)
to the interprocedural case.

Algorithm Description Algorithm 5.1 can be parameterized with any abstract interpretation
which provides a partial order, a strongest postcondition operator, an intersection operator,
and a join operator, including LPI, making scalable application of policy iteration possible.

The algorithm operates over two stateful datastructures: a mapping from all program to
nodes to associated abstract states I, and a waitlist of nodes Q from which the information
was not yet propagated. Initially, we associate each node with an unreachable state ⊥ (line 9),
except for the entry point of the main function, which is set to > (line 13). During the main
fixed point computation, while the waitlist is not empty (line 14) we pop a new node from Q.

Firstly, we process all outgoing intraprocedural edges (line 18): as in usual abstract inter-
pretation, the output state is given by the application of the abstract semantics of the operator.
Then, a helper “update” function (line 40) merges the new abstract state with the one previously
associated with the new node, and updates the waitlist, unless the new state is subsumed by
the already existing one.

Afterwards, we check whether n is the exit node of a function (line 22). In such a case, we
use the function application rule, and the new state is given by the intersection of the calling
context with output variables of the call projected out, and our state with parameter and return
variables renamed. Similarly, the “update” function is called to propagate the information.

Finally, we process all the outgoing call edges (line 30). The new state is derived by
projecting the processed state on the parameter variables and subsequent renaming to the called
function g input parameters. As before, we call the “update” function to join the new state with
the existing one associated with the entry node of g. Furthermore, we update the return site
nret of the calling edge using the existing summary. Observe how we had to apply the function
application rule for the second time: that happens because if the update to the called function
entry state is subsumed by an existing invariant, we can not rely on the previous “if” statement
to perform the application, as the update will not be propagated up to the function exit.

Once the iteration converges, our algorithm returns a global mapping from nodes to abstract
states.

Revisiting Running Example Similarly to Example 3.5, we are in the position to revisit
the running example from Figure 5.4 with Algorithm 5.1 parameterized with LPI. We use the
same template mapping we have previously used in Example 5.1.
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Algorithm 5.1 Summary Generation

1: Input: program P ≡ (F, fm), abstract domain D,
2: partial order �: D → D → B,
3: strongest postcondition operator J.K] : D → OPS→ D → D,
4: join operator t : D → D → D,
5: intersection operator u : D → D → D
6: Output: map I from nodes of P to D
7: allnodes ← all nodes of P
8: allcalledges ← all call edges of P
9: map from nodes to abstract states I ← {n : ⊥ | n ∈ allnodes}

10: queue of nodes Q← ∅
11: m← starting node of fm
12: I[m]← >
13: Q← Q ∪ {m}
14: while Q 6= ∅ do
15: n← pop from Q
16: s← I(n)
17: f ≡ (nodes, edges, calledges,x,xi,xr, nen, nex)← function containing n
18: for all (n, OP, n′) ∈ edges do
19: s′ ← JOPK] (s)
20: Update(n′, s′)
21: end for
22: if n = nex then
23: . update on summary entails updates on all return sites of calling edges
24: for all c ≡ (f, ncall, nret,xp,xo) ∈ allcalledges do
25: (gnodes, gedges, gcalledges,xg,xgi ,xgr , ngen, ngex)← function containing c
26: s′ ← s|xi∪xr [xi/xp][xr/xo] u I(ncall)|xg\xo

27: Update(nret, s′)
28: end for
29: end if
30: for all c ≡ (g, n, nret,xp,xo) ∈ calledges do
31: . n is a callsite for a function g
32: (gnodes, gedges, gcalledges,xg,xgi ,xgr , ngen, ngex)← g
33: s′ ← s|xp [xp/xgi ]
34: Update(s′, ngen)
35: . use the existing summary
36: s′′ ← I(ngex)|xg

i∪xg
r
[xgi /xp][xgr/xo] u s|x\xo

37: Update(s′′, nret)
38: end for
39: end while
40: function Update(node n, state s)
41: if s � I(n) then
42: I(n)← I(n) t s
43: Q← Q ∪ {n}
44: end if
45: end function
46: return I
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Note that in the presence of large block encoding (Section 2.9), the abstraction has to be
performed at call- and return- nodes: in our example that entails calculating abstraction at
each node.

Example 5.2 (Re-Analyzing the Running Example with Interprocedural LPI). 1. We start
with an empty state a0 ≡ {} associated with the node ns.

2. Following the function call (sum, ns, nq, ∅, {o}) produces another top state a1 ≡ {} associ-
ated with ne.

3. From the intraprocedural edge (ne, i ≤ 0∧r′ = 0∧ i′ = i, nr) we get the state a2 associated
with the node nr:

τ1 ≡ i ≤ 0 ∧ r′ = 0 ∧ i′ = 0
a2 ≡ {−i : (0, τ, a1),−r : (0, τ, a1),−(r − i) : (0, τ, a1)}

Note how we have introduced a helper relation τ1 to record the policy.

4. By following another intraprocedural edge (ne, i > 0 ∧ i′ = 0, nc) we get the following
state a3 associated with the node nc:

a3 ≡ {−i : (0, i > 0 ∧ i′ = 0, a1)}

5. The function call from nc is subsumed by existing abstract state > associated with ne.

6. We perform the summary application at the node nc and arrive at the new abstract state
a4 associated with nj :

a4 ≡ {−i : (0, i′ = i, a3),−t : (0, t′ = r, a2)}

Note that the identity assignment i′ = i is generated as a policy in order to propagate the
bound from the callsite.

7. After traversing the intraprocedural edge (nj , r′ = i+ t, nr) we get the state a5:

τ2 ≡ r′ = i+ t

a5 ≡ {−i : (0, τ, a4)− r : (0, τ, a4)− (r − i) : (0, τ, a4)}

Again, we have used an auxiliary relation τ2 to record the used policy. As a4 is subsumed
by a2 no updates are generated.

8. Finally, we perform the function application for sum at the node ns. The generated
abstract state associated with nq is:

{−o : (0, o′ = r, a2)}

No new updates are possible, and the exploration is concluded. The returned invariant is:

{ns : >, ne : >, nc : a3, nj : a4, nr : a2, nq : a5}

Despite the fact that the amount of steps is the same as for Example 5.1, each step is
considerably simpler and only involves the local updates, and the exploration progress can be
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seen much easier.

The exploration in Example 5.2 is remarkably similar to the one which would happen if
the naive goto encoding shown in Figure 5.1 was used. The crucial difference is that we only
pass the relevant parameters along the call and return edges, and we perform merge instead of
intersection at the return site. Applying the goto encoding directly to the example in Figure 5.4
would not less us prove that i is always positive at the node nj , which is crucial for establishing
that the return value is always greater or equal than the input in the sum summary.

5.7 Algorithm Properties

Property 5.1 (Soundness). The invariant map computed by Algorithm 5.1 satisfies the
constraints of Equation 5.2.

Proof. Setting the abstract state associated with the program entry to > fulfils the “Program
Initiation” rule, as the invariant map is updated only through the “update” function, which only
enlarges the contained states. The “Consecution” rule is satisfied due to the intraprocedural
update in line 18. The updates associated with call edges in line 30 guarantee the “Function Call”
rule, and the “Function Application” rule is fulfilled by treating the exit node in line 22. The
“Summary Coverage” rule is satisfied implicitly, as our summaries are given by the (projection
of) the abstract states associated with exit nodes.

Property 5.2 (Termination). Algorithm 5.1 is guaranteed to terminate if the abstract inter-
pretation parameterization terminates after finitely many join applications (which may include
widening) with the growing invariant sequence of abstract states.

Proof. Updates causing the main fixpoint loop to run are only performed in the “update”
function (line 40), which only happens when the new abstract state is not subsumed by the old
one, and a join is subsequently performed. If such a sequence converges for every node, the
algorithm terminates.

In particular, Property 5.2 entails that LPI parameterization of Algorithm 5.1 terminates in
time bounded by the number of policies in Equation 5.1.

Property 5.3 (Optimality). If the parameterization of Algorithm 5.1 does not introduce any
imprecision during the join or the abstract postcondition calculation, the obtained invariant is
the strongest possible one in the given domain.

Similarly, Property 5.3 entails that LPI terminates with the strongest inductive invariant
satisfying the constraints.

Proof Outline. The proof is similar to that for the standard Kleene iteration algorithm: we are
simply performing the updates subject to the constraints we have to satisfy.

5.8 Implementation

We have implemented the parameterization of Algorithm 5.1 with LPI inside the CPAchecker
framework. As before, detailed installation and usage instructions are available in Chapter 7.

Our implementation provides a generic framework which can be implemented by any
configurable program analysis (Section 2.10) in order to support summary generation. To use
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the framework, the client CPA has to implement two methods: one for generating the entry
abstract state for the summary (applied in line 34) and one for applying the function summary
to the given callsite (applied in line 27 and line 37). The implementation consists of a top-level
configurable program analysis, which applies these two functions provided by the wrapped
analysis during the successor computation.

Our tool supports programs which modify global variables inside function, or modify the
parameter variables by running a pre-analysis CFA-to-CFA transformation which assigns the
current value of all modified globals and parameters to a temporary variable, which may then
be used inside the summary. Aliasing is currently not supported.

5.9 Extensions

In this section we describe various extensions we have studied to increase the applicability,
precision and performance of our algorithm.

5.9.1 Supporting Parameter and Return Expressions

Our program definition (Definition 5.2) only allows variables to be passed as parameters and
to be returned. Most C-like languages allow using arbitrary expressions for both, which may
even include function calls. Using the “Function Application” and “Function Call” rules from
Equation 5.2 becomes problematic as they require renaming operations which semantics is not
clear in the presence of such expressions.

Introducing temporary variables to hold the values of expressions the function is called with,
and expressions the function is returning solves the issue (e.g. replacing return a + b + c

with tmp = a + b + c; return tmp). Introducing auxiliary variables also allows our analysis
to support complex expressions involving function calls (e.g. a = b + f(c) is replaced with tmp

= f(c); a = b + tmp).

5.9.2 Supporting Globals using Pre-Analysis

The program model we have described in Section 5.3 does not support global variables. This
simplifies the summarization procedure, as each function explicitly returns all the variables
it modifies. Globals can be easily removed using a syntactic transformation, which causes all
functions to accept and return all declared global variables. Yet for programs extensively using
globals that would not be very different than the naive goto encoding, due to the joins arising
from spurious paths.

Instead, we run a pre-analysis which finds an over-approximation of all variables which can
be affected by the function (or the functions called by it), and we extend the “output variables”
set xo associated with the call-edge with those.

5.9.3 Abstract Reachability Tree Generation

Recall the technique we have described in Section 4.4.1 for generating an abstract reachability
tree from the abstract interpretation run. The technique is still applicable in the presence of
summaries, yet the produced graph is no longer a tree, but a directed acyclic graph due to a
fact that the return-site has two predecessors: summary and a callsite. Acyclic counterexample
traces can be still found in a resulting DAG, and the domain can be refined using e.g. tree
interpolation [HHP10]. Additionally, the procedure for finding “neighbour states” (Algorithm 4.2,
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line 36) has to be updated to perform a breadth-first-search instead of traversing a chain of
backpointers). Thus the interpolation-based template synthesis described in Section 4.4 is still
applicable for the approach described in this chapter, yet it was not implemented.

5.9.4 Generating Multiple Summaries

As shown by the benchmarks we have looked at, disjunctive summarize are often needed to
verify the properties of interest. Such summaries can be derived from convex abstract states by
generating a number of different convex summaries, yet our description of Algorithm 5.1 only
generates a single summary per each function.

Yet Algorithm 5.1 can be trivially modified to support multiple summaries. Let D′ be a
finite partitioning of the abstract domain D, where we wish to generate a separate summary
for each element of D′ (in general, D′ does not have to be finite, yet the computation is not
guaranteed to converge if this is not the case).

In order to generate multiple summaries with such a partitioning, we require the analysis
to provide a function partition : D → D′, and we change the main stateful datastructure
I : nodes → D (line 9) storing the global inductive assertion map to I : nodes → D′ → D, where
the second argument is the calling context of the function (always > for the main function fm).

When applying the “Entry” rule for creating a summary in line 34 we update the entry node
in the corresponding partition element, and likewise, when applying the summary application
rule in lines 27, 37 we apply the summary from the partition corresponding to the callsite.

In the extreme case where the D′ = D and partition is an identity function the precision of
the resultant algorithm is equal to that of inlining, yet it is not guaranteed to converge in the
presence of recursion.

Due to a lack of time, this extension was not implemented.

5.9.5 Large Block Encoding Support and Inlinement

Recall that LPI operates over CFA encoded using large block encoding (Section 2.9), which
can get both higher precision and performance by reducing the number of abstraction points.

In order to support this encoding, call-node and return-node for each summarized procedure
are added to the cut-set, which is sufficient for breaking all (interprocedural) cycles, potentially
caused by recursion.

However, extra abstraction can negatively affect precision and performance. Thus, like a
compiler, for each processed function we can apply a heuristic deciding whether it should be
inlined or summarized. Due to a lack of time, dynamic inlinement was not implemented.

5.10 Evaluation

We evaluate our implementation on programs in the “Recursive” category of the International
Competition on Software Verification [Bey16]. All benchmarks were run using the following
resource bounds: Intel Xeon E5-2650 v2 @ 2.60 GHz, and a limit of 10GB RAM and 100 s
CPU time per program.

The category contains 98 verification tasks (each task includes a program, property and a
verification verdict), and in 53 of those the expected verdict is “true”. Our implementation was
able to verify 24 of those, with no incorrect verdicts produced. We present the quantile plot
showing the tool performance in Figure 5.5.
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For comparison, state of the art verification tool SeaHorn [GKN15] using Spacer [Kom+13]
algorithm achieves a better result with 49 benchmarks verified, mostly due to the ability
to generate non-convex summaries with predicates forming the abstract domain discovered
dynamically using interpolation. We believe this is partly caused by a dataset which does not
contain complex convex properties (e.g. proving lack of overflows), and our approach could be
very useful in such cases.

0 20 40 60 80 100

101

102

Programs

W
al

lT
im

e
(s

)

Figure 5.5: Quantile timing plots showing the performance of the summary generation algorithm
parameterized by LPI. As before, each data point corresponds to a processed verification task, with
y coordinate given by the time taken to analyze the task, and x coordinate given by the program
number, with series sorted by time.

5.11 Conclusion and Future Work

We have developed an interprocedural analysis algorithm which can be parameterized by any
abstract interpretation. We have studied this algorithm in context of LPI parameterization, as it
guarantees finding the least fixed point for the fixed number of summaries. The proof-of-concept
implementation was provided, and we have shown how it can be used to verify many recursive
benchmarks.

Our work is not directly applicable to the min-policy [Cos+05] approach, as greatest fixed
points are notoriously over-approximating for recursive procedures.

5.11.1 Future Work

While we have obtained interesting results, engineering work still needs to be done in order for
our algorithm to be applicable in practice. Firstly, the extensions described in Section 5.9.5 and
Section 5.9.4 were not implemented. Additionally, the problems of supporting function pointers
and aliasing in general have to be addressed.

Aliasing Support Unlike a bottom-up approach for summary generation, our algorithm has
an advantage of knowing the calling context during the summary generation, which can already
include aliasing information. This advantage can be used by e.g. deciding to generate a new
summary whenever a calling context has different aliasing, obtaining greater precision.

120



Section 5.11 Conclusion and Future Work

Supporting Function Pointers Function pointers can be supported in a usual way: namely,
either using a pre-analysis tracking which function each pointer can be aliased to, and then
trating the resulting call as a non-deterministic choice between different possibly aliased functions,
or even tracking the aliasing directly in the analysis parameterization. Note that in a case of
function pointers the analysis finding modified and read global variables (Section 5.9.2) would
need a pre-analysis itself in order to resolve function pointers.
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Chapter 6

Formula Slicing: Inductive Invariants
from Preconditions

6.1 Introduction

In this chapter we present new method for invariant synthesis which we call “formula slicing”.
The findings were already published [KM16], and the chapter largely follows the publication
with some new results added.

Abstract-interpretation-based approaches restrict the class of expressible inductive invariants
to a predefined abstract domain, such as products of intervals, octagons, or convex polyhedra,
all of which can only express convex properties. Any candidate invariants which can not be
expressed in the chosen abstract domain get over-approximated. This is a severe restriction:
if a property flows from the beginning of the program to a loop head, and holds inductively
after, but is not representable within the previously chosen abstract domain, it is discarded. In
contrast, our idea exploits the insight that many loops in the program affect only a small part
of the memory, and many invariants which were valid before the loop are still valid afterwards.

1 int x = input();
2 int p = input();
3 if (p) {
4 assume(x >= 0);
5 } else {
6 assume(x < 0);
7 }
8 for (int i=0; i < input(); i++) {
9 x *= 2;

10 }

Figure 6.1: Motivating Example for Finding Inductive Weakenings

Consider finding an inductive invariant for the motivating example in Figure 6.1. Symbolic
execution up to the loop-head can precisely express all reachable states at the loop entry:

i = 0 ∧ (p 6= 0 =⇒ x ≥ 0) ∧ (p = 0 =⇒ x < 0) (6.1)

Yet abstraction in a numeric convex domain at the loop head yields i = 0, completely losing
the information that x is positive iff p 6= 0. Observe that this information loss is not necessary,
as the sign of x stays invariant under the multiplication by a positive constant (assuming
mathematical integers for the simplicity of exposition). To avoid this loss of precision, we
develop a “formula slicing” algorithm which computes inductive weakenings of propagated
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formulas, allowing to propagate the formulas representing inductive invariants across loop heads.
In the motivating example, formula slicing computes an inductive weakening of the initial
condition in Equation 6.1), which is (p 6= 0 ⇒ x ≥ 0) ∧ (p = 0 ⇒ x < 0), and is thus true at
every iteration of the loop. The computation of inductive weakenings is performed by iteratively
filtering out conjuncts falsified by counterexamples-to-induction, derived using an SMT solver.
In the example, transition i = 1 from i = 0 falsifies the constraint i = 0, and the rest of the
conjuncts are inductive.

The formula slicing fixpoint computation algorithm is based on performing abstract inter-
pretation on the lattice of conjunctions over a finite set of predicates. The computation starts
with a seed invariant which necessarily holds at the given location on the first time the control
reaches it, and during the computation it is iteratively weakened until inductiveness.

6.1.1 Contributions

We present a novel insight for generating inductive invariants, and a method for creating a
lattice of weakenings from an arbitrary formula describing the loop precondition using a relaxed
conjunctive normal form (Definition 6.1) and best-effort quantifier elimination (Section 6.2.1).

We evaluate (Section 6.6) our implementation of the formula slicing algorithm on the “Device
Drivers” benchmarks from the International Competition on Software Verification [Bey16], and
we demonstrate that it can successfully verify large, real-world programs which can not be
handled with traditional numeric abstract interpretation, and that it is competitive with state
of the art techniques.

6.1.2 Related Work

The Houdini [FL01] algorithm mines the program for a set of predicates, and then finds
the largest inductive subset, dropping the candidate non-inductive lemmas until the overall
inductiveness is achieved. The optimality proof for Houdini is present in the companion
paper [FJL01]. A very similar algorithm is used by Bradley et al. [BM07] to generate the
inductive invariants from negations of the counter-examples to induction.

Inductive weakening based on counterexamples-to-induction can be seen as an algorithm
for performing predicate abstraction [GS97]. Generalizing inductive weakening to best abstract
postcondition computation Reps et al. [RSY04] use the weakening approach for computing the
best abstract transformer for any finite-height domain, which we also perform in Section 6.1.4.

Generating inductive invariants from a number of heuristically generated lemmas is a
recurrent theme in the verification field. In automatic abstraction [Kom+13] a set of predicates
is found for the simplified program with a capped number of loop iterations, and is filtered
until the remaining invariants are inductive for the original, unmodified program. A similar
approach is used for synthesizing bit-precise invariants by Gurfinkel et al. [GBM14].

The complexity of the inductive weakening and that of the related template abstraction
problem are analyzed by Lahiri and Qadeer [LQ09].

6.1.3 Counterexample-to-Induction Weakening Algorithm

The approaches [BM07; FL01; GBM14; Kom+13] mentioned in Section 6.1.2 are all based
on using counterexamples to induction for filtering the input set of candidate lemmas. For
completeness, we restate this approach in Algorithm 6.1.
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Section 6.1 Introduction

L1 L2

L1 ∧ L2

M(X)

X X ′

L1 L2

¬L′
1 ∨ ¬L′

2

M(X ′)

τ(X ∪X ′)

Figure 6.2: Formula φ(x) ≡ L1(x)∧L2(x) is tested for inductiveness under τ(x ∪ x′). ModelM
identifies a counter-example to induction. FromM |= ¬L′2(x′) we know that the lemma L2 has to
be dropped. As weakening progresses, the shaded region in the left box is growing, while the shaded
region in the right box is shrinking, until there are no more counterexamples to induction.

In order to perform the weakening without syntactically modifying φ during the intermediate
queries, we perform selector variables annotation: we replace each lemma li ∈ φ with a
disjunction si ∨ li, using a fresh boolean variable si. Observe that if all selector variables are
assumed to be false the annotated formula φannotated is equivalent to φ, and that assuming any
individual selector si is equivalent to removing (replacing with >) the corresponding lemma li
from φ. Such an annotation allows us to make use of incrementality support by SMT solvers,
by using the solving with assumptions feature.

Algorithm 6.1 iteratively checks input formula φ for inductiveness using Equation 2.3
(line 14). The solver will either report that the constraint is unsatisfiable, in which case φ is
inductive, or provide a counterexample-to-induction represented by a modelM(x∪x′) (line 15).
The counterexample-driven algorithm usesM to find the set of lemmas which should be removed
from φ, by removing the lemmas modelled byM in ¬φ′ (line 21). The visualization of such a
filtering step for a formula φ consisting of two lemmas is given in Figure 6.2.

Algorithm 6.1 terminates with the strongest possible weakening [FJL01] within the linear
number of SMT calls with respect to ‖φannotated‖.

6.1.4 From Weakenings to Abstract Postconditions

As shown by Reps et al. [RSY04], the inductive weakening algorithm can be generalized for the
abstract postcondition computation for any finite-height lattice.

For given formulas ψ(x), τ(x ∪ x′), and φ(x) consider the problem of finding a weakening
φ̂ ⊆ φ, such that all feasible transitions from ψ through τ end up in φ̂. This is an abstract
postcondition of ψ under τ in the lattice of all weakenings of φ (Section 2.8.6). The problem
of finding it is very similar to the problem of finding an inductive weakening, as we can check
whether a given weakening of φ is a postcondition of ψ under τ using Equation 6.2,

ψ(x) ∧ τ(x ∪ x′) ∧ ¬φ′annotated(x′) (6.2)

Algorithm 6.1 can be adapted for finding the strongest postcondition in the abstract domain
of weakenings of the input formula with very minor modifications. The required changes are
accepting an extra parameter ψ, and changing the queried constraint (line 6) to Equation 6.2.
The found postcondition is indeed strongest [RSY04].
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Chapter 6 Formula Slicing: Inductive Invariants from Preconditions

Algorithm 6.1 Counterexample-Driven Weakening.

1: Input: Formula φ(x) to weaken in RCNF, transition relation τ(x ∪ x′)
2: Output: Inductive φ̂ ⊆ φ
3: . Annotate lemmas with selectors, S is a mapping from selectors to lemmas they annotate.
4: S, φannotated ← Annotate(φ)
5: context ← new context of SMT solver
6: query ← φannotated ∧ τ ∧ ¬φ′annotated
7: Assert query in context
8: assumptions ← ∅
9: removed ← ∅

10: . In the beginning, all of the lemmas are present
11: for all (selector , lemma) ∈ S do
12: assumptions ← assumptions ∪ {¬selector}
13: end for
14: while context is satisfiable with assumptions do
15: M← model of context
16: assumptions ← ∅
17: for all (selector , lemma) ∈ S do
18: if M |= ¬lemma′ or lemma′ is irrelevant to satisfiability then
19: . lemma has to be removed.
20: assumptions ← assumptions ∪ {selector}
21: removed ← removed ∪ {lemma}
22: else
23: assumptions ← assumptions ∪ {¬selector}
24: end if
25: end for
26: end while
27: . Remove all lemmas which were filtered out
28: return φ[removed/>]

This adaptation effectively runs a modified version of cartesian [BPR03] predicate abstrac-
tion [GS97]. Unlike a classical approach where the negation of each predicate is tested for
unsatisfiability (like in [BPR03]), we test the negation of the disjunction over all the predicates,
and we used the model to filter out multiple predicates at once, thereby speeding up the
convergence.

6.2 The Space of All Possible Weakenings

We wish to find a weakening of a set of states represented by φ(x), such that it is inductive
under a given transition τ(x ∪ x′). For a single-node CFA defined by an initial condition φ and
a loop transition τ such a weakening would constitute an inductive invariant as by definition of
weakening it satisfies the initial condition and is inductive.

We start with an observation that for a formula in NNF replacing any subset of literals
with > results in an over-approximation, as both conjunction and disjunction are monotone
operators. E.g. for a formula φ ≡ (la ∧ lb)∨ lc such possible weakenings are >, lb ∨ lc, and la ∨ lc.

The set of weakenings defined in the previous paragraph is redundant, as it does not take the
formula structure into account — e.g. in the given example if lc is replaced with > it is irrelevant
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Section 6.2 The Space of All Possible Weakenings

what other literals are replaced, as the entire formula simplifies to >. The most obvious way to
address this redundancy is to convert φ to CNF and to define the set of all possible weakenings
as conjunctions over the subsets of clauses in φCNF. E.g. for the formula φ ≡ la ∧ lb ∧ lc possible
weakenings are la ∧ lb, lb ∧ lc, and la ∧ lc. This method is appealing due to the fact that for a set
of lemmas the strongest (implying all other possible inductive weakenings) inductive subset can
be found using a linear number of SMT checks [BM07]. However (Section 2.3) polynomial-sized
CNF conversion (e.g. Tseitin encoding) requires introducing existentially quantified boolean
variables which make inductiveness checking Πp

2-hard.
The arising complexity of finding inductive weakenings is inherent to the problem: in fact,

the problem of finding any non-trivial ( 6= >) weakening within the search space described above
is Σp

2-hard (see proof in Section 6.7).
Thus instead we use an over-approximating set of weakenings, defined by all possible subsets

of lemmas present in φ after the conversion to relaxed conjunctive normal form.

Definition 6.1 (Relaxed Conjunctive Normal Form (RCNF)). A formula φ(x) is in relaxed
conjunctive normal form if it is a conjunction of quantifier-free formulas (lemmas).

For example, the formula φ ≡ la ∧ (lb ∨ (lc ∧ ld)) is in RCNF. The over-approximation comes
from the fact that non-atomic parts of the formula are grouped together: the only possible
non-trivial weakenings for φ are la and lb ∨ (lc ∧ ld), and it is impossible to express la ∧ (lb ∨ lc)
within the defined search space.

We may abuse the notation by treating φ in RCNF as a set of its conjuncts, and writing
l ∈ φ for a lemma l which is an argument of the parent conjunction of φ, or φ1 ⊆ φ2 to indicate
that all lemmas in φ1 are contained in φ2, or ‖φ‖ for the number of lemmas in φ. For φ in RCNF
we define a set of all possible weakenings as conjunctions over all sets of lemmas contained in
φ. We use an existing, optimal counter-example based algorithm in order to find the strongest
weakening of φ with respect to τ in the next section.

A trivially correct conversion to a relaxed conjunctive normal is to convert an input formula
φ to a conjunction ∧ {φ}. However, this conversion is not very interesting, as it gives rise to
a very small set of weakenings: φ and >. Consequently, with such a conversion, if φ is not
inductive with respect to the transition of interest, no non-trivial weakening can be found. On
the other extreme, φ can be converted to CNF explicitly using associativity and distributivity
laws, giving rise to a very large set of possible weakenings. However, the output of such a
conversion is exponentially large.

We present an algorithm which convert φ into a polynomially-sized conjunction of lemmas.
Our conversion algorithm applies the following rules recursively until a fixpoint is reached:

• Flattening: all nested conjunctions are flattened. E.g. a ∧ (b ∧ c) is converted to a ∧ b ∧ c.

• Factorization: when processing a disjunction over multiple conjunctions we find and
extract a common factor. E.g. (a ∧ b) ∨ (b ∧ c) is converted to b ∧ (a ∨ c)

• Explicit expansion with size limit: a disjunction ∨L, where each l ∈ L is a conjunction, is
converted to a conjunction over disjunctions over all elements in the cross product over L.
E.g. (a ∧ b) ∨ (c ∧ d) is rewritten to (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d).

Applying such an expansion results in an exponential blow-up, but we only perform it if
the resulting formula size is smaller than a fixed constant, and we limit the expansion
depth to one.
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6.2.1 Eliminating Existentially Quantified Variables

The formulas resulting form large block encoding (Section 2.9) may have intermediate (neither
input nor output), existentially bound variables. In general, existential quantifier elimination
(with e.g. Fourier-Motzkin) is exponential. However, for many cases such as simple deterministic
assignments, existential quantifier elimination is easy: e.g. ∃t. x′ = t + 3 ∧ t = x + 2 can be
trivially replaced by x′ = x+ 5 using substitution.

We use a two-step method to remove the quantified variables: we run a best-effort pattern-
matching approach, removing the bound variables which can be eliminated in polynomial time,
and in the second step we drop all the lemmas which still contain the existentially bound
variables. The resulting formula is an over-approximation of the original one.

6.3 Formula Slicing: Overall Algorithm

We develop the formula slicing algorithm in order to apply the inductive weakening approach
for generating inductive invariants in large, potentially non-reducible programs with nested
loops.

“Classical” Houdini-based algorithms consist of two steps: candidate lemmas generation,
followed by counterexample-to-induction-based filtering. However, in our case candidate lemmas
representing postconditions depend on previous filtering steps, and careful consideration is
required in order to generate unique candidate lemmas which do not depend on the chosen
iteration order.

6.3.1 Abstract Reachability Tree

In order to solve this problem we use an algorithm for abstract reachability tree generation, as
given in Section 4.4.1.

The transfer relation for the formula slicing is given in Algorithm 6.2. In order to generate
a successor for an element (na, d, b), and an edge (na, τ, nb) we first traverse the chain of
backpointers up the tree. If we can find a “neighbour” element s where s|1 = na

1 by following
the backpointers, we weaken s until inductiveness (line 4) relative to the new incoming transition
τ , and return that as a postcondition. Such an operation effectively performs widening [CC77a]
to enforce convergence. If no such neighbour exists, we convert ∃x. JdK (x)∧ τ(x∪x′) to RCNF
form (line 6), and this becomes a new element of the abstract domain.

Observe that our approach for generating initial candidate invariants ensures monotonicity
and reproducibility, even in the case of a non-reducible CFA. As a downside, tree representation
may lead to the exponential state-space explosion (as a single node in a CFA may correspond
to many nodes in an ART). However, from our experience in the evaluation (Section 6.6), with
a good iteration order (stabilizing inner components first [Bou93]) this problem does not occur
in practice.

1In the implementation, the neighbour is defined by a combination of a callstack, a CFA node and a loopstack.
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Section 6.3 Formula Slicing: Overall Algorithm

Algorithm 6.2 Formula Slicing: Postcondition Computation.

1: function Post(edge e ≡ (na, τ, nb), state t ≡ (na, d, b))
2: neighbour s← FindNeighbour(b, n0)
3: if s 6= ∅ then
4: . Abstract postcondition of d under τ in weakenings of s (Section 6.1.4).
5: e← Weaken(d, τ ∧ nb, s)
6: else
7: . Convert the current invariant candidate to RCNF.
8: e← ToRCNF(JdK ∧ τ)
9: end if
10: return (nb, e, t)
11: end function

6.3.2 Example Formula Slicing Run

Consider running formula slicing on the program in Figure 6.3, which contains two nested loops.
The corresponding edge encoding is given in Equation 6.3:

τ1 ≡x′ = 0 ∧ y′ = 0 ∧ (p′ = 1 ∧ s′ ∨ p′ = 2 ∧ ¬s′)
τ2 ≡x′ = x+ 1 ∧ c′ = 100
τ3 ≡(p 6= 1 ∧ p 6= 2 =⇒ c′ = 0) ∧ y′ = y + 1 ∧ p′ = p

τ4 ≡x′ = x ∧ y′ = y ∧ p′ = p ∧ c′ = c

(6.3)

1 int p, c, s=input(), x = 0, y = 0;
2 p = s ? 1 : 2;
3 while (input()) { // A
4 x++;
5 c = 100;
6 while (input()) { // B
7 if (p != 1 && p != 2) {
8 c = 0;
9 }

10 y++;
11 }
12 assert(c == 100);
13 }
14 assert((s && p == 1) || (!s && p == 2));

I

A

B

τ1

τe

τ2

τ3

τ4

Figure 6.3: Example Program with Nested Loops: Listing and CFA.

Similarly to Equation 2.3, we can check candidate invariants A(x), B(x) for inductiveness
by posing an SMT query shown in Equation 6.4. The constraint in Equation 6.4 is unsatisfiable
iff {A : A(x), B : B(x)} is an inductive invariant (Section 2.5.3).

∃x ∪ x′.
∨ τ1(x′) ∧ ¬A(x′)

A(x) ∧ τ2(x ∪ x′) ∧ ¬B(x′)
B(x) ∧ τ3(x ∪ x′) ∧ ¬B(x′)
B(x) ∧ τ4(x ∪ x′) ∧ ¬A(x′)

(6.4)
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Equation 6.4 is unsatisfiable iff all of the disjunction arguments are unsatisfiable, and
hence the checking can be split into multiple steps, one per analyzed edge. Each postcondition
computation (Algorithm 6.2) either generates an initial seed invariant candidate, or picks
one argument of Equation 6.4, and weakens the right hand side until the constraint becomes
unsatisfiable. Run of the formula slicing algorithm on the example is given below:

• Traversing τ1, we get the initial candidate invariant:

I(A)←
∧
{x = 0, y = 0, s =⇒ p = 1,¬s =⇒ p = 2}

• Traversing τ2, the candidate invariant for B becomes:

I(B)←
∧
{x = 1, y = 0, s =⇒ p = 1,¬s =⇒ p = 2, c = 100}

• After traversing τ3, we weaken the candidate invariant I(B) by dropping the lemma y = 0
which gives rise to the counterexample to induction (y gets incremented). The result is:

I(B)←
∧
{x = 1, s =⇒ p = 1,¬s =⇒ p = 2, c = 100}

which is inductive under τ3.

• The edge τ4 is an identity, and the postcondition computation results in lemmas x = 0
and y = 0 dropped from I(A), resulting in:

I(A)←
∧
{y = 0, s =⇒ p = 1,¬s =⇒ p = 2}

• After traversing τ2, we obtain the weakening of I(A) by dropping the lemma x = 1 from
I(B), resulting in:

I(B)←
∧
{s =⇒ p = 1,¬s =⇒ p = 2, c = 100}

• Finally, the iteration converges, as all further postconditions are already covered by
existing invariant candidates. Observe that the computed invariant is sufficient for proving
the asserted property.

6.4 Extensions

Syntactic Weakening Algorithm A syntactic-based approach is possible as a faster and
less precise alternative which does not require SMT queries. For an input formula φ(x) in
RCNF, and a transition τ(x ∪ x′), syntactic weakening returns a subset of lemmas in φ, which
are not syntactically modified by τ : that is, none of the variables are modified or have their
address taken. For example, the lemma x > 0 is not syntactically modified by the transition
y′ = y + 1 ∧ x ≥ 1, but it is modified by x′ = x+ 1.

Non-Nested Loop Handling When performing the inductive weakening (Algorithm 6.2,
line 4) on the edge (N, τ,N) we annotate and weaken the candidate invariants on both sides
(without modifications described in Section 6.1.4), and we cache the fact that the resulting
weakening is inductive under τ .
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Liveness-Based Filtering We precompute live variables, and the candidate lemmas (Algo-
rithm 6.2, line 6) which only contain dead variables are discarded.

Extending the Set of Weakenings In a sense, every inductive invariant which could be
possibly found by a static analyzer is a weakening of the initial condition. Our set of considered
weakenings is relatively small, as it only includes the weakenings obtained by dropping lemmas
from the RCNF form. This set can be extended using the following approaches:

• Replacing the assignment a = b in formulas with a set of constraints a ≤ b ∧ a ≥ b. This
gives us a richer set of weakenings, as each assignment may be weakened to an inequality
(as compared to the previous approach).

6.5 Implementation

We have developed the Slicer tool, which runs the formula slicing algorithm on an input C
program. Slicer performs inductive weakenings using the Z3 [MB08] SMT solver, and best-effort
quantifier elimination using the qe-light Z3 tactic. Our tool can analyze a verification task by
finding an inductive invariant and reporting true if the found invariant separates the initial
state from the error property, and unknown otherwise. Additional usage details are described
further in Chapter 7.

6.6 Experiments and Evaluation

We have evaluated the formula slicing algorithm on the “Device Drivers” category from the
International Competition on Software Verification (SV-COMP) [Bey16]. The dataset consists
of 2120 verification tasks, of which 1857 are designated as correct (the error property is
unreachable), and the rest admit a counter-example. All the experiments were performed on
Intel Xeon E5-2650 with 2.6GHz, and limits of 8GB RAM, 2 cores, and 600 seconds CPU time
per program. We compare the following three approaches:

• Slicer-CEX (rev 21098): formula slicing using counterexample-based weakening (Sec-
tion 6.1.3).

• Slicer-Syntactic (rev 21098): formula slicing using syntactic weakening (Section 6.4).

• Predicate Analysis: predicate abstraction with interpolants [McM06], as implemented
inside CPAchecker. We have chosen this approach for comparison as it represents
state-of-the-art in model checking, and was found especially suitable for analyzing device
drivers.

• PAGAI [HMM12] (git hash e44910): abstract interpretation-based tool, which implements
the path focusing [MG11] approach.

In Table 6.1 we show overall precision and performance of the four compared approaches.
As formula slicing is inherently over-approximating, it is not capable of finding counterexamples
to safety, and we only compare the number of produced safety proofs.

From the data in the table we can see that predicate analysis produces the most correct
proofs. This is expected since it can generate new predicates, and it is driven by the target
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Figure 6.4: Quantile plot showing performance of the compared approaches. Shows analysis
time for each benchmark, where the data series are sorted by time separately for each tool. For
readability, the dot is drawn for every 20th program, and the time is rounded up to one second.

Tool # proofs # incorrect # timeouts # memory outs
Slicer-CEX 1253 0 475 0
Slicer-Syntactic 1166 0 407 0
Predicate Analysis 1301 0 657 0
PAGAI 1214 3 409 240

Table 6.1: Evaluation results. The “# incorrect” column shows the number of safety proofs the
tool has produced where the analyzed program admitted a counterexample.

property. However, formula slicing and abstract interpretation have much less timeouts, and
they do not require target property annotation, making them more suitable for use in domains
where a single error property is not available (advanced compiler optimizations, multi-property
verification, and boosting another analysis by providing an inductive invariant). The programs
verified by different approaches are also different, and formula slicing verifies 22 programs
predicate analysis could not.

The performance of the four analyzed approaches is shown in the quantile plot in Figure 6.4.
The plot shows that predicate analysis is considerably more time consuming than other analyzed
approaches. Initially, PAGAI is much faster than other tools, but around 15 seconds it gets
overtaken by both slicing approaches. Though the graph seems to indicate that PAGAI
overtakes slicing again around 100 seconds, in fact the bend is due to out of memory errors.
The flattening around 900 seconds for all tools corresponds to the grace period before the hard
timeout.

The quantile plot also shows that the time taken to perform inductive weakening does
not dominate the overall analysis time for formula slicing. This can be seen from the small
timing difference between the syntactic and counterexample-based approaches, as the syntactic
approach does not require querying the SMT solver for weakening.

Finally, we present data on the number of SMT calls required for computing inductive
weakenings in Figure 6.5. The distribution shows that the overwhelming majority of weakenings
can be found within just a few SMT queries.
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Figure 6.5: Distribution of the number of iterations of inductive weakening (Section 6.1.3)
required for convergence across all benchmarks. Horizontal axis represents the number of SMT calls
required for convergence of each weakening, and vertical axis represents the count of the number of
such weakenings.

6.7 Complexity of Finding a Non-Trivial Inductive Weakening
Over Literals

As we have mentioned in Section 6.2, a more expressive space of weakenings over formulas is
to consider replacing any subset of literals with > after a NNF conversion. In this section we
show that it leads to a number of undesirable properties, including the absence of strongest
inductive weakening (Example 6.1), and Σp

2 complexity for finding any non-trivial inductive
weakening (Theorem 6.1).

Example 6.1 (No Strongest Inductive Weakening). Consider a program over four Boolean
variables a, b, c, d and the transition relation τ ≡ a ∧ b ∧ c ∧ d ∧ ¬a′ ∧ b′ ∧ ¬c′ ∧ d′ (the only
possible transition is from a ∧ b ∧ c ∧ d to ¬a ∧ b ∧ ¬c ∧ d). Consider finding the weakening of
φ ≡ (a ∧ b) ∨ (c ∧ d), Both the {a}-weakening (b ∨ (c ∧ d)) and the {c}-weakening ((a ∧ b) ∨ d)
are inductive, but their intersection (a ∧ b) ∨ (b ∧ d) ∨ (c ∧ d) (obviously inductive) is not a
weakening of φ and there is no inductive weakening stronger than either of these.

Theorem 6.1 (Σp
2-completeness). The problem of deciding, given quantifier-free SMT formulas

φ(x) and τ(x ∪ x′), whether there exists a non-trivial ( 6≡ >) weakening of φ that is inductive
with respect to τ is Σp

2-complete.

Belonging to Σp
2. Let S be some subset of literals of φ. Let φ̂ be the weakening of φ where all

literals in S are replaced with >. Checking that φ̂ is inductive with respect to τ is in co-NP,
therefore the problem of finding a non-trivial φ̂ is in Σp

2

We show completeness by constructing from an arbitrary closed ∃∗∀∗ formula ψ a loop τ and
a precondition I such that the existence of a non-trivial (6≡ >) weakening of the precondition
is equivalent to the truth of ψ. Without loss of generality, let ψ have m Boolean variables
x0, . . . , xm−1 bound by the existential quantifier and n Boolean variables y0, . . . , yn−1 bound by
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b i t v e c t o r x = ⊥ ;
boolean o = ⊥ ;
while ( nondet ( ) ) {

// Non−d e t e rm in i s t i c cho ice .
b i t v e c t o r y = nondet ( ) ;
i f ( not G(x,y)) {

i f (x == >) {
// Set the ove r f l ow
// b i t .
o = > ;
x = nondet ( ) ;

} else {
// Increment a g iven
// b i t v e c t o r .
x = succ (x ) ;

}
}

}

A

I(x, o)

τ(x,x′, o, o′)

Figure 6.6: Counter Program and Transition System

the universal one:

ψ ≡∃x0, . . . , xm−1.

∀y0, . . . , yn−1. G(x0, . . . , xm−1, y0, . . . , yn−1)
(6.5)

Let us denote the bitvector (x0, . . . , xm−1) as x and the bitvector (y0, . . . , yn−1) as y. Let
enc : Bm → [0, 2m − 1] denote the function for standard integer encoding of the x bitvector, x0
being the lowest-order bit and xm−1 the highest-order one. Let succ : Bm \ {>m} → Bm be the
successor function such that enc(succ(x)) = 1+enc(x), which is only defined for non-overflowing
values.

Now we define the transition system over the set of bolean variables x and the overflow bit
o. Let the initial state I(x, o) be x = ⊥ ∧ o = ⊥, and let the transition relation τ(x,x′, o, o′) to
be: (¬(∀y. G(x,y))∧

((x 6= > ∧ x′ = succ(x) ∧ o′ = o) ∨ (x = > ∧ o′ = >))
)∨(

x′ = x ∧ o′ = o
) (6.6)

In plain terms, the transition relation may increment x as long as it is not overflowing and
the guard can be falsified for some y, and x is forced to stay constant on overflow or when it
reaches some x̂ such that ∀y. G(x̂,y). Initialization and transition relation for the transition
system, and the corresponding program are shown in Figure 6.6.

Lemma 6.1. There exists a non-trivial (6≡ >) inductive invariant for the program in Figure 6.6
if and only if ψ (Equation 6.5) is satisfiable.

Observe that τ can be satisfied for all possible values of x by a suitable choice of x′. Let
f(x) be the largest (under enc) possible value of x′ which satisfies τ(x,x′, o, o′).

Proof. Sufficient Condition. Assume ψ is satisfiable for some x̂. Then x̂ is a fixed point under f
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(as it satisfies G for all values of y). Consider the set of values defined by R ≡ ¬o∧ enc(x) ≤ x̂}.
It is inductive, since the largest value in R set maps to itself under f , and all other values map
to the “next” (under enc) value in R. It is also non-trivial, since the bit o is defined not to be
>.

Proof. Necessary Condition. Assume there exists a non-trivial inductive invariant for the
program in Figure 6.6. At every transition, x either stays constant or is incremented by 1. Since
we have assumed the existence of a non-trivial inductive invariant, there exists x̂ such that it is
a fixpoint under f and enc(x̂) ≤ 2m − 1 (otherwise the entire state space is reachable, and the
only possible inductive invariant is >). This is only possible if ∀y. G(x̂,y) (otherwise x̂ may be
incremented). But this is exactly the condition for ψ being satisfiable.

Corollary 6.1. For every non-trivial inductive invariant of the program in Figure 6.6 there
exists some x̂ such that {x | enc(x) < enc(x̂)} is inductive. Furthermore, the reachable state
space is exactly all x smaller (under enc) than x̂, and {x | x 6= x̂} is inductive (as the states
larger than x̂ are not reachable).

Now consider finding inductive (with respect to τ Figure 6.6) weakenings of the following
formula φ:

φ ≡
∨

(xi ∧ ¬xi) (6.7)

Each xi represents i’th bit of x. Observe that for any x̂ ∈ [0, 2m − 1], we can weaken φ to be
equivalent to x 6= x̂, by making a suitable weakening choice for every i’th bit of x̂ (if the i-th
bit in x̂ is ⊥ we replace ¬xi by >, if it is > we replace xi by >).

From Corollary 6.1 we know that for every non-trivial inductive invariant there exists x̂,
s.t. the set of all x not equal to x̂ is inductive. Thus if a non-trivial inductive invariant exists,
there exists a non-trivial inductive weakening of φ. In Lemma 6.1 we have shown that deciding
the existence of a non-trivial inductive invariant is as hard as deciding the satisfiability of an
arbitrary ∃∗∀∗ formula ψ, thus deciding an existence of a non-trivial inductive weakening is as
hard as well.

Σp
2-completeness. Membership in Σp

2 is proved in Lemma 6.1. Reduction from the Σp
2-complete

problem is done from deciding the truth of ∃∗∀∗ propositional formulas [Sto76, Th. 4.1].
Transforming G into τ can be done within a logarithmic working space.

Relationship to Template Abstraction Complexity Lahiri and Qadeer [LQ09] consider
the problem of template abstraction: given a precondition, a postcondition, a transition relation
and a formula φ(C,X), C and X being sets of Boolean variables, check whether an appropriate
choice of C makes φ an inductive invariant. They show this problem to be Σp

2-complete as well.
Our class of problems is a strict subset of theirs (our weakening problems can be immediately
translated into template abstraction problems, but not all template abstraction problems
correspond to weakenings), but we still show completeness.

6.8 Conclusion and Future Work

We have proposed a “formula slicing” algorithm for efficiently finding potentially disjunctive
inductive invariants in programs, which performs abstract interpretation in the space of weak-
enings over the formulas representing the “initial” state for each node. We have demonstrated
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that it could verify many programs other approaches could not, and that the cost of running
the algorithm in practice is surprisingly cheap.

The motivation for our approach is addressing the limitation of abstract interpretation
which forces it to perform abstraction after each analysis step, which often results in a very
rough over-approximation. Thus we believe our method is well-suited for augmenting numeric
abstract interpretation.

6.8.1 Future Work

As with any new inductive invariant generation technique, a possible future work is investigating
whether formula slicing can be used for increasing the performance and precision of other
program analysis techniques, such as k-induction, predicate abstraction or property-directed
reachability. An obvious extension is feeding the generated invariants to an analysis running
policy iteration (Chapter 3).

Furthermore, the inductive weakening approach could also be used for the generalization
of the k-induction algorithm over multiple properties. If we check a set of properties P for
inductiveness under the loop transition τ , and not all properties are inductive, the weakening
approach can find the largest inductive subset.

The conversion to the RCNF form is currently done syntactically, but it can be also done
using the counterexamples to induction.
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Chapter 7

Implementation

7.1 Introduction

In the course of this thesis we have developed two novel tools, LPI (http://lpi.metaworld.me),
which performs the local policy iteration described in Chapter 3, and Slicer (http://slicer.
metaworld.me), which performs the formula slicing as described in Chapter 6. Both tools
compute an inductive invariant for an input C program, and are implemented as CPAs inside
the CPAchecker [BK11] framework.

In this chapter we describe various features of those tools, architecture, strength and
weaknesses, usage instructions, and describe the various extensions.

7.2 Software Architecture

Simplified CPAchecker architecture is shown in Figure 7.1. The end user specifies a program
to be analyzed and a safety property of interest, which is converted into a CFA (Definition 2.3)
using Eclipse CDT [Fou] parser. The CFA is subsequently analyzed using a fixed point CPA
algorithm (Algorithm 2.2), parameterized by a configurable program analysis (Section 2.10)
provided by the developer. In turn, the analysis module often relies on the C to Formula
package which converts a sequence of C statements into an SMT formula (Section 2.3), and on
the JavaSMT (Chapter 8) engine for dispatching the formulas to the solver.

Our main technical contributions include LPI (Chapter 3) and Slicer (Chapter 6) which can
be run by the CPAAlgorithm either in standalone mode, or combined with other analyses.
Additionally, we were heavily involved in the creation of the JavaSMT library, described further
in Chapter 8, and have contributed a very large number of patches across the entire CPAchecker
codebase.

7.3 Installation Instructions

Contributed tools are present in the CPAchecker source code, which makes the installation
from source remarkably simple, assuming the client machine has Java 8 and GIT installed:

> git clone https://github.com/sosy-lab/cpachecker.git

> cd cpachecker

> ant

The call to ant would fetch all the required dependencies, including the solver binaries. More
detailed installation instruction are available at the website: http://cpachecker.sosy-lab.org.
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Frontend Eclipse C Parser

CPAAlgorithm

CPA (Slicer/LPI/etc...)C to Formula Converter

JavaSMT

Formula
Satisfiability, Model,

etc...

Input Program,

Property CFA

Verification Result, Output, Statistics

Program Source

Eclipse AST

From node,

to node,

states to

compare,

AST

Initial State,

Strongest Postcondi-

tion,

Coverage Relation

AST

Formula

Figure 7.1: CPAchecker Architecture

7.4 Usage Instructions

1 #include<assert.h>
2 extern int __VERIFIER_nondet_int();
3 extern int __VERIFIER_assume(int condition);
4 int main() {
5 int sum = 0;
6 int bound = __VERIFIER_nondet_int();
7 __VERIFIER_assume(bound >= 0);
8

9 for (int i=0; i<bound; i++) {
10 sum++;
11 }
12 assert(sum == bound);
13 }

Figure 7.2: Sample C Program

Consider using LPI on a program shown in Figure 7.2. Note the following features of
the example: external function with no body __VERIFIER_nondet_int() is used to model non-
deterministic input and the function __VERIFIER_assume(int condition) is used to restrict
the input space. The default LPI configuration is called -policy and it can be launched as
follows from the CPAchecker directory:
> ./scripts/cpa.sh -preprocess -policy program.c

After running this file, the user get the log output from the tool, followed by the message that
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the program was verified successfully: that is, the program analysis module was able to prove
that no specification violations are reachable.

7.4.1 Configuration Options

When we have called CPAchecker we have used two command line options: -preprocess

and -policy. The -preprocess command line switch tells CPAchecker to pre-run the C
preprocessor on the program, which is necessary for parsing #include calls. Note that we
have not explicitly specified the specification against which we are verifying: by default the
specification looks for assertion violations. The -policy switch selects the configuration to be
used for analysis, and is simply a shortcut to select one of the files in the config directory. The
LPI tool is shipped with the following configurations:

• -policy standard LPI configuration, synthesizes octagonal templates.

• -policy-intervals a faster configuration, which only uses interval templates.

• -policy-refinement a configuration which uses the template refinement procedure (Chap-
ter 4): the set of templates is continuously increased until the property can be proven.

• -policy-k-induction An analysis which runs k-induction, as described in Section 7.7.2,
and uses LPI for the invariant generation. The -policy-refinement configuration is used
for invariant generation.

• -policy-summaries An analysis performing summary generation with no inlining, capable
of dealing with recursive programs, as described in Chapter 5. As of writing only available
on the summaries branch.

The following configuration options are available for the Slicer tool:

• -formula-slicing generate inductive invariants from preconditions using SMT solver.

• -formula-slicing-k-induction The configuration which gives the invariant above to
k-induction.

The usage of more detailed options is documented in the file doc/ConfigurationOptions.txt,
shipped with CPAchecker. The options specific to LPI are grouped under the key cpa.lpi

and the options specific to Slicer are grouped under cpa.formula_slicing.

7.4.2 Looking at the Output Further

After the run of the tool the output folder is generated which contains various output artifact
describing the obtained results. If the client wishes to examine the inductive invariant embedded
into the program as assume statements, the following command can be used:

> ./scripts/cpa.sh -preprocess -policy -setprop cinvariants.export=true program.c

That generates the file output/inv-program.c with the assume call specifying the inductive
invariant embedded into the loop body shown in Figure 7.3.

Additionally, either to inspect the path to the property violation, or to look at the graphical
representation of the invariant, the file output/ARG.dot might be useful (or for large files, often
output/ARGSimplified.dot). This is explained in more detail in Section 7.6.
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1 #include<assert.h>
2 extern int __VERIFIER_nondet_int();
3 extern int __VERIFIER_assume(int condition);
4 int main() {
5 int sum = 0;
6 int bound = __VERIFIER_nondet_int();
7 __VERIFIER_assume(bound >= 0);
8

9 for (int i=0; i<bound; i++) {
10 __VERIFIER_assume(i >= 0 && i == sum && i < bound);
11 sum++;
12 }
13 assert(sum == bound);
14 return 1;
15 }

Figure 7.3: Sample Program for Inductive Invariant Generation

7.5 CPA Formulation

In this section we give precise configurable program analysis definition for both Slicer and
LPI. For both analyses, in order to avoid losing precision due to intermediate abstractions,
we do not express the invariant as an abstract state at every node: instead the transfer
relation operates on formulas and we only perform over-approximation at certain abstraction
points (which correspond to loop heads in a well-structured CFA). This approach is inspired
by adjustable-block encoding [BKW10], which performs the same operation for predicate
abstraction.

Thus we introduce two lattices for each analysis: abstracted states (not to be confused
with abstract states in general: both intermediate and abstracted states are abstract) for states
associated with abstraction points (which can only express abstract states in the corresponding
lattice) and intermediate states for all others (which can express regions using decidable SMT
formulas).

Intermediate states represent reachable state-spaces using formulas directly, together with
the meta-information to record the parent(s)1 abstracted state.

Definition 7.1 (Intermediate State). An intermediate state is a tuple (a0, φ), where a0 is a
parent abstracted state, and φ(x ∪ x′) is a formula over a set of input variables x and output
variables x′.

For two intermediate states (a1, φ1) and (a2, φ2) with a1 identical to a2 the merge operator
returns the disjunction (a1, φ1 ∨ φ2). Otherwise, the states are kept separate. The coverage on
intermediate states is defined using syntactic comparison on formulas: (a1, φ1) � (a2, φ2) iff φ1
is syntactically equivalent to φ2 and a1 � a2 under the defined ordering on abstracted states.
Such a coverage check is an over-approximation, yet can be implemented efficiently.

The postcondition computation runs symbolic execution: the successor of an intermediate
state (a, φ(x ∪ x′)) under the edge (A, τ(x ∪ x′), B) is the intermediate state (a, φ′(x ∪ x′)) with
φ′(x ∪ x′) ≡ ∃x̂. φ(x, x̂) ∧ τ(x̂,x′). Postcondition is only computed for intermediate state: in
order to compute a postcondition of the abstracted state a, it is first converted to an intermediate

1If the summary computation described in Chapter 5 is enabled, intermediate states associated with return
nodes have two parents: a state associated with a callsite, and a state associated with a summary. In such a case,
the definitions reads as below, yet all operations on the parent state are done element-wise.
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state (a,>). If after the postcondition computation the successor node is a loop head, then
abstraction is performed on the resulting state. We now proceed to describe abstracted state,
join operator over them, and the abstraction operator for both LPI and Slicer.

7.5.1 Abstraction for LPI

Definition 7.2 (LPI Abstracted State). An LPI abstracted state is a tuple (i, A) where i is
an intermediate state, and A is LPI abstracted state (Definition 3.1). Effectively to support
adjustable block encoding we extend the abstract state definition with a meta-information
recording the generating intermediate state.

The abstraction operator was defined in Algorithm 3.2, line 7, and the join in Algorithm 3.3.
The partial order on abstracted states is defined by component-wise comparison of bounds
associated with respective templates (Section 3.3.1).

7.5.2 Abstraction for Slicer

Definition 7.3 (Slicer Abstracted State). A Slicer abstracted state is either an empty set ∅
denoting >, or a tuple (i, φ), where i is an intermediate state (generating backpointer), and φ
is a set of lemmas in RCNF form over x.

The abstraction operation converts φ to a set of lemmas in RCNF form, and the merge
operation performs weakening of the old state with respect to the new one. The comparison
on two Slicer abstracted state is given by containment relation on the set of lemmas, using
syntactical comparison on individual formulas.

7.6 Abstract Reachability Graph Generation

Both LPI and Slicer can be seen as traditional static analyses: all abstracted states are joined,
and some form of widening (either value determination or inductive weakening) is used to
enforce convergence. This approach has the following downsides:

• Combination with analyses which require splitting states (such an explicit value analysis
or predicate abstraction with interpolants) inside CompositeCPA (Section 2.10.1) is prob-
lematic, due to the fact that LPI/Slicer can not split states, as it depends on the join
step to enforce convergence, and an analysis which depends on splitting can not join, as
that would severely affect the precision.

• It is not possible to generate the abstract reachability tree, which visualizes the analysis
progression.

• It is not possible to get an abstract path for the property violation, which greatly enhances
user’s experience, and can be additionally used for interpolation.

We handle these issues using our join emulation approach, which produces an abstract
reachability tree, as described in Section 4.4.1. Such an algorithm overcomes the disadvantages
outlined above, and we lay the groundwork for combination with CPAs which rely on keeping
the states separate.
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1 extern int __VERIFIER_nondet_int();
2 extern int __VERIFIER_assume(int condition);
3 extern void __VERIFIER_assert(int condition);
4 int main() {
5 int sum = 0;
6 int bound = __VERIFIER_nondet_int();
7 for (int i=0; i<bound; i++) {
8 sum++;
9 }

10 assert(sum == bound);
11 }

Figure 7.4: Sample Program for ARG Generation

Example 7.1 (Using ARG for Verification Feedback). Consider proving the assertion for the
program shown in Figure 7.4. When launching LPI with a default configuration we get a
message that the property could not be proven. In order to investigate why this is the case an
obtain the abstract path to an error we can consult the generated ARG (by default generated
in output/ARG.dot), shown in Figure 7.6. By visualizing the flow to the error, and checking a
possible concretization of values at the error location, it can be quickly seen that an error is in
the program: we have not ensured that bound has to be positive.

After modifying the program and adding a statement __VERIFIER_assert(bound >= 0);

below an assignment to bound, LPI can verify the new task successfully. Again, we can visualize
the produced proof by consulting the ARG, which is shown in Figure 7.5.

7.7 Extensions

Finding Non-Termination We have implemented an extension which allows to use our
analyses for having an over-approximating check for the non-terminating behavior. If after the
analysis was finished the set of reachable states does not contain any exiting state (exit call,
return from main, assertion violation, etc) we report that the program is not terminating for
any input.

Iteration Order In our experiments, we have found performance to depend on the iteration
order. Experimentally, we have determined a good iteration order to be the recursive iteration
strategy using the weak topological ordering [Bou93].

7.7.1 Combination with Other Configurable Program Analyses

One of the main advantages of the CPAchecker architecture is the ability to run multiple
“sibling” analyses together, using a CompositeCPA (Section 2.10.1). For our tools we have found
the combinations with the following analyses to be helpful:

Location Analysis (LocationCPA, not written by us, enabled by default) for generality, even
keeping track of location in CPAchecker is a separate configurable program analysis.

Callstack Analysis (CallstackCPA, not written by us, enabled by default) unless summary
generation is enabled (Chapter 5), the analysis with a CallstackCPA performs dynamic inlining:
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Line 54:

[i < bound]

Line 57:

[sum == bound]

Line 52:

[bound >= 0]

Line 51:

int bound = VERIFIER nondet int();

Line 57:

[sum == bound]

Line 54:

[!(i < bound)]

Line 57:

[!(sum == bound)]

covered by

covered by

Line 54:

[i < bound]

Line 55:

sum = sum + 1;
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int i = 0;

Line 54:

i = i + 1;
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[!(sum == bound)]
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int sum = 0;
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Figure 7.5: ARG For a Successfully Verified Program
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Figure 7.6: ARG Demonstrating an Error Path
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procedures are inlined as they are explored (which can be often exponentially more performant
than inlining all procedure calls upfront).

Loopstack Analysis (LoopstackCPA, not written by us, enabled by default) similarly to the
callstack analysis, loopstack CPA can perform dynamic loop unwinding, which unwinds the
loop until a certain criteria is met.

Function Pointer Analysis (FunctionPointerCPA, not written by us, enabled by default)
Simple abstract interpretation-based analysis: each function pointer in the abstract domain is
represented by a possible location it can be aliased to (undecidability of the aliasing problem
does not arise as we use over-approximation). At each function pointer call the abstract value
is constructed and all possible aliasing locations are explored. Note that the abstract domain is
not relational and does not track the information on the conditions under which a function
pointer may be aliased.

Congruence Analysis (CongruenceCPA, written by us, enabled by default) A congruence
analysis which tracks whether a variable is even or odd (a more general congruence analysis
may be used, but we did not find the need for it on our examples). During the abstraction step,
the congruence information is conjoined to the formula being maximized, and the bounds from
“sibling” CPAs are used for the congruence analysis.

Basic Backwards Reachability (TargetReachabilityCPA, written by us, not enabled by
default) We apply a basic reachability check from the error nodes: we do not traverse the nodes
from which the error location can not be syntactically reached (there is no backwards path from
the error location to those nodes). This enhancement can be seen as a combination of forward
invariant-generating analysis with a very simple backwards location-based analyzer.

Value Analysis (ValueCPA, not written by us, not enabled by default) For some examples
we have found a combination with explicit value analysis [BL13] to be useful: while LPI can
efficiently reason about variables involved in arithmetic operations, the explicit value analysis
can track variables which can assume only a small number of discrete values.

7.7.2 Combination with k-Induction

The basic backwards reachability, described in Section 7.7.1, restricts the search space to the
backwards reachable nodes. However, the backwards search is purely location-based and does not
take the property into account. Thus it can be extended to k-induction with invariants [KT11]
which checks whether the negation of the error property, supported by the invariants, is inductive.

As the output of both Slicer and LPI tools is an inductive invariant, they can be nat-
urally augmented with k-induction. The invariant produced by our tools is fed to the k-
induction [BDW15] procedure, already present in CPAchecker. For a given value of k,
k-induction performs two checks: whether the error state is reachable from the initial one in
k steps (forward reachability), and whether the negation of the error property is k-inductive,
subject to the strengthening by the invariant produced by the analysis. Invariant generation
(including continuous refinement) runs asynchronously to the k-induction procedure, and they
are both continuously refined (number of templates is increasing, and so is the value of k).
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We have used k-induction as it is a natural fit to our invariant generation procedure due
to support for continuously refined invariants. LPI and Slicer improve the precision of pure
k-induction, as the inductiveness check may fail due to counterexamples-to-induction which are
not reachable in the selected abstract domain.

Moreover, from our experience, when using an invariant-generating method for verification
there is no point in not using it together with k-induction, as it strictly increases the precision
(by combining forward and backwards reachability analyses) often at a rather small time cost.
Additionally, it allows the tool to perform bugfinding using bounded model checking with depth
k, which can also benefit from the produced invariant.

7.8 Conclusion

During the course of this thesis, we have implemented a number of different analysis within
the CPAchecker framework. Although using an existing framework has certain limitations,
the overall experience was far outweighed by a number of advantages, including much shorter
iteration time (once the framework is learned it is possible to write a new analysis in a very
short timeframe), and a potentially larger impact (users are more likely to use an existing tool
with a new configuration, rather than switching to a new tool entirely).

7.8.1 Software Project and Contributors

The Slicer and LPI code was written by George Karpenkov. CPAchecker is mainly developed
by the Software Systems Lab at the University of Passau/Ludwig-Maximilian University of
Munich. The k-induction module was developed by Matthias Dangl. All the code mentioned in
this thesis is distributed under the Apache 2.0 license.

7.8.2 Future Work

Parallelization The approach for generating an ART described in Section 7.6 has an ad-
ditional advantage, as it allows the parallelization of described analysis, both for Slicer and
LPI. The computations happening in different branches, where one state is not a successor of
another, can not possibly influence each other, and thus can be safely parallelized.

We have not implemented such an extension, as it is a significant implementation task
requiring a large engineering investment, including changing the core algorithms of CPAchecker,
and can only yield a constant-time speed up. Moreover, underlying SMT solvers only support
parallelization with use of multiple contexts, which might require many copying steps for
formulas.
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Chapter 8

JavaSMT Library

8.1 Introduction

The tools described in this thesis heavily rely on the capabilities of SMT solvers, as do many
other approaches for software verification and automated bug finding. This chapter presents a
new library which eases the communication with SMT solvers for programs written in the Java
language. A large part of this chapter was published [KBF16] in “Verified Software: Techniques,
Tools and Evaluation” conference in 2016.

The SMT-LIB [BFT15] initiative defines a common interface language for SMT solvers,
much like SQL standardizes the interface to a relational database. However, from the perspective
of a tool developer, using the textual SMT-LIB communication channel is often suboptimal.
Firstly, it does not expose all features that modern solvers offer: interpolation 1, multiple
independent solvers, formula introspection, and optimization modulo theories are not included
in SMT-LIB2.0. It is also not possible to conditionally store formulas for future reuse and
remove them when they are no longer needed.

Secondly, such a textual communication can be very inefficient, because all queries to the
solver have to be serialized to strings, and all solver output has to be parsed. For a tool that
poses a large number of trivial queries (such as in PDR [BM08]), parsing and serialization can
become a bottleneck.

However, when using a solver API directly, users face the design problem of “solver lock-in”,
which makes it difficult to switch to a different solver without rewriting a large chunk of the
application.

We propose JavaSMT, a library that exposes a common API layer across multiple backend
solvers. It is written in Java and is available as open source under the Apache 2.0 License
on GitHub at the URL https://github.com/sosy-lab/java-smt. JavaSMT communicates
with solvers using their API, and imposes only a minimal amount of overhead. For solvers
implemented in Java the exposed API is used directly, and for the solvers in other languages we
integrated JNI bindings.

Chapter Outline We start by describing the library features in Section 8.2. In Section 8.3
we describe the project architecture, and in Section 8.4 we state the memory handling strategies
used for formulas. Finally, in Section 8.5 we present implementation of the Houdini algorithm
as a case study presenting the library features, followed by related work outline in Section 8.6
and conclusion in Section 8.7.

1A proposal draft [CH12] exists since 2012.
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Table 8.1: Theories and features supported by different SMT solvers

M
at

hS
A

T

O
pt

iM
at

hS
A

T

Z3 SM
T

In
te

rp
ol

P
ri

nc
es

s

Integer + + + + +
Rational + + + + -
Array + + + + +
Bitvector + + + - -
Float + + - - -
Unsat Core + + + + -
Partial Models - - + - +
Assumptions + + + + +
Quantifiers - - + - +
Interpolation (Tree/Sequential) + + + + +
Optimization - + + - -
Incremental Solving + + + + +
SMT-LIB2 + + + + +

8.2 Features

JavaSMT currently provides access to five different SMT solvers: MathSAT [Cim+13], Opti-
MathSAT [ST15], Z3 [MB08], SMTInterpol [CHN12], and Princess [Rüm12]. Table 8.1 lists
the theories and features that are supported by these solvers.

8.2.1 Formula Representation

To keep the memory overhead low, JavaSMT does not store an own internal representation of
the formulas, but keeps only one single pointer to each formula in the solver’s memory, possibly
with an additional pointer to the current solver context. Consequently, the memory footprint of
JavaSMT is proportional to a small constant multiplied by the number of formulas that the
client application needs a reference to, regardless of the size of the constructed formulas.

This choice ensures high performance, but obstructs transferring formulas between different
contexts for different operations, such as checking satisfiability with Z3 and performing interpo-
lation with SMTInterpol. For such inter-solver translations we use SMT-LIB serialization.

8.2.2 Type Safety

Using and enforcing types is beneficial for a software library, because it guarantees the absence
of errors that are caused by incorrect type usage at compile time and can increase the level of
trust in the software. Improving such confidence is particularly important for tools for software
verification, because the verdict of such tools is only reliable if all components operate correctly
(“who verifies the software verifier”).

JavaSMT uses the Java type system to differentiate between the different sorts of formulas
(e.g., BooleanFormula and IntegerFormula) and guarantees that all operations respect the
formula type. The typed interface avoids incorrect operations (such as adding integers to
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booleans), which would not pass the compiler. Type safety also extends to model evaluation: for
example, evaluating an IntegerFormula is guaranteed at compile time to return a BigInteger.

8.2.3 Formula Introspection

In many applications, formula introspection is a required feature. For instance, an analysis
might wish to re-encode expensive non-linear operations as uninterpreted functions, or find and
rename all variables used in the formula.

In our experience with formula introspection and transformation code in CPAchecker, we
have discovered that writing correct and robust formula-traversing code can be very challenging
both for the client and for the library, due to:

• cases missed by the client, e.g., an unexpected XOR,

• incorrect assumptions by the client, such as assuming that the input formula has no
quantifiers,

• not performing memoization for recursive traversals, resulting in exponential blow-up on
formulas represented as directed acyclic graphs, or

• performing recursive traversal using recursion is not optimal, because it can result in
stack-overflow exceptions on large formulas.

In order to decrease the likelihood of such bugs, we use the Visitor design pattern [Gam+95]
for formula traversal and transformation. We expose two different kinds of visitors, FormulaVisitor,
supporting any sorts, and the BooleanVisitor. The boolean visitor requires implementations for
boolean primitives that can occur in the formulas (equality, implication, etc.) and matches all
other formulas as atoms. It is useful for transformation of the boolean structure of the formula,
such as a negated normal form conversion. The FormulaVisitor does not explicitly require
matching each possible function, but provides an enumeration consisting of most common
function declarations (addition, subtraction, comparison, etc.) and can be used to recursively
traverse the entire formula, e.g., in order to find all used variables. Each visitor can be used in
three different modes of operations: traversal, where only the root formula is visited, recursive
traversal, where each sub-term is visited exactly once, and recursive transformation, where a
visitor is supposed to create a new sub-term for each sub-term visited.

Our experience shows that a visitor-based approach leads to a considerably safer code as
compared to direct formula manipulation.

8.2.4 Handling Interruptions

SAT-solving is a canonical NP-complete problem, and extending the scope to support SMT
makes it even harder. The problems posed to the solvers often have very high complexity, and
a solver often becomes the most time-consuming component of the client application. With
such a complexity the ability to support interrupts becomes critical, as it might be undesirable
to kill the client application because the solver computation has diverged.

In order to solve this problem, JavaSMT uses a ShutdownNotifier tool which allows it to
handle interrupts gracefully across all solvers. Any client component can request an interrupt
on any thread, and all solvers promptly terminate their computations.
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Solver Bindings

JavaSMT Implementation

JavaSMT API

Z3 MathSAT SMTInterpol Princess

Formula Solver Context Formula Manager Model ...

Figure 8.1: JavaSMT Architecture

8.2.5 Multithreading Support

JavaSMT provides two different mechanisms for multithreading support. Firstly, as mentioned
in Section 8.2.4, any thread is allowed to interrupt the computations on any thread, including
the computations performed in native code. Additionally, the solving can proceed in parallel
even for the same solver, provided the computation is performed on different solver contexts.
JavaSMT provides the translation API which can be used to exchange the information between
different threads.

8.3 Project Architecture

The overall structure of the library is shown in Figure 8.1. An interaction with the JavaSMT
library starts with a SolverContextFactory, which is used to create a SolverContext object,
encapsulating a context for a particular solver. All further interaction is performed through
the SolverContext class, which exposes the features outlined in Section 8.2. Instances of
SolverContext are not thread-safe, and should be accessed only from a single thread. However,
separate contexts are independent from each other and can be safely used from different threads.

An interface to every represented solver is implemented as a separate package with an entry
class that implements the SolverContext API.

8.4 Memory Management

Different SMT solvers resort to different strategies for memory management. The solvers
running in managed environments (e.g., SMTInterpol and Princess running on JVM) use
the available garbage collector, while solvers exposing a C API have to offer the memory
management facilities to the user. The underlying problem is that for a library that exposes its
API through the native non-managed language, it is impossible to know whether a previously
returned object is still referenced by the client application, or whether it can be deleted.

MathSAT and OptiMathSAT expose a “manual” garbage-collection interface, which removes
all formulas except those that are specifically requested to be kept. This requires an application
to keep track of created objects that can still be referenced.

Z3 uses a reference-counting approach, where an object is considered unreachable whenever
its reference count reaches zero. While this interface has an automatic memory management in
C++ (incrementing references in constructors, and decrementing in destructors) using it in an
efficient and correct way is surprisingly difficult from Java.
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Figure 8.2: Resource usage comparison across different memory management strategies for Z3

The official Z3 Java API is using Java finalizers to decrement the references, explicitly
performing locking on the queue of references that need to be decremented. Unfortunately,
finalizers are known to have a very severe memory and performance penalty [Blo08]. Thus we have
developed our own Z3 JNI bindings with a memory strategy based on using PhantomReference

and ReferenceQueue, provided by the JDK to get a more fine-grained control over the garbage
collection.

We present the performance evaluation of three different memory managing strategies for Z3:
(1) using the official Z3 API, which relies on finalizers, (2) using our phantom reference-based
implementation, and (3) not closing resources at all. We have chosen a benchmark setup that
runs a program analysis with local policy iteration [KMW16] on the SV-COMP [Bey16] data
set. Obtained results are shown in Figure 8.2. Unsurprisingly, the approach using finalizers has
worst performance by far, with performance penalty often eclipsing the analysis time, and a
very large memory consumption. The no-GC approaches minimizes both memory and time
consumption. We attribute the high performance of no-GC approach to the hash-consing used
in Z3, which results in no additional memory consumption for ASTs that were previously already
constructed.

8.5 Case Study: Inductive Formula Weakening

To give a tour of the library, we present a small but usable implementation of the inductive-
invariant synthesis algorithm called Houdini [FL01]. In order to provide the context, we include
a brief background that explains the motivation and how the algorithm works.

8.5.1 Implementation Task

The Houdini algorithm finds a maximal inductive subset of a given a set L of candidate lemmas.
It repeatedly checks ∧L for inductiveness, and updates L to exclude the lemmas that give rise
to counterexamples-to-induction. At the end the algorithm terminates with an inductive subset
LI ⊆ L.

Counterexamples-to-induction are derived from the model returned by an SMT solver in
response to an inductiveness checking query (such a model exists iff the conjunction of lemmas
is not inductive). Given a modelM, the Houdini algorithm filters out all lemmas l ∈ L for
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1 public class HoudiniApp {
2 private final FormulaManager fmgr;
3 private final BooleanFormulaManager bfmgr;
4 private final SolverContext context;
5

6 public HoudiniApp(String[] args) throws Exception {
7 Configuration config = Configuration.fromCmdLineArguments(args);
8 LogManager logger = new BasicLogManager(config);
9 ShutdownNotifier notifier = ShutdownManager.create().getNotifier();

10

11 context = SolverContextFactory.createSolverContext(
12 config, logger, notifier);
13 fmgr = context.getFormulaManager();
14 bfmgr = context.getFormulaManager().getBooleanFormulaManager();
15 }
16 }

Figure 8.3: JavaSMT initialization

1 private BooleanFormula prime(BooleanFormula input) {
2 return fmgr.transformRecursively(
3 new FormulaTransformationVisitor<Formula>() {
4

5 @Override
6 public Formula visitFreeVariable(Formula f, String name) {
7 return fmgr.makeVariable(
8 fmgr.getFormulaType(f), name + "'");
9 }

10

11 }, input);
12 }

Figure 8.4: Transforming formulas with JavaSMT

whichM |= ¬l(X ′) holds. After such filtering is applied in a fixed-point manner, a (possibly
empty) inductive subset remains.

8.5.2 Implementation

Initialization: To initialize JavaSMT, we recommend to either pass the required classes
using dependency injection, or to initialize them in a constructor, as shown in Figure 8.3. This
code snippet generates a configuration from passed command-line arguments (configuration can
choose a solver, and tweak any of its options), generates a logger instance, and initializes the
solver context.

Formula Transformation: The Houdini algorithm gets a set of lemmas as input. However,
for checking inductiveness we need primed versions of these lemmas, which we obtain by
renaming all free variables using a transformation visitor as shown in Figure 8.4.

Instead of directly removing asserted lemmas from the solver, we use annotation with
auxiliary selector variables. Each lemma li is converted to li ∨ si, where si is a fresh boolean
variable. After such an annotation, the lemma li can be relaxed by asserting an assumption si.
The code for input-lemma annotation is shown in Figure 8.5. Finally, the main Houdini loop,
which performs lemma filtering until inductiveness, is shown in Figure 8.6.
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1 public List<BooleanFormula> houdini(
2 List<BooleanFormula> lemmas, BooleanFormula transition)
3 throws Exception {
4 List<BooleanFormula> annotated = new ArrayList<>();
5 List<BooleanFormula> annotatedPrimes = new ArrayList<>();
6 Map<Integer, BooleanFormula> indexed = new HashMap<>();
7

8 for (int i = 0; i < lemmas.size(); i++) {
9 BooleanFormula lemma = lemmas.get(i);

10 BooleanFormula primed = prime(lemma);
11

12 annotated.add(bfmgr.or(getSelectorVar(i), lemma));
13 annotatedPrimes.add(bfmgr.or(getSelectorVar(i), primed));
14 indexed.put(i, lemma);
15 }
16

17 // ... Continuted Later ...
18 }
19

20 private BooleanFormula getSelectorVar(int idx) {
21 return bfmgr.makeVariable("SEL_" + idx);
22 }

Figure 8.5: Annotating formulas with JavaSMT

8.6 Related Work

The package jSMTLIB [Cok13] is a solver-agnostic library for Java which uses SMT-LIB for
communication with the solvers, and thus has the associated restrictions outlined in Sect. 8.1,
including costly serialization overhead and a limitation to the features offered by SMT-LIB. In
contrast, our work presents a solver-independent library for Java which connects directly to the
solvers API.

The newly published jDart [Luc+16] tool bundles a jConstraints library that offers a
functionality similar to JavaSMT. However, JavaSMT has more features, communicates with
solvers using their API, and provides an efficient memory-management strategy (jConstraints
uses the official Z3 Java API, which relies on finalizers). Additionally, our library provides
several solvers that can be installed automatically and one simple configuration option to switch
between them.

For jConstraints, the user has to manually include and configure all the solver’s bindings
and binaries. We have learned that these steps are complicated and error-prone, as the library
might be used as part of a bigger software system. Thus, our solvers and their bindings do not
require to setup any special environment.

The problem of creating such a library has also been tackled for Python in PySMT [GM15].
In contrast to our work, PySMT keeps the formula structure itself, while delegating the queries
to the solvers. While this allows for creating formulas without any solvers installed, and for
easier transfer of formulas between different contexts, it incurs a large memory overhead.

8.7 Conclusion

We have presented JavaSMT, a new library for efficient and safe communication with SMT
solvers. The advantages of using such a library over communicating with SMT-LIB include
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1 try (ProverEnvironment prover =
2 context.newProverEnvironment(ProverOptions.GENERATE_MODELS)) {
3 prover.addConstraint(transition);
4 prover.addConstraint(bfmgr.and(annotated));
5 prover.addConstraint(bfmgr.not(bfmgr.and(annotatedPrimes)));
6

7 while (!prover.isUnsat()) {
8 Model m = prover.getModel();
9 for (int i = 0; i < annotatedPrimes.size(); i++) {

10 BooleanFormula annotatedPrime = annotatedPrimes.get(i);
11 if (!m.evaluate(annotatedPrime)) {
12 prover.addConstraint(getSelectorVar(i));
13 indexed.remove(i);
14 }
15 }
16 }
17 }
18 return new ArrayList<>(indexed.values());

Figure 8.6: Houdini main loop with JavaSMT

performance, access to new features, and the ability to control which formulas remain in scope
and which should be discarded. Some disadvantages exist as well — using JavaSMT means
restricting to the supported solvers, and relying on JavaSMT developers to update the solvers
in time. Our experience with using SMT solvers is that for applications posing a few large,
monolithic queries communication using SMT-LIB is more optimal, while for tools that post
many cheap, incremental queries, using the API via JavaSMT is the better solution.

New editions of SMT-LIB could make missing features like interpolation available (proposed
draft already exists [CH12]), but giving the user control over memory management for formulas
(Sect. 8.4), or allowing efficient communication without string serialization and parsing may
be far outside of the scope of SMT-LIB initiative. So for users requiring such features, an
intermediate-layer library is always beneficial.

8.7.1 Future Work

Currently we are collaborating with CVC4 developers to add CVC4 support to JavaSMT.
Additionally, there are plans to add support for Horn clauses, and add different Horn clause
solvers as backends.
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Chapter 9

Conclusion

In this thesis we have developed new algorithms based on policy iteration for efficient analysis
of inter- and intraprocedural programs. Our contribution is both theoretical, largely formulated
as new algorithms and their properties, and practical, provided as software artifacts.

9.1 Contributions Outline

In Chapter 3 we have presented extended background for max-policy iteration, and we have
developed the new local policy iteration algorithm (LPI). The LPI algorithm formulates policy
iteration as traditional abstract interpretation, by constructing a precise widening operator,
which guarantees the convergence to the least inductive invariant after finitely many applications.

The algorithm operates within a template constraints abstract domain, where each abstract
state represents a convex polyhedra which shape is pre-specified before the analysis. Thus in
Chapter 4 we have addressed the template synthesis problem by developing multiple algorithms
for generating template annotations, and we have performed extensive empirical comparison.
Additionally, we have presented an algorithm for generating an abstract reachability tree
representing a run of an arbitrary abstract interpretation, including LPI. Using abstract
reachability trees establishes an ability to refine the abstract domain using counterexample
traces in CEGAR spirit. We have shown how new templates can be generated from the results
of an interpolation procedure, and stated the associated results on the algorithm completeness.

In Chapter 5 we have approached the problem of generating invariants using policy iteration
for interprocedural, potentially recursive programs. We have developed a framework for
analyzing such programs using intraprocedural abstract interpretation, and we have studied
its parameterization under the LPI algorithm, which guarantees obtaining the least inductive
invariant for a pre-specified summary structure.

Finally, in Chapter 6, we have formulated a new algorithm for augmenting abstract in-
terpretation by generating potentially non-convex inductive invariants derived from symbolic
execution and subsequent weakening.

The second part of our thesis was devoted to practical contributions: we have described our
implementation in Chapter 7, and the JavaSMT library in Chapter 8.

9.2 Importance of Engineering

In Chapter 1 we have stated that formal methods are often critized for not providing a cost-
effective amount of value to software engineers. Thus an important goal of this thesis was not
just developing new approaches and algorithms, but also providing efficient implementations,
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which could be potentially used by software engineers. We have aimed to provide robust,
scalable, and well-engineered solutions, with plans for maintenance in the future.

With great help from CPAchecker [BK11] community, those goals were largely fulfilled:
our approaches were implemented in the state-of-the-art program analysis framework, with
a sizeable developer- and user-base. Additionally, as a result of our work, CPAchecker was
improved in many aspects.

Furthermore, the JavaSMT library we have developed makes SMT solvers more accessible
to the general community. As a result, it is already actively used by multiple researches, and
additional effort to integrate more solvers is underway.

9.3 Future Work and Research Directions

This thesis addresses problems at the intersection of multiple research areas: traditional dataflow
analysis, static program analysis with abstract interpretation, and logic-based model checking.
In the spirit of configurable program verification this is another step towards removing the
borders between the domains, and generating new results using the combinations of approaches.

Combinations with Other Analyses Formulating policy iteration as an LPI enables
seamless combinations with other analyses, including lazy abstraction [McM06]. Intuitively,
invariants resulting from both approaches should be able to complement each other during the
analysis, resulting in a stronger precision than any of the analyses individually. We have only
done preliminary experiments in this area, and detailed experimental study of such combinations
(including formula slicing) remains an item for future work.

Using Weakest Precondition In this thesis we have focused exclusively on the strongest
postcondition semantics, where the invariant is propagated forwards in the direction of the
program control flow. Using weakest precondition semantics, which runs backwards with
respect to the program might be a better approach for verifying properties of interest. Initial
investigation has shown the approach to be challenging due to extra quantifiers appearing in
combination with large block encoding.

Supporting Non-Convex Invariants A common theme we have found is that very often a
convex invariant is inherently insufficient to verify a desired property. More work can be done
on using abstract interpretation approach to generate non-convex invariants based on properties
of programs which are to be verified.

A promising direction which can be used in conjunction with abstract interpretation is
splitting states based on counterexample traces in the spirit of Sankaranarayanan et al. [San+06].

9.3.1 Towards Software Systems Verification

In this thesis we have based our experiments exclusively on the SV-COMP dataset. Applying an
abstract interpretation-based tool to a large, annotated collection of programs has an advantage
of knowing whether the analysis result is useful with respect to verifying the property of interest.

Yet on some level it is unsatisfying: while we have corrected a number of verification verdicts
in the canonical benchmark source, most of the time, no new bugs can be found and no new
verification verdicts can be issued on the known data.
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Thus an important research avenue would be applying the developed approaches towards
actual programs with the goal of verifying properties of interest, such as lack of overflows.

Such advances would enter the realm of commercial tools such as Coverity [Bes+10], yet
might be necessary for demonstrating the applicability of new methods.

161



162



Bibliography

[ACI10] Corinne Ancourt, Fabien Coelho, and François Irigoin. “A Modular Static Analysis
Approach to Affine Loop Invariants Detection”. In: NSAD. Vol. 267. Elsevier, 2010,
pp. 3–16 (cit. on p. 106).

[AGG10] Assalé Adjé, Stéphane Gaubert, and Eric Goubault. “Coupling Policy Iteration
with Semi-definite Relaxation to Compute Accurate Numerical Invariants in Static
Analysis”. In: ESOP. 2010, pp. 23–42 (cit. on p. 46).

[Alu+13] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. “Syntax-guided synthesis”. In: FMCAD. 2013,
pp. 1–8 (cit. on p. 84).

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1986 (cit. on pp. 25, 32, 39, 50).

[ASV12] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. “Side-Effecting Constraint Sys-
tems: A Swiss Army Knife for Program Analysis”. In: Programming Languages and
Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan, December 11-13,
2012. Proceedings. 2012, pp. 157–172 (cit. on p. 106).

[Bar+01] Howard Barringer, Saddek Bensalem, Klaus Havelund, Insup Lee, Grigore Rosu, and
Oleg Sokolsky. Runtime Verification. 2001. url: http://runtime-verification.
org/ (cit. on p. 24).

[Bar+11] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. “CVC4”. In: CAV.
2011, pp. 171–177 (cit. on p. 35).

[BDW15] Dirk Beyer, Matthias Dangl, and Philipp Wendler. “Boosting k-Induction with
Continuously-Refined Invariants”. In: CAV. 2015, pp. 622–640 (cit. on p. 147).

[Bes+10] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. “A Few Billion
Lines of Code Later: Using Static Analysis to Find Bugs in the Real World”. In:
Commun. ACM 53.2 (Feb. 2010), pp. 66–75 (cit. on p. 161).

[Bey+04] Dirk Beyer, Adam Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. “Generating Tests from Counterexamples”. In: Proc. ICSE. IEEE, 2004,
pp. 326–335 (cit. on pp. 27, 36).

[Bey+07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. “The
Software Model Checker Blast”. In: Int. J. Softw. Tools Technol. Transfer 9.5-6
(2007), pp. 505–525 (cit. on p. 88).

163

http://runtime-verification.org/
http://runtime-verification.org/


BIBLIOGRAPHY

[Bey+09] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and Roberto
Sebastiani. “Software model checking via large-block encoding”. In: FMCAD. 2009,
pp. 25–32 (cit. on pp. 50, 57).

[Bey15] Dirk Beyer. “Software Verification and Verifiable Witnesses - (Report on SV-COMP
2015)”. In: TACAS. Vol. 9035. Lecture Notes in Computer Science. Springer, 2015,
pp. 401–416 (cit. on p. 79).

[Bey16] Dirk Beyer. “Reliable and Reproducible Competition Results with BenchExec and
Witnesses”. In: Proc. TACAS. LNCS 9636. Springer, 2016, pp. 887–904 (cit. on
pp. 119, 124, 131, 153).

[BFT15] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version
2.5. Tech. rep. Available at www.SMT-LIB.org. Department of Computer Science,
The University of Iowa, 2015 (cit. on p. 149).

[BHT07] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. “Configurable Soft-
ware Verification: Concretizing the Convergence of Model Checking and Program
Analysis”. In: CAV. 2007, pp. 504–518 (cit. on pp. 19, 50, 51, 57).

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma Polyhe-
dra Library: Toward a Complete Set of Numerical Abstractions for the Analysis
and Verification of Hardware and Software Systems”. In: Science of Computer
Programming 72.1–2 (2008), pp. 3–21 (cit. on pp. 45, 47).

[Bie+03] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu. “Bounded model checking”. In: Advances in Computers 58 (2003), pp. 117–148
(cit. on p. 26).

[Bie+99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. “Symbolic
Model Checking without BDDs”. In: TACAS. LNCS 1579. Springer, 1999, pp. 193–
207 (cit. on p. 36).

[Bjø+15] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko.
“Horn Clause Solvers for Program Verification”. In: Fields of Logic and Computation
II - Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. 2015,
pp. 24–51 (cit. on p. 106).

[BK11] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for Configurable
Software Verification”. In: CAV. 2011, pp. 184–190 (cit. on pp. 52, 56, 79, 139,
160).

[BKW10] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. “Predicate Abstraction
with Adjustable-Block Encoding”. In: Proc. FMCAD. FMCAD, 2010, pp. 189–197
(cit. on pp. 57, 142).

[BL13] Dirk Beyer and Stefan Löwe. “Explicit-State Software Model Checking Based on
CEGAR and Interpolation”. In: FASE. 2013, pp. 146–162 (cit. on pp. 88, 147).

[Bla+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,
Antoine Miné, David Monniaux, and Xavier Rival. “A Static Analyzer for Large
Safety-Critical Software”. In: PLDI. ACM, 2003, pp. 196–207 (cit. on p. 27).

[Blo08] Joshua Bloch. Effective Java. Prentice Hall, 2008 (cit. on p. 153).

BIBLIOGRAPHY 164



BIBLIOGRAPHY

[BM07] Aaron R. Bradley and Zohar Manna. “Checking Safety by Inductive Generalization
of Counterexamples to Induction”. In: FMCAD. 2007, pp. 173–180 (cit. on pp. 124,
127).

[BM08] Aaron R. Bradley and Zohar Manna. “Property-directed incremental invariant
generation”. In: Formal Asp. Comput. 20.4-5 (2008), pp. 379–405 (cit. on p. 149).

[BM75] J. W. de Bakker and Lambert G. L. T. Meertens. “On the Completeness of the
Inductive Assertion Method”. In: J. Comput. Syst. Sci. 11.3 (1975), pp. 323–357
(cit. on p. 37).

[Boi98] Bernard Boigelot. “Symbolic Methods for Exploring Infinite State Spaces”. PhD
thesis. Universite de Liege, 1998 (cit. on p. 36).

[Bol+13] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. “A
Formally-Verified C Compiler Supporting Floating-Point Arithmetic”. In: ARITH,
21st IEEE International Symposium on Computer Arithmetic. IEEE Computer
Society Press, 2013, pp. 107–115 (cit. on p. 26).

[Bou93] François Bourdoncle. “Efficient chaotic iteration strategies with widenings”. In:
Formal Methods in Programming and Their Applications. Vol. 735. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 1993, pp. 128–141 (cit. on pp. 42,
128, 144).

[BPF15] Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. “νZ - An Optimizing SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of Systems -
21st International Conference, TACAS 2015. Vol. 9035. Lecture Notes in Computer
Science. Springer, 2015, pp. 194–199 (cit. on p. 56).

[BPR03] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. “Boolean and Cartesian
abstraction for model checking C programs”. In: STTT 5.1 (2003), pp. 49–58
(cit. on pp. 48, 126).

[BR00] Thomas Ball and Sriram K. Rajamani. “Bebop: A Symbolic Model Checker for
Boolean Programs”. In: SPIN 00: SPIN Workshop. Lecture Notes in Computer
Science 1885. Springer-Verlag, 2000, pp. 113–130 (cit. on p. 106).

[Bra+15] Martin Brain, Saurabh Joshi, Daniel Kroening, and Peter Schrammel. “Safety
Verification and Refutation by k-Invariants and k-Induction”. In: Static Analysis -
22nd International Symposium, SAS 2015, Saint-Malo, France, September 9-11,
2015, Proceedings. 2015, pp. 145–161 (cit. on p. 57).

[Bra07] Aaron R. Bradley. “Safety Analysis of Systems”. PhD thesis. Stanford University,
2007 (cit. on p. 39).

[Bra11] Aaron R. Bradley. “SAT-based model checking without unrolling”. In: Proc. VMCAI.
LNCS 6538. Springer, 2011, pp. 70–87 (cit. on p. 39).

[CC77a] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints”. In: POPL. 1977, pp. 238–252 (cit. on pp. 27, 28, 39, 44, 128).

[CC77b] Patrick Cousot and Radhia Cousot. “Static determination of dynamic properties of
recursive procedures”. In: IFIP Conf. on Formal Description of Programming Con-
cepts, St-Andrews, N.B., CA. Ed. by E.J. Neuhold. North-Holland, 1977, pp. 237–
277 (cit. on p. 106).

BIBLIOGRAPHY 165



BIBLIOGRAPHY

[CC92] Patrick Cousot and Radhia Cousot. “Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation”. In: Proc. PLILP. LNCS 631.
Springer, 1992, pp. 269–295 (cit. on p. 41).

[CCF13] Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. “A Survey on Product
Operators in Abstract Interpretation”. In: Semantics, Abstract Interpretation, and
Reasoning about Programs: Essays Dedicated to David A. Schmidt on the Occasion
of his Sixtieth Birthday, Manhattan, Kansas, USA, 19-20th September 2013. 2013,
pp. 325–336 (cit. on p. 52).

[CDE08] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.”
In: OSDI (2008) (cit. on p. 35).

[CE82] Edmund M. Clarke and E. Allen Emerson. “Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic”. In: Proc. Logic of Programs
1981. LNCS 131. Springer, 1982, pp. 52–71 (cit. on p. 26).

[CGS09] Sagar Chaki, Arie Gurfinkel, and Ofer Strichman. “Decision diagrams for linear
arithmetic”. In: FMCAD. 2009, pp. 53–60 (cit. on p. 47).

[CH12] Jürgen Christ and Jochen Hoenicke. Interpolation in SMTLIB 2.0. 2012. url:
https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf

(visited on 02/10/2016) (cit. on pp. 149, 156).

[CH78] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of Linear Restraints
Among Variables of a Program”. In: Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson, Arizona, USA,
January 1978. 1978, pp. 84–96 (cit. on pp. 45, 46, 95).

[CH85] Thierry Coquand and Gérard P. Huet. “Constructions: A Higher Order Proof
System for Mechanizing Mathematics”. In: EUROCAL ’85, European Conference
on Computer Algebra, Linz, Austria, April 1-3, 1985, Proceedings Volume 1: Invited
Lectures. 1985, pp. 151–184 (cit. on pp. 26, 27).

[Cha+08] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. “A TLA+
Proof System”. In: LPAR. 2008 (cit. on p. 24).

[CHN12] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. “SMTInterpol: An Inter-
polating SMT Solver”. In: Proc. SPIN. LNCS 7385. Springer, 2012, pp. 248–254
(cit. on p. 150).

[Cim+13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto
Sebastiani. “The MathSAT5 SMT Solver”. In: TACAS. LNCS 7795. Springer, 2013,
pp. 93–107 (cit. on p. 150).

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking
ANSI-C Programs”. In: Proc. TACAS. LNCS 2988. Springer, 2004, pp. 168–176
(cit. on p. 36).

[Cla+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-Guided Abstraction Refinement”. In: CAV. 2000, pp. 154–169
(cit. on pp. 47, 48, 83, 92).

[Cok13] David R. Cok. The jSMTLIB User Guide. 2013. url: http://smtlib.github.io/
jSMTLIB/jSMTLIBUserGuide.pdf (visited on 02/10/2016) (cit. on p. 155).

BIBLIOGRAPHY 166

https://ultimate.informatik.uni-freiburg.de/smtinterpol/proposal.pdf
http://smtlib.github.io/jSMTLIB/jSMTLIBUserGuide.pdf
http://smtlib.github.io/jSMTLIB/jSMTLIBUserGuide.pdf


BIBLIOGRAPHY

[Coo71] Stephen A. Cook. “The Complexity of Theorem-proving Procedures”. In: Proceed-
ings of the Third Annual ACM Symposium on Theory of Computing. STOC ’71.
Shaker Heights, Ohio, USA: ACM, 1971, pp. 151–158 (cit. on p. 35).

[Cos+05] Alexandru Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie
Putot. “A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis
of Programs”. In: Computer Aided Verification, 17th International Conference,
CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005, Proceedings. 2005, pp. 462–
475 (cit. on pp. 57, 80, 120).

[Cra57] William Craig. “Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem”.
In: J. Symb. Log. 22.3 (1957), pp. 250–268 (cit. on p. 48).

[CSS03] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. “Linear Invariant
Generation Using Non-linear Constraint Solving”. In: Computer Aided Verification,
15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003.
Vol. 2725. Lecture Notes in Computer Science. Springer, 2003, pp. 420–432 (cit. on
pp. 57, 85).

[CVE13] CVE. CVE-2014-0160. Available from MITRE, CVE-ID CVE-2014-0160. 2013.
url: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160 (cit. on
p. 24).

[Cyt+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. “Efficiently computing static single-assignment form and the program
dependence graph”. In: ACM Trans. Program. Lang. Syst. 13.4 (1991), pp. 451–490
(cit. on p. 35).

[Dij69] Edsger W. Dijkstra. “Structured programming”. circulated privately. Aug. 1969.
url: http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF (cit. on p. 24).

[DKS13] Mickaël Delahaye, Nikolai Kosmatov, and Julien Signoles. “Common Specification
Language for Static and Dynamic Analysis of C Programs”. In: Proceedings of
the 28th Annual ACM Symposium on Applied Computing. SAC ’13. ACM, 2013,
pp. 1230–1235 (cit. on p. 24).

[DM06] Bruno Dutertre and Leonardo De Moura. “A Fast Linear-Arithmetic Solver for
DPLL(T)”. In: (2006), pp. 81–94 (cit. on p. 35).

[Don+11] Alastair F. Donaldson, Leopold Haller, Daniel Kroening, and Philipp Rümmer.
“Software Verification Using k-Induction”. In: SAS. 2011, pp. 351–368 (cit. on p. 38).

[DPV13] Kamil Dudka, Petr Peringer, and Tomáš Vojnar. “Byte-Precise Verification of Low-
Level List Manipulation”. In: Proc. SAS. LNCS 7935. Springer, 2013, pp. 215–237
(cit. on p. 48).

[Ela96] Saber N. Elaydi. An Introduction to Difference Equations. Springer, 1996 (cit. on
p. 86).

[FB14] Alexis Fouilhé and Sylvain Boulmé. “A Certifying Frontend for (Sub)polyhedral
Abstract Domains”. In: Verified Software: Theories, Tools and Experiments - 6th
International Conference, VSTTE 2014, Vienna, Austria, July 17-18, 2014, Revised
Selected Papers. 2014, pp. 200–215 (cit. on p. 95).

[FJL01] Cormac Flanagan, Rajeev Joshi, and K. Rustan M. Leino. “Annotation inference
for modular checkers”. In: Information Processing Letters (2001) (cit. on pp. 124,
125).

BIBLIOGRAPHY 167

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD268.PDF


BIBLIOGRAPHY

[FL01] Cormac Flanagan and K. Rustan M. Leino. “Houdini, an Annotation Assistant for
ESC/Java”. In: FME. 2001, pp. 500–517 (cit. on pp. 124, 153).

[Flo67] Robert W. Floyd. “Assigning meanings to programs”. In: Mathematical Aspects of
Computer Science. AMS, 1967, pp. 19–32 (cit. on pp. 32, 36).

[Fou] The Eclipse Foundation. Eclipse C Development Tooling. url: http://eclipse.
org/cdt/ (visited on 08/04/2016) (cit. on p. 139).

[Gam+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley, 1995 (cit. on
p. 151).

[Gau+07] Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. “Static Analysis
by Policy Iteration on Relational Domains”. In: Programming Languages and
Systems, 16th European Symposium on Programming, ESOP 2007. Vol. 4421.
Lecture Notes in Computer Science. Springer, 2007, pp. 237–252 (cit. on pp. 57,
69).

[GBM14] Arie Gurfinkel, Anton Belov, and João Marques-Silva. “Synthesizing Safe Bit-Precise
Invariants”. In: TACAS. 2014, pp. 93–108 (cit. on p. 124).

[GKN15] Arie Gurfinkel, Temesghen Kahsai, and Jorge A. Navas. “SeaHorn: A Framework
for Verifying C Programs (Competition Contribution)”. In: Proc. TACAS. Springer,
2015 (cit. on p. 120).

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “Dart: Directed Automated
Random Testing”. In: Proc. PLDI. ACM, 2005, pp. 213–223 (cit. on p. 35).

[GLM08] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. “Automated Whitebox
Fuzz Testing”. In: Proceedings of the Network and Distributed System Security
Symposium, NDSS 2008, San Diego, California, USA, 10th February - 13th February
2008. 2008 (cit. on p. 35).

[GM12] Thomas M. Gawlitza and David Monniaux. “Invariant Generation through Strategy
Iteration in Succinctly Represented Control Flow Graphs”. In: Logical Methods in
Computer Science 8.3 (2012) (cit. on pp. 56, 72).

[GM15] Marco Gario and Andrea Micheli. “PySMT: a Solver-Agnostic Library for Fast
Prototyping of SMT-Based Algorithms”. In: Proc. SMT. 2015 (cit. on p. 155).

[GR06] Denis Gopan and Thomas W. Reps. “Lookahead Widening”. In: Computer Aided
Verification, 18th International Conference, CAV 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings. 2006, pp. 452–466 (cit. on p. 55).

[Gra91] Philippe Granger. “Static Analysis of Linear Congruence Equalities among Variables
of a Program”. In: TAPSOFT’91: Proceedings of the International Joint Conference
on Theory and Practice of Software Development, Brighton, UK, April 8-12, 1991,
Volume 1: Colloquium on Trees in Algebra and Programming (CAAP’91). 1991,
pp. 169–192 (cit. on p. 47).

[GS07a] Thomas M. Gawlitza and Helmut Seidl. “Precise Fixpoint Computation Through
Strategy Iteration”. In: Programming Languages and Systems, 16th European
Symposium on Programming, ESOP 2007. Vol. 4421. Lecture Notes in Computer
Science. Springer, 2007, pp. 300–315 (cit. on p. 75).

BIBLIOGRAPHY 168

http://eclipse.org/cdt/
http://eclipse.org/cdt/


BIBLIOGRAPHY

[GS07b] Thomas M. Gawlitza and Helmut Seidl. “Precise Relational Invariants Through
Strategy Iteration”. In: Computer Science Logic, 21st International Workshop, CSL
2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September
11-15, 2007. 2007, pp. 23–40 (cit. on p. 56).

[GS14] Thomas M. Gawlitza and Helmut Seidl. “Numerical invariants through convex
relaxation and max-strategy iteration”. In: Formal Methods in System Design 44.2
(2014), pp. 101–148 (cit. on pp. 57, 59, 60, 67).

[GS97] Susanne Graf and Hassen Saïdi. “Construction of Abstract State Graphs with
PVS”. In: Computer Aided Verification, 9th International Conference, CAV ’97,
Haifa, Israel, June 22-25, 1997, Proceedings. 1997, pp. 72–83 (cit. on pp. 47, 124,
126).

[Gur16] Inc. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2016. url: http:
//www.gurobi.com (cit. on p. 58).

[Haw+14] Chris Hawblitzel, Jon Howell, Jacob R Lorch, Arjun Narayan, Bryan Parno, Danfeng
Zhang, and Brian Zill. “Ironclad apps: End-to-end security via automated full-
system verification”. In: 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14). 2014, pp. 165–181 (cit. on p. 24).

[Hay71] Patrick J. Hayes. The Frame Problem and Related Problems in Artificial Intelligence.
Tech. rep. Stanford, CA, USA, 1971 (cit. on p. 35).

[Hen+04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.
“Abstractions from proofs”. In: Proc. POPL. ACM, 2004, pp. 232–244 (cit. on
p. 48).

[HG08] Klaus Havelund and Allen Goldberg. “Verified Software: Theories, Tools, Ex-
periments”. In: ed. by Bertrand Meyer and Jim Woodcock. Berlin, Heidelberg:
Springer-Verlag, 2008. Chap. Verify Your Runs, pp. 374–383 (cit. on p. 24).

[HH12] Nicolas Halbwachs and Julien Henry. “When the Decreasing Sequence Fails”. In:
SAS. 2012, pp. 198–213 (cit. on p. 55).

[HHP10] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. “Nested interpolants”.
In: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010. 2010,
pp. 471–482 (cit. on p. 118).

[HHS11] John Hawkin, Robert Holte, and Duane Szafron. “Automated action abstraction of
imperfect information extensive-form games”. In: In Proceedings of the National
Conference on Artificial Intelligence (AAAI). 2011 (cit. on p. 55).

[HMM12] Julien Henry, David Monniaux, and Matthieu Moy. “PAGAI: A Path Sensitive
Static Analyser”. In: Electr. Notes Theor. Comput. Sci. 289 (2012) (cit. on pp. 50,
79, 131).

[Hoa71] C. A. R. Hoare. “Procedures and parameters: An axiomatic approach”. In: Sympo-
sium on Semantics of Algorithmic Languages (1971), pp. 102–116 (cit. on p. 104).

[How60] Ronald Howard. Dynamic Programming and Markov Processes. Wiley, 1960 (cit. on
p. 55).

BIBLIOGRAPHY 169

http://www.gurobi.com
http://www.gurobi.com


BIBLIOGRAPHY

[How80] William A. Howard. “The formulas-as-types notion of construction”. In: To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism. Ed. by
J. P. Seldin and J. R. Hindley. Academic Press, 1980, pp. 479–490 (cit. on p. 26).

[IBM10] IBM. IBM ILOG CPLEX Optimizer. 2010. url: http : / / www - 01 . ibm . com /

software/integration/optimization/cplex-optimizer/ (cit. on p. 58).

[Kar16] George E. Karpenkov. “LPI: Software verification with local policy iteration (com-
petition contribution)”. In: TACAS. 2016 (cit. on p. 29).

[KBF16] George E. Karpenkov, Dirk Beyer, and Karlheinz Friedberger. “JavaSMT: a unified
interface for SMT solvers in Java”. In: VSTTE. 2016 (cit. on pp. 29, 149).

[Kil73] Gary A. Kildall. “A Unified Approach to Global Program Optimization”. In:
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages. Proc. POPL. Boston, Massachusetts: ACM, 1973,
pp. 194–206 (cit. on pp. 27, 39).

[Kin76] James C. King. “Symbolic execution and program testing”. In: Commun. ACM
19.7 (1976), pp. 385–394 (cit. on pp. 26, 35).

[Kle52] Stephen Cole Kleene. Introduction to metamathematics. Bibl. Matematica. Amster-
dam: North-Holland, 1952 (cit. on pp. 40, 42, 59).

[KM16] George E. Karpenkov and David Monniaux. “Formula Slicing: Inductive Invariants
from Preconditions”. In: HVC. 2016 (cit. on pp. 28, 123).

[KMW16] George E. Karpenkov, David Monniaux, and Philipp Wendler. “Program Analysis
with Local Policy Iteration”. In: Proc. VMCAI. LNCS 9583. Springer, 2016, pp. 127–
146 (cit. on pp. 28, 55, 153).

[Kom+13] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M. Clarke. “Auto-
matic Abstraction in SMT-Based Unbounded Software Model Checking”. In: CAV.
2013, pp. 846–862 (cit. on pp. 106, 120, 124).

[Kri63] Saul Kripke. “Semantical Considerations on Modal Logic”. In: Acta Phil. Fennica
16 (1963), pp. 83–94 (cit. on p. 26).

[Kro+08] Daniel Kroening, Natasha Sharygina, Stefano Tonetta, Aliaksei Tsitovich, and
Christoph M. Wintersteiger. “Loop Summarization Using Abstract Transformers”.
In: ATVA. 2008, pp. 111–125 (cit. on p. 93).

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point
of View. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2008
(cit. on pp. 38, 76).

[KT11] Temesghen Kahsai and Cesare Tinelli. “PKind: A parallel k-induction based model
checker”. In: Proceedings 10th International Workshop on Parallel and Distributed
Methods in verifiCation, PDMC 2011, Snowbird, Utah, USA, July 14, 2011. 2011,
pp. 55–62 (cit. on pp. 38, 147).

[Lec08] Thierry Lecomte. “Safe and Reliable Metro Platform Screen Doors Control/Com-
mand Systems”. In: FM 2008: Formal Methods, 15th International Symposium on
Formal Methods, Turku, Finland, May 26-30, 2008, Proceedings. 2008, pp. 430–434
(cit. on p. 23).

BIBLIOGRAPHY 170

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/


BIBLIOGRAPHY

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Functional
Correctness”. In: Logic for Programming, Artificial Intelligence, and Reasoning -
16th International Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010,
Revised Selected Papers. 2010, pp. 348–370 (cit. on p. 24).

[LQ09] Shuvendu K. Lahiri and Shaz Qadeer. “Complexity and Algorithms for Monomial
and Clausal Predicate Abstraction”. In: CADE. 2009, pp. 214–229 (cit. on pp. 124,
135).

[Luc+16] Kasper Søe Luckow, Marko Dimjasevic, Dimitra Giannakopoulou, Falk Howar,
Malte Isberner, Temesghen Kahsai, Zvonimir Rakamaric, and Vishwanath Raman.
“JDart: A Dynamic Symbolic Analysis Framework”. In: Proc. TACAS. LNCS 9636.
2016 (cit. on p. 155).

[Man69] Zohar Manna. “The correctness of programs”. In: Journal of Computer and Systems
Sciences 3(2) (1969), pp. 119–127 (cit. on p. 37).

[MB08] Leonardo M. de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT Solver”. In:
Proc. TACAS. LNCS 4963. 2008, pp. 337–340 (cit. on pp. 35, 131, 150).

[McM03] Kenneth L. McMillan. “Interpolation and SAT-Based Model Checking”. In: Proc.
CAV. LNCS 2725. Springer, 2003, pp. 1–13 (cit. on p. 48).

[McM05] Kenneth L. McMillan. “An interpolating theorem prover”. In: Theor. Comput. Sci.
345.1 (2005), pp. 101–121 (cit. on p. 88).

[McM06] Kenneth L. McMillan. “Lazy Abstraction with Interpolants”. In: CAV. 2006,
pp. 123–136 (cit. on pp. 48, 88, 131, 160).

[MFS90] Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of the
Reliability of UNIX Utilities”. In: Commun. ACM 33.12 (1990), pp. 32–44 (cit. on
p. 24).

[MG11] David Monniaux and Laure Gonnord. “Using Bounded Model Checking to Focus
Fixpoint Iterations”. In: SAS. 2011, pp. 369–385 (cit. on pp. 49, 50, 96, 131).

[Min06] Antoine Miné. “The octagon abstract domain”. In: Higher-Order and Symbolic
Computation 19.1 (2006), pp. 31–100 (cit. on pp. 45, 46, 84, 87).

[Mon10] David Monniaux. “Automatic Modular Abstractions for Template Numerical Con-
straints”. In: Logical Methods in Computer Science (June 2010). arXiv: 1005.4844
(cit. on p. 57).

[MP91] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent
Systems. Springer-Verlag, 1991 (cit. on p. 25).

[MR05] Laurent Mauborgne and Xavier Rival. “Trace Partitioning in Abstract Interpreta-
tion Based Static Analyzers”. In: Proc. ESOP. LNCS 3444. Springer, 2005, pp. 5–20
(cit. on p. 47).

[MS04] Markus Müller-Olm and Helmut Seidl. “Precise interprocedural analysis through
linear algebra”. In: POPL. 2004, pp. 330–341 (cit. on p. 106).

[MS14] David Monniaux and Peter Schrammel. “Speeding Up Logico-Numerical Strategy
Iteration”. In: Static Analysis - 21st International Symposium, SAS 2014, Munich,
Germany, September 11-13, 2014. 2014, pp. 253–267 (cit. on p. 57).

BIBLIOGRAPHY 171

http://arxiv.org/abs/1005.4844


BIBLIOGRAPHY

[New+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and
Michael Deardeuff. “How Amazon web services uses formal methods”. In: Commun.
ACM 58.4 (2015), pp. 66–73 (cit. on p. 23).

[New14] Chris Newcombe. “Why Amazon Chose TLA+”. In: Abstract State Machines, Alloy,
B, TLA, VDM, and Z - 4th International Conference, ABZ 2014, Toulouse, France,
June 2-6, 2014. Proceedings. 2014, pp. 25–39 (cit. on p. 23).

[Niv56] Ivan Niven. Irrational Numbers. The Mathematical Association of America, 1956
(cit. on p. 86).

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999 (cit. on pp. 105, 106).

[Oh+14] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi.
“Selective context-sensitivity guided by impact pre-analysis”. In: ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014. 2014, p. 49 (cit. on p. 84).

[QS82] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification of concurrent
systems in CESAR”. In: Proc. Symposium on Programming. LNCS 137. Springer,
1982, pp. 337–351 (cit. on p. 26).

[RG13] Pierre Roux and Pierre-Loïc Garoche. “Integrating Policy Iterations in Abstract
Interpreters”. In: ATVA. 2013, pp. 240–254 (cit. on p. 57).

[RG14] Pierre Roux and Pierre-Loïc Garoche. “Computing Quadratic Invariants with Min-
and Max-Policy Iterations: A Practical Comparison”. In: FM 2014: Formal Methods
- 19th International Symposium, Singapore, May 12-16, 2014. Proceedings. 2014,
pp. 563–578 (cit. on pp. 57, 80).

[RHS95] Thomas W. Reps, Susan Horwitz, and Mooly Sagiv. “Precise Interprocedural Data-
Flow Analysis via Graph Reachability”. In: Proc. POPL. ACM, 1995, pp. 49–61
(cit. on p. 106).

[Ric53] Henry G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: 74.2 (1953), pp. 358–366 (cit. on p. 25).

[RSY04] Thomas W. Reps, Mooly Sagiv, and Greta Yorsh. “Symbolic Implementation of
the Best Transformer”. In: VMCAI. 2004 (cit. on pp. 124, 125).

[RTC11] Special Committee of RTCA. DO-178C, Software Considerations in Airborne
Systems and Equipment Certification. 2011 (cit. on p. 23).

[Rüm12] Philipp Rümmer. “E-Matching with Free Variables”. In: Proc. LPAR. LNCS 7180.
2012, pp. 359–374 (cit. on p. 150).

[San+06] Sriram Sankaranarayanan, Franjo Ivancic, Ilya Shlyakhter, and Aarti Gupta. “Static
Analysis in Disjunctive Numerical Domains”. In: Static Analysis, 13th International
Symposium, SAS 2006, Seoul, Korea, August 29-31, 2006, Proceedings. 2006, pp. 3–
17 (cit. on pp. 47, 160).

[Ser+12] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
“AddressSanitizer: A Fast Address Sanity Checker”. In: Proceedings of the 2012
USENIX Conference on Annual Technical Conference. USENIX ATC’12. Boston,
MA: USENIX Association, 2012, pp. 28–28 (cit. on p. 24).

BIBLIOGRAPHY 172



BIBLIOGRAPHY

[SGS14] Helmut Seidl, Thomas M. Gawlitza, and Martin S. Schwarz. “Parametric Strategy
Iteration”. In: 6th International Symposium on Symbolic Computation in Software
Science, SCSS 2014, Gammarth, La Marsa, Tunisia, December 7-8, 2014. 2014,
pp. 62–76 (cit. on p. 84).

[Sha79] Adi Shamir. “A Linear Time Algorithm for Finding Minimum Cutsets in Reducible
Graphs”. In: SIAM J. Comput. 8.4 (1979), pp. 645–655 (cit. on pp. 50, 56).

[SI09] Konstantin Serebryany and Timur Iskhodzhanov. “ThreadSanitizer: Data Race
Detection in Practice”. In: Proceedings of the Workshop on Binary Instrumentation
and Applications. WBIA ’09. New York, New York, USA: ACM, 2009, pp. 62–71
(cit. on p. 24).

[SMA05] Koushik Sen, Darko Marinov, and Gul Agha. “Cute: A Concolic Unit Testing
Engine for C”. In: Proc. ESEC/FSE. ACM, 2005, pp. 263–272 (cit. on p. 26).

[SMM12] Pavel Shved, Mikhail U. Mandrykin, and Vadim S. Mutilin. “Predicate Analysis
with BLAST 2.7 - (Competition Contribution)”. In: Tools and Algorithms for the
Construction and Analysis of Systems - 18th International Conference, TACAS
2012. 2012, pp. 525–527 (cit. on p. 79).

[SP81] Micha Sharir and Amir Pnueli. “Two approaches to interprocedural data dalow
analysis”. In: Program Flow Analysis: Theory and Applications. Prentice-Hall, 1981,
pp. 189–233 (cit. on p. 104).

[SSM05] Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. “Scalable Analysis
of Linear Systems Using Mathematical Programming”. In: VMCAI. 2005, pp. 25–41
(cit. on pp. 38, 45, 46).

[ST15] Roberto Sebastiani and Patrick Trentin. “OptiMathSAT: A Tool for Optimization
Modulo Theories.” In: Proc. CAV. LNCS 9206. 2015 (cit. on p. 150).

[Sto76] Larry J. Stockmeyer. “The polynomial-time hierarchy”. In: Theoretical Computer
Science 3.1 (1976), pp. 1–22 (cit. on p. 135).

[Tar55] Alfred Tarski. “A lattice-theoretical fixpoint theorem and its applications”. In: 5
(1955), pp. 285–309 (cit. on pp. 41, 59).

[Tur36] Alan M. Turing. “On Computable Numbers, with an Application to the Entschei-
dungsproblem”. In: Proceedings of the London Mathematical Society 2.42 (1936),
pp. 230–265 (cit. on p. 25).

[Tur49] Alan M. Turing. “Checking a Large Routine”. In: Report on a Conference on
High Speed Automatic Calculating Machines. Cambridge Univ. Math. Lab., 1949,
pp. 67–69 (cit. on p. 36).

[VB96] Lieven Vandenberghe and Stephen Boyd. “Semidefinite Programming”. In: SIAM
Rev. 38.1 (Mar. 1996), pp. 49–95 (cit. on p. 80).

[Zal] Michal Zalewski. American fuzzy lop. url: http://lcamtuf.coredump.cx/afl/
(visited on 08/04/2016) (cit. on p. 24).

[Zha+14] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. “Hybrid top-down and
bottom-up interprocedural analysis”. In: PLDI. 2014, pp. 249–258 (cit. on p. 106).

BIBLIOGRAPHY 173

http://lcamtuf.coredump.cx/afl/

	Contents
	List of Figures
	List of Tables
	I Preliminaries
	Introduction
	Motivation: Software Systems Complexity
	Traditional Approaches for Ensuring Reliability
	What is a Specification?
	Safety and Liveness

	The Halting Problem and the Program Analysis Landscape
	Finite Space Exploration
	Correct By Construction Software
	Under-Approximating Approaches
	Over-Approximating Approaches

	What is a Verifier Output?
	Contributions and Thesis Outline
	Theoretical Contributions
	Engineering Contributions


	Background
	Introduction
	Chapter Outline
	Notation and Definitions

	Program Formalization
	Logic in Program Analysis
	Conversion to Formulas

	Finding Bugs with Formula Encoding
	Proving Safety
	Inductive Invariants
	Showing Inductiveness
	Inductive Assertion Map
	k-Induction
	Back to Safety

	Inductive Invariants from Counterexamples to Induction
	Inductive Invariants by Abstract Interpretation
	Formal Definitions
	Abstract Value Transformer
	Convergence and Widening

	Further Examples Of Abstract Domains
	Octagons
	Polyhedra
	Template Constraints Domains
	Disjunctive Domains
	Abstract Domain of Numerical Congruences
	Predicate Abstract Domain
	Other Domains

	Path Focusing and Large-Block Encoding
	Configurable Program Analysis
	Composite Configurable Program Analysis



	II Theoretical Contributions
	Local Policy Iteration
	Introduction
	Motivation
	Max-policy iteration
	Related Work
	Chapter Overview

	Background
	Definitions
	Least Invariant as a Convex Optimization Problem
	Template Constraints Domains
	Examples of Solvable Programs
	Max Policy Iteration Algorithm
	Selecting Multiple Policies
	Analyzing the Running Example with Policy Iteration

	Local Policy Iteration (LPI)
	LPI Formalization
	Properties of LPI

	Extensions and Optimizations
	Extending to Integers
	Extending to Uninterpreted Functions
	Reducing the Number of Value Determination Constraints
	Merging the Unknowns
	Shrinking the Search Space
	Ordering the Optimization Objectives

	Experiments
	Timing Results

	Conclusion
	Future Work


	Template Synthesis
	Introduction
	Related Work

	Enumerative Template Synthesis
	Beyond Rationals

	Filtering Templates Using Live-Variables Analysis
	Interpolation-Based Template Synthesis
	Abstract Reachability Tree Generation
	Generating Templates from Interpolants
	Guiding the Interpolation Procedure

	Template Synthesis Using Convex Hull
	Background: Abstract Interpretation in Polyhedra Domain
	Offline Refinement Approach
	Online Injection Approach
	Algorithm Properties

	Evaluation
	Live Variables
	Convex Hull Template Synthesis
	Interpolation-Based Template Synthesis

	Conclusion

	Generating Summaries Using Policy Iteration
	Introduction
	Contribution

	Related Work
	Background
	Interprocedural Program Model
	Invariants and the Computation Model
	Inductive Invariant and Semantics Equations

	Summaries as Abstract States
	Applying Policy Iteration
	Generating Summaries using Intraprocedural Analysis
	Algorithm Properties
	Implementation
	Extensions
	Supporting Parameter and Return Expressions
	Supporting Globals using Pre-Analysis
	Abstract Reachability Tree Generation
	Generating Multiple Summaries
	Large Block Encoding Support and Inlinement

	Evaluation
	Conclusion and Future Work
	Future Work


	Formula Slicing: Inductive Invariants from Preconditions
	Introduction
	Contributions
	Related Work
	Counterexample-to-Induction Weakening Algorithm
	From Weakenings to Abstract Postconditions

	The Space of All Possible Weakenings
	Eliminating Existentially Quantified Variables

	Formula Slicing: Overall Algorithm
	Abstract Reachability Tree
	Example Formula Slicing Run

	Extensions
	Implementation
	Experiments and Evaluation
	Complexity of Finding a Non-Trivial Inductive Weakening Over Literals
	Conclusion and Future Work
	Future Work



	III Engineering Contributions
	Implementation
	Introduction
	Software Architecture
	Installation Instructions
	Usage Instructions
	Configuration Options
	Looking at the Output Further

	CPA Formulation
	Abstraction for LPI
	Abstraction for Slicer

	Abstract Reachability Graph Generation
	Extensions
	Combination with Other Configurable Program Analyses
	Combination with k-Induction

	Conclusion
	Software Project and Contributors
	Future Work


	JavaSMT Library
	Introduction
	Features
	Formula Representation
	Type Safety
	Formula Introspection
	Handling Interruptions
	Multithreading Support

	Project Architecture
	Memory Management
	Case Study: Inductive Formula Weakening
	Implementation Task
	Implementation

	Related Work
	Conclusion
	Future Work



	IV Conclusion
	Conclusion
	Contributions Outline
	Importance of Engineering
	Future Work and Research Directions
	Towards Software Systems Verification


	Bibliography


