H. Carstens, Megawatt-scale average-power ultrashort pulses in an enhancement cavity, Optics Letters, vol.39, issue.9, pp.2595-2598, 2017.
DOI : 10.1364/OL.39.002595

T. Villafana, Generators, x-ray tubes, and exposure geometry in mammography., RadioGraphics, vol.10, issue.3, pp.539-554, 1990.
DOI : 10.1148/radiographics.10.3.2343172

S. Schleede, Multimodal hard X-ray imaging of a mammography phantom at a compact synchrotron light source, Journal of Synchrotron Radiation, vol.13, issue.4, 2012.
DOI : 10.1364/OPEX.13.006296

C. Alwmark, A 3-D study of mineral inclusions in chromite from ordinary chondrites using synchrotron radiation X-ray tomographic microscopy-Method and applications, Meteoritics & Planetary Science, vol.40, issue.8, pp.1071-1081, 2011.
DOI : 10.1111/j.1945-5100.2005.tb00138.x

J. V. Bulcke, Nondestructive research on wooden musical instruments: From macro-to microscale imaging with lab-based X-ray CT systems, Journal of Cultural Heritage, 2016.

M. Biston, -Platinum and Irradiated with Monochromatic Synchrotron X-Rays, Cancer Research, vol.64, issue.7, p.2317, 2004.
DOI : 10.1158/0008-5472.CAN-03-3600

T. Martin and Z. Derewenda, The name is bond -H bond, Nature Structural Biology, vol.6, issue.5, p.403, 1999.
DOI : 10.1038/8195

F. A. Cotton and C. B. Harris, The Crystal and Molecular Structure of Dipotassium Octachlorodirhenate(III) Dihydrate, Inorganic Chemistry, vol.43, pp.2-330, 1965.

M. Cotte, Synchrotron-Based X-ray Absorption Spectroscopy for Art Conservation: Looking Back and Looking Forward, Accounts of Chemical Research, vol.43, issue.6, pp.705-714, 2010.
DOI : 10.1021/ar900199m

J. Echard, In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins, 17th International Congress on X-Ray Optics and Microanalysis, pp.10-11, 2004.
DOI : 10.1016/j.sab.2004.05.026

J. A. Cunningham, A virtual world of paleontology, Trends in Ecology & Evolution, vol.29, issue.6, pp.347-357, 2014.
DOI : 10.1016/j.tree.2014.04.004

L. Abbene, Direct Measurement of Mammographic X-Ray Spectra with a Digital CdTe Detection System, Sensors 2012, pp.8390-840410, 2012.
DOI : 10.1109/TNS.2005.862916

J. Filhol, Overview of the Status of the SOLEIL Project, 2006.

B. Buras and G. Materlik, The European synchrotron radiation facility " . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 246, pp.21-31, 1986.

R. Tatchyn and H. Winick, SSRL 1990 ? status and future plans " . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 308, pp.13-23, 1991.
DOI : 10.1016/0168-9002(91)90578-e

K. Wille, Synchrotron radiation sources, Reports on Progress in Physics, vol.54, issue.8, p.1005, 1991.
DOI : 10.1088/0034-4885/54/8/001

C. Bostedt, Linac Coherent Light Source: The first five years, Reviews of Modern Physics, vol.10, issue.1, p.15007, 2016.
DOI : 10.1063/1.4736725

R. Bonifacio, C. Pellegrini, and L. Narducci, Collective instabilities and high-gain regime in a free electron laser, Optics Communications, vol.506, pp.373-378, 1984.

J. Amann, Demonstration of self-seeding in a hard-X-ray free-electron laser, Nature Photonics, vol.101, issue.10, pp.693-698, 2012.
DOI : 10.1063/1.4736725

J. Ullrich, A. Rudenko, and R. Moshammer, Free-Electron Lasers: New Avenues in Molecular Physics and Photochemistry, Annual Review of Physical Chemistry, vol.63, issue.1, 2012.
DOI : 10.1146/annurev-physchem-032511-143720

K. Dupraz, Conception et optimisation d'un recirculateur optique pour la source haute brillance de rayons gamma d'ELI-NP, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01223703

A. D. Angelo, Review of Compton scattering projects, Particle accelerator. Proceedings, 6th European conference, EPAC'98, pp.226-230, 1998.

T. Suzuki, General formulae of luminosity for various types of colliding beam machines, pp.76-79, 1976.

V. Petrillo, Photon flux and spectrum of Compton sources " . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp.109-116, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00721307

H. Wiedemann, Particle physics accelerator, 2007.

V. I. Ritus, Quantum effects of the interaction of elementary particles with an intense electromagnetic field, Journal of Soviet Laser Research, vol.69, issue.8, pp.497-617, 1985.
DOI : 10.1002/andp.19344120405

W. J. Brown and F. V. Hartemann, Brightness Optimization of Ultra-Fast Thomson Scattering X-ray Sources, AIP Conference Proceedings, 2004.
DOI : 10.1063/1.1842631

M. Jacquet, Potential of compact Compton sources in the medical field, Physica Medica, vol.32, issue.12, pp.1790-1794, 2016.
DOI : 10.1016/j.ejmp.2016.11.003

URL : https://hal.archives-ouvertes.fr/hal-01555223

M. Yasumoto, X-ray imaging with laser-Compton scattering X-ray at AIST, Journal of Physics: Conference Series, vol.186, p.12039, 2009.
DOI : 10.1088/1742-6596/186/1/012039

D. J. Gibson, -ray source, Physical Review Special Topics - Accelerators and Beams, vol.181, issue.7, p.70703, 2010.
DOI : 10.1063/1.1646160

W. S. Graves, Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz Proposal for a high brightness ?-ray source at the SXFEL, Phys. Rev. ST Accel. Beams Nuclear Science and Techniques, vol.175, issue.26, pp.50103-50103, 2014.

J. Han, Design of a low emittance and high repetition rate S-band photoinjector Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014.

B. Terzic, C. Reeves, and G. A. Krafft, Combining harmonic generation and laser chirping to achieve high spectral density in Compton sources, Physical Review Accelerators and Beams, vol.19, issue.4, p.44403, 2016.
DOI : 10.1103/PhysRevSTAB.7.020701

K. Dupraz, -ray beam production from electron laser beam Compton scattering, Physical Review Special Topics - Accelerators and Beams, vol.12, issue.3, p.33501, 2014.
DOI : 10.1364/OE.20.026176

L. Casano, Production of a Beam of Polarized and Monochromatic ? Rays by Compton Scattering of Laser Light Against High-Energy Electrons, 1974.

Z. Huang and R. D. Ruth, Laser-Electron Storage Ring, Physical Review Letters, vol.78, issue.5, pp.976-979, 1998.
DOI : 10.1007/978-3-662-02903-9

URL : http://www.slac.stanford.edu/pubs/slacpubs/12750/slac-pub-12858.pdf

K. Achterhold, Monochromatic computed tomography with a compact laser-driven X-ray source, Scientific Reports, vol.56, issue.1, 2013.
DOI : 10.1107/S0909049509009911

I. Chaikovska, High flux circularly polarized gamma beam factory: coupling a Fabry-Perot optical cavity with an electron storage ring, Scientific Reports, 2016.
DOI : 10.1364/OL.33.002704

C. J. Harvey and M. J. Blomley, Principles and Precautions of Conventional Radiography, Surgery (Oxford), vol.217, pp.175-178, 2003.

J. Echard, Insights into the varnishes of historical musical instruments using synchrotron micro-analytical methods, Applied Physics A, vol.1, issue.1, pp.77-81, 2008.
DOI : 10.1081/AL-120028621

URL : https://hal.archives-ouvertes.fr/hal-00188480

J. Echard, The Nature of the Extraordinary Finish of Stradivari???s Instruments, Angewandte Chemie International Edition, vol.35, issue.1, pp.197-201, 2010.
DOI : 10.1002/(SICI)1096-9888(200004)35:4<512::AID-JMS963>3.0.CO;2-3

URL : https://hal.archives-ouvertes.fr/hal-01665937

A. Stevenson, Phase-contrast X-ray imaging with synchrotron radiation for materials science applications " . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, Materials and Atoms, vol.199, pp.427-435, 2003.

M. Bech, Hard X-ray phase-contrast imaging with the Compact Light Source based on inverse Compton X-rays, Journal of Synchrotron Radiation, vol.16, issue.1, pp.43-47, 2009.
DOI : 10.1107/S090904950803464X

J. Dik, Visualization of a Lost Painting by Vincent van Gogh Using Synchrotron Radiation Based X-ray Fluorescence Elemental Mapping, Analytical Chemistry, vol.80, issue.16, 2008.
DOI : 10.1021/ac800965g

G. V. Snickt, Exploring a Hidden Painting Below the Surface of René Magritte's Le Portrait, Applied Spectroscopy, vol.701, 2016.

K. Trentelman, Rembrandt???s An Old Man in Military Costume: the underlying image re-examined, Applied Physics A, vol.22, issue.3, pp.801-811, 2015.
DOI : 10.1016/S0169-1317(03)00076-0

M. Jacquet and P. Suortti, Radiation therapy at compact Compton sources Radiation Therapy with Synchrotron Radiation: Achievements and Challenges, Physica Medica, vol.316, pp.596-600, 2015.

B. J. Quiter, Pu, Physical Review C, vol.29, issue.3, p.34307, 2012.
DOI : 10.1016/0375-9474(88)90371-5

R. D. Peccei and H. R. Quinn, Conservation in the Presence of Pseudoparticles, Physical Review Letters, vol.31, issue.25, pp.1440-1443, 1977.
DOI : 10.1103/PhysRevLett.31.494

F. Labaye and R. Kuroda, Amplification passive d'un laseràlaserà fibre optique dans une cavité Fabry-Perot : applicationàapplication`applicationà la production de rayonnement gamma par diffusion Compton inverse K-edge imaging with quasi-monochromatic LCS X-ray source on the basis of S-band compact electron linac " . Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with, 11th European Conference on Accelerators in Applied Research and Technology, pp.257-260, 2014.

A. Bacci, Status of the STAR Project International Particle Accelerator Conference 7. doi:10, Proc. of International Particle Accelerator Conference (IPAC'16), pp.1747-1750, 2016.

J. Luiten, KNAW-Agenda Grootschalige Onderzoeksfaciliteiten : Smart*Light: a Dutch table-top synchrotron light source, Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen (KNAW), 2016.

T. Akagi, Narrow-band photon beam via laser Compton scattering in an energy recovery linac, Physical Review Accelerators and Beams, vol.19, issue.11, p.114701, 2016.
DOI : 10.1364/OL.39.002595

K. Sakaue, Development of pulsed-laser super-cavity for compact x-ray source based on Laser-Compton scattering " . 2007 IEEE Particle Accelerator Conference (PAC), pp.1034-1036, 2007.

M. Fukuda, Development and upgrade plan of an X-ray source based on laser Comtpon scattering in laser undulator compact X-ray source (LUCX), IPAC2016, 2016.

L. Serafini, BriXS: BRIght and compact X-ray Source. Expression of Interest 1, 2016.

D. Mihalcea, Development of a Watt-level gamma-ray source based on high-repetition-rate inverse Compton scattering, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.402, 2016.
DOI : 10.1016/j.nimb.2017.03.140

A. Ando, Isochronous storage ring of the New SUBARU project, Journal of Synchrotron Radiation, vol.5, issue.3, pp.342-344, 1998.
DOI : 10.1107/S0909049597013150

H. Ohkuma, ?-ray Source by Backward Compton Scattering at SPring-8, DAE Symp. on Nucl. Phys. 59, 2014.

J. Bocquet, GRAAL: a polarized ??-ray beam at ESRF, Nuclear Physics A, vol.622, issue.1-2, pp.124-129, 1997.
DOI : 10.1016/S0375-9474(97)00337-0

URL : https://hal.archives-ouvertes.fr/in2p3-00001174

G. Wei, Shanghai laser electron ? source and its applications, Chinese physics C 32.S2, p.190, 2008.

H. R. Weller, Research opportunities at the upgraded HI??S facility, Progress in Particle and Nuclear Physics, vol.62, issue.1, pp.257-303, 2009.
DOI : 10.1016/j.ppnp.2008.07.001

M. Hosaka, Observation of intracavity Compton backscattering of the UVSOR free electron laser " . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 393, pp.525-529, 1997.

P. Favier, Short pulse laser beam beyond paraxial approximation, Journal of the Optical Society of America A, vol.34, issue.8, pp.1351-1359, 2017.
DOI : 10.1364/JOSAA.34.001351

V. Marceau, Femtosecond 240-keV Electron Pulses from Direct Laser Acceleration in a Low-Density Gas, Physical Review Letters, vol.111, issue.22, p.224801, 2013.
DOI : 10.1063/1.1487437

V. Marceau, Tunable high-repetition-rate femtosecond few-hundred keV electron source, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.48, issue.4, p.45601, 2015.
DOI : 10.1088/0953-4075/48/4/045601

A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.47, issue.1, p.15601, 2014.
DOI : 10.1088/0953-4075/47/1/015601

URL : http://bib-pubdb1.desy.de//record/155788/files/JPB_Accepted_Draft_Sell_Kaertner.pdf

V. Marceau, C. Varin, and M. Piché, Validity of the paraxial approximation for electron acceleration with radially polarized laser beams, Optics Letters, vol.38, issue.6, pp.821-823, 2013.
DOI : 10.1364/OL.38.000821

M. Couture and P. Belanger, From Gaussian beam to complex-sourcepoint spherical wave, Physical Review A, vol.241, p.355, 1981.
DOI : 10.1103/physreva.24.355

URL : http://r-libre.teluq.ca/35/1/Couture-Belanger_PhysRevA_1981.pdf

C. Ruchert, C. Vicario, and C. P. Hauri, Spatiotemporal focusing dynamics of intense supercontinuum THz pulses " . Physical review letters 110, p.123902, 2013.

B. Rau, T. Tajima, and H. Hojo, Coherent electron acceleration by subcycle laser pulses " . Physical review letters 78, p.3310, 1997.
DOI : 10.1103/physrevlett.78.3310

B. Quesnel, P. Mora, S. M. Sepke, and D. P. Umstadter, Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum Analytical solutions for the electromagnetic fields of tightly focused laser beams of arbitrary pulse length, Optics letters 31, pp.371917-2589, 1998.

L. Jin-lu, S. Zheng-ming, and Z. Jun, Electron acceleration by tightly focused radially polarized few-cycle laser pulses, Chinese Physics B 21, p.24101, 2012.

R. W. Ziolkowski, Localized transmission of electromagnetic energy, Physical Review A, vol.63, issue.4, pp.2005-2033, 1989.
DOI : 10.1364/JOSA.63.001093

R. Hellwarth and P. Nouchi, Focused one-cycle electromagnetic pulses, Physical Review E, vol.54, issue.1, p.889, 1996.
DOI : 10.1063/1.332196

M. Lax, W. H. Louisell, and W. B. Mcknight, From Maxwell to paraxial wave optics, Physical Review A, vol.134, issue.4, p.1365, 1975.
DOI : 10.1103/PhysRev.134.A1429

A. Martens, Direct electron acceleration with tightly focused TM01 beams: boundary conditions and non-paraxial corrections, Optics letters, vol.394, pp.981-984, 2014.
DOI : 10.1364/ol.39.000981

URL : https://hal.archives-ouvertes.fr/in2p3-00966711

L. W. Davis, Theory of electromagnetic beams, Physical Review A, vol.11, issue.3, pp.1177-1179, 1979.
DOI : 10.1103/PhysRevA.11.1365

Y. I. Salamin, Mono-energetic GeV electrons from ionization in a radially polarized laser beam, Optics Letters, vol.32, issue.1, pp.90-92, 2007.
DOI : 10.1364/OL.32.000090

Y. I. Salamin, Z. Harman, and C. H. Keitel, Direct High-Power Laser Acceleration of Ions for Medical Applications, Physical Review Letters, vol.72, issue.15
DOI : 10.1103/PhysRevLett.92.175003

Z. Harman, Optimizing direct intense-field laser acceleration of ions, Physical Review A, vol.93, issue.5, p.53814, 2011.
DOI : 10.1103/PhysRevLett.102.145002

Y. I. Salamin, Laser acceleration of proton bunches by petawatt chirped linearly polarized laser pulses, Physical Review A, vol.85, issue.6, p.63831, 2012.
DOI : 10.1364/AO.49.002105

H. Lee, A study of the Thomson scattering of radiation by a relativistic electron of a tightly-focused, co-propagating femtosecond laser beam, New Journal of Physics, vol.10, issue.9, p.93024, 2008.
DOI : 10.1088/1367-2630/10/9/093024

D. Kim, Attosecond keV x-ray pulses driven by Thomson scattering in a tight focus regime, New Journal of Physics, vol.11, issue.6, p.63050, 2009.
DOI : 10.1088/1367-2630/11/6/063050

M. A. Porras, Pulse correction to monochromatic light-beam propagation, Optics Letters, vol.26, issue.1, pp.44-46, 2001.
DOI : 10.1364/OL.26.000044

X. Fu, Spatial nonparaxial correction of the ultrashort pulsed beam propagation in free space, Physical Review E, vol.16, issue.5, p.56611, 2002.
DOI : 10.1364/JOSAA.16.002494

G. Lu, Nonparaxially corrected solution for isodiffracting sub-cycle pulsed-beam propagation in free space, JOURNAL-KOREAN PHYSICAL SOCIETY, vol.42, pp.627-630, 2003.

C. Varin, M. Piché, and M. A. Porras, Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space, Physical Review E, vol.4833, issue.2, p.26603, 2005.
DOI : 10.1103/PhysRevLett.84.3210

Z. Yan, Accurate description of ultra-short tightly focused Gaussian laser pulses and vacuum laser acceleration, Applied Physics B, vol.1, issue.6, pp.813-819, 2005.
DOI : 10.1007/s00340-003-1166-y

J. Zhang, A high-order corrected description of ultra-short and tightly focused laser pulses, and their electron acceleration in vacuum " . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 580, pp.1169-1175, 2007.

Y. I. Salamin, Fields of a tightly focused radially polarized laser beam: the truncated series versus the complex-source-point spherical wave representation, New Journal of Physics, vol.11, issue.3, p.33009, 2009.
DOI : 10.1088/1367-2630/11/3/033009

M. Born and E. Wolf, Principles of Optics, 1985.
DOI : 10.1017/CBO9781139644181

V. Marceau, Accélération d'´ electronsàelectronsà l'aide d'impulsions laser ultrabrèves et fortement focalisées, 2015.

M. A. Porras, Ultrashort pulsed Gaussian light beams, Physical Review E, vol.7, issue.1, p.1086, 1998.
DOI : 10.1049/el:19710467

R. Donnelly and R. Ziolkowski, A Method for Constructing Solutions of Homogeneous Partial Differential Equations: Localized Waves, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.437, issue.1901, pp.673-692, 1901.
DOI : 10.1098/rspa.1992.0086

E. Heyman and T. Melamed, Certain considerations in aperture synthesis of ultrawideband/short-pulse radiation " . Antennas and Propagation, IEEE Transactions on, vol.424, pp.518-525, 1994.

H. Kogelnik and T. Li, Laser Beams and Resonators, Appl. Opt, vol.510, pp.1550-1567, 1966.
DOI : 10.1109/proc.1966.5119

X. Liu, S-shaped non-paraxial corrections to general astigmatic beams, Journal of the Optical Society of America A, vol.34, issue.4, pp.576-582, 2017.
DOI : 10.1364/JOSAA.34.000576

U. Levy, S. Derevyanko, and Y. Silberberg, Chapter Four -Light Modes of Free Space, Progress in Optics, pp.237-281, 2016.

I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation, Journal of Mathematical Physics, vol.33, issue.6, pp.1254-1269, 1989.
DOI : 10.1063/1.343070

A. April and M. Piché, 4? Focusing of TM01 beams under nonparaxial conditions, Optics express, vol.1821, pp.22128-22140, 2010.

B. Xie, Particle acceleration by subcycle laser pulse in vacuum Applied physics letters 91, p.11118, 2007.

Z. Wang, Space-time profiles of an ultrashort pulsed Gaussian beam, Quantum Electronics IEEE Journal, vol.334, pp.566-573, 1997.

R. Dorn, S. Quabis, and G. Leuchs, Sharper Focus for a Radially Polarized Light Beam, Physical Review Letters, vol.36, issue.23, p.233901, 2003.
DOI : 10.1126/science.289.5478.415

Y. I. Salamin, Accurate fields of a radially polarized Gaussian laser beam, New Journal of Physics, vol.88, p.133, 2006.

T. Van-oudheusden, Compression of Subrelativistic Space-Charge-Dominated Electron Bunches for Single-Shot Femtosecond Electron Diffraction, Physical Review Letters, vol.105, issue.26, p.264801, 2010.
DOI : 10.1016/S0168-9002(01)01994-5

J. Li, Attosecond Gamma-Ray Pulses via Nonlinear Compton Scattering in the Radiation-Dominated Regime, Physical Review Letters, vol.19, issue.20
DOI : 10.1103/PhysRevLett.89.094801

P. Smith, Stabilized, single-frequency output from a long laser cavity, IEEE Journal of Quantum Electronics, vol.1, issue.8, pp.343-348, 1965.
DOI : 10.1109/JQE.1965.1072245

R. J. Jones and J. Diels, Stabilization of Femtosecond Lasers for Optical Frequency Metrology and Direct Optical to Radio Frequency Synthesis, Physical Review Letters, vol.25, issue.15, pp.3288-3291, 2001.
DOI : 10.1364/OL.25.001675

Y. Y. Jiang, Making optical atomic clocks more stable with 10???16-level laser stabilization, Nature Photonics, vol.54, issue.3, pp.158-161, 2011.
DOI : 10.1109/TUFFC.2007.337

URL : http://arxiv.org/pdf/1101.1351

N. Hinkley, An Atomic Clock with 10 ?18 Instability eprint: http://science.sciencemag.org/content, Science, 2013.
DOI : 10.1126/science.1240420

URL : http://arxiv.org/pdf/1305.5869

B. P. Abbott, GW150914: The Advanced LIGO Detectors in the Era of First Discoveries, Physical Review Letters, vol.55, issue.13, p.131103, 2016.
DOI : 10.1007/lrr-2016-1

URL : https://hal.archives-ouvertes.fr/in2p3-01274006

F. Acernese, Advanced Virgo: a second-generation interferometric gravitational wave detector, Classical and Quantum Gravity, vol.32, issue.2, p.24001, 2015.
DOI : 10.1088/0264-9381/32/2/024001

URL : https://hal.archives-ouvertes.fr/in2p3-01056608

J. Jorda, A Fabry?Pérot cavity for Compton polarimetry " . Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 412, pp.1-18, 1998.

S. Baudrand, A high precision Fabry-Perot cavity polarimeter at HERA, Journal of Instrumentation, vol.5, issue.06, pp.6-06005, 2010.
DOI : 10.1088/1748-0221/5/06/P06005

URL : https://hal.archives-ouvertes.fr/in2p3-00484268

R. J. Jones, Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity, Physical Review Letters, vol.19, issue.19, p.193201, 2005.
DOI : 10.1103/PhysRevLett.81.297

I. Pupeza, Compact high-repetition-rate source of coherent 100??eV radiation, Nature Photonics, vol.31, issue.8, pp.608-612, 2013.
DOI : 10.1007/BF00702605

G. Moortgat-pick, Polarized positrons and electrons at the linear collider, Physics Reports, vol.460, issue.4-5, pp.4-5, 2008.
DOI : 10.1016/j.physrep.2007.12.003

URL : https://hal.archives-ouvertes.fr/in2p3-00214236

L. E. Hargrove, R. L. Fork, and M. A. Pollack, LOCKING OF He???Ne LASER MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION, Applied Physics Letters, vol.5, issue.1, 1964.
DOI : 10.1063/1.1754026

R. L. Fork, B. I. Greene, and C. V. Shank, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, Applied Physics Letters, 1981.

H. A. Haus, Theory of mode locking with a fast saturable absorber, Journal of Applied Physics, vol.15, issue.7, 1975.
DOI : 10.1109/JRPROC.1960.287574

D. E. Spence, P. N. Kean, and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser, Optics Letters, vol.16, issue.1, pp.42-44, 1991.
DOI : 10.1364/OL.16.000042

T. Brabec, Kerr lens mode locking, Optics Letters, vol.17, issue.18, pp.1292-1294, 1992.
DOI : 10.1364/OL.17.001292

R. Chiche, Les cavités Fabry-Perot en mode pulsé et leurs récentes applications, 2009.

X. Liu, Laser frequency stabilization using folded cavity and mirror reflectivity tuning, Optics Communications, vol.369, pp.84-88, 2016.
DOI : 10.1016/j.optcom.2016.02.028

URL : https://hal.archives-ouvertes.fr/in2p3-01357302

S. T. Cundiff, Phase stabilization of ultrashort optical pulses, Journal of Physics D: Applied Physics, vol.35, issue.8, p.43, 2002.
DOI : 10.1088/0022-3727/35/8/201

F. Zomer, Polarization induced instabilities in external four-mirror Fabry-Perot cavities, Applied Optics, vol.48, issue.35, pp.6651-6661, 2009.
DOI : 10.1364/AO.48.006651

URL : https://hal.archives-ouvertes.fr/hal-00438501

K. Dupraz, The ABCD matrix for parabolic reflectors and its application to astigmatism free four-mirror cavities, Optics Communications, vol.353, pp.178-183, 2015.
DOI : 10.1016/j.optcom.2015.05.021

URL : https://hal.archives-ouvertes.fr/in2p3-01152150

P. Hello, II: Optical Aspects of Interferometric Gravitational-Wave Detectors, Progress in Optics, vol.38, pp.85-164, 1998.
DOI : 10.1016/S0079-6638(08)70350-0

B. E. Saleh and M. C. Teich, Resonator Optics " . Fundamentals of Photonics, pp.310-341, 2001.

J. A. Arnaud, Degenerate Optical Cavities, Applied Optics, vol.8, issue.1, pp.189-196, 1969.
DOI : 10.1364/AO.8.000189

J. Visser and G. Nienhuis, Spectrum of an optical resonator with spherical aberration, Journal of the Optical Society of America A, vol.22, issue.11, pp.2490-2497, 2005.
DOI : 10.1364/JOSAA.22.002490

D. Kleckner, Diffraction-limited high-finesse optical cavities, Physical Review A, vol.81, issue.4, pp.43814-0438145, 2010.
DOI : 10.1364/AO.43.002670

D. A. Shaddock, M. B. Gray, and D. E. Mcclelland, Frequency locking a laser to an optical cavity by use of spatial mode interference, Optics Letters, vol.24, issue.21, pp.1499-1501, 1999.
DOI : 10.1364/OL.24.001499

B. J. Slagmolen, Frequency stability of spatial mode interference (tilt) locking, IEEE Journal of Quantum Electronics, vol.38, issue.11, pp.1521-1528, 2002.
DOI : 10.1109/JQE.2002.804267

T. Hansch and B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity, Optics Communications, vol.35, issue.3, pp.441-444, 1980.
DOI : 10.1016/0030-4018(80)90069-3

Y. Honda, Stabilization of a non-planar optical cavity using its polarization property, Optics Communications, vol.282, issue.15, pp.3108-3112, 2009.
DOI : 10.1016/j.optcom.2009.04.043

P. Asenbaum and M. Arndt, Cavity stabilization using the weak intrinsic birefringence of dielectric mirrors, Optics Letters, vol.36, issue.19, pp.3720-3722, 2011.
DOI : 10.1364/OL.36.003720

R. W. Drever, Laser phase and frequency stabilization using an optical resonator, Applied Physics B Photophysics and Laser Chemistry, vol.17, issue.2, pp.97-105, 1983.
DOI : 10.1007/BF00702605

R. V. Pound, Electronic Frequency Stabilization of Microwave Oscillators, Review of Scientific Instruments, vol.17, issue.11, pp.490-505, 1946.
DOI : 10.1103/PhysRev.70.53

E. D. Black, An introduction to Pound???Drever???Hall laser frequency stabilization, American Journal of Physics, vol.69, issue.1, pp.79-87, 2001.
DOI : 10.1119/1.1286663

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2013.
DOI : 10.1007/978-3-662-02835-3

URL : http://cds.cern.ch/record/1499488/files/9781461449416_TOC.pdf

G. Rempe, Measurement of ultralow losses in an optical interferometer, Optics Letters, vol.17, issue.5, pp.363-365, 1992.
DOI : 10.1364/OL.17.000363

C. R. Locke, A simple technique for accurate and complete characterisation of a Fabry-Perot cavity, Optics Express, vol.17, issue.24, pp.21935-21943, 2009.
DOI : 10.1364/OE.17.021935

K. An, Cavity ring-down technique and its application to the measurement of ultraslow velocities, Optics Letters, vol.20, issue.9, pp.1068-1070, 1995.
DOI : 10.1364/OL.20.001068

J. Poirson, Analytical and experimental study of ringing effects in a Fabry???Perot cavity Application to the measurement of high finesses, Journal of the Optical Society of America B, vol.14, issue.11, pp.2811-2817, 1997.
DOI : 10.1364/JOSAB.14.002811

L. Matone, Finesse and mirror speed measurement for a suspended Fabry???Perot cavity using the ringing effect, Physics Letters A, vol.271, issue.5-6, pp.5-6, 2000.
DOI : 10.1016/S0375-9601(00)00395-9

URL : https://hal.archives-ouvertes.fr/in2p3-00008066

E. D. Palik, H. Boukari, and R. W. Gammon, Experimental study of the effect of surface defects on the finesse and contrast of a Fabry???Perot interferometer, Applied Optics, vol.35, issue.1, pp.38-50, 1996.
DOI : 10.1364/AO.35.000038

D. Yurov, Continuous-wave electron linear accelerators for industrial applications, Proceedings, 7th International Particle Accelerator Conference, p.16, 2016.
DOI : 10.1016/0168-9002(89)90853-X

URL : http://doi.org/10.1103/physrevaccelbeams.20.044702

K. Sakaue, Develoment of pulse-laser super-cavity and demonstration of multi-pulse X-rays, 2009.

M. J. Lawrence, Dynamic response of a Fabry???Perot interferometer, Journal of the Optical Society of America B, vol.16, issue.4, pp.523-532, 1999.
DOI : 10.1364/JOSAB.16.000523

C. Heßler, Recent Developments at the High-charge PHIN Photoinjector and the CERN Photoemission Laboratory Laser-Compton scattering X-ray source based on normal conducting linac and optical enhancement cavity, Proceedings, 5th International Particle Accelerator Conference 6th International Particle Accelerator Conference, IPAC 2015. Joint Accelerator Conferences Website (JACoW), pp.1635-1637, 2014.

A. Rakhman, M. Notcutt, and Y. Liu, Power enhancement of burst-mode ultraviolet pulses using a doubly resonant optical cavity, Optics Letters, vol.40, issue.23, pp.5562-5565, 2015.
DOI : 10.1364/OL.40.005562

L. Gallais and M. Commandré, Laser-induced damage thresholds of bulk and coating optical materials at 1030??????nm, 500??????fs, Applied Optics, vol.53, issue.4, pp.186-196, 2014.
DOI : 10.1364/AO.53.00A186

URL : https://hal.archives-ouvertes.fr/hal-00937940

R. W. Boyd, Chapter 4 -The Intensity-Dependent Refractive Index " . Nonlinear Optics (Third Edition), pp.207-252, 2008.

I. Jovanovic, High-power laser pulse recirculation for inverse Compton scattering-produced ?-rays " . Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 578, pp.160-171, 2007.
DOI : 10.1016/j.nima.2007.04.168

D. Z. Anderson, Alignment of resonant optical cavities, Applied Optics, vol.23, issue.17, pp.2944-2949, 1984.
DOI : 10.1364/AO.23.002944

C. Zhao, Compensation of Strong Thermal Lensing in High-Optical-Power Cavities, Physical Review Letters, vol.151, issue.23, p.231101, 2006.
DOI : 10.1007/s10714-005-0137-5

R. Lawrence, Active correction of thermal lensing through external radiative thermal actuation, Optics Letters, vol.29, issue.22, pp.2635-2637, 2004.
DOI : 10.1364/OL.29.002635

R. Lawrence, Adaptive thermal compensation of test masses in advanced LIGO, Classical and Quantum Gravity, vol.19, issue.7, p.1803, 2002.
DOI : 10.1088/0264-9381/19/7/377

H. Lück, Thermal correction of the radii of curvature of mirrors for GEO 600, Classical and Quantum Gravity, vol.21, issue.5, p.985, 2004.
DOI : 10.1088/0264-9381/21/5/090

J. Degallaix, Compensation of strong thermal lensing in advanced interferometric gravitational waves detectors, 2006.

J. Edwards, Coating and surface treatment systems for metals: A comprehensive guide to selection, 1997.

S. Y. Hasan and A. S. Shaker, Study of Zernike polynomials of an elliptical aperture obscured with an elliptical obscuration, Appl. Opt, vol.5135, pp.8490-8497, 2012.

M. Kasprzack, Thermally Deformable Mirrors : a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers
URL : https://hal.archives-ouvertes.fr/tel-01136331

W. Winkler, Heating by optical absorption and the performance of interferometric gravitational-wave detectors, Physical Review A, vol.59, issue.11, pp.7022-7036, 1991.
DOI : 10.1103/PhysRevLett.59.278

J. Degallaix, Simulation of bulk-absorption thermal lensing in transmissive optics of gravitational waves detectors, Applied Physics B, vol.40, issue.4, pp.409-414, 2003.
DOI : 10.1364/AO.40.000366

J. Degallaix, OSCAR a Matlab based optical FFT code, Journal of Physics: Conference Series, vol.228, p.12021, 2010.
DOI : 10.1088/1742-6596/228/1/012021

G. S. Bhatnagar, K. Singh, and B. N. Gupta, Transmission profile of a Fabry-Perot interferometer suffering from asymmetric surface defects " . Nouvelle Revue d'Optique 5, p.237, 1974.

T. Klaassen, Resonant trapping of scattered light in a degenerate resonator, Optics Communications, vol.260, issue.2, pp.365-371, 2006.
DOI : 10.1016/j.optcom.2005.10.057

T. Klaassen, Transverse mode coupling in an optical resonator, Optics Letters, vol.30, issue.15, pp.1959-1961, 2005.
DOI : 10.1364/OL.30.001959

W. Paper, Modal properties of DC-200/40-PZ-Yb LMA fiber, 2013.

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, vol.563, pp.219-221, 1985.

O. M. Efimov, High-efficiency Bragg gratings in photothermorefractive glass, Applied Optics, vol.38, issue.4, pp.619-627, 1999.
DOI : 10.1364/AO.38.000619

F. Lesparre, Amplificateurs impulsionnelsàimpulsionnelsà base de fibres cristallines dopées Ytterbium, 2017.

K. Srinivasan, Coating Strain Induced Distortion in LIGO Optics, 1997.