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Short abstract
A novel probabilistic approach is presented for estimating the equivalent static
wind loads that produce a static response of the structure, which is ”equivalent”
in a probabilistic sense, to the extreme dynamical responses due to the unsteady
pressure random field induced by the wind. This approach has especially been
developed for the case for which a large number of unsteady pressure sensors are
carried out on complex structures (such stadium roofs) in a boundary layer wind
tunnel, but for which the time duration of the measurements are not sufficient
for estimating the extreme value statistics of responses. The measured unsteady
pressure random field is non-Gaussian. The method proposed is adapted to com-
plex structures described by finite element model, for which the quasi-static part
of the responses is important with respect to the dynamical part. The proposed
approach is experimentally validated with a relatively simple application and is
then applied to a stadium roof structure for which experimental measurements of
unsteady pressures have been performed in a boundary layer wind tunnel.

Long abstract
In order to estimate the equivalent static wind loads, which produce the extreme
quasi-static and dynamical responses of structures submitted to random unsteady
pressure field induced by the wind effects, a new probabilistic method is proposed.
This method allows for computing the equivalent static wind loads for structures
with complex aerodynamic flows such as stadium roofs, for which the pressure
field is non-Gaussian, and for which the dynamical response of the structure can-
not simply be described by using only the first elastic modes (but require a good
representation of the quasi-static responses). Usually, the wind tunnel measure-
ments of the unsteady pressure field applied to a structure with complex geometry
are not sufficient for constructing a statistically converged estimation of the ex-
treme values of the dynamical responses. Such a convergence is necessary for the
estimation of the equivalent static loads in order to reproduce the extreme dynami-
cal responses induced by the wind effects taking into account the non-Gaussianity
of the random unsteady pressure field. In this work, (1) a generator of realizations
of the non-Gaussian unsteady pressure field is constructed by using the realiza-
tions that are measured in the boundary layer wind tunnel; this generator based
on a polynomial chaos representation allows for generating a large number of in-
dependent realizations in order to obtain the convergence of the extreme value
statistics of the dynamical responses, (2) a reduced-order model with quasi-static
acceleration terms is constructed, which allows for accelerating the convergence
of the structural dynamical responses by using only a small number of elastic



modes of the structure, (3) a novel probabilistic method is proposed for estimating
the equivalent static wind loads induced by the wind effects on complex structures
that are described by finite element models, preserving the non-Gaussian property
and without introducing the concept of responses envelopes. The proposed ap-
proach is experimentally validated with a relatively simple application and is then
applied to a stadium roof structure for which experimental measurements of un-
steady pressures have been performed in boundary layer wind tunnel.

Keywords: Equivalent static wind loads; Non-Gaussian unsteady pressure field;
Polynomial chaos expansion; Quasi-static responses; Stochastic dynamics; Ex-
treme value statistics.

Résumé court
Une nouvelle approche probabiliste est présentée pour estimer les forces statiques
équivalentes du vent qui produisent une réponse statique de la structure, qui est
”équivalente” au sens probabiliste, aux réponses dynamiques extrêmes induites
par le champ aléatoire des pressions instationnaires dues aux effets du vent. Cette
approche a été spécialement développée pour le cas où un grand nombre de cap-
teurs de pression instationnaire sont utilisés pour les mesures sur des structures
complexes (telles que des toitures de stade) dans une soufflerie à couche limite
turbulente, mais pour laquelle la durée des mesures n’est pas suffisante pour es-
timer correctement les statistiques des valeurs extrêmes des réponses. Le champ
aléatoire de pression instationnaire mesuré est non gaussien. La méthode pro-
posée est adaptée à des structures complexes décrites par un modèle éléments fi-
nis, pour lesquelles la partie quasi-statique des réponses est importante par rapport
à la partie dynamique. L’approche proposée est validée expérimentalement sur un
exemple relativement simple et est ensuite appliquée à une structure de toiture de
stade pour laquelle des mesures expérimentales des pressions instationnaires ont
été effectuées dans une soufflerie à couche limite turbulente.

Résumé long
Afin d’estimer les forces statiques équivalentes du vent, qui produisent les réponses
quasi-statiques et dynamiques extrêmes dans les structures soumises au champ
de pression instationnaire induit par les effets du vent, une nouvelle méthode
probabiliste est proposée. Cette méthode permet de calculer les forces statiques
équivalentes du vent pour les structures avec des écoulements aérodynamiques
complexes telles que les toitures de stade, pour lesquelles le champ de pression
n’est pas gaussien et pour lesquelles la réponse dynamique de la structure ne peut



être simplement décrite en utilisant uniquement les premiers modes élastiques
(mais nécessitent une bonne représentation des réponses quasi-statiques). Géné-
ralement, les mesures en soufflerie du champ de pression instationnaire appliqué
à une structure dont la géométrie est complexe ne suffisent pas pour construire
une estimation statistiquement convergée des valeurs extrêmes des réponses dy-
namiques de la structure. Une telle convergence est nécessaire pour l’estimation
des forces statiques équivalentes afin de reproduire les réponses dynamiques ex-
trêmes induites par les effets du vent en tenant compte de la non-gaussianité du
champ de pression aléatoire instationnaire. Dans ce travail, (1) un générateur
de réalisation du champ de pression instationnaire non gaussien est construit en
utilisant les réalisations qui sont mesurées dans la soufflerie à couche limite turbu-
lente; ce générateur basé sur une représentation en chaos polynomiaux permet de
construire un grand nombre de réalisations indépendantes afin d’obtenir la con-
vergence des statistiques des valeurs extrêmes des réponses dynamiques, (2) un
modèle d’ordre réduit avec des termes d’accélération quasi-statique est construit
et permet d’accélérer la convergence des réponses dynamiques de la structure en
n’utilisant qu’un petit nombre de modes élastiques, (3) une nouvelle méthode
probabiliste est proposée pour estimer les forces statiques équivalentes induites
par les effets du vent sur des structures complexes décrites par des modèles élé-
ments finis, en préservant le caractère non gaussien et sans introduire le concept
d’enveloppes des réponses. L’approche proposée est validée expérimentalement
avec une application relativement simple et elle est ensuite appliquée à une struc-
ture de toiture de stade pour laquelle des mesures expérimentales de pressions
instationnaires ont été effectuées dans la soufflerie à couche limite turbulente.

Mots clé: Force statique équivalente du vent, Champ de pression instationnaire
non gaussien, Représentation en chaos polynomiaux, Réponses quasi-statiques,
Dynamique stochastique, Statistiques des valeurs extrêmes.
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Notations

e Principal equivalent static force

f External force mean value

fffe,s Total equivalent static force

fe,s Centered equivalent static force

ggauss Gust loading factor computed with the Gaussian hypothesis

g+ Non-Gaussian Gust loading factor for a maximum

g− Non-Gaussian Gust loading factor for a minimum

[ĥcN(ω)] Frequency response function of order N without quasi-static term

[ĥc,accN (ω)] Frequency response function of order N with quasi-static term

m Number of degrees of freedom

me Number of the principal equivalent static forces

mexp Dimension of the vector-valued unsteady pressure

mf Number of the equivalent static forces

mu Dimension of the observation vector

nr Number of experimental realizations

np Number of time steps in the time window

p Vector of the unsteady pressure mean value

pMV Vector of the centered equivalent static pressure

qMV Centered equivalent static generalized coordinates associated with
pMV

t Time in s

u Observation mean value



ue,sue,sue,s Equivalent static observation

ue,s Centered equivalent static observation

v Mean wind profile

y Displacement mean value

ye,s Equivalent static displacement

[Ac] Controlability matrix

[Ao] Observability matrix

[D] Damping matrix

F External forces vector

FFFe Total equivalent force

Fe Centered equivalent force

H Coordinates of the KL expansion of P

[K] Stiffness matrix

[M ] Mass matrix

N Number of modes used in the reduced-order model

Nd Maximum degree of the normalized Hermite polynomial used in the
PCE of H

Ng Length of the Gaussian germ used in the PCE of H

NKL Reduction order of the KL expansion of P

NPCA Reduction order of the PCA of P(T )

PPP Total pressure vector-valued stochastic process

P Centered pressure vector-valued stochastic process

PPPexp Total experimental pressure vector-valued stochastic process

Pexp Centered experimental pressure field



QQQ Generalized coordinates associated with PPP

Q Centered generalized coordinates associated with P

[SP(w)] Matrix-valued spectral density function of P

[SPexp(w)] Matrix-valued spectral density function of Pexp

T Time window duration in s

Ttot Total duration of measurements in s

UUU Observation vector associated with PPP

U Centered observation vector associated with P

UUUmax Maximum of UUU(t) on [0 , T ]

Umax Maximum of U on [0 , T ]

Umax Mean value of Umax

UUUmin Minimum of UUU(t) on [0 , T ]

Umin Minimum of U on [0 , T ]

Umin Mean value of Umin

X Centered displacement vector associated with P

Y Displacement vector associated with PPP

ηe,s Equivalent static coordinates of H

[λN ] Diagonal matrix of eigenvalues

ν Number of the generated independent realizations

νc Cutoff frequency in Hz

νe Sampling frequency in Hz

ξ Damping rate

[ϕN ] Matrix of modes

ω Frequency in rad/s



ωc Cutoff frequency in rad/s

∆t Sampling time step in s

[Φc
N ] Modal controlability matrix

[Φo
N ] Modal observability matrix

B Frequency band of analysis

D Domain associated with the observation

D c Centered domain associated with the observation

Dinf Lower bound of D

Dsup Upper bound of D

D c
inf Lower bound of D c

D c
sup Upper bound of D c

DOF Degree Of Freedom

FRF Frequency Response Function

KL Karhunen-Loève expansion

PCA Principal Component Analysis

PCE Polynomial Chaos Expansion

PDF Probability Density Function

PSD Power Spectral Density

Deterministic variable: A deterministic scalar variable is denoted by a lower
case letter such as x.



Deterministic vector: A deterministic vector is denoted by a boldface, lower
case letter such as in x = (x1, . . . , xn).

Random variable: A random scalar variable is denoted by an upper case letter
such as X .

Random vector: A random vector is denoted by a boldface, upper case letter
such as in X = (X1, . . . , Xn).

Deterministic matrix: A deterministic matrix is denoted by an upper (or lower)
case letter between brackets such as [A] (or [a]).

Random matrix: A random matrix is denoted by a boldface, upper case letter
between brackets such as [A].

x x = (x1, . . . , xn): vector in Rn or in Cn.

xj Complex conjugate of the complex number xj .

tr{[A]} Trace of matrix [A].

[A]T Transpose of matrix [A].

[A]∗ Transpose conjugate of matrix [A] (adjoint matrix).

[In] Identity (or unit) matrix in Mn.

δjk Kronecker’s symbol such that δjk = 0 if j 6= k and δjk = 1 if j = k.

1B(x) Indicator function of a set B defined by 1B(x) = 1 if x ∈ B and
1B(x) = 0 if x /∈ B.

i Pure imaginary complex number satisfying i2 = −1.

C Set of all the complex numbers

R Set of all the real numbers

R+ Set [0 ,+∞[ of all the positive and zero real numbers.

Rn Euclidean vector space of dimension n.

N Set of all the integers 0, 1, 2, . . ..



N∗ Set of all the positive integers 1, 2, . . ..

Mn,m(R) Set of all the (n×m) real matrices.

Mn,m(C) Set of all the (n×m) complex matrices.

Mn(R) Set of all the (n× n) real matrices.

Mn(C) Set of all the (n× n) complex matrices.

M+
n (R) Set of all the positive-definite symmetric (n× n) real matrices.

M+0
n (R) Set of all the semipositive-definite symmetric (n× n) real matrices.

E Mathematical expectation.

(Θ, T ,P) Probability space.

L2(ω,Rn) Vector space (Hilbert space) of all the square integrable functions
defined on a subset ω of Rd with values in Rn.

< x , y >Rn Euclidean inner product
∑n

j=1 xjyj in Rn.

< x , y >Cn Hermitian inner product
∑n

j=1 xjyj in Cn.

‖[A]‖F Frobenius norm
√

tr{[A]T [A]} for any real matrix [A].

‖[A]‖F Frobenius norm
√

tr{[A]∗[A]} for any complex matrix [A].



Chapter 1

Introduction and objectives

1.1 Industrial context

Design of structures subjected to wind effects for which the unsteady aerodynamic
flow is complex, requires first the knowledge of the unsteady pressure field gener-
ated by the wind on the structure as a function of its environment. For a structure
with complex geometry, such as the roof of a stadium, for instance, the unsteady
pressure field is measured in a boundary layer wind tunnel with a turbulent inci-
dent flow. This framework is the one used in this work. For such situations, the
number of unsteady pressure sensors is relatively large (of the order of one thou-
sand) and the acquisition time is necessarily limited by many factors. This implies
that the knowledge of the measured unsteady pressures is generally not sufficient
to estimate converged statistics. It is therefore necessary to develop models that
allow the knowledge of the unsteady measured pressures to be increased by using
numerical simulations. Finally, the computation of the stresses in the structural el-
ements of the structure subjected to the unsteady pressure field taking into account
the dynamical effects must be carried out. This step induces a large amount of cal-
culations and analyses for the design and the justification of the structure, which
is not always compatible with the time constraints imposed to the study offices.
Consequently, it is important to develop methodologies and numerical methods
that allow for computing the equivalent static loads, which induce the extreme
values that are used for design. When the structure behavior and the aerodynamic
flow are relatively simple, methods for computing the equivalent static loads have
been successfully developed and are available in the literature. In the case of com-
plex structures with complex aerodynamic flows such as stadium roofs, efficient
and robust methods had to be improved / developed.
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1.2 Industrial objectives
The industrial objective is to develop an efficient and robust method, validated
on a simple structure and on a complex structure such as a stadium roof, to com-
pute the equivalent static forces that induce the same extreme stresses, such as
those induced by the unsteady aerodynamic effects of wind, with the following
assumptions:

• the unsteady pressure field induced by the wind is measured in a wind tun-
nel,

• the structure has a linear behavior,

• the dynamic effects must be taken into account.

1.3 State of the art
The framework of this work requires knowledge about:

• random signal processing to analyze the wind tunnel measurements of un-
steady pressures applied to the structure;

• stochastic dynamics and associated numerical methods for linear behavior
structures subjected to wind loads;

• probabilistic and statistical methods for the construction of equivalent static
loads;

• probabilistic modeling of the wind speed in the 0-300 meters boundary layer
for validating the methodology on a simple example for which unsteady
pressure measurements in a wind tunnel are not available.

Random signal processing
The random signal processing is extremely developed in the literature. This work
does not require any special development and only uses standard methods [85, 92,
93, 97, 116].

Dynamic linear responses of structures subjected to wind loads in a Gaussian
framework and experimental measurements
Once the first stochastic models of wind were developed, they were used to cal-
culate the linear stochastic dynamical responses of tall buildings, introducing re-
duced modal models of the structure and computing estimates of extreme value
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statistics related to the random dynamical responses. These estimates are based
on the use of sample paths statistics of Gaussian processes that have allowed the
”gust loading factor” concept to be introduced. Davenport [29] was the pioneer.
Numerous studies have then been made by using the same assumptions but by im-
proving models and conducting many experimental validations in full scale and
in turbulent-boundary-layer wind tunnels, such as [5, 6, 29, 32, 33, 39, 41, 59, 71,
74, 77, 78, 107, 121, 122, 131, 132, 134, 136, 137]. In addition, a lot of works
have been performed for exceptional structures such as, for instance, the wind ef-
fects on super-tall buildings [143, 84, 141, 65], on super long-span cable bridges
[142], and on silo groups [57, 58].

Probabilistic and statistical methods for the construction of the equivalent
static loads
Relatively early, late 60’s and early 70’s, research have been done to develop
methods for calculating the equivalent static loads producing the same extreme
dynamical responses of structures subjected to wind effects. The first proposed
approaches were then widely developed with many applications in civil engineer-
ing structures, such as [9, 18, 19, 21, 24, 42, 52, 60, 62, 75, 73, 76, 81, 98, 105,
125, 130, 140, 145, 146, 144, 94].
Several works were carried out to take into account the non-Gaussian property
of the random responses for estimating the gust loading factor. Such a non-
Gaussianity is mainly due either to the aerodynamic drag ([77, 108, 109]) or to
the unsteady pressure field applied to the buildings, which is a nonlinear func-
tion of the velocity field (see for instance [107, 133]). Some works related to the
calculation of linear and nonlinear structural responses use representations of the
stochastic responses such as the Principal Component Analysis or the Proper Or-
thogonal Decomposition [20, 126]. Recently, some correction terms have been
introduced to take into account the non-Gaussianity of the unsteady pressure field
in order to calculate the extreme value statistics [10, 83, 8] using an orthogonal
polynomial expansion of probability density functions (method that was already
used in the 70s).

Modeling of wind in the 0-300 meters boundary layer
The modeling of the wind speed by a stochastic process in the 0-300 meters
boundary layer, which allows for taking into account the turbulence and for calcu-
lating its dynamic effects on structures from experimental measurements, began
in the 1960’s with the Davenport works [30, 31], which then gave rise to nu-
merous studies to improve the stochastic models based on full scale experimental
measurements, such as [7, 38, 51, 55, 101, 104, 106, 107].
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1.4 Scientific objectives
It is assumed that the number of unsteady pressure sensors, which are required for
performing experimental measurements of the unsteady pressure field applied to
a structure with complex geometry, is relatively high (about 1,000). Under this
hypothesis, the number of time trajectories measured by the set of sensors over
a sufficiently long duration (about 10 minutes in scale 1) remains limited (about
100). Under these conditions, the measurements do not allow us to construct a sta-
tistically converged estimation of the extreme values of the dynamical responses,
what are necessary for the determination of the equivalent static forces in order to
reproduce the wind action on the structure taking into account the non-Gaussianity
of the random unsteady pressure field. The scientific objectives of this thesis are
the following:

• construction of a generator of a non-Gaussian vector-valued stochastic pro-
cess in high dimension (number of pressure sensors) for which a small num-
ber of realizations are available (wind tunnel pressure measurements);

• construction of a time-domain reduced-order model in linear structural dy-
namics, including a term of quasi-static acceleration that allows us to ensure
the convergence of the stochastic responses by using only a small number
of elastic modes;

• construction of the equivalent static forces based on a non-Gaussian proba-
bilistic model and on extreme value statistics.

• Validation of the developed methods.

1.5 Proposed approach in the thesis
A new probabilistic approach is proposed to estimate the equivalent static forces
of wind, which produce a static response of the structure, which is ”equivalent”
in a probabilistic sense, to the dynamical responses due to the random unsteady
pressure field induced by wind. The subject concerning the estimation of the
equivalent static forces (that represent the wind effects on structures) has widely
been developed since 1970 (see [105, 24, 75, 73]) and have given rise to many
works and applications [18, 19, 21, 42, 60, 62, 76, 98, 130, 145, 146, 144], and
more recently to [9, 52, 81, 125, 140]. The approach proposed in this thesis is
based on the following assumptions and methods:

• the stochastic process of the spatially discretized unsteady pressure field is
assumed to be non-Gaussian;
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• a representation of the non-Gaussian stochastic process that models the dis-
cretized unsteady pressure field is constructed using the polynomial chaos
expansion method. This representation is identified in inverse using the
wind tunnel measurements. We then obtain a generator of realizations of
the pressure random field, which allows for generating additional realiza-
tions to those measured in the wind tunnel;

• the reduced dynamical model of the structure includes a quasi-static correc-
tion term that allows the convergence of the stochastic dynamical responses
to be obtained by using only a small number of elastic modes;

• the equivalent static forces are estimated by a maximum likelihood princi-
ple conditioned by the extreme values of the observations (internal forces,
displacement, etc.) in the structure.

1.6 Novelties with respect to the state of the art
With respect to the existing methods, the novelties of the approach proposed in
this thesis, are the following.

• A quasi-static correction term is introduced in the construction of the reduced-
order model, for three-dimensional structures that exhibit, in the frequency
band of analysis, a numerous local modes interwined with global modes.
Such a quasi-static correction term allows for limiting the number of modes
to those whose eigenfrequencies belong to the frequency band of analysis
while ensuring a perfect convergence of the reduced-order model.

• The non-Gaussianity of the unsteady pressure field is taken into account for
estimating the extreme values statistics of the time responses. The centered
unsteady pressure field is represented by a centered vector-valued stochas-
tic process P = {P(t), t ∈ [0 , T ]} that corresponds to its spatial discretiza-
tion. The non-Gaussian character of stochastic process P is not described
by a given prior probability model for which its hyperparameter would be
identified with the experiments. Non-Gaussian stochastic process P is con-
structed by using a general nonparametric probability model based on the
use of a Karhunen-Loève expansion for which the non-Gaussian random
coordinates are represented by a polynomial chaos expansion whose coeffi-
cients are identified with measurements performed in a boundary layer wind
tunnel. Consequently, absolutely no hypotheses are introduced a priori and
in addition, not only the non-Gaussian marginal probability distribution of
order 1 is taken into account, but all the system of the non-Gaussian proba-
bility distributions of stochastic process P is indirectly constructed.
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• This non-Gaussian probability model of stochastic process P is used for
generating a large number of additional realizations that are required for
estimating extreme values statistics of the non-Gaussian time responses.

• A set of observations is defined corresponding to internal forces and/or dis-
placements in given finite elements of the computational model. For each
given subset of the set of observations, an equivalent static force is esti-
mated. The principal static forces are therefore classically deduced of the
set of the equivalent static forces.

• A novel approach is also proposed for estimating equivalent static forces
associated with a subset of observations, which is based on the use of the
maximum likelihood principle applied to an adapted random vector of the
formulation. The proposed approach ensures to preserve the phases of time
responses for all the components of the observations subset. This formula-
tion avoids the use of the classical method based on the responses envelopes
that generally yields an overestimate of the equivalent static forces.

• For each given subset of observations, the extreme value statistics of the
time responses are directly estimated from the realizations of the responses
for which the number of realizations can arbitrarily be large due to the exis-
tence of the generator of the non-Gaussian stochastic process P, which has
been developed. The gust loading factors are thus deduced from these ex-
treme value statistics, but their values are not used for estimating the equiv-
alent static forces.

Such novelties introduced for estimating the equivalent static forces are particu-
larly useful for studying the wind effects on stadium roofs

• for which the flow can present large swirls and eddies due to flow separa-
tions, which induce non-Gaussianity of the unsteady pressure field,

• for which the probability model of stochastic process P cannot a priori be
constructed or simulated by the computational fluid dynamics with suffi-
cient accuracy, but requires unsteady measurements in boundary layer wind
tunnel,

• for which the dynamics cannot be represented with few modes but requires
the introduction of a quasi-static term in order to accelerate the convergence
rate of the reduced-order model.
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1.7 Organization of the thesis

1.7 Organization of the thesis
The thesis is organized as follows:

• Chapter 1: Introduction and objectives.

• Chapter 2: Stochastic modeling, model reduction, and stationary stochastic
response.

• Chapter 3: Time discretization. Signal processing aspects for the numerical
model and the experimental measurements.

• Chapter 4: Generator of realizations of the non-Gaussian process P.

• Chapter 5: Estimation of the equivalent static forces.

• Chapter 6: Application to a simple structure and experimental validation.

• Chapter 7: Application to a stadium structure with wind tunnel pressure
measurements.

• Chapter 8: Conclusions.
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Chapter 2

Stochastic modeling, model
reduction, and stationary stochastic
response

2.1 Framework of the methodology proposed
The methodology proposed is in the framework of stochastic structural dynamics
consisting in analyzing the stationary response of a weakly damped linear struc-
ture subjected to external forces that is modeled by a second-order stationary non-
Gaussian stochastic process PPP = {PPP(t), t ∈ R}. The frequency band of analysis,
B, associated with the stationary response is defined by

B = [0, ωc] , (2.1)

where ωc (rad/s) is the cutoff frequency.
If process PPP was Gaussian then it would be completely defined by its mean func-
tion (that is a constant vector p) and by the matrix-valued spectral density function
[36, 53, 77] of the centered process {P(t), t ∈ R} such that PPP(t) = p + P(t). The
stationary response being a linear or an affine transformation of PPP, this stochas-
tic response would be Gaussian and then it would be characterized by its mean
function that is a constant vector and by the matrix-valued spectral density func-
tion of the centered stationary stochastic response. In such a case, it would be
sufficient to use spectral analysis in the frequency domain of the second-order
stationary stochastic processes to fully define the stationary Gaussian response
[97, 77]. Statistics of sample paths of the stochastic response could then be calcu-
lated by using the S.O Rice formulas and the extreme values theory for Gaussian
processes [26, 77, 80, 99, 100]. However, as we consider the non-Gaussian case,
the method mentioned above is not usable (see for instance [36, 53, 77, 111]).
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Obviously, it is important to calculate, as for the Gaussian case, the power spec-
tral density function of the stationary non-Gaussian stochastic response, using the
spectral analysis method, firstly to analyze the stochastic dynamical system and
secondly, to construct predictions of some statistical quantities as we will see. As
the theoretical results on statistics on sample paths of Gaussian processes cannot
be used, and as the probability distribution of the stationary stochastic response
is not Gaussian, statistics on sample paths must be estimated using realizations
of the stationary stochastic responses. For that, it is then necessary to generate
independent realizations of stochastic process P from a stochastic modeling of
{P(t), t ∈ R}, which is identified by using experimental measurements, and to
solve the linear dynamics equation in time domain.

2.2 Computational model of the linear structural dy-
namics in the time domain

It is assumed that the structure is fixed (no rigid body displacement). The compu-
tational model for the linear dynamics of the structure [3, 28, 44, 64, 91, 147] is
written as

[M ] Ÿ(t) + [D] Ẏ(t) + [K] Y(t) = F(t) , t ∈ R , (2.2)

where

• m is the number of degree of freedom (DOF);

• Y(t) = (Y1(t), . . . , Ym(t)) is the displacement vector (translations and/or
rotations);

• Ẏ(t) and Ÿ(t) are the velocity and acceleration vectors associated with Y(t);

• F(t) = (F1(t), . . . , Fm(t)) is the vector of external forces applied (forces
and/or bending moments) modeled by a stationary stochastic process;

• the mass matrix [M ] is an (m×m) real positive-definite matrix;

• the damping matrix [D] is an (m×m) real positive-definite matrix;

• the stiffness matrix [K] is an (m×m) real positive-definite matrix.

Remark.

1. Matrices [D] and [K] are definite positive because there are no rigid body
displacements.
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2. Matrices [D] and [K] are constant, that corresponds to a model for which the
behavior of the constitutive materials of the structure are elastic dissipative
(viscoelastic type without memory) [43, 91, 129].

3. As we search the stationary stochastic solution, we are interested in the
construction of Y(t) that verifies, for all t in R, Eq. (2.2). Consequently, we
are not interested in an evolution problem for t > 0 with initial conditions
for displacement and velocity at time t = 0.

4. In general, in structural dynamics, the computational model defined by
Eq. (2.2) corresponds to a finite element model.

2.3 Controlability and observability of the dynami-
cal system

2.3.1 Controlability
For the considered applications, all the DOFs are not subjected to external forces
but only mc < m DOFs. We then introduced the matrix [Oc] ∈ Mm,mc(R) such
that

F(t) = [Oc] Fc(t) , t ∈ R , (2.3)

where
Fc(t) = (F c

1 (t), . . . , F c
mc(t)) , (2.4)

is the vector of the external forces that are effectively applied. By assumption, the
null space of [Oc] is reduced to {0}, that is to say, [Oc] f = 0 implies f = 0.
In the context of the considered application that is related to the response of com-
plex structures (such as stadium roofs [137]) subjected to wind effects, the loads
applied at time t are represented by the vector PPP(t) with values in Rmexp , which
corresponds to measurements of pressures or differential pressures at some points
of the structure [136, 137],

PPP(t) = (P1(t), . . . ,Pmexp(t)) . (2.5)

It is assumed that Fc(t) depends linearly on PPP(t). Under this hypothesis, we can
write

Fc(t) = [Bc]PPP(t) , t ∈ R , (2.6)

in which [Bc] ∈Mmc,mexp(R) is a given matrix. By combining Eqs. (2.3) and (2.6)
yields

F(t) = [Ac]PPP(t) , t ∈ R , (2.7)
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in which [Ac] is the controlability matrix defined by

[Ac] = [Oc] [Bc] ∈Mm,mexp(R) . (2.8)

By assumption, the null space of [Ac] is reduced to {0}, that is to say, [Ac]ppp = 0
implies ppp = 0.

2.3.2 Observability
The observations of the structure can be displacement components, internal forces,
components of a stress tensor, components of a strain tensor, etc. For the appli-
cation under consideration, for which the equivalent static loads induced by the
wind effects have to be calculated, observations must be introduced (see for in-
stance [56]) in order to construct the equivalent static forces in a probabilistic
framework.
Let UUU be a given observation in a structural element, with values in D that is a
subset of Rmu with mu ≥ 1. Let T be a fixed time. The equivalent static force
associated with UUU , T , and D , is constructed in order to maximize the probability
that UUU(T ) belongs to given domain D . Therefore the computed equivalent static
force depends onUUU(T ) and D . Then, as we will see, all the equivalent static forces
will be concatenated in order to construct an algebraic basis that spans a subspace
of the computed equivalent static forces (”fusion methodology”). This basis al-
lows for generating any load case associated with the set of all the observations
subsets {UUU(T ),D}.
In order to not overburden the notations, we do not introduce an indexation re-
lated to the observations and their associated domains. The latter will only be
introduced for the ”fusion” methodology of the equivalent forces introduced for
several observations. For a given observation UUU(t), the observation matrix [Ao] ∈
Mmu,m(R) is introduced such that

UUU(t) = (U1(t), . . . ,Umu(t)) , (2.9)

is written as
UUU(t) = [Ao] Y(t) . (2.10)

By assumption, the null space of [Ao] is reduced to {0}, that is to say, [Ao] y = 0
implies y = 0. Let UUUmax be the maximum of UUU(t) on [0, T ],

UUUmax = max
t∈[0,T ]

UUU(t) , (2.11)

and let UUUmin be the minimum of UUU(t) on [0, T ],

UUUmin = min
t∈[0,T ]

UUU(t) , (2.12)
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where [0, T ] is the time window corresponding to the duration on which the dy-
namical system is observed, and which will be defined in Chapter 3. Domain D ,
associated withUUU, is generally an unbounded subset of Rmu . The criterion for that
observation UUU(T ) belongs to domain D is then written as,

UUU(T ) ∈ D ⊂ Rmu . (2.13)

Remarks.

1. Often, domain D will be a separable domain, which means that D is written
as a Cartesian product of subsets of R, that is to say is written as D =
D1 × . . .×Dmu in which Dk ⊂ R.

2. Considering the methodology that will be implemented to construct the
equivalent static force associated with Eq. (2.13), domain D will most often
be defined with respect to the mean value ofUUUmax orUUUmin, which is detailed
in Appendix A for a separable domain.

2.4 Reduced-order model in time domain
In order to reduce the numerical costs, a reduced-order model, suitable for the fre-
quency band of analysis B = [0, ωc], is classically constructed in the time domain.
Taking into account the linearity of the dynamical system, the usual methodology
for constructing the reduced-order model consists in projecting Eq. (2.2) on the
subspace CN ⊂ Rm, generated by N elastic modes of the undamped system asso-
ciated with the N smallest eigenfrequencies that belong to B [22, 87]. However,
for structures for which the static deformation induced by the considered static
loads, do not belong to CN for the value of N defined above, it is necessary to
significantly increase the value of N for obtaining an accurate convergence of
the dynamical response computed with the reduced-order model. In such a case,
numerous elastic modes whose eigenfrequencies are much higher than the cut-
off frequency ωc of the frequency band of analysis should be added. To avoid
increasing too much the value of N (which penalizes numerical costs for proba-
bilistic estimation of the equivalent static forces in the non-Gaussian framework),
a quasi-static term is added in the modal representation in order to accelerate the
convergence with respect to N (see [91]).

2.4.1 Modes (elastic modes)
The matrix [ϕN ] ∈ Mm,N(R) of the modes ϕ1, . . . , ϕN ∈ Rm (also called elastic
modes), associated with the first N eigenfrequencies ω1, . . . , ωN such that

0 < ω1 ≤ ω1 ≤ . . . ≤ ωN , (2.14)
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is constructed as the solution to the generalized eigenvalue problem [17],

[K] [ϕN ] = [M ] [ϕN ] [λN ] , (2.15)

where [λN ] is the diagonal matrix of the eigenvalues 0 < λ1 ≤ λ2 ≤ . . . ≤ λN
such that λj = ω2

j . We have the usual orthogonality properties (see for instance,
[3, 91]),

[ϕN ]T [M ][ϕN ] = [IN ] , (2.16)

[ϕN ]T [K][ϕN ] = [λN ] . (2.17)

Note that the normalization of the modes are chosen with respect to the mass
matrix (see Eq. (2.16)).

2.4.2 Reduced-order model in time domain
(i) Reduced-order model without quasi-static acceleration term

(i-1) Construction of the reduced-order model
By projecting Eq. (2.2) on subspace CN of Rm and by using Eqs. (2.7), (2.16),
and (2.17) yield the reduced-order model of order N that is written, for all t ∈ R,
as

YN(t) = [ϕN ]QQQ(t) , (2.18)

Q̈QQ(t) + [DN ] Q̇QQ(t) + [λN ]QQQ(t) = [φcN ]PPP(t) . (2.19)

in which

• [DN ] is the (N ×N) real positive-definite matrix that is written as [DN ] =
[ϕN ]T [D] [ϕN ]. It is assumed that the dissipation of the structure is de-
scribed by the modal damping rates, ξ1, . . . , ξN . Therefore, [DN ] is a diag-
onal matrix [22, 3, 44], which is written as

[DN ]αβ = 2ξαωαδαβ , 0 < ξα < 1 . (2.20)

• Using the definition given by Eq. (2.8) of controlability matrix [Ac] ∈
Mm,mexp(R) and using Eq. (2.7), the modal controlability matrix [φcN ] (see
[88]) is written as

[φcN ] = [ϕN ]T [Ac] ∈MN,mexp(R) . (2.21)

• QQQ(t) = (Q1(t), . . . ,QN(t)) with values in RN , is the vector of the general-
ized coordinates.

• YN(t) = (Y N
1 (t), . . . , Y N

m (t)) with values in Rm, is the approximation of
order N of Y(t).
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(i-2) Convergence analysis with respect to N
Let ω 7→ [ĥcN(ω)] be the frequency response function (FRF), defined on R with
values in Mm,mexp(C), of the linear filter [93, 97, 110] defined by Eqs. (2.18) and
(2.19), for which the input is PPP and the output is YN . This function is such that,
for all ω in R,

[ĥcN(ω)] = [ϕN ] [ĥN(ω)] [φcN ] ∈Mm,mexp(C) , (2.22)

in which [ĥN(ω)] is the (N ×N) complex diagonal matrix that is such that

[ĥN(ω)]αβ = δαβ(−ω2 + 2iωξαωα + ω2
α)−1 . (2.23)

For N = m, [ĥcm(ω)] is the frequency response function, rewritten as [ĥc(ω)], of
the filter defined by Eqs. (2.2) and (2.7) for which the input is PPP and the output is
Y. For any external excitation and for all ω in B = [0, ωc], the convergence of the
reduced-order model with respect to N can be analyzed by studying the graph of
the function N 7→ errROM (N) defined by

errROM (N) =

∫
B
‖ĥc(ω)− ĥcN(ω)‖2

Mdω∫
B
‖ĥc(ω)‖2

Mdω
, (2.24)

where the norm ‖.‖M is such that

‖ĥc(ω)‖2
M = tr{[ĥc(ω)]∗ [M ] [ĥc(ω)]} , (2.25)

where [ĥc(ω)]∗ = [ĥc(ω)]
T

(conjugate transpose). It should be noted that the right-
hand side of Eq. (2.24) is not efficient for its computation because the (m×mexp)

complex matrix [ĥc(ω)] is a full matrix. The convergence criterion errROM (N)
defined by Eq. (2.24) can then be replaced by the analysis of the graph of the
function N 7→ ‖ĥcN‖L2(B) such that

‖ĥcN‖L2(B) =

√∫
B

‖ĥcN(ω)‖2
Mdω . (2.26)

Convergence is obtained when the function N 7→ ‖ĥcN‖L2(B) becomes constant.
In practice, the (m×mexp) complex full matrix [ĥcN(ω)] is not constructed and we
use the following expression deduced from Eqs. (2.16), (2.22), and (2.25),

‖ĥcN‖L2(B) =

√∫
B

‖[ĥN(ω)] [φcN ]‖2
Fdω , (2.27)

where ‖C‖2
F = tr{[C]∗ [C]} for any complex matrix [C], and where [ĥN(ω)] is a

(N ×N) complex diagonal matrix that is defined by Eq. (2.23).
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(ii) Reduced-order model with a quasi-static acceleration term

(ii-1) Construction of the reduced-order model
A quasi-static acceleration term can be added to the reduced-order model pre-
sented in paragraph 2.4.2 (i) to accelerate the convergence with respect to N .
Following the method proposed in [91], the reduced-order model is written, for
all t in R, as

YN(t) = [S c
N ]PPP(t) + [ϕN ]QQQ(t) , (2.28)

Q̈QQ(t) + [DN ] Q̇QQ(t) + [λN ]QQQ(t) = [φcN ]PPP(t) , (2.29)

in which [S c
N ] is the (m×mexp) real full matrix such that

[S c
N ] = [K]−1 [Ac]− [ĥcN(0)] ∈Mm,mexp(R) , (2.30)

where [ĥcN(0)] is the (m × mexp) real matrix given by Eq. (2.22) for ω = 0. It
should be noted that the matrix [K]−1, which is a full matrix, is never explicitly
constructed. The rectangular matrix [S c

N ] is computed by [S c
N ] = [A1]− [ĥcN(0)]

in which the matrix [A1] is computed by solving the linear system of equations,
[K] [A1] = [Ac].

(ii-2) Convergence study with respect to N
The FRF associated with the linear filter defined by Eqs. (2.28) and (2.29), for
which the input is PPP and the output is YN , is denoted by ω 7→ [ĥc,acc

N (ω)] from R
into Mm,mexp(C), such that, for all ω in R,

[ĥc,acc
N (ω)] = [S c

N ] + [ĥcN(ω)] , (2.31)

in which [ĥcN(ω)] is the matrix in Mm,mexp(C) defined by Eq. (2.22), and where
[S c

N ] is the matrix in Mm,mexp(R) defined by Eq. (2.30). By reusing the analysis
carried out in Section 2.4.2 (i-2), the convergence of the ”accelerated” reduced-
order model with respect to N in band B, is studied by analyzing the graph of the
function N 7→ ‖ĥc,acc

N ‖L2(B) such that

‖ĥc,acc
N ‖L2(B) =

√∫
B

‖ĥc,acc
N (ω)‖2

Mdω , (2.32)

in which
‖ĥc,acc

N (ω)‖2
M = tr{[ĥc,acc(ω)]∗ [M ] [ĥc,acc(ω)]} . (2.33)

An appropriate numerical analysis that allows the explicit construction of the full
(m×m) complex matrix [ĥc,acc

N (ω)] to be done is used to compute Eq. (2.32) and
is given in Appendix B.
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2.5 Observations and instantaneous equivalent force expressed with the reduced-order
model

2.5 Observations and instantaneous equivalent force
expressed with the reduced-order model

In this section, the reduced-order model with the quasi-static acceleration term is
used. To obtain the model without this term, it is sufficient to do [S c

N ] = [0] in
the equations.

2.5.1 Introduction of the centered quantities and the centered
reduced-order model

For all fixed t, random vector PPP(t), with values in Rmexp , is written as

PPP(t) = p + P(t) , (2.34)

in which p is the mean vector in Rmexp and where P(t) is the centered random
vector. For all fixed t, the response Y(t) with values in Rm can be written as

Y(t) = y + X(t) , (2.35)

where the static response y ∈ Rm is such that

[K] y = f , f = [Ac] p ∈ Rm . (2.36)

From Section 2.4.2 (ii), it can be deduced that the reduced-order model with the
quasi-static acceleration term, which allows for computing the centered stochastic
process X, is written (by using the same notation X(t) instead of XN(t)), for all t
in R, as

X(t) = [S c
N ] P(t) + [ϕN ] Q(t) , (2.37)

Q̈(t) + [DN ] Q̇(t) + [λN ] Q(t) = [φcN ] P(t) . (2.38)

2.5.2 Observability
In this section, observation UUU(t) with values in Rmu (defined by Eq. (2.10)) is
expressed by using the approximation of X(t) constructed with Eqs. (2.35) to
(2.38). We recall that the modal controlability (defined by Eq. (2.21)) is written as,

[φcN ] = [ϕN ]T [Ac] ∈MN,mexp(R) . (2.39)

The modal observability is defined as follows,

[φoN ] = [Ao] [ϕN ] ∈Mmu,N(R) . (2.40)
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Using Eqs. (2.22), (2.23), (2.30), and (2.40), it can be seen that the matrix [U oc
N ] =

[Ao][S c
N ] ∈ Mmu,mexp(R), in which [S c

N ] is defined by Eq. (2.30), can be written
as

[U oc
N ] = [Ao] [K]−1 [Ac]− [φoN ] [λN ]−1 [φcN ] . (2.41)

For all t in R, observation UUU(t) can be written (keeping the notation UUU(t) instead
of UUUN(t)), as

UUU(t) = u + U(t) , (2.42)

U(t) = [U oc
N ] P(t) + [φoN ] Q(t) , (2.43)

where Q(t) verifies Eq. (2.38), that is to say

Q̈(t) + [DN ] Q̇(t) + [λN ] Q(t) = [φcN ] P(t) , (2.44)

and where
u = [Ao] y ∈ Rmu . (2.45)

2.5.3 Instantaneous equivalent force
At time t, the equivalent force FFFe(t) in Rm is defined by

FFFe(t) = [K] Y(t) , (2.46)

and can be rewritten, using Eqs. (2.35) and (2.36), as

FFFe(t) = f + Fe(t) , (2.47)

Fe(t) = [K] X(t) . (2.48)

By substituting X(t) by its approximation defined by Eqs. (2.37) and (2.38) (keep-
ing again the notation Fe(t) instead of Fe,N(t)) yields,

Fe(t) = [F c
N ] P(t) + [FQ

N ]Q(t) , (2.49)

where Q(t) verifies Eq. (2.38), that is to say

Q̈(t) + [DN ] Q̇(t) + [λN ] Q(t) = [φcN ] P(t) , (2.50)

in which [FQ
N ] is the rectangular matrix such that

[FQ
N ] = [K] [ϕN ] ∈Mm,N(R) , (2.51)

and where [F c
N ] = [K] [S c

N ] ∈Mm,mexp(R) is the matrix such that

[F c
N ] = [Ac]− [FQ

N ] [λN ]−1 [φcN ] ∈Mm,mexp(R) . (2.52)

Remark. Matrix [FQ
N ] can easily be computed with a finite element code (black

box) introducing successively, for α = 1, . . . , N , the Dirichlet condition y = ϕα

to the computational model that corresponds to the static problem [K] y = f. The
static response gives the reactions f = Fα that are the columns of matrix [FQ

N ].
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2.5.4 Synthesis and global notation
For all fixed t, let

W(t) = (X(t),U(t),Fe(t)) ∈ Rmw , (2.53)

in which
mw = m+mu +m = 2m+mu . (2.54)

Equations (2.37), (2.43), and (2.49) can globally be written as,

W(t) = [WN ] P(t) + [QN ] Q(t) , (2.55)

where [WN ] is the (mw×mexp) real matrix and [QN ] is the (mw×N) real matrix,
defined by

[WN ] =

 [S c
N ]

[U oc
N ]

[F c
N ]

 , [QN ] =

[ϕN ]
[φoN ]

[FQ
N ]

 , (2.56)

and where the forced response {Q(t), t ∈ R} that verifies

Q̈(t) + [DN ] Q̇(t) + [λN ] Q(t) = [φcN ] P(t) , ∀t ∈ R , (2.57)

is written as

Q(t) =

∫ t

−∞
[hN(t− τ)][φcN ]P(τ)dτ , (2.58)

in which [hN(t)] is the (N ×N) real diagonal matrix such that

[hN(t)]αβ = δαβ1R+(t)
1

ωD,α
e−ξαωαt sin (ωD,αt) , (2.59)

in which 1R+(t) is equal to 0 if t /∈ R+ and is equal to 1 if t ∈ R+, and where
ωD,α = ωα

√
1− ξ2

α, because ξα is assumed to be less than 1.

2.6 Stochastic modeling of the pressure vector
For fixed time t, in Section 2.3.1, PPP(t) with values in Rmexp has been defined as
measured pressures and differential pressures at several locations of the structure,
and in Section 2.5.1, P(t) with values in Rmexp has been defined the centered ran-
dom vector associated withPPP(t) (see Eq. (2.34)). In this section, we detail the con-
struction of the probability model of stochastic process {PPP(t), t ∈ R} indexed by
R with values in Rmexp (total unsteady pressure) and its counter part {P(t), t ∈ R}
(centered unsteady pressure).
Total unsteady pressure {PPP(t), t ∈ R} is modeled by a stochastic process, defined
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on a probability space (Θ, T ,P), which is assumed to be second-order, station-
ary, and non-Gaussian [36, 53, 77, 97, 110]. The mean function of PPP is then a
constant vector p ∈ Rmexp , such that

p = E{PPP(t)} , (2.60)

in which E is the mathematical expectation [89]. In these conditions, the centered
unsteady pressure {P(t), t ∈ R} is such that

P(t) = PPP(t)− p , ∀t ∈ R . (2.61)

Stochastic process {P(t), t ∈ R} is

• defined on (Θ, T ,P),

• indexed by R with values in Rmexp ,

• stationary,

• of second-order: E{‖P(t)‖2
Rmexp} < +∞ , ∀t,

• centered: E{P(t)} = 0,

• non-Gaussian.

The covariance function (t, t′) 7→ [CP(t, t′)] of stationary stochastic process P,
defined on R × R, with values in Mmexp(R), depends only on t − t′ and can be
written as

[CP(t− t′)] = E{P(t)P(t′)T} , (2.62)

in which τ 7→ [CP(τ)] is defined on R. The following hypotheses and the justi-
fication of their introduction in regards to the problem that has to be solved are
introduced.

• Function τ 7→ [CP(τ)] is continous on R and tends to 0 when |τ | → +∞,
which means that stochastic process P is mean-square continous. This hy-
pothesis allows [53, 97, 110] for carrying out the spectral analysis of the
process by assuming the existence of a matrix-valued spectral density func-
tion ω 7→ [SP(ω)] from R into Mmexp(C), such that

[CP(τ)] =

∫
R
eiωτ [SP(ω)]dω , ∀τ ∈ R . (2.63)

We then have

E{‖P(t)‖2
Rmexp} = tr[CP(0)] =

∫
R

tr[SP(ω)]dω , (2.64)

where ω 7→ tr[SP(ω)] from R into R+ is the total power spectral density
function of vector-valued stochastic process P.
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• The continuity of function τ 7→ [CP(τ)] on R, implies that for all fixed T ,

1

T 2

∫ T

0

∫ T

0

‖[CP(t− t′)]‖2
F dt dt

′ < +∞ . (2.65)

The property given by Eq. (2.65) will allow [110] for constructing a fi-
nite statistical reduction {PNKL(t), t ∈ [0, T ]} of {P(t), t ∈ [0, T ]} us-
ing the truncated Karhunen-Loève expansion [72, 82]. This representa-
tion will be developed in Chapter 4, and will be necessary for construct-
ing a polynomial chaos expansion [47] of non-Gaussian stochastic process
{PNKL(t), t ∈ [0, T ]}. Then, this PCE will be the generator of independent
realizations that will be used in the Monte Carlo procedure for the stochastic
solver and for estimating non-Gaussian probability density functions of ran-
dom quantities such as the observations, the generalized coordinates, etc.,
in order to estimate the equivalent static forces by the maximum likelihood
principle (see Chapter 5). As we will see, the PCE of non-Gaussian stochas-
tic process {PNKL(t), t ∈ [0, T ]} will be constructed by solving an inverse
statistical problem based on the experimental measurements carried out in
a boundary layer wind tunnel (see Chapter 4).

2.7 Matrix-valued spectral density function of cen-
tered stationary process W

Since {P(t), t ∈ R} with values in Rmexp is a second-order, centered, stationary,
and non-Gaussian stochastic process, it can be deduced that {W(t), t ∈ R} with
values in Rmw , which is defined by Eqs. (2.55) to (2.59), is also a second-order,
centered, stationary, and non-Gaussian stochastic process [53, 97, 110]. In addi-
tion, its covariance function τ 7→ [CW(τ)] = E{W(t + τ)W(t)T} from R into
Mmw(R) admits the spectral representation

[CW(τ)] =

∫
R
eiωτ [SW(ω)]dω , ∀τ ∈ R , (2.66)

in which [SW(ω)] is the matrix-valued spectral density function with values in
Mmw(C) of stochastic process W.

The frequency response function ω 7→ [ĥW
N (ω)], from R into Mmexp,mw(C), of the

linear filter defined by Eqs. (2.55) to (2.59), for which the input is P and the output
is W, is written, for all ω in R, as

[ĥW
N (ω)] = [WN ] + [QN ] [ĥN(ω)] [φcN ] , (2.67)

39



CHAPTER 2. STOCHASTIC MODELING, MODEL REDUCTION, AND
STATIONARY STOCHASTIC RESPONSE

in which [WN ] and [QN ] are the matrices defined by Eq. (2.56), where [ĥN(ω)]
is the (N × N) diagonal complex matrix defined by Eq. (2.23), and where [φcN ]
is the matrix defined by Eq. (2.21). Based on the spectral analysis of stationary
second-order processes [53, 97, 110], matrix [SW(ω)] is written, for all ω in R, as

[SW(ω)] = [ĥW
N (ω)] [SP(ω)] [ĥW

N (ω)]∗ , (2.68)

where [SP(ω)] is defined in Eq. (2.63).

The calculation of [SW(ω)] defined by Eq. (2.68) with [ĥW
N (ω)] defined by Eq. (2.67)

is performed by using the following methodology. Matrix [SW(ω)] is written as

[SW(ω)] = [SSW(ω)] + [SDW(ω)] , (2.69)

in which the dynamical part [SDW(ω)] and the quasi-static part [SSW(ω)] are com-
puted as follows.

(i) Dynamic part. Matrix [SDW(ω)] is written as

[SDW(ω)] = [QN ] [SQ(ω)] [QN ]T , (2.70)

in which [SQ(ω)] ∈MN(C) is such that

[SQ(ω)] = [ĥN(ω)] [SP(ω)] [ĥN(ω)] , (2.71)

and where [SP(ω)] ∈MN(C) is such that

[SP(ω)] = [φcN ] [SP(ω)] [φcN ]T . (2.72)

(ii) Quasi-static part. Matrix [SSW(ω)] is computed by

[SSW(ω)] = [SS1 (ω)] + [SS2 (ω)] + [SS2 (ω)]∗ , (2.73)

where
[SS1 (ω)] = [WN ] [SP(ω)] [WN ]T , (2.74)

[SS2 (ω)] = [WN ] [SP(ω)] [φcN ]T [ĥN(ω)] [QN ]T . (2.75)

Remark. If quasi-static acceleration term is not considered, matrix [S c
N ] = [0]

and then [WN ] = [0]. In this case [SW(ω)] = [SDW(ω)].
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Chapter 3

Time discretization. Signal
processing aspects for the
computational model and the
experimental measurements

It is recalled that the objective is the construction of the equivalent static forces
from the unsteady pressure measurements PPP carried out in a boundary layer wind
tunnel on a rigid model of the structure and from a computational structure dy-
namics model.
The acquisition and signal processing parameters used to analyze the measure-
ments must therefore be reused by the stochastic solver of the computational
model that therefore requires a time discretization.
It is also recalled that the non-Gaussian character of stationary process {PPP(t),
t ∈ R} leads us to formulate the computational model in the time domain, even if
the second-order quantities, such as the matrix-valued spectral density functions,
are obviously estimated and/or computed in the frequency domain.
In this chapter,

• the notations and the values for the signal processing parameters are de-
fined;

• the estimates used for the second-order quantities are recalled;

• the approximation formulas of the filter that allows the stochastic responses
to be computed are presented.
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3.1 Notations and signal processing parameters
In this chapter, at time t, the experimental pressure vector is denoted byPPPexp(t) (in-
stead of PPP(t)). The restriction {PPPexp(t) , t ∈ [0, T ]} to [0, T ] of stationary stochas-
tic process {PPPexp(t) , t ∈ R} is introduced and is assumed to be defined to another
probability space denoted as (Θexp, T exp,Pexp). The total duration of the time
acquisition of measurements is Ttot and the experimental unsteady pressure vector
is a deterministic function denoted by t 7→ pppexp(t) from [0, Ttot] into Rmexp (this
deterministic function is used below for constructing independent realizations of
stochastic process {PPPexp(t) , t ∈ [0, T ]}).
The parameters related to acquisition and signal processing of experimental mea-
surements of stochastic process PPPexp are the following [85, 92, 93, 97, 116],

• dimension of vector PPPexp(t): mexp;

• cutoff frequency: νc (Hz) and ωc = 2πνc (rad/s);

• sampling frequency: νe = 2 νc (Hz) (Sahnnon’s theorem);

• sampling time step: ∆t = 1/νe (s);

• measurements total duration: Ttot (s);

• time window: [0 , T ] (s);

• number of independent realizations of stochastic process PPPexp : nr;

• number of time steps for the time sampling of [0 , T ]: np such that

T = np ∆t , (3.1)

• time sampling points t1, . . . , tnp of [0, T ], which are such that

tk = t1 + (k − 1) ∆t , k = 1, . . . , np , (3.2)

in which
t1 = 0 , tnp = (np − 1) ∆t . (3.3)

3.2 Time window, independent realizations, and fre-
quency sampling

3.2.1 Time window
The criteria [97, 116] for choosing the time window [0 , T ] are given below.
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3.2 Time window, independent realizations, and frequency sampling

Figure 3.1: Schema illustrating the time window.

• T is selected sufficiently large so that the associated frequency resolution
∆ν = 1/T (Hz) is smaller than the half power bandwidth of the FRF at
the fundamental resonance frequency ν1 of the structure. Moreover, T must
be much larger than the relaxation time τrelax of the dynamic system, and is
estimated by

τrelax = − 1

ω1 ξ
log ε

in which ω1 = 2πν1, ξ = min{ξ1, . . . , ξN}, and ε � 1. For instance, for
ν1 = 0.5 Hz, ε = 1/100, and ξ = 0.01, we obtain τrelax = 146 s. Then
taking T = 216 s and nr = 100, we obtain Ttot = 21,600 s, that means 6
hours.

• For fixed T , the number nr of independent realizations of {PPPexp(t), t ∈
[0, T ]} is such that

Ttot = nr × T . (3.4)

Usually, contiguous windows should not be taken. A time duration, longer
than the correlation time, between two successive windows should be taken
into account in order to ensure noncorrelation between successive windows
[116]. When continuous windows are taken, there is a correlation between
two successive windows and consequently, the speed of convergence of the
spectral estimator constructed by the periodogram method is slightly de-
graded. In the context of these hypotheses, although the noncorrelation does
not imply statistical independence (because the process is non-Gaussian), it
will be assumed that each window provides an independent realization.
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3.2.2 Independent realizations
The nr realizations of stochastic process {PPPexp(t), t ∈ [0, T ]}, defined on proba-
bility space (Θexp, T exp,Pexp), with values in Rmexp , are denoted as

{PPPexp(t; θ`), t ∈ [0, T ]} , ` = 1, . . . , nr , (3.5)

where θ1, . . . , θnr ∈ Θexp. Let {pppexp(t), t ∈ [0, Ttot]} be the experimental unsteady
pressure vector carried out over the total duration Ttot. For k = 1, . . . , np and for
` = 1, . . . , nr, the time sampling of the nr independent realizations of stochastic
process {PPPexp(t), t ∈ [0, T ]} are given by

PPPexp(tk; θ`) = pppexp(tk + (`− 1)T ) . (3.6)

The time sampling values of the nr realizations of stochastic process PPPexp are

PPPexp(t1; θ1), . . . ,PPPexp(tnp ; θ1)︸ ︷︷ ︸
realization θ1

, . . . . . . ,PPPexp(t1; θnr), . . . ,PPPexp(tnp ; θnr)︸ ︷︷ ︸
realization θnr

. (3.7)

3.2.3 Frequency sampling
The frequency step is

∆ω = 2π∆ν =
2π

T
(rad/s) . (3.8)

As the cutoff frequency is ωc, the frequency band for the signal processing is

[−ωc, ωc] (rad/s) . (3.9)

Therefore, the frequency sampling points are

ωq = −ωc + (q − 1

2
)∆ω , q = 1, . . . , np . (3.10)

3.3 Estimation of the second-order quantities
The following classic estimates are used (see for instance [4, 68, 85, 92, 97, 110,
116]).

3.3.1 Mean value
Following Section 2.6, stochastic process {PPP(t) , t ∈ [0, T ]} is the restriction to
[0, T ] of the second-order stationary stochastic process {PPP(t), t ∈ R}, and conse-
quently its mean function is a constant vector denoted by p = E{PPP(t)}, for which
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3.3 Estimation of the second-order quantities

its estimate (also denoted by p) is given by

p ' 1

nr

nr∑
`=1

1

np

np∑
k=1

PPPexp(tk; θ`) . (3.11)

Note that the classical proposed estimate of the mean value is coherent with peri-
odogram method used for estimating matrix-valued power spectral density func-
tions.

3.3.2 Realizations of the centered process
The centered process {Pexp(t), t ∈ [0, T ]} is such that

Pexp(t) = PPPexp(t)− p , ∀t ∈ [0 , T ] . (3.12)

The time sampling values of the nr realizations of centered process {Pexp(t), t ∈
[0, T ]} are directly deduced from Eq. (3.7),

Pexp(tk; θ`) = PPPexp(tk; θ`)− p , k = 1, . . . , np ; ` = 1, . . . , nr . (3.13)

3.3.3 Matrix-valued spectral density function
The centered second-order stochastic process {Pexp(t) , t ∈ [0, T ]} is extended to
a stationary stochastic process {Pexp(t) , t ∈ R} on R. The estimate of the matrix-
valued spectral density function ω 7→ [SPexp(ω)] with values in Mmexp(C) of Pexp is
constructed using the periodogram method,

[SPexp(ωq)] '
1

2π

1

nr

nr∑
`=1

P̂
exp

(ωq; θ`) P̂
exp

(ωq; θ`)
∗ , q = 1, . . . , np , (3.14)

P̂
exp

(ωq; θ`) =

np∑
k=1

P̃
exp

(tk; θ`) exp{−2iπ
(k − 1)(q − 1)

np
} , (3.15)

P̃
exp

(tk; θ`) = ∆tWT (tk) Pexp(tk; θ`) exp{−i(−π +
π

np
) (k − 1)} . (3.16)

In Eq. (3.16), WT is the Tukey-Hamming time window that is written as

WT (t) =
1√
T

1.5863{0.54− 0.46 cos(
2πt

T
)}1[0,T ](t) . (3.17)

Eq. (3.15) shows that, for ` fixed in {1, . . . , nr}, the family {P̂
exp

(ωq; θ`), q =
1, . . . , np} of the complex vectors in Cmexp is computed using the Fast Fourier
Transform (FFT) (see Appendix C) of the family {P̃

exp
(tk; θ`), k = 1, . . . , np} of

the real vectors in Rmexp defined by Eq. (3.16).

45



CHAPTER 3. TIME DISCRETIZATION. SIGNAL PROCESSING ASPECTS FOR
THE COMPUTATIONAL MODEL AND THE EXPERIMENTAL MEASUREMENTS

3.4 Computation of the realizations Q(t) for t in [0 , T ]

The developments presented in this section will be applied to Pexp and also to P.
In order to simplify the notations, this section is presented by using notation P
(for the use with Pexp, P must be substituted by Pexp).

For all t in R, Q(t) is given by Eq. (2.58). For all ` in 1, . . . , nr, we have to
compute the realizations {Q(t; θ`), t ∈ [0, T ]} at the sampling points t1, . . . , tnp
of [0, T ] and Q(T ; θ`). Two approaches can be used.

• The first one is formulated in time domain and allows Q(T ; θ`) to be com-
puted (and not Q(t; θ`) for t ∈ [0, T [).

• The second one is formulated in frequency domain and allows Q(t; θ`) to
be computed for all t in [0, T ] and consequently, Q(T ; θ`) to be computed.

Since we will need Q(t; θ`) for t ∈ [0, T [ and also Q(T ; θ`), only the frequency
domain formulation will be used.

3.4.1 Computing the realizations of Q(T ) with the time domain
formulation

As T > τrelax (see Section 3.2.1), Eq. (2.58) can be, for t ∈ [0, T ], approximated
by

Q(t; θ`) '
∫ t

t−T
[hN(t− τ)] [φcN ] P(τ ; θ`)dτ , (3.18)

and consequently, Q(T ; θ`) is given by

Q(T ; θ`) '
∫ T

0

[hN(T − τ)] [φcN ] P(τ ; θ`)dτ , (3.19)

for which the time sampling with time step ∆t yields

Q(T ; θ`) ' ∆t

np∑
k=1

[hN(T − tk)] [φcN ] P(tk; θ`) . (3.20)

3.4.2 Computing the realizations of {Q(t), t ∈ [0, T ]} with the
frequency domain formulation

Let {PPPc
N(t; θ`), t ∈ R} be the realization of the stochastic process {PPPc

N(t), t ∈
R} such that

PPPc
N(t) = [φcN ] P(t) . (3.21)
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3.4 Computation of the realizations Q(t) for t in [0 , T ]

Using Eqs. (2.58) and (3.21), the discrete Fourier transform {Q̂(ωq; θ`), q = 1, . . . ,
np} of the time sampling {Q(tk; θ`), k = 1, . . . , np} of {Q(t; θ`), t ∈ [0, T ]} is
written as

Q̂(ωq; θ`) = [ĥN(ωq)]P̂PP
c

N(ωq; θ`) , q = 1, . . . , np , (3.22)

in which [ĥN(ωq)] is defined by Eq. (2.23) and where {P̂PP
c

N(ωq; θ`), q = 1, . . . , np}
is computed by the fast Fourier transform,

P̂PP
c

N(ωq; θ`) =

np∑
k=1

e
− 2iπ
np

(q−1)(k−1)
P̃PP

c

N(tk; θ`) , (3.23)

in which {P̃PP
c

N(tk; θ`), k = 1, . . . , np} is given by

P̃PP
c

N(tk; θ`) = ∆t e
−i(−π+ π

np
)(k−1)

PPPc
N(tk; θ`) . (3.24)

The time sampling {Q(tk; θ`), k = 1, . . . , np} of {Q(t; θ`), t ∈ [0 , T ]} is given by

Q(tk; θ`) =
∆ω

2
e

+i(−π+ π
np

)(k−1)Q̃(tk; θ`) , (3.25)

in which {Q̃(tk; θ`), k = 1, . . . , np} is computed by the fast Fourier transform
(inverse type)

Q̃(tk; θ`) =

np∑
q=1

e
+ 2iπ
np

(k−1)(q−1)Q̂(ωq; θ`) . (3.26)

3.4.3 Computing of the realizations of Q(T ) with the frequency
domain formulation

Equation (3.25) allows for computing an approximation of the realization Q(T ; θ`)
by using the frequency domain formulation. It should be noted that E{Q(T )} '
1
nr

∑nr
`=1 Q(T ; θ`) is not zero in the numerical approximation framework because,

for k = 1, . . . , np, 1
nr

∑nr
`=1PPPmexp(tk; θ`) = ppp(tk) depends on tk and is different

from p computed using Eq. (3.11). But we have 1
np

∑np
k=1 ppp(tk) = p.
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Chapter 4

Generator of realizations of the
non-Gaussian stochastic process P

Since the number nr of realizations is assumed to be not sufficient for estimating
the extreme value statistics, it is necessary to construct a generator for generating
supplementary realizations of non-Gaussian stochastic process {P(t), t ∈ [0, T ]}
for which the available information is made up of the nr experimental measure-
ments. For that, the following methodology is proposed, which consists (1) in
performing a Karhunen-Loève (KL) statistical reduction of non-Gaussian process
{P(t), t ∈ [0, T ]}, (2) in constructing polynomial chaos expansion (PCE) of the
non-Gaussian random vector constituted by the coordinates of the KL statistical
reduction, and (3) in estimating the coefficients of the PCE by solving a statistical
inverse problem.

4.1 Statistical reduction of non-Gaussian stochastic
process P

In this section, the KL statistical reduction [72, 82] of non-Gaussian stochastic
process {P(t), t ∈ [0, T ]} is presented. The KL statistical reduction {PNKL(t), t ∈
[0, T ]} is given by the truncated KL expansion of stochastic process {P(t), t ∈
[0, T ]},

PNKL(t) =

NKL∑
j=1

√
µj Hj bj(t) , t ∈ [0, T ] ,

in which H = (H1, . . . , HNKL) is a second-order, centered, and non-Gaussian ran-
dom vector (independent of time t) and where NKL is calculated such that PNKL be
an approximation of P to ε in a mean-square sense.
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For given t fixed in [0 , T ], it is also useful to construct a reduced representation
of random vector P(t), corresponding to its principal component analysis (PCA)
[69],

PNPCA(t) =

NPCA∑
j=1

√
Λj Γj(t) ej ,

in which Γ(t) = (Γ1(t), . . . ,ΓNPCA(t)) is a centered non-Gaussian random vector,
and where NPCA is calculated such that PNPCA(t) be an approximation of P(t) to ε
in a mean-square sense.

4.1.1 KL statistical reduction of non-Gaussian centered stochas-
tic process {P(t), t ∈ [0, T ]} with values in Rmexp

In accordance with the given explanations, the KL statistical reduction is based
on the use of the truncated KL expansion of the second-order centered vector-
valued stochastic process {P(t) , t ∈ [0, T ]} whose covariance function is square
integrable on [0, T ]× [0, T ] for which T is finite.
The following items are presented:

• the continuous formulation of the KL statistical reduction;

• the time sampling of the continuous formulation;

• the algorithm for solving the eigenvalue problem related to time sampling
of the continuous formulation;

• the generation of realizations for non-Gaussian random vector H.

4.1.1.1 Continuous formulation of the KL statistical reduction

For the readability of this section, we summarize hereinafter the main mathe-
matical properties for constructing the KL statistical reduction in the continuous
formulation framework. Stochastic process PPP is such that

PPP(t) = p + P(t) , t ∈ [0, T ] .

Since stochastic process {P(t), t ∈ [0, T ]} is stationary, second-order, centered,
and mean-square continuous, its covariance function (see Eq. (2.62)),

(t, t′) 7→ [CP(t− t′)] = E{P(t)P(t′)T}
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4.1 Statistical reduction of non-Gaussian stochastic process P

is continuous from R×R into Mmexp(R). Consequently, (t, t′) 7→ [CP(t− t′)] is a
bounded function on [0, T ]× [0, T ], which implies (see Eq. (2.65)),

1

T 2

∫ T

0

∫ T

0

‖CP(t− t′)‖2
F dt dt

′ < +∞ , (4.1)

where ‖.‖F is the Frobenius norm. Under these conditions [110], process {P(t),
t ∈ [0, T ]}, admits the following KL expansion,

P(t) =
+∞∑
j=1

√
µjHjbj(t) , t ∈ [0, T ] , (4.2)

in which H1, H2, . . . are non-Gaussian dependent real random variables, such that
for all j and j′ in N∗,

E{Hj} = 0 , E{HjHj′} = δjj′ , (4.3)

and where {µj,bj(t)} are the solutions of the eigenvalue problem,

1

T

∫ T

0

[CP(t− t′)] bj(t′) dt′ = µj bj(t) , ∀t ∈ [0, T ] . (4.4)

The eigenvalues constitute a decreasing ordered sequence such that

µ1 ≥ µ2 ≥ . . . ≥ 0 , (4.5)

and the eigenvectors constitute a Hilbert basis of the space L2([0, T ], Rmexp) of the
square integrable functions on [0, T ] with values in Rmexp . Therefore, we have

< bj,bj′ >L2= δjj′ , (4.6)

where < . , . >L2 is the scalar product on L2([0, T ],Rmexp) such that

< bj,bj′ >L2=
1

T

∫ T

0

< bj(t),bj′(t) >Rmexp dt . (4.7)

The statistical reduction of order NKL of {P(t), t ∈ [0, T ]} is written as,

PNKL(t) =

NKL∑
j=1

√
µjHjbj(t) , t ∈ [0, T ] , (4.8)

and the reduction order NKL is computed such that

E{‖P− PNKL‖2
L2} ≤ ε2E{‖P‖2

L2} , (4.9)
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where ‖P‖2
L2 =< P,P >L2= 1

T

∫ T
0
‖P(t)‖2

Rmexpdt and where ε > 0 is chosen
sufficiently small. Equation (4.9) leads us to introduce the error function,

errKL(NKL) = 1−
∑NKL

j=1 µj

E{‖P‖2
L2}

, (4.10)

with
E{‖P‖2

L2} = tr[CP(0)] . (4.11)

For all j = 1, . . . , NKL, random variable Hj can be written as

Hj =
1
√
µj

< P,bj >L2=
1
√
µj

1

T

∫ T

0

< P(t),bj(t) >Rmexp dt . (4.12)

4.1.1.2 Time sampling of the continuous formulation

There are several approaches for constructing a discretization of the eigenvalue
problem defined by Eq. (4.4), such as the discretization of the weak formulation
[28]. However, the framework adapted to the signal processing defined in Chap-
ter 3 must be used, that is to say must be based on the time sampling t1, . . . , tnp
of [0 , T ] with the constant time step ∆t = T/np.

Remark. In order to simplify the notations, the same symbols are used for the
time-sampled quantities.

The time sampling of Eq. (4.4) is written as,

1

np

np∑
k′=1

[CP(tk − tk′)]bj(tk′) = µjbj(tk) , k = 1, . . . , np , (4.13)

that can be rewritten as [C11] . . . [C1np ]
... . . . ...

[Cnp1] . . . [Cnpnp ]


 bj(t1)

...
bj(tnp)

 = µj

 bj(t1)
...

bj(tnp)

 , (4.14)

with
[Ckk′ ] =

1

np
[CP(tk − tk′)] ∈Mmexp(R) . (4.15)

Using a global notation, Eq. (4.14) can be rewritten as

[C ] bj = µjb
j , j = 1, . . . , NKL , (4.16)
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4.1 Statistical reduction of non-Gaussian stochastic process P

with [C ] ∈ M+0
mexp×np(R) (with M+0

n (R) the set of all the (n × n) positive sym-
metric real matrices) and where

bj = (bj(t1), . . . ,bj(tnp)) ∈ Rmexp×np , j = 1, . . . , NKL . (4.17)

Therefore, for j and j′ in {1, . . . , NKL}, we have

1

np
< bj,bj

′
>Rmexp×np= δjj′ . (4.18)

Considering Eq. (4.8), the time-sampled statistical reduction of order NKL is writ-
ten as,

PNKL(tk) =

NKL∑
j=1

√
µjHjbj(tk) , k = 1, . . . , np , (4.19)

where bj(t1), . . . ,bj(tnp) are the components of bj defined by Eq. (4.17). The
random vector H = (H1, . . . , HNKL) with values in RNKL is second-order, non-
Gaussian, with dependent components, and is such that

E{H} = 0 ; E{HHT} = [INKL ] . (4.20)

Each component Hj is written as (see Eq. (4.12)),

Hj =
1
√
µj

1

np

np∑
k=1

< P(tk),bj(tk) >Rmexp . (4.21)

4.1.1.3 Algorithm for solving the eigenvalue problem related to time sampling
of the continuous formulation

In order to construct the statistical reduction of order NKL defined by Eq. (4.19),
the NKL largest positive eigenvalues µ1 ≥ . . . ≥ µNKL > 0 of the eigenvalue
problem defined by Eq. (4.16) must be computed. We recall thatNKL < mexp×np
is calculated for a fixed relative tolerance ε, by using the inequality errKL(NKL)
≤ ε (see Eq. (4.10)). The proposed method is based on [1, 45, 63]. It avoids the
explicit construction of matrix [C ].

Algorithmic remarks. The copmutation of the NKL largest eigenvalues µ1 ≥
. . . ≥ µNKL of matrix [C ] requires, on the one hand the construction and the stor-
age of matrix [C ], and on the other hand the calculation of the largest eigenvalues
and the associated eigenvectors using an iterative method such as the Krylov se-
quences [17] or the subspace iteration method [3]. For a high dimension problem,
for instance mexp = 700 and np = 512, we have mexp × np = 358,400. The
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symmetric matrix [C ] requires (8× 358,400× 358,401/2)/109 = 514 GB (Gega
bytes) to be stocked. Therefore, a direct method induces difficulties and conse-
quently, an algorithm based on the use of the SVD in ”economy size” (existing in
Matlab) also called ”thin SVD” is proposed hereinafter, whose algorithm can be
found in [50].

Algorithm based on the ”thin SVD”. It is recalled that nr realizations {P(t; θ`),
t ∈ [0, T ]} for ` = 1, . . . , nr, of process {P(t), t ∈ [0, T ]} sampled in t1, . . . , tnp
with the constant step ∆t = T/np are available. The following hypothesis (veri-
fied for the considered applications) is made

mexp × np > nr . (4.22)

For ` = 1, . . . , nr, the vectors P1, . . . ,Pnr are introduced such that

P` = (P`(t1; θ`), . . . ,P`(tnp ; θ`)) ∈ Rmexp×np . (4.23)

Let [w] be the rectangular matrix defined by

[w] = [P1 . . .Pnr ] ∈Mmexp×np,nr(R) . (4.24)

The statistical estimation [Ĉnr ] of matrix [C ], which is defined by Eqs. (4.14) and
(4.16), can be written as,

[Ĉnr ] =
1

np(nr − 1)

nr∑
`=1

P`(P`)T , (4.25)

and can be rewritten as,

[Ĉnr ] =
1

nr − 1
(

1
√
np

[w]) (
1
√
np

[w])T . (4.26)

It should be noted that the rank of matrix [Ĉnr ] is less or equal to nr. Therefore,
NKL is supposed to be such that

NKL ≤ nr . (4.27)

Let [B] be the (mexp × np, nr) real matrix whose columns are the eigenvectors
b1, . . . ,bnr and let [µ] be the (nr × nr) diagonal matrix of the eigenvalues µ1 ≥
. . . ≥ µnr ,

[B] =
1
√
np

[b1 . . .bnr ] , [µ] =

µ1 0
. . .

0 µnr

 . (4.28)
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4.1 Statistical reduction of non-Gaussian stochastic process P

For j = 1, . . . , nr, Eqs. (4.16) and (4.18) can be rewritten, using the estimate [Ĉnr ]
of [C ], as

[Ĉnr ] [B] = [B] [µ] , (4.29)

[B]T [B] = [Inr ] . (4.30)

Then, it can easily be verified that the SVD of [w] ∈ Mmexp×np,nr(R) using the
”thin SVD” algorithm, is written as

1
√
np

[w] = [B][Σ][V]T , (4.31)

in which matrix [B] is the solution of Eq. (4.29) under the constraint defined by
Eq. (4.30), where [Σ] is the (nr × nr) real diagonal matrix of the singular values,
and where [V] ∈Mnr(R) is such that [V]T [V] = [V] [V]T = [Inr ].
Considering Eqs. (4.26), (4.29), and (4.31), it can be deduced that

[µ] =
1

nr − 1
[Σ]2 . (4.32)

Knowing µ1 ≥ . . . ≥ µnr , and as NKL ≤ nr, the error of the statistical reduction
can be computed using Eq. (4.10) for NKL = 1, . . . , nr.

4.1.1.4 Generation of realizations for non-Gaussian random vector H

The notations of Section 4.1.1.3 are used, for which the nr time-sampled real-
izations of stochastic process P are represented by vectors P` ∈ Rmexp×np for
` = 1, . . . , nr. The nr corresponding realizations {η`}`=1,...,nr of random vector
H are given by Eq.(4.21) in substituting P by its realizations. Consequently, for
j = 1, . . . , NKL, we have

η`j =
1
√
µj

1

np
< P`,bj >Rmexp×np . (4.33)

4.1.2 Reduction of centered non-Gaussian random vector P(t)
at any fixed time t using the principal component analysis

In this section, the PCA of random vector P(t) at any t fixed in [0, T ] is con-
structed, which differs from the KL statistical reduction of stochastic process
{P(t), t ∈ [0 , T ]} that is presented in Section 4.1.1. This reduction will be used
for t = T , that is to say for the PCA of the random vector P(T ) in Section 5.3.
Let [CP] ∈ Mmexp(R) be the covariance matrix of centered second-order random
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vector P(t), for t fixed in [0, T ]. As stochastic process P is stationary on R, this
covariance matrix that is defined by

[CP] = E{P(t)P(t)T} , (4.34)

is independent of t. Let e1, . . . , emexp be the orthonormal eigenvectors of [CP]
associated with the ordered eigenvalues

Λ1 ≥ Λ2 ≥ . . . ≥ Λmexp ≥ 0 , (4.35)

such that
[CP] ej = Λj ej , j = 1, . . . ,mmexp . (4.36)

Let NPCA ≤ mexp be the reduction order. Let [e] be the rectangular matrix and [Λ]
be the diagonal matrix such that

[e] = [e1 . . . eNPCA ] ∈Mmexp,NPCA(R) , (4.37)

[Λ] =

Λ1 0
. . .

0 ΛNPCA

 . (4.38)

The orthonormality of vectors e1, . . . , eNPCA yields

[e]T [e] = [INPCA ] . (4.39)

For all t fixed in [0, T ], the statistical reduced representation of order NPCA is then
written as,

PNPCA(t) = [e] [Λ]1/2 Γ(t) , (4.40)

where Γ(t) = (Γ1(t), . . . ,ΓNPCA(t)) is the centered second-order non-Gaussian
random vector such that

Γ(t) = [Λ]−1/2 [e]T P(t) . (4.41)

The reduction order NPCA is chosen such that

E{‖P(t)− PNPCA(t)‖2
Rmexp} ≤ ε2E{‖P(t)‖2

Rmexp} , (4.42)

where ε is the relative error tolerance. The value of NPCA is obtained by the anal-
ysis of the function NPCA 7→ errPCA(NPCA) such that

errPCA(NPCA) = 1−
∑NPCA

j=1 Λj

tr[CP]
. (4.43)
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Using the notations introduced in Section 4.1.1, we define the vectors p`t such that,

p`t = P(t, θ`) ∈ Rmexp , ` = 1, . . . , nr , (4.44)

where t is any time of the time sampling t1, . . . , tnp . Using these notations, the
estimate [Ĉnr ] of [CP] is classically written as,

[Ĉnr ] =
1

nr − 1

nr∑
`=1

p`t p`Tt . (4.45)

4.2 Polynomial chaos representation of non-Gaussian
stochastic process P

The mehodology of the computation of the equivalent static forces, which is pre-
sented in Chapter 5, requires the estimation of non-Gaussian conditional proba-
bility density functions related to random variables P(T ), Q(T ), and U(T ). These
non-Gaussian conditional probability density functions cannot be given in an ex-
plicit form and consequently, will be estimated in a nonparametric probabilistic
framework [13, 49, 61] using a large number of realizations. As it has been as-
sumed that the number nr of experimental realizations is not sufficiently large for
estimating extreme value statistics, it is necessary to construct a generator of re-
alizations in order to be able to generate ν � nr independent realizations of non-
Gaussian stochastic process {P(t), t ∈ [0, T ]}. This generator will be obtained
by using a PCE of non-Gaussian process {P(t), t ∈ [0, T ]}, whose construction
is based on the PCE of the random coordinates of its truncated KL expansion
presented in Section 4.1. The PCE of stochastic processes and fields has been
initialized by Ghanem [47] based on the Wiener works. The methodology pro-
posed by Ghanem has been used later to study several problems (see for instance
[34, 37, 40, 79, 115]) and has been extended to the cases for which the chaos germ
follows an arbitrary probability distribution [119, 117, 139], for which the coeffi-
cients of the PCE are random, for which the number of the PCE coefficients has
to be reduced [11, 12, 128], for which the probability distribution is multimodal
[113], and for which the probability distribution is on a manifold [120]. The
identification method of the PCE coefficients from experimental data or from nu-
merical simulations is presented in Section 4.3. It should be noted that there is no
mathematical relation between the PCE of a non-Gaussian random vector and the
orthogonal polynomial representation of its multidimensional probability density
function. This last method was analyzed in detail in the 1980’s by the scientific
community and the works, which have been carried out, have shown that this type
of approach posed some difficulties related to the convergence and to the preserva-
tion of algebraic properties such as positivity. Consequently, for the problem we
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have to deal with, the PCE of non-Gaussian random vector H = (H1, . . . , HNKL)
that has been obtained from the truncated KL expansion of non-Gaussian stochas-
tic process {P(t), t ∈ [0, T ]} is used. The experimental identification of the de-
terministic Rmexp-valued coefficients of the PCE must be performed by using al-
gorithms that must be efficient for large dimensions (see Section 4.3). Assuming
the PCE of non-Gaussian Rmexp-valued stochastic process {P(t), t ∈ [0, T ]} is
constructed, we therefore dispose of a generator of independent realizations of
{P(t), t ∈ [0, T ]}.

In this section, we present the construction of the PCE of non-Gaussian Rmexp-
valued stochastic process {P(t), t ∈ [0, T ]}. As we have explained, the method-
ology and the algorithms devoted to the experimental identification of the PCE
coefficients will be presented in Section 4.3.

4.2.1 Reminder on the KL statistical reduction of stochastic
process {P(t) , t ∈ [0, T ]}

Assuming that the convergence analysis of the KL expansion of stochastic pro-
cess {P(t) , t ∈ [0, T ]} has already been done, the reduction-order value NKL that
corresponds to a given tolerance of the error defined by Eq. (4.10), is known. It
can then be written as,

P(t) ' PNKL(t) =

NKL∑
j=1

√
µj Hj bj(t) , t ∈ [0, T ] . (4.46)

Let H = (H1, . . . , HNKL) be the random vector with values in RNKL . This vector
is non-Gaussian, second-order,

E{‖H‖2
RNKL} < +∞ , (4.47)

centered and its covariance matrix is the identity matrix (see Eq. (4.20)),

E{H} = 0 ; E{H HT} = [INKL ] . (4.48)

4.2.2 Polynomial chaos expansion of non-Gaussian vector H
The random germ of the PCE of H is chosen as the normalized Gaussian vec-
tor and consequently, the orthogonal polynomials are the normalized multivariate
Hermite polynomials. This choice is dictated by the fact that the Gaussian ap-
proximation is directly obtained by taking only the polynomials of degree zero
and one, which would not be the case if non-Gaussian germ were taken.
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(i) Introduction of the Gaussian germ. Let Ξ = (Ξ1, . . . ,ΞNg) be the nor-
malized Gaussian random vector defined on the probability space (Θ, T ,P) with
values in RNg , that is to say,

E{Ξ} = 0 , E{ΞΞT} = [INg ] . (4.49)

The integer Ng that defines the length of the Gaussian germ is such that

1 ≤ Ng ≤ NKL , (4.50)

and must be estimated using the identification procedure based on the experimen-
tal measurements of the unsteady pressure field (see Eq. (3.13) with Eqs. (3.7) and
(3.11)).

(ii) Introduction of the normalized multivariate Hermite polynomials. Let
Nd ≥ 1 be a fixed integer corresponding to the maximum degree of the normalized
multivariate Hermite polynomials,

Ψβ(Ξ) = ψβ1(Ξ1)× . . .× ψβNg (ΞNg) , (4.51)

where β = (β1, . . . , βNg) is the multi-index of length Ng such that

βj ∈ {0, 1, . . . , Nd} , j = 1, . . . , Ng , (4.52)

and where ψβj(Ξj) are the normalized Hermite polynomials such that

ψ0(Ξj) = 1 . (4.53)

For all βj and β′j , the orthonormality property writes,

E{ψβj(Ξj)ψβ′j(Ξj)} =

∫
R
ψβj(ξ)ψβ′j(ξ)

1√
2π

e−ξ
2/2 dξ = δβjβ′j . (4.54)

The normalized Hermite polynomial of degree n is written asψn(ξ) = Hn(ξ)/
√
n!

with Hn(ξ) the Hermite polynomial of degree n. These polynomials can be com-
puted using the following recurrence relation,

Hn+1(ξ) = ξ Hn(ξ)− nHn−1(ξ) , n ≥ 1 . (4.55)

with H0(ξ) = 1 and H1(ξ) = ξ. Thus H2(ξ) = ξ2 − 1, etc. From Eqs. (4.51)
and (4.54), it can be deduced the orthonormality property for the normalized mul-
tivariate Hermite polynomials,

E{Ψβ(Ξ) Ψβ′(Ξ)} =

∫
RNg

Ψβ(ξ) Ψβ′(ξ)
1

(2π)Ng/2
e
− 1

2
‖ξ‖2

RNg dξ = δββ′ , (4.56)
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in which
δββ′ = δβ1β′1 × . . .× δβNgβ′Ng . (4.57)

Because the zero-degree multivariate polynomial Ψ0(Ξ) is equal to 1, from Eq. (4.56),
it can be deduced that, for all multi-index β not equal to 0,

E{Ψβ(Ξ)} = 0 . (4.58)

For fixed integer Nd such that 1 ≤ Nd ≤ +∞ and for fixed Ng such that 1 ≤
Ng ≤ NKL, we define the set NNd,Ng by

NNd,Ng = {β = (β1, . . . , βNg) ∈ NNg | 0 < β1 + . . .+ βNg ≤ Nd} . (4.59)

The number K(Nd, Ng) of the elements of set NNd,Ng , which depends on Nd and
Ng, is written as

K(Nd, Ng) =
(Ng +Nd)!

Ng!Nd!
− 1 . (4.60)

This number does not include the zero-degree multivariate polynomial Ψ0(ξ) = 1
for the multi-index 0 = (0, . . . , 0).

Remark. The zero-degree multivariate polynomial is not included, because the
non-Gaussian random vector H is centered (see Eq. (4.48)).

Let κ be the integer belonging to the set {1, . . . , K(Nd, Ng)}. We rewrite {β(κ),
κ = 1, . . . , K(Nd, Ng)}, the set of the multi-indices β that belong to NNd,Ng .

(iii) Truncated Gaussian polynomial chaos expansion of non-Gaussian vector
H. The approximation H(Nd,Ng) of second-order centered non-Gaussian random
vector H with values in RNKL , is written as

H(Nd,Ng) =

K(Nd,Ng)∑
κ=1

zκ Ψβ(κ)(Ξ) , (4.61)

where z1, . . . , zK(Nd,Ng) are deterministic vectors in RNKL such that, for all κ in
{1, . . . , K(Nd, Ng)},

zκ = E{H Ψβ(κ)(Ξ)} . (4.62)

Using Eqs. (4.56) and (4.58), it can be easily verified that

E{H(Nd,Ng)} = 0 , (4.63)

E{H(Nd,Ng)H(Nd,Ng)T} =

K(Nd,Ng)∑
κ=1

zκ (zκ)T . (4.64)
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Taking into account Eq. (4.48), from Eq. (4.64) it can be deduced that, for a fixed
value of Ng,

lim
Nd→+∞

K(Nd,Ng)∑
κ=1

zκ (zκ)T = [INKL ] . (4.65)

Remark. For the identification of the vector-valued coefficients z1, . . . , zK(Nd,Ng)

(see Section 4.3), Equation (4.65) is rewritten as

K(Nd,Ng)∑
κ=1

zκ (zκ)T = [INKL ] , (4.66)

and will be used as a constraint equation in the identification procedure.

(iv) Convergence of the truncated polynomial chaos expansion of non-Gaussian
vector H. As H is a second-order random vector, it is known that

lim
Nd→+∞,Ng→NKL

H(Nd,Ng) = H , (4.67)

in the space L2(Θ,RNKL) of all the second-order random vectors defined on (Θ, T ,
P), with values in RNKL . The considered norm of L2(Θ,RNKL) is

‖H‖L2(Θ,RNKL ) =
√
E{‖H‖2

RNKL
} . (4.68)

From Eq. (4.66), it can be seen that the convergence rate can be analyzed by
studying the function (Nd, Ng) 7→ ‖H(Nd,Ng)‖L2(Θ,RNKL ) such that

‖H(Nd,Ng)‖2
L2(Θ,RNKL ) =

K(Nd,Ng)∑
κ=1

‖zκ‖2
RNKL . (4.69)

Equations (4.48) and (4.67) yield

lim
Nd→+∞,Ng→NKL

‖H(Nd,Ng)‖2
L2(Θ,RNKL ) = trE{H HT} = NKL , (4.70)

which gives, using Eq. (4.69),

lim
Nd→+∞,Ng→NKL

K(Nd,Ng)∑
κ=1

‖zκ‖2
RNKL = NKL < +∞ . (4.71)

Remark 1. As we will see in Section 4.3, using the convergence criterion related
to Eq. (4.66), the experimental identification of the PCE of H requires the calcu-
lation of Nd, Ng, and z1, . . . , zK(Nd,Ng).
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Remark 2. For all 1 ≤ Ng ≤ NKL, and for Nd = 1, it can be seen that, for
all β fixed in N1,Ng (therefore 0 < β1 + . . . + βNg = 1), the centered ran-
dom variable Ψβ(Ξ) is Gaussian, and consequently, the centered random variable
H(1,Ng) defined by Eq. (4.61) is Gaussian. From Eq. (4.46), it can be deduced that
{P(t), t ∈ [0, T ]} is a Gaussian centered stochastic process. The non-Gaussian
property of stochastic process {P(t), t ∈ [0, T ]} is therefore taken into account by
the representation defined by Eqs. (4.46) and (4.61), taking Nd ≥ 2 inNNd,Ng that
is defined by Eq. (4.59).

4.2.3 Truncated polynomial chaos expansion of non-Gaussian
process {P(t) , t ∈ [0, T ]}

It is assumed that the identification procedure, which will be presented in Sec-
tion 4.3, has been applied in order to calculate the values of Nd, Ng, and z1, . . . ,
zK(Nd,Ng) for a given value of the error tolerance. Under these conditions, Nd and
Ng being fixed to their optimal values, we have

H ' H(Nd,Ng) =

K(Nd,Ng)∑
κ=1

zκ Ψβ(κ)(Ξ) . (4.72)

Using time sampling t1, . . . , tnp of [0, T ] introduced in Chapter 3 and using Eq. (4.46),
for all k = 1, . . . , np, we have

P(tk) ' PNKL(tk) =

NKL∑
j=1

√
µj H

(Nd,Ng)
j bj(tk) , (4.73)

in which H(Nd,Ng) = (H
(Nd,Ng)
1 , . . . , H

(Nd,Ng)
NKL

) is given by Eq. (4.72) and where,
for all j = 1, . . . , NKL, the vectors bj(t1), . . . ,bj(tnp) are computed using Eqs. (4.17),
(4.28), and (4.31).

4.2.4 Generator of independent realizations of non-Gaussian
stochastic process {P(t), t ∈ [0, T ]}

As explained before, the nr experimental realizations P(tk; θ`) for k = 1, . . . , np
and ` = 1, . . . , nr are assumed to be not sufficient for obtaining a reasonable con-
vergence of the statistical estimators of the conditional probability density func-
tions that will be constructed in Chapter 5. Consequently, ν � nr independent
realizations must be generated by Eq. (4.73) with Eq. (4.72). Let Ξ(θ1), . . . ,Ξ(θν)
be independent realizations of the normalized Gaussian RNg -valued random vari-
able Ξ. Therefore, the ν independent realizations of non-Gaussian random vectors
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{P(tk), k = 1, . . . , np} are computed, for k = 1, . . . , np, and ` = 1, . . . , ν, by

P(tk; θ`) '
NKL∑
j=1

√
µj H

(Nd,Ng)
j (θ`) bj(tk) , (4.74)

in which H(Nd,Ng)(θ`) = (H
(Nd,Ng)
1 (θ`), . . . , H

(Nd,Ng)
NKL

(θ`)) is the `-th realization
of H(Nd,Ng) such that

H(Nd,Ng)(θ`) =

K(Nd,Ng)∑
κ=1

zκ Ψβ(κ)(Ξ(θ`)) . (4.75)

4.3 Estimation of the coefficients of the polynomial
chaos expansion of H

4.3.1 Brief review of methods
There exist several methods for identifing the coefficients zκ of the PCE of H de-
fined by Eq. (4.61), with the experimental realizations η` = (η`1, . . . , η

`
NKL

) that
have been computed by using Eq. (4.33) for ` = 1, . . . , nr. These methods belong
to the class of the statistical inverse methods [66, 70, 123, 127, 138] that use the
maximum likelihood principle [102, 123] and/or the Bayes method [15, 23, 124].
First works on the identification of the PCE coefficients of non-Gaussian stochas-
tic processes and fields from experimental data have been proposed in [35]. Then
some efficient methods have been proposed [46] for relatively small dimensions
(see for instance [27, 86, 2, 12]). Then, more advanced approaches have been
proposed for solving these statistical inverse problems for very large dimension
[112, 95, 90, 115]. These methods require the construction of algebraic models
that are informative [112, 54, 90, 115] to enrich available data that are mostly
partial and limited, and also require the development of associated random gener-
ators.

In this work, the method proposed is deduced from the one initially developed in
[112] and improved in [95]. This method uses a formulation based on the maxi-
mum likelihood for which the admissible set is a Stiefel manifold that corresponds
to the constraint defined by Eq. (4.66). For solving the formulated optimization
problem, it is necessary to use a random search algorithm for exploring the Stiefel
manifold. Two algorithms are used, the first one has been proposed in [112] and
is based on an exploitation, orthogonal direction by orthogonal direction, of the
manifold, and the algorithm recently proposed in [118], which uses an appropriate
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parameterization of the Stiefel manifold. In the case where the static acceleration
method is used,NKL can be large (from 50 to 100 or even more). For such a case, it
is possible to use additional methods with respect to the general method described
before in order to reduce the numerical cost (see Sections 4.3.3 and 4.3.5).

Remark. The estimation of coefficients zκ, κ = 1, . . . , K(Nd, Ng) of the PCE
defined by Eq. (4.61) cannot be done using Eq. (4.62) because the experimental
realizations {η`, ` = 1, . . . , nr} of H are independent of the random vector Ξ
and consequently Eq. (4.62) gives zκ = 0. That is the reason why the maximum
likelihood is used.

4.3.2 Estimation of the coefficients in the general framework
For fixed Nd and Ng, and for κ = 1, . . . , K(Nd, Ng), the estimate zκ,opt of co-
efficients zκ of non-Gaussian random vector H(Nd,Ng) defined by Eq. (4.61) is
performed using the maximum likelihood principle. In this section, K(Nd, Ng) is
simply denoted by K. Taking into account Eq. (4.66), the admissible set Cad is
defined as the subset of (RNKL)K , such that

Cad = {(z1, . . . , zK) ∈ (RNKL)K ;
K∑
κ=1

zκ (zκ)T = [INKL ]} . (4.76)

Therefore, the maximum likelihood principle yields the following optimization
problem

(z1,opt, . . . , zK,opt) = arg{ max
(z1,...,zK)∈Cad

L (z1, . . . , zK)} , (4.77)

where L (z1, . . . , zK) is the log10 likelihood function that is written as

L (z1, . . . , zK) =
nr∑
`=1

log10 pH(Nd,Ng)(η
`; z1, . . . , zK) , (4.78)

where {η`}`=1,...,nr are given by Eq. (4.33), and where η 7→ pH(Nd,Ng)(η; z1, . . . ,
zK) is the probability density function on RNKL of random vector H(Nd,Ng) de-
fined by Eq. (4.61). For all z1, . . . , zK fixed in RNKL , the value pH(Nd,Ng)(η

`;
z1, . . . , zK) of pH(Nd,Ng)(η; z1, . . . , zK) at η = η` is estimated using the Gaussian
kernel estimation method on the nonparametric statistics for which ν realizations
{η̃`′ , `′ = 1, . . . , ν} of H(Nd,Ng) are calculated by

η̃`
′
=

K∑
κ=1

zκΨβ(κ)(Ξ(θ′`′)) , (4.79)

in which Ξ(θ′1), . . . ,Ξ(θ′ν) are ν independent realizations of Ξ.
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4.3.3 Partition of H in a group of independent random vectors
It could be interesting to analyze if the non-Gaussian dependent componentsH1, . . . ,
HNKL of random vector H can be written as

H = (H1, . . . ,Hnind) , (4.80)

in which H1, . . . ,Hnind are independent random vectors of dimension smaller than
NKL. For all γ = 1, . . . nind, the random vector Hγ = (Hγ

1 , . . . , H
γ
nγ ) is with

values in Rnγ , such that
nind∑
γ=1

nγ = NKL . (4.81)

If such a partition can be constructed with nind > 1, then the PCE of H that is
defined by Eq. (4.61), for which there is K(Nd, Ng) coefficients zκ with values in
RNKL , can be replaced by nind PCE such that, for γ = 1, . . . , nind,

Hγ =

Kγ(Nγ
d ,N

γ
g )∑

κ=1

zκγΨβ
(κ)
γ

(Ξγ) , (4.82)

in which Ξ1, . . . ,Ξnind are independent normalized Gaussian vectors with un-
known dimensions N1

g , . . . , N
nind
g respectively, which have to be identified under

the following constraints

nind∑
γ=1

Nγ
g = Ng , Nγ

g ≤ nγ , γ = 1, . . . , nind . (4.83)

It can be verified thatNg =
∑nind

γ=1N
γ
g ≤

∑nind
γ=1 nγ = NKL, which shows thatNg is

effectively smaller or equal to NKL. Under these conditions, for each γ, the num-
ber of coefficients to be estimated is smaller than the number nr of experimental
realizations for identifying the coefficients of Hγ . The convergence speed of the
maximum likelihood approach (see Section 4.3.2) is then faster. The methodol-
ogy and the algorithm for constructing such a partition can be found in [114] for
large dimension problems for which a set of few realizations is available and for
which the classical statistic methods, such as ”data clustering” method [67], are
not efficient.

4.3.4 Analyzing the independence of the components of H
For a given application, if the method presented in Section 4.3.3 gives nind =
NKL, so all the components of H are non-Gaussian and independent. If stochastic
process P were Gaussian (which is not the case), the random vector H would then
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be Gaussian and taking into account Eq. (4.20), the components of H would also
be independent. For the case considered in this work, H is non-Gaussian and the
components of H are uncorrelated and then are dependent. These remarks show
that it is licit to construct a first approximation for the estimation of the coefficients
zκ of the PCE given by Eq. (4.61) assuming the independence of the components
of H. With these estimation hypotheses, we can control its efficiency by applying
the convergence criterion defined in Section 4.2.2 (iv).

4.3.5 Method proposed as a first approximation for estimating
the coefficients of the polynomial chaos expansion of H

4.3.5.1 Formulation

This method is based on the explanations given in Section 4.3.3 and is formulated
as follows
(i)- The components H1, . . . , HNKL of non-Gaussian random vector H, which are
centered and uncorrelated, are assumed to be independent in a first approximation.
(ii)- Hypothesis (i) implies that, for j = 1, . . . , NKL, each component Hj of H
admits a PCE that is written as

H
(Nd)
j =

Nd∑
κ=1

zκj ψκ(Ξj) , (4.84)

• in which Ξ1, . . . ,ΞNd are independent random variables such that for each
j, the real-valued random variable Ξj is Gaussian, centered, with a variance
equal to 1.

• in which ψ1, . . . , ψNd are the normalized Hermite polynomials such that, for
all κ and κ′ in {1, . . . , Nd},

ψ0(Ξj) = 1 , E{ψκ(Ξj)} = 0 , E{ψκ(Ξj)ψκ′(Ξj)} = δκκ′ . (4.85)

Consequently, for all j and j′ in {1, . . . , NKL} with j 6= j′ and for κ and κ′

in {1, . . . , Nd}, it can be deduced that

E{ψκ(Ξj)ψκ′(Ξj′)} = 0 . (4.86)

• where for all j = 1, . . . , NKL, the real coefficients to be estimated are
z1
j , . . . , z

Nd
j . It is supposed that the degree Nd is independent of j, which

is not restrictive, the convergence being globally analyzed for H where Nd

is increasing.
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(iii)- In accordance to Section 4.2.2 (iii), Eqs. (4.63) and (4.64) will be verified
for the approximation

H(Nd) = (H
(Nd)
1 , . . . , H

(Nd)
NKL

) . (4.87)

Taking into account Eqs. (4.84) and (4.85), we have

E{H(Nd)
j } = 0 . (4.88)

On the other hand, [E{H(Nd) H(Nd)T}]jj′ = E{H(Nd)
j H

(Nd)
j′ } and taking into ac-

count Eqs. (4.84) to (4.86) yield

E{H(Nd)
j H

(Nd)
j′ } = δjj′

Nd∑
κ=1

(zκj )2 . (4.89)

Consequently, we have

E{H(Nd)} = 0 , E{H(Nd)H(Nd)T} = [INKL ] , (4.90)

which correspond to Eqs. (4.63) and (4.64), and where the constraint defined by
Eq. (4.65) is replaced by the NKL scalar constraints,

Nd∑
κ=1

(zκj )2 = 1 , j = 1, . . . , NKL . (4.91)

4.3.5.2 Estimation of the coefficients

Taking into account the formulation presented in Section 4.3.5.1, the identifica-
tion of the PCE coefficients defined by Eq. (4.84), using the maximum likelihood
principle presented in Section 4.3.2, is rewritten as follows. For all j fixed in
{1, . . . , NKL}, let C j

ad be the subset of RNd such that

C j
ad = {zzzj = (z1

j , . . . , z
Nd
j ) ∈ RNd ; ‖zzzj‖2=

Nd∑
κ=1

(zκj )2 = 1} . (4.92)

The optimal value zzzj,opt in C j
ad of zzzj = (z1

j , . . . , z
Nd
j ), calculated by the maximum

likelihood, is given by

zzzj,opt = arg{ max
zzzj,opt∈C jad

L j(zzzj)} , (4.93)

where L j(zzzj) is log10 likelihood function that is written as,

L j(zzzj) =
nr∑
`=1

log10 pH(Nd)

j

(η`j;zzz
j) , (4.94)
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where {η`j}`=1,...,nr are the realizations of the component j of η` given by Eq. (4.33)
and where ηj 7→ p

H
(Nd)

j

(ηj;zzzj) is the probability density function in R of the

random variable H(Nd)
j defined by Eq. (4.84). The value p

H
(Nd)

j

(η`j;zzz
j) is cal-

culated using the Gaussian kernel estimation method for which ν realizations
{η̃`′j , `′ = 1, . . . , ν} of H(Nd)

j are computed by

η̃`
′

j =

Nd∑
κ=1

zκj Ψκ(Ξj(θ
′
`′)) . (4.95)

in which Ξj(θ
′
1), . . . ,Ξj(θ

′
ν) are ν independent realizations of Ξj . It should be

noted that the random variables Ξ1, . . . ,ΞNKL are assumed here to be independent.

4.3.5.3 Convergence analysis with respect toNd and calculation of the optimal
value N opt

d

(i) Error function for the convergence analysis. For all j fixed in {1, . . . , NKL},
the truncated PCE of H(Nd)

j defined by Eq. (4.84) depends on Nd (taken indepen-
dent of j), which is unknown and which must be estimated using a convergence
analysis of the sequence {H(Nd)

j }Nd towards Hj when Nd goes to +∞. The error
function is defined by

errj(Nd) =

∫
R |pH(Nd)

j

(ηj;zzzj,opt)− pHj(ηj)| d ηj∫
R pHj(ηj) d ηj

. (4.96)

For the numerical implementation of Eq. (4.96), the probability density functions
of H(Nd)

j and Hj are calculated using the Gaussian kernel estimation method. The
probability density function ofH(Nd)

j is estimated with the realizations {η̃`′j }`′=1,...,ν

defined by

η̃`
′

j =

Nd∑
κ=1

zκ,opt
j Ψκ(Ξj(θ

′
`′)) . (4.97)

The probability density function ofHj is estimated with the realizations {η`j}`=1,...,nr .
The total error is defined by

err(Nd) =
1

NKL

NKL∑
j=1

errj(Nd) . (4.98)

(ii) Calculation of the optimal value N opt
d . The optimal value N opt

d of Nd is
calculated using the formulation proposed in [95, 115], which is written as,

N opt
d = arg{min

Nd≥1
err(Nd)}. (4.99)
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4.3.5.4 Numerical aspects for solving the optimization problem

For each j fixed in {1, . . . , NKL}, the optimization problem defined by Eqs. (4.93)
and (4.94) is solved by a random search algorithm in the admissible set C j

ad. The
following parameterization of C j

ad in the neighborhood of the point zzzj is then in-
troduced,

zzzj = (1, 0, . . . , 0) ∈ C j
ad ⊂ RNd . (4.100)

The only non-zero components of zzzj is the first component z1
j = 1. The choice

of this point zzzj is justified by the fact that the admissible set C j
ad must be explored

around the Gaussian case. Since Ψ1(Ξj) = Ξj , Eq. (4.84) shows that H(Nd)
j is a

Gaussian random variable when z1
j = 1 and zκj = 0 for κ = 2, . . . , Nd. These

values define the point zzzj given by Eq. (4.100).

(i) Random search algorithm. This algorithm is deduced from the one pre-
sented in [118] based on the use of a parameterization of the Stiefel manifold.

(ii) Deterministic algorithm. Using the point zzzj defined by Eq. (4.100) as an
initial point, the maximum of the cost function defined by Eq. (4.94) is searched
under the constraint defined by Eq. (4.92). The optimization algorithm can be
chosen as the ”interior points” algorithm [14] with the nonlinear constraint de-
fined by Eq. (4.92), that is to say

∑Nd
κ=1(zκj )2 = 1. Gradient and Hessian of the

cost function (the log likelihood function) are computed numerically by the finite
difference methods.
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Chapter 5

Estimation of the equivalent static
forces

In this chapter, we present a probabilistic approach for estimating the equiva-
lent static forces that allow for reproducing the extreme value statistics of the
stochastic dynamical responses in structures submitted to unsteady pressure fields
induced by wind, when these equivalent static forces are statically applied to
structures. For estimating the equivalent static forces induced by wind dynamic
effects on structures, methods have widely been developed since the 70’s (see
[105, 24, 75, 73]) and have given rise to numerous works and applications [18,
19, 21, 42, 60, 62, 76, 98, 130, 145, 146, 144], and more recently to works that
can be found in [9, 52, 81, 125, 140, 8, 94]. These works introduce different levels
of approximations on the modal coordinates and the computation of their correla-
tions, on the probability laws and the extreme value statistics of the observation,
and on the observations chosen for computing the equivalent static forces. These
works are generally based on the following hypotheses:

• the joint probability law of the equivalent forces and of the observations at
a given time is Gaussian.

• the conditional probability density function of the equivalent forces, con-
ditioned by the observation, is derived from a Gaussian assumption and
is computed for an observation that is equal to the statistical mean of its
extreme values, which is calculated by using the gust loading factor for a
Gaussian process. Envelop methods are then used for estimating the equiv-
alent static loads.

• the linear dynamics of the structure is taken into account using a classical
reduced-order modal model.
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• the approaches used are of the analytical type, which is made possible given
the assumptions introduced.

Recently, correction terms have been introduced to take into account the non-
Gaussianity of the unsteady pressure field in order to compute the extreme value
statistics, using the orthogonal polynomial expansion method of the probability
density function (a method that had already been used in 1978 for analyzing the
wind effects on structures (see for instance [108]) have been revisited [10].
In this work, the probabilistic approach presented is based on methods already
proposed in the literature and previously referenced, but it is developed to over-
come the assumptions described above and thus fundamentally differs on the fol-
lowing points that are developed hereinafter.

• Stochastic process {P(t) , t ∈ [0, T ]} is non-Gaussian and this non-Gauss-
ianity is taken into account by computing the conditional probability den-
sity functions of RN -valued random vector Q(T ) conditioned by the fact
that Rmu-valued random vector UUU(T ) must belong to domain D ⊂ Rmu . If
a maximum observation is searched, this domain contains the mean value
Umax = (Umax,1, . . . , Umax,mu) such that, for j in {1, . . . ,mu}, Umax,j is
the mean value of Umax,j = maxt∈[0,T ] Uj(t). Similarly, if a minimum ob-
servation is searched, this domain contains Umin = (Umin,1, . . . , Umin,mu)
such that, for j in {1, . . . ,mu}, Umin,j is the statistical mean of Umin,j =
mint∈[0,T ] Uj(t).

• Equivalent static force is defined by the maximum likelihood principle tak-
ing into account the non-Gaussianity and the statistical dependence of the
random components. No envelop method is used.

• Non-Gaussian aspect is taken into account by the use of the polynomial
chaos expansion for which the coefficients are identified with the experi-
mental measurements, and not by computing corrective terms based on a
truncated orthogonal polynomial expansion of the non-Gaussian multidi-
mensional probability density function.

• Reduced-order model of the structure includes a quasi-static term for accel-
erating the convergence with respect to dimension N of the reduced-order
model.

• Taking into account the introduced hypotheses, the proposed approach is
essentially numerical, the analytical computations, which are possible for
the Gaussian case, can no longer be carried out.

• A given observation can be a vector and the conditioning event is, as we
have just pointed out before, UUU(T ) ∈ D ⊂ Rmu . For each given couple
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{UUUi(T ),Di} of observation, in which i ∈ {1, . . . ,mf} with mf the num-
ber of observations, the equivalent static force fffe,s,i with values in Rm is
estimated by using the method presented in this chapter. The set of equiv-
alent static forces can be defined by an algebraically free family of vec-
tors (principal equivalent static forces or principal static loads), denoted by
e1, . . . , eme with ei ∈ Rm and me ≤ mf. Under these conditions, each
equivalent static force fffe,s,i can be written as

fffe,s,i =
me∑
i′=1

f ii′ e
i′ . (5.1)

• The proposed approach will be developed for two cases

− the dynamic reduced-order model is used without taking into account
the quasi-static acceleration term,

− and the dynamic reduced-order model is used taking into account this
term.

5.1 Centering of domain D

Domain D ⊂ Rmu introduced in Section 2.3.2, which is associated with obser-
vation UUU(t) is transformed into a domain D c ⊂ Rmu of the centered observation,
denoted by U(t), which is such that

UUU(t) = u + U(t) , (5.2)

in which u is the vector in Rmu , which is computed by Eq. (2.45). Domain D c ⊂
Rmu is defined by

D c = {u ∈ Rmu | u = u + u ∈ D} . (5.3)

Under these conditions, for all t in [0, T ], the probability of the event {UUU(T ) ∈ D}
is equal to the probability of the event {U(T ) ∈ D c}

Proba{UUU(T ) ∈ D} = Proba{U(T ) ∈ D c} . (5.4)
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5.2 Estimation of the equivalent static force for a
given observation without taking into account
the quasi-static acceleration term in the reduced-
order model

For a given observation, as the equivalent static force is estimated without tak-
ing into account the quasi-static acceleration term, the reduced-order model only
depends on RN -valued random vector Q(T ) of the generalized coordinates. Tak-
ing into account Eq. (2.47), the equivalent static force, denoted by fffe,s ∈ Rm,
associated with observation UUU(t) defined by Eq. (2.42), is written as

fffe,s = f + fe,s , (5.5)

where f is the Rm-vector defined by Eq. (2.36). Without the static accelera-
tion term, [S c

N ] = [0] must be taken in Eq. (2.28), and under these conditions,
Eq. (2.49) is written as Fe(t) = [FQ

N ]Q(t). In this case, the part fe,s ∈ Rm of the
equivalent static force fffe,s is defined by

fe,s = [FQ
N ] qMV (5.6)

where qMV is the vector in RN , such that

qMV = arg{max
q∈RN

pQ(T ) |U(T )(q |U(T ) ∈ D c)} , (5.7)

in which pQ(T ) |U(T )(q |U(T ) ∈ D c) is the conditional probability density function
of random vector Q(T ) conditioned by non-Gaussian random vector U(T ) given
in domain D c ⊂ Rmu , and where U(T ) is the non-Gaussian Rmu-valued random
variable, which is written, taking into account Eq. (2.43) for t = T with [U oc

N ] =
[0], as

U(T ) = [φoN ] Q(T ) . (5.8)

As stochastic processes {Q(t), t ∈ [0, T ]} and {U(t), t ∈ [0, T ]} are the restric-
tion to [0, T ] of stationary stochastic processes {Q(t), t ∈ R} and {U(t), t ∈ R},
the conditional probability density function pQ(T ) |U(T ), which appears in the opti-
mization problem defined by Eq. (5.7), is independent of T , and is written as

pQ(T ) |U(T )(q |U(T ) ∈ D c) =

∫
Dc pQ(T ),U(T )(q,u)du∫

Dc pU(T )(u) du
, (5.9)

where pU(T ) is the probability density function on Rmu of non-Gaussian random
vector U(T ) such that

pU(T )(u) =

∫
RN
pQ(T ) ,U(T )(q,u)dq , (5.10)
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and where pQ(T ) ,U(T )(q,u) is the joint probability density function on RN × Rmu

of the dependent non-Gaussian random variables Q(T ) with values in RN and
U(T ) with values in Rmu . As the denominator of the right-hand side of Eq. (5.9)
is a constant, the optimization problem defined by Eq. (5.7) can be replaced by
the following one,

qMV = arg{max
q∈RN

∫
Dc

pQ(T ),U(T )(q,u) du} . (5.11)

In order to accelerate the convergence of the optimization problem defined by
Eq. (5.11) while considering only a reasonable number ν of realizations, we super-
impose the constraint on the vector U(T ) by introducing the following admissible
set for the values of Q(T ),

Cq = {q ∈ RN ; u ∈ D c} . (5.12)

Consequently, in Eq. (5.11), the maximization on q ∈ RN is replaced by the
maximization on q ∈ Cq. Using Eq. (2.43) and without taking into account the
quasi-static acceleration term, centered observation U at time T is written as,

U(T ) = [φoN ] Q(T ) . (5.13)

Let [B] be the matrix in Mmu,N(R) such that

[B] = [φoN ] . (5.14)

The constraint u ∈ D c introduced by Eq. (5.12) is expressed in term of q as
follows

[A] q ≤ d , (5.15)

in which [A] ∈M2×mu,N(R) and d ∈ R2×mu are such that

[A] =

[
−[B]
[B]

]
, d =

[
−D c

inf

D c
sup

]
, (5.16)

where D c
inf and D c

sup are the lower and the upper bounds of domain D c (see Sec-
tion 5.4.4 (iii-2) and Appendix A).

5.3 Estimation of the equivalent static forces for a
given observation taking into account the static
acceleration term in the reduced-order model

As explained in Section 5.2, the equivalent static force fffe,s ∈ Rm, associated with
observation UUU, is always given by Eq. (5.5), but now fe,s is modified. With the
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static acceleration term and for t = T , Eq. (2.49) is rewritten as,

Fe(T ) = [F c
N ] P(T ) + [FQ

N ]Q(T ) . (5.17)

This expression induces potential difficulties for computing the centered part fe,s

of the equivalent static force fffe,s, because of the presence of P(t), which is with
values in Rmexp wheremexp can be large (for instance of the order of 700 for a wind
tunnel test). We then propose below a method that allows for partially eliminating
these difficulties.

5.3.1 Estimation of the equivalent static force
The method consists in constructing fe,s such that,

fe,s = [F c
N ] pMV + [FQ

N ] qMV , (5.18)

where the vector pMV ∈ Rmexp and qMV ∈ RN are computed by solving the opti-
mization problem

(pMV,qMV) = arg{ max
(p,q)∈Rmexp×RN

∫
Dc

pP(T ),Q(T ),U(T )(p,q,u) du} , (5.19)

in which pP(T ),Q(T ),U(T )(p,q,u) is the joint probability density function on Rmexp×
RN ×Rmu of dependent random vectors P(T ), Q(T ), and U(T ), and where U(T )
is the non-Gaussian Rmu-valued random variable, which is written, taking into
account Eq. (2.43) for t = T

U(T ) = [U oc
N ] P(T ) + [φoN ] Q(T ) . (5.20)

5.3.2 Reformulation by introducing a statistical reduction of
random vector P(T )

As the dimension mexp of random vector P(T ) can be large enough and as P(T )
does not have the same magnitude order as Q(T ) and U(T ), the construction of
the joint probability density function pP(T ),Q(T ),U(T )(p,q,u) can induce numerical
difficulties and in addition, can induce significant numerical costs for solving the
optimization problem defined by Eq. (5.19).

5.3.2.1 Statistical reduction of random vector P(T )

A principal component analysis of random vector P(T ) is introduced, which al-
lows for normalizing and possibly, statistically reducing dimension. We then have

P(T ) ' p
T

+

NPCA∑
j=1

√
Λj Hj aj , (5.21)
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in which NPCA is the reduction order that is estimated by the method presented
hereinafter and such that NPCA ≤ mexp. The vectors a1, . . . , aNPCA are the eigen-
vectors associated with the NPCA largest eigenvalues Λ1 ≥ Λ2 ≥ . . . ≥ ΛNPCA

of the covariance matrix [CP(T )] of P(T ), which is estimated with the set {p` =
P(T ; θ`), ` = 1, . . . , ν} of realizations, which is also used for estimating the con-
stant empirical mean p

T
. The normalization of the eigenvectors aj is chosen so

that < aj, ak >= δjk. The random coordinates Hj are given by,

Hj =
1√
Λj

< (P(T )− p
T

), aj > , j = 1, . . . , NPCA . (5.22)

Let H = (H1, . . . , HNPCA) be the RNPCA-valued random variable. The ν realiza-
tions H(θ`) of H for ` = 1, . . . , NPCA are then computed by

Hj(θ`) =
1√
Λj

< (p` − p
T

), aj > , j = 1, . . . , NPCA . (5.23)

Remark. In order to not overburden the notations, we have kept the notations
of Chapter 4 concerning NPCA, Λj , and Hj , although the quantities are different.
Theoretically, P(T ) is a centered random vector (E{P(T )} = 0). Practically, as
nr can be not sufficiently large, the estimate p of E{P(T )} can be not close to 0.
Consequently, in order not to modify the realizations of P(T ) using the represen-
tation defined by Eq. (5.21), p

T
is kept (not set to zero).

The centered realizations p`c of P(T ) are defined (in the empirical mean sense) by

p`c = p` − p
T

, ` = 1, . . . , ν , (5.24)

where

p
T

=
1

ν

ν∑
`=1

p` . (5.25)

The estimate [Ĉν ] ∈ Mmexp(R) of the covariance matrix of Pc = P(T ) − p
T

is
calculated by

[Ĉν ] =
1

ν − 1

ν∑
`=1

p`c (p`c)
T . (5.26)

Let [w] be the matrix in Mmexp,ν(R) such that

[w] = [p1
c . . . p

ν
c ] , (5.27)

which allows Eq. (5.26) to be rewritten as,

[Ĉν ] =
1

ν − 1
[w] [w]T . (5.28)

Two cases are considered:
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(i) mexp ≤ ν. The eigenvalue problem of the positive symmetric matrix [Ĉν ] is
written as

[Ĉν ] [a] = [Λ] [a] , (5.29)

with [Λ]ij = Λjδij such that Λ1 ≥ . . . ≥ Λmexp and where the matrix [a] ∈
Mmexp(R) of eigenvectors is such that

[a]T [a] = [Imexp ] . (5.30)

Matrix [Ĉν ] can then be rewritten as,

[Ĉν ] =

mexp∑
j=1

Λj aj ajT . (5.31)

(ii) mexp > ν. Using the ”thin SVD” [50], matrix [w] can be written as

[w] = [a] [Σ] [V] , (5.32)

in which [a] ∈Mmexp,ν(R) is such that [a]T [a] = [Iν ], where [V] ∈Mν(R) is such
that [V]T [V] = [V] [V]T = [Iν ], and where [Σ] is the diagonal (ν × ν) real matrix
such that

[Λ] =
1

ν − 1
[Σ]2 , (5.33)

in which [Λ] is the diagonal (ν × ν) real matrix with Λ1 ≥ Λ2 ≥ . . .Λν ≥ 0.

Estimation of the error induced by the PCA for cases (i) and (ii). In both
cases, the reduction order NPCA is computed so that the error is smaller than a
given ε that is chosen sufficiently small,

errPCA(NPCA) = 1−
∑NPCA

j=1 Λj∑mmax

j=1 Λj

< ε , (5.34)

in which mmax = mexp for case (i) and mmax = ν for case (ii).

5.3.2.2 Computation of the equivalent static force

If the PCA of P(T ) leads us to a value ofNPCA that is much smaller thanmexp, then
NPCA � mexp. Consequently, there is an advantage to change the representation
and to reformulate the computation of the static equivalent force by the following
method. Vector fe,s ∈ Rm is estimated by

fe,s = [F c
N ] pMV + [FQ

N ] qMV , (5.35)
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in which pMV is given by

pMV ' p
T

+

NPCA∑
j=1

√
Λj η

MV
j aj . (5.36)

The vector ηMV = (ηMV
1 , . . . , ηMV

NPCA
) in RNPCA and the vector qMV ∈ RN are esti-

mated as the solution of the following optimization problem

(ηMV,qMV) = arg{ max
(η,q)∈RNPCA×RN

∫
Dc

pH,Q(T ),U(T )(η,q,u) du} , (5.37)

in which pH,Q(T ),U(T )(η,q,u) is the joint probability density function on RNPCA ×
RN × Rmu of random vectors H, Q(T ), and U(T ).

In order to accelerate the convergence of the optimization problem defined by
Eq. (5.37) while considering only a reasonable number ν of realizations, as previ-
ously, we superimpose a constraint on vector U(T ) by introducing the following
admissible set for the values of (H,Q(T )),

Cηq = {(η,q) ∈ RNPCA × RN ; u ∈ D c} . (5.38)

Then, in Eq. (5.37), the maximization on (η,q) ∈ RNPCA × RN is replaced by the
maximization on (η,q) ∈ Cηq. Using Eq. (2.43), the centered observation U at
time T is written as,

U(T ) = [U oc
N ] P(T ) + [φoN ] Q(T ) . (5.39)

The statistical reduction of P(T ) introduced in Section 5.3.2.1 is used (see Eq. (5.21)),

P(T ) ' p
T

+

NPCA∑
j=1

√
Λj Hj aj . (5.40)

Random vector U(T ) can be rewritten in the following form

U(T ) = uocT + [vocN ] H + [φoN ] Q(T ) , (5.41)

in which uocT ∈ Rmu is such that

uocT = [U oc
N ] p

T
, (5.42)

and where the matrix [vocN ] ∈ Mmu,NPCA(R) is such that, for i = 1, . . . ,mu and
j = 1, . . . , NPCA,

[vocN ]ij =

mexp∑
k=1

√
Λj [U oc

N ]ik a
j
k . (5.43)
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Matrix [vocN ] can be rewritten in the following form,

[vocN ] = [U oc
N ] [ã] , (5.44)

with
[ã]kj = ajk

√
Λj . (5.45)

Let u be the vector such that

u = uocT + [vocN ]η + [φoN ] q , (5.46)

and let [B] be the matrix in Mmu,NPCA+N(R) such that

[B] = [[vocN ] [φoN ]] . (5.47)

Therefore, the constraint u ∈ D c, introduced in Eq. (5.38), is expressed in term of
(η,q) as follows

[A]

[
η
q

]
≤ d , (5.48)

in which [A] ∈M2×mu,NPCA+N(R) and d ∈ R2×mu are defined by

[A] =

[
−[B]
[B]

]
, d =

[
uocT −D c

inf

D c
sup − uocT

]
, (5.49)

where D c
inf and D c

sup are the lower and the upper bounds of domain D c (see Sec-
tion 5.4.4 (iii-2) and Appendix A).

5.4 Numerical method for solving the optimization
problem for the two cases

Depending on the chosen case, the optimization problem defined by Eq. (5.11) for
the case without quasi-static term or by Eq. (5.37) for the case with quasi-static
term has to be solved. These two optimization problems are of the same type, they
are non-convex and require the estimation of the non-Gaussian joint probability
density function on a set that can be of large dimension, particularly for Eq. (5.37).

5.4.1 Proposed approach for solving the non-convex optimiza-
tion problem

The optimization algorithm used is the ”active set” without constraint [48] for
which the gradient and the Hessian can easily be analytically computed. The
construction of the initial point denoted by q0 ∈ RN for the problem defined by
Eq. (5.11), or the initial point denoted by (η0,q0) ∈ RNPCA × RN for the problem
defined by Eq. (5.37), is given in details in Appendix D.
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5.4.2 Construction of a vector basis for the equivalent static
forces

The equivalent static forces are assumed to be estimated for mf couples of obser-
vations {UUUi(T ),Di} with i = 1, . . . ,mf. For each couple {UUUi(T ),Di}, the equiv-
alent static force fffe,s,i ∈ Rm is estimated using the method previously presented.
The objective is the construction of a vector basis e1, . . . , eme with ei ∈ Rm and
me < mf of the vector subspace Rm of Rm, spanned by all the equivalent static
forces {fffe,s,i, i = 1, . . . ,mf}. Each equivalent static force fffe,s,i, which belongs to
Rm ⊂ Rm, is written as,

fffe,s,i =
me∑
i′′=1

f ii′′ e
i′′ . (5.50)

The construction of the vector basis {e1, . . . , eme} is classically performed using
the singular value decomposition of the matrix [fe,s] defined by

[fe,s] = [ fffe,s,1 . . . fffe,s,mf ] ∈Mm,mf(R) . (5.51)

The dimension me is less than or equal to mf and is defined by the rank of matrix
[fe,s],

me = rank [fe,s] , (5.52)

It should be noted that if me = mf, then the family {fffe,s,i, i = 1, . . . ,mf} is
algebraically free and this family is called the system of the principal equivalent
static forces. However, this vector basis is not orthonormal. The SVD is used for
orthonormalizing it as for the case for which me < mf. Let us now assume that

me ≤ mf . (5.53)

Let [e] be the matrix defined by

[e] = [e1 . . . eme ] ∈Mm,me(R) . (5.54)

By keeping only the me strictly positive singular values, the SVD of matrix [fe,s]
is written as,

[fe,s] = [e] [Σ] [d]T , (5.55)

in which [Σ] is the (me × me) positive-definite diagonal matrix, where [e] ∈
Mm,me(R) and [d] ∈Mmf,me(R) are the matrices such that

[e]T [e] = [Ime ] , [d]T [d] = [Ime ] . (5.56)

Let [f ] be the matrix in Mme,mf(R) such that

[f ]i′′i = f ii′′ , i = 1, . . . ,mf , i′′ = 1, . . . ,me , (5.57)
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in which f ii′′ are the coefficients introduced in Eq. (5.57). It can then be verified
that

[f ] = [Σ] [d]T . (5.58)

In these conditions:

• the system of the principal equivalent static forces is represented by the me

orthonormal vectors corresponding to the columns of matrix [e].

• the matrix [f ] of the coefficients on the vector basis [e] allows for generating
the equivalent static forces represented by matrix [fe,s] such that

[fe,s] = [e] [f ] . (5.59)

Remark. If mf < m, the SVD must be carried out with the ”thin SVD” algorithm
(see for instance [50]), which corresponds, for instance, to the ”economy size”
option in Matlab. The number of nonzero singular values with respect to the
numerical zero gives the value of me.

5.4.3 Estimation of the joint probability density function by
the non-parametric statistics

For the cases without the static acceleration term (Section 5.2) or with the static ac-
celeration term (Section 5.3), Eqs. (5.11) and (5.37) show that it is necessary to es-
timate the joint probability density function pQ(T ),U(T )(q,u) or pH,Q(T ),U(T )(η,q,u)
from ν independent realizations Q(T ; θ`), U(T ; θ`), and H(θ`) for ` = 1, . . . , ν,
of centered dependent non-Gaussian random vectors Q(T ), U(T ), and H.
The problem is therefore the following. Let V = (V1, . . . , Vn) be the Rn-valued
random variable defined on (Θ, T ,P) with the probability distribution PV(dv) =
pV(v) dv, for which ν independent realizations

v1 = V(θ1), . . . , vν = V(θν) , (5.60)

are available such that θ1, . . . , θν are in Θ. For v fixed in Rn, we want to estimate
the value p̂V(v) at point v of the PDF pV using the Gaussian kernel estimation
method in the nonparametric statistic framework. For j = 1, . . . , n, let m̂j and
σ̂2
j be the estimates of the mean and the variance of the real-valued second-order

centered random variable Vj , which are classically written as,

m̂j =
1

ν

ν∑
`=1

v`j , σ̂2
j =

1

ν − 1

ν∑
`=1

(v`j − m̂j)
2 , (5.61)
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with v` = (v`1, . . . , v
`
n). Using the modification [113] of the classical estimate

given by the Gaussian kernel estimation methode [13], the estimate p̂V(v) of pV(v)
is written as

p̂V(v) = cn ρV(v) , (5.62)

with ρV(v) the function defined by

ρV(v) =
1

ν

ν∑
`=1

exp

{
− 1

2ŝ2
n

n∑
j=1

1

σ̂2
j

(
ŝn
sn
v`j − vj)2

}
, (5.63)

with sn and ŝn the positive parameters defined by

sn =

{
4

ν(2 + n)

}1/(n+4)

, ŝn =
sn√

s2
n + ν−1

ν

, (5.64)

where sn is the Silverman multidimensional optimal bandwidth. Finally, cn is the
normalization constant, which is written as

cn =
1

(
√

2π ŝn)n σ̂1 × . . .× σ̂n
. (5.65)

5.4.4 Estimation of the cost functions for the optimization prob-
lems

For solving the optimization problems formulated in Sections 5.2 and 5.3, we
use the estimates of the probability density functions presented in Section 5.4.3.
These optimization problems (see Eqs. (5.11) and (5.37)) require the estimation
of the cost functions J1(q) and J2(η,q), with q in RN and η in RNPCA , which are
defined by

J1(q) =

∫
Dc

pQ(T ),U(T )(q,u) du , (5.66)

J2(η,q) =

∫
Dc

pH,Q(T ),U(T )(η,q,u) du . (5.67)

Let us assume that ν independent realizations

q` = Q(T ; θ`) , u` = U(T ; θ`) , η
` = H(θ`) , ` = 1, . . . , ν , (5.68)

have been generated for θ1, . . . , θν in Θ.

83



CHAPTER 5. ESTIMATION OF THE EQUIVALENT STATIC FORCES

(i) Expression of J1(q). Using Eqs. (5.62) to (5.65), J1(q) can be rewritten as,

J1(q) = c1,n,mu ×
1

ν

ν∑
`=1

I` × J`(q) , (5.69)

in which
n = N +mu , (5.70)

where c1,n,mu is a normalized constant that can easily be computed but that will
not be used. For all q in RN and for all ` = 1, . . . , ν, the positive-valued functions
J`(q) are defined by

J`(q) = exp

{
− 1

2ŝ2
n

N∑
α=1

1

σ̂2
α

(
ŝn
sn
q`α − qα)2

}
. (5.71)

For all ` = 1, . . . , ν, the real numbers I` are positive and defined by

I` =

∫
Dc

c̃mu exp

{
− 1

2ŝ2
n

mu∑
j=1

1

σ̃2
j

(
ŝn
sn
u`j − uj)2

}
du1 . . . dumu , (5.72)

in which
c̃mu =

1

(
√

2π ŝn)mu σ̃1 × . . .× σ̃mu
. (5.73)

In these equations, sn and ŝn are defined by Eq. (5.64). For α = 1, . . . , N and for
j = 1, . . . ,mu, the empirical variances σ̂2

α and σ̃2
j are calculated by

σ̂2
α =

1

ν − 1

ν∑
`=1

(q`α − m̂α)2 , σ̃2
j =

1

ν − 1

ν∑
`=1

(u`j − m̃j)
2 . (5.74)

with

m̂α =
1

ν

ν∑
`=1

q`α , m̃j =
1

ν

ν∑
`=1

u`j . (5.75)

(ii) Expression of J2(η,q). Using Eqs. (5.62) to (5.65), J2(η,q) can be rewrit-
ten as,

J2(η,q) = c2,n,mu ×
1

ν

ν∑
`=1

I` × J`(q)×K`(η) , (5.76)

in which
n = NPCA +N +mu , (5.77)
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where c2,n,mu is a normalized constant that can easily be computed but that will
not be used, and where J`(q) and I` are defined by Eqs. (5.71) and (5.72). For
all η in RNPCA and for all ` = 1, . . . , ν, the positive-valued functions K`(η) are
defined by

K`(η) = exp

{
− 1

2ŝ2
n

NPCA∑
j=1

1

σ2
j

(
ŝn
sn
η`j − ηj)2

}
. (5.78)

For all j fixed in {1, . . . , NPCA}, the empirical variance σ2
j of Hj is defined by

σ2
j =

1

ν − 1

ν∑
`=1

(η`j −mj)
2 , (5.79)

in which

mj =
1

ν

ν∑
`=1

η`j , (5.80)

and is such that σj = 1, taking into account the PCA of H that has been performed
in Section 5.3.2.1.

(iii) Computation of I` for ` = 1, . . . , ν. For ` fixed in (1, . . . , ν), the posi-
tive number I` defined by Eq. (5.72) cannot usually be computed by a numerical
quadrature. Two cases are considered.

(iii-1) Domain D c is non separable. The integral on D c is then estimated using
the Monte Carlo method and for that, Eq. (5.72) is rewritten as

I` = E{1Dc([σU ]G + m`
U)} , (5.81)

in which 1Dc(u) = 1 if u ∈ D c and = 0 if u /∈ D c, and where G is the Gaus-
sian centered Rmu-valued random variable whose covariance matrix is the identity
matrix. The matrix [σU ] is an (mu ×mu) diagonal matrix that is written as

[σU ]jj′ = δjj′ ŝn σ̃j . (5.82)

For ` fixed in (1, . . . , ν), the vector m`
U is in Rmu and is written as

m`
U = (

ŝn
sn
u`1, . . . ,

ŝn
sn
u`mu) . (5.83)

85



CHAPTER 5. ESTIMATION OF THE EQUIVALENT STATIC FORCES

(iii-2) Domain D c is separable. Domain D c can be written as

D c = Πmu
j=1D

c
j , D c

j = (D c
inf,j,D

c
sup,j) , (5.84)

and

D c
inf = (D c

inf,1, . . . ,D
c
inf,mu) , D c

sup = (D c
sup,1, . . . ,D

c
sup,mu) (5.85)

where the real bounds of D c
j (which can be infinity) are such that D c

inf,j < D c
sup,j

and the method for estimating these bounds is presented in Appendix A. The
computation of I` is explicit and is developed in Appendix E.

5.5 Comments about the software that has been de-
veloped

A general software written in Matlab language has been developed for computing
the static equivalent forces. The algorithms of all the methods presented in this
thesis have been implemented.
The inputs of this software are made up of:

• the parameters devoted to the general data, to the type of analyses per-
formed, to the signal processing, and to the outputs concerning prints and
plots.

• the realizations of the unsteady pressures that are measured in a wind tunnel
or that are simulated.

• the finite element model of the structure.

• the controlability matrix and the observability matrices for the structure.
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Chapter 6

Application to a simple structure
and experimental validation

The aim of this chapter is to present a validation of the proposed theory on a simple
structure on which experimental measurements have been carried out. Moreover,
analysis of convergence and robustness of the approach are presented, as well as
a study of the influence of the non-Gaussianity level.

6.1 Application description

This application is devoted to the Maine-Montparnasse Tower in Paris for which
measurements have been carried out [16, 77]. In the framework of the model
predictions with measurements, the structure is assumed to have a linear elastic
behavior. To calculate the response of this structure subjected to wind loads, the
computational model used is a finite element model of beam type. Since the at-
mospheric turbulence energy is concentrated in a frequency band smaller than 3
Hz, only the first two vibration modes of the structure have to be taken into ac-
count for computing the dynamical response. However, in order to ensure a good
convergence of the reduced-order model based on the use of only these first two
modes, quasi-static acceleration terms are taken into account. In this chapter:

• Finite element model of the structure is introduced and observations are
defined.

• For the experimental validation, a Gaussian model for the longitudinal ve-
locity field V(z, t) = v(z) + V (z, t) for z ∈ [zinf , zsup] ⊂ R+ and for t ∈ R
is chosen (as in [77]). The realizations of stochastic field {V (z, t)}(z,t) are
then constructed using the algorithm proposed in [103, 96].
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• Three models are introduced for generating the pressure field applied to the
structure. Each one is expressed using the velocity field V(z, t) = v(z) +
V (z, t):

− Model 1: The pressure field is an affine function of V and conse-
quently, is a Gaussian field. This model is used for the comparisons
related to the non-gaussianity analysis, but is not used for the experi-
mental validation.

− Model 2: The pressure field is a quadratic function of V and therefore,
is non-Gaussian. The non-gaussianity is relatively small for the exper-
imental value of the reference mean wind velocity V R for which the
measurements on the Maine-Montparnasse Tower were made. This
model is used for its experimental validation.

− Model 3: The pressure field is a nonlinear empirical function of V ,
specially introduced to analyze the non-Gaussian effects and conse-
quently, is not used for the experimental validation.

• The method that has been presented in this work is applied to compute the
equivalent static forces.

6.2 Computational model

6.2.1 Finite element model of the structure and observations
6.2.1.1 Finite element model of the structure

An orthonormal reference frame oxyz is considered, whose the origin is located at
the base of the Tower (at the foundations level), such that x-axis is perpendicular
to the largest tower parallel faces, y-axis is perpendicular to the smallest parallel
faces, and z-axis is vertical. We are interested in the bending of the Tower in the
plane xoz (see figure 6.1). The structure is modeled by a 2D linear Timoshenko
beam with variable bending inertia in xoz-bending mode. This 2D beam is dis-
cretized into 20 Timoshenko beam finite elements with two nodes (21 nodes over
the whole structure), with 3 degrees of freedom per node (63 DOFs over the whole
structure): displacement along ox, displacement along oz, and rotation around oy.
The width L of the largest parallel faces subjected to wind effects is 61.8 m, and
does not depend on z. The i-th FE has node i as the origin node and node i + 1
as the end node. Node 21 that is the end node of the 20-th FE corresponds to the
beam length that is H = 221.34 m. The flexibility of the foundation (raft) is taken
into account by an elastic connection for the rotation around y-axis of node 1.
Data related to this model are described in Section H.1 of Appendix H.
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Figure 6.1: FE model of the Maine-Montparnasse Tower.

6.2.1.2 Observations

The observations of the structure, which are used for computing the static equiva-
lent forces, are the following:

• Observation 1: shear force U1 in the section located at the origin of the 1-st
FE (node 1).

• Observation 2: bending moment U2 in the section located at the origin of
the 1-st FE (node 1).

• Observation 3: shear force U3 in the section located at the origin of the 13-th
FE (node 13).

• Observation 4: bending moment U4 in the section located at the origin of
the 13-th FE (node 13).

For i = 1, 2, 3, 4, Ui = ui + U i where ui is the mean value. The mean value
of the shear force for observation 1 and the mean value of the bending moment
for observation 2 (induced by the mean pressure) are simultaneously maximum.
The bending moment for observation 4 is maximum when the beam deformation
corresponds to the deformation of the second elastic mode.
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6.2.2 Stochastic model of the longitudinal wind velocity

At point z and at time t, the longitudinal wind velocity V(z, t) is written as

V(z, t) = v(z) + V (z, t) , (6.1)

where v(z) is the wind mean profile, which depends on z, and V (z, t) is the fluc-
tuations part at point z and at time t.

6.2.2.1 Mean wind profile [7, 25, 38, 107]

The model of the mean wind profile v(z) is written as

v(z) = V R kr log(
z − dr
z0

) , z ≥ z0 + dr ,

v(z) = 0 , z < z0 + dr ,

(6.2)

where

• V R is the reference mean wind velocity

• z0 is the roughness length

• kr is the terrain factor depending on the roughness length z0

• dr is the displacement height for wind generation.

The numerical values of the wind mean profile parameters are given in Sec-
tion H.2.1 of Appendix H.

6.2.2.2 Random field {V (z, t)}(z,t)

Over a period of about 10 minutes, the statistical fluctuations {V (z, t)}(z,t) of the
longitudinal velocity field is locally time stationary and is modeled by a stochas-
tic field indexed by t that is extended to R. Random field {V (z, t), z ∈ [z0 +
dr, H], t ∈ R} is a second-order, centered, time stationary stochastic process that
is assumed to be Gaussian. The cross-spectral density function SV (z, z′, ω) is de-
fined in Section H.2.2 and the power spectral density function SV (z, ω) is defined
in Section H.2.3 of Appendix H.
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6.2.2.3 Generator of realizations of random field {V (z, t)}(z,t)

Let z1, . . . , zmexp be the altitudes of the mexp = 17 points in which the pressure
is generated such that, for j = 1, . . . ,mexp, zj is the altitude of node j + 4. Let
{V(t), t ∈ R} be the Gaussian stationary Rmexp-valued stochastic process indexed
by R such that

V(t) = (V1(t), . . . , Vmexp(t)) , Vj(t) = V (zj, t) , j = 1, . . . ,mexp . (6.3)

Using the generator of realizations defined in Appendix F for a Gaussian sta-
tionary process, nr = 100 independent realizations {V(t, θ`), t ∈ [0, T ]} for
` ∈ {1, . . . , nr} of {V(t), t ∈ R} are calculated, in which T is defined in Chap-
ter 3.

6.2.2.4 Matrix-valued spectral density function of V

Let [SV(ω)] be the matrix-valued spectral density function of the stationary stochas-
tic process {V(t), t ∈ R}, such that

[RV(τ)] = E{V(t+ τ) V(t)T} =

∫
R
eiωτ [SV(ω)]dω . (6.4)

Figure 6.2 shows the graph of the function f 7→ ‖[SV(2πf)]‖F and the graph of
the corresponding function f 7→ ‖[ŜV(2πf)]‖F estimated using the periodogram
method with nr realizations (see Section 3.3.3 in which Pexp must be replaced
by V). This figure shows that the two curves are superimposed, which validates
the digital signal processing used for which the signal processing parameters are
given in Section H.3 of Appendix H.

Figure 6.2: Graphs of the Frobenius norm of the matrix-valued spectral density function
of {V(t)}t: Graph of f 7→ ‖[SV(2πf)]‖F (red thick regular solid line) and graph of
f 7→ ‖[ŜV(2πf)]‖F (black thin irregular solid line).
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6.2.3 Random pressure field model
According to Section 6.1, three models of the pressure field are considered.

• Model 1: the pressure P(z, t) is written as

P(z, t) =
1

2
ρ v(z)2 + ρ v(z)V (z, t) , (6.5)

and is thus a Gaussian field.

• Model 2: the pressure P(z, t), which corresponds to the dynamic pressure,
is written as

P(z, t) =
1

2
ρ(v(z) + V (z, t))2 , (6.6)

is weakly non-Gaussian for the value V R = 17 m/s retained for the experi-
mental comparison.

• Model 3: the pressure P(z, t) is empirically constructed as

P(z, t) =
1

2
ρ v(z)2 × (1 + 2

V (z, t)

v(z)
exp {4 V (z, t)

v(z)
}) , (6.7)

which is a strongly non-Gaussian field for the value V R = 17 m/s.

In these equations, ρ is the air density (kg/m3). For j = 1, . . . ,mexp, let Pj(t) =
P(zj, t). The Rmexp-valued process PPP(t) = (P1(t), . . . ,Pmexp(t)) is written as
PPP(t) = p + P(t) (see Eq. (2.34)) in which P(t) = (P1(t), . . . , Pmexp(t)). For
each one of these three models, the graphs of the power spectral density (PSD)
functions f 7→ SP1(2πf) and f 7→ SP17(2πf) of the components P1(t) and P17(t)
of stochastic process P (corresponding to nodes 5 and 21), are shown in Figures
6.3, 6.4, and 6.5.

Figure 6.3: Model 1: Graph of the PSD function f 7→ SP1(2πf) of P1(t) at node 5 (left)
and graph of the PSD function f 7→ SP17(2πf) of P17(t) at node 21 (right). Horizontal
axis in Hz and vertical axis in N2 m−4 s.
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Figure 6.4: Model 2: Graph of the PSD function f 7→ SP1(2πf) of P1(t) at node 5 (left)
and graph of the PSD function f 7→ SP17(2πf) of P17(t) at node 21 (right). Horizontal
axis in Hz and vertical axis in N2 m−4 s.

Figure 6.5: Model 3: Graph of the PSD function f 7→ SP1(2πf) of P1(t) at node 5 (left)
and graph of the PSD function f 7→ SP17(2πf) of P17(t) at node 21 (right). Horizontal
axis in Hz and vertical axis in N2 m−4 s.

6.3 Experimental measurements
The measurements that made by the CEBTP (see [16, 77]) on the Tower are the
following.

• The total static flexibility at node 21 (z = 221.34 m) along x-axis is equal to
0.2625 mm/Tf (this means that if a force of 1 tonne-force (9,810 Newton) is
applied at node 21 along x-axis, then the total displacement along this axis
is 0.2625 mm). This information has been used for updating the stiffness
model of the structure, in particular the value of the elasticity constant for
the rotation of the elastic connection at node 1.
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• The experimental eigenfrequency of the first mode is f exp
1 = 0.20 Hz.

• The experimental eigenfrequency of the second mode is f exp
2 = 0.92 Hz.

• The experimental damping rate of the first two modes are ξexp
1 = ξexp

2 =
0.00832.

• For the measured value V R = 17 m/s of the reference mean wind velocity,
the time responses have been measured for several sequences of 800 s con-
cerning the relative displacement along x-axis at the top of the Tower (the
relative displacement with respect to the frame linked to the raft). These
measurements are used in Section 6.5 for the model experimental valida-
tion.

6.4 Construction of the reduced-order model with
the quasi-static acceleration term

Using the method presented in Section 2.4.2 (ii), the reduced-order model of order
N in taking into account the quasi-static acceleration term is constructed. The
eigenfrequencies of the first two modes computed with the updated model are
f1 = 0.20 Hz and f2 = 0.93 Hz. These frequencies match with the experimental
feigenfrequencies given in Section 6.3. The graph of function N 7→ ‖ĥc,acc

N ‖L2(B),
defined by Eq. (2.32) is plotted in Figure 6.6 (left), for N = 1, . . . , 10. This figure
shows that the convergence of the reduced-order model is reached for N = 2
(the first two bending modes) that was expected. For N = 2, Figure 6.6 (right)
displays the graph of function f 7→ ‖ĥc,acc

N (2πf)‖2
M defined by Eq. (2.33).

Figure 6.6: Graph of function N 7→ ‖ĥc,acc
N ‖L2(B) (left) and, for N = 2, graph of

function f 7→ ‖ĥc,acc
N (2πf)‖2M (right).
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6.5 Experimental validation of the model

6.5.1 Objective of the validation

Let U1
d(t) = Y62(t) − Y3(t) × H be the relative displacement at node 21 (top of

the Tower) with respect to the frame linked to the raft that is in rotation around
y-axis, in which Y62(t) is the displacement at node 21 and Y3(t) is the rotation at
node 1. This relative displacement is written as U1

d(t) = u1
d + U1

d (t) in which u1
d

is the mean value. Model 2 is used, that is to say, pressure field PPP is weakly non-
Gaussian. The objective is validation of the computational model for the extreme
value statistics of U1

d (see Section 6.3).

6.5.2 Statistical reduction of the non-Gaussian centered pro-
cess {P(t), t ∈ [0, T ]}

Using the method presented in Section 4.1, the KL statistical reduction of pressure
field {P(t), t ∈ [0, T ]} is performed with nr = 100. Figure 6.7 (left) shows the
square root of the eigenvalues µj for j = 1, . . . , NKL of the eigenvalue problem
defined by Eq. (4.13). Error function NKL 7→ errKL(NKL) defined by Eq. (4.10) is
plotted in Figure 6.7 (right). For an error errKL = 10−3, we obtain NKL = 100.

Figure 6.7: Graph of j 7→ √
µj for j = 1, . . . , NKL (left) and graph of NKL 7→

errKL(NKL) related to the KL statistical reduction of {P(t), t ∈ [0, T ]} (right).

Therefore, nr realizations of random vector H with values in RNKL , for which its
components are defined by Eq. (4.21), are deduced from the nr generated realiza-
tions of {P(t), t ∈ [0, T ]}.
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6.5.3 Polynomial chaos expansion of non-Gaussian random vec-
tor H

Using the methodology presented in Sections 4.2 and 4.3, the PCE of non-Gaussian
random vector H is constructed. Figure 6.8 presents error function Nd 7→ err(Nd)
defined by Eq. (4.98) with Eq. (4.96). The convergence is reached for the degree
Nd = 4. The coefficients of the PCE of H are estimated according to the method
and the hypotheses presented in Section 4.3.5. The generator of independent re-
alizations of non-Gaussian process {P(t), t ∈ [0, T ]}, defined in Section 4.2.4, is
used for generating ν = 1,000 realizations.

Figure 6.8: Graph of error function Nd 7→ err(Nd) of the PCE of H.

6.5.4 Power spectral density function of process U1
d

Figure 6.9 shows the PSD function f 7→ SU1
d
(2πf) of centered observation U1

d (t)
estimated with ν = 1,000. This figure shows that there is a non negligible quasi-
static contribution in the frequency band [0, 0.12] Hz.

6.5.5 Probability density function, extreme values statistics of
U1
d, and experimental comparison

As the mean value u1
d is positive, then the worst case corresponds to the maximum

case (and not to the minimum case). Let U1
d,max = maxt∈[0,T ] U

1
d (t) be the max-

imum of U1
d (t) on [0, T ] and let U1

d,max = maxt∈[0,T ] U1
d(t) be the maximum of

U1
d(t) on [0, T ]. We consider the following extreme value statistics (mean value

and standard deviation):

• U1
d,max = E{U1

d,max} and σU1
d,max

= E{(U1
d,max − U1

d,max)2},

• U1
d,max = E{U1

d,max} and σU1
d,max

= E{(U1
d,max − U1

d,max)2} = σU1
d,max

.
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Figure 6.9: Graph of PSD function f 7→ SU1
d
(2πf) of observation U1

d estimated with
ν = 1,000 realizations. Horizontal axis in Hz and vertical axis in m2 s.

Let g+
d be the gust loading factor defined in Section G.1 of Appendix G, and

let g1
d,gauss be the gust loading factor defined in Section G.2 of Appendix G for the

Gaussian approximation. The extreme value statistics of U1
d are given in Table 6.1.

Observation u1
d U1

d,max σU1
d,max

U1
d,max

U1
d × 10−2 (m) 2.199 2.424 0.446 4.623

Table 6.1: Extreme value statistics of U1
d .

Experimental comparison. From Table 6.1,it can be deduced that U1
d,max/u

1
d =

(4.623×10−2)/(2.199×10−2) = 2.11, which matches with the experimental mea-
surements (see [16, 77]) that belong to the interval [1.9 , 2.06]. It should be noted
that gust loading factor g+

d = 2.866 obtain with the proposed stochastic model is
different from g1

d,gauss = 3.274 that is obtained with a Gaussian approximation.

Figure 6.10 shows the probability density function of each one of the random
variables U1

d , U1
d,max = maxt∈[0,T ] U

1
d (t), and U1

d,min = mint∈[0,T ] U
1
d (t), which are

estimated with ν = 1,000 realizations.
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Figure 6.10: Graph of u 7→ pU1
d
(u) of U1

d (black line, central curve), u 7→ pU1
d,max

(u)

of U1
d,max (blue line, right curve), and u 7→ pU1

d,min
(u) of U1

d,min (red line, left curve).
Horizontal axis in m.

6.6 Validation of the proposed method for the com-
putation of the equivalent static forces and con-
vergence analysis with respect to the number of
realizations

6.6.1 Framework of the equivalent static forces computation
For the validation of method that allows the equivalent static forces to be com-
puted and for the convergence analysis with respect to the number of realizations,
the following framework is chosen.

• Model 2 of the pressure field is used, that is to say, the pressure field PPP(t)
is weakly non-Gaussian for the value V R = 17 m/s of the reference mean
wind velocity.

• The reduced-order model is constructed taking into account the quasi-static
acceleration term.

• The observations for which the equivalent static forces are computed are U2

and U4.

• The domain D associated with U2 or U4 is separable.

• For j = 2 or j = 4, the lower and the upper bounds, D c
inf,j and D c

sup,j , are
directly defined by using the mean of the extreme values (see Section A.2
in Appendix A).
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6.6.2 Estimation of the equivalent static forces with the pro-
posed method

The equivalent static forces are computed by the method presented in Chapter 5.
For each observation, the couple (ηMV,qMV) is obtained as the solution of the op-
timization problem defined by Eq. (5.37). This couple allows for computing the
corresponding centered equivalent static force fe,s using Eq. (5.35).
In this section, we present the graphs related to the equivalent static forces fff2,e,s

and fff4,e,s computed with observations U2 and U4. The components of the equiva-
lent static forces along z-axis are zero. Figures 6.11 and 6.12 show the equivalent
forces along x-axis and the moment around y-axis.

Figure 6.11: Graphs of x-component (left) and y-moment component (right) of the
equivalent static force associated with observation U2 at each node of the FE mesh. Ver-
tical axis (left) in N and (right) in N m.

Figure 6.12: Graphs of x-component (left) and y-moment component (right) of the
equivalent static force associated with observation U4 at each node of the FE mesh. Ver-
tical axis (left) in N and (right) in N m.

It should be noted that the moment at node 1 (see Figures 6.11 (right) and 6.12 (right))
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corresponds to the reaction of the elastic connection for the rotation around y-
axis. It will be noted that the exterior moments are zero for the other DOFs.
Figures 6.11 (left) and 6.12 (left) show that the amplitude of x-component of the
equivalent forces at node 21 is smaller than the amplitude at node 20. This is due
to the fact that the wind effects surface associated with node 21 has an area (427.6
m2) that is smaller than the area (813.9 m2) associated with node 20.

6.6.3 Validation of the predicted equivalent static forces
In order to validate the proposed approach related to the prediction of the equiv-
alent static forces, for each observation UUU, the equivalent static observation uuue,s

is recomputed from the predicted equivalent static force associated with UUU, by
solving the static problem

uuue,s = [Ao] ye,s ,
where ye,s is the equivalent static displacement computed by

[K] ye,s = fffe,s .

For observations U2 and U4, the mean values u2 and u4 are negative. Therefore,
for these observations, the worst case corresponds to a minimum. For i = 2 or
i = 4, let ui,e,s be the equivalent static observation uuue,s associated with Ui, which
is such that ui,e,s = ui + ui,e,s. Let Ui

min = E{Ui
min} with Ui

min = mint∈[0, T ] Ui.
Let D i

sup be the upper bound of the domain associated with Ui. The numerical
values obtained for these variables are given in Table 6.2.

Observation ui Ui
min ui,e,s D i

sup

u2,e,s × 108 (N.m) −3.153 −6.503 −6.503 −6.503
u4,e,s × 108 (N.m) −0.739 −1.611 −1.611 −1.611

Table 6.2: Numerical values of the variables related to u2,e,s and u4,e,s.

The results presented in Table 6.2 validate the method proposed because ui,e,s is
equal to Ui

min for i = 1 and i = 4. It should be noted the the optimizer finds
as optimal value the mean value Ui

min because the input upper bound is D i
sup =

Ui
min and the probability density function for which the maximum likelihood is

searched, presents its maximum for a value slightly higher than D i
sup, due to the

dissymmetry of the non-Gaussian probability density function.

6.6.4 Principal equivalent static forces
Using the method presented in Section 5.4.2, an algebraic basis of the equivalent
static forces is constructed (principal equivalent static forces). The dimension of
the algebraic basis {e1, . . . , eme} is such that me ≤ mf = 4.
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6.6 Validation of the proposed method for the computation of the equivalent static forces
and convergence analysis with respect to the number of realizations

6.6.5 Analysis of the convergence with respect to the number ν
of realizations

In order to analyze the convergence of the stochastic model with respect to the
number ν of realizations, four cases are considered, which correspond to ν =
nr = 100 (the number of realizations used for the experimental validation) and to
ν equal to 1,000, to 10,000, and to 100,000. For i = 2 and i = 4, Figures 6.13
and 6.14 show the probability density functions of U i, U i

max = maxt∈[0,T ] U
i(t),

and U i
min = mint∈[0,T ] U

i(t) for the four values of ν. Figures 6.15 and 6.16 show
the convergence graphs for the means of the extreme values U i

max and U i
min as a

function of ν.

Figure 6.13: Graphs of the PDF of U2 (black line, central curve), U2
max (blue line, right

curve) and U2
min (red line, left curve) for ν = nr = 100 (upper left), ν = 1,000 (upper

right), ν = 10,000 (lower left) and ν = 100,000 (lower right). Horizontal axis in N m.
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Figure 6.14: Graphs of the PDF of U4 (black line, central curve), U4
max (blue line, right

curve) and U4
min (red line, left curve) for ν = nr = 100 (upper left), ν = 1,000 (upper

right), ν = 10,000 (lower left) and ν = 100,000 (lower right). Horizontal axis in N m.

Figure 6.15: Graph of the convergence of U2
max = E{U2

max} (left) and of U2
min =

E{U2
min} (right) as a function of ν. Vertical axis in N m.
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6.7 Analysis of the non-Gaussianity

Figure 6.16: Graph of the convergence of U4
max = E{U4

max} (left) and of U2
min =

E{U4
min} (right) as a function of ν. Vertical axis in N m.

These figures show that the convergence is reached for ν = 1,000. This signifies
that to correctly estimate the extreme values and the probability density functions,
ν = 1,000 generated realizations are sufficient.

6.7 Analysis of the non-Gaussianity
For ν = 1,000, the non-Gaussianity is performed by analyzing the gust loading
factors as a function of the three models of the pressure field. The results are given
in Table 6.3:

Observation
Model 1 Model 2 Model 3

ggauss g+ ' g− ggauss g+ g− ggauss g+ g−

U1 3.20 2.928 3.321 2.814 2.832 3.391 2.953 3.080
U2 3.264 2.941 3.264 2.812 2.830 3.283 2.617 2.672
U3 3.273 2.961 3.273 2.864 2.879 3.001 2.732 2.763
U4 3.316 3.034 3.317 2.932 2.938 3.389 2.809 2.841

Table 6.3: Gust loading factors of Ui for i = 1, 2, 3, 4.

For the three models of the pressure field, Table 6.3 presents the gust loading
factor ggauss, computed with the Gaussian hypothesis (see Section G.2 of Ap-
pendix G), and the gust loading factors g+ and g− computed with the non-Gaussian
approach (see Section G.1 in Appendix G). The analysis of these results show that,
even though model 1 is Gaussian, the values of ggauss are different from the values
of g+ ' g−. This difference comes from the fact that the probability distribu-
tion of the extreme values defined in Section G.2 of Appendix G is an asymptotic
expression based on a Poisonian distribution hypothesis of the point process of
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upcrossings by high levels (level goes to infinity) (see [77] pp. 136). This ex-
pression gives an overestimation of the gust loading factor with respect to the
statistical estimation of the extreme value statistics constructed from the realiza-
tions. These differences also remain for models 2 and 3 that are non-Gaussian.
It should also be noted that the gust loading factors are not the same for all the
observations (what was expected because the responses simultaneously depend on
the quasi-static response and on the dynamic response).
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Chapter 7

Application to a stadium structure
with wind tunnel pressure
measurements

The objective of this chapter is to present the estimation of the equivalent static
forces on the Nice stadium in France, which is a very complex structure, for which
the unsteady pressure measurements have been carried out in the boundary layer
wind tunnel at CSTB in Nantes [135] and for which the finite element of the roof
structure has been provided by CSTB.

7.1 Description of the roof structure in terms of dy-
namical properties

The structure is the roof of the Allianz Riviera stadium in Nice for which un-
steady pressure measurements have been performed in a boundary layer wind
tunnel [135]. For the wind velocity that is considered, the structure has a linear
elastic behavior. The responses of this structure subjected to the wind loads are
predicted by using the finite element model from CSTB. The cutoff frequency
of the pressure measurements performed in the wind tunnel is 1.38 Hz. Con-
sequently, the reduced-order model is constructed by using all the eigenmodes
whose eigenfrequencies belong to the frequency band of analysis, [0 , 1.38] Hz.
Therefore, the first 12 modes of the structure, which belong to the frequency band
[0 , 1.38] Hz are kept. The eigenfrequencies of the first 12 modes are, in Hz,
1.107, 1.118, 1.129, 1.133, 1.148, 1.186, 1.191, 1.240, 1.248, 1.264, 1.349, and
1.360. The 13-th eigenfrequency is 1.416 Hz that is outside the frequency band of
analysis. However, for such a complex three-dimensional structure without any
slender character, a reduced-order model that would be constructed by using only
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these 12 modes would not be converged at all. This is the reason why the quasi-
static acceleration terms are absolutely necessary and are taken into account in
the reduced-order model. If such quasi-static acceleration terms were not taken
into account, several thousands modes should be introduced for constructing the
reduced-order model because there are numerous beam local modes in the roof
structure. In this chapter,

• the finite element model of the structure is introduced and a set of observa-
tions are defined;

• the unsteady pressure field applied to the structure is measured in boundary
layer wind tunnel;

• the method presented in the previous chapters is applied to compute the
equivalent static forces associated with the set of observations.

7.2 Finite element model of the structure and set of
observations

7.2.1 Finite element model of the structure

The finite element model of the Allianz Riviera stadium roof has been provided
by CSTB. This FE model is given in an orthonormal reference frame oxyz, and
corresponds to the discretization of the roof structure by using finite elements of
truss and beam types, with two nodes by element. There are 3,656 nodes in the
FE model, with 6 degrees of freedom per node (3 displacements and 3 rotations),
which yields 21,936 DOFs. Figure 7.1 shows the finite element model of the roof
structure.

7.2.2 Observations

The structure zone chosen to observe the response of the roof structure is the light
blue part shown in Figure 7.1. The calculation of the equivalent static forces is
performed by using mf = 181 selected observations that are internal forces in
truss and beam elements. In order to limit the number of figures that will be
used for presenting the results, only four observations, numbered 144, 145, 146,
and 147, among the 181 observations, have been selected. These four observations
correspond to normal forces in truss elements, and consequently, each one is scalar
(then mui = 1) and is written Ui = ui + U i in which ui is the mean value. Figure
7.2 shows the geometry of the roof structure in the observed zone.
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7.2 Finite element model of the structure and set of observations

Figure 7.1: Finite element model of the roof structure (from CSTB).

Figure 7.2: FE model of the roof structure in the structure zone chosen to observe the
response.
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The displacements observed in this zone are x- and z-displacements of node 1,415
(see Figure 7.3 (left)), and node 3,571 (see Figure 7.3 (right)).

Figure 7.3: Location of node 1,415 (left) and location of node 3,571 (right) spotted by
red circles.

7.3 Boundary layer wind tunnel measurements
The wind tunnel tests have been carried out by CSTB [135]. For each inci-
dent wind direction analyzed in the wind tunnel, the unsteady pressure field ap-
plied to the roof structure has been measured with 720 pressure taps, from which
mexp = 348 differential unsteady pressures Pexp

1 (t), . . . ,Pexp
mexp

(t) between the in-
terior and exterior locations of the roof are defined as well as the associated con-
trolability matrix [Ac]. We introduce the experimental unsteady pressure vector
PPPexp(t) = (Pexp

1 (t), . . . ,Pexp
mexp

(t)). Only incidence 76o is presented in order to limit
the number of figures. The total duration, at scale 1, of the boundary layer wind
tunnel measurements is Ttot ' 8,900 s. The parameters of signal processing for
the experiments are defined hereinafter.

• Cutoff frequency, νc = 1.38 Hz.

• Sampling frequency, νe = 2.76 Hz.

• Sampling time step, ∆t = 0.36 s.

• Duration of the time window, T = 371 s.

• Number of independent experimental realizations, nr = 24.
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• Number of time steps in the time window, np = 1,024.

Figure 7.4 displays the model of the stadium roof in the boundary layer wind
tunnel.

Figure 7.4: Model of the roof of the Allianz Riviera stadium in the boundary layer wind
tunnel at CSTB in Nantes [135].

As explain in Section 3.3, we introduce the experimental centered unsteady pres-
sure Pexp(t) = PPPexp(t)−p in which p is defined by Eq. (3.11). As explain in Chap-
ters 3 and 4, the Rmexp-valued stochastic process {P(t), t ∈ [0 , T ]} is constructed
by generating ν > nr additional realizations with the PCE that is identified with
the nr experimental measurements {Pexp(t; θ`), t ∈ [0 , T ]}. In order to simplify
the notations, Pexp(t) is simply rewritten as P(t). For j equal to 140, 141, 144,
146, 152, and 155, that correspond to pressure taps located in the observed zone,
the graphs of the PSD functions of the experimental centered unsteady pressure
Pj is thus denoted by f 7→ SPj(2πf) and are shown in Figure 7.5. A brief analysis
has been carried out to optimize the choice of the number of time steps in the time
window. When np varies from 256 to 2,048, the number of experimental realiza-
tions nr goes from 96 to 12. The compromise that has been found for choosing
nr and np has been based on the following criteria. The number of experimental
realizations nr must be chosen in order to correctly estimate the coefficients of the
PCE of {P(t), t ∈ [0 , T ]}. The number of time steps np in the time window must
be chosen in order that the duration T be large enough for obtaining a sufficiently
stationary signal on T and also for obtaining a good frequency resolution. The
value np = 1,024 has therefore been retained, which gives nr = 24. From the
point of view of signal processing concerning stationarity and statistical estimates
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Figure 7.5: Graph of the PSD function f 7→ SPj (2πf) of the experimental Pj(t) for
j = 140, 141, 144, 146, 152, 155. Horizontal axis in Hz and vertical axis in N2 m−4 s.
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of extreme values, it would have been better if the experimental data basis had
allow for choosing np = 2,048 and nr = 100, what would lead us to multiplying
by 8 the time duration of wind tunnel tests.

7.4 Construction of the reduced-order model with
the quasi-static acceleration term

As explained in Section 7.1, it is necessary to take into account the quasi-static
acceleration term in the construction of the reduced-order model of the roof struc-
ture. The convergence analysis with respect to N of the reduced-order model is
performed by studying the graph of function N 7→ ‖ĥc,acc

N ‖L2(B) for N = 1 to 20
defined by Eq. (2.32), which is plotted in Figure 7.6 (left). Figure 7.6 (right) shows
the graph of function f 7→ ‖ĥc,acc

N (2πf)‖2
M for N = 12 where ‖ĥc,acc

N (2πf)‖2
M is

defined by Eq. (2.33). It can be seen that the convergence of the reduced-order
model is reached for N = 12.

Figure 7.6: Graph of function N 7→ ‖ĥc,acc
N ‖L2(B) (left) and graph of function f 7→

‖ĥc,acc
N (2πf)‖2M for N = 12 (right).

7.5 Generator of realizations for non-Gaussian cen-
tered process {P(t), t ∈ [0, T ]}

7.5.1 Statistical reduction of {P(t), t ∈ [0, T ]}
The Karhunen-Loève statistical reduction of pressure field {P(t), t ∈ [0, T ]} is
carried out with the nr = 24 experimental realizations. Figure 7.7 (left) dis-
plays the square root of the eigenvalues µj of the eigenvalue problem defined
by Eq. (4.13). Function NKL 7→ errKL(NKL) defined by Eq. (4.10) is plotted in
Figure 7.7 (right). Since nr = 24, the rank of the covariance operator of P is
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24 and consequently, the eigenvalues for which their rank is larger than 24 are
0. As 24 is relatively small value, the value NKL = 24 is retained. The nr re-
alizations of the random vector H with values in RNKL , whose components are
defined by Eq. (4.21), are computed using the nr experimental realizations of
{P(t), t ∈ [0, T ]}.

Figure 7.7: Graph of j 7→ √
µj for j = 1, . . . , NKL (left) and graph of NKL 7→

errKL(NKL) related to the KL-expansion of {P(t), t ∈ [0, T ]} (right).

7.5.2 Polynomial chaos expansion of random vector H

The PCE of random vector H is constructed by using the methodology presented
in Sections 4.2 and 4.3. Figure 7.8 gives the error function Nd 7→ err(Nd) defined
by Eq. (4.98) with Eq. (4.96). The convergence is reached for the degree Nd = 4.
The coefficients of the PCE of H are estimated according to the method presented
in Section 4.3.5.
For ν = 1,000, the independent realizations of non-Gaussian process {P(t), t ∈
[0, T ]} are generated by using the generator presented in Section 4.2.4.

Figure 7.8: Graph of error function Nd 7→ err(Nd) of the PCE of H.
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7.6 Probability density functions and power spectral density functions of displacements
and observations

7.6 Probability density functions and power spec-
tral density functions of displacements and ob-
servations

7.6.1 Probability density functions of observations

For ν = 1000 and for i = 144, 145, 146, 147, Figure 7.9 shows the PDF of U i,
U i

max = maxt∈[0 ,T ] U
i(t), and U i

min = mint∈[0 ,T ] U
i(t). The non perfect symmetry

of these PDFs is due to the non-Gaussian nature of the observations.

Figure 7.9: For i = 144, 145, 146, 147, graphs of the PDF of U i (black line, central
curve), U imax (blue line, right curve), and U imin (red line, left curve). Horizontal axis in N.

7.6.2 Power spectral density functions of displacements and
observations

For ν = 1,000, Figure 7.10 shows the PSD functions f 7→ SX1415
1

(2πf), f 7→
SX1415

3
(2πf), f 7→ SX3571

1
(2πf), and f 7→ SX3571

3
(2πf) of the centered dis-

placements at nodes 1415 and 3571 for DOFs 1 and 3. For ν = 1,000 and for
i = 144, 145, 146, 147, Figure 7.11 shows the PSD functions f 7→ SU i(2πf) of
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centered observation U i. These figures show that there is an important quasi-static
contribution in the frequency band [0 , 0.30] Hz.

Figure 7.10: For i = 1415, 3571 and for j = 1, 3, graph of the PSD function f 7→
SXi

j
(2πf) of displacement Xi

j . Horizontal axis in Hz and vertical axis in m2 s.

Figure 7.11: For i = 144, 145, 146, 147, graph of the PSD function f 7→ SU i(2πf) of
centered observation U i. Horizontal axis in Hz and vertical axis in N2 s.
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7.7 Equivalent static forces

In this section, we first present the estimation of the equivalent static forces and
then we present the validation of such an estimation.

7.7.1 Estimation of the equivalent static forces

By way of illustration, we limit the presentation of the estimation to the graphs
related to the equivalent static force fff146,e,s calculated for observation U146. The 6
components (3 forces and 3 moments) of this equivalent static force are shown in
Figure 7.12.

Figure 7.12: Graph of each one of the 6 components of the static equivalent force asso-
ciated with observation U146 at each node of the structure mesh. Vertical axis in N for the
forces and in N m for the moments.
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7.7.2 Validation of the estimation

Following the same approach as the one presented in Section 6.6.3, the equivalent
static observation are recomputed to validate the estimation of the equivalent static
forces. For i = 144, 145, 146, 147, the mean values ui are positive. Therefore,
for these observations, the worst case corresponds to a maximum. Let ui,e,s be the
equivalent static observation uuue,s associated with Ui, which is such that ui,e,s =
ui + ui,e,s. Let Ui

max = E{Ui
max} with Ui

max = maxt∈[0 ,T ] Ui(t). Let D i
inf be the

lower bound of the domain associated with Ui. The numerical values obtained are
given in Table 7.1. It can be seen in Table 7.1 that ui,e,s is effectively equal to Ui

min

for i = 144, 145, 146, 147.

Observation ui Ui
max D i

inf ui,e,s

U144 × 104 (N) 0.1715 1.031 1.031 1.031
U145 × 104 (N) 0.8324 3.298 3.298 3.298
U146 × 104 (N) 0.1740 2.395 2.395 2.395
U147 × 104 (N) 0.2993 11.30 11.30 11.30

Table 7.1: Numerical values related to ui,e,s for i = 144, 145, 146, 147.

7.7.3 Principal equivalent static forces

Using the method presented in Section 5.4.2, the algebraic basis {e1, . . . , eme} of
equivalent static forces is constructed for which the computed dimension is me =
37 that is much smaller than mf = 181. Therefore, each one of the equivalent
static force fffe,s,i can be rewritten as fffe,s,i =

∑me

i′=1 f
i
i′ e

i′ . Figure 7.13 shows the
x-, y-, and z-components of the first two principal equivalent static forces e1 and
e2 at each node of the FE mesh.

7.8 Gust loading factors

Table 7.2 presents the gust loading factor ggauss, computed with the Gaussian hy-
pothesis (see Section G.2 of Appendix G), and the gust loading factors g+ and
g− computed with the non-Gaussian approach (see Section G.1 in Appendix G)
for observation Ui with i = 144, 145, 146, 147. The values of ggauss are different
from the values of g+ and g− for the reasons given in Section 6.7. Note that the
gust loading factors are not the same for all the observations (what was expected
because the responses simultaneously depend on the quasi-static response and on
dynamical response related to the 12 modes used in the reduced-order model).
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7.8 Gust loading factors

Figure 7.13: For the first two principal static equivalent forces e1 and e2, graph of x-, y-,
and z-components at each node of the FE mesh.
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Observation ggauss g+ g−

U144 3.629 2.669 2.674
U145 3.583 3.036 3.015
U146 3.621 2.829 2.831
U144 3.582 2.803 2.796

Table 7.2: Gust loading factors of Ui for i = 144, 145, 146, 147.
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Chapter 8

Conclusions

8.1 Industrial results
• Development of a new probabilistic approach for estimating the equivalent

static forces that allow for reproducing the extreme value statistics of the
stochastic dynamical responses in complex structures submitted to unsteady
pressure fields induced by wind, when these equivalent static forces are
statically applied to structures. The pressure field induced by the wind is
measured in a boundary layer wind tunnel. The method proposed avoids the
use of the simplified hypotheses that are classically used in the literature.

• Development of a software written in Matlab language for computing the
equivalent static wind loads in a non-Gaussian probabilistic framework for
complex structures, for which the inputs are wind tunnel measurements of
the unsteady pressure field and a finite element model of the structure.

• Application to a simple structure, ”the Maine-Montparnasse Tower”, which
allows us to obtain an experimental validation of the methodology proposed
and of the software developed.

• Application to a complex structure, ”the roof of the Nice stadium”, for
which measurements have been carried out in the boundary layer wind tun-
nel at CSTB in Nantes.

8.2 Scientific results
• Development of a method that takes into account the non-Gaussianity of

the unsteady pressures, that constructs an estimation of the extreme value
statistics of the dynamical observations in the structure without using any
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approximation, that introduces quasi-static acceleration term in order to in-
crease the convergence rate of the reduced-order model with respect to the
number of elastic modes, and that computes the static equivalent loads in a
probabilistic framework by using a maximum principle of probability that
allows the phases between the quantities to be kept and consequently, that
avoids the use of responses envelopes.

• More precisely, the developments have consisted in

1. constructing a generator of independent realizations of a non-Gaussian
vector-valued stochastic process by using a Karhunen-Loève expan-
sion combined with a polynomial chaos expansion that is identified by
using the measurements. This vector-valued stochastic process corre-
sponds to the spatial discretization of the unsteady pressure field ap-
plied to the structure. This generator allows for reproducing the non-
Gaussianity of the unsteady pressure field and for generating a large
number of independent realizations in order to be able to estimate the
extreme value statistics and the probability density functions that are
involved in the methodology proposed for computing the equivalent
static forces.

2. constructing a reduced-order model with a quasi-static acceleration
term in time domain, which allows for accelerating the convergence of
the dynamical responses with respect to retained number of the elastic
modes.

3. constructing a new probabilistic method for the computation of the
equivalent static forces induced by the quasi-static and the dynamic
effects of wind on structures, preserving the non-Gaussianity, not in-
troducing the concept of a response envelope, and using a maximum
principle of probability.

4. performing an experimental validation on a simple example.

5. demonstrating the feasibility of the proposed approach through an ap-
plication to a complex structure for which unsteady pressures have
been measured.

8.3 Perspectives
The theory and the methodology developed and presented in this thesis have a
very general character but have been tested and validated only for scalar obser-
vations and with the use of a first approximation algorithm for estimating the
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PCE coefficients of the non-Gaussian unsteady pressure. The thesis presents a
complete mathematical development and the associated numerical methods for
vector-valued observations for which their domains are separable or not. The nat-
ural perspectives for extending the work presented would therefore be:

• to test the method for vector-valued observations with a domain that can be
separable or not separable.

• to test the general method that is proposed for the identification of the PCE
coefficients of the non-Gaussian unsteady pressure instead of using the first
approximation algorithm. For large dimensions (several tens or several hun-
dreds of uncorrelated non-Gaussian coordinates in the Karhunen-Loève ex-
pansion of the non-Gaussian pressure field), it will then be necessary to use
a partition method of the components of a non-Gaussian random vector as
the union of statistically independent groups of non-Gaussian random vec-
tors.





Appendices
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Appendix A

Parameterization of the domain D in
the case of a separable domain

Domain D and D c, which are assumed to be separable, are thus written as

D = D1 × . . .×Dmu , Dj = (Dinf,j,Dsup,j) ,

and
D c = D c

1 × . . .×D c
mu , D c

j = (D c
inf,j,D

c
sup,j) ,

with j = 1, . . . ,mu. The quantities Dinf,j and Dsup,j are the lower and the upper
bounds of Dj , which are defined either by a given level of probability or by a
direct definition. It should be noted that the definition of Dj by a given probability
level is difficult. Indeed, for a fixed level of probability, the values of bounds
depend on the number of realizations used to construct the statistical estimate of
the probability density function. If this number of realizations is not sufficiently
large, then the convergence is not good enough, and the values of bounds fluctuate
as a function of the number of realizations. It is therefore recommended to use the
direct definition defined hereinafter.

A.1 Definition of the lower and the upper bounds by
using a given level of probability

Observation UUU(t) with values in Rmu is given by Eq. (2.42),

UUU(t) = u + U(t) ,

where the component Uj(t) with j ∈ {1, . . . ,mu} is written as

Uj(t) = uj + Uj(t) .
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The following notations are introduced

Umax,j = max
t∈[0,T ]

Uj(t) , Umax,j = E{Umax,j} , (A.1)

Umin,j = min
t∈[0,T ]

Uj(t) , Umin,j = E{Umin,j} . (A.2)

Umax,j = uj + Umax,j , (A.3)

Umin,j = uj + Umin,j . (A.4)

It can then be deduced that

E{Umax,j} = uj + Umax,j , (A.5)

E{Umin,j} = uj + Umin,j . (A.6)

Depending on the sign of uj , the following parameterization of domain Dj asso-
ciated with Uj is defined as follows:

if uj ≥ 0 , then Dj = [E{Umax,j}+ αc,jσUmax,j
,+∞[ , (A.7)

if uj < 0 , then Dj =]−∞, E{Umin,j} − αc,jσUmin,j
] , (A.8)

in which

• σUmax,j
and σUmin,j

are the standard deviations of random vectors Umax,j and
Umin,j ,

• αc,j is a real parameter that allows for adjusting the domain, which corre-
sponds to a level Prj of probability.

The centered domain D c introduced in Section 5.1, for centered observation U(t) =
(U1(t), . . . , Umu(t)), is then defined as follows:

if uj ≥ 0 , then D c
j = [Umax,j + αc,j σUmax,j

,+∞[ , (A.9)
if uj < 0 , then D c

j =]−∞ , Umin,j − αc,j σUmin,j
] , (A.10)

in which Umax,j and σUmax,j
are the mean value and the standard deviation of

Umax,j , and Umin,j and σUmin,j
are the mean value and the standard deviation of

Umin,j . For j = 1, . . . ,mu, the parameter αc,j of centered domain D c
j is computed

as follows:

si uj ≥ 0 , proba{Uj(T ) > Umax,j + αc,j σUmax,j
} ≤ Prj , (A.11)

si uj < 0 , proba{Uj(T ) ≤ Umin,j − αc,j σUmin,j
} ≤ Prj , (A.12)



in which Prj is the probability level. Practically, Prj is given and the value
of coefficient αc,j is computed by Eq. (A.11) (or Eq. (A.12)). For informa-
tion, let Ug be the normalized random vector (centered and with a standard
deviation equal to 1). Using ν independent realizations of Ug, the estimate
of probability Pr = proba{Ug > j σUg}, for j = 1, . . . , 4, is given in Ta-
ble A.1 (numerical values obtained with the ksdensity function of Matlab).

ν 10,000,000 1,000,000 10,000 5,000 2,000 1,000 200
Pr(j = 1) 0.1587 0.1595 0.1677 0.1613 0.1564 0.1677 0.2179
Pr(j = 2) 0.0229 0.0231 0.0276 0.0239 0.0211 0.0276 0.0410
Pr(j = 3) 0.0014 0.0014 0.0013 0.0018 0.0026 0.0026 0.0046

Pr(j = 4)× 10−05 3.13 4.58 0.706 12.3 3.53 19.6 13.3

Table A.1: For j = 1, . . . , 4, Pr = proba{Ug > j σUg} as a function of ν.

A.2 Direct definition of the lower and the upper bounds
using the statistical mean of the maximum and the
minimum

For j = 1, . . . ,mu and considering the sign of uj , the values of the lower and the
upper bounds of the centered domain, D c

inf,j and D c
sup,j , are defined as follows:

if uj ≥ 0 , then D c
inf,j = Umax,j , D c

sup,j = αUmax,j , (A.13)

if uj < 0 , then D c
inf,j = αUmin,j , D c

sup,j = Umin,j , (A.14)

in which Umax,j is the mean value of Umax,j , Umin,j is the mean value of Umin,j ,
and where α is a given positive constant (for instance α = 1,000).





Appendix B

Numerical aspects for the convergence
analysis of the reduced-order model
with respect to its dimension

In this appendix, we present a numerical analysis for computing ‖ĥc,acc
N ‖L2(B) de-

fined by Eq. (2.32) in Chapter 2,

‖ĥc,acc
N ‖L2(B) =

√∫
B

‖ĥc,acc
N (ω)‖2

Mdω , (B.1)

in which
‖ĥc,acc

N (ω)‖2
M = tr{[ĥc,acc

N (ω)]∗ [M ] [ĥc,acc
N (ω)]} , (B.2)

which avoids the explicit construction of the full matrix [ĥc,acc
N (ω)] that is defined

(see Eq. (2.31)) by

[ĥc,acc
N (ω)] = [K]−1 [Ac] + {[ϕN ] [ĥN(ω)] [φcN ]− [ϕN ] [ĥN(0)] [φcN ]} . (B.3)

Matrix [ĥc,acc
N (ω)] is computed by

[ĥc,acc
N (ω)] = [A1] + [ϕN ]([ĥN(ω)]− [ĥN(0)])[φcN ] , (B.4)

in which the matrix [A1], which belongs to Mm,mexp(R), is the solution of the
matrix equation, [K] [A1] = [Ac].
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Appendix C

Direct and inverse fast Fourier
transform

The Fourier transform f̂(ω) of a scalar-valued function f(t) is defined by

f̂(ω) =

∫
R
e−iωt f(t) dt . (C.1)

If the support of function f is the closed interval [0 , T ], Eq. (C.1) is rewritten as

f̂(ω) =

∫ T

0

e−iωt f(t) dt , (C.2)

The Fourier transform defined by Eq. (C.2) is discretized by using the sampling
parameters defined in Chapter 3, which yields

f̂q̃ = ∆t

np−1∑
k̃=0

e−i(ωc+(q̃+ 1
2

)∆ω){t1+k̃∆t} fk̃ , (C.3)

in which k̃ = k − 1, where q̃ = q − 1, where fk̃ = f(tk̃ + 1), and where
f(ωq̃ + 1) = fq̃. Equation (C.3) is computed by using the fast Fourier transform,

f̂q̃ =

np−1∑
k̃=0

e
− 2iπ
np

q̃ k̃
f̃k̃ , f̃k̃ = ∆t e

−i(−π+ π
np

) k̃
fk̃ , (C.4)

for which the inverse fast Fourier transform is given by

fk̃ =
∆ω

2π
e
i(−π+ π

np
)k̃
f̃k̃ , f̃k̃ =

np∑
q̃=0

e
2iπ
np

q̃k̃
f̂q̃ . (C.5)
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Appendix D

Construction of the initial point of the
optimization problems defined in
Chapter 5

Two methods are proposed for constructing the initial point related to the opti-
mization problem, each one can be used for the case without quasi-static acceler-
ation term or with quasi-static acceleration term:

• initialization by using the extreme value statistics corresponding to the non-
Gaussian case.

• initialization by using the Gaussian approximation.

It is recommended to use the first method for which the numerical experiments
that have been done show that it is more efficient.

D.1 Initialization by using the extreme value statistics
corresponding to the non-Gaussian case

Let Z be the Rn-valued random variable with n = mw + mu, which is defined as
follows

Z = (W,U(T )) , (D.1)

in which W is the Rmw-valued random variable defined hereinafter.

1. If the quasi-static acceleration term is not taken into account, then

Z = (Q(T ),U(T )) ,

with n = N +mu. Consequently, W = Q(T ) and mw = N .
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2. If the quasi-static acceleration term is taken into account, then

Z = (H,Q(T ),U(T )) ,

with n = NPCA + N + mu. Consequently, W = (H,Q(T )) and mw =
NPCA +N .

In the following, we consider Z = (W,U(T )) with values in Rn such that n =
mw +mu. The correlation matrix of Z, denoted by [rZ] ∈Mn(R), is written as,

[rZ]jk =
E{(Zj − zj) (Zk − zk)}

σZj σZk
=

[CZ]jk
σZj σZk

, (D.2)

in which
σ2
Zj

= E{(Zj − zj)2} = [CZ]jj > 0 , (D.3)

where [CZ] ∈ Mn(R) is the covariance matrix of Z. The matrix representation of
Eq. (D.2) is

[CZ] = [σ] [rZ] [σ] , (D.4)

in which [σ] is the diagonal matrix in Mn(R) such that

[σ]jk = δjk σZj . (D.5)

Let {z` = (w`,u`), ` = 1, . . . , ν} be the ν independent realizations of Z. For con-
structing the initial point, we need to calculate the PCA of Z and consequently,
to solve the eigenvalue problem related to covariance matrix [CZ]. However, the
numerical values of the realizations of the components of W can be very different
from the one of the components of U(T ) (for instance several magnitude orders).
We thus introduce a numerical scaling consisting in solving the eigenvalue prob-
lem related to correlation matrix [rZ] instead of covariance matrix [CZ],

[rZ]Ψ̃α = µαΨ̃α . (D.6)

The eigenvectors are orthonormal,

< Ψ̃α, Ψ̃β >= δαβ , (D.7)

and the eigenvalues are such that µ1 ≥ µ2 ≥ . . . ≥ µn. If mu ≤ N , it can be
verified that at least mu eigenvalues are strictly positive. If mu > N , the number
of strictly positive eigenvalues can be less than N . This situation, which should
not happen, would correspond to an observability matrix of U(T ), which would
have at least two rows that would be proportional. Let [Ψ̃] = [Ψ̃1 . . . Ψ̃n] be the



matrix in Mn(R) of the eigenvectors, which is such that [Ψ̃] [Ψ̃]T = [Ψ̃]T [Ψ̃] =
[In]. Matrix [rZ] can be rewritten as,

[rZ] =
n∑

α=1

µαΨ̃
α Ψ̃αT . (D.8)

Substituting Eq. (D.8) in Eq. (D.4) yields

[CZ] =
n∑

α=1

µαΨ
αΨαT , (D.9)

with
Ψα = [σ] Ψ̃α ∈ Rn . (D.10)

It should be noted that {Ψα}α is a basis of Rn but is not orthonormal for the usual
Euclidean inner product of Rn. Otherwise, we have

< [σ]−2Ψα,Ψβ >= δαβ . (D.11)

The PCA of Rn-valued random variable Z that can be written as

Z = z +
n∑

α=1

ζα
√
µαΨ

α , (D.12)

where ζ1, . . . , ζn are the uncorrelated centered random variables (E{ζα} = 0)
with unit variances (E{ζα ζβ} = δαβ). For α = 1, . . . , n, we have

ζα =
1
√
µα

< [σ]−2(Z− z),Ψα > . (D.13)

For a question of inversibility, which will appear later, the approximation Z(mu)

of Z is introduced such that

Z(mu) = z +
mu∑
α=1

ζα
√
µαΨ

α . (D.14)

By introducing the decomposition Z(mu) = (W(mu),U(mu)(T )), the Rmw-valued
random variable W(mu) can be written as,

W(mu) = mW +
mu∑
α=1

ζα
√
µαΨ

α
W , (D.15)

and the Rmu-valued random variable U(mu)(T ) can be written as,

U(mu)(T ) = mU(T ) +
mu∑
α=1

ζα
√
µαΨ

α
U(T ) . (D.16)



By identification, it can be seen that the vector mW in Rmw and the vector mU(T )

in Rmu are such that

z = (mW,mU(T )) ∈ Rn = Rmw × Rmu , (D.17)

and the vector Ψα
W in Rmw and the vector Ψα

U(T ) in Rmu are such that

Ψα = (Ψα
W,Ψ

α
U(T )) . (D.18)

Let [ΦW] and [ΦU(T )] be the matrices in Mmw,mu(R) and Mmu(R) such that

[ΦW] = [Ψ1
W . . .Ψmu

W ] , [ΦU(T )] = [Ψ1
U(T ) . . .Ψ

mu
U(T )] . (D.19)

Equation (D.16) can be rewritten as

U(mu)(T ) = mU(T ) + [ΦU(T )] [µ ]1/2 ζ , (D.20)

in which [µ ] is the diagonal matrix in Mmu(R) such that [µ ]αβ = µα δαβ and
where ζ = (ζ1, . . . , ζmu) is a centered Rmu-valued random variable such that
E{ζ ζT} = [Imu ].

Let u0 be the vector given in Rmu (which will be constructed in Sections D.1.1
and D.1.2). Taking into account Eq. (D.20), the deterministic vector z0 in Rmu is
the solution of the following optimization problem,

z0 = min
z∈Rmu

‖u0 −mU(T ) − [ΦU(T )] [µ]1/2 z‖2 . (D.21)

As {Ψα}α is a basis of the space Rn, this implies that [ΦU(T )] is an invertible
matrix. Then the square matrix [ΦU(T )] [µ ]1/2 is invertible. The problem defined
by Eq. (D.21) is then equivalent to solve the linear equation in z,

[ΦU(T )] [µ ]1/2 z = u0 −mU(T ) , (D.22)

which has a unique solution z0. We formally write,

z0 = ([ΦU(T )] [µ ]1/2)−1 (u0 −mU(T )) . (D.23)

Eq. (D.15) is rewritten as,

W(mu) = mW + [ΦW] [µ ]1/2 ζ . (D.24)

The initial value w0 ∈ Rmw is defined by

w0 = mW + [ΦW] [µ ]1/2 z0 , (D.25)

in which z0 is defined by Eq. (D.23).



D.1.1 Construction of u0 in Rmu: First method

For j = 1, . . . ,mu, let `0 be the vector in Rmu defined as follows:

if uj ≥ 0 , then `0,j = arg{ max
`∈{1,...,nr}

Uj(T ; θ`)} , (D.26)

if uj < 0 , then `0,j = arg{ min
`∈{1,...,nr}

Uj(T ; θ`)} . (D.27)

For j = 1, . . . ,mu, let r0 be the vector in Rmu defined by

r0,j = Uj(T ; θ`0,j) . (D.28)

Let j0 be such that
j0 = arg{ max

j∈{1,...,mu}
|r0,j|} . (D.29)

Consequently, u0 in Rmu is given by

u0 = U(T ; θ`0) , `0 = `0,j0 . (D.30)

D.1.2 Construction of u0 in Rmu: Second method

For j = 1, . . . ,mu, vector u0 in Rmu is defined as follows

if uj ≥ 0 , then u0,j = Umax,j , (D.31)

if uj < 0 , then u0,j = Umin,j . (D.32)

It should be noted that the second method must preferably be used instead of
the first one when the lower and the upper bounds of the domain associated with
observation U are defined by the method described in Section A.2 of Appendix A.

D.2 Initialization by using the Gaussian approximation

For constructing the initial point corresponding to the Gaussian approximation
and in order to keep the same algorithm for the Gaussian case with the non-
Gaussian one, we need to generate νgauss

sim independent realizations P`′gauss defined
by Eq. (4.23) using Eqs. (4.2) and (4.17) adapted to the Gaussian case. Taking
Nd = 1, the normalized Hermite polynomial Ψ1(Ξ) = Ξ represents the normal-
ized Gaussian random variable. Therefore, random vector H used in Eq. (4.2), for
which the components {Hj}j=1,...,NKL are given by Eq. (4.84), is a Gaussian vector.
Using the method proposed in Section 4.3, the νgauss

sim independent realizations η̃`′j



of Hj that we have to generate for j ∈ {1, . . . , NKL} and for `′ ∈ {1, . . . , νgauss
sim },

are computed by
η̃`
′

j = ψ1(Ξj(θ
′
`)) . (D.33)

The corresponding realizations, {P`′gauss}`′=1,...,ν
gauss
sim

, are thus computed by

P`′gauss =

NKL∑
j=1

√
µj η̃

`′

j bj , (D.34)

where µj and bj are given by Eqs. (4.28) to (4.32). The independent realizations
of the Gaussian generalized coordinates Qgauss(t) are computed using the method
described in Section 3.4.2.

D.2.1 Case without quasi-static acceleration term

Using Eq. (5.8), the vector of the Gaussian observation Ugauss(T ) is written as

Ugauss(T ) = [φoN ] Qgauss(T ) , (D.35)

in which [φoN ] is defined by Eq. (2.40). The initial point q0 ∈ RN for the prob-
lem defined by Eq. (5.11) is the solution of the optimization problem related to a
Gaussian joint probability density function,

q0 = arg{max
q∈RN

∫
Dc

pQgauss(T ),Ugauss(T )(q,u) du} . (D.36)

D.2.2 Case with quasi-static acceleration term

Using Eq. (5.20), the Gaussian observation vector Ugauss(T ) is written as

Ugauss(T ) = [U oc
N ] Pgauss(T ) + [φoN ] Qgauss(T ) , (D.37)

where [U oc
N ] is defined by Eq. (2.41). The realizations of random vector Hgauss

with values in RNPCA are computed using Eq. (5.23) and the realizations of
Pgauss(T ) are computed by using Eq. (5.21) that is rewritten as

Pgauss(T ) ' p
T

+

NPCA∑
j=1

√
Λj Hgauss,j aj . (D.38)

For the optimization problem defined by Eq. (5.37), the initial point (η0,q0) ∈
RNPCA×RN is the solution of the optimization problem related to a Gaussian joint
probability density function,

(η0,q0) = arg{ max
(η,q)∈RNPCA×RN

∫
Dc

pHgauss,Qgauss(T ),Ugauss(T )(η,q,u) du} . (D.39)



Appendix E

Algebraic and numerical
considerations to evaluate the cost
functions for a separable domain

Taking into account Eq. (5.84), integral I` given by Eq. (5.72) can be rewritten as

I` = Πmu
i=1

∫ Dc
sup,i

Dc
inf,i

1√
2π ŝn σ̃i

exp

{
− 1

2ŝ2
n

1

σ̃2
i

(
ŝn
sn
u`i − ui)2

}
dui , (E.1)

The term under the integral is the expression of a probability density function
pUi(ui) of a Gaussian random variable Ui with the mean value ŝn

sn
u`i and the vari-

ance ŝ2
n σ̃

2
i . For i fixed in {1, . . . ,mu}, let ξi be the normalized Gaussian random

vector (E{ξi} = 0, E{ξ2
i } = 1),

ξi =
1

ŝn σ̃i
(Ui −

ŝn
sn
u`i) . (E.2)

Let αi and βi be the parameters such that,

αi =
1

ŝn σ̃i
(D c

inf,i −
ŝn
sn
u`i) and βi =

1

ŝn σ̃i
(D c

sup,i −
ŝn
sn
u`i) . (E.3)

Consequently, integral I` is rewritten as

I` = Πmu
i=1(Fξi(βi)− Fξi(αi)) , (E.4)

in which Fξi is the cumulative distribution function of the Gaussian random vari-
able ξi.
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Appendix F

Generation of realizations of a
Gaussian vector-valued process

For the first application devoted to Maine-Montparnasse Tower presented in Chap-
ter 6, we need a generator of independent realization for a Gaussian vector-
valued stochastic process. In this appendix, the extension proposed in [96] of
Shinozuka’s method [103] is used. The centered vector-valued stochastic pro-
cess that models the longitudinal wind velocity {V(t), t ∈ [0, T ]} with V(t) =
(V1(t), . . . , Vmexp(t)), is the restriction to interval [0 , T ] of a Gaussian, stationary,
second-order, centered, and mean-square continuous stochastic process indexed
by R with values in Rmexp . It is assumed that there is a positive-definite Hermitian
matrix-valued spectral density function [SV(ω)] of {V(t), t ∈ R}. For all fixed ω,
the Cholesky decomposition of matrix [SV(ω)] is written as

[SV(ω)] = [L (ω)] [L (ω)]∗ , (F.1)

in which [L (ω)] ∈ Mmexp(C) is a lower triangular complex matrix. Using the
generator, nr independent realizations {V(t, θ`), t ∈ [0, T ]} for ` = 1, . . . , nr
of {V(t), t ∈ R} are constructed, such that, for all k = 1, . . . , np and for all
j = 1, . . . ,mexp,

Vj(tk; θ
`) '

√
2∆ω Re

{
exp(−iπ(1− 1

np
)(k − 1)) Ṽj(tk; θ

`)

}
, (F.2)

with

Ṽj(tk; θ
`) =

np∑
q=1

V̂j(ωq; θ
`) exp(

2iπ

np
(k − 1)(q − 1)) , (F.3)

in which ∆ω is the frequency step defined by Eq. (3.8) and where, for q =
1, . . . , np and for all j and j′ in {1, . . . ,mexp}, we have
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V̂j(ωq; θ
`) =

mexp∑
j′=1

[L (ωq)]jj′ [Γ(θ`)]j′q , (F.4)

with
[Γ(θ`)]j′q =

√
− log[U (θ`)]j′q exp(2iπ[Ũ (θ`)]j′q) , (F.5)

in which [U (θ`)] and [Ũ (θ`)] are realizations of random matrices with values in
Mmexp,np(R) whose all their entries are independent random variables that are uni-
form on [0, 1] (the two random matrices are independent from all the other random
variables used in the formulation and for each one of these random matrices all
the entries are independent). Consequently, {V(t; θ`), t ∈ [0, T ]}`=1,...,nr are the
nr independent realizations of Gaussian process {V(t), t ∈ [0, T ]}.



Appendix G

Gust Loading Factor

The notion of gust loading factor is not used in the methodology proposed for
computing the equivalent static forces. Nevertheless, the gust loading factors of
the responses are computed as a postprocessing from the direct estimate of ex-
treme value statistics in order to compare the values obtained with respect to the
common values that are well known for this type of quantity.

G.1 Calculation of the gust loading factor from the di-
rect extreme-value-statistics estimates for the gen-
eral non-Gaussian case

Let A(t) = a+A(t) be the stationary real-valued stochastic process (for instance
A(t) = {Uj(t) or Yk(t)}) such that

a = E{A(t)} , E{A(t)} = 0 . (G.1)

Let Amax be the random maximum and let Amin be the random minimum of A(t)
on [0, T ],

Amax = max
t∈[0,T ]

A(t) = a+ max
t∈[0,T ]

A(t) , (G.2)

and
Amin = min

t∈[0,T ]
A(t) = a+ min

t∈[0,T ]
A(t) . (G.3)

For a given duration T , let g+ and g− be the gust loading factors for the maximum
and for the minimum on [0 , T ] of stochastic process A, which are defined by the
following equations

E{Amax} = a+ g+ σA , (G.4)

E{Amin} = a− g− σA , (G.5)
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in which σA is the standard deviation of the centered random variable A(t), which
is equal to the standard deviation σA of the random vector A(t), these standard
deviations being independent of t. It can be deduced that

g+ =
E{Amax} − a

σA
=
E{Amax}

σA
, (G.6)

g− =
−E{Amin}+ a

σA
=
−E{Amin}

σA
, (G.7)

in which
Amax = max

t∈[0,T ]
A(t) , Amin = min

t∈[0,T ]
A(t) . (G.8)

G.2 Calculation of the gust loading factor using a
Gaussian approximation and the usual asymptotic
hypothesis

Let us assume that the real-valued stochastic process {A(t), t ∈ R} is Gaussian,
second-order, centered, stationary, and satisfying additional technical hypotheses
[77], which are not given here. For a given duration T , it is assumed that the
point process of upcrossings of level a has an asymptotic Poisson distribution.
Under these conditions, the cumulative distribution function, FAmax(a), ofAmax =
maxt∈[0,T ] A(t), is written as

FAmax(a) = P (Amax ≤ a) =

{
exp{−µ(a)} if a > 0

0 if a ≤ 0
, (G.9)

where µ(a) is the mean number of upcrossings by level a of stochastic process
A on [0 , T ], which, for a stationary Gaussian stochastic process, is given by the
following Rice formula,

µ(a) = ν T exp{− a2

2σ2
A

} , (G.10)

in which ν is called the apparent frequency that is given by

ν =
1

2π

σȦ
σA

, (G.11)

where σA is the standard deviation of A(t) and where σȦ is the standard deviation
of the mean-square derivative Ȧ(t) of A(t) at time t. The gust loading factor for
the maximum, denoted by ggauss, is thus defined by

ggauss =
E{Amax}

σA
, (G.12)



where E{Amax} is such that

E{Amax} =

∫ +∞

0

a pAmax(a) da =

∫ +∞

0

a d(FAmax(a)) . (G.13)

In this thesis, the right-hand side of Eq. (G.13) is computed by using the centered
trapezoidal rule and not by introducing an additional approximation that allows
for obtaining the very classical formula [32]

ggauss =
√

2 log(νT ) +
γ√

2 log(νT )
, (G.14)

in which γ ' 0.5772 is the Euler constant.





Appendix H

Parameters and models for the
Maine-Montparnasse Tower
application

H.1 Finite element model

The properties of the Timoshenko beam finite element of the computational model
of the Maine-Montparnasse Tower are listed in Table H.1.

Element 1 2 3 4 5 6 7 8 9 10
length (m) 10 10 12.5 12.5 8.75 8.75 8.75 8.75 11.25 11.25

linear mass ×103 (Kg/m) 2550 2550 470 470 470 470 470 470 470 470
bending inertia (m4) 19200 19200 4525 4525 3574 3574 3574 3574 2682 2682

Element 11 12 13 14 15 16 17 18 19 20
length (m) 11.25 11.25 11.25 11.25 11.25 11.25 12.5 12.5 12.5 13.84

linear mass ×103 (Kg/m) 470 470 470 470 470 470 470 470 470 470
bending inertia (m4) 2682 2682 1744 1744 1744 1744 980 980 980 980

Table H.1: Properties of the Timoshenko beam finite element of the computational model
of the Maine-Montparnasse Tower.

• Young’s modulus E = 4.3× 1010 Pa

• Poisson’s ratio: ν = 0.3

• Shear correction factor: ks = 5/6

• Shear modulus: G = E/2(1 + ν) Pa

• Width of the Tower along the axis oy = 40

• Section area: A = 40× 61.8 m2
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• Constant of elasticity of the rotation around oy of the foundation at node 1:
9.0909× 1012 N × m/rad

• Moment of inertia for the rotation around oy of the foundation at node 1:
1.4× 1011 Kg × m2 /rad

These last two values have been updated in the finite element model in order to
obtain both the flexibility that was measured at the top of the Tower and the two
first eigenfrequencies that were measured [16, 77].

H.2 Model of the longitudinal velocity field of wind

Hereinafter, we describe a stochastic model of the the longitudinal velocity field
{V(z, t)}(z,t) in terms of its mean profile, {v(z)}z, and of its centered statistical
fluctuations {V (z, t)}(z,t).

H.2.1 Parameters of the mean wind profile [77]

The Maine-Montparnasse Tower is located in the roughness zone of class V (city).
The numerical values of the parameters related to the mean wind profile defined
by Eq. (6.2) are:

• the reference mean wind velocity: V R = 17 m/s.

• the roughness length: z0 = 2.5 m.

• the terrain factor kr depending on the roughness length z0: kr = 0.292.

• the displacement height for the wind generation: dr = 35.5 m.

H.2.2 Cross-spectral density function of {V (z, t)}(z,t)
The cross-spectral density function of stochastic field {V (z, t)}(z,t), which is sta-
tionary in t, is given (see for instance [7, 25, 30, 38, 77, 107]) by

SV (z, z′, ω) =
√
γ2
V (z, z′, ω)SV (z, ω)SV (z′, ω) , (H.1)

where γ2
V (z, z′, ω) is the spatial coherence function, which is written as√

γ2
V (z, z′, ω) ' C × exp (− |ω|

2πV R

Cz|z − z′|) . (H.2)



The constant Cz is equal to 6 and the constant C is computed to take into account,
in a spatial meaning, the lateral fluctuations according to the coordinate y, which
are not taken into account in the model. By using the following spatial coherence
in y and z,√

γ2
V(z, z′, ω) = exp (− |ω|

2πV R

√
C2
y (y − y′)2 + C2

z (z − z′)2) , (H.3)

in which Cy = Cz = 6, the constant C can be estimated by

C × L2 =

∫ L

0

∫ L

0

exp (− |ω1|
2πV R

Cy|y − y′|)dy dy′ . (H.4)

For V R = 17 m/s, ω1 = 2π × 0.2 rad/s, and L = 61.8 m, the calculation of C
given by Eq. (H.4) yields C = 0.36.

H.2.3 One-sided power spectral density function of the longitudi-
nal velocity field {V (z, t)}t

The Harris model is used [25, 55, 77, 107]. For all fixed z, the one-sided power
spectral density function SV (z, ω) of process {V (z, t)}t that is stationary in t, is
then given, for ω ≥ 0, by

2ω SV (z, ω)

σ2
V (z)

= λ
f

(2 + f 2)5/6
, (H.5)

in which λ is a constant taken equal to 0.6, where the reduced frequency f is
independent of z and is given by

f =
1800ω

2πV R

. (H.6)

For fixed z and fixed t, the standard deviation of the real random variable V (z, t)
is independent of t (stationary) and is taken independent of z,

σV (z) = KV R , (H.7)

in which K is a constant taken equal to 0.234.

H.3 Parameters of signal processing

The parameters for the time and frequency samplings for digital signal processing
are the following.



• Dimension of random vector PPP(t): mexp = 17.

• Cutoff frequency: νc = 1.37 Hz and ωc = 8.6 rad/s.

• Sampling frequency: νe = 2.64 Hz.

• Sampling time step: ∆t = 1/νe = 0.365 s.

• Duration of the time window: T ' 748 s.

• Number of time steps in the time window: np = 2048.

H.4 Construction of the controlability matrix

In this application, for all fixed t, the time-independent controlability matrix de-
fined by Eq. (2.7), which allows for transforming the vector PPP(t) of pressures into
the vector F(t) of external nodal forces,

F(t) = [Ac]PPP(t) , t ∈ R , (H.8)

is constructed by considering a uniform pressure along each finite element and
consequently, the nodal force at each node is equal to this pressure multiplied by
the area subjected to wind effects.
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[10] Blaise N, Denoël V. Adjusted equivalent static wind loads for non-gaussian
linear static analysis. In 14th International Conference on Wind Engineer-
ing, Porto Alegre, Brazil, June 21-26 2015.

151



[11] Blatman G, Sudret B. An adaptive algorithm to build up sparse polyno-
mial chaos expansions for stochastic finite element analysis. Probabilistic
Engineering Mechanics, 25(2):183–197, 2010.

[12] Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based
on least angle regression. Journal of Computational Physics, 230(6):2345–
2367, 2011.

[13] Bowman AW, Azzalini A. Applied Smoothing Techniques for Data Analy-
sis. Oxford University Press, Oxford, 1997.

[14] Byrd RH, Hribar ME, Nocedal J. An interior point algorithm for large-
scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–
900, 1999.

[15] Carlin BP, Louis TA. Bayesian Methods for Data Analysis. Chapman &
Hall / CRC Press, Boca Raton, third edition, 2009.

[16] CEBTP (Center for Research and Studies for Buildings and Public Works).
Effets du vent sur la Tour Maine-Montparnasse. Technical report, 15 June
1978. Comlpementary report 1st October 1978.

[17] Chatelin F. Eigenvalues of Matrices. Wiley, New York, 1993.

[18] Chen X, Kareem A. Equivalent static wind loads for buffeting response of
bridges. Journal of Structural Engineering, 127(12):1467–1475, 2001.

[19] Chen X, Kareem A. Equivalent static wind loads on buildings : New model.
Journal of Structural Engineering, 130(10):1425–1435, 2004.

[20] Chen X, Kareem A. Proper orthogonal decomposition-based modeling,
analysis, and simulation of dynamic wind load effects on structures. Jour-
nal of Engineering Mechanics, 131(4):325–339, 2005.

[21] Chen X, Zhou N. Equivalent static wind loads on low-rise build-
ings based on full-scale pressure measurements. Engineering Structures,
29(10):2563–2575, 2007.

[22] Clough RW, Penzien J. Dynamic of Structures. McGraw-Hill, New York,
1975.

[23] Congdon P. Bayesian Statistical Modelling. John Wiley & Sons, Chich-
ester, second edition, 2007.



[24] Cook NJ, Mayne JR. A novel working approach to the assessment of wind
loads for equivalent static design. Journal of Wind Engineering and Indus-
trial Aerodynamics, 4(2):149–164, 1979.

[25] Counihan JO. Adiabatic atmospheric boundary layers: A review and anal-
ysis of data from period 1880-1972. Atmospheric Environment (1967),
9(10):871–905, 1975.

[26] Cramer H, Leadbetter MR. Stationary and Related Stochastic Processes.
John Wiley & Sons, New York, 1967.

[27] Das S, Ghanem R, Spall JC. Asymptotic sampling distribution for poly-
nomial chaos representation from data: a maximum entropy and fisher in-
formation approach. SIAM Journal on Scientific Computing, 30(5):2207–
2234, 2008.

[28] Dautray R, Lions JL. Mathematical Analysis and Numerical Methods for
Science and Technology. Springer-Verlag, Berlin, 1990.

[29] Davenport AG. The application of statistical concepts of the wind loading
of structures. Proceeding of the Institution of Civil Engineers, 19(4):449–
472, 1961.

[30] Davenport AG. The spectrum of horizontal gustiness near the ground
in high winds. Quarterly Journal of the Royal Meteorological Society,
87(372):194–211, 1961.

[31] Davenport AG. Note on the distribution of the largest value of a random
function with application to gust loading. Proceedings, Institution of Civil
Engineers, 28(2):187–196, 1964.

[32] Davenport AG. Gust loading factors. Journal of Structural Division -
ASCE, 93(3):11–34, 1967.

[33] Davenport AG. How can we simplify and generalize wind loads? Journal
of Wind Engineering and Industrial Aerodynamics, 54:657–669, 1995.

[34] Debusschere BJ, Najm HN, Pebay PP, Knio OM, Ghanem RG, Le Maı̂tre
OP. Numerical challenges in the use of polynomial chaos representa-
tions for stochastic processes. SIAM Journal on Scientific Computing,
26(2):698–719, 2004.

[35] Desceliers C, Ghanem R, Soize C. Maximum likelihood estimation of
stochastic chaos representations from experimental data. International
Journal of Numerical Methods in Engineering, 66(6):978–1001, 2006.



[36] Doob JL. Stochastic Processes. John Wiley & Sons, New York, 1990.

[37] Doostan A, Ghanem R, Red-Horse J. Stochastic model reduction for chaos
representations. Computer Methods in Applied Mechanics and Engineer-
ing, 196(37):3951–3966, 2007.

[38] Duchène-Marullaz P. Full-scale measurements of atmospheric turbulence
in a suburban area. In Proceedings of the Fourth International Confer-
ence on Wind Effects on Buildings and Structures, pages 23–31, Heathrow,
United Kingdom, 1975. Edited by KJ Eaton, Building Research Establish-
ment.

[39] Ellingwood BR, Tekie PB. Wind load statistics for probability-based struc-
tural design. Journal of Structural Engineering - ASCE, 46(2):453–463,
1999.

[40] Ernst OG, Mugler A, Starkloff HJ, Ullmann E. On the convergence of gen-
eralized polynomial chaos expansions. ESAIM Mathematical Modelling
and Numerical Analysis, 2(46):317–339, 2012.

[41] Flamand O, De Oliveira F, Stathopoulos-Vlamis A, Papanikolas P. Con-
ditions for occurrence of vortex shedding on a large cable stayed bridge:
Full scale data from monitoring system. Journal of Wind Engineering and
Industrial Aerodynamics, 135:163–169, 2014.

[42] Fu J, Xie Z, Li QS. Closure to equivalent static wind loads on long-span
roof structures. Journal of Structural Engineering - ASCE, 136(4):470–
471, 2010.

[43] Fung YC. Foundations of Solid Mecanics. Prentice Hall, Englewood Cliffs,
New Jersey, 1968.

[44] Geradin M, Rixen D. Mechanical Vibrations, Theory and Applications to
Structural Dynamics. Wiley, Chichester, second edition, 1997.

[45] Gerbrands JJ. On the relationships between SVD, KLT and PCA. Pattern
Recognition, 14(1-6):375–381, 1981.

[46] Ghanem R, Doostan R. Characterization of stochastic system parameters
from experimental data: A bayesian inference approach. Journal of Com-
putational Physics, 217(1):63–81, 2006.

[47] Ghanem R, Spanos PD. Stochastic Finite Elements: a Spectral Ap-
proach. Springer-Verlag, New York, 1991. See also the revised edition
(2003),Dover Publications, New York.



[48] Gill PE, Murray W, Wright MH. Practical Optimization. Academic Press,
London, 1981.

[49] Givens GH, Hoeting JA. Computational Statistics. Wiley, New York, sec-
ond edition, 2013.

[50] Golub GH, Van Loan CF. Matrix Computations. The Johns Hopkins Uni-
versity Press, Baltimore, fourth edition, 2013.

[51] Grimmond CSB. Aerodynamic roughness of urban areas derived from wind
observations. Boundary-Layer Meteorology, 89(1):1–24, 1998.

[52] Gu M, Huang Y. Equivalent static wind loads for stability design of large
span roof structures. Wind and Structures, 20(1):95–115, 2015.

[53] Guikhman L, Skorkhod AV. The Theory of Stochastic Processes. Springer-
Verlag, Berlin, 1979.

[54] Guilleminot J, Soize C. Stochastic model and generator for random fields
with symmetry properties: application to the mesoscopic modeling of elas-
tic random media. Multiscale Modelling Simulation (A SIAM Interdisci-
plinary Journal), 11(3):840–870, 2013.

[55] Harris RI. The nature of the wind. In Institution Of Civil Engineers, edi-
tor, Seminar in the Modern Design of Wind-Sensitive Structures, Construc-
tion Industry Research and Information Association, pages 29–55, London,
England, 1970.

[56] Heck JV. Référentiel relatif aux dispositions constructives et aux justifi-
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