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Résumé

En informatique comme dans de multiples autres domaines, les graphes peu-
vent être trouvés partout. Ils sont utilisés pour représenter des données dans
des domaines allant de la chimie à l’architecture, en tant que structures ab-
straites ou que modèles des données et de leurs évolutions. Un graphe est défini
comme l’union d’un ensemble de noeuds et d’un ensemble d’arcs les reliants. Ces
noeuds comme ces arcs peuvent être étiquetés afin d’ajouter des informations
supplémentaires.

Dans tous les domaines, il est prévisible que les graphes évoluent au cours
du temps que cela soit à la suite de réactions chimiques, d’une mise à jour
des connaissance ou de l’exécution d’un programme. Être capable de traiter
ces transformations est une tâche particulièrement importante et difficile. Il y
a de multiples manières de représenter les transformations de graphes. Parmi
celles-ci, on peut trouver l’utilisation de la théorie des catégories ou l’utilisation
d’actions atomiques. C’est cette seconde approche que nous avons choisie.

Dans ce travail, notre objectif est d’étudier la vérification de telles trans-
formations de graphes, c’est à dire comment prouver qu’une transformation de
graphes est correcte. La correction d’une transformation est plus précisément
définie comme la correction d’une spécification pour cette transformation con-
tenant en plus de la transformation elle-même une précondition et une post-
condition. La précondition comme la postcondition sont des formules logiques
définissant les états initiaux et finaux de l’exécution de la transformation. Prou-
ver que la spécification est correcte revient à montrer que depuis tout graphe
satisfaisant la précondition, il n’est possible d’obtenir en effectuant la transfor-
mation que des graphes satisfaisant la postcondition.

Le premier chapitre a pour vocation d’introduire de manière informelle les
problèmes que nous souhaitons traiter. Il commence par expliquer pourquoi
la vérification de programme est un sujet qui, malgré le fait qu’il est souvent
ignoré, est particulièrement important dans le domaine de l’informatique et
de ses applications. Il introduit ensuite ce qu’est un graphe et montre que
l’utilisation des graphes se fait dans toutes sortes de domaines. De la même
manière que les graphes sont présents un peu partout, nombre d’applications
reposent sur la modification des graphes et qu’il est donc censé de s’intéresser à
la correction des transformations de graphes. Ce chapitre s’achève par un plan
de ce travail expliquant le contenu et la succession des chapitres.

Chapitre 2 montre que la vérification des transformations de graphe est un



sujet qui intéresse beaucoup de monde. Ce chapitre fait un état des lieux de la
recherche dans ce domaine. En particulier, plusieurs outils existent qui utilisent
la vérification de modèles pour prouver que des transformations sont correctes.
La vérification de modèles est une approche différente de celle que nous avons
choisi. Ce chapitre traite aussi de plusieurs logiques ayant été utilisées pour
décrire les graphes et qui peuvent donc être considérées comme intéressantes
pour notre système de vérification. Ce chapitre observe aussi les résultats
obtenus par d’autres auteurs dans leurs recherche de résultats en terme de
vérification de transformations de graphes. Enfin, le problème que nous con-
sidérons est comparé à d’autres problèmes qui ont été étudiés dans la littérature.

Dans un premier temps, dans le Chapitre 3, nous introduisons la définition
formelle de ce qu’est un graphe étiqueté en utilisant des formules d’une logique.
Ensuite, les transformations atomiques sont introduites. Ces actions permet-
tent d’effectuer ce que nous estimons être les composants les plus élémentaires
des transformations. Elles permettent de changer l’étiquetage d’un noeud ou
plusieurs noeuds, de changer l’étiquetage d’un ou plusieurs arcs, de créer ou
de détruire un noeud ou un arc ou encore de rediriger tous les arcs entrant ou
sortant d’un noeud. Par exemple, l’action C := C + i, en supposant que C est
un prédicat atomique unaire et que i est un noeud, change l’étiquetage de i pour
y rajouter l’étiquette C alors que l’action i �in j, en supposant que i et j sont
des noeuds, redirige tous les arcs entrants de i vers j. Ce chapitre introduit aussi
l’exemple de l’hôpital qui est utilisé comme fil rouge tout au long de ce travail
pour illustrer les résultats obtenus et les difficultés rencontrées.

Chapitre 4 introduit la première approche que nous utilisons pour modifier
les graphes à savoir un langage de programmation impératif. Ce langage contient
plusieurs éléments usuels des langages impératifs comme les boucles “while” et
les expressions conditionnelles. Ces deux expressions utilisent à nouveaux la
logique pour définir des conditions ce qui prouvent une fois de plus que les trois
composants, graphes, transformations et logique, sont étroitement liés. En plus
de ces expressions, le langage de programmaton contient des instructions pour
les actions atomiques qui permettent de modifier le graphe. Enfin, une expres-
sion “select” est introduite qui permet de choisir non-déterministiquement un
noeud parmi ceux satisfaisant une certaine condition auquel appliquer les trans-
formations. Ce “select” est particulièrement important car il permet d’instancier
les variables qui permettent de modifier les graphes. Afin de pouvoir utiliser ce
language, nous avons implémenté un traducteur qui réécrit les programmes vers
le language Java qui peut ensuite être utilisé.

Le chapitre suivant, Chapitre 5, est le chapitre central de ce travail. Il est le
premier à discuter la logique et son utilisation dans la vérification des transfor-
mations de graphes. Le chapitre commence par une discussion sur l’utilisation
d’une logique pour décrire un graphe nonobstant le fait qu’il soit modifié pour
l’instant. Sa conclusion est que nous nous concentrons seulement sur les logiques
dont les modèles sont considérés comme étant des graphes car ce sont celles
qui sont adaptées au problème. Le chapitre enchaine avec la définition de
l’algorithme permettant de prouver qu’une spécification est correcte. Nous avons
choisi d’utiliser un calcul à la Hoare qui est particulièrement adapté à notre ap-



proche algorithmique car il repose sur la notion de pas d’exécution. L’idée est
de générer la plus faible précondition correspondant à une transformation et une
postcondition. Cette plus faible précondition est la formule qu’un graphe doit
satisfaire pour être certain que tous graphe généré par la transformation satisfera
la postcondition. S’il est possible de prouver que la précondition implique cette
plus faible précondition, alors nous pouvons être certain que la spécification est
correcte. Le calcul de la plus faible précondition se fait instruction par instruc-
tion en remontant depuis la postcondition. Il est donc nécessaire de définir la
plus faible précondition des action atomiques. Cette plus faible précondition
est définie en utilisant des substitutions. Les substitutions sont des construc-
teurs ajoutés à la logique dont la signification est exactement que la formule
φσ, pour φ une formule et σ la substitution associée à une action atomique a,
est satisfaite par un graphe si et seulement si tout graphe obtenu en exécutant
a satisfait φ. Un autre résultat de l’utilisation du calcul à la Hoare est que les
boucles ”while” doivent être étiquetées avec un invariant car il est nécessaire
lors de la génération de la preuve. Ceci est usuel dans le cadre des calculs à la
Hoare. Enfin, le calcul doit être capable de quantifier sur les éléments qui sont
instanciés par les instructions “select”. De ces observations, on peut déduire les
conditions que la logique doit satisfaire pour être capable d’utiliser de manière
complètement automatisée le calcul à la Hoare. La logique doit être fermée par
substitution, c’est à dire qu’elle doit être capable d’exprimer les substitutions
sans l’ajout de nouveaux constructeurs. Elle doit aussi être capable d’exprimer
l’utilisation des variables qui permettent d’effectuer les transformations. En-
fin, la logique doit être décidable afin que l’automatisation soit complète. Le
chapitre examine certains constructeurs de diverses logiques qui leur permettent
de satisfaire ces conditions.

Chapitre 6 introduit la première famille de logiques que nous utilisons pour
décrire les graphes, les logiques de description. Ces logiques ont l’avantage d’être
décidables et d’être utilisées dans des cas réels. Le chapitre commence par in-
troduire la syntaxe de ces logiques et les divers constructeurs qui permettent de
former ces logiques. Une fois que cette syntaxe a été définie, nous examinons
ces logiques pour voir lesquelles sont fermées par substitutions. Nous étudions
d’abord les logiques les plus expressives, c’est à dire celles qui contiennent à la
fois les nominaux qui permettent de parler individuellement de chaque noeud,
et un constructeur permettant d’accéder à n’importe quel noeud comme le rôle
universel U ou le quantificateur @. Ces logiques sont fermées par substitutions.
Cela est prouvé en utilisant un système de réécriture qui retire les substitu-
tions des formules tout en conservant les interprétations. Nous prouvons aussi
que ce système termine. Il cause par contre une explosion exponentielle de
la taille de formules qui accroit encore la complexité du raisonnement. Nous
nous intéressons ensuite aux logiques qui ne contiennent pas les nominaux. Ces
logiques ne sont pas fermées par substitutions. Cela est prouvé en utilisant des
bisimulations entre modèles. Il est possible de définir une famille de bisimulation
pour chaque logique tel que des noeuds appartenant à des modèles différents sont
bisimilaires si et seulement si ils sont d’accord sur tous concepts de la logique.
Il est possible de trouver deux modèles bisimilaires pour chacune de ces logiques



tels que l’un est un modèle d’une formule avec substitution et pas le second. La
formule avec substitution ne peut donc pas être exprimée dans la logique. En-
fin, nous nous intéressons aux logiques qui ont les nominaux mais qui n’ont pas
de moyen d’accéder aux noeuds distants. La méthode utilisée précédemment
doit être modifiée car les modèles bisimilaires s’accordent sur les formules avec
substitution. Toutefois, en modifiant la définition des bisimulations, il est pos-
sible de trouver des modèles bisimilaires qui ne s’accordent pas sur les formules
avec substitutions. Il est donc possible de prouver que ces logiques ne sont pas
fermées par substitutions.

Le chapitre suivant, Chapitre 8, nous permet d’introduire un autre moyen de
modifier les graphes. Nous utilisons des systèmes de règles dont le côté gauche
est un graphe et le côté droit est une liste d’actions qui doivent être exécutées.
Une règle ne peut être appliquée à un graphe que s’il existe un sous-graphe qui
correspond au côté droit de la règle. Dans un tel cas, c’est ce sous-graphe qui
est modifié par la règle. Afin de mieux contrôler l’exécution de ces règles, des
stratégies sont définies. Elles permettent de dire quelle règle doit être appliquée
quand ainsi que d’utiliser la fermeture d’une règle, c’est à dire l’utiliser tant
que possible. Une nouvelle fois, un calcul à la Hoare est introduit pour prouver
la correction de ce type de transformation. Ce calcul à la Hoare ressemble
beaucoup à celui obtenu pour le langage de programmation impératif défini
précédemment. Ainsi, il est aussi nécessaire de définir des invariants pour les
fermetures. Les substitutions sont une nouvelle fois utilisée et cette condition
doit donc toujours être satisfaite par les logiques. Enfin, ce calcul permet de
rendre plus explicite la condition sur l’existence de variables auxquelles appliquer
la transformation. Il est en fait nécessaire de pouvoir exprimer l’existence ou
l’absence d’un sous-graphe correspondant aux côté droit d’une règle.

Chapitre 7 introduit une nouvelle logique C2PDL . C2PDL est une logique
qui contient les constructeurs de la logique dynamique propositionnelle avec in-
verse et de la logique dynamique combinatoire. Elle permet d’exprimer deux
choses qu’il était impossible d’exprimer en utilisant les logiques de description:
l’existence d’un chemin entre deux noeuds et de réellement créer et détruire des
noeuds. L’existence, ou l’absence, d’un chemin est exprimée en utilisant la fer-
meture reflexive transitive d’un role. Comme le logique permet aussi d’exprimer
des roles plus complexes, comme l’inverse d’un rôle ou l’union de deux rôles, il
est possible d’exprimer l’existence de chemins complexes. D’un autre côté, les
logiques utilisées jusque là utilisaient un concept particulier pour marquer les
noeuds existants. Plutôt que de faire cela, une classe de noeuds particuliers est
utilisée qui définit les noeuds qui n’existent pas encore ou plus. Comme cela
fait partie de la définition de la logique, il n’est pas nécessaire de rajouter dans
les préconditions et postconditions que les noeuds qui n’existent pas ne peuvent
pas être étiquetés et ne peuvent pas avoir d’arcs entrants ou sortants ce qui
donne des formules plus simples. Nous prouvons, une fois de plus en utilisant
un système de réécriture, que C2PDL est fermée par substitutions. Nous prou-
vons aussi que C2PDL est décidable. Cela est fait de deux manières différentes.
Un système de déduction est introduit qui permet de générer toutes les formules
valides. Dans le même temps, il est prouvé que toute formule satisfiable a un



modèle de taille finie. Il est donc possible de tester si une formule est valide
ou insatisfiable et donc de conclure. Une autre méthode utilise une traduc-
tion vers le mu-calcul hybride qui est connu comme étant décidable. Enfin, ce
chapitre s’intéresse à la condition sur l’existence ou l’absence d’un sous-graphe.
Il est prouvé qu’il est toujours possible, en utilisant des nominaux, d’exprimer
l’existence du sous-graphe. Il est par contre nécessaire de restreindre la classe
des graphes utilisés du côté droit des règles si l’on souhaite pouvoir exprimer
l’absence d’un tel sous-graphe.

Chapitre 9 étend l’étude des logique qui peuvent être utilisées pour exprimer
les conditions sur les graphes. Nous nous intéressons d’abord à la logique du
premier ordre elle-même malgré le fait qu’il soit bien connu que le problème de
décision pour la logique du premier ordre est indécidable. En utilisant une fois de
plus un système de réécriture, il est possible de prouver que la logique du premier
ordre est fermée par substitutions. Il est aussi facile de prouver que, comme la
logique du premier ordre permet d’utiliser des variables librement, elle permet
d’exprimer l’existence et l’absence d’un sous-graphe correspondant aux côté
droit d’une règle. Comme cette logique est indécidable, nous nous intéressons
par la suite à des fragments de la logique du premier ordre. Le premier qui est
utilisé est le fragment à deux variables avec quantificateur numériques. Cette
logique étend les logiques de description que nous utilisons. En utilisant le
même système de réécriture que celui utilisé pour la logique du premier ordre, il
est possible de prouver que cette logique est fermée par substitutions. Il existe
par contre des sous-graphes dont l’absence est impossible à exprimer comme
les graphes comprenant des cycles de longueur plus grande que trois. Nous
étudions ensuite le fragment de la logique du premier ordre tel que les formules
écrites en forme normale prenex contiennent tous les quantificateurs existentiels
suivis de tous les quantificateurs universaux. Une fois de plus cette logique est
fermée par substitution en utilisant le même système de réécriture. Toutefois, il
existe aussi des sous-graphes dont l’absence ne peut pas être exprimée dans ce
fragment. Par exemple, dire qu’il n’existe pas de noeuds n’ayant pas de voisin
revient à dire que tous les noeuds ont un voisin ce qui ne peux pas être exprimé
sans avoir le mauvais ordre parmi les quantificateurs.

Chapitre 10 introduit l’implantation que nous avons réalisé. Bien qu’elle
ne soit pas fermée par substitutions, la logique ALCQ a été choisie comme
logique pour cette implantation. En utilisant le prouveur de théorème Isabelle,
nous avons défini la syntaxe et la sémantique de cette logique, ce qui nous a
permis de prouver l’équivalence entre formules qui sont censées être logiquement
équivalentes. Nous avons aussi défini la sémantique des substitutions afin de
prouver que le système utilisé pour les logiques de description les plus expressive
était correct quand il était utilisé sur ALCQ. Ensuite, le calcul à la Hoare a
été défini. Il a été prouvé qu’il est correct, c’est à dire que les spécifications
qui sont considérées comme correctes le sont effectivement. Tout cela permet
de prouver que la théorie que nous avons mise au point est cohérente. Nous
avons aussi développé une méthode de tableaux pour ALCQ avec substitutions
qui permet de prouver qu’une formule est satisfiable. Cet algorithme est utilisé
pour prouver que la négation de la formule de correction générée par le calcul



à la Hoare est insatisfiable. Dans le cas contraire, un contre-exemple est généré
qui peut être affiché sous forme de graphe afin de mieux comprendre quelle
partie de la spécification est incorrecte.

Enfin, nous concluons sur notre travail. En plus de résumer les résultats
obtenus, cette conclusion ouvre de nouvelles voies en terme de travail future
que cela soit en s’intéressant à l’ajout d’opérations sur les données dans les ac-
tions et la logique, l’utilisation de logique moins expressive mais plus efficace en
restreignant les actions possibles ou de logique plus expressives mais indécidables
avec des actions plus complexes ou l’implantation d’algorithme pour les autres
logiques et de traduction vers des prouveurs existants pour certaines des logiques
considérées.



Chapter 1

Introduction

1.1 Program verification

Program verification is the field of study of the correctness of programs. To
be more precise, it is the research of methods to prove that a program behaves
the way it is expected to: it outputs what it should, it halts when it is done
executing and no error occurs that forces it to abort some operations. Program
verification is far from being a new field of study.

During World War II, Von Neumann was asked by Goldstine to collaborate
to and improve ENIAC. It was the first computer using electrical signals instead
of the mechanical motion of Babbage’s computer. It was used to compute firing
tables telling how to direct guns to hit distant targets. During that time and
after when they had both joined the Institute for Advanced Study in Prince-
ton, they wrote several reports that where the foundation of modern computer
science. Among their conclusions was that “Since coding is not a static process
of translation, but rather the technique of providing a dynamic background to
control the automatic evolution of a meaning, it has to be viewed as a logical
problem and one that represents a new branch of formal logics.” [33]

Alas this vision did not receive much attention at the time and was slowly
forgotten. As Donald Knuth said “People would write code and make test runs,
then find bugs and make patches, then find more bugs and make more patches,
and so on until not being able to discover any further errors, yet always living
in dread for fear that a new case would turn up on the next day and lead to a
new type of failure.” [46]

An incentive for the development of formal methods to prove the correct-
ness of programs was the growing number of such programs that failed in an
untimely, and often very disastrous, manner. Most such errors are completely
human-made, in that the programs behaved exactly as it should have, given the
parameters. For instance, in 1998, the Mars Climate Orbiter built by NASA’s
Jet Propulsion Laboratory, having cost approximately $327.6 million, was de-
stroyed when it collided with Mars instead of starting to orbit it because different
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engineering teams where using different measuring units, namely the metric and
imperial systems. Each sub-program was correct but they were not able to work
together. This kind of program is difficult to be solved by formal methods and
requires a clearly stated project road-map and clear typing and definitions, but
there are multiple errors that are caused by a lack of ability to foresee the future
use of a program. For instance, let’s assume that we want to write a program
that computes the mean value of a vector of integers. The most natural way
would look like that in pseudo-code:

algorithm mean is
input: A vector V of integers
output: The mean value of the elements of V

sum ← 0
count ← 0

while V is not empty do
count ← count + 1
sum ← sum + head(V)
V ← tail(V)

return sum/count

This program is plagued with problems the most obvious being that if V
is an empty vector the program will just crash. Going beyond that, in pro-
gramming languages with weak typing as C, a character can be considered as
an integer in which case performing the mean value does not even make sense,
the mean is unlikely to give the expected result on most inputs as the division
operation between integers in many programming languages is considered to be
the euclidean division, depending on the input, the values sum and even count
may create integer overflows, ... All these sources of problems are to be taken
into account in order to make sure that a program is correct.

In the following, we drop most of the sources of problems that are found in
this example. We focus on proving that a program does what it is expected to
do. To be more precise, we prove that specifications are correct. A specification
contains three elements. One is the program itself. The other two are logic for-
mulae called respectively pre- and post-conditions. The precondition describes
the state of the input before the program is started while the postcondition
describes the output. Both are used to add more constraints on the data that
have to be checked. There are two different notions of correctness: partial and
total correctness. A specification is said to be partially correct if on all inputs
satisfying the precondition, that is all inputs such that the precondition is true,
applying the program will only yield states which satisfy the postcondition, that
is outputs such that the postcondition is true. One could see the first caveat: if
the program does not halt on the input, there is no output and thus the spec-
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ification is correct. To go one step farther, a specification is said to be totally
correct if, in addition to the specification being partially correct, the program
always halts.

The notion of total correctness is much more satisfying but it is, alas, very
complex to prove and a subject of profound research on its own. It is a widely
known fact that the halting problem is undecidable[68], that is there is no algo-
rithm that always decides whether a program will halt. As we are interested in
automatic proofs that a specification is correct, we have thus to either addition-
ally provide an external proof that the program stops or only focus on partial
correctness. This is the choice that is commonly made and that we will make
in this work.

There are several main ways to prove a specification correct among them
model-checking[20] and Hoare logic[40]. Models are representations of the data,
both as input and output and as it is modified during the execution of the
program. Model-checking works by defining a transition system corresponding
to the transformation and finding a characterization of the models that generate
unwanted states or the models that can be generated from the initial state.

On the other hand, Hoare logic works with transformation steps. It starts
from a condition and generates the weakest precondition of the statements of
the program. The set of preconditions of a statement s and a postcondition Q,
written Pre(s,Q), is the set of the formulae such that if it is satisfied before
applying s, then it has to be that Q is satisfied after applying S. The weakest
precondition wp(s,Q) is the smallest element of Pre(s,Q) in the sense of the
implication, that is wp(s,Q) ∈ Pre(s,Q) and if P ∈ Pre(s,Q), P ⇒ wp(s,Q).
That is every model that satisfies P also satisfies wp(s,Q). This is applied until
the first statement of the program is reached and one then has to check that
the precondition implies the weakest precondition of the whole program. It is
possible to use strongest postconditions instead of weakest preconditions and
work from top to bottom. In the following, we will be exclusively working with
Hoare-like logics to prove the correctness of specifications. We may nonetheless
refer to other works that would use model-checking as part of alternatives.

1.2 Graphs

Up to now, we have introduced the notion of program verification. We are
not actually interested in program verification in all generality but in the more
specific verification of graph transformations. Yet, before being able to study
the correctness of a program modifying graphs, it is mandatory to define what
a graph is.

The term ”graph” was first coined by J.J. Sylvester[64]. To put it simply,
a graph is a set of elements, called nodes, that are linked by edges. They can
take many different forms depending on what meaning one associates with each
components. Figure 1.1 represents a social network where each node is a person
and edges represent connections between these persons. Edges and nodes can
be labeled, that is they can contain information. In the example of the social
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Figure 1.1: An example graph representing a social network.

Figure 1.2: An example graph representing a computer network.

network, each node being a person, it makes sense that they are labeled with
the name of that person. Edges can be labeled with the kind of connection that
corresponds to the link (friend on Facebook, follower on Twitter, ...).

One of the main interests of graphs is that they are ubiquitous. They are
one of the most standard ways to represent data. In addition to social networks,
graphs are key modeling tools in domains as diverse as communication, where
nodes can be servers and computers and edges the physical connections between
them (one such example is shown in Figure 1.2), public transportation networks,
where nodes are stations and edges are routes (for instance, Figure 1.3), chem-
istry, where nodes are atoms and edges are covalent bonds (as examplified in
Figure 1.4), in genealogy to build family trees, in relational databases, ...

They can also be used to represent more abstract structures. In addition to
graphs themselves, trees and pointers, and thus also arrays and such, are also
data structures that can be represented as graphs. As they are, by nature, used
in programs, this proves that the underlying problem that we are studying is of
great interest.

Although they can represent all sorts of different data, as far as computer
science is concerned, this is far from being the only use of graphs. They are also
among the most widespread ways to do meta-modelling, that is modeling of the
models of the graphs. Most current standards for metamodeling, like ORM[70],
ER[19] or UML[43] for instance, use graphs to represent the different classes of
objects and the relation between them.
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Figure 1.3: A sample of the map of the London subway network

Figure 1.4: Part of a 3D representation of a cellulose molecule

Another widespread use of graphs in computer science is to represent pro-
grams themselves. Automata, as shown in Figure 1.5, and Petri nets, illustrated
in Figure 1.6, are only two possible uses of graphs to model programs.

The informal definition of a graph is quite simple yet it still can represent
all sorts of data. That is why it is key to be able to reason about it, to modify
it and to prove that the modifications that are performed are correct. In the
following, we use a slightly more elaborate notion of graph. Up to now the labels
were purely descriptive: if a node is labeled with ”Alice”, we know that it is
the name of the person associated with this node. Yet, we want to be able to
express more interesting properties. To do so, instead of using lists of possible
labels, we use logics. The definition of logics covers a wide array of topics and
is an important field in philosophy, mathematics, computer science, linguistics
and psychology among others. The main focus of logic is the systematic study of
arguments. It includes, for instance, how to correctly infer a conclusion from a

Figure 1.5: A simple automaton
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Figure 1.6: A simple Petri net
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Figure 1.7: An example of graph transformation that inverts all edges in a
4-cycle.

set of assumptions. Nonetheless, for us, a logic can be understood as a language
that allows to build complex labels from the previous set of atomic labels. It
also come with a semantic, that is a model theory, that allows to state whether
a property is true or not.

Labeling a graph with logical formulae is quite usual in Kripke structures
where each node is thought to represent a possible world that contains all infor-
mation that is true in this world. In this work, labeling formulae will play a role
both in the transformation process and in the generation of proof obligations.
Indeed, transformations will be performed depending on conditions that will
be expressed in the logic while the properties intended to be proven and the
weakest preconditions that computed are also formulae.

1.3 Graph transformation

Our goal is to do graph transformation verification and it is thus natural to now
introduce the notion of graph transformation. This is quite a straightforward
idea: one is given a graph and wants to modify it for whatever reason. Figure 1.7
shows one such dummy transformation where one wants to invert the direction
of all edges.

There are several ways to describe graph transformations. One of the easiest
to understand is the one used in Figure 1.7 where a graph is given as input and
the resulting graph is given as output. This is a most graphic representation of
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Figure 1.8: An example of application of the graph transformation of Figure 1.7.

graph transformations. Obviously, the graph that one wants to modify is not
always the one that appears in such a transformation. The usual way to deal
with this is to match the pattern represented by the left-hand side, say L, in
the actual graph, say G. To be more precise, one looks for a sub-graph, that is
a graph whose set of nodes is a subset of the set of nodes of G and accordingly
for the edges, that would coincide with L. This instance of L is then replaced
with the right-hand side R in G to create a new graph G′. Figure 1.8 shows
such an example where the subgraph containing only the nodes a, c, f and d
and the edges (a, c), (c, f), (f, d) and (d, a) can be equated to the left-hand side
of Figure 1.7. In the resulting graph, these 4 edges are inverted but all other
edges are kept the same.

Such an understanding of graph transformations is best exemplified by the
category theory approach. This approach is the most common way to deal with
graph transformations. Transformations are performed by sets of rules that are a
little more involved than the one shown in Figure 1.7. In addition to the pattern
graph and the resulting graph, a core graph is used. These rules are classified
depending on the conditions that they impose upon the transformations in term
of suppression of elements.

Another approach, that is the one that we have chosen, is different. It
provides a more algorithmic touch to the problem making it closer to classical
programming languages. Instead of using a resulting graph, it introduces a list
of actions that are performed on the matched graph. These transformations can
then take the form of either rule sets[14] or imperative programs[15] depending
on the needs of the user.

1.4 Statement of contribution

Now that we have made clearer what we mean by verification of graph transfor-
mations, it is key to define what is our goal and how we plan to reach it. Our
goal is not, as has been done in previous works, to present a combination of a
graph transformation system and a logic but to provide a way to pick one or
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if ∃a.R(a, b) ∧ C(a) then
C := C − b;
while ∃c.R(b, c) do

select c with R(b, c);
c �in b;
Q := Q + (b, c);

Figure 1.9: An example of transformation written as a program

several logics that can be used to prove graph transformations correct. To be
more precise, we want to avoid putting the burden of devising the verification
process to the user. To reach that goal, we want the logic that is chosen to
express the pre- and post-conditions to be able to express everything that we
need for the verification procedure so that existing decision procedures for that
logic can be used to prove the transformations correct.

In order to reach this goal, we start by giving an imperative language that
contains statements specifically tailored for graph transformations. This lan-
guage is the one presented in [15]. To be more precise, the language introduced
in Chapter 4 contains the atomic actions defined in Section 3.1 plus the usual
statements of imperative languages as if-then-else statements and while loops.
It also contains a non-deterministic select statement that allows to bind vari-
ables that are used in the transformations. A translation from this language to
Java has been implemented to increase its usefulness and a proof system, that
outputs a counter-model if the program is incorrect has also been written for
one of the logics treated in Chapter 6. Such a program is given as example in
Figure 1.9. This programs checks whether there exists an R-predecessor of b
labeled with C in which case b is no longer labeled with C. Then, as long as b
has an outgoing edge labeled R, all incoming edges of B are redirected toward
the target of that edge and it is labeled with Q. However, the proof system ac-
tually does not completely meet our requirements as it uses a tableau-procedure
specifically devised to be able to work with the logic that we use in that logic.

The following chapter, Chapter 5, is the centerpoint of the theory. In this
chapter, the relation between the graph transformation systems and the logics
is investigated more thoroughly. The previous definition of the imperative lan-
guage allows us to have a concrete example of how transformations are defined
and performed and is used as the basis for the reflexion. Nonetheless, we try
to make as few assumptions as possible on the logic that is used, as we want to
actually find out what is required from the logic, and on the transformations
themselves so that the reasoning that we do can be applied even to other graph
transformations. This chapter is mostly an extended version of [12].

First, the Hoare-like calculus that actually performs the verification of the
graph transformations is introduced. Let’s assume we are interested in proving
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that for all graphs G such that a precondition P is true, any graph G′ ob-
tained by performing transformation t is such that the postcondition Q is true.
The Hoare-like calculus defines the weakest precondition of t and Q, written
wp(t, Q). This weakest-precondition is defined by induction on the structure of
the transformation. Its most atomic step takes an atomic action a and returns
as its weakest precondition wp(a,Q) = Q[a]. This [a] is called a substitution
and is defined such that Q[a] is the formula that is true if and only if Q is true
after performing a. The Hoare-like calculus we present is proven to be sound,
that is only programs that are actually correct can be proven to be so.

The Hoare-like calculus is the starting point of the study of the properties
the logic should have. Several such properties are pointed out. Some are mostly
relative to the fact that the logic is actually suited to speak about graphs in
the first place, that is that it is able to speak about the labeling of nodes and
edges and be such that its models are graphs. The other properties deal more
with the transformation themselves. Each atomic transformation, as is usual in
Hoare-like calculi, generates a substitution that becomes part of the formula.
They are forwarded through the formulae during the computation of the weakest
preconditions and the verification conditions. These substitutions need to be
handled during the decision procedure for the logic. Hence, the first requirement
for the logic is that it is closed under substitutions, that is that substitutions can
be removed inside the logic thus allowing one to use conventional tools to test
whether the correctness condition is verified or not. Secondly, transformation
systems need to deal with the selection of the nodes where the transformation
is performed. Being able to treat these selections also has to be something that
the logic can handle so that the verification calculus can work. Satisfy these
conditions is a strong requirement on the expressivity of the chosen logic and
there is not one logical constructor that fits the needs of all logics. It is thus
key to study what to look for in a logic so that it can meet these requirements.
For each of these conditions, intuitive components of logics that allow them to
be verified are provided.

The conditions introduced in Chapter 5 can appear particularly vague as
they depend enormously on the chosen actions and the way they are used. In
order to clarify things and give examples, Chapter 6 instantiates this frame-
work. To be more precise, this chapter essentially focuses on the condition
of closure under substitutions[13]. After introducing quickly some usual De-
scription Logics[5], namely extensions of ALC without role inclusion axioms,
we study which of those are closed under substitutions and why. In order to
also better illustrate the way the transformations and the verification procedure
work, this chapter contains an instance of the running example introduced in
Section 3. The conclusion is that the logic needs to provide some way to speak
about the actual nodes that are modified individually, that is in the case of
Description Logic they need to allow for nominals, and a way to access remote
nodes, which can be done with a universal role or the @ constructor of hybrid
logics.

In order to better illustrate the problem of proving that a logic can express
that a rule can be applied to a graph, we introduce a modal logic C2PDL that
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Figure 1.10: An example graph for which the existence of a match cannot be
expressed in C2 as it requires to take into account 3 different node variables.

extends multi-modal logics with nominals, that allow us to speak about specific
nodes, and a universal role on sets of nodes that allows us to handle the creation
of new nodes and their deletion. In Chapter 7, this logic is formally defined. This
logic benefits us in several different ways. First, its expressivity is quite different
from the one of the Description Logics studied up to that point. In particular, it
allows to use a closure operator on roles that can express reachability conditions
that are particularly interesting in the conditions of rules. Second, it is easy to
prove that it is closed under substitutions and it can be done with much less
effort than in the case of Description Logics. Finally, it presents an interesting
handling of the problem of expressing the existence of a match. It cannot
express the existence of a match in all generality. Yet it is possible to express
the existence of a match. This is not enough to be able to prove all specifications
written in C2PDL . This is enough to prove that a problem is correct as long
as loops are not used. Indeed, in the case of loops, one has to express that it is
no longer possible to apply the rule, and thus that no match exists. We identify
conditions on the rules appearing in loops so that it is possible to express that
no match exists and thus restrict the set of programs for which we can effectively
prove that it is correct. We also prove that C2PDL is decidable.

The next chapter focuses on the second key condition that is that the logic
should allow to express the selection of the nodes that are modified. As we felt
that the exact cause for this condition was not made extremely clear by the
imperative program and as we also wanted to be able to use a transformation
framework closer to the rewriting systems that are used in many different incar-
nations of graph transformations systems, we introduced in Chapter 8 such a
rewriting system[14]. As usual, the transformations in that system are handled
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i : ∀j.¬R(i, j)

Figure 1.11: An example graph for which the absence of a match cannot be
expressed in ∃∗∀∗ as it would require the formula to be ∀i.∃j.R(i, j).

via rules whose left-hand side are graphs. We departed from the usual defini-
tion though by allowing the nodes and edges of those graphs to be labeled with
arbitrary formulae which increases the expressivity of the rules themselves. In
order to more efficiently direct the execution of the transformations, strategies
are also introduced. This allows us to be as expressive as the imperative pro-
gramming language defined in Chapter 5. With this system formally defined,
the condition on the select can be made much clearer. So that a rule can be
applied, a match between its left hand-side and the graph that is to be modified
has to be found. The condition becomes that the existence of such a match can
be expressed as a formula of the logic.

In Chapter 9, we look at other, more mainstream, logics that someone could
propose that would fit our requirements. The first proposal is first-order logic.
It is closed under substitutions and allows to express the existence of a match.
Yet it is well-established that first-order logic is undecidable and this is thus a
very small step in the right direction. We thus study fragments of first-order
logic that are known to be decidable. Namely we focus on C2[34], the 2-variable
fragment of first-order logic with counting. It is a fragment that has been proven
to be decidable, both in the case of finite and unrestricted models. It is also
known to extend Description Logics without role assertions or inclusions. It is,
unsurprisingly, proven to be closed under substitution. It also allows to express
the existence of a match but, once more, one has to restrict the set of rules
that are allowed. Indeed, if the graph in Figure 1.10 was the left-hand side of a
rule, finding a match would require to keep track of three different variables, i,
j and k which is not possible in C2. Also, this logic does not allow to express
the reachability properties. Another logic that we study after is ∃∗∀∗[16]. Once
again, validity of a formula of this logic is known to be decidable and it is easy
to show that it is closed under substitutions. Yet there are rules where the
impossibility of finding a match cannot be expressed in the logic. A rule whose
left-hand side would be the graph of Figure 1.11 being an example of such case.
This chapter presents results from [12].

Finally, in Chapter 11, we conclude on this work, discuss the points that are
left open and introduce extensions that we are interested in.

Dealing with graph transformations is not simple and we want to make things
as clear as possible. Toward that goal, we will start by giving a quick overview
of the current state of the art in the field of verification of graph transformations
in Chapter 2. Furthermore, in order for everything to be easier to understand,
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in the next chapter, Chapter 3, we introduce the running example of a hospital.
It will be the basis of most of the examples that will be used in the course of
this work. It does not aim at being the perfect representation of what should
be the model of a hospital but at giving an example that any reader has at
least a basic understanding of while remaining sufficiently complex to be able
to tackle the various problems that we unravel in this work. Before doing that,
we introduce the formal definitions of a graph, of which actions we consider and
of the problem we are aiming to solve.
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Chapter 2

State of the art

The correctness of model transformations has attracted some attention in the
last few years. One prominent approach is model checking, such as imple-
mented by the Groove tool [31]. The idea is to carry out a symbolic exploration
of the state space, starting from a given model, in order to find out whether
certain invariants are maintained or certain states (i.e. , model configurations)
are reachable. Transformations are represented as color-coded graphs and allow
creation and deletion of nodes and edges. The rules created that way are then
combined using control programs that contain random choice between rules and
loops. As the Groove tool generates the state space, it is important to determine
how this state space is explored as it can greatly influence the efficiency of the
computation. The example of the Transformation 1 of Section 3.3 is given in
Figure 2.1.

The Viatra tool has similar model checking capabilities [69] and in addi-
tion allows the verification of elaborate well-formedness constraints imposed on
models [62]. Well-formedness is within the realm of our approach as it amounts
to checking the consistency of a formula, but it is not our primary goal in this
work. Indeed, all we require is a specification and we do not care whether the
pre- and postconditions are well-formedness conditions, structural invariants,
strong restrictions on the input, ...

The Alloy analyser [45] uses bounded model checking for exploring relational
designs and transformations (see for example [9] for an application in graph
transformations). Counter-examples are presented in graphical form. All the
aforementioned techniques use powerful SAT- or SMT-solvers, but do not carry

ph1 d1
works in

Figure 2.1: An example of graph used in GROOVE representing Transformation
1.
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out a complete deductive verification. On the other hand, our main interest
lies in this automatic verification and its study. Our approach is thus, though
using a different kind of computation, more decisive in its conclusion as it can
not yield an inconclusive result. Nonetheless, contrary to our approach up to
now, it is actually working, efficient and widely used. When we happen to have
developed tools with comparable support, it will be interesting to compare the
efficiency of the various approaches.

Speaking of existing tools and automated provers, general-purpose program
verification with systems such as AutoProof [67] and Dafny [48] becomes in-
creasingly automated and thus interesting as push-button technology for model
transformations. In this context, fragments of first-order logic have been pro-
posed that are decidable and are useful for dealing with pointer structures [44].
They focus on linked-lists though while we are interested in graphs in general.
Our goal is thus more general and it could be interesting, once we are able to
produce a working tool, to compare results. One of the biggest problems though
is that expressing that a graph is a finite linked-list is outside of the expressibil-
ity of the decidable logics we introduced as it requires to state that there is a
head and a tail such that the head has no predecessor, the tail has no sucessor,
every other element has exactly one predecessor and one sucessor and that there
exists a path from head to tail. It would thus require to find a logic that would
be compatible with the problem under scrutiny.

In this work, we aim at using a Hoare-like approach to program verification.
We are interested in the devising of a Hoare-like calculus for the verification of
graph transformations. The usual approach is to pick one logic that is able to
express the graph properties and that can be used in the verification. We are
thus really interested in the various logics that could be used to express graph
properties.

Several different logics have been proposed over the years to describe graphs
and they are natural choices when one has to tackle the problem of graph trans-
formation verification. One of the most natural choices is first-order logic. An-
other widely used logic in graph transformation verification is monadic second-
order logic [21, 59, 42] that allows to go beyond first-order definable properties.
Nonetheless, these approaches are not flawless. They are both undecidable in
general and thus either cannot be used to prove properties of graphs in an au-
tomated way or only work on limited classes of graphs. We will nonetheless
consider first-order logic as it is an interesting logic that is widely used and
whose undecidability is often dealt with by accepting that the prover returns an
inconclusive result.

Starting from the other side of the logical spectrum, one could consider us-
ing Description Logics to describe graph properties [1, 13] that are decidable.
Description Logics cover a very wide array of complexities. For instance, sat-
isfiability of DL − Lite is polynomial which is really important when dealing
with graphs of huge size that are common in a lot of applications. On the other
hand, the same problem is NExpTime-hard for SROIQ. Another choice could
be to use a modal logic as those logics are made to reason about programs
[10]. Actually, ALC is equivalent to modal logic. The main difference is that
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modal logic traditionally uses a possible-world semantic. Temporal logics [56]
and Hybrid Logics [4] and other extensions of modal logics can also be used.

Another natural choice is to focus on decidable fragments of first-order logic.
The fragment of effectively propositional logic [55], has been known for a long
time to be decidable [16]. Despite the fact that it contains all Description Logics
without complex role inclusions, the use of the two-variable logic [34] for the
verification of model transformation is, to the best of our knowledge, introduced
in this work.

Separation logic [60] is another logic that is worth considering when dealing
with transformations of graphs. It has been developed especially to be able to
talk about pointers in conventional programming languages. It has been applied
to program verification [52, 3] in the case of such programing languages as C
minor [49] that is a mid-level imperative programming language.

Obviously, the decidability of all these logics comes at a cost in terms of
expressiveness compared to undecidable logics like the full first-order logic. The
question is thus to determine what expressivity is required by any given problem
and the answer to this question is thus the main indicator of which logic should
be used. Even though not all of the logics that have been considered here are
actually treated in the following, many are and it should be possible to work on
any specific logic in order to check whether the conditions that we pinpoint for
a logic to work with our proof computation are satisfied.

In this work, we proceed in an orthogonal direction. Instead of introducing
a logic and advising users to tailor their problem so that it is expressible in our
logic and that its models comply with the restrictions so that the verification is
actually possible, we aim at providing a means for the users to decide whether
the logic they have used to represent their problem will actually allow them to
prove their transformations correct or whether they have to use several different
systems in parallel.

Naturally, introducing a logic to express graph properties is not enough to
be able to verify graph transformations. Numerous different approaches have
been proposed to deal with this verification. A lot of these approaches are
based on the most usual definition of graph transformations that is rooted in
category theory. These approaches often introduce logics that are specially
tailored for the problem under study. Among the most prominent figure GP[58,
50], that stands for Graph Programs. It uses nested conditions [37, 57] that are
explicitly created to describe graph properties. Graph Programs are strategies
applied to a set of rewriting rules whose right-hand sides and left-hand sides
are graphs. A Hoare-like calculus is provided that allows to generate correct
specifications for the graph program. It uses transformations on the rules to
generate conditions for the applicability of a rule and the precondition for a rule
and a postcondition. The main shortcoming of this approach is that the Hoare-
like calculus is undecidable which means that the verification cannot be fully
automated. On the other hand, Graph Programs allow for the use of data labels
and of operations on them. This is something that we can not do as of today
but that it would very interesting to further study as many actual algorithm,
as for instance the computation of the shortest path between two nodes, that
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modify graphs do so depending on the arithmetical properties of the labels. An
extension of nested conditions using paths[53] has been proposed to give more
expressive descriptions. The satisfiability of a formula has been proven sound
and complete. It has not been devised in the context of verification yet to the
best of our knowledge.

If one wants to compare our results to theirs, two possibilities arise. The first
idea could be to look at whether it would be possible to use nested conditions as
one of the logics that we consider. Nested conditions do not allow for nominals
but they can be simulated as it is possible to say that there is a node with a
given label and that it is the only one. Nested conditions also contain existential
quantifiers that can be used for the selection of the nodes where the atomic
actions are performed. It would thus seem that nested conditions satisfy the
requirements we put forth. However, nested conditions are actually not closed
under substitutions as they do not allow for disjunctions of graph morphisms in
the first part of the conditions.

Another interesting subject of comparison is on the expressive power of the
transformation. The fact is that allowing for arithmetical conditions greatly
increases the transformation power and that it is not possible to express any of
these transformations using our kinds of transformations. On the other hand,
if one allows for arithmetical conditions on labels in one of our systems, the
two transformation frameworks become comparable once more. Comparing the
algorithmic and categorial approaches is not so easy yet if there were transfor-
mations that were possible only in the categorial approach, it would be possible
to define an algorithmic atomic action with the same effect and one would then
has to check that the logics are still closed under this added substitution. The
set of atomic actions is not closed for that reason. Some of these actions have
actually be studied but have not yielded enough results yet to be included in this
work. For instance, cloning of nodes is interesting and can be performed in some
categorial approaches. An atomic action with the same effect can be introduced
and it is then possible to check which logics are closed under substitutions.

On the other hand, [8] introduces a logic closer to modal logic extended
with an universal program and global and local assignments. This logic allows
to express both the graph properties and the graph transformations at the same
time. As the transformations are expressible in the logic as programs, it is pos-
sible to verify the transformation simply by proving that a formula of the logic
is valid. This is thus not more complex than proving that a graph property is
valid. Nonetheless, the logic is undecidable and it thus impossible to completely
automate the verification. Trying to use this logic in any of our transformation
systems does not make much sense as the logic is expressive enough to contain
all transformation.

In [47], a slightly different problem is tackled. Instead of proving that a
specification is correct, they aim at proving that, from a start graph, it is not
possible to reach an element of a set of forbidden graphs. They thus use methods
that are closer to model-checking. These forbidden graphs are defined using
context-free graph grammars. Rewriting systems are then modeled as Petri
graphs and the algorithm checks that there is no reachable marking of this graph
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that would mean that a forbidden graph can be reached. Checking whether no
marking in a set is reachable is decidable albeit complex. This can be improved
using restrictions on the starting graph and the structures of the rules. This
differs from our case as, in addition to using rules that are structured differently
with a graph as right-hand side, it forces the user to provide a starting graph
while we would like to just describe it using a precondition. It also lacks a
strategy for using the rules that we are interested in both as actual strategies
and as an imperative program.

The way one tackles verification of graph transformation is, obviously, quite
dependent on what are the properties that one wants to express and how the
transformations are performed. In [1], the possible transformations that can
be performed are different from the ones we use. The transformations focus
on global transformations in that they only allow to modify labels of sets of
nodes instead of individuals. The logic used is ALCHOIQbr, a Description
Logic that contains, among others, nominals which means that it is possible to
modify single node labeling. The transformations are performed as imperative
programs without loops. A lot of loops can actually be replaced with class
relabeling but loops can still increase the expressiveness of the transformation
language. As ALCHOIQbr is included in C2, it can be used in combination of
one of the systems we introduced yet with the same limitations that apply to
the more expressive logic.

Another problem that seems to be really similar is knowledge base update
[2, 28, 23] in which one tries to know whether some knowledge base will be
satisfied from a given knowledge base after performing some actions that update
the knowledge. An update adds or removes (in which case, it is usually qualified
as erasure) pieces of knowledge. The main difference with what we consider as
actions is how much change we consider occurs. In update, if one knows that
every Bird is able to Fly and learns that Chilly Willy does not Fly it concludes
that Chilly Willy is not a Bird, that is it aims at changing as little as possible
the knowledge base. On the other hand, if the same is considered as an action,
no possible outcome can be excluded and thus one would consider that every
Bird, except maybe Chilly Willy, can Fly. As the way changes are handled
is different, these two problems are quite different. It could be interesting to
move farther in that direction by combining the approach we have been using of
generating the weakest precondition with a set of unalterable axioms that can
be used to remove alternatives and thus making the precondition stronger while
still being the weakest.

Among modal logics, one can single out epistemic logics[39]. Their objective
is to represent knowledge. Models are graphs whose nodes represent the various
states that are considered as possible and edges are equivalence relation between
indistinguishable states. For instance, let us consider a two player game where
Alice and Bob each draw a ball. Each one of them knows the ball she has
picked and they both know that there are only three balls two of which are
Red, the last one being White. They don’t know which ball the other player
has picked though. Alice has picked the white ball and Bob has picked a red
ball. The graph presented in Figure 2.2 is their knowledge graph. Each state
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Figure 2.2: An example of epistemic model with indistinguishable states for
Alice and Bob. The actual state is the rectangle.

is pair whose first element is the color of Alice’s ball and whose second element
is the color of Bob’s. There are three possible states (R,W ), (R,R) and (W,R)
and the actual state is (W,R). Alice knows that it is so as Bob can only have
one of the two remaining balls both of which are Red. On the other hand, Bob
cannot distinguish between the states (W,R) and (R,R) as he doesn’t know the
color of Alice’s ball. Were Alice holding a Red ball, she would not be able to
discriminate between the states (R,R) and (R,W ) either.

Epistemic logics are particularly interesting in our case because it embedded
in the conception of the logic that actions will be performed. To be more
precise, it is possible to alter models by using public announcements[30]. Only
something true in the actual state can be publicly announced and its effect is to
remove from the graph all states which are inconsistent with the announcement.
For instance, if Alice were to announce that she has the White ball, only (W,R)
would be a possible state. If, instead of announcing that she had the White ball,
Alice had announced that she knew the color of Bob’s ball, the result would
have been the same as if the actual state had been any of (R,R) or (R,W ), she
would not have been able to announce this.

Public announcements are complex actions that are more complex to emulate
that one could think. Indeed, one could state that one just has to use a rule
that would erase all nodes that do not satisfy the announcement. The problem
is that it has to be simultaneous. Indeed, in the second case, if one were to
remove the state (R,R) because it is not a case where Alice is unable to know
the color of Bob’s ball, she would be left with two states (W,R) and (R,W )
both of which are states in which Alice knows the color of Bob’s ball and thus
(R,W ) would not be erased. The solution is thus to mark all states that are
to be erased in a first go and then erase all nodes that are marked and repeat
until no node is marked.
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It is possible to have more involved models too by giving various degrees
of confidence in the various states and to have different actions as for instance
forgetting information that ends up creating new possible states. It is also
evident, as can be seen with the muddy children conundrum, that having a
perfectly logical understanding of knowledge yields situations that are difficult
to intuit and may not be perfectly realistic.

Another key problem that can be linked to program verification is Ontology-
Based Data Access[26, 11], or OBDA. Given a knowledge base or database
containing some data, one wants to know the results of a query. This is the
most usual task in databases. The problem is that, when data becomes bigger,
it is no longer efficient to store all the data inside the database. An ontology is
thus used to reduce the size of the database without loosing actual knowledge.

For instance, the IMDB Movie Ontology1 contains the database for the
IMDB website that deals with movies. There are thousands of movies that
are stored and belong to various categories. It is much more efficient to store in
the database that AM(M0), ..., AM(Mn), meaning that Movies M0 to Mn are
Action Movies and in the ontology that all Action Movies are Movies than to
store in the database M(M0), ...M(Mn), AM(M0), ..., AM(Mn).

OBDA may seem to have very little to do with program verification yet the
two problems are closely linked. Indeed, the database can be considered as a
special case of precondition, the query can be considered as a postcondition and
the ontology can be treated as a program. Most ontologies are built such that
every axiom as to be applied as much as possible. In our context, that means
that strategies are usually unused. Yet, one could imagine ontologies that would
require strategies. For instance, still in the context of the movie database, one
could want to know before the Oscar Award Ceremony whether there may be,
depending on who is awarded the Best Actress Oscar, a movie by a given director
with 2 or more Best Actress Oscar winners. Adding to the ontology a set of
rules that awards the Best Actress Oscar to one of the nominees and requiring
that one and only one of the rules is applied could yield a strategized ontology
that would lead to the correct answer.

1https://github.com/ontop/ontop/wiki/Example MovieOntology
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Chapter 3

Preliminaries and Running
Example

In this chapter, our goal is to introduce several examples and definitions that
we are going to use all around this work to illustrate our purpose.

First, we are going to give a few formal definitions that will form the un-
derlying structures that will be used in all following chapters of this work. We
define what is a graph as far as we are concerned, that is a pair composed of
a set of nodes and a set of edges, with functions on the latter giving for each
edge its source and its target and functions, for both nodes and edges, that give
their labels. According to our definition, node and edge labels are formulae of
a logic. We are not, for now, interested in what those formulae mean or how
they are interpreted, we just use them to label things.

We then define a set of actions. They allow one to modify a graph by
changing the labeling of a node (C := C + i, C := C − i) (respec-
tively of an edge (R := R + e, R := R − e)), or a set of nodes
(C := ψ, C := i) (respectively a set of edges, (R := Q, R := e)), to
redirect incoming (respectively outgoing) edges from a node to another one
(i �in j) (respectively i �out j), to create or suppress nodes and edges
(new node(i), del node(i), new edge(e, i, j), del edge(e)). These atomic actions
can then be combined into a sequence of actions.

The second part of this chapter introduces the example of a hospital. Our
goal is to verify graph transformations and thus, for it to make sense, we need
to be able to have an idea of what actual transformations and properties of the
graphs can be used. It is a voluntarily simplistic example that is used only with
the hope to be able to illustrate what is done in the various following chapters.
It should deal with a subject any reader is familiar enough with to have an
idea of what should be while being simple enough to be used in human-readable
examples.

To go with the description of the hospital, the final part of this chapter
introduces transformations of the hospital. Once more, they do not aim at
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being all-encompassing but at being fairly easy to grasp and to use. Together
with these transformations, several properties that make sense are introduced
as part of an invariant for the transformations, that is as formulae that should
always be satisfied after a transformation is performed granted that they were
satisfied before.

3.1 Formal definitions

When one aims at dealing with graph transformations, it makes sense to first
define formally what is considered a graph. We diverge slightly from the simplest
definition in that our graphs contain nodes and edges that are labeled with
formulae from a given logic. Apart from that, the definition is classical.

Definition 3.1.1 (Graph). Let L be a logic. A graph alphabet is a pair (C, R)
of sets of elements of L, that is C ⊆ L and R ⊆ L. C is the set of node formulae
(of L) or concepts and R is the set of edge formulae (of L) or roles. Subsets
of C and R, respectively named C0 and R0, contain basic concepts and roles
respectively. A graph G over a graph alphabet (C, R) is a tuple (N , E, φN , φE,
s, t) where N is a set of nodes, E is a set of edges, φN is the node labeling
function, φN : N → P(C0), φE is the edge labeling function, φE : E → P(R0),
s is the source function s : E → N and t is the target function t : E → N .

It is worth noting that the codomain of the labelings are defined as contain-
ing only basic concepts and roles. These definitions are extended so that the
labeling is coherent with the semantics of the logic used. One can thus assume
that elements are labeled with complex formulae. We call ΦN (resp. ΦE) this
extended node labeling function (resp edge labeling function).

Definition 3.1.2. Let L be a logic, G be a graph over {C,R}, C ∪ R ⊆ L, n a
node of G, ψ ∈ C (resp. Q ∈ R), we say that G,n |=L ψ if ψ ∈ ΦGN (n) (resp.
Q ∈ ΦGE(e)).

Once it is clear what a graph is, it is mandatory to define how to transform it.
Our decision was to eschew category theory and head towards a more algorithmic
approach to graph transformations. The following definition introduces several
atomic actions that allow one to modify graphs. We first only give an idea
of what each action does before giving the formal definition of its effects on a
graph.

Definition 3.1.3 (Atomic action, action). An atomic action, say a, has one of
the following forms:

• a concept assignment C := ψ where C is a basic concept in C0 and ψ is a
concept in C. After performing C := ψ, a node n is labelled with C if and
only if it is labeled with ψ.

• a role assignment r := Q where r is a basic role in R0 and Q is a role in
R. After performing r := Q, an edge e is labelled with r if and only if it
is labeled with Q.
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• a concept definition C := i where C is a basic concept in C0 and i is a
node. After performing C := i, i is labelled with C and it is the only one.

• a role definition r := e where r is a basic role in R0 and e is an edge.
After performing r := e, e is labelled with r and it is the only one.

• a concept addition C := C + i where i is a node and C is a basic concept
in C0. It adds the node i to the valuation of the concept C.

• a concept deletion C := C − i where i is a node and C is a basic concept
in C0. It removes the node i from the valuation of the concept C.

• a role addition r := r + e where e is an edge and r is a basic role (edge
label) in R0. It adds the edge e to the valuation of the role r.

• a role deletion r := r − e where e is an edge and r is a basic role (edge
label) in R0. It removes the edge e from the valuation of the role r.

• a node creation new node(i) where i is a new node. It creates the node i.
i has no incoming nor outgoing edge and there is no basic concept (in Φ0)
such that i belongs to its valuation (resp. it deletes i and all its incoming
and outgoing edges).

• a node deletion del node(i) where i is an existing node. It deletes i and
all its incoming and outgoing edges.

• an edge creation new edge(e, i, j) where e is a new edge and i and j are
existing nodes. It creates the edge e such that s(e) = i and t(e) = j. e is
not labeled with any basic role.

• an edge deletion del edge(e) where e is an existing edge. It deletes e.

• a global incoming edge redirection i �in j where i and j are nodes. It
redirects all incoming edges of i toward j.

• a global outgoing edge redirection i �out j where i and j are nodes. All
outgoing edges of i becomes outgoing edges of j.

The result of performing the atomic action α on a graph G = (NG, EG, φGN , φ
G
E ,

sG, tG), written G[α], produces the graph G′ = (NG′ , EG
′
, φG

′

N , φ
G′

E , s
G′ ,

tG
′
). An action, say α, is a sequence of atomic actions of the form α =

a1; a2; . . . ; an. The result of performing α on a graph G is written G[α]. G[a;α] =
(G[a])[α] and G[ε] = G, ε being the empty sequence.

Let us illustrate the actual transformation associated to each atomic action
α by giving the graph G′ such that G⇒α G

′.

• If α = C := ψ then:

– NG′ = NG
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– EG
′

= EG

– φG
′

N (n) =

{
φGN (n) ∪ {C} if n |= ψ
φGN (n)\{C} otherwise

– φG
′

E = φGE

– sG
′

= sG

– tG
′

= tG

• If α = r := Q then:

– NG′ = NG

– EG
′

= EG

– φG
′

N = φGN

– φG
′

E (e) =

{
φGE(e) ∪ {r} if e |= Q
φGN (e)\{r} otherwise

– sG
′

= sG

– tG
′

= tG

• If α = C := i then:

– NG′ = NG

– EG
′

= EG

– φG
′

N (n) =

{
φGN (n) ∪ {C} if n = i
φGN (n)\{C} otherwise

– φG
′

E = φGE

– sG
′

= sG

– tG
′

= tG

• If α = r := e then:

– NG′ = NG

– EG
′

= EG

– φG
′

N = φGN

– φG
′

E (e′) =

{
φGE(e′) ∪ {r} if e′ = e
φGN (e′)\{r} otherwise

– sG
′

= sG

– tG
′

= tG

• If α = C := C + i then:

– NG′ = NG

– EG
′

= EG
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– φG
′

N (n) =

{
φGN (n) ∪ {C} if n = i
φGN (n) if n 6= i

– φG
′

E = φGE

– sG
′

= sG

– tG
′

= tG

• If α = C := C − i then:

– NG′ = NG

– EG
′

= EG

– φG
′

N (n) =

{
φGN (n)\{C} if n = i
φGN (n) if n 6= i

– φG
′

E = φGE

– sG
′

= sG

– tG
′

= tG

• If α = r := r + e then:

– NG′ = NG

– EG
′

= EG

– φG
′

N = φGN

– φG
′

E (e′) =

{
φGE(e′) ∪ {r} if e = e′

φGE(e′) otherwise

– sG
′

= sG

– tG
′

= tG

• If α = r := r − e then:

– NG′ = NG

– EG
′

= EG

– φG
′

N = φGN

– φG
′

E (e′) =

{
φGE(e′)\{r} if e = e′

φGE(e′) otherwise

– sG
′

= sG

– tG
′

= tG

• If α = new node(i) then:

– NG′ = NG ∪ {i} where i is a new node

– EG
′

= EG

– φG
′

N (n′) =

{
∅ if n′ = n
φGN (n′) if n′ 6= n
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– φG
′

E = φGE

– sG
′

= sG

– tG
′

= tG

• If α = del node(i) then:

– NG′ = NG\{i}
– EG

′
= EG\{e|sG(e) = i ∨ tG(e) = i}

– φG
′

N is the restriction of φGN to NG′

– φG
′

E is the restriction of φGE to EG
′

– sG
′

is the restriction of sG to EG
′

– tG
′

is the restriction of tG to EG
′

• If α = new edge(e, i, j) then:

– NG′ = NG

– EG
′

= EG ∪ {e} where e is a new edge

– φG
′

N = φGN

– φG
′

E (e′) =

{
∅ if e′ = e
φGN (e′) if e′ 6= e

– sG
′
(e′) =

{
i if e′ = e
sG(e′) if e′ 6= e

– tG
′

=

{
j if e′ = e
tG(e′) if e′ 6= e

• If α = del edge(e) then:

– NG′ = NG

– EG
′

= EG\{e}
– φG

′

N = φGN

– φG
′

E is the restriction of φGE to EG
′

– sG
′

is the restriction of sG to EG
′

– tG
′

is the restriction of tG to EG
′

• If α = i�in j then :

– NG′ = NG

– EG
′

= EG

– φG
′

N = φGN

– φG
′

E = φGE

– sG
′

= sG
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– tG
′
(e) =

{
j if tG(e) = i
tG(e) if tG(e) 6= i

• If α = i�out j then :

– NG′ = NG

– EG
′

= EG

– φG
′

N = φGN

– φG
′

E = φGE

– sG
′
(e) =

{
j if sG(e) = i
sG(e) if sG(e) 6= i

– tG
′

= tG

Just defining what are atomic graph transformations is quite clearly not
enough to be able to construct actual graph transformations. How to build
these transformations is already an interesting subject per se and, though it is
not the sole focus of this work, it is still the main subject of Chapter 4 and
Chapter 8.

Once graphs and their transformations have been defined, one can go back
to the overall objective of graph transformation verification, that is to prove
that a graph transformation is correct.

Let s be the graph transformation that one wants to perform and which one
actually wants to be able to prove correct. As in the case of programs, one
could think of several definitions of what is a correct transformation. One could
say that it is a transformation that does something, or that it can not fail, or
that it must always stop, etc. As proving that a program halts is a difficult and
worthwhile subject on its own, we concentrated on proving that programs do
what they have to provided they halt. Nonetheless, one wants to be more specific
than saying that the program does someting. To be able to describe what one
expects the program to do, we use conditions that describe wanted properties
before and after the computation. We call the union of these conditions and the
transformation a specification and we prove that these specifications are correct.
It is thus worth noting that the proof of the correctness is at most as good as
the specification.

Definition 3.1.4 (Specification). A specification S is a triple (Pre, s, Post)
where Pre and Post are formulae and s is a graph transformation.

A specification is composed of three elements. In addition to the transfor-
mation s, the specification contains Pre, the so-called precondition, and Post,
the postcondition. Pre is a formula that describes the conditions that one wants
to be satisfied before s is performed and Post describes the conditions that have
to be satisfied after s is performed.

Definition 3.1.5 (Correctness). A specification S is said to be correct if for all
graphs G satisfying Pre, any graph G′ that can be obtained from G by performing
s is such that G′ satisfies Post.
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The notions of specification and correctness thereof forces us to deal with
conditions that have to be expressed in a language. Those languages are logics.
Determining what are the characteristics we are looking for in logics is the main
focus of this work that will be dealt with in Chapter 5. We then consider what
these properties mean for the logics themselves and this leads to the study of
several logics, namely Description Logics in Chapter 6, an extension of Dynamic
Logic in Chapter 7 and several expressive fragments of First-Order Logic in
Chapter 9.

3.2 Hospital example

In order to better illustrate our purpose, an example modelling a sample of the
information system of a hospital is introduced. It is the same one that we used
in [12]. Figure 3.1 is the UML model of this sample.

We consider persons (shortened to PE). Some of them work in the hospital
and form the medical staff (MS) and others are patients (PA). The medical
staff is partitioned into physicians (PH) and nurses (NU). In addition, the
hospital is split into several departments (DE) or services. Files (FI) are used
to store information. Those pertaining to patients are stored in folders (FO).

Each member of the medical staff is assigned (denoted by works in) to a
department. The same way, each patient is hospitalized (hospital in) in one
of the departments. There may be several members of the medical staff that
may collaborate to treat (treats) a patient at a given time but one of them is
considered as the referent physician (ref phys), that is to say she is in charge
of the patient. Part of the medical staff can access the folder containing the
documents about (is about) a patient either to read (read access) or to write
(write access) of information. Files belong (belongs to) to a folder and can
reference (reference) other files. One of the files is HP, the hospital policy.

3.3 Transformations and properties

The fact is the hospital is bound to evolve: new patients arrive to be cured and
others leave, new medical staffers are hired and others move out. To illustrate
our purpose, four possible transformations are defined below.

Transformation 1. The first transformation is New Ph(ph1, d1). It creates
a new physician to which is associated an identifier ph1. This physician will be
working in the department identified with d1.

Transformation 2. The second transformation is New Pa(pa1, ph1, fo1). It
adds a new patient. The patient pa1 is created alongside his folder fo1. He is
then assigned ph1 as referent physician.

Transformation 3. The third transformation is Del Pa(pa1). It removes pa-
tient pa1.
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Figure 3.1: A sample UML model for the hospital example
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Transformation 4. The fourth transformation is Del Ph(ph1, ph2). It deletes
the physician ph1 and forwards all his patients to the physician ph2. ph1 and
ph2 have to work in the same department.

Despite the transformations, there are some properties of the hospital that
should not be altered. We give a list of six such expected properties in the
following.

Expected property 1. Each member of the medical staff is either a nurse or
a physician but not both.

Expected property 2. All patients and all medical staffers are persons.

Expected property 3. Each person that can write in a folder can also read
it.

Expected property 4. Each person that can read a folder about a patient
treats that patient.

Expected property 5. Only medical staffers can treat persons and only pa-
tients can be treated.

Expected property 6. Every patient has exactly one referent physician.

Expected property 7. Every file references, albeit maybe indirectly, the Hos-
pital Policy file.

3.4 Conclusion

In this chapter, we gave our formal definition of graphs and we introduced
atomic transformations. These definitions are not completely usual. For in-
stance, we decided to label edges and nodes in graphs with formulae in order to
improve the expressive power of the transformations. Also we wanted a more
algorithmic approach to transformation which lead us to less usual definitions of
transformation. In addition, using sequences of atomic actions naturally induce
the definition of execution steps that can be used as the basic block on which
the Hoare-like calculus is going to work.

We also introduced a running example that we plan to use to illustrate the
various results of this work. We chose the example of a hospital as it is fairly
easy to understand. Additionally, it is a simplified and partial description so
that, when it is used as an example, it is possible to produce both readable and
yet sufficiently complex properties and transformations. We hope in this way
to make clearer the most elaborate problems that we faced.

30



Chapter 4

An imperative language

As explained in Section 1.3, there are several ways to think about graph trans-
formations. Using an imperative language may not be the most widespread way
to deal with graph transformations but it is rather intuitive and a good way
to introduce progressively the difficulties that arise when trying to prove the
correctness of a program modifying graphs.

In this chapter, we introduce such an imperative language. It is the same as
the one we showed in [15]. Its most simple element is an atomic action. The set
of atomic actions is composed of those that have been defined in Section 1.3.
They allow to modify graphs by modifying the labeling of nodes and edges. It
is possible to change the label of one local element, be it a node or an edge,
by adding or removing that element from those labeled by a given atomic la-
bel (by performing the action c := c + i, c := c − i, r := r − e
or r := r + e). It is also possible to modify globally the way nodes and
edges are labelled by assigning a new set of elements to a label (by perform-
ing the action c := D, r := Q, c := i or r := e). It is also possi-
ble to modify the graph without affecting the labeling by redirecting all in-
coming or outgoing edges of a node (by performing the action i �in j or
i �out j) or by adding or removing nodes and edges (by performing the
action new node(i), del node(i), new edge(e, i, j) or del edge(e)). These atomic
actions are then composed together using usual constructs of imperative lan-
guages as if-then structures, while loops and sequencing of actions. A more
original structure is the “select” statement that non-deterministically assigns
an element satisfying a condition to a variable. These are used to handle the
selection of specific nodes of the graphs where the transformations are requested
to occur.

As the programming language contains conditional structures, namely the if-
then structure, the while-loop and the “select” statement, a logic is needed. For
this chapter, we do not worry about the logic. While next chapter, Chapter 5,
is concerned with the topic of the logic and all the consequences on it that are
implied by the needs of the transformation languages, this chapter only aims to
introduce the imperative language and give details and examples of its workings.
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Once the programming language is introduced in Section 4.1, this chapter
presents some results that have been obtained by implementing a system using
this programming language. To be more precise, an Eclipse plug-in has been de-
veloped to translate programs written in our imperative programming language
into Java. Another program has been implemented that checks the correctness
of the program and returns a counter-example when the program is incorrect.
More details can be found in Section 4.2 on the implementations and in the
following chapters for the proof of correctness of a program.

4.1 Example of imperative programing language
for graph transformation

The programming language introduced in this chapter is an imperative language
manipulating relational structures. Its distinctive features are conditions (in
conditional statements and loops) that are formulae. It has a non-deterministic
assignment statement select ... with allowing to select an element accord-
ing to a formula. Traditional types (numbers, arrays, inductive types) and
accompanying operations are not provided; the language thus really focuses on
transformations of graphs.

Due to the “select” statement, variables are used in the transformation lan-
guage. In order to deal with them, states are used instead of graphs as the
structures that are modified.

Definition 4.1.1 (State). A state σ is a tuple (G, {v1, . . . }, A) where G is
a graph, {v1, . . . } is a list of node variables and A : {v1, . . . } → N is the
assignment function that assigns a node to a variable.

It is important to realize that during the program execution, nodes are ac-
cessed through these variables and the nodes that are modified are those pointed
by the variables. That is when C := C + i is performed, i is not a node and it
is the node A(i) that is modified.

Another key point is that edges are considered as pairs of nodes instead of
separate entities. All possible pairs are considered as edges and those that are
actually part of the graph are those that are labeled. This different view of
edges, obviously, impacts the atomic actions that are used.

Definition 4.1.2. Let C be a node label, R be an edge label, i, j be node vari-
ables, an atomic action is one of the following graph transformations:
C := C + i (node labeling)
C := C − i (node unlabeling)
R := R+ (i, j) (edge labeling)
R := R− (i, j) (edge unlabeling)

One can observe that not all atomic actions defined in Section 1.3 are re-
ported in Definition 4.1.2. The creation and deletion of nodes is done in a
different fashion. It is assumed that there exists a concept Active, unused in
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the properties, that denotes nodes that exist. If this is the case, creating a new
node amounts to labeling it with Active and deleting a node amounts to remov-
ing the Active label. Thus, these actions can be simulated using atomic actions
as defined in Definition 4.1.2. An additional condition on node not labeled with
Active is added that they cannot have any label and that they can not have any
incoming or outgoing labeled edge. This implies that the sets of atomic node
and edge labels are finite. This is obviously not an optimal translation as the
formulae may become very cumbersome. The other actions are removed for the
sake of simplicity for now.

Atomic actions are used as the building block of statements, that is of graph
transformations.

Definition 4.1.3. Statements of the language are then defined by the following
grammar:
stmt ::= a (atomic action)

| select i with form (assignment)
| stmt ; stmt (sequence)
| if form then stmt else stmt (if-then statement)
| while form do stmt (while loop)

The semantics is a big-step semantics with rules of the form σ ⇒stmt σ
′

expressing that executing statement stmt in state σ produces a new state σ′.

The rules of the semantics are given in the Figure 4.1. Beware that we
overload logical symbols such as ∃, ∧ and ¬ for use in the meta-syntax and as
constructors of form.

Intuitively, the states σ manipulated by the operational semantics describe
the current structure of a graph: which concepts label each node; which roles
label each edge; and which variables are bound to which nodes. We write σ(φ)
to evaluate the condition φ (a formula) in state σ.

The statement select i with φ selects an element vi that satisfies condition
φ, and assigns it to i. i is a node variable. For instance, let us assume that stmt
is the statement select i with i : C, that is select a node labeled C. i is not a
node but, if there exists a node labeled C, one of them will be used as the value
of i.

select is a generalization of a traditional assignment statement. There
may be several instances that satisfy φ, and the expressiveness of the logic
might not suffice to distinguish them. In this case, any such element is selected,
non-deterministically. Let us spell out the precondition of (SelAssT): here,
σ[v:=vi] is an interpretation update. What it does is modify the assignment
function A such that A(i) = vi. It checks whether the formula φ would be
satisfied under this choice, and if it is the case, keeps this assignment. In case
no satisfying instance exists, the semantics blocks, i.e. the given state does not
have a successor state, which can be considered as an error situation.

Now that loops have been introduced it is possible to simulate actions like
i �in

l0
j that redirects the incoming edges of i labeled l0 toward j as shown

in Figure 4.2. Provided that there is a finite number of atomic edge labels, it
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(Seq)
σ ⇒c1 σ

′′ σ′′ ⇒c2 σ
′

σ ⇒c1;c2 σ
′

(SelAssT)
∃vi.(σ′ = σ[i:=vi] ∧ σ′(φ))

σ ⇒select i with φ σ
′

(IfT)
σ(φ) σ ⇒c1 σ

′

σ ⇒if φ then c1 else c2 σ
′ (IfF)

¬σ(φ) σ ⇒c2 σ
′

σ ⇒if φ then c1 else c2 σ
′

(WT)
σ(φ) σ ⇒c2 σ

′′ σ′′⇒while φ do c σ
′

σ ⇒while φ do c σ
′ (WF)

¬σ(φ)

σ ⇒while φ do c σ

Figure 4.1: Big-step semantics rules

while ∃d .(d, i) : l0 do
select d with (d , i) : l0;
l0 := l0 − (d , i);
l0 := l0 + (d , j);

Figure 4.2: A statement simulating i�in
l0
j
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Pre: ph1: PH
if ∃d .(ph1,d):works in∧ (ph2,d):works in then

PH := PH - ph1;
while ∃p. (ph1,p):treats do

select p with (ph1,p):treats;
treats := treats - (ph1,p);
treats := treats + (ph2,p);

while ∃p. (p,ph1):ref phys do
select p with (p,ph1):ref phys;
ref phys := ref phys - (p,ph1);
ref phys := ref phys + (p,ph2);

MS := MS- ph1;
Post: ph1: ¬PH

Figure 4.3: An example of program for the fourth transformation

is thus possible to simulate i �in j. Obviously, the same can be done with
i�out j.

Let us go back to the example of the hospital. One can try to express the
fourth transformation in this imperative language. Obviously, that depends
on the choice made for the logic. As we did not concern ourselves with logics
yet, we will assume we use a first-order like logic with quantification on nodes.
That is ∃n.n : P means that there exist a node that is labeled with P and
∃n0, n1.(n0, n1) : R means that there is an edge whose source is n0 and whose
target is n1 labeled with R. The transformation does three main things: it
checks that ph1 and ph2 work in the same department (this corresponds to an
“if-then” statement), it removes the label PH from ph1 (this corresponds to
the atomic action) and it forwards all patient of ph1 to ph2(this corresponds
to a “while”-loop). It is illustrated in Figure 4.3.

4.2 Translation to Java Code

Being able to use the programming language to define programs is interesting
yet their is a huge gap between being able to write programs and being able to
execute them. In order to cross this chasm, we translated our programs into
another language, in this case Java, that can then be compile to executable
code. This work was presented in [7].

Generating Java Code: For processing programs such as the one in Fig-
ure 4.3 and generating Java code, we use the Eclipse environment and, in partic-
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public void Trans4(N ph1,ph2) {
N p;

if ∃d .(ph1,d):works in∧ (ph2,d):works in{
g.deleteNodeph1,PH;
while ∃p. (ph1,p):treats{

p = treats.selectSource(ph1);
g.deleteEdge(ph1,treats,p);
g.insertEdge(ph2,treats,p);

}
while ∃p. (p,ph1):ref phys{

p = ref phys.selectTarget(ph1);
g.deleteEdge(p,ref phys,ph1);
g.addEdge(p,ref phys,ph2);

}
g.deleteNode(ph1,MS);

}
}

Figure 4.4: An example of Java program for the fourth transformation

ular, the Xtext1 facilities for parsing, syntax highlighting and context-dependent
help.

In order to generate Java code for programs, we parse them and then traverse
the syntax tree with Xtext/Xtend, issuing calls to appropriate Java functions
that manipulate a graph (which is initially the input graph provided in the pro-
gram’s main rule). Here is a glimpse at the Xtend code snippet that translates
statements, in particular the add statement for roles:

def statement(Stmt s){
switch s{
Add_stmt: add(s.lvar,s.role,s.rvar)

...

}
}
def add(String lvar,String role,String rvar)’’’

�graph�.insertEdge(�lvar�,�role�,�rvar�);’’’

Thus, a program fragment R := R + (a,b); is translated to a Java call
g.insertEdge(a, R, b);, where the graph g is the current graph.

Assuming that the correct definition have been made, that is that g is de-
fined as a graph, that all atomic concepts, atomic roles and individual names

1http://www.eclipse.org/Xtext/
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< rdf : RDF >
< rdf : Descriptionabout = ”http : //www.w3.org/Home/Lassila” >
< s : Creatorrdf : resource = ”http : //www.w3.org/staffId/85740”/ >
< /rdf : Description >

< rdf : Descriptionabout = ”http : //www.w3.org/staffId/85740” >
< v : Name > OraLassila < /v : Name >
< v : Email > lassila@w3.org < /v : Email >
< /rdf : Description >
< /rdf : RDF >

Figure 4.5: An example RDF file

have been defined properly, the transformation defined in Figure 4.3 can be
translated into a Java program, shown in Figure 4.4 that would be part of the
class Hospital. It is worth noting that, as was true in our imperative program-
ming language, this program is not executable as is because one also needs to
instantiate the logic so that it is possible to evaluate the formulae that are used
as conditions in the if and while statements. Some of the internal procedures
have yet to be fully implemented. For instance, select currently only works on
atomic concepts but it should not be a difficult task to extend it to more ex-
pressive conditions. As this is highly dependent on the chosen logic though, it
is something that has to be defined in conjonction with the logic.

Transforming Graphs: Once a Java program has been generated for a given
program, it can be compiled and linked with a library that provides graph ma-
nipulating functions such as the above-mentioned insertEdge. When executing
this program, it remains to read an input file containing a graph description, to
perform the transformation and to output the new graph. We represent graphs
in the RDF [22] format or Resource Description Framework. The RDF format
is the W3C recommendation for metamodelling of data since 1999. It uses URIs
to identify objects. An example is given in Figure 4.5. Parsing and printing of
RDF files is based on the Apache Jena framework2.

4.3 Conclusion

In this chapter, we introduced a programming language to modify graphs. This
programming language is imperative and uses classical statements of impera-
tive programming languages, as “if-then-else” statements and “while” loops, in
addition to more graph transformation-oriented statements that are the atomic

2http://jena.apache.org/
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actions that are performed. The most interesting statement in the syntax is the
non-deterministic “select” that acts as a binder for node variables used in the
actions.

Although we have yet to discuss logics, which is the subject of the next
chapter, this imperative programming language uses heavily logic formulae in
its syntax. Both the “if-then-else” statement and the “while” loop use, as is
usual, conditions that have to be Booleans and the “select” binds variables
according to a formula so that only elements that make the formula true are
possible values for the variable. The choice of the logic is thus of outmost
importance already as it underlies the syntax of the graph transformations.

In order to be fully able to use the definition of our programming language,
we had to implement ways to actually modify graphs. We give such an im-
plementation that translates a program written in this language into a Java
program. This Java program can then be executed and used to actually modify
graphs.

38



Chapter 5

Toward a general logical
framework

One way to modify graphs has been introduced and another will be shown in
Chapter 8. They use logic both as part of the statements, viz. if-then statements
or while loops, and as the language in which the properties are expressed. It is
obvious that in these conditions, the choice of the logic, or possibly logics, that
are used is key. This discussion is an extension of the one in [12].

In most cases, in order to prove the correctness of graph transformations, a
logic is produced that can fit the needs of the transformations and of the prop-
erties that are under study. While finding a solution designed with a problem
in mind is intuitively the best way to solve that problem, that also means that
it is seldom applicable to other problems and that no clue is given on how to
tailor the solution of a problem to another one.

A huge array of logics have been considered as possible solutions as the
underlying structure with which transformations are built. In [8], for instance,
a logic highly reminiscent of dynamic logics is introduced. Its main advantage
is its expressiveness. Both complex properties of the graphs, like euclidian edge
labels or the absence of cycles, and transformations can be efficiently expressed.
On the other hand, its main shortcoming is that it is not decidable and thus
proofs cannot be automated. Another possible choice is to use the monadic
second-order logic. It is, in all generality, undecidable but, given restrictions
on the structures, it becomes decidable. Furthermore, it allows to describe
properties of graphs that cannot be expressed in first-order logic, say that a
graph is bi-partite. In [58], GP, that stands for Graph Program, a framework to
define graph transformations that is strongly linked to the categorial conception
of graph transformations, is introduced. It comes with a Hoare-like system
allowing to prove the correctness of a program. Still, once more, one may wish
to prove programs correct without having to restrict oneself to a few given
structures.

On the other side of the spectrum, in [15], SROIQ, a decidable Description
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Logic is used to reason about graph transformations. It is much less expressive
but it is decidable. Its use is then restricted by conditions so that the Hoare-
like calculus generates only formulae that stay in the logic. The shortcoming of
having to design programs with the limitations of the logic is efficiently removed
in [1] by using a more expressive logic that can take care of all transformations
defined inside the logic itself. Furthermore, the article focuses on finite models
which correspond, in general, better to what graphs are actually considered.

The problem though is still that all those logics have pros and cons and that,
to someone who does not want to spend time looking at which logic corresponds
the most closely to his needs, there is no way to take a decision on which one
is to be used. On the other hand, someone could have been using a logic that
is perfectly suitable to define graph properties but there is no guideline to tell
whether or not this logic could actually be used to prove that the programs are
correct or not. In this chapter, the goal is to take a look at and point out the
requirements that the logics have to fulfill in order to be used in the verification
of a program.

5.1 Logics and graphs

Our aim in this section is to discuss general requirements for a logic, say L, that
one may consider either to specify pre- and post- conditions of specifications, to
label graphs and to be used as conditions in statements.

Let us first focus on the first use of L.
Let SP = (Pre, s, Post) be a specification. If SP is correct, then if a graph

G |= Pre and G rewrites to model G′ via program P, then G′ |= Post. The first
obvious condition is that G |= Pre is actually defined. That is to say, graphs
must be able to satisfy formulae. This is a condition that focuses on what the
logic means, that is how a formula is interpreted. For instance, the formula
∀x, y, z.gcd(x, y) = z ⇒ ∃a, b.a × x + b × y = z has a meaning if one tries to
interpret it on Z, the smallest ring of integers, but the meaning is much less
clear if one wants to interpret it on graphs.

The delimitation between what can be interpreted on graphs and what can-
not is not always that clear though. ∀x.odd(x) ⇒ ∃y.square(x) = y ∧ odd(y)
may also seem unadapted to be interpreted on graphs but, rewritten as ∀x.x :
odd⇒ ∃y.(x, y) : square∧y : odd, it does not seem so unnatural. Furthermore,
by just changing the name of the propositions, one can get ∀x.x : human ⇒
∃y.(x, y) : childOf∧ y : human which states that humans all have a human they
are the child of which would be a perfectly fine formula on graphs representing
human society.

Requirement 1. Interpretations of Pre and Post assertions should be graphs.
Thus, given a graph G and a formula φ, G |= φ must be defined.

Even provided that this first requirement is respected, one has to be able to
define properly graphs. This means that L needs to have ways to label both
nodes and edges.
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Requirement 2. Interpretations of node formulae (concepts) should be nodes.

Requirement 3. Interpretations of edge formulae (roles) should be edges.

Once more, this mostly means that the logic has to be tailored to deal with
graphs. Essentially, what these requirements mean is that there should be unary
and binary predicates (provided edges are considered as pairs of nodes) in the
logic. Predicates of higher arity could be defined, say clique(x, y, z) but they
have to be interpreted on edges and nodes as there are no ternary structures
in graphs. clique(x, y, z) could be defined as friend(x, y) ∧ friend(y, z) ∧
friend(z, x).

Going back to the arithmetic oriented formulae given previously, one of the
main problems is what the connectors are. In these formulae, gcd, . and +
are not predicates (unlike odd, for instance) but functions that have a result
(here an integer). Obviously, functions are not always a problem. Even in these
cases, = is an function that can be used as it produces a truth value. In more
graph-oriented frameworks, the function next of lists for instance works well for
edges. The issue is that functions actually need an increased arity (one for each
elements and one for the result) to be expressed as predicates which means that
functions of arity greater than 1 make little sense when dealing with graphs.
Indeed, graphs are only composed of nodes and edges and all relations, and
thus all properties, can only speak about such nodes and edges. It is obviously
possible to define functions of higher arity than two but they could always be
translated into formulae dealing only with edges and nodes that is only with
arity 2 or less functions.

These requirements primarily check that there is a reason behind the choice
of the logic. Three different arities make sense in the context of graphs: binary
predicates for edges considered as pairs of nodes, unary predicates for nodes and
nullary predicates for graphs.

The requirement that the labels have the good arity does not preclude the
absence of such labels. For instance, one may want to use modal logic [10]. It
provides no actual label for edges even though modal logic models are graphs.
It is a perfectly acceptable choice of logic in which one does not discriminate
between edge labels. Multi-modal logic [29], on the other hand, provides multi-
ple labels for edges and allow to take into accounts the labeling of edges in the
formulae.

5.2 Hoare-like calculus and weakest precondi-
tions

Being able to find a logic able to express properties of the graph is, obviously,
only part of the problem of finding a logic that is able to express the correctness
of graph transformations. The logic must also be able to work with the veri-
fication calculus. This section focuses on the actions described in Section 4.1.
When what is said can be more general, it is indicated.
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As usual in Hoare logic[40], the verification calculus is reasoning upward.
Let P1 be a postcondition and s be a statement. One computes a precondition
P0 such that it is a certitude that if P0 is true in a graph G, P1 is true in any
graph obtained from G by performing s. There may be several such P0’s so the
weakest one, that is the one that implies all the others, is computed.

When applied to a specification (Pre, s, Post), a precondition P0 is generated
for Post to be true after having performed s. One then has to decide whether
Pre⇒ P0.

The basic cases of the computations of weakest precondition deal with atomic
actions (see Fig 5.1). To be more precise, to every atomic action is associated
a so called substitution [40]. Such substitutions are the elementary building
blocks allowing the verification of a program.

Definition 5.2.1. Let a be an atomic action, as defined in Section 3.1. The
substitution [a] associated to a is the formula constructor that to each formula
φ of L associates the formula φ[α]. Given a model M, φ[a] is defined such that
M |= φ[a]⇔ for all models M′,M′ ⇒aM implies M′ |= φ.

A logic L′ is said to be closed under substitutions if for each action a, for
each formula φ of L′, φ[a] is also a formula of L′.

wp(C := φ′, φ) = φ[C := φ′]
wp(r := Q, φ) = φ[r := Q]
wp(C := i, φ) = φ[C := i]
wp(r := e, φ) = φ[r := e]
wp(C := C + i, φ) = φ[C := C + i]
wp(C := C − i, φ) = φ[C := C − i]
wp(r := r + e, φ) = φ[r := r + e]
wp(r := r − e, φ) = φ[r := r − e]
wp(new node(i), φ) = φ[new node(i)]
wp(del node(i), φ) = φ[del node(i)]
wp(new edge(e), φ) = φ[new edge(e)]
wp(del edge(e), φ) = φ[del edge(e)]
wp(i�in j, φ) = φ[i�in j]
wp(i�out j, φ) = φ[i�out j]

Figure 5.1: Weakest preconditions for the actions defined in Section 3.1.

In Figure 5.1, the substitutions corresponding to the atomic actions defined
in Section 3.1 are used. The computation of weakest preconditions is then
extended to the statements presented in Chapter 4.1.

The weakest preconditions defined in Figure 5.2 follow usual Hoare Logic
calculi [40]. The rules for statement sequence and the if-then-else statement
are quite straightforward. ψ is the weakest precondition for φ after performing
s0; s1 if it is the weakest precondition for ψ′ after performing s0 with ψ′ the
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wp(select i with φ′, φ) = ∀i.(φ′ ⇒ φ) wp(s0; s1, φ) = wp(s0, wp(s1, φ))
wp(if φ′ then s0 else s1, φ) = (φ′ ⇒ wp(s0, φ)) ∧ (¬φ′ ⇒ wp(s1, φ))
wp(while φ′ do {inv}s, φ) = inv

Figure 5.2: Weakest preconditions for statements.

weakest precondition for φ after performing s1. In a similar way, ψ is the
weakest precondition for φ after performing if φ′ then s0 else s1 if it is the
weakest precondition for φ after performing s0 knowing that φ′ is satisfied and
it is the weakest precondition for φ after performing s1 knowing that φ′ is not
satisfied.

The rule for the non-deterministic select is more involved. It states that no
matter which node is assigned to the variable i, whenever the condition φ′ is
satisfied so must be the post-condition as the only effect of the statement is
changing the assignment of i. Finally, one may have realized that the rule for
the while loop contained an additional part of the statement. This {inv} is
the invariant if the loop and it has to be provided by the user. The weakest
precondition for the while loop is stated to be inv. Once more, it is the usual
weakest precondition in Hoare logic. The weakest precondition simply checks
that this invariant is satisfied before entering in the loop. Obviously, this is
not sufficient to prove that the postcondition, that does not even appear in the
calculus, is satisfied after the execution of the loop. Another set of conditions,
namely verification condition, is introduced in Figure 5.3 to complement the
weakest preconditions.

vc(a, φ) = > vc(select i with φ′, φ) = >
vc(s0; s1, φ) = vc(s0, wp(s1, φ)) ∧ vc(s1, φ)
vc(if φ′ then s0 else s1, φ) = vc(s0, φ) ∧ vc(s1, φ)
vc(while φ′ do {inv}s, φ) = (φ′ ∧ inv ⇒ wp(s, inv)) ∧ (¬φ′ ∧ inv ⇒ φ) ∧ vc(s, inv)

Figure 5.3: Verification conditions for statements.

Once more the definition of the verification conditions is usual. The goal of
the verification conditions is to prove that the statements that form the core of
while-loops behave as correct programs. To be more precise, let while φ do s be
a statement whose invariant is chosen as inv. The verification condition checks
that the specification (φ∧inv, s, inv) is correct and that if φ is not satisfied, that
is the execution exits the loop, the postcondition must be satisfied. The other
rules are simpler: the one for the if-then-else statement checks that whichever of
the statements is executed, its loops behave correctly, and the one for sequence
checks that each of the two statements contains only correct loops. As neither
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the select statement nor any of the atomic actions may contain loops, there
verification condition is always true.

These definitions may be usual and intuitively correct, one still has to prove
formally that the calculus is sound.

Definition 5.2.2 (Correctness formula). We call correctness formula the for-
mula correct(S) = (Pre⇒ wp(s, Post)) ∧ vc(s, Post).

Theorem 5.2.1 (Soundness). Let S = (Pre, s, Post) be a specification. If
correct(S) is valid, then for all graphs G, G′ such that G ⇒s G

′, G |= Pre
implies G′ |= Post.

This proof is done by induction on the semantic of the programming lan-
guage. It is quite technical but not difficult. If not interested in this proof,
one can skip to Section 5.3. We only consider here the atomic actions used in
Section 4.1 in order to be coherent with the statements used.

Proof. • Let us assume s = C := C + i. Then correct(S) = vc(C := C +
i, Post) ∧ (Pre⇒ wp(C := C + i, Post). As vc(C := C + i, Post) = >
and wp(C := C + i, Post) = Post[C := C + i], correct(SP ) = Pre ⇒
Post[C := C + i]. Let σ be a state such that σ(Pre). As correct(S)
is valid, σ(correct(S)), that is σ(Pre ⇒ Post[C := C + i]). As σ(Pre),
σ(Post[C := C+i]). By definition of the substitutions, σ(Post[C := C+i])
implies that for any state σ′ such that σ ⇒C:=C+i σ

′, σ′(Post). Thus
σ(Pre)⇒ σ′(Post).

• Let us assume s = C := C− i. Then correct(S) = vc(C := C− i, Post) ∧
(Pre⇒ wp(C := C−i, Post). As vc(C := C−i, Post) = > and wp(C :=
C − i, Post) = Post[C := C − i], correct(S) = Pre⇒ Post[C := C − i].
Let σ be a state such that σ(Pre). As correct(S) is valid, σ(correct(SP )),
that is σ(Pre ⇒ Post[C := C − i]) is. As σ(Pre), σ(Post[C := C − i]).
By definition of the substitutions, σ(Post[C := C − i]) implies that for
any state σ′ such that σ ⇒C:=C−i σ

′, σ′(Post). Thus σ(Pre)⇒ σ′(Post).

• Let us assume s = R := R + (i, j). Then correct(S) = vc(R := R +
(i, j), Post) ∧ (Pre ⇒ wp(R := R + (i, j), Post). As vc(R := R +
(i, j), Post) = > and wp(R := R + (i, j), Post) = Post[R := R + (i, j)],
correct(S) = Pre ⇒ Post[R := R + (i, j)]. Let σ be a state such that
σ(Pre). As correct(S) is valid, σ(correct(S)), that is σ(Pre⇒ Post[R :=
R + (i, j)]). As σ(Pre), σ(Post[R := R + (i, j)]). By definition of the
substitutions, σ(Post[R := R + (i, j)]) implies that for any state σ′ such
that σ ⇒R:=R+(i,j) σ

′, σ′(Post). Thus σ(Pre)⇒ σ′(Post).

• Let us assume s = R := R − (i, j). Then correct(S) = vc(R := R −
(i, j), Post) ∧ (Pre ⇒ wp(R := R − (i, j), Post). As vc(R := R −
(i, j), Post) = > and wp(R := R − (i, j), Post) = Post[R := R − (i, j)],
correct(S) = Pre ⇒ Post[R := R − (i, j)]. Let σ be a state such that
σ(Pre). As correct(S) is valid, σ(correct(S)), that is σ(Pre⇒ Post[R :=
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R − (i, j)]). As σ(Pre), σ(Post[R := R − (i, j)]). By definition of the
substitutions, σ(Post[R := R − (i, j)) implies that for any state σ′ such
that σ ⇒R:=R−(i,j) σ

′, σ′(Post). Thus σ(Pre)⇒ σ′(Post).

• Let us assume s = select i with φ. Then correct(S) = vc(select i
with φ, Post) ∧ (Pre⇒ wp(select i with φ, Post). As vc(select i
with φ, Post) = > and wp(select i with φ, Post) = ∀i.(φ ⇒ Post),
correct(SP ) = Pre⇒ ∀i.(φ⇒ Post). Let σ be a state such that σ(Pre).
Then σ(∀i.(φ ⇒ Post)). Let σ′ be such that σ ⇒select i with φ σ′. By
definition, σ′ is such that ∃vi.σ′ = σ[i:=vi] and σ′(φ). As σ′(φ ⇒ Post);
σ′(Post). Hence σ(Pre)⇒ σ′(Post).

• Let us assume s = s0; s1. Then correct(S) = vc(s0; s1, Post) ∧
(Pre ⇒ wp(s0; s1, Post). As vc(s0; s1, Post) = vc(s0, wp(s1, Post)) ∧
vc(s1, Post) and wp(s0; s1, Post) = wp(s0, wp(s1, Post)), correct(SP ) =
vc(s0, wp(s1, Post)) ∧ vc(s1, Post) ∧ (Pre ⇒ wp(s0, wp(s1, Post)). Let
σ be a state such that σ(Pre). As correct(S) is valid, σ(correct(S)).
Let σ′ be a state such that σ ⇒s0;s1 σ′. Then there exists σ′′ with
σ ⇒s0 σ

′′ and σ′′ ⇒s1 σ
′. As σ(Pre) and σ(vc(s0, wp(s1, Post))∧ (Pre⇒

wp(s0, wp(s1, Post)))), by induction with S0 = (Pre, s0, wp(s1, Post)),
σ′′(wp(s1, Post)). As correct(S), vc(s1, Post) ∧ (wp(s1, Post)⇒ wp(s1,
Post)) is valid. Thus σ′′(vc(s1, Post) ∧ (wp(s1, Post) ⇒ wp(s1, Post))).
Once more, by induction with S1 = (wp(s1, Post), s1, Post), σ

′(Post).
Thus σ(Pre)⇒ σ′(Post).

• Let’s assume s = if φ then s0 else s1. Then correct(S) = vc(if φ then

s0 else s1, Post) ∧ (Pre ⇒ wp(if φ then s0 else s1, Post). As
vc(if φ then s0 else s1, Post) = vc(s0, Post)) ∧ vc(s1, Post) and
wp(if φ then s0 else s1, Post) = (φ⇒ wp(s0, Post)) ∧ (¬φ⇒ wp(s1,
Post), correct(SP ) = vc(s0, Post)) ∧ vc(s1, Post) ∧ (Pre⇒ (φ⇒ wp(s0,
Post)) ∧ (¬φ ⇒ wp(s1, Post)). Let σ be a state such that σ(Pre) and
σ′ be a state such that σ ⇒if φ then s0 else s1 σ

′, that is either σ(φ) and
σ ⇒s0 σ

′ or σ(¬φ) and σ ⇒s1 σ
′.

– If σ(φ) then, as correct(S) is valid, so is vc(s0, Post) ∧ (Pre ∧ φ ⇒
wp(s0, Post)). As σ ⇒s0 σ

′, by induction with S0 = (Pre∧φ, s0, Post),
σ′(Post)).

– else, as correct(S) is valid, so is vc(s1, Post) ∧ (Pre ∧ ¬b⇒ wp(s1,
Post)). As σ ⇒s1 σ

′, by induction with S1 = (Pre ∧ ¬φ, s1, Post),
σ′(Post)).

Thus σ(Pre)⇒ σ′(Post).

• Let us assume s = while φ do s′. Then correct(S) = vc(while φ do s′,
Post) ∧ (Pre ⇒ wp(while φ do s′, Post). As vc(while φ do s, Post) =
(φ ∧ inv ⇒ wp(s′, inv)) ∧ (¬φ ∧ inv ⇒ Post) ∧ vc(s′, inv) and
wp(while φ do s′, Post) = inv, correct(S) = (φ ∧ inv ⇒ wp(s′, inv)) ∧
(¬φ ∧ inv ⇒ Post) ∧ vc(s′, inv) ∧ (Pre ⇒ inv). Let σ be a state such
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that σ(Pre) and σ′ be a state such that σ ⇒while φ do s′ σ
′. Then either

σ(φ) and there exists σ′′ such that σ ⇒s′ σ
′′ and σ′′ ⇒while φ do s′ σ

′ or
σ(¬φ and σ = σ′.

– If σ(φ), then there exist σ′′ such that σ ⇒s′ σ
′′ and σ′′ ⇒while φ do s′

σ′. As correct(S) is valid, so is vc(s′, inv) ∧ (Pre ⇒ (φ ∧ inv ⇒
wp(s, inv))). Thus vc(s′, inv) ∧ (Pre ∧ φ ∧ inv ⇒ wp(s′, inv)) is
also valid. By induction with SP ′ = (Pre∧φ∧ inv, s′, inv), σ(Pre∧
φ ∧ inv)⇒ σ′′(inv). Also, as correct(SP ) is valid, so is vc(s′, inv) ∧
(inv ∧ φ ⇒ wp(s′, inv) ∧ (inv ∧ ¬φ ⇒ Post) ∧ (inv ⇒ inv). Thus,
by induction with SP ′′ = (inv, while φ do s′, Post), σ′′(inv) ⇒
σ′(Post). Thus σ(Pre)⇒ σ′(Post)

– else, as correct(S) is valid so is (Pre⇒ inv)∧ (inv ∧ ¬ φ ⇒ Post).
As σ(Pre), σ(inv). Furthermore, as σ(¬φ), σ(Post). But, as σ′ = σ,
σ(Pre)⇒ σ′(Post)

Thus σ(Pre)⇒ σ′(Post).

Now that we have defined the correctness formula, we know that the veri-
fication problem can be translated to the validity problem for a given formula.
The next two requirements are made to allow us to be able to deal with this
problem. We chose to require that the logic be able to express the correctness
formula and thus add requirements to the logic. Other solutions could be to
allow for weaker logics and devise a reasoning system for the logic extended
with the missing elements or to actually devise a reasoning system tailored for
the specific problem of deciding the validity of the correctness formula.

In all generality, the requirements may be strongly tied to how transfor-
mations are made. For instance, the computation of the weakest precondi-
tion for the “if-then-else” statement is wp(if φ then s0 else s1, Q) = (φ ⇒
wp(s0, Q))∧ (¬φ⇒ wp(s1, Q)). This means that whenever “if-then-else” state-
ments are part of the transformation language, the logic must provide the con-
junction, the negation and the implication of formulae. On the other hand, let
us consider a transformation language that contains only sequences of atomic
actions. In this case, the computation of the verification conditions would be
moot and the computation of the weakest preconditions could not require any
additional conditions on L.

The first obvious realization is that substitutions are used and that it is thus
mandatory to be able to deal with them. This is the requirement that is tackled
in Section 5.3.

Another condition implied by the transformation language chosen is the
weakest-precondition for the “select” statement. It introduces an universal
quantifier. The presence of universal quantifiers, as there is a priori no restric-
tion on the number of “select” statements used, in L is an important restriction
as not all logics handle it. For instance, it is not part of modal logics. This
requirement is studied in more details in Section 5.4.
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5.3 Closure under substitution

The stated goal of this work is to provide general conditions on L and the
conditions heretofore examined are highly dependent on a possibly misguided
choice of transformation language. On the other hand, one clear requirement is
that it is needed to be able to deal with atomic actions, that is it is needed to
handle substitutions.

Requirement 4. L must be closed under substitutions.

It is obvious that if the requirement above is not satisfied, the calculus of
weakest preconditions may generate a formula which is not in L. As general as
this requirement may seem to be, it is still highly dependent on what transforma-
tions are actually performed. By adding or removing atomic actions, remember
that for instance the set of atomic actions used in Definition 4.1.2 is different
from the one introduced in Section 3.1, the requirement that L be closed under
substitutions changes.

Nevertheless, this may seem to be a really abstract condition and, as very
few existing logics have been created with substitutions in mind, there is no
straightforward way to detect logics that are closed under substitutions. One
could thus be interested in what can be a clue that a logic is closed under
substitutions.

The first thing one may have noticed when the atomic actions were intro-
duced in Section 3.1 is that atomic actions deal with nodes and edges. That
may seem to be insignificant but that actually means that in order to be closed
under substitutions, the logic has to be able to speak about individual nodes
and edges. In most cases, being able to speak about nodes is enough though
as an edge e can be considered as the pair (s(e), t(e)). Being able to deal with
individuals is not straightforward though.

Several mechanisms exist to deal with individuals. Basically, an individual
is something that has one and only one instance. In first-order logic if one
wants to speak about the individual i, it is possible to introduce a new unary
predicate i and add to the formula that there is a node that is the individual
i (∃x.i(x)) and that all nodes that are labeled with i are actually the same
(∀x, y.i(x) ∧ i(y) ⇒ x = y). In other logics that lack equality or quantifiers,
other mechanisms can be used. Nominals are part of some description and
hybrid logics and the model checks that there exists one and only one element
that is labeled with the individual.

Once again, this requirement depends enormously on the choice of atomic
actions that has been made. If the atomic actions do not use individuals, say
the only atomic action is C := φ, this requirement becomes much less severe.

Another thing that appears quite obvious is that one needs to be able to
speak about disconnected nodes. To be more precise, when one looks at the
result of creating a new edge between two nodes, one has to be able to deal
with both nodes even though they are not yet a priori connected. Thus the
logic needs to provide a way to speak about nodes that are different from the
one under current study. Node formulae are, as we have seen, essentially unary
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predicates that are evaluated over one node at a time. When one is dealing with
edges, in particular when creating new edges, one has to be able to deal with
both the source and the target of the edge. In first order logic, the quantifiers
allow to quantify over nodes and thus to consider multiple nodes at a time. In
logics lacking such powerful quantifiers, it is possible to try to replace them with
less potent tools like an universal role or the @ constructor of hybrid logic.

More details will be given when actual logics are studied in Chapter 6, Chap-
ter 7 and Chapter 9.

5.4 Handling the select

In the previous section, the impact of substitutions has been looked at. Those
are not the only problems that arise when trying to find a logic expressive
enough to be used in the verification of graph transformations.

The weakest precondition for the select statement is wp(select i with φ, Q) =
∀i.(φ⇒ Q). It introduces a universal quantifier on variables which means that
the logic has to be able to handle them. A lot of logics, say modal logic, do
not allow for variables thus this may seem to restrict drastically the number of
logics that can be used.

It is possible to limit the impact of this restriction though. Let us first
observe that the correctness formula, provided restrictions on Pre, Post, the
invariants and the conditions used in s, can be considered essentially universally
quantified. This is a good thing for a reason that will become clear in a short
while.

Definition 5.4.1. A formula is essentially universally quantified if its prenex
normal form contains only universal quantifiers.
A formula is essentially existentially quantified if its prenex normal form con-
tains only existential quantifiers.

One can easily see that the only rule in the computation of the weakest
preconditions and the verification conditions that introduces quantifiers is the
weakest precondition for the select statement. As weakest preconditions are
never negated, Corr is thus essentially universally quantified if no other quan-
tifier is used.

One could, in this condition, try to extend the logic to one using quantifiers
with the hope of keeping an essentially universally quantified formula. If one
looks at the generation of weakest preconditions and verification conditions,
it appears that conditions in if-statements and while-loops have both positive
and negative occurrences. This means that, if one wants to keep an essentially
universally quantified formula, one must ban quantifiers in these conditions. The
same goes for the loop invariants that appear both on the left- and right-hand
side of the implications in (φ′ ∧ inv ⇒ wp(s, inv)).

However, if the conditions in the select statements are essentially existen-
tially quantified, Corr will be essentially universally quantified. Let us for
instance look at the statement s =select p with ∃q.(p, q) : R. Its weakest
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precondition is wp(s, Post) = ∀p.((∃q.(p, q) : R)⇒ Post) whose prenex normal
form is ∀p.∀q.((p, q) : R ⇒ Post). It is essentially universally quantified. That
means that it is possible to use select statements that use as many variables as
one may want.

On the other hand, Pre only occurs on the left and can thus be essentially
existentially quantified and still yield an essentially universally quantified Corr
while Post only occurs on the left and can thus be essentially universally quan-
tified. This allows to slightly extend the possibilities offered in the definition
of the specifications but this can not be used very efficiently in transformations
themselves.

Corr being essentially universally quantified is interesting as the problem
that interests us at this point is whether or not Corr is valid. Instead one can
look at the exact equivalent question of wether ¬Corr is satisfiable. But then
¬Corr is essentially existentially quantified. It is thus possible to skolemize it
and replace all variables with constants. The condition on the logic is thus no
longer that it contains a universal quantification on variables but that it can
deal with constants.

This discussion seems to be fairly specific to the framework that we have cho-
sen that uses an imperative programming language-like structure. As discussed
in Section 1.3, this is far from the only possible approach possible. However,
in Chapter 8, we will observe the case of rule-based transformations in details
and see that the same kind of problems invariably appears as one has to find
a way to express where transformations are to be applied. The problem would
be solved if the transformation where to be applied at pre-chosen nodes and
edges must it is usually mandatory to be able to use variables to consider when
actions are applied in actual transformations.

5.5 Conclusion

In this chapter, we started to deal with the logic underlying the tranformations
of graphs that we introduced and the verification of such transformations.

This chapter is key for several reasons. First and foremost, it introduces for
the first time restrictions that one may want to enforce on the logics that one
uses to express graph properties. This is the main task that has been defined
as this work’s aim. Some of these properties, namely that the logic is actually
suited to talk about graphs, are rather intuitive and easily checked. Others are
more involved and depend highly on numerous factors.

This chapter also introduces the Hoare-like calculus that is used to do the
actual verification of graph transformations. As doing the verification is our
ultimate goal and the Hoare-like calculus is the means that we have chosen to
this goal, its importance must not be underestimated. The Hoare-like calcu-
lus presented in this chapter corresponds to the imperative language defined in
Chapter 4. Another version is presented in Chapter 8 when another kind of
structure for graph transformations is presented. It is important to note, even
though it may seem obvious, that the calculus depends on the way transforma-
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tions are handled. Nonetheless, they have much in common and it is possible
to come up, as we did, with general conditions on the logics that one uses to
describe graphs that make sense in several different transformation systems.

One of the most noteworthy points about the Hoare-like calculus is that it
makes use of substitutions. Substitutions are short-hands that allow to insert
the transformations directly into the logic. They are the first source of trouble
when one wants to do program verification as, a priori, there is no reason for a
logic to be able to handle them. Moreover, as each substitution is linked to one
atomic action, they actually depend on the choice of atomic actions that one
makes.

The first condition on logics that we underline is thus that the logic should
be able to deal with substitutions, that is that it should be closed under sub-
stitutions. If a logic is closed under substitutions, it is possible, albeit maybe
at a cost in term of complexity, to decide whether a formula with substitutions
is satisfiable, or valid, using, possibly pre-existing, tools designed for that logic.
This condition is studied further in Chapter 6 as we examine a family of logics,
namely Description Logics, and prove which are closed under substitutions.

The second condition that arises is that the logic is able to deal with the
“select”-statement. It may seem at first sight to be a condition that actually
only exists in the case of the imperative programming language and thus an
arbitrary one. We introduce, in Chapter 8, another kind of transformation
systems using rules and strategies that allows us to better illustrate what this
condition is. Essentially, the condition states that the logic is able to deal with
the variables that occur when one tries to apply transformations on elements
that are not pre-determined.

One should note that failing these tests does not mean that the logic is not
suited for graph transformation verification. Indeed, the goal is to be able to use
existing tools instead of requiring the user to have to program new algorithms
to deal with the modified version of the logic that one wants to use. Yet it is
always possible to do so as we actually did for ALCQ, one of the logics presented
in Chapter 6. Part of this implementation is shown in Chapter 10.
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Chapter 6

Using Description Logics

In the previous chapters, an imperative programming language has been in-
troduced to deal with graph transformations. After that, general requirements
for logics have been introduced. Yet, until now, no logic has been formally
introduced.

As the first requirements state that the logic must be tailored to speak
about graphs, let us consider logics that are widely used to deal with graphs.
Description Logics [5] form one of the most widely used family of logics to
describe graphs. They are the underlying logics that are used in the W3C [72]
defined OWL [38] standard for representing data and SPARQL [71] standard for
queries. Nonetheless, these standards are only meant to define static properties
about graphs and query them and do not allow to modify them.

Some DLs have been created with actions in mind though. DLs that are
closely related to dynamic logics like DALCO@ introduced in [18] and PDLC
introduced in [74] use a possible model approach. In that kind of logics, states,
that in this case are graphs, are connected by actions that are described by
their effects and their preconditions. On the other hand, the goal of this work is
to define clear atomic actions that can be combined to produce more elaborate
transformations.

Such an approach is not completely novel. Very expressive Description Log-
ics, as ALHOIQbr [1], have been introduced to model graph-structured data.
This logic has two main advantages: the finite satisfiability of a formula is de-
cidable and it contains constructors that allow to write every atomic action
introduced as formulae of the logic. Nonetheless, the main objective of this
work is not to introduce the perfect logic to deal with graph transformations
but to look at what characteristics a logic should have to be considered as a
candidate to reason about graph transformations.

A great variety of Description Logics have been described depending on what
is to be their use. Some of them, DL-Lite [17] for instance, have been created
to be tractable. These logics are meant to be used to describe large ontologies
and thus their complexities have to be as low as possible. This tractability
is obtained at the cost of expressiveness. On the other hand, some of the
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most expressive logics are undecidable. In particular allowing complex roles in
number restrictions, for instance role composition and inverse [36] or transitivity
and intersection [35], cyclic definitions of role inclusions [41] or role boxes [73]
yields undecidable logics.

Testing all known Description Logics is unfeasible. Instead, the logic ALC
is considered with some of its extensions. This is a more detailed version of the
work presented in [13].

6.1 Syntax of Description Logics

In this chapter, we define the syntax of the description logics we consider. We
start by the elementary logic ALC. ALC, and all of its extensions, are defined
using a signature (C, R, I) where C is a set of concept names, R is a set of role
names and I a set of individuals.

Let us first define the concepts, that is the node labels.

Definition 6.1.1 (ALC concepts). The set of concepts, C, is defined as:
φ ::= ⊥ (empty concept)

| C (concept name)
| ¬ φ (negation)
| φ u φ (conjunction)
| φ t φ (disjunction)
| ∃R.φ (exists)
| ∀R.φ (for all)

where c is a concept name (∈ C) and R is a role. As usual > is defined as
6 ⊥.

Les us now define the roles of edge labels.

Definition 6.1.2 (ALC roles). The set of roles is R.

Very often, DL formulae are split into several parts: ABoxes, TBoxes and
concepts. ABoxes are meant to store the information on particular nodes and
edges: how are they labeled, which ones are known to be the same or different.

Definition 6.1.3 (ABox). An individual assertion A is defined as:
A ::= i : φ (concept assertion)

| i = j (equality)
| i 6= j (inequality)
| i R j (positive role assertion)
| i ¬R j (negative role assertion)

where φ is a concept, R is a role and i and j are individuals. An ABox is a
finite set of individual assertions.

TBoxes contain the hierarchy of concepts that is which concepts are included
in which others.

Definition 6.1.4 (TBox). A TBox is a finite set of concept inclusions of the
form φ ⊆ ψ, where φ and ψ are concepts.
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Other entities may be used, such as RBoxes. RBoxes are used to store the
role hierarchy. They usually allow some role constructors (sequence, union)
that are not supported in other parts of the logics. In these cases, if strong
restrictions are not enforced, RBoxes can very easily lead to undecidable logics
[41, 73]. Most of the logics that will be studied henceforth do not use RBoxes
for this reason.

Definition 6.1.5 (RBox). A RBox is a finite set of role inclusions of the form
R0 ⊆ R1, where R0 and R1 are roles.

Each extension of ALC adds new concept or role constructors. Each con-
structor is associated to a letter added to the name of the logic1. The most
popular constructors that we consider in this chapter are Q, O, Self , I and U ,
defined as follows:

Q (≥ n R φ) (at least)
O {a} (nominal)
Self ∃S.Self (local reflexivity)
I R− (inverse role)
@ @aφ (concept assertion)
U U (universal role)

where i is an individual, R is a role and φ is a concept.

Example 6.1.1. For example, the concept C = ({ph1} u (∃ works in.DE) u (∀
ref phys−.¬ pa1)) t ((< 3 treats >)) is the concept satisfied by ph1({ph1}) if
she works in a department ((∃ works in.DE)) and if all the patients whose
referent physician she is are not pa1(∀ ref phys−.¬ pa1) or by anyone treating
strictly less than 3 patients ((< 3 treats >)).

Now that formula of the logics have been introduced, one has to know how
to interpret them.

Definition 6.1.6 (Interpretation). An interpretation I is a pair {∆, .I} where
∆ is the universe (set of elements) and .I , the valuation, is a function that maps
each concept name to a subset of ∆, each role name to a subset of ∆ ×∆ and
each individual to an element of ∆.

The way interpretations are used in the verification of graph transformations,
∆ is actually the N of the graphs, that is the set of nodes. Once more, one has to
note that edges are not considered as separate entities but as couples of nodes.

Below, we define the valuation of roles and concepts:

1see, e.g., http://www.cs.man.ac.uk/∼ezolin/dl/
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⊥I = ∅
(¬ φ)I = ∆\φI
(φ u ψ)I = φI ∩ ψI
(φ t ψ)I = φI ∪ ψI
(≥ n R φ)I = {δ ∈ ∆|#(RIφ(δ)}) ≥ n}
(< n S φ)I = {δ ∈ ∆|#(RIφ(δ)) < n}
(∃R.φ)I = {δ ∈ ∆|RIφ(δ) ≥ 1}
(∀R.φ)I = {δ ∈ ∆|RI¬φ(δ) < 1}
{i}I = iI

(∃R.Self)I = {δ ∈ ∆|(δ, δ) ∈ RI}
(@iφ)I = ∆ if i ∈ φI , ∅ otherwise
(U)I = ∆×∆
(R−)I = {(δ, δ′) ∈ ∆×∆|(δ′, δ) ∈ RI}

where RIφ(δ) is {δ′ ∈ ∆|(δ, δ′) ∈ RI ∧ δ′ ∈ φI} and #(V ) stands for the cardinal
of V .

Definition 6.1.7 (Model). We say that an interpretation I satisfies an asser-
tion i : φ (resp. i = j, i 6= j, i R j, i ¬R j) if iI ∈ φI (resp. iI = jI ,
iI 6= jI , (iI , jI) ∈ RI , (iI , jI) 6∈ RI). We say that an interpretation I is a
model of an ABox A if I satisfies all the assertions of A. We say that an in-
terpretation I satisfies a concept inclusion φ ⊆ ψ if φI ⊆ ψI . We say that an
interpretation I is a model of a TBox T if I satisfies all the concept inclusions
of T . We say that an interpretation I satisfies a concept φ if φI 6= ∅.

Let us assume that, from now on, using the atomic actions defined in Sec-
tion 3.1, substitutions are defined.

Substitutions define an additional concept constructor. We use σ in logic
names to signify that substitutions are allowed as constructors. It is important
to note that this constructor can only be used to build the concept part of the
considered formulae and not in assertions nor in concept inclusions. We also
identify edges e with the pair (s(e), t(e)) in order to be able to identify them
uniquely. Thus actions like R := e become R := (i, j).

σ φθ (explicit substitution)
where φ is a concept and θ is a substitution.

For instance, φ[R := R+(i, j)] means that φ is satisfied after adding the pair
(i, j) to the valuation of R. The interpretation is thus modified accordingly.

Definition 6.1.8 (Valuation of explicit substitutions). Let C be a concept
name, i and j be individuals, φ be a concept and R be a role name, the val-
uation of explicit substitutions is defined as follows:

• (φε)I = φI

• (φ[C := C + i])I = φJ where ∆J = ∆I , ∀D ∈ C, D 6= C,DJ = DI ,
∀R ∈ R, RJ = RI and CJ = CI ∪ {iI}.

• (φ[C := C − i])I = φJ where ∆J = ∆I , ∀D ∈ C, D 6= C,DJ = DI ,
∀R ∈ R, RJ = RI and CJ = CI\{iI}
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• (φ[R := R + (i, j)])I = φJ where ∆J = ∆I , ∀C ∈ C, cJ = cI , ∀P ∈
R, P 6= R,PJ = P I and RJ = RI ∪ {(iI , jI)}

• (φ[R := R − (i, j)])I = φJ where ∆J = ∆I , ∀C ∈ C, cJ = cI , ∀P ∈
R, P 6= R,PJ = P I and RJ = RI\{(iI , jI)}

In this chapter, we are interested in how the addition of substitutions to
concepts affects the expressive power of a given Description Logic. For now,
explicit substitutions can only be used in the definition of a concept (and thus
are forbidden in ABoxes and TBoxes).

Definition 6.1.9 (Equivalence). Two concepts φ and ψ are said to be equivalent
if, for every interpretation I, φI = ψI .

A logic L1 is at most as expressive as a logic L2 wrt. concepts written
L1 ≤φ L2 if every concept in L1 has an equivalent concept in L2. Two logics
L1 and L2 are concept-equivalent if L1 ≤φ L2 and L2 ≤φ L1

Definition 6.1.10 (Closure under substitutions). A logic L is said to be closed
under substitutions if L and Lσ are concept-equivalent.

6.2 Closed DLs

In this section, the focus is on the most expressive of the Description Logics
considered. The DLs going from ALCUO to ALCQUIO@Self are proved to
be closed under substitutions.

Let us notice first that in ALCQUIO@Self some constructs are rendundant.
In particular, when a DL includes O (nominals), assertions can be rewritten as
concept inclusions. Indeed, the individual assertion i : φ (resp. i = j,
i 6= j, i R j, i ¬R j) is equivalent to the concept inclusion {i} ⊆ φ (resp.
{i} ⊆ {j}, {i} ⊆ ¬{j}, {i} ⊆ ∃R.{j}, {i} ⊆ ∀R.¬{j}). When a DL includes U
(universal role), concept inclusions can be rewritten as mere concepts. Actually,
the concept inclusion φ ⊆ ψ is equivalent to the concept ∀U.(¬φ t ψ).

As both O and U are part of ALCQUIO@Self , we consider for this chapter
that the TBox and the ABox are empty. Additionally, concept definition, [C :=
i], can be rewritten in presence of nominals into a concept assignment [C := D]
with D = {i}. This action will thus not be considered in the following.

Theorem 6.2.1. ALCQUIO@Self is closed under substitutions.

The proof of Theorem 6.2.1 is done by providing a terminating rewriting
system consisting of concepts rewrite rules which translates concepts of
ALCQUIO@Self into concepts of ALCQUIOSelf (without substitutions).
The rewrite system, we call T , is given below. It consists of 90 rules. The
idea is to associate to each possible pair concept-substitution an equivalent
substitution-free concept. In the following, these pairs are grouped mainly by
concept constructors. The definitions of the rules need some variables: let C
and C ′ be different concept names, φ and ψ be concepts, R and R′ be role
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Figure 6.1: Example illustrating part of rule 3 (C[R := R + (i, j)]  C).
The nodes satisfying C are filled in red, the current node is a rectangle. The
substitution occurs when going from left to right. The interpretation of C is
left unmodified.

names such that R 6= R′, θ be a substitution, i and j be individuals. For ease
of reading, we define φ⇒ ψ as ¬φ t ψ. The notation ./ stands for either < or
≥. As usual, in presence of I, R−− is understood as R.

Some intuition of why each rule is correct is given but the formal proof that
the rewriting system both terminates and does not modify the interpretation
is given afterwards. Some of the rules are unnecessary. For instance, rules are
defined both for (∃R.φ)[C := C+ i] and for (¬∀R.¬φ)[C := C+ i] which are ac-
tually the same. Obviously, the interpretation of the results of both applications
are the same and they were kept only for ease of understanding.

1 ⊥ θ  ⊥

The interpretation of ⊥ is empty even after performing any action.

2 {i} θ  {i}

The interpretation of the nominals does not depend on the interpretation of
any concept or role name.

3 C[R := R± (i, j)] C

4 C[C ′ := C ′ ± i] C

5 C[R := Q] C

6 C[R := (i, j)] C
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7 C[i�in j] C

8 C[i�out j] C

The interpretation of a concept name does not depend on the interpretation
of any other concept or role name. Figure 6.1 shows several possible states
before the action R := R + (i, j)] is performed and its result. It does not show
the initial graphs where (i, j) : R already, in which case nothing happens, or
where i = j.

9 C[C := C + i] C t {i}

After one labeled node i with the concept name C, the nodes labeled C
are those that were labeled C before (those satisfying C) plus the node i (that
satisfies {i}).

10 C[C := C − i] C u ¬{i}

After one removed the label C from node i , the nodes labeled C are those
that were labeled C before (those satisfying C) minus the node i (that satisfies
{i}).

11 C[C ′ := ψ] C

12 C[C := ψ] ψ

If C 6= C ′, its valuation is left unmodified. Otherwise, after assigning to C
the same valuation as ψ, the nodes that satisfy C are exactly those that satisfied
ψ.

13 (¬φ) θ  ¬(φ θ)

14 (φ t ψ) θ  φ θ t ψ θ

15 (φ u ψ) θ  φ θ u ψ θ

16 (@aC) θ  @a(C θ)

Substitutions are propagated along boolean operators in the obvious way.

17 ∃R.Self [C := C ± i] ∃R.Self

18 ∃R−.Self [C := C ± i] ∃R−.Self

19 ∃R.Self [C := ψ] ∃R.Self

20 ∃R−.Self [C := ψ] ∃R−.Self

21 ∃R.Self [R′ := R′ ± (i, j)] ∃R.Self

22 ∃R−.Self [R′ := R′ ± (i, j)] ∃R−.Self
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Substitutions [C := C ± i] and [R′ := R′ ± (i, j)] do not affect the interpre-
tation of role name R, hence the rules 17 – 22.

23 ∃R.Self [R := R+ (i, j)] ({i} u {j}) t ∃R.Self

24 ∃R.Self [R := R− (i, j)] (¬{i} t ¬{j}) u ∃R.Self

25 ∃R−.Self [R := R+ (i, j)] ({i} u {j}) t ∃R−.Self

26 ∃R−.Self [R := R− (i, j)] (¬{i} t ¬{j}) u ∃R−.Self

∃R.Self is satisfied by an element, say k, after labeling the edge (i, j) with R
if and only if it was already satisfied or k = i = j. On the other hand, ∃R.Self
is satisfied by an element, say k, after removing the label R from the edge (i, j)
if and only if it was already satisfied and either k 6= i or k 6= j. The direction
of the self-loop being irrelevant, the translations are the same for ∃R−.Self .

27 ∃R.Self [R′ := Q] ∃R.Self

28 ∃R−.Self [R′ := Q] ∃R−.Self

29 ∃R.Self [R := Q] ∃Q.Self

30 ∃R−.Self [R := Q] ∃Q−.Self

If R 6= R′, its valuation is left unmodified. Otherwise, as the valuation of R
is now exactly the one of Q, th nodes where R is localy reflexive are thos where
Q is. Additionally, as the only possible Q are either atomic roles or the inverse
of atomic roles, these formula are well-formed.

31 ∃R.Self [R′ := (i, j)] ∃R.Self

32 ∃R−.Self [R′ := (i, j)] ∃R−.Self

33 ∃R.Self [R := (i, j)] {i} u {j}

34 ∃R−.Self [R := (i, j)] {i} u {j}

As the valuation of R is now exactly the couple {iI , jI}, the only possibility
is that both i and j are the considered node. As previously, local reflexivity
does not care for the direction of the edge.

35 ∃R.Self [i�in j] 
(({i} ⇔ {j})⇒ ∃R.Self) u (¬{i} u {j} ⇒ ∃R.Self t ∃R.{i})

36 ∃R−.Self [i�in j] 
(({i} ⇔ {j})⇒ ∃R.Self) u (¬{i} u {j} ⇒ ∃R.Self t ∃R.{i})

37 ∃R.Self [i�out j] 
(({i} ⇔ {j})⇒ ∃R.Self) u (¬{i} u {j} ⇒ ∃R.Self t ∃R−.{i})
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38 ∃R−.Self [i�out j] 
(({i} ⇔ {j})⇒ ∃R.Self) u (¬{i} u {j} ⇒ ∃R.Self t ∃R−.{i})

There are essentially three possibilities: either the current node is i and j
or neither of them and thus it is not affected, or it is i but not j but then it is
impossible to have an incoming (respectively an outgoing edge), or it is j and
not i and then R is locally reflexive if it already was or there was an edge from
j to i that now goes from j to j.

39 (./ n R φ)[C := C ± i] (./ n R φ[C := C ± i])

40 (./ n R− φ)[C := C ± i] (./ n R− φ[C := C ± i])

41 (./ n R φ)[C := ψ] (./ n R φ[C := ψ])

42 (./ n R− φ)[C := ψ] (./ n R− φ[C := ψ])

43 (./ n R φ)[R′ := R′ ± (i, j)] (./ n R φ[R′ := R′ ± (i, j)])

44 (./ n R− φ)[R′ := R′ ± (i, j)] (./ n R− φ[R′ := R′ ± (i, j)])

Substitutions [C := C ± i], [R′ := R′ ± (i, j)] and [C := ψ] do not modify
the interpretation of R, hence the rules 39 – 44.

45 (./ n R φ)[R := R+ (i, j)] 

(({i} u ∃U.({j} u φ[R := R+ (i, j)]) u ∀R.¬{j}) ⇒
(./ (n− 1) R φ[R := R+ (i, j)]))
u ((¬{i} t ∀U.(¬{j} t ¬φ[R := R+ (i, j)]) t ∃R.{j})⇒

(./ n R φ[R := R+ (i, j)]))

46 (./ n R− φ)[R := R+ (i, j)] 

(({j} u ∃U.({i} u φ[R := R+ (i, j)]) u ∀R−.¬{i}) ⇒
(./ (n− 1) R− φ[R := R+ (i, j)]))
u ((¬{j} t ∀U.(¬{i} t ¬φ[R := R+ (i, j)]) t ∃R−.{i})⇒

(./ n R− φ[R := R+ (i, j)]))

47 (./ n R φ)[R := R− (i, j)] 

(({i} u ∃U.({j} u φ[R := R− (i, j)]) u ∃R.{j}) ⇒
(./ (n+ 1) R φ[R := R− (i, j)]))
u ((¬{i} t ∀U.(¬{j} t ¬φ[R := R− (i, j)]) t ∀R.¬{j})⇒

(./ n R φ[R := R− (i, j)]))

48 (./ n R− φ)[R := R− (i, j)] 

(({j} u ∃U.({i} u φ[R := R− (i, j)]) u ∃R−.{i}) ⇒
(./ (n+ 1) R− φ[R := R− (i, j)]))
u ((¬{j} t ∀U.(¬{i} t ¬φ[R := R− (i, j)]) t ∀R−.¬{i})⇒

(./ n R− φ[R := R− (i, j)]))
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Figure 6.2: Example illustrating rule 47. The nodes satisfying φ[R := R+(i, j)]
are drawn in red, the current node is circled in black. The top left graph
shows the case in which the first part of the first implication is true, that is
(≥ 2R.φ)[R := R − (i, j)] is true if (≥ 3R.φ[R := R − (i, j)]) is. The top right
graph (resp. bottom left, bottom right)shows that if {i} is false (resp. j doesn’t
satisfy φ[R := R − (i, j)], (i, j) is not an R-edge), then the modification does
not affect the property.

In rules 45–48, we distinguish the cases where a substitution induces a change
and those where it does not. The substitution changes the interpretation of the
concept under consideration at element k if k = i (resp. k = j when the concept
uses R−), the edge (i, j) does not already exist (resp. already exists) and j (resp.
i) satisfies φ after the substitution. In that case, exactly one neighbour is added
(resp. removed). Else, nothing has changed and thus the concept remains the
same (see Figure 6.2). Let us consider rule 47, the interpretation of (./ n R φ)
will be modified by the action R := R−(i, j) if the current node is i, j is labeled
with φ[R := R − (i, j)] and (i, j) : R. The condition of the first implication
({i} u ∃U.({j} u φ[R := R− (i, j)]) u ∃R.{j}) is satisfied if and only if it is the
case. In such a situation, the current node will lose a neighbor labeled with φ
and thus it had to have at least n+ 1 to have n afterwards. Otherwise, the case
of the second implication, the number of neighbors is still the same.

49 (./ n R φ)[R′ := Q] (./ n R φ[R′ := Q])

50 (./ n R− φ)[R′ := Q] (./ n R− φ[R′ := Q])

51 (./ n R φ)[R := Q] (./ n Q φ[R := Q])

52 (./ n R− φ)[R := Q] (./ n Q− φ[R := Q])

If R 6= R′, its valuation is left unmodified. Otherwise, if the valuation of
R becomes equal to the one of Q, the number of R-neighbours is the one of
Q-neighbours.
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53 (./ n R φ)[R′ := (i, j)] (./ n R φ[R′ := (i, j)])

54 For n = 1, (< n R φ)[R := (i, j)] ¬{i} t ∀U.(¬{j} t ¬φ[R := (i, j)])

55 For n ≥ 2, (< n R φ)[R := (i, j)] >

56 For n = 1, (≥ n R φ)[R := (i, j)] {i} u ∃U.({j} u φ[R := (i, j)])

57 For n ≥ 2, (≥ n R φ)[R := (i, j)] ⊥

58 For n = 1, (< n R− φ)[R := (i, j)] ¬{j} t ∀U.(¬{i} t ¬φ[R := (i, j)])

59 For n ≥ 2, (< n R− φ)[R := (i, j)] >

60 For n = 1, (≥ n R− φ)[R := (i, j)] {j} u ∃U.({i} u φ[R := (i, j)])

61 For n ≥ 2, (≥ n R− φ)[R := (i, j)] ⊥

If R 6= R′, its valuation is left unmodified. Otherwise, as the valuation of
R becomes {(iI , jI)}, only i can have an R-neighbour (respectively j an R−-
neihbour) satisfying φ and it can be only j (respectively i).

62 (./ n R φ)[i�in j] (∃U.({i} u {j})⇒ (./ n R φ[i�in j]))
u(∃U.({i} u ¬{j})⇒

(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j])⇒
(./ (n+ 1) R φ[i�in j]))

u(∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j])⇒
(./ (n− 1) R φ[i�in j]))

u(∃R.({i} u φ[i�in j]) u ∃R.{j} ⇒
(./ (n+ 1) R φ[i�in j]))

u((∀R.¬{i})
t(∃R.({i} u ¬φ[i�in j]) u ∃R.{j})
t(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j]))
t(∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j]))⇒

(./ n R φ[i�in j])))

63 (< n R− φ)[i�in j] ({i} u ¬{j})t
(¬{i} u {j} ⇒⊔

k∈[0,n](< k R− φ[i�in j])u
∃U.({i} u (< (n− k) R− (φ[i�in j] u ¬∃R−.{j}))))

t(({i} ⇔ {j})⇒ (< n R− φ[i�in j]))

64 (≥ n R− φ)[i�in j] (¬{i} u {j} ⇒⊔
k∈[0,n](≥ k R− φ[i�in j])u
∃U.({i} u (≥ (n− k) R− (φ[i�in j] u ∃R−.{j}))))

u(({i} ⇔ {j})⇒ (≥ n R− φ[i�in j]))

65 (< n R φ)[i�out j] ({i} u ¬{j})t
(¬{i} u {j} ⇒⊔

k∈[0,n](< k R φ[i�out j])u
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∃U.({i} u (< (n− k) R (φ[i�out j] u ¬∃R.{j}))))
t(({i} ⇔ {j})⇒ (< n R φ[i�out j]))

66 (≥ n R φ)[i�out j] (¬{i} u {j} ⇒⊔
k∈[0,n](≥ k R φ[i�out j])u
∃U.({i} u (≥ (n− k) R (φ[i�out j] u ∃R.{j}))))

u(({i} ⇔ {j})⇒ (≥ n R φ[i�out j]))

67 (./ n R− φ)[i�out j] (∃U.({i} u {j})⇒ (./ n R− φ[i�out j]))
u(∃U.({i} u ¬{j})⇒

(∃R−.({i} u φ[i�out j]) u ∀R−.¬{j} u ∃U.({j} u ¬φ[i�out j])⇒
(./ (n+ 1) R− φ[i�out j]))

u(∃R−.({i} u¬φ[i�out j])u∀R−.¬{j} u ∃U.({j} u φ[i�out j])⇒
(./ (n− 1) R− φ[i�out j]))

u(∃R−.({i} u φ[i�out j]) u ∃R.{j} ⇒
(./ (n+ 1) R− φ[i�out j]))

u((∀R−.¬{i})
t(∃R−.({i} u ¬φ[i�out j]) u ∃R−.{j})
t(∃R−.({i} u φ[i�out j])u ∀R−.¬{j} u ∃U.({j} u φ[i�out j]))
t(∃R−.({i} u ¬φ[i�out j]) u ∀R−.¬{j}
u∃U.({j} u ¬φ[i�out j]))⇒
(./ n R− φ[i�out j])))

These are the trickiest of the rules as those substitution affect multiple edges
at the same time possibly changing massively the interpretations. In all cases,
if i = j, the action actually does nothing.

Let us consider the other different possibilities for (./ n R φ)[i�in j] that
are illustrated in Figure 6.3:

• There exists an R-edge toward i, i satisfies φ[i�in j], there is no R-edge
toward j and j does not satisfy φ[i�in j]: in that case, the current node
will have exactly one less R-neighbour satisfying φ[i�in j].

• There exists an R-edge toward i, i does not satisfy φ[i �in j], there is
no R-edge toward j and j does not satisfy φ[i �in j]: in that case, the
current node will have exactly one more R-neighbour satisfying φ[i�in j].

• There exists an R-edge toward i, i satisfies φ[i �in j] and there is an
R-edge toward j: in that case, the current node will gave exactly one less
R-neighbour satisfying φ[i�in j].

• In all other cases, the current node is left unaffected.

Let us now look at the rules 62 and 63:

• If the current node is i and not j, it now as no incoming R-edge and thus
satisfies (< m P− ψ) and none of the (≥ m P− ψ) for any m > 0, P or
ψ
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• If the current node is j and not i, it now as all its previous incoming edges
plus those of i. The sum of those must thus be compared to n with special
care taken not to count twice those that were R-neighbours of both

• If the current node is both i and j or neither, it is not directly affected by
the action.

68 (∃R.φ)[C := C ± i] ∃R.(φ[C := C ± i])

69 (∃R−.φ)[C := C ± i] ∃R−.(φ[C := C ± i])

70 (∃R.φ)[C := ψ] ∃R.(φ[C := ψ])

71 (∃R−.φ)[C := ψ] ∃R−.(φ[C := ψ])

72 (∃R.φ)[R′ := R′ ± (i, j)] ∃R.(φ[R′ := R′ ± (i, j)])

73 (∃R−.φ)[R′ := R′ ± (i, j)] ∃R−.(φ[R′ := R′ ± (i, j)])

Substitutions [C := C ± i], [C := ψ] and [R′ := R′ ± (i, j)] do not modify
the interpretation of role name R, hence the rules 68 – 73.

74 (∃R.φ)[R := R+ (i, j)] ({i} ⇒
∃U.({j} u φ[R := R+ (i, j)]) t ∃R.φ[R := R+ (i, j)])
u(¬{i} ⇒ ∃R.(φ[R := R+ (i, j)]))

75 (∃R−.φ)[R := R+ (i, j)] ({j} ⇒
∃U.({i} u φ[R := R+ (i, j)]) t ∃R−.φ[R := R+ (i, j)])
u(¬{j} ⇒ ∃R−.(φ[R := R+ (i, j)]))

76 (∃R.φ)[R := R− (i, j)] 
({i} ⇒ ∃R.(φ[R := R− (i, j)] u ¬{j}))
u(¬{i} ⇒ ∃R.(φ[R := R− (i, j)]))

77 (∃R−.φ)[R := R− (i, j)] 
({j} ⇒ ∃R−.(φ[R := R− (i, j)] u ¬{i}))
u(¬{j} ⇒ ∃R−.(φ[R := R− (i, j)]))

Rules 74–77 are quite similar to 49–53 where ./ is replaced by ≥ and n = 1.
Let us consider the rule 74. If the current node, say k is not i, the interpretation
of ∃R.φ is only affected if the interpretation of φ is. This is the second implica-
tion. Otherwise, k = i and then either j is labeled with φ after the substitution
and thus there exists one neighbor satisfying φ even if there was none before or
there must exist a current neighbor that will satisfy φ.

78 (∃R.φ)[R′ := Q] ∃R.(φ[R′ := Q])

79 (∃R−.φ)[R′ := Q] ∃R−.(φ[R′ := Q])

80 (∃R.φ)[R := Q] ∃Q.(φ[R := Q])
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Figure 6.3: Example illustrating rule 62 to 67. The nodes satisfying φ are filled
in red, the current node is a rectangle. The substitution occurs when going from
left to right. The first three transformation correspond to rule 62 and illustrate
the cases when interpretations are altered. The last one correspond to the rules
63 and 64.

64



81 (∃R−.φ)[R := Q] ∃Q−.(φ[R := Q])

If R 6= R′, its valuation is left unmodified. Otherwise, as the valuation of
R becomes equal to the one of Q, there will be an R-neighbour satisfying φ if
there is such a Q-neighbour.

82 (∃R.φ)[R′ := (i, j)] ∃R.(φ[R′ := (i, j)])

83 (∃R−.φ)[R′ := (i, j)] ∃R−.(φ[R′ := (i, j)])

84 (∃R.φ)[R := (i, j)] {i} u ∃U.({j} u φ[R := (i, j)])

85 (∃R−.φ)[R := (i, j)] {j} u ∃U.({i} u φ[R := (i, j)])

As the valuation of R becomes equal to {(iI , jI)}, the only node that can
have an R-neighbour (resp. an R−-neighbour) is i (resp. j) and this only in
case j (resp. i) satisfies φ.

86 (∃R.φ)[i�in j)] (∃U.({i} u {j})⇒ ∃R.φ[i�in j])
u(∃U.({i} u ¬{j})⇒

(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j])⇒
∃R.(φ[i�in j] u ¬{i}))

u(∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j]))
u(∃R.({i} u φ[i�in j]) u ∃R.{j} ⇒
∃R.(φ[i�in j] u ¬{i}))

u((∀R.¬{i})
t(∃R.({i} u ¬φ[i�in j]) u ∃R.{j})
t(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j]))
t(∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j]))⇒
∃R.φ[i�in j]))

87 (∃R−.φ)[i�in j] (¬{i} u {j} ⇒
(∃R−.φ[i�in j] t ∃U.({i} u ∃R−.φ[i�in j])))

u(({i} ⇔ {j})⇒
∃R−.φ[i�in j])

88 (∃R.φ)[i�out j] (¬{i} u {j} ⇒
∃R.φ[i�out j] t ∃U.({i} u ∃R.φ[i�out j]))

u(({i} ⇔ {j})⇒
∃R.φ[i�out j])

89 (∃R−.φ)[i�out j] (∃U.({i} u {j})⇒ ∃R−.φ[i�in j])
u(∃U.({i} u ¬{j})⇒

(∃R−.({i} u φ[i�out j]) u ∀R−.¬{j} u ∃U.({j} u ¬φ[i�out j])⇒
∃R−.(φ[i�out j] u ¬{j}))

u(∃R−.({i} u ¬φ[i�out j]) u ∀R−.¬{j} u ∃U.({j} u φ[i�out j]))
u(∃R−.({i} u φ[i�out j]) u ∃R.{j} ⇒
∃R−.(φ[i�out j] u ¬{i}))

u((∀R−.¬{i})
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t(∃R−.({i} u ¬φ[i�out j]) u ∃R−.{j})
t(∃R−.({i} u φ[i�out j]) u ∀R−.¬{j} u ∃U.({j} u φ[i�out j]))
t(∃R−.({i} u ¬φ[i�out j]) u ∀R−.¬{j} u ∃U.({j}

u¬φ[i�out j]))⇒
∃R−.φ[i�out j]))

Rules 86–89 are quite similar to 62–67 where ./ is replaced by ≥ and n = 1.
One also has to replace the fact that there must exist 2 different R- or R−-
neighbours by the fact that there must be one that is not i.

90 (∀R.φ)[C := C ± i] ∀R.(φ[C := C ± i])

91 (∀R−.φ)[C := C ± i] ∀R−.(φ[C := C ± i])

92 (∀R.φ)[C := ψ] ∀R.(φ[C := D])

93 (∀R−.φ)[C := ψ] ∀R−.(φ[C := D])

94 (∀R.φ)[R′ := R′ ± (i, j)] ∀R.(φ[R′ := R′ ± (i, j)])

95 (∀R−.φ)[R′ := R′ ± (i, j)] ∀R−.(φ[R′ := R′ ± (i, j)])

Substitutions [C := C ± i], [C := ψ] and [R′ := R′ ± (i, j)] do not modify
the interpretation of role name R, hence the rules 90 – 95.

96 (∀R.φ)[R := R+ (i, j)] ({i} ⇒
∀R.(φ[R := R+ (i, j)]) u ∃U.({j} u φ[R := R+ (i, j)]))
u(¬{i} ⇒ ∀R.(φ[R := R+ (i, j)]))

97 (∀R−.φ)[R := R+ (i, j)] ({j} ⇒
∀R−.(φ[R := R+ (i, j)]) u ∃U.({i} u φ[R := R+ (i, j)]))
u(¬{j} ⇒ ∀R−.(φ[R := R+ (i, j)]))

98 (∀R.φ)[R := R− (i, j)] 
({i} ⇒ ∀R.(φ[R := R− (i, j)] t {j}))
u(¬{i} ⇒ ∀R.(φ[R := R− (i, j)]))

99 (∀R−.φ)[R := R− (i, j)] 
({j} ⇒ ∀R−.(φ[R := R− (i, j)] t {i}))
u(¬{j} ⇒ ∀R−.(φ[R := R− (i, j)]))

See Figure 6.4 for an illustration. Rules 96–99 are quite similar to 49–52
where ./ is replaced by < and n = 1. Let us consider rule 98. Once more there
are two possibilities: either the current node is i or it is not. In the former case,
all the neighbors of the current state will be labeled with φ after performing
R := R − (i, j) if and only if the only neighbor that existed before that would
not satisfy φ after the transformation was j. In the later case, the neighbors are
the same and thus one has to check that they will all be labeled with φ after
the transformation.
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100 (∀R.φ)[R′ := Q] ∀R.(φ[R′ := Q])

101 (∀R−.φ)[R′ := Q] ∀R−.(φ[R′ := Q])

102 (∀R.φ)[R := Q] ∀Q.(φ[R := Q])

103 (∀R−.φ)[R := Q] ∀Q−.(φ[R := Q])

If R 6= R′, its valuation is left unmodified. Otherwise, as the valuation of R
becomes equal to the one of Q, all R-neighbours satisfy φ if all Q-neighbours
do.

104 (∀R.φ)[R′ := (i, j)] ∀R.(φ[R′ := (i, j)])

105 (∀R−.φ)[R′ := (i, j)] ∀R−.(φ[R′ := (i, j)])

106 (∀R.φ)[R := (i, j)] ({i} u ∃U.({j} u φ[R := (i, j)])) t ¬{i}

107 (∀R−.φ)[R := (i, j)] ({j} u ∃U.({i} u φ[R := (i, j)])) t ¬{j}

As the valuation of R becomes equal to {(iI , jI)}, i (resp. j) is the only
node that has an R-neighbour (resp. an R−-neighbour). Thus the concepts are
satisfied if and only if the current node is i (resp. j) and j (resp. i) satisfies φ
or if the current node is not i (resp. j) .

108 (∀R.φ)[i�in j] (∃U.({i} u {j})⇒ ∀R.φ[i�in j])
u(∃U.({i} u ¬{j})⇒

(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j])⇒
∀R.(φ[i�in j] t {i}))

u(∃R.({i} u φ[i�in j]) u ∃R.{j} ⇒
∀R.(φ[i�in j] t {i}))

u((∀R.¬{i})
t(∃R.({i} u ¬φ[i�in j]) u ∃R.{j})
t(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j]))⇒
∀R.φ[i�in j]))

109 (∀R−.φ)[i�in j] ({i} u ¬{j})
t(¬{i} u {j} ⇒ ∀R−.φ[i�in j] u ∃U.({i} u ∀R−.φ[i�in j]))
t(({i} ⇔ {j})⇒ ∀R−.φ[i�in j])

110 (∀R.φ)[i�out j] ({i} u ¬{j})
t(¬{i} u {j} ⇒ ∀R.φ[i�out j] u ∃U.({i} u ∀R.φ[i�out j]))
t(({i} ⇔ {j})⇒ ∀R.φ[i�out j])

111 (∀R−.φ)[i�out j] (∃U.({i} u {j})⇒ ∀R−.φ[i�out j])
u(∃U.({i} u ¬{j})⇒

(∃R−.({i} u ¬φ[i�out j]) u ∀R−.¬{j} u ∃U.({j} u φ[i�out j])
⇒ ∀R−.(φ[i�out j] t {i}))

u(∃R−.({i} u ¬φ[i�out j]) u ∃R.{j} ⇒
∀R−.(φ[i�out j] t {i}))
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u((∀R−.¬{i})
t(∃R−.({i} u φ[i�out j]) u ∃R−.{j})
t(∃R−.({i}u¬φ[i�out j])u∀R−.¬{j}u∃U.({j}uφ[i�out j]))⇒
∀R−.φ[i�out j]))

Rules 108–111 are quite similar to 62–67 where ./ is replaced by ≥ and
n = 1. One also has to replace the fact that there must be at most 1 R- or
R−-neighbours not satisfying φ by the fact that the only neighbour that could
not satisfy φ is i.

Even though the previous intuitions may be helpful in understanding why
the rules are that way, they do not constitute proofs that T is correct. In order
to prove that it is, the following two lemmata are introduced. They state three
properties of the system T , namely (1) that the interpretations are conserved,
that is T does what one might expect it to do, (2) that it terminates, (3) that
the result is substitution free. The proofs of these lemmata are not complicated.
Those that want to skip them can go to Section 6.3.

Lemma 1. Let Σ be a signature, I an interpretation over Σ, L R one of the
rewrite rules of T , then LI = RI .

Proof. 1 (⊥ θ)I = ∅ = ⊥I as it does not depend on the valuation of any concept
or role.

2 As the valuation of a nominal is independent of the valuations of all roles and
concepts, ({i} θ)I = iI .

3 (C[R := R± (i, j)])I = cI as cI does not depend on the valuation of R.

4 (C[C ′ := C ′ ± i])I = CI as CI does not depend on the valuation of C ′.

5 (C[R := Q])I = CI . By definition of the valuation of a substitution,
(C[R := Q])I = CI .

6 (C[R := (i, j)])I = CI . By definition of the valuation of a substitution,
(C[R := (i, j)])I = CI .

7 (C[i�in j])I = CI . By definition of the valuation of a substitution,
(C[i�in j])I = CI .

8 (C[i �out j])I = CI)I . By definition of the valuation of a substitution,
(C[i�out j])I = CI .

9 (C[C := C+i])I = (Ct{i})I . By definition of the valuation of a substitution,
(C[C := C + i])I = CI ∪ {iI} = (C t {i})I .

10 (C[C := C − i])I = (C u ¬{i})I . By definition of the valuation of a substi-
tution, (C[C := C − i])I = CI\{iI} = (C u ¬{i})I .

11 (C[C ′ := ψ])I =. By definition of the valuation of a substitution, (C[C ′ :=
ψ])I = CI .
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12 (C[C := ψ])I =. By definition of the valuation of a substitution, (C[C :=
ψ])I = ψI .

13 By definition, ((¬φ)[C := C+i])I = (¬φ)I where CI is replaced by CI∪{i〉}.
As (¬φ)I = ∆\φI , ((¬φ)[C := C + i])I = ∆\φ′I with φ′I = φI where CI

is replaced by CI∪{i}. This is exactly the definition of (¬(φ[C := C+i]))I .
The same can be done with the other substitutions.

14 By definition, ((φ t ψ)[C := C + i])I = (φ t ψ)I where CI is replaced
by CI ∪ {i}. That is (φ′ t ψ′)I with φ′I = φI where CI is replaced by
CI ∪ {i} and ψ′I = ψI where CI is replaced by CI ∪ {i}. This is exactly
the definition of (φ[C := C + i] t ψ[C := C + i])I . The same can be done
with the other substitutions.

15 By definition, ((φ u ψ)[C := C + i])I = (φ u ψ)I where CI is replaced
by CI ∪ {i}. That is (φ′ u ψ′)I with φ′I = φI where CI is replaced by
CI ∪ {i} and ψ′I = ψI where CI is replaced by CI ∪ {i}. This is exactly
the definition of (φ[C := C + i] u ψ[C := C + i])I . The same can be done
with the other substitutions.

16 By definition, ((@aφ)[C := C + i])I = (@aφ)I where CI is replaced by
CI ∪{i}. This is exactly the definition of (@i(φ[C := C+ i]))I . The same
can be done with the other substitutions.

17 (∃R.Self [C := C ± i])I = (∃R.Self)I as (∃R.Self)I is independent of the
valuation of C.

18 (∃R−.Self [C := C ± i])I = (∃R−.Self)I as (∃R−.Self)I is independent of
the valuation of C.

19 (∃R.Self [C := ψ])I = (∃R.Self)I as (∃R.Self)I is independent of the
valuation of C.

20 (∃R−.Self [C := ψ])I = (∃R−.Self)I as (∃R−.Self)I is independent of the
valuation of C.

21 (∃R.Self [R′ := R′± (i, j)])I = (∃R.Self)I as (∃R.Self)I is independent of
the valuation of R′.

22 (∃R−.Self [R′ := R′ ± (i, j)])I = (∃R−.Self)I as (∃R−.Self)I is indepen-
dent of the valuation of R′.

23 As (∃R.Self)I = {x|(x, x) ∈ RI}, (∃R.Self [R := R+ (i, j)])I =
{x|(x, x) ∈ RI ∪ {(i, j)}} = (∃R.Self)I ∪ ({i} ∩ {j}) that is
(∃R.Self [R := R+ (i, j)])I = (({i} u {j}) t ∃R.Self)I .

24 As (∃R−.Self)I = {x|(x, x) ∈ RI}, (∃R−.Self [R := R+ (i, j)])I =
{x|(x, x) ∈ RI ∪ {(i, j)}} = (∃R−.Self)I ∪ ({i} ∩ {j}) that is
(∃R−.Self [R := R+ (i, j)])I = (({i} u {j}) t ∃R−.Self)I .
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25 As (∃R.Self)I = {x|(x, x) ∈ RI}, (∃R.Self [R := R− (i, j)])I =
{x|(x, x) ∈ RI\{(i, j)}} = (∃R.Self)I\({i} ∩ {j}) that is
(∃R.Self [R := R− (i, j)])I = ((¬{i} t ¬{j}) u ∃R.Self)I .

26 As (∃R−.Self)I = {x|(x, x) ∈ RI}, (∃R−.Self [R := R− (i, j)])I =
{x|(x, x) ∈ RI ∩ {(i, j)}} = (∃R−.Self)I\({i} ∩ {j}) that is
(∃R−.Self [R := R− (i, j)])I = ((¬{i} t ¬{j}) u ∃R−.Self)I .

27 As the valuation of R is left unmodified by R′ := Q, (∃R.Self [R′ := Q])I =
(∃R.Self)I .

28 As the valuation of R is left unmodified by R′ := Q, (∃R−.Self [R′ :=
Q])I = (∃R−.Self)I .

29 (∃R.Self)I = {x|(x, x) ∈ RI}, (∃R.Self [R := Q])I =
{x|(x, x) ∈ QI} = (∃Q.Self)I .

30 (∃R−.Self)I = {x|(x, x) ∈ RI}, (∃R−.Self [R := Q])I =
{x|(x, x) ∈ QI} = (∃Q−.Self)I .

31 As the valuation of R is left unmodified by R′ := (i, j), (∃R.Self [R′ :=
(i, j)])I = (∃R.Self)I .

32 As the valuation of R is left unmodified by R′ := (i, j), (∃R−.Self [R′ :=
(i, j)])I = (∃R−.Self)I .

33 (∃R.Self)I = {x|(x, x) ∈ RI}, (∃R.Self [R := (i, j)])I =
{x|x = i ∧ x = j} = ({i} u {j})I .

34 (∃R−.Self)I = {x|(x, x) ∈ RI}, (∃R−.Self [R := (i, j)])I =
{x|x = i ∧ x = j} = ({i} u {j})I .

35 As (∃R.Self)I = {x|(x, x) ∈ RI}, (∃R.Self [i�in j])I =
{x|(x, x) ∈ RI\{(y, i) ∈ RI}∪{(y, j)|(y, i) ∈ RI}}}. Thus (∃R.Self [i�in

j])I = {i|(i, i) ∈ RI∧i = j}∪{j|j 6= i∧((j, j) ∈ RI∨(j, i) ∈ RI)}∪{x|x 6=
i∧x 6= j∧ (x, x) ∈ RI}. Thus (∃R.Self [i�in j])I = {x|((x = i∧x = j)∨
(x 6= i∧x 6= j))∧(x, x) ∈ RI}∪{x|x = j∧x 6= i∧((x, x) ∈ RI∨(x, i) ∈ RI}.
That is (∃R.Self [i�in j])I = ((({i} ⇔ {j})⇒ ∃R.Self)t (¬{i}u{j} ⇒
∃R.Self t ∃R.{i}))I .

36 As (∃R−.Self)I = {x|(x, x) ∈ RI}, (∃R−.Self [i�in j])I =
{x|(x, x) ∈ RI\{(y, i) ∈ RI}∪{(y, j)|(y, i) ∈ RI}}}. Thus (∃R−.Self [i�in

j])I = {i|(i, i) ∈ RI∧i = j}∪{j|j 6= i∧((j, j) ∈ RI∨(j, i) ∈ RI)}∪{x|x 6=
i ∧ x 6= j ∧ (x, x) ∈ RI}. Thus (∃R−.Self [i �in j])I = {x|((x = i ∧ x =
j) ∨ (x 6= i ∧ x 6= j)) ∧ (x, x) ∈ RI} ∪ {x|x = j ∧ x 6= i ∧ ((x, x) ∈
RI ∨ (x, i) ∈ RI}. That is (∃R−.Self [i �in j])I = ((({i} ⇔ {j}) ⇒
∃R.Self) t (¬{i} u {j} ⇒ ∃R.Self t ∃R.{i}))I .
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37 As (∃R.Self)I = {x|(x, x) ∈ RI}, (∃R.Self [i�out j])I =
{x|(x, x) ∈ RI\{(i, y) ∈ RI}∪{(j, y)|(i, y) ∈ RI}}}. Thus (∃R.Self [i�out

j])I = {i|(i, i) ∈ RI∧i = j}∪{j|j 6= i∧((j, j) ∈ RI∨(i, j) ∈ RI)}∪{x|x 6=
i∧x 6= j∧ (x, x) ∈ RI}. Thus (∃R.Self [i�in j])I = {x|((x = i∧x = j)∨
(x 6= i∧x 6= j))∧(x, x) ∈ RI}∪{x|x = j∧x 6= i∧((x, x) ∈ RI∨(i, x) ∈ RI}.
That is (∃R.Self [i�out j])I = ((({i} ⇔ {j})⇒ ∃R.Self)t(¬{i}u{j} ⇒
∃R.Self t ∃R−.{i}))I .

38 As (∃R−.Self)I = {x|(x, x) ∈ RI}, (∃R−.Self [i�out j])I =
{x|(x, x) ∈ RI\{(i, y) ∈ RI}∪{(j, y)|(i, y) ∈ RI}}}. Thus (∃R.Self [i�out

j])I = {i|(i, i) ∈ RI∧i = j}∪{j|j 6= i∧((j, j) ∈ RI∨(i, j) ∈ RI)}∪{x|x 6=
i ∧ x 6= j ∧ (x, x) ∈ RI}. Thus (∃R−.Self [i �in j])I = {x|((x = i ∧ x =
j) ∨ (x 6= i ∧ x 6= j)) ∧ (x, x) ∈ RI} ∪ {x|x = j ∧ x 6= i ∧ ((x, x) ∈
RI ∨ (i, x) ∈ RI}. That is (∃R−.Self [i �out j])I = ((({i} ⇔ {j}) ⇒
∃R.Self) t (¬{i} u {j} ⇒ ∃R.Self t ∃R−.{i}))I .

39 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R φ)[C := C ± i])I =
{x | card{y | (x, y) ∈ RI ∧ y ∈ φ[C := C± i]I} ./ n} as RI is independent
of the valuation of C. Thus ((./ n R φ)[C := C ± i])I = (./ n R φ[C :=
C ± i])I .

40 As (./ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R− φ)[C := C ± i])I =
{x | card{y | (y, x) ∈ RI ∧ y ∈ φ[C := C ± i]I} ./ n} as RI is inde-
pendent of the valuation of C. Thus ((./ n R− φ)[C := C ± i])I = (./
n R− φ[C := C ± i])I .

41 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R φ)[C := ψ])I =
{x | card{y | (x, y) ∈ RI ∧ y ∈ φ[C := ψ]I} ./ n} as RI is independent of
the valuation of C. Thus ((./ n R φ)[C := ψ])I = (./ n R φ[C := ψ])I .

42 As (./ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R− φ)[C := ψ])I =
{x | card{y | (y, x) ∈ RI ∧ y ∈ φ[C := ψ]I} ./ n} as RI is independent
of the valuation of C. Thus ((./ n R− φ)[C := ψ])I = (./ n R− φ[C :=
ψ])I .

43 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R φ)[R′ := R′ ± (i, j)])I =
{x | card{y | (x, y) ∈ RI ∧ y ∈ φ[R′ := R′ ± (i, j)]I} ./ n} as RI is
independent of the valuation of R′. Thus
((./ n R φ)[R′ := R′ ± (i, j)])I = (./ n R φ[R′ := R′ ± (i, j)])I .

44 As (./ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R− φ)[R′ := R′ ± (i, j)])I =
{x | card{y | (y, x) ∈ RI ∧ y ∈ φ[R′ := R′ ± (i, j)]I} ./ n} as RI is
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independent of the valuation of R′. Thus
((./ n R− φ)[R′ := R′ ± (i, j)])I = (./ n R− φ[R′ := R′ ± (i, j)])I .

45 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R φ)[R := R+ (i, j)])I =
{x | card{y | (x, y) ∈ R[R := R+(i, j)]I ∧y ∈ φ[R := R+(i, j)]I} ./ n} =
{x | card{y | (x, y) ∈ RI ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)]I} ./ n}. We
consider {y | (x, y) ∈ RI ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)]I} and try the
possible sets:

• If x 6= i or j 6∈ φ[R := R+ (i, j)]I or (i, j) ∈ RI , then
{y | (x, y) ∈ RI ∪ {(i, j)} ∧ y ∈ φ[R := R+ (i, j)]I} =
{y | (x, y) ∈ RI ∧ y ∈ φ[R := R+ (i, j)]I},

• else, x = i and j ∈ φ[R := R + (i, j)]I and (i, j) 6∈ RI , and thus
{y | (x, y) ∈ RI ∪ {(i, j)} ∧ y ∈ φ[R := R+ (i, j)]I} =
{y | (x, y) ∈ RI ∧ y ∈ φ[R := R + (i, j)]I} ∪ {(i, j)}. As {(i, j)}
is disjoint from {y | (x, y) ∈ RI ∧ y ∈ φ[R := R + (i, j)]I}, the
cardinality of
{y | (x, y) ∈ RI ∪ {(i, j)} ∧ y ∈ φ[R := R + (i, j)]I} is exactly the
cardinality of {y | (x, y) ∈ RI ∧ y ∈ φ[R := R+ (i, j)]I}+ 1.

• Thus,
{x | card{y | (x, y) ∈ R[R := R+ (i, j)]I ∧ y ∈ φ[R := R+ (i, j)]I} ./ n}
= {x |
(x 6= i ∨ j 6∈ φ[R := R+ (i, j)]I ∨ (i, j) ∈ RI ⇒
card{y | (x, y) ∈ RI ∧ y ∈ φ[R := R+ (i, j)]I} ./ n)
∧(x = i ∧ j ∈ φ[R := R+ (i, j)]I ∧ (i, j) 6∈ RI ⇒
card{y | (x, y) ∈ RI ∧ y ∈ φ[R := R+ (i, j)]I} ./ (n− 1))}

Thus, ((./ n R φ)[R := R+ (i, j)])I =
((({i} u ∃U.({j} u φ[R := R+ (i, j)]) u ∀R.¬{j})⇒
(./ (n− 1) R φ[R := R+ (i, j)]))
u ((¬{i} t ∀U.(¬{j} t ¬φ[R := R+ (i, j)]) t ∃R.{j})⇒
(./ n R φ[R := R+ (i, j)])))I

46 One can see that (./ n R− φ)[R := R+ (i, j)] is similar to
(./ n R− φ)[R− := R− + (j, i)], that is replacing R by R− and swapping
i and j in the previous case.

47 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n},
((./ n R φ)[R := R− (i, j)])I =
{x | card{y | (x, y) ∈ R[R := R−(i, j)]I∧y ∈ φ[R := R−(i, j)]I} ./ n} =
{x | card{y | (x, y) ∈ RI ∩ {(i, j)} ∧ y ∈ φ[R := R − (i, j)]I} ./ n}. We
consider {y | (x, y) ∈ RI ∩ {(i, j)} ∧ y ∈ φ[R := R + (i, j)]I} and try the
possible sets:

• If x 6= i or j 6∈ φ[R := R− (i, j)]I or (i, j) 6∈ RI , then
{y | (x, y) ∈ RI ∩ {(i, j)} ∧ y ∈ φ[R := R− (i, j)]I} =
{y | (x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I},
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• else, x = i and j ∈ φ[R := R − (i, j)]I and (i, j) ∈ RI , and thus
{y | (x, y) ∈ RI ∩ {(i, j)} ∧ y ∈ φ[R := R− (i, j)]I} =
{y | (x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I} ∩ {i, j}. As {(i, j)} ⊆
{y | (x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I}, the cardinality of
{y | (x, y) ∈ RI ∩ {(i, j)} ∧ y ∈ φ[R := R + (i, j)]I} is exactly the
cardinality of {y | (x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I} − 1.

• Thus,
{x | card{y | (x, y) ∈ R[R := R− (i, j)]I ∧ y ∈ φ[R := R− (i, j)]I} ./ n}
= {x |
(x 6= i ∨ j 6∈ φ[R := R− (i, j)]I ∨ (i, j) 6∈ RI ⇒
card{y | (x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I} ./ n)
∧ (x = i ∧ j ∈ φ[R := R− (i, j)]I ∧ (i, j) ∈ RI ⇒
card{y | (x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I} ./ (n+ 1))}

Thus, ((./ n R φ)[R := R− (i, j)])I =
((({i} u ∃U.({j} u φ[R := R− (i, j)]) u ∃R.{j})⇒
(./ (n+ 1) R φ[R := R− (i, j)]))
u ((¬{i} t ∀U.(¬{j} t ¬φ[R := R− (i, j)]) t ∀R.¬{j})⇒
(./ n R φ[R := R− (i, j)])))I

48 One can see that (./ n R− φ)[R := R− (i, j)] is similar to
(./ n R− φ)[R− := R− − (j, i)], that is replacing R by R− and swapping
i and j in the previous case.

49 As the valuation of R is left unmodified by R′ := Q, (./ n R φ)[R′ := Q]I =
(./ n R φ[R′ := Q])I .

50 As the valuation of R is left unmodified by R′ := Q, (./ n R− φ)[R′ :=
Q]I = (./ n R− φ[R′ := Q])I .

51 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n}, (./
n R φ)[R := Q]I = {x | card{y | (x, y) ∈ QI ∧ y ∈ φ[R := Q]I} ./
n} = (./ n Q φ[R′ := Q])I .

52 As (./ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ./ n}, (./
n R φ)[R := Q]I = {x | card{y | (y, x) ∈ QI ∧ y ∈ φ[R := Q]I} ./ n} =
(./ n Q− φ[R′ := Q])I .

53 As the valuation of R is left unmodified by R′ := (i, j), (./ n R φ)[R′ :=
(i, j)]I = (./ n R φ[R′ := (i, j)])I .

54 As (< 1 R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} < 1}, (< 1 R φ)[R :=
(i, j)]I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)]I} < 1}. That
is, (< 1 R φ)[R := (i, j)]I = {x | x 6= i ∨ j 6∈ φ[R := (i, j)]I}. Thus
(< 1 R φ)[R := (i, j)]I = (¬{i} t ∀U.(¬{j} t ¬φ[R := (i, j)]))I .

55 As (< n R φ)I = {x | card{y | (x, y) ∈ RI ∧y ∈ φI} < n}, (< n R φ)[R :=
(i, j)]I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)]I} < n}. But, as
{y | x = i∧ y = j ∧ y ∈ φ[R := (i, j)]I} ⊆ {j}, card{y | x = i∧ y = j ∧ y ∈
φ[R := (i, j)]I} ≤ 1 and thus (< n R φ)I = >I .
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56 As (≥ 1 R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ≥ 1}, (≥ 1 R φ)[R :=
(i, j)]I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)]I} ≥ 1}. That
is, (≥ 1 R φ)[R := (i, j)]I = {x | x = i ∧ j ∈ φ[R := (i, j)]I}. Thus
(≥ 1 R φ)[R := (i, j)]I = ({i} u ∃U.({j} u φ[R := (i, j)]))I .

57 As (≥ n R φ)I = {x | card{y | (x, y) ∈ RI ∧y ∈ φI} ≥ n}, (≥ n R φ)[R :=
(i, j)]I = {x | card{y | x = i ∧ y = j ∧ y ∈ φ[R := (i, j)]I} ≥ n}. But, as
{y | x = i∧ y = j ∧ y ∈ φ[R := (i, j)]I} ⊆ {j}, card{y | x = i∧ y = j ∧ y ∈
φ[R := (i, j)]I} ≤ 1 and thus (≥ n R φ)I = ⊥I .

58 As (< 1 R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} < 1}, (<
1 R− φ)[R := (i, j)]I = {x | card{y | x = j ∧ y = i∧ y ∈ φ[R := (i, j)]I} <
1}. That is, (< 1 R− φ)[R := (i, j)]I = {x | x 6= j ∨ i 6∈ φ[R := (i, j)]I}.
Thus (< 1 R− φ)[R := (i, j)]I = (¬{j} t ∀U.(¬{i} t ¬φ[R := (i, j)]))I .

59 As (< n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} < n}, (<
n R− φ)[R := (i, j)]I = {x | card{y | x = j∧y = i∧y ∈ φ[R := (i, j)]I} <
n}. But, as {y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)]I} ⊆ {i}, card{y | x =
j ∧ y = i ∧ y ∈ φ[R := (i, j)]I} ≤ 1 and thus (< n R− φ)I = >I .

60 As (≥ 1 R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ≥ 1}, (≥
1 R− φ)[R := (i, j)]I = {x | card{y | x = j ∧ y = i∧ y ∈ φ[R := (i, j)]I} ≥
1}. That is, (≥ 1 R− φ)[R := (i, j)]I = {x | x = j ∧ i ∈ φ[R := (i, j)]I}.
Thus (≥ 1 R− φ)[R := (i, j)]I = ({j} u ∃U.({i} u φ[R := (i, j)]))I .

61 As (≥ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ≥ n}, (≥
n R− φ)[R := (i, j)]I = {x | card{y | x = j∧y = i∧y ∈ φ[R := (i, j)]I} ≥
n}. But, as {y | x = j ∧ y = i ∧ y ∈ φ[R := (i, j)]I} ⊆ {i}, card{y | x =
j ∧ y = i ∧ y ∈ φ[R := (i, j)]I} ≤ 1 and thus (≥ n R− φ)I = ⊥I .

62 As (./ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ./ n}, (./
n R φ)[i �in j]I = {x | card{y | ((x, y) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �in

j]I) ∨ ((x, i) ∈ RI ∧ j ∈ φ[i �in j]I)} ./ n}. We consider {y | ((x, y) ∈
RI ∧ y 6= i ∧ y ∈ φ[i�in j]I) ∨ ((x, i) ∈ RI ∧ j ∈ φ[i�in j]I)} and look
at the various possibilities:

• If i = j, {y | ((x, y) ∈ RI∧y 6= i∧y ∈ φ[i�in j]I)∨((x, i) ∈ RI∧j ∈
φ[i �in j]I)} = {y | (x, y) ∈ RI ∧ y ∈ φ[i �in j]I} and thus there
cardinalities are the same.

• otherwise, if (x, i) ∈ RI and i ∈ φ[i �in j]I , (x, j) 6∈ RI and j 6∈
φ[R := R − (i, j)]I , then card{y | ((x, y) ∈ RI ∧ y 6= i ∧ y ∈ φ[i�in

j]I) ∨ ((x, i) ∈ RI ∧ j ∈ φ[i�in j]I)} =
card{y | ((x, y) ∈ RI ∧ y ∈ φ[i�in j]I} − 1.

• if (x, i) ∈ RI and i 6∈ φ[i �in j]I , (x, j) 6∈ RI and j ∈ φ[i �in j]I ,
then card{y | ((x, y) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �in j]I) ∨ ((x, i) ∈
RI ∧ j ∈ φ[i�in j]I)} =
card{y | ((x, y) ∈ RI ∧ y ∈ φ[i�in j]I}+ 1.
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• if (x, i) ∈ RI and i ∈ φ[i�in j]I and (x, j) ∈ RI , then card{y | ((x, y) ∈
RI ∧ y 6= i ∧ y ∈ φ[i�in j]I) ∨ ((x, i) ∈ RI ∧ j ∈ φ[i�in j]I)} =
card{y | ((x, y) ∈ RI ∧ y ∈ φ[i�in j]I} − 1.

• otherwise, that is if (x, i) 6∈ RI , or if (x, i) ∈ RI , i 6∈ φ[i �in j]I

and (x, j) ∈ RI , or if (x, i) ∈ RI , i ∈ φ[i �in j]I , (x, j) 6∈ RI and
j ∈ φ[i �in j]I , or if (x, i) ∈ RI , i 6∈ φ[i �in j]I , (x, j) 6∈ RI and
j 6∈ φ[i �in j]I then {y | ((x, y) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �in j]I) ∨
((x, i) ∈ RI ∧ j ∈ φ[i�in j]I)} = {y | (x, y) ∈ RI ∧ y ∈ φ[i�in j]I}
and thus there cardinalities are the same.

Thus, ((./ n R φ)[i�in j])I =
((∃U.({i} u {j})⇒ (./ n R φ[i�in j])) u (∃U.({i} u ¬{j})⇒ (∃R.({i} u
φ[i �in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i �in j]) ⇒ (./ (n+ 1) R φ[i �in

j]))u(∃R.({i}u¬φ[i�in j])u∀R.¬{j}u∃U.({j}uφ[i�in j])⇒ (./ (n−
1) R φ[i�in j]))u(∃R.({i}uφ[i�in j])u∃R.{j} ⇒ (./ (n+1) R φ[i�in

j]))u ((∀R.¬{i})t (∃R.({i}u¬φ[i�in j])u∃R.{j})t (∃R.({i}uφ[i�in

j])u∀R.¬{j}u∃U.({j}uφ[i�in j]))t(∃R.({i}u¬φ[i�in j])u∀R.¬{j}u
∃U.({j} u ¬φ[i�in j]))⇒ (./ n R φ[i�in j]))))I

63 As (< n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} < n}, (<
n R− φ)[i �in j]I = {x | card{y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �in

j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in j]I)} < n}. We consider
{y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �in j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈
φ[i�in j]I)} and look at the various possibilities:

• If x = i and x 6= j, {y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �in

j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in j]I)} = ∅ and thus its
cardinality is < n.

• otherwise, if x 6= i and x = j, then card{y | ((y, x) ∈ RI ∧ x 6=
i ∧ y ∈ φ[i �in j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in j]I)} =
card({y|(y, j) ∈ RI ∧ y ∈ φ[i�in j]I} ∪ {y|(y, i) ∈ RI ∧ y ∈ φ[i�in

j]I}) = card({y|(y, j) ∈ RI ∧ y ∈ φ[i �in j]I}) + card({y|(y, i) ∈
RI ∧ (y, j) 6∈ RI ∧ y ∈ φ[i�in j]I}).

• otherwise, either x = i = j or x 6= i and x 6= j, and thus {y | ((y, x) ∈
RI ∧ x 6= i ∧ y ∈ φ[i �in j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in

j]I)} = {y | (y, x) ∈ RI ∧ y ∈ φ[i�in j]I} and thus there cardinali-
ties are the same.

Thus, ((< n R− φ)[i�in j])I =
(({i}u¬{j})t (¬{i}u {j} ⇒

⊔
k∈[0,n](< k R− φ[i�in j])u∃U.({i}u (<

(n−k) R− (φ[i�in j]u¬∃R−.{j}))))t(({i} ⇔ {j})⇒ (< n R− φ[i�in

j])))I

64 As (≥ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ≥ n}, (≥
n R− φ)[i �in j]I = {x | card{y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �in

j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in j]I)} ≥ n}. We consider
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{y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �in j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈
φ[i�in j]I)} and look at the various possibilities:

• If x = i and x 6= j, {y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �in

j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in j]I)} = ∅ and thus its
cardinality is < n.

• otherwise, if x 6= i and x = j, then card{y | ((y, x) ∈ RI ∧ x 6=
i ∧ y ∈ φ[i �in j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in j]I)} =
card({y|(y, j) ∈ RI ∧ y ∈ φ[i�in j]I} ∪ {y|(y, i) ∈ RI ∧ y ∈ φ[i�in

j]I}) = card({y|(y, j) ∈ RI ∧ y ∈ φ[i �in j]I}) + card({y|(y, i) ∈
RI ∧ (y, j) 6∈ RI ∧ y ∈ φ[i�in j]I}).

• otherwise, either x = i = j or x 6= i and x 6= j, and thus {y | ((y, x) ∈
RI ∧ x 6= i ∧ y ∈ φ[i �in j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �in

j]I)} = {y | (y, x) ∈ RI ∧ y ∈ φ[i�in j]I} and thus there cardinali-
ties are the same.

Thus, ((≥ n R− φ)[i�in j])I =
((¬{i} u {j} ⇒

⊔
k∈[0,n](≥ k R− φ[i �in j]) u ∃U.({i} u (≥ (n −

k) R− (φ[i�in j]u∃R−.{j}))))u(({i} ⇔ {j})⇒ (≥ n R− φ[i�in j])))I

65 As (< n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} < n}, (<
n R φ)[i �out j]I = {x | card{y | ((x, y) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �out

j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈ φ[i �out j]I)} < n}. We consider
{y | ((y, x) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �out j]I) ∨ ((y, i) ∈ RI ∧ x = j ∧ y ∈
φ[i�out j]I)} and look at the various possibilities:

• If x = i and x 6= j, {y | ((x, y) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �out

j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out j]I)} = ∅ and thus its
cardinality is < n.

• otherwise, if x 6= i and x = j, then card{y | ((x, y) ∈ RI ∧ x 6=
i ∧ y ∈ φ[i �out j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out j]I)} =
card({y|(j, y) ∈ RI∧y ∈ φ[i�out j]I}∪{y|(i, y) ∈ RI∧y ∈ φ[i�out

j]I}) = card({y|(j, y) ∈ RI ∧ y ∈ φ[i �out j]I}) + card({y|(i, y) ∈
RI ∧ (j, y) 6∈ RI ∧ y ∈ φ[i�out j]I}).

• otherwise, either x = i = j or x 6= i and x 6= j, and thus {y | ((x, y) ∈
RI ∧ x 6= i ∧ y ∈ φ[i �out j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out

j]I)} = {y | (x, y) ∈ RI ∧ y ∈ φ[i�out j]I} and thus there cardinal-
ities are the same.

Thus, ((< n R− φ)[i�out j])I =
(({i} u ¬{j}) t (¬{i} u {j} ⇒

⊔
k∈[0,n](< k R φ[i�out j]) u ∃U.({i} u (<

(n − k) R (φ[i �out j] u ¬∃R.{j})))) t (({i} ⇔ {j}) ⇒ (< n R φ[i �out

j])))I

66 As (≥ n R φ)I = {x | card{y | (x, y) ∈ RI ∧ y ∈ φI} ≥ n}, (≥
n R φ)[i �out j]I = {x | card{y | ((x, y) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �out
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j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out j]I)} ≥ n}. We consider
{y | ((x, y) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �out j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈
φ[i�out j]I)} and look at the various possibilities:

• If x = i and x 6= j, {y | ((x, y) ∈ RI ∧ x 6= i ∧ y ∈ φ[i �out

j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out j]I)} = ∅ and thus its
cardinality is < n.

• otherwise, if x 6= i and x = j, then card{y | ((x, y) ∈ RI ∧ x 6=
i ∧ y ∈ φ[i �out j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out j]I)} =
card({y|(j, y) ∈ RI∧y ∈ φ[i�out j]I}∪{y|(i, y) ∈ RI∧y ∈ φ[i�out

j]I}) = card({y|(j, y) ∈ RI ∧ y ∈ φ[i �out j]I}) + card({y|(i, y) ∈
RI ∧ (j, y) 6∈ RI ∧ y ∈ φ[i�out j]I}).

• otherwise, either x = i = j or x 6= i and x 6= j, and thus {y | ((x, y) ∈
RI ∧ x 6= i ∧ y ∈ φ[i �out j]I) ∨ ((i, y) ∈ RI ∧ x = j ∧ y ∈ φ[i �out

j]I)} = {y | (x, y) ∈ RI ∧ y ∈ φ[i�out j]I} and thus there cardinal-
ities are the same.

Thus, ((≥ n R φ)[i�out j])I =
((¬{i} u {j} ⇒

⊔
k∈[0,n](≥ k R φ[i �out j]) u ∃U.({i} u (≥ (n −

k) R− (φ[i�out j]u ∃R.{j}))))u (({i} ⇔ {j})⇒ (≥ n R φ[i�out j])))I

67 As (./ n R− φ)I = {x | card{y | (y, x) ∈ RI ∧ y ∈ φI} ./ n}, (./
n R− φ)[i �out j]I = {x | card{y | ((y, x) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �out

j]I) ∨ ((i, x) ∈ RI ∧ j ∈ φ[i �out j]I)} ./ n}. We consider {y | ((y, x) ∈
RI ∧ y 6= i∧ y ∈ φ[i�out j]I)∨ ((i, x) ∈ RI ∧ j ∈ φ[i�out j]I)} and look
at the various possibilities:

• If i = j, {y | ((y, x) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �out j]I) ∨ ((i, x) ∈
RI ∧ j ∈ φ[i �out j]I)} = {y | (y, x) ∈ RI ∧ y ∈ φ[i �out j]I} and
thus there cardinalities are the same.

• otherwise, if (i, x) ∈ RI and i ∈ φ[i �out j]I , (x, j) 6∈ RI and
j 6∈ φ[i �out j]I , then card{y | ((y, x) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �out

j]I) ∨ ((i, x) ∈ RI ∧ j ∈ φ[i�out j]I)} =
card{y | ((y, x) ∈ RI ∧ y ∈ φ[i�out j]I} − 1.

• if (i, x) ∈ RI and i 6∈ φ[i�out j]I , (j, x) 6∈ RI and j ∈ φ[i�out j]I ,
then card{y | ((y, x) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �out j]I) ∨ ((i, x) ∈
RI ∧ j ∈ φ[i�out j]I)} =
card{y | ((y, x) ∈ RI ∧ y ∈ φ[i�out j]I}+ 1.

• if (i, x) ∈ RI and i ∈ φ[i�out j]I and (j, x) ∈ RI , then card{y | ((y, x) ∈
RI ∧ y 6= i ∧ y ∈ φ[i�out j]I) ∨ ((i, x) ∈ RI ∧ j ∈ φ[i�out j]I)} =
card{y | ((y, x) ∈ RI ∧ y ∈ φ[i�out j]I} − 1.

• otherwise, that is if (i, x) 6∈ RI , or if (i, x) ∈ RI , i 6∈ φ[i �out j]I

and (j, x) ∈ RI , or if (i, x) ∈ RI , i ∈ φ[i �out j]I , (j, x) 6∈ RI and
j ∈ φ[i �out j]I , or if (i, x) ∈ RI , i 6∈ φ[i �out j]I , (j, x) 6∈ RI

and j 6∈ φ[i �out j]I then {y | ((y, x) ∈ RI ∧ y 6= i ∧ y ∈ φ[i �out
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j]I) ∨ ((i, x) ∈ RI ∧ j ∈ φ[i �out j]I)} = {y | (y, x) ∈ RI ∧ y ∈
φ[i�out j]I} and thus there cardinalities are the same.

Thus, ((./ n R− φ)[i�out j])I =
((∃U.({i} u {j}) ⇒ (./ n R− φ[i �out j])) u (∃U.({i} u ¬{j}) ⇒
(∃R−.({i} u φ[i �out j]) u ∀R−.¬{j} u ∃U.({j} u ¬φ[i �out j]) ⇒ (./
(n+1) R− φ[i�out j]))u(∃R−.({i}u¬φ[i�out j])u∀R−.¬{j}u∃U.({j}u
φ[i �out j]) ⇒ (./ (n − 1) R− φ[i �out j])) u (∃R−.({i} u φ[i �out

j])u∃R−.{j} ⇒ (./ (n+1) R− φ[i�out j]))u ((∀R−.¬{i})t (∃R−.({i}u
¬φ[i�out j])u∃R−.{j})t(∃R−.({i}uφ[i�out j])u∀R−.¬{j}u∃U.({j}u
φ[i�out j]))t (∃R−.({i}u¬φ[i�out j])u∀R.¬{j}u∃U.({j}u¬φ[i�out

j]))⇒ (./ n R− φ[i�out j]))))I

68 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[C := C ± i])I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φ[C := C ± i]I} as RI

is independent of the valuation of C. Thus
((∃R.φ)[C := C ± i])I = (∃R.(φ[C := C ± i]))I .

69 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[C := C ± i])I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φ[C := C ± i]I} as RI

is independent of the valuation of C. Thus
((∃R−.φ)[C := C ± i])I = (∃R−.(φ[C := C ± i]))I .

70 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[C := ψ])I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φ[C := ψ]I} as RI is
independent of the valuation of C. Thus
((∃R.φ)[C := ψ])I = (∃R.(φ[C := ψ]))I .

71 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[C := ψ])I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φ[C := ψ]I} as RI is
independent of the valuation of C. Thus
((∃R−.φ)[C := ψ])I = (∃R−.(φ[C := ψ]))I .

72 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R′ := R′ ± (i, j)])I = {x | ∃y.(x, y) ∈ RI ∧
y ∈ φ[R′ := R′ ± (i, j)]I} as RI is independent of the valuation of R′.
Thus ((∃R.φ)[R′ := R′ ± (i, j)])I = (∃R.(φ[R′ := R′ ± (i, j)]))I

73 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[R′ := R′ ± (i, j)])I = {x | ∃y.(y, x) ∈ RI ∧
y ∈ φ[R′ := R′ ± (i, j)]I} as RI is independent of the valuation of R′.
Thus ((∃R−.φ)[R′ := R′ ± (i, j)])I = (∃R−.(φ[R′ := R′ ± (i, j)]))I

74 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R := R+ (i, j)])I = {x | ∃y.(x, y) ∈ R[R := R+ (i, j)]I ∧
y ∈ φ[R := R+ (i, j)]I} that is ((∃R.φ)[R := R+ (i, j)])I =
{x | ∃y.(x, y) ∈ RI ∪ {(i, j)} ∧ y ∈ φ[R := R+ (i, j)]I} =
{x | (∃y.(x, y) ∈ RI ∧ y ∈ φ[R := R+ (i, j)]I) ∨ (x = i ∧
j ∈ φ[R := R+ (i, j)])} = {x | (x = i⇒ ∃y.(x, y) ∈ RI ∧
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y ∈ φ[R := R+(i, j)]I∨j ∈ φ[R := R+(i, j)])∧(x 6= i⇒ ∃y.(x, y) ∈ RI∧
y ∈ φ[R := R+ (i, j)]I)}. Moreover, (({i} ⇒ ∃R.(φ[R := R+ (i, j)]) t
∃U.({j} u φ[R := R+ (i, j)])) u (¬{i} ⇒ ∃R.(φ[R := R+ (i, j)])))I =
{x | (x = i⇒ ∃y.(x, y) ∈ RI ∧ y ∈ φ[R := R+ (i, j)]I ∨
j ∈ φ[R := R+(i, j)])∧(x 6= i⇒ ∃y.(x, y) ∈ RI∧y ∈ φ[R := R+(i, j)]I)}.
Thus ((∃R.φ)[R := R+ (i, j)])I =
(({i} ⇒ ∃R.(φ[R := R+ (i, j)]) t ∃U.({j} u φ[R := R+ (i, j)])) u
(¬{i} ⇒ ∃R.(φ[R := R+ (i, j)])))I

75 One can see that (∃R−.φ)[R := R+ (i, j)] is similar to
(∃R−.φ)[R− := R− + (j, i)], that is replacing R by R− and swapping i
and j in the previous case.

76 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R := R− (i, j)])I = {x | ∃y.(x, y) ∈ R[R := R− (i, j)]I ∧
y ∈ φ[R := R− (i, j)]I} that is ((∃R.φ)[R := R− (i, j)])I =
{x | ∃y.(x, y) ∈ RI ∩ {(i, j)} ∧ y ∈ φ[R := R− (i, j)]I} =
{x | ∃y.(x 6= i∨y 6= j)∧((x, y) ∈ RI∧y ∈ φ[R := R−(i, j)]I)} = {x | (x =
i⇒ ∃y.(x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I ∧ y 6= j) ∧
(x 6= i⇒ ∃y.(x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I)}. Moreover,
(({i} ⇒ ∃R.(φ[R := R − (i, j)] t ¬{j})) u (¬{i} ⇒ ∃R.(φ[R := R −
(i, j)])))I = {x | (x = i⇒ ∃y.(x, y) ∈ RI∧y ∈ φ[R := R−(i, j)]I∧y 6= j)∧
(x 6= i⇒ ∃y.(x, y) ∈ RI ∧ y ∈ φ[R := R− (i, j)]I)}. Thus
((∃R.φ)[R := R− (i, j)])I =
(({i} ⇒ ∃R.(φ[R := R−(i, j)]t¬{j}))u(¬{i} ⇒ ∃R.(φ[R := R−(i, j)])))I

77 One can see that (∃R−.φ)[R := R− (i, j)] is similar to
(∃R−.φ)[R− := R− − (j, i)], that is replacing R by R− and swapping i
and j in the previous case.

78 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R′ := Q])I = {x | ∃y.(x, y) ∈ RI ∧
y ∈ φ[R′ := Q]I} as RI is independent of the valuation of R′. Thus
((∃R.φ)[R′ := Q])I = (∃R.(φ[R′ := Q]))I

79 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[R′ := Q])I = {x | ∃y.(y, x) ∈ RI ∧
y ∈ φ[R′ := Q]I} as RI is independent of the valuation of R′. Thus
((∃R−.φ)[R′ := Q])I = (∃R−.(φ[R′ := Q]))I

80 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R := Q])I = {x | ∃y.(x, y) ∈ QI ∧
y ∈ φ[R := Q]I}. Thus ((∃R.φ)[R := Q])I = (∃Q.(φ[R := Q]))I

81 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[R := Q])I = {x | ∃y.(y, x) ∈ QI ∧
y ∈ φ[R := Q]I}. Thus ((∃R−.φ)[R := Q])I = (∃Q−.(φ[R := Q]))I
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82 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R′ := (i, j)])I = {x | ∃y.(x, y) ∈ RI ∧
y ∈ φ[R′ := (i, j)]I} as RI is independent of the valuation of R′. Thus
((∃R.φ)[R′ := (i, j)])I = (∃R.(φ[R′ := (i, j)]))I

83 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[R′ := (i, j)])I = {x | ∃y.(y, x) ∈ RI ∧
y ∈ φ[R′ := (i, j)]I} as RI is independent of the valuation of R′. Thus
((∃R−.φ)[R′ := (i, j)])I = (∃R−.(φ[R′ := (i, j)]))I

84 As (∃R.φ)I = {x | ∃y.(x, y) ∈ RI ∧ y ∈ φI},
((∃R.φ)[R := (i, j)])I = {x | ∃y.x = i ∧ y = j ∧
y ∈ φ[R := (i, j)]I}. Thus ((∃R.φ)[R := (i, j)])I = ({i}u∃U.({j}uφ[R :=
(i, j)]))I

85 As (∃R−.φ)I = {x | ∃y.(y, x) ∈ RI ∧ y ∈ φI},
((∃R−.φ)[R := (i, j)])I = {x | ∃y.x = j ∧ y = i ∧
y ∈ φ[R := (i, j)]I}. Thus ((∃R−.φ)[R := (i, j)])I = ({j} u ∃U.({i} u
φ[R := (i, j)]))I

86 As ∃R.φ = (≥ 1 R φ), it is possible to reuse the proof for rule 62 where
(≥ 2 R φ[i �in j]) is replaced with ∃R.(φ[i �in j] u ¬{i}) when it is
known that (x, i) ∈ RI and i ∈ φ[i �in j]I and (≥ 0 R φ[i �in j]) is
replaced with >.

87 As ∃R−.φ = (≥ 1 R− φ), it is possible to reuse the proof for rule 64 where
(≥ 1 R− (φ[i �in j] u ∃R.{j})) is replaced with ∃R−.φ[i �in j] as, if
there exists y such that (y, j) ∈ RI , (y, i) ∈ R〉 and y ∈ φ[i �in j], then
∃R−.φ[i�in j] is satisfied in y.

88 As ∃R.φ = (≥ 1 R φ), it is possible to reuse the proof for rule 65 where
(≥ 1 R (φ[i �out j] u ¬{j})) is replaced with ∃R.φ[i �out j] as, if there
exists y such that (j, y) ∈ RI , (i, y) ∈ R〉 and y ∈ φ[i �out j], then
∃R.φ[i�out j] is satisfied in y.

89 As ∃R−.φ = (≥ 1 R− φ), it is possible to reuse the proof for rule 67 where
(≥ 2 R− φ[i �out j]) is replaced with ∃R−.(φ[i �out j] u ¬{i}) when it
is known that (x, i) ∈ RI and i ∈ φ[i�out j]I and (≥ 0 R− φ[i�out j])
is replaced with >.

90 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI}, ((∀R.φ)[C := C ± i])I =
{x | ∀y.(x, y) ∈ RI ⇒ y ∈ φ[C := C ± i]I} as RI is independent of the
valuation of C. Thus, ((∀R.φ)[C := C ± i])I = (∀R.(φ[C := C ± i]))I

91 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI}, ((∀R−.φ)[C := C ± i])I =
{x | ∀y.(y, x) ∈ RI ⇒ y ∈ φ[C := C ± i]I} as RI is independent of the
valuation of C. Thus, ((∀R−.φ)[C := C ± i])I = (∀R−.(φ[C := C ± i]))I
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92 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI}, ((∀R.φ)[C := ψ])I =
{x | ∀y.(x, y) ∈ RI ⇒ y ∈ φ[C := ψ]I} as RI is independent of the
valuation of C. Thus, ((∀R.φ)[C := ψ])I = (∀R.(φ[C := ψ]))I

93 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI}, ((∀R−.φ)[C := ψ])I =
{x | ∀y.(y, x) ∈ RI ⇒ y ∈ φ[C := ψ]I} as RI is independent of the
valuation of C. Thus, ((∀R−.φ)[C := ψ])I = (∀R−.(φ[C := ψ]))I

94 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI}, ((∀R.φ)[R′ := R′ ± (i, j)])I =
{x | ∀y.(x, y) ∈ RI ⇒ y ∈ φ[R′ := R′ ± (i, j)]I} as RI is independent
of the valuation of R′. Thus,((∀R.φ)[R′ := R′ ± (i, j)])I = (∀R.(φ[R′ :=
R′ ± (i, j)]))I

95 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI},
((∀R−.φ)[R′ := R′ ± (i, j)])I = {x | ∀y.(y, x) ∈ RI ⇒
y ∈ φ[R′ := R′ ± (i, j)]I} as RI is independent of the valuation of R′.
Thus,((∀R−.φ)[R′ := R′ ± (i, j)])I = (∀R−.(φ[R′ := R′ ± (i, j)]))I

96 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI},
((∀R.φ)[R := R+ (i, j)])I = {x | ∀y.(x, y) ∈ RI ∪ {(i, j)} ⇒
y ∈ φ[R := R+ (i, j)]I}. That is ((∀R.φ)[R := R+ (i, j)])I =
{x | (∀y.(x, y) ∈ RI ⇒ y ∈ φ[R := R+ (i, j)]I) ∧
(x = i⇒ j ∈ φ[R := R+ (i, j)]I)} = {x | (x = i⇒ (∀y.(x, y) ∈ RI ⇒
y ∈ φ[R := R+ (i, j)]I ∧ j ∈ (φ[R := R+ (i, j)])I)) ∧
(x 6= i⇒ ∀y.(x, y) ∈ RI ⇒ y ∈ φ[R := R+ (i, j)]I)}. Moreover,
(({i} ⇒ ∀R.(φ[R := R+ (i, j)]) u ∃R.({j} u φ[R := R+ (i, j)])) u
(¬{i} ⇒ ∀R.(φ[R := R+ (i, j)]))I = {x | (x = i⇒ (∀y.(x, y) ∈ RI ⇒
y ∈ φ[R := R+ (i, j)]I ∧ j ∈ (φ[R := R+ (i, j)])I)) ∧ (x 6= i⇒
∀y.(x, y) ∈ RI ⇒ y ∈ φ[R := R+ (i, j)]I)}. Thus,
((∀R.φ)[R := R+ (i, j)])I = (({i} ⇒ ∀R.(φ[R := R+ (i, j)]) u
∃R.({j} u φ[R := R+ (i, j)])) u (¬{i} ⇒ ∀R.(φ[R := R+ (i, j)]))I

97 One can see that (∀R−.φ)[R := R+ (i, j)] is similar to
(∀R−.φ)[R− := R− + (j, i)], that is replacing R by R− and swapping i
and j in the previous case.

98 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI},
((∀R.φ)[R := R− (i, j)])I = {x | ∀y.(x, y) ∈ RI ∩ {(i, j)} ⇒
y ∈ φ[R := R− (i, j)]I}. That is ((∀R.φ)[R := R− (i, j)])I =
{x | (x 6= i ∧ ∀y.((x, y) ∈ RI ⇒ y ∈ φ[R := R− (i, j)]I)) ∨
(x = i ∧ ∀y.((x, y) ∈ RI ⇒ y ∈ φ[R := R− (i, j)]I ∨ y = j))} =
{x | ∀y.(x 6= i ∧ (x, y) ∈ RI ⇒ y ∈ φ[R := R− (i, j)]I)} ∩
{x | ∀y.(x = i∧(x, y) ∈ RI ⇒ y ∈ φ[R := R−(i, j)]I ∨y = j)}. Moreover,
({i} ⇒ ∀R.({j} t φ[R := R− (i, j)]))I = {x | ∀y.(x = i ∧
(x, y) ∈ RI ⇒ y ∈ φ[R := R− (i, j)]I ∨ y = j)} and
(¬{i} ⇒ ∀R.(φ[R := R− (i, j)]))I = {x | ∀y.(x 6= i ∧ (x, y) ∈ RI ⇒
y ∈ φ[R := R− (i, j)]I)}. Thus, ((∀R.φ)[R := R− (i, j)])I =
(({i} ⇒ ∀R.(φ[R := R−(i, j)]t{j}))u(¬{i} ⇒ ∀R.(φ[R := R−(i, j)])))I

81



99 One can see that (∀R−.φ)[R := R− (i, j)] is similar to
(∀R−.φ)[R− := R− − (j, i)], that is replacing R by R− and swapping i
and j in the previous case.

100 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI},
((∀R.φ)[R′ := Q])I = {x | ∀y.(x, y) ∈ RI ⇒
y ∈ φ[R′ := Q]I} as RI is independent of the valuation of R′. Thus
((∀R.φ)[R′ := Q])I = (∀R.(φ[R′ := Q]))I

101 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI},
((∀R−.φ)[R′ := Q])I = {x | ∀y.(y, x) ∈ RI ⇒
y ∈ φ[R′ := Q]I} as RI is independent of the valuation of R′. Thus
((∀R−.φ)[R′ := Q])I = (∀R−.(φ[R′ := Q]))I

102 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI},
((∀R.φ)[R := Q])I = {x | ∀y.(x, y) ∈ QI ⇒
y ∈ φ[R := Q]I}. Thus ((∀R.φ)[R := Q])I = (∀Q.(φ[R := Q]))I

103 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI},
((∀R−.φ)[R := Q])I = {x | ∀y.(y, x) ∈ QI ⇒
y ∈ φ[R := Q]I}. Thus ((∀R−.φ)[R := Q])I = (∀Q−.(φ[R := Q]))I

104 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI},
((∀R.φ)[R′ := (i, j)])I = {x | ∀y.(x, y) ∈ RI ⇒
y ∈ φ[R′ := (i, j)]I} as RI is independent of the valuation of R′. Thus
((∀R.φ)[R′ := (i, j)])I = (∀R.(φ[R′ := (i, j)]))I

105 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI},
((∀R−.φ)[R′ := (i, j)])I = {x | ∀y.(y, x) ∈ RI ⇒
y ∈ φ[R′ := (i, j)]I} as RI is independent of the valuation of R′. Thus
((∀R−.φ)[R′ := (i, j)])I = (∀R−.(φ[R′ := (i, j)]))I

106 As (∀R.φ)I = {x | ∀y.(x, y) ∈ RI ⇒ y ∈ φI},
((∀R.φ)[R := (i, j)])I = {x | ∀y.(x = i ∧ y = j)⇒
y ∈ φ[R := (i, j)]I}. Thus ((∀R.φ)[R := (i, j)])I = (({i}u∃U.({j}uφ[R :=
(i, j)])) t ¬{i})I

107 As (∀R−.φ)I = {x | ∀y.(y, x) ∈ RI ⇒ y ∈ φI},
((∀R−.φ)[R := (i, j)])I = {x | ∀y.(x = j ∧ y = i)⇒
y ∈ φ[R := (i, j)]I}. Thus ((∀R−.φ)[R := (i, j)])I = (({j} u ∃U.({i} u
φ[R := (i, j)])) t ¬{j})I

108 As ∀R.φ = (< 1 R ¬φ), it is possible to reuse the proof for rule 62 where
(< 2 R (¬φ)[i �in j]) is replaced with ∀R.(φ[i �in j] t {i}) when it is
known that (x, i) ∈ RI and i ∈ φ[i �in j]I and (< 0 R φ[i �in j]) is
replaced with ⊥.

109 As ∀R−.φ = (< 1 R− ¬φ), it is possible to reuse the proof for rule 63
where (< 1 R− (φ[i �in j] ∧ ¬∃R.{j})) is replaced with ∀R−.φ[i �in j]
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as, if there exists y such that (y, j) ∈ RI , (y, i) ∈ R〉 and y 6∈ φ[i �in j],
then ∀R−.φ[i�in j] cannot be satisfied in y.

110 As ∀R.φ = (< 1 R ¬φ), it is possible to reuse the proof for rule 66 where
(< 1 R (φ[i �out j] ∧ ∃R.{j})) is replaced with ∀R.φ[i �out j] as, if
there exists y such that (j, y) ∈ RI , (i, y) ∈ R〉 and y 6∈ φ[i �out j], then
∀R.φ[i�out j] cannot be satisfied in y.

111 As ∀R−.φ = (< 1 R− ¬φ), it is possible to reuse the proof for rule 67 where
(< 2 R− (¬φ[i�out j])) is replaced with ∀R−.(φ[i�out j]t {i}) when it
is known that (x, i) ∈ RI and i ∈ φ[i�out j]I and (< 0 R− (¬φ)[i�out

j]) is replaced with ⊥.

Lemma 2. Let Σ be a signature, T is terminating.

Proof. To prove the termination, we introduce a pre-ordering (M,M′) defined
as:

• M(⊥) = 0

• M(C) = 0

• M(¬ φ) =M(φ)

• M(φ u ψ) = max(M(φ),M(ψ))

• M(@aφ) =M(φ)

• M(φ t ψ) = max(M(φ),M(ψ))

• M((≥ n R φ)) =M((≥ n R− φ)) =M(φ)

• M((< n R φ)) =M((< n R− φ)) =M(φ)

• M(∃R.φ) =M(∃R−.φ) =M(φ)

• M(∀R.φ) =M(∀R−.φ) =M(φ)

• M(o) = 0

• M(∃R.Self) =M(∃R−.Self) = 0

• M(φθ) =M(φ) + 1

• M′(⊥) = 0

• M′(C) = 0

• M′((¬ φ)) =M′(φ)

• M′(φ u ψ) = max(M′(φ),M′(ψ))

• M′(φ t ψ) = max(M′(φ),M′(ψ))
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• M′((@aφ)) =M(φ)

• M′((≥ n R φ)) =M′((≥ n R− φ)) =M′(φ)

• M′((< n R φ)) =M′((< n R− φ)) =M′(φ)

• M′((∃R.φ)) =M′((∃R−.φ)) =M′(φ)

• M′((∀R.φ)) =M′((∀R−.φ)) =M′(φ)

• M′(o) = 0

• M′(∃R.Self) =M′(∃R−.Self) = 0

• M′(⊥θ) = 0

• M′(cθ) = 0

• M′((¬ φ)θ) =M′(φθ) + 1

• M′((φ u ψ)θ) = max(M′(φθ),M′(ψθ)) + 1

• M′((φ t ψ)θ) = max(M′(φθ),M′(ψθ)) + 1

• M′((@aφ)θ) =M(φθ) + 1

• M′((≥ n R φ)θ) =M′((≥ n R− φ)θ) =M′(φθ) + 1

• M′((< n R φ)θ) =M′((< n R− φ)θ) =M′(φθ) + 1

• M′((∃R.φ)θ) =M′((∃−R.φ)θ) =M′(φθ) + 1

• M′((∀R.φ)θ) =M′((∀R−.φ)θ) =M′(φθ) + 1

• M′(oθ) = 0

• M′((∃R.Self)θ) =M′((∃R−.Self)θ) = 0

For every concept φ, M(φ) and M′(φ) are positive. We now prove that the
transformations either strictly decrease M or keep M constant and strictly
decrease M′. We compute the results of the functions for the left- and the
right- hand side for each transformation.

1
M(⊥ θ) = M(⊥) + 1 = 1
M(⊥) = 0

2
M(o θ) = M(o) + 1 = 1
M(o) = 0

3
M(C[R := R± (i, j)]) = M(C) + 1 = 1

M(C) = 0
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4
M(C[C ′ := C ′ ± i]) = M(C) + 1 = 1

M(C) = 0

5
M(C[R := Q]) = M(C) + 1 = 1
M(C) = 0

6
M(C[R := (i, j)]) = M(C) + 1 = 1

M(C) = 0

7
M(C[i�in j]) = M(C) + 1 = 1
M(C) = 0

8
M(C[i�out j]) = M(C) + 1 = 1

M(C) = 0

9
M(C[C := C + i]) = M(C) + 1 = 1
M(C t {i}) = max(M(C),M({i})) = 0

10
M(C[C := C − i]) = M(C) + 1 = 1
M(C u ¬{i}) = max(M(C),M(¬{i})) = 0

11
M(C[C ′ := ψ]) = M(C) + 1 = 1
M(C) = 0

12
M(C[C := ψ]) = M(C) + 1 = 1
M(ψ) = 02

13
M((¬φ) θ) = M(¬φ) + 1 = M(φ) + 1
M(¬(φ θ)) = M(φ θ) = M(φ) + 1
M′((¬φ) θ) = M′(φθ) + 1
M′(¬(φθ)) = M′(φθ)

14
M((φ t ψ) θ) = max(M(φ),M(ψ)) + 1
M(φθ t ψθ) = max(M(φ) + 1,M(ψ) + 1)
M′((φ t ψ) θ) = max(M′(φθ),M′(ψθ)) + 1
M′(φθ t ψθ) = max(M′(φθ),M′(ψθ))

15
M((φ u ψ) θ) = max(M(φ),M(ψ)) + 1
M(φθ u ψθ) = max(M(φ) + 1,M(ψ) + 1)
M′((φ u ψ) θ) = max(M′(φθ),M′(ψθ)) + 1
M′(φθ u ψθ) = max(M′(φθ),M′(ψθ))
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16
M((@aφ) θ) = M(@aφ) + 1

M(φ) + 1
M(@a(φθ)) = M(φ θ)

M(φ) + 1
M′((@aφ) θ) = M′(φ θ) + 1
M′(@a(φθ)) = M(φ θ)

17
M(∃R.Self [C := C ± i]) = M(∃R.Self) + 1 = 1

M(∃R.Self) = 0

18 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

19
M(∃R.Self [C := ψ]) = M(∃R.Self) + 1 = 1
M(∃R.Self) = 0

20 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

21
M(∃R.Self [R′ := R′ ± (i, j)]) = M(∃R.Self) + 1 = 1

M(∃R.Self) = 0

22 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

23
M(∃R.Self [R := R+ (i, j)]) = M(∃R.Self) + 1 = 1
M(({i} u {j}) t ∃R.Self) = 0

24 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

25
C ± iM(∃R.Self [R := R− (i, j)]) = M(∃R.Self) + 1 = 1
M((¬{i} t ¬{j}) u ∃R.Self) = 0

26 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

27
M(∃R.Self [R′ := Q]) = M(∃R.Self) + 1 = 1

M(∃R.Self) = 0

28 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

29
M(∃R.Self [R := Q]) = M(∃R.Self) + 1 = 1
M(∃Q.Self) = 0
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30 As the definitions of M and M′ do not discriminate R and R− and Q and
Q′, this rule is identic to the previous one.

31
M(∃R.Self [R′ := (i, j)]) = M(∃R.Self) + 1 = 1

M(∃R.Self) = 0

32 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

33
M(∃R.Self [R := (i, j)]) = M(∃R.Self) + 1 = 1

M({i} u {j}) = 0

34 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

35
M(∃R.Self [i�in j]) = M(∃R.Self) + 1

= 1
M(RHS35) = max(M({i},M({j}),M(∃R.Self),M(∃R.i))

= max(0,M({i}))
= 0

36 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

37
M(∃R.Self [i�out j]) = M(∃R.Self) + 1

= 1
M(RHS37) = max(M({i},M({j}),M(∃R.Self),M(∃R−.i))

= max(0,M({i}))
= 0

38 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

39
M((./ n R φ)[C := C ± i]) = M((./ n R φ)) + 1

= M(φ) + 1
M((./ n R φ[C := C ± i])) = M(φ[C := C ± i])

= M(φ) + 1
M′((./ n R φ)[C := C ± i]) = M′(φ[C := C ± i]) + 1
M′((./ n R φ[C := C ± i])) = M′(φ[C := C ± i])

40 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.
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41
M((./ n R φ)[C := ψ]) = M((./ n R φ)) + 1

= M(φ)
M((./ n R φ[C := ψ])) = M(φ[C := ψ])

= M(φ) + 1
M′((./ n R φ)[C := C ± i]) = M′(φ[C := ψ]) + 1
M′((./ n R φ[C := C ± i])) = M′(φ[C := ψ])

42 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

43
M((./ n R φ)[R′ := R′ ± (i, j)]) = M((./ n R φ)) + 1

= M(φ) + 2
M((./ n R φ[R′ := R′ ± (i, j)]) = M(φ[R′ := R′ ± (i, j)]) + 1

= M(φ) + 2
M′((./ n R φ)[R′ := R′ ± (i, j)]) = M′(φ[R′ := R′ ± (i, j)]) + 1
M′((./ n R φ[R′ := R′ ± (i, j)])) = M′(φ[R′ := R′ ± (i, j)])

44 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

45
M((./ n R φ)[R := R+ (i, j)]) = M((./ n R φ) + 1

= M(φ) + 2
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M(c1,16) = max(M({j}),M(φ[R := R+ (i, j)]))
= M(φ) + 1

M(c2,16) = max(M(¬{j}),M(¬(φ[R := R+ (i, j)])))
= M(φ) + 1

M(b1,16) = M({i})
= 0

M(b2,16) = M(∃U.c1,16)
= M(c1,16) + 1
= M(φ) + 1

M(b3,16) = M(∀R.¬{j})
= M(¬{j}) + 1
= 1

M(b4,16) = M((./ (n− 1) R φ[R := R+ (i, j)]))
= M(φ[R := R+ (i, j)]) + 1
= M(φ) + 2

M(b11,16) = M(¬{i})
= 0

M(b12,16) = M(∀U.c2,16)
= M(c2,16) + 1
= M(φ) + 2

M(b13,16) = M(∃R.{j})
= M({j}) + 1
= 1

M(b14,16) = M((./ n R φ[R := R+ (i, j)]))
= M(φ[R := R+ (i, j)]) + 1
= M(φ) + 2

M(a1,16) = max(M(b1,16),M(b2,16),M(b3,16),M(b4,16)
= M(φ) + 2

M(a2,16) = max(M(b11,16),M(b12,16),M(b13,16),M(b14,16)
= M(φ) + 2

M(RHR16) = max(M(a1,16),M(a2,16))
= M(φ) + 2

M′((./ n R φ)[R := R+ (i, j)]) = M′(φ[R := R+ (i, j)]) + 1

M′(c1,16) = max(M′({j}),M′(φ[R := R+ (i, j)]))
= M′(φ[R := R+ (i, j)])

M′(c2,16) = max(M′(¬{j}),M′(¬(φ[R := R+ (i, j)])))
= M′(φ[R := R+ (i, j)])

M′(b1,16) = M({i})
= 0

M′(b2,16) = M(∃U.c1,16)
= M′(c1,16)
= M′(φ[R := R+ (i, j)])
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M′(b3,16) = M(∀R.¬{j})
= M′(¬{j})
= 0

M′(b4,16) = M((./ (n− 1) R φ[R := R+ (i, j)])
= M′(φ[R := R+ (i, j)])

M′(b11,16) = M′(¬{i})
= 0

M′(b12,16) = M′(∀U.c2,16)
= M′(c2,16)
= M(φ[R := R+ (i, j])

M′(b13,16) = M′(∃R.{j})
= M′({j})
= 0

M′(b14,16) = M′((./ n R φ[R := R+ (i, j)]))
= M′(φ[R := R+ (i, j)])

M′(a1,16) = max(M′(b1,16),M′(b2,16),M′(b3,16),M′(b4,16)
= M′(φ[R := R+ (i, j)])

M′(a2,16) = max(M′(b11,16),M′(b12,16),M′(b13,16),M′(b14,16)
= M′(φ[R := R+ (i, j)])

M′(RHR16) = max(M′(a1,16),M′(a2,16))
= M(φ[R := R+ (i, j)])

46 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

47
M((./ n R φ)[R := R− (i, j)]) = M((./ n R φ) + 1

= M(φ) + 2

M(c1,17) = max(M({j}),M(φ[R := R− (i, j)]))
= M(φ) + 1

M(c2,17) = max(M(¬{j}),M(¬(φ[R := R− (i, j)])))
= M(φ) + 1

M(b1,17) = M({i})
= 0

M(b2,17) = M(∃U.c1,17)
= M(c1,17) + 1
= M(φ) + 2

M(b3,17) = M(∃R.{j})
= M(¬{j}) + 1
= 1

M(b4,17) = M((./ (n+ 1) R φ[R := R− (i, j)]))
= M(φ[R := R− (i, j)]) + 1
= M(φ) + 2

M(b11,17) = M(¬{i})
= 0
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M(b12,17) = M(∀U.c2,17)
= M(c2,17) + 1
= M(φ) + 2

M(b13,17) = M(∀R.¬{j})
= M({j}) + 1
= 1

M(b14,17) = M((./ n R φ[R := R+ (i, j)]))
= M(φ[R := R− (i, j)]) + 1
= M(φ) + 2

M(a1,17) = max(M(b1,17),M(b2,17),M(b3,17),M(b4,17)
= M(φ) + 2

M(a2,17) = max(M(b11,17),M(b12,17),M(b13,17),M(b14,17)
= M(φ) + 2

M(RHR17) = max(M(a1,17),M(a2,17))
= M(φ) + 2

M′((./ n R φ)[R := R− (i, j)]) = M′(φ[R := R− (i, j)]) + 1

M′(c1,17) = max(M′({j}),M′(φ[R := R− (i, j)]))
= M′(φ[R := R− (i, j)])

M′(c2,17) = max(M′(¬{j}),M′(¬(φ[R := R− (i, j)])))
= M′(φ[R := R− (i, j)])

M′(b1,17) = M({i})
= 0

M′(b2,17) = M(∃U.c1,17)
= M′(c1,17)
= M′(φ[R := R− (i, j)])

M′(b3,17) = M(∀R.¬{j})
= M′(¬{j})
= 0

M′(b4,17) = M((./ (n+ 1) R φ[R := R− (i, j)])
= M′(φ[R := R− (i, j)])

M′(b11,17) = M′(¬{i})
= 0

M′(b12,17) = M′(∀U.c2,17)
= M′(c2,17)
= M(φ[R := R− (i, j])

M′(b13,17) = M′(∀R.¬{j})
= M′({j})
= 0

M′(b14,17) = M′((./ n R φ[R := R− (i, j)]))
= M′(φ[R := R− (i, j)])

M′(a1,17) = max(M′(b1,17),M′(b2,17),M′(b3,17),M′(b4,17)
= M′(φ[R := R− (i, j)])
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M′(a2,17) = max(M′(b11,17),M′(b12,17),M′(b13,17),M′(b14,17)
= M′(φ[R := R− (i, j)])

M′(RHR17) = max(M′(a1,17),M′(a2,17))
= M(φ[R := R− (i, j)])

48 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

49
M((./ n R φ)[R′ := Q]) = M((./ n R φ)) + 1

= M(φ) + 1
M((./ n R φ[R′ := Q])) = M(φ[R′ := Q])

= M(φ) + 1
M′((./ n R φ)[R′ := Q]) = M′(φ[R′ := Q]) + 1
M′((./ n R φ[R′ := Q])) = M′(φ[R′ := Q])

50 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

51
M((./ n R φ)[R := Q]) = M((./ n R φ)) + 1

= M(φ) + 1
M((./ n Q φ[R := Q])) = M(φ[R := Q])

= M(φ) + 1
M′((./ n R φ)[R := Q]) = M′(φ[R := Q]) + 1
M′((./ n Q φ[R := Q])) = M′(φ[R := Q])

52 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

53
M((./ n R φ)[R′ := (i, j)]) = M((./ n R φ)) + 1

= M(φ) + 1
M((./ n R φ[R′ := (i, j)])) = M(φ[R′ := (i, j)])

= M(φ) + 1
M′((./ n R φ)[R′ := (i, j)]) = M′(φ[R′ := (i, j)]) + 1
M′((./ n R φ[R′ := (i, j)])) = M′(φ[R′ := (i, j)])

54
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M((< n R φ)[R := (i, j)]) = M((< n R φ)) + 1
= M(φ) + 1

M(RHS54) = max(M(¬{i}),M(a1,54))
= max(M({i}),max(M(¬{j}),

M(¬φ[R := (i, j)])))
= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((< n R φ)[R := (i, j)]) = M′((< n R φ[R := (i, j)])) + 1
= M′(φ[R := (i, j)]) + 1

M′(RHS54) = max(M′(¬{i}),M′(a1,54))
= max(M′({i}),max(M′(¬{j}),

M′(¬φ[R := (i, j)])))
= max(0,max(0,M′(φ[R := (i, j)])))
= M′(φ[R := (i, j)])

55
M((< n R φ)[R := (i, j)]) = M((< n R φ)) + 1

= M(φ) + 1
M(>) = 0

56
M((≥ n R φ)[R := (i, j)]) = M((≥ n R φ)) + 1

= M(φ) + 1
M(RHS56) = max(M({i}),M(a1,56))

= max(0,max(M({j}),M(φ[R := (i, j)])))
= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((≥ n R φ)[R := (i, j)]) = M′((≥ n R φ[R := (i, j)])) + 1
= M′(φ[R := (i, j)]) + 1

M′(RHS56) = max(M′({i}),M′(a1,56))
= max(0,max(M′({j}),M′(φ[R := (i, j)])))
= max(0,max(0,M′(φ[R := (i, j)])))
= M′(φ[R := (i, j)])

57
M((≥ n R φ)[R := (i, j)]) = M((≥ n R φ)) + 1

= M(φ) + 1
M(⊥) = 0

58
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M((< n R− φ)[R := (i, j)]) = M((< n R− φ)) + 1
= M(φ) + 1

M(RHS58) = max(M(¬{j}),M(a1,58))
= max(M({j}),max(M(¬{i}),

M(¬φ[R := (i, j)])))
= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((< n R− φ)[R := (i, j)]) = M′((< n R− φ[R := (i, j)])) + 1
= M′(φ[R := (i, j)]) + 1

M′(RHS58) = max(M′(¬{j}),M′(a1,58))
= max(M′({j}),max(M′(¬{i}),

M′(¬φ[R := (i, j)])))
= max(0,max(0,M′(φ[R := (i, j)])))
= M′(φ[R := (i, j)])

59
M((< n R− φ)[R := (i, j)]) = M((< n R− φ)) + 1

= M(φ) + 1
M(>) = 0

60
M((≥ n R− φ)[R := (i, j)]) = M((≥ n R− φ)) + 1

= M(φ) + 1
M(RHS60) = max(M({j}),M(a1,60))

= max(0,max(M({i}),M(φ[R := (i, j)])))
= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((≥ n R− φ)[R := (i, j)]) = M′((≥ n R− φ[R := (i, j)])) + 1
= M′(φ[R := (i, j)]) + 1

M′(RHS60) = max(M′({j}),M′(a1,60))
= max(0,max(M′({i}),M′(φ[R := (i, j)])))
= max(0,max(0,M′(φ[R := (i, j)])))
= M′(φ[R := (i, j)])

61
M((≥ n R− φ)[R := (i, j)]) = M((≥ n R− φ)) + 1

= M(φ) + 1
M(⊥) = 0

62
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M((./ n R φ)[i�in j]) = M((./ n R φ)) + 1
= M(φ) + 1

M(RHS62) = max(M(a1,62), (./ n Rφ[i�in j]),M(a2,62),
M(a3,62), (./ (n+ 1) Rφ[i�in j]),
M(a4,62), (./ (n− 1) Rφ[i�in j]),
M(a5,62), (./ (n+ 1) Rφ[i�in j]),
M(a6,62),M(a7,62),M(a8,62),
M(a9,62), (./ n Rφ[i�in j])

= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((≥ n R φ)[i�in j]) = M′(φ[i�in j]) + 1
M′(RHS62) = max(M′(a1,62), (./ n Rφ[i�in j]),M′(a2,62),

M′(a3,62), (./ (n+ 1) Rφ[i�in j]),
M′(a4,62), (./ (n− 1) Rφ[i�in j]),
M′(a5,62), (./ (n+ 1) Rφ[i�in j]),
M′(a6,62),M′(a7,62),M′(a8,62),
M′(a9,62), (./ n Rφ[i�in j])

= max(0,max(0,M′(φ[R := (i, j)])))
= M′(φ[R := (i, j)])

63
M((< n R− φ)[i�in j]) = M((< n R− φ)) + 1

= M(φ) + 1
M(RHS63) = max(M(a1,63),M(a2,63),M(a3,k,63),M(a4,k,63),

M(a5,63), (< n R− φ[i�in j]))
= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((< n R− φ)[i�in j]) = M′(φ[i�in j]) + 1
M′(RHS63) = max(M′(a1,63),M′(a2,63),M′(a3,k,63),M′(a4,k,63),

M′(a5,63), (< n R− φ[i�in j]))
= max(0,max(0,M′(φ[i�in j])))
= M′(φ[i�in j])

64
M((≥ n R− φ)[i�in j]) = M((≥ n R− φ)) + 1

= M(φ) + 1
M(RHS64) = max(M(a1,64),M(a2,k,64),M(a3,k,64),

M(a4,64), (≥ n Rφ[i�in j]))
= max(0,max(0,M(φ) + 1))
= M(φ) + 1

M′((≥ n R− φ)[i�in j]) = M′(φ[i�in j]) + 1
M′(RHS64) = max(M′(a1,64),M′(a2,k,64),M′(a3,k,64),

M′(a4,64), (≥ n Rφ[i�in j]))
= max(0,max(0,M′(φ[i�in j])))
= M′(φ[i�in j])

65 – 67 As i�out j can be seen as i�in j applied to the inverse of the edges,
rules 65 to 67 can be obtained from rules 62 to 64.
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68
M((∃R.φ)[C := C ± i]) = M(∃R.φ) + 1

= M(φ) + 2
M(∃R.(φ[C := C ± i])) = M(φ[C := C ± i]) + 1

= M(φ) + 2
M′((∃R.φ)[C := C ± i]) = M′(φ[C := C ± i]) + 1
M′(∃R.(φ[C := C ± i])) = M(φ[C := C ± i])

69 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

70
M((∃R.φ)[C := ψ]) = M(∃R.φ) + 1

= M(φ) + 1
M(∃R.(φ[C := ψ])) = M(φ[C := ψ])

= M(φ) + 1
M′((∃R.φ)[C := ψ]) = M′(φ[C := ψ]) + 1
M′(∃R.(φ[C := ψ])) = M(φ[C := ψ])

71 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

72
M((∃R.φ)[R′ := R′ ± (i, j)]) = M(∃R.φ) + 1

= M(φ) + 1
M(∃R.(φ[R′ := R′ ± (i, j)])) = M(φ[R′ := R′ ± (i, j)])

= M(φ) + 1
M′((∃R.φ)[R′ := R′ ± (i, j)]) = M′(φ[R′ := R′ ± (i, j)]) + 1
M′(∃R.(φ[R′ := R′ ± (i, j)])) = M(φ[R′ := R′ ± (i, j)])

73 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

74
M((∃R.φ)[R := R+ (i, j)]) = M(∃R.φ) + 1

= M(φ) + 1

M(d1) = max(M(¬{i}),M(d1,1),M(d1,2),M({i}),M(d1,3))
= max(M({i}),M(d1,1,1) + 1,max(M({j}),M(d1,2,1)) + 1,

0,M(d1,3,1) + 1)
= max(0,M(φ) + 1,max(0,M(φ)) + 1,M(φ) + 1)
= M(φ) + 1

M′((∃R.φ)[R := R+ (i, j)]) = M′(φ[R := R+ (i, j)]) + 1

M′(d1) = max(M′(¬{i}),M′(d1,1),M′(d1,2),M′({i}),M′(d1,3))
= max(M′({i}),M′(φ[R := R+ (i, j)]),max(M′({j}),

M′(φ[R := R+ (i, j)])), 0,M′(φ[R := R+ (i, j)]))
= M′(φ[R := R+ (i, j)])

75 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.
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76
M((∃R.φ)[R := R− (i, j)]) = M(∃R.φ) + 1

= M(φ) + 1

M(d2) = max(M(¬{i}),M(d2,1),M({i}),M(d2,2))
= max(M({i}),max(M(d2,1,1),M(¬{j})) + 1, 0,M(d2,2,1) + 1)
= max(0,max(M(φ) + 1,M({i})) + 1,M(φ) + 1)
= M(φ) + 1

M′((∃R.φ)[R := R− (i, j)]) = M′(φ[R := R− (i, j)]) + 1

M′(d2) = max(M′(¬{i}),M′(d2,1),M′({i}),M′(d2,2))
= max(M′({i}),max(M′(φ[R := R− (i, j)]),M′(¬{j})),

0,M′(φ[R := R− (i, j)]))
= max(0,max(M′(φ[R := R− (i, j)]),M′({j})),

M′(φ[R := R− (i, j)]))
= M′(φ[R := R− (i, j)])

77 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

78
M((∃R.φ)[R′ := Q]) = M(∃R.φ) + 1

= M(φ) + 1
M(∃R.(φ[R′ := Q])) = M(φ[R′ := Q])

= M(φ) + 1
M′((∃R.φ)[R′ := Q]) = M′(φ[R′ := Q]) + 1
M′(∃R.(φ[R′ := Q])) = M(φ[R′ := Q])

79 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

80
M((∃R.φ)[R := Q]) = M(∃R.φ) + 1

= M(φ) + 1
M(∃Q.(φ[R := Q])) = M(φ[R := Q])

= M(φ) + 1
M′((∃R.φ)[R := Q]) = M′(φ[R := Q]) + 1
M′(∃Q.(φ[R := Q])) = M(φ[R := Q])

81 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

82
M((∃R.φ)[R′ := (i, j)]) = M(∃R.φ) + 1

= M(φ) + 1
M(∃R.(φ[R′ := (i, j)])) = M(φ[R′ := (i, j)])

= M(φ) + 1
M′((∃R.φ)[R′ := (i, j)]) = M′(φ[R′ := (i, j)]) + 1
M′(∃R.(φ[R′ := (i, j)])) = M(φ[R′ := (i, j)])
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83 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

84
M((∃R.φ)[R := (i, j)]) = M(∃R.φ) + 1

= M(φ) + 1
M(RHS84) = max(M({i},max(M({j}),M(φ[R := (i, j)])))

= M(φ) + 1
M′((∃R.φ)[R := (i, j)]) = M′(φ[R := (i, j)]) + 1

M′(RHS84) = max(M({i},max(M({j}),M(φ[R := (i, j)])))
= M(φ[R := (i, j)])

85 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

86 – 89 Rules 86 to 89 are translations of rules 62 to 67 with ./ replaced by ≥
and n = 1

90
M((∀R.φ)[C := C ± i]) = M(∀R.φ) + 1

= M(φ) + 2
M(∀R.(φ[C := C ± i])) = M(φ[C := C ± i]) + 1

= M(φ) + 2
M′((∀R.φ)[C := C ± i]) = M′(φ[C := C ± i]) + 1
M′(∀R.(φ[C := C ± i])) = M′(φ[C := C ± i])

91 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

92
M((∀R.φ)[R′ := R′ ± (i, j)]]) = M(∀R.φ) + 1

= M(φ) + 2
M(∀R.(φ[R′ := R′ ± (i, j)])) = M(φ[R′ := R′ ± (i, j)]) + 1

= M(φ) + 2
M′((∀R.φ)[R′ := R′ ± (i, j)]) = M′(φ[R′ := R′ ± (i, j)]) + 1
M′(∀R.(φ[R′ := R′ ± (i, j)])) = M′(φ[R′ := R′ ± (i, j)])

93 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

94
M((∀R.φ)[C := ψ]) = M(∀R.φ) + 1

= M(φ) + 1
M(∀R.(φ[C := ψ])) = M(φ[C := ψ])

= M(φ) + 1
M′((∀R.φ)[C := ψ]) = M′(φ[C := ψ]) + 1
M′(∀R.(φ[C := ψ])) = M(φ[C := ψ])

95 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.
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96
M((∀R.φ)[R := R+ (i, j)]) = M(∀R.φ) + 1

= M(φ) + 2

M(d3) = max(M(¬{i}),M(d3,1),M(d3,2),M({i}),M(d3,3))
= max(M({i}),M(d3,1,1),max(M({j}),M(d3,2,1)) + 1,

0,M(d3,3,1) + 1)
= max(0,M(φ) + 2,M(φ) + 2)
= M(φ) + 2

M′((∀R.φ)[R := R+ (i, j)]) = M(∀R.φ[R := R+ (i, j)]) + 1

M′(d3) = max(M′(¬{i}),M′(d3,1),M′(d3,2),M′({i}),M′(d3,3))
= max(M′({i}),M′(φ[R := R+ (i, j)]),max(M′({j}),

M(φ[R := R+ (i, j)])), 0,M(φ[R := R+ (i, j)]))
= max(0,M(φ[R := R+ (i, j)]),M(φ[R := R+ (i, j)]))
= M(φ)

97 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

98
M((∀R.φ)[R := R− (i, j)]) = M(∀R.φ) + 1

= M(φ) + 2

M(d4) = max(M(¬{i}),M(d4,1),M({i}),M(d4,2))
= max(M({i}),max(M(d4,1,1),M({j})) + 1, 0,

M(d4,2,1) + 1)
= max(0,max(M(φ) + 1, 0) + 1,M(φ) + 2)
= M(φ) + 2

M′((∀R.φ)[R := R− (i, j)]) = M(φ[R := R− (i, j)]) + 1

M′(d4) = max(M′(¬{i}),M′(d4,1),M′({i}),M′(d4,2))
= max(M′({i}),max(M′(φ[R := R− (i, j)]),M′({j})),

0,M′(φ[R := R− (i, j)]))
= max(0,max(M′(φ[R := R− (i, j)]), 0),

M′(φ[R := R− (i, j)]))
= M′(φ[R := R− (i, j)])

99 As the definitions of M and M′ do not discriminate R and R−, this rule is
identic to the previous one.

100
M((∀R.φ)[R′ := Q]) = M(∀R.φ) + 1

= M(φ) + 1
M(∀R.(φ[R′ := Q])) = M(φ[R′ := Q])

= M(φ) + 1
M′((∀R.φ)[R′ := Q]) = M′(φ[R′ := Q]) + 1
M′(∀R.(φ[R′ := Q])) = M(φ[R′ := Q])

101 As the definitions of M and M′ do not discriminate R and R−, this rule
is identic to the previous one.
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102
M((∀R.φ)[R := Q]) = M(∀R.φ) + 1

= M(φ) + 1
M(∀Q.(φ[R := Q])) = M(φ[R := Q])

= M(φ) + 1
M′((∀R.φ)[R := Q]) = M′(φ[R := Q]) + 1
M′(∀Q.(φ[R := Q])) = M(φ[R := Q])

103 As the definitions of M and M′ do not discriminate R and R−, this rule
is identic to the previous one.

104
M((∀R.φ)[R′ := (i, j)]) = M(∀R.φ) + 1

= M(φ) + 1
M(∀R.(φ[R′ := (i, j)])) = M(φ[R′ := (i, j)])

= M(φ) + 1
M′((∀R.φ)[R′ := (i, j)]) = M′(φ[R′ := (i, j)]) + 1
M′(∀R.(φ[R′ := (i, j)])) = M(φ[R′ := (i, j)])

105 As the definitions of M and M′ do not discriminate R and R−, this rule
is identic to the previous one.

106
M((∀R.φ)[R := (i, j)]) = M(∀R.φ) + 1

= M(φ) + 1
M(RHS106) = max(M({i},max(M({j}),M(φ[R := (i, j)])))

= M(φ) + 1
M′((∀R.φ)[R := (i, j)]) = M′(φ[R := (i, j)]) + 1

M′(RHS106) = max(M({i},max(M({j}),M(φ[R := (i, j)])))
= M(φ[R := (i, j)])

107 As the definitions of M and M′ do not discriminate R and R−, this rule
is identic to the previous one.

108 – 111 Rules 108 to 111 are translations of rules 62 to 67 with ./ = < and
n = 1

where :
RHS35 = (({i} ⇔ {j}) ⇒ ∃R.Self)

t (¬{i} u {j} ⇒ ∃R.Self t ∃R.{i})
RHS37 = (({i} ⇔ {j}) ⇒ ∃R.Self)

t (¬{i} u {j} ⇒ ∃R.Self t ∃R−.{i})
RHS45 = (({i} u ∃U.({j} u φ[R := R+ (i, j)]) u ∀R.¬{j})

⇒ (./ (n− 1) R φ[R := R+ (i, j)]))
u ((¬{i} t ∀U.(¬{j} t ¬φ[R := R+ (i, j)]) t ∃R.{j})
⇒ (./ n R φ[R := R+ (i, j)]))

RHS47 = (({i} u ∃U.({j} u φ[R := R− (i, j)]) u ∃R.{j})
⇒ (./ (n+ 1) R φ[R := R− (i, j)]))
u ((¬{i} t ∀U.(¬{j} t ¬φ[R := R− (i, j)]) t ∀R.¬{j})
⇒ (./ n R φ[R := R− (i, j)]))
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RHS54 = ¬{i} t ∀U.(¬{j} t ¬φ[R := (i, j)])
RHS56 = {i} u ∃U.({j} u φ[R := (i, j)])
RHS58 = ¬{j} t ∀U.(¬{i} t ¬φ[R := (i, j)])
RHS60 = {j} u ∃U.({i} u φ[R := (i, j)])
RHS62 = (∃U.({i} u {j})

⇒ (./ n R φ[i�in j]))
u (∃U.({i} u ¬{j})⇒

(∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j])
⇒ (./ (n+ 1) R φ[i�in j]))
u (∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j])
⇒ (./ (n− 1) R φ[i�in j]))
u (∃R.({i} u φ[i�in j]) u ∃R.{j}
⇒ (./ (n+ 1) R φ[i�in j]))
u ((∀R.¬{i})
t (∃R.({i} u ¬φ[i�in j]) u ∃R.{j})
t (∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j]))
t (∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j]))
⇒ (./ n R φ[i�in j])))

RHS63 = ({i} u ¬{j})
t (¬{i} u {j}
⇒

⊔
k∈[0,n](< k R− φ[i�in j])

u ∃U.({i} u (< (n− k) R− (φ[i�in j] u ¬∃R−.{j}))))
t (({i} ⇔ {j})
⇒ (< n R− φ[i�in j]))

RHS64 = (¬{i} u {j}
⇒

⊔
k∈[0,n](≥ k R− φ[i�in j])

u ∃U.({i} u (≥ (n− k) R− (φ[i�in j] u ∃R−.{j}))))
u (({i} ⇔ {j})
⇒ (≥ n R− φ[i�in j]))

RHS84 = {i} u ∃U.({j} u φ[R := (i, j)])
RHS106 = ({i} u ∃U.({j} u φ[R := (i, j)])) t ¬{i}
a1,45 = ({i} u ∃U.({j} u φ[R := R+ (i, j)]) u ∀R.¬{j})

⇒ (./ (n− 1) R φ[R := R+ (i, j)])
a2,45 = (¬{i} t ∀U.(¬{j} t ¬φ[R := R+ (i, j)]) t ∃R.{j})

⇒ (./ n R φ[R := R+ (i, j)])
a1,47 = ({i} u ∃U.({j} u φ[R := R− (i, j)]) u ∃R.{j})

⇒ (./ (n+ 1) R φ[R := R− (i, j)])
a2,47 = (¬{i} t ∀U.(¬{j} t ¬φ[R := R− (i, j)]) t ∀R.¬{j})

⇒ (./ n R φ[R := R− (i, j)])
a1,54 = ∀U.(¬{j} t ¬φ[R := (i, j)])
a1,56 = ∃U.({j} u φ[R := (i, j)])
a1,58 = ∀U.(¬{i} t ¬φ[R := (i, j)])
a1,60 = ∃U.({i} u φ[R := (i, j)])
a1,62 = (∃U.({i} u {j})
a2,62 = (∃U.({i} u ¬{j})
a3,62 = (∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j])
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a4,62 = (∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j])
a5,62 = (∃R.({i} u φ[i�in j]) u ∃R.{j}
a6,62 = ((∀R.¬{i})
a7,62 = (∃R.({i} u ¬φ[i�in j]) u ∃R.{j})
a8,62 = (∃R.({i} u φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u φ[i�in j]))
a9,62 = (∃R.({i} u ¬φ[i�in j]) u ∀R.¬{j} u ∃U.({j} u ¬φ[i�in j]))

⇒ (./ n R φ[i�in j])))
a1,63 = ({i} u ¬{j})
a2,63 = (¬{i} u {j}
a3,k,63 = (< k R− φ[i�in j])
a4,k,63 = ∃U.({i} u (< (n− k) R− (φ[i�in j] u ¬∃R−.{j}))))
a5,63 = (({i} ⇔ {j})
a1,64 = ¬{i} u {j}
a2,k,64 = (≥ k R− φ[i�in j])
a3,k,64 = ∃U.({i} u (≥ (n− k) R− (φ[i�in j] u ∃R−.{j}))))
a4,64 = {i} ⇔ {j}
b1,45 = {i}
b2,45 = ∃U.({j} u φ[R := R+ (i, j)])
b3,45 = ∀R.¬{j}
b4,45 = (./ (n− 1) R φ[R := R+ (i, j)]))
b11,45 = ¬{i}
b12,45 = ∀U.(¬{j} t ¬(φ[R := R+ (i, j)]))
b13,45 = ∃R.{j}
b14,45 = (./ n R φ[R := R+ (i, j)]))
b1,47 = {i}
1b2,47 = ∃U.({j} u φ[R := R− (i, j)])
b3,47 = ∃R.{j}
b4,47 = (./ (n+ 1) R φ[R := R− (i, j)]))
b11,47 = ¬{i}
b12,47 = ∀U.(¬{j} t ¬(φ[R := R− (i, j)]))
b13,47 = ∀R.¬{j}
b14,47 = (./ n R φ[R := R− (i, j)]))
c1,45 = ({j} u φ[R := R+ (i, j)])
c2,45 = (¬{j} t ¬(φ[R := R+ (i, j)]))
c1,47 = ({j} u φ[R := R− (i, j)])
c2,47 = (¬{j} t ¬(φ[R := R− (i, j)]))
d1 = ({i} ⇒ ∃R.(φ[R := R+ (i, j)]) t ∃U.({j} u φ[R := R+ (i, j)]))

u (¬{i} ⇒ ∃R.(φ[R := R+ (i, j)]))
= (¬{i} t ∃R.(φ[R := R+ (i, j)]) t ∃U.({j} u φ[R := R+ (i, j)]))
u ({i} t ∃R.(φ[R := R+ (i, j)]))

d1,1 = ∃R.(φ[R := R+ (i, j)])
d1,2 = ∃U.({j} u φ[R := R+ (i, j)])
d1,3 = ∃R.(φ[R := R+ (i, j)])
d1,2,1 = {j}
d1,2,2 = φ[R := R+ (i, j)]
d1,3,1 = φ[R := R+ (i, j)]
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d2 = ({i} ⇒ (∃R.(φ[R := R− (i, j)] u ¬{j})))
u (¬{i} ⇒ ∃R.(φ[R := R− (i, j)]))
= (¬{i} t (∃R.(φ[R := R− (i, j)] u ¬{j})))
u ({i} t ∃R.(φ[R := R− (i, j)]))

d2,1 = ∃R.(φ[R := R− (i, j)] u ¬{j})
d2,2 = ∃R.(φ[R := R− (i, j)])
d2,1,1 = φ[R := R− (i, j)]
d2,1,2 = ¬{j}
d2,2,1 = φ[R := R− (i, j)]
d3 = ({i} ⇒ (∀R.(φ[R := R+ (i, j)]) u ∃U.({j} u φ[R := R+ (i, j)])))

u (¬{i} ⇒ ∀R.(φ[R := R+ (i, j)]))
= (¬{i} t (∀R.(φ[R := R+ (i, j)]) u ∃U.({j} u φ[R := R+ (i, j)])))
u ({i} t ∀R.(φ[R := R+ (i, j)]))

d3,1 = ∀R.(φ[R := R+ (i, j)])
d3,2 = ∃U.({j} u φ[R := R+ (i, j)])
d3,3 = ∀R.(φ[R := R+ (i, j)])
d3,2,1 = φ[R := R+ (i, j)]
d3,3,1 = φ[R := R+ (i, j)]
d4 = ({i} ⇒ ∀R.(φ[R := R− (i, j)] t {j}))

u (¬{i} ⇒ ∀R.(φ[R := R− (i, j)]))
= (¬{i} t ∀R.(φ[R := R− (i, j)] t {j}))
u ({i} t ∀R.(φ[R := R− (i, j)]))

d4,1 = ∀R.(φ[R := R− (i, j)] t {j})
d4,2 = ∀R.(φ[R := R− (i, j)])
d4,1,1 = φ[R := R− (i, j)]
d4,2,1 = φ[R := R− (i, j)]

Now we show that, given an ALCQUIOSelfσ concept, applying the trans-
lation rules yields an ALCQUIOSelf concept.

Lemma 3. Let Σ be a signature, φ an ALCQUIOSelfσ concept, ψ a normal
form obtained from φ by using the system T , then ψ is an ALCQUIOSelf
concept.

The proof of this lemma is done by contradiction. If we assume that ψ
contains a substitution, then ψ can be rewritten by means of a rule in T . This
contradicts the fact that ψ is in normal form. Therefore ψ is substitution-
free. ψ is a ALCQUIOSelf concept since concepts constructors used in T are
ALCQUIOSelfσ concepts.

From the above three lemmas 1, 2 and 3, the proof of Theorem 6.2.1 is
straightforward.

The same proof may be used to show that other DLs are closed under sub-
stitutions. This is summarized in the following corollary.

Corollary 6.2.1. The logics ALCUO, ALCUOSelf , ALCUIO, ALCQUO,
ALCUIOSelf , ALCQUOSelf , ALCQUIO, ALCUO@, ALCUO@Self ,
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Figure 6.4: Example illustrating rule 38. The nodes satisfying φ[R := R+(i, j)]
are drawn in red, the current node is circled in black. The leftmost graph shows
the case in which {i} is true, and then (∀R.φ)[R := R + (i, j)] will be true if j
satisfies φ[R := R+ (i, j)]. The rightmost graph shows that if {i} is false, then
the modification does not affect the property.

ALCUIO@, ALCQUO@, ALCUIO@Self , ALCQUO@Self , ALCQUIO@ are
closed under substitutions.

To prove this corollary, one just has to reuse the proof of Theorem 6.2.1.
Indeed, with the exception of nominals and the universal role that are present
in all logics of the corollary, all constructors that appear on the right-hand side
of a rule also appear on the left-hand side. The restriction ofM andM′ to the
remaining rules ensures the termination of the system.

Those are not the only logics that are closed under substitutions. Indeed, it
is possible to prove that in presence of @, U is no longer needed.

Corollary 6.2.2. The logics ALCO@, ALCO@Self , ALCIO@, ALCQO@,
ALCIO@Self , ALCQO@Self , ALCQIO@ are closed under substitutions.

Once more, to prove this corollary, T is used. Only the rules that actually
use the universal role are changed and thus all others are not repeated. One can
easily see that all occurrences of U are of the form ∃U.({i}uC) or ∀U.(¬{i}tC).
Those can be replaced with @iC. That both have the same interpretation and
that it doesn’t not impede the algorithm to terminate is easily checked.

23 (./ n R φ)[R := R+ (i, j)] 

(({i} u@j(φ[R := R+ (i, j)]) u ∀R.¬{j}) ⇒
(./ (n− 1) R φ[R := R+ (i, j)]))
u ((¬{i} t@j¬(φ[R := R+ (i, j)]) t ∃R.{j}) ⇒

(./ n R φ[R := R+ (i, j)]))

24 (./ n R− φ)[R := R+ (i, j)] 

(({j} u@i(φ[R := R+ (i, j)]) u ∀R−.¬{i}) ⇒
(./ (n− 1) R− φ[R := R+ (i, j)]))
u ((¬{j} t@i¬(φ[R := R+ (i, j)]) t ∃R−.{i}) ⇒

(./ n R− φ[R := R+ (i, j)]))
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25 (./ n R φ)[R := R− (i, j)] 

(({i} u@j(φ[R := R− (i, j)]) u ∃R.{j}) ⇒
(./ (n+ 1) R φ[R := R− (i, j)]))
u ((¬{i} t@j¬(φ[R := R− (i, j)]) t ∀R.¬{j}) ⇒

(./ n R φ[R := R− (i, j)]))

26 (./ n R− φ)[R := R− (i, j)] 

(({j} u@i(φ[R := R− (i, j)]) u ∃R−.{i}) ⇒
(./ (n+ 1) R− φ[R := R− (i, j)]))
u ((¬{j} t@i¬(φ[R := R− (i, j)]) t ∀R−.¬{i}) ⇒

(./ n R− φ[R := R− (i, j)]))

31 (∃R.φ)[R := R+ (i, j)] ({i} ⇒
@j(φ[R := R+ (i, j)]) t ∃R.φ[R := R+ (i, j)])
u(¬{i} ⇒ ∃R.(φ[R := R+ (i, j)]))

32 (∃R−.φ)[R := R+ (i, j)] ({j} ⇒
@i(φ[R := R+ (i, j)]) t ∃R−.φ[R := R+ (i, j)])
u(¬{j} ⇒ ∃R−.(φ[R := R+ (i, j)]))

39 (∀R.φ)[R := R+ (i, j)] ({i} ⇒
∀R.(φ[R := R+ (i, j)]) u@j(φ[R := R+ (i, j)]))
u(¬{i} ⇒ ∀R.(φ[R := R+ (i, j)]))

40 (∀R−.φ)[R := R+ (i, j)] ({j} ⇒
∀R−.(φ[R := R+ (i, j)]) u@i(φ[R := R+ (i, j)]))
u(¬{j} ⇒ ∀R−.(φ[R := R+ (i, j)]))

We have proven that the most expressive logics that we considered, namely
those containing at least O and one of U or @, are closed under substitutions
even though they may incur a blow-up in the size of the formulae during the
translation phase.

6.3 Increased DLs

In this section, a family of Description Logics which are strictly less expres-
sive than their extension with substitutions are introduced. In addition to the
purely technical interest of sorting logics depending on whether or not they
have the property of being closed under substitutions, studying less expressive
logics is meaningful as the more expressive logics are known to have a greater
complexity[65]. Moreover, the translation removing substitutions is itself expo-
nential which makes the problem clearly intractable.

The first Description Logic that is considered is ALC. ALC does not contain
O nor U or @, thus ABoxes and TBoxes need to be used. Yet, we still require
that no substitution appears in them.
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Theorem 6.3.1. ALC is not closed under substitutions.

Intuitively, ALC is not strong enough to express whether a node has several
successors or only one, and consequently to predict whether the deletion of an
arc will leave this node with a successor or not.

More formally, to prove that the addition of substitutions to ALC strictly
increases its expressiveness, we use a result from [24]. They prove that ALC
concepts, as well as TBoxes and ABoxes, are stable under bisimilar interpreta-
tions

Theorem 6.3.2. For every concept C of the logic ALC, for every two inter-
pretations I1 and I2, for every bisimulation relation Z between I1 and I2, if an
element x1 of I1 satisfies C and there is an element x2 of I2 such that x1Zx2,
then x2 satisfies C. The same can be said for the satisfiability of ABox and
TBox assertions.

Definition 6.3.1 (Bisimulation). Given a signature (C, R, I) and two inter-
pretations I and J , a non-empty binary relation Z ⊆ (∆I ×∆J ) is a bisimu-
lation if it satisfies:

(ALC1) d1Zd2 =⇒ ∀A ∈ C, (d1 ∈ AI ⇔ d2 ∈ AJ )

(ALC2) ∀R ∈ R, (d1Zd2 ∧ d1R
Ie1 =⇒ ∃e2.d2R

J e2 ∧ e1Ze2)

(ALC3) ∀R ∈ R, (d1Zd2 ∧ d2R
J e2 =⇒ ∃e1.d1R

Ie1 ∧ e1Ze2)

(ALC4) ∀i ∈ I, iIZiJ

The idea of the proof of Theorem 6.3.1 consists in building an interpretation
I1 such that an ALC-concept φ containing substitutions holds and I2 bisimilar
to M1 where φ does not hold, thus proving that ALCσ is not as expressive as
ALC. Figure 6.5 depicts such interpretations for the concept name C[C := C−i].

Let’s check that M1 and M2 are bisimilar. As the only concept in C is A
and R is empty, we verify the four axioms given in Definition 6.3.1:

(ALC1) d1Zd3  (d1 ∈ CI1 ⇔ d3 ∈ CI2)X
d2Zd3  (d2 ∈ CI1 ⇔ d3 ∈ CI2)X

(ALC2) R = ∅ X.
(ALC3) R = ∅ X.
(ALC4) iI1ZiI2X

So I1 and I2 are bisimilar.
However, after the removal of the individual i from the concept C, the con-

cept C still holds in d2 and does not hold in d3. This shows that there is no
equivalent concept to C[C := C− i] in ALC, which is enough to show that ALC
is not closed under substitution.

One could wonder whether it is possible to find a way, using a TBox and an
ABox to find something that would be equivalent to C[C := C − i] in ALC. As
the signature is ({C}, ∅, {i}), there are only few choices available as individual
assertions or concept inclusions.
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M1 M2

d1 : i d2 d3 : i

Figure 6.5: On the left, M1 is a model of C[C := C − i]. On the right, M2

is not. Nodes satisfying C are drawn in red. Plain arrows represent R, dashed
arrows represent Z. The signature is ({C}, {R}, {i}).

What one would like to express is whether or not i is the only node satisfying
C. The only possible individual assertions deal with the individual i. ALC does
not allow to say that i is the only node satisfying C that way. On the other
hand, the only way to express that the only node that satisfies C is i would
be to use nominals. Thus, there is no way to build an ABox nor a TBox that
would provide an equivalent for C[C := C − i].

In [24], one may find other definitions of bisimulations for various Description
Logics used to show that DL-concepts are stable. Below, we recall briefly these
definitions. The names of the axioms indicate which logic they apply to. For
instance, if one wants to deal with ALCUI, one has to use axioms (ALC1),
(ALC2), (ALC3), (ALC4), (U1), (U2), (I1) and (I2) to define bisimulations.

Definition 6.3.2. The definition of bisimulation can be extended for more ex-
pressive logics by adding the following axioms:

(U1) ∀d ∈ ∆I ,∃d′ ∈ ∆J .dZd′

(U2) ∀d′ ∈ ∆J ,∃d ∈ ∆J .dZd′

(I1) ∀R ∈ R, (d1Zd2 ∧ d1R
−Ie1 =⇒ ∃e2.d2R

−J e2 ∧ e1Ze2)

(I2) ∀R ∈ R, (d1Zd2 ∧ d2R
−J e2 =⇒ ∃e1.d1R

−J e1 ∧ e1Ze2)

(O) ∀i ∈ I, d1Zd2 =⇒ (d1 = iI ⇔ d2 = iJ )

(Q) ∀R ∈ R, (d1Zd2 =⇒ Z is a bijection between the R-successors of d1 and
those of d2).

(IQ) ∀R ∈ R, (d1Zd2 =⇒ Z is a bijection between the R−-successors of d1

and those of d2).

(Self) ∀R ∈ R, d1Zd2 =⇒ (d1R
Id1 ⇔ d2R

J d2).

One could see that there is no rule for @. Actually, it is easy to prove that
(ALC4) is enough for @.
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d1 : i

d2 : j d3 d5 : j

d4 : i

Figure 6.6: On the left, I1 is a model of (∃R.φ)[R := R − (i, j)]. On the right,
I2 is not. Nodes satisfying φ are drawn in red.

Let us provide another example in Figure 6.6 for the concept (∃R.φ)[R :=
R− (i, j)]. Let us prove thatM1 andM2 are bisimilar. As the only concept in
C is C and the only role in R is R, we check:

• (ALC1)

– d1Zd4  (d1 ∈ CI ⇔ d4 ∈ CJ )X

– d2Zd5  (d2 ∈ CI ⇔ d5 ∈ CJ )X

– d3Zd5  (d3 ∈ CI ⇔ d5 ∈ CJ )X

• (ALC2)

– d1Zd4 ∧ d1R
Id2  d4R

J d5 ∧ d2Zd5X

– d1Zd4 ∧ d1R
Id3  d4R

J d5 ∧ d3Zd5X

• (ALC3)

– d1Zd4 ∧ d4R
J d5  d1R

Id2 ∧ d2Zd5X

• (ALC4)

– iIZiJX

– jIZjJX

This proves that there is no equivalent concept to (∃R.C)[R := R − (i, j)]
is ALC. Yet, it doesn’t prove that it is not possible to find a combination of
ABoxes and TBoxes that would be equivalent to that concept. Intuitively, one
has to test whether i has j as only neighbour labeled C or not. Once more,
individual assertions can only add facts about i and j and not other elements
and it is not possible to say that j is the only neighbor of i labeled with C
without nominals or counting quantifiers. The same way, concept inclusions do
not provide a way to express this property.
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With the same example, we can prove thatALCU , ALCSelf , ALCI, ALCUI,
ALCUSelf , ALCISelf and ALCUISelf are extended when substitutions are
allowed.

• (U1)

– d1Zd4X

– d2Zd5X

– d3Zd5X

• (U2)

– d1Zd4X

– d2Zd5X

• (I1)

– d2Zd5 ∧ d2R
−Id1  d5R

−J d4 ∧ d1Zd4X

– d3Zd5 ∧ d3R
−Id1  d5R

−J d4 ∧ d1Zd4X

• (I2)

– d2Zd5 ∧ d5R
−J d4  d2R

−Id1 ∧ d1Zd4X

• (Self)

– d1Zd4  (d1R
Id1 ⇔ d4R

J d4)X

– d2Zd5  (d2R
Id2 ⇔ d5R

J d5)X

– d3Zd5  (d3R
Id3 ⇔ d5R

J d5)X

On the other hand, if Q was part of the logic, this would not be a bisimu-
lation. Indeed, d1Zd4 but Z is not a bijection between the R-neighbours of d1

and those of d4.
The example of Figure 6.5 allows to prove that the DLs given in the following

corollary are not closed under substitutions. The reader may verify that the
axioms of bisimulations corresponding to these logics are satisfed by Z.

• (U1)

– d1Zd3X

– d2Zd3X

• (U2)

– d1Zd3X

• (I1)

– R = ∅ thus ∀R ∈ R.(dZd′ ∧ dR−Ie⇒ ∃e′.d′R−J e′ ∧ eZe′X

109



• (I2)

– R = ∅ thus ∀R ∈ R.(dZd′ ∧ d′R−J e′ ⇒ ∃e.dR−Ie ∧ eZe′X

• (Q)

– R = ∅ thus ∀R ∈ R.(dZd′ ⇒ Z is a bijection between the R-
successors of d and those of d′X

• (IQ)

– R = ∅ thus ∀R ∈ R.(dZd′ ⇒ Z is a bijection between the R−-
successors of d and those of d′X

• (Self)

– R = ∅ thus ∀R ∈ R.dZd′  (dRId⇔ d′RJ d′)X

Corollary 6.3.1. The logics ALCU , ALCSelf , ALCI, ALCQ, ALCUI, ALCUSelf ,
ALCQU , ALCISelf , ALCQSelf , ALCQUI, ALCQISelf , ALCQUSelf ,
ALCUISelf and ALCQUISelf are not closed under substitutions.

Another question is whether a limiting a logic to ABoxes and TBoxes make
it closed under substitution. The answer is no. Let us consider the concept
inclusion C ⊆ D where both C and D are concept names. Let us now consider
(C ⊆ D)[C := C − i]. Intuitively, it is satisfied if C ⊆ D or i is the only node
∈ C\D. The only way to speak about i without using nominals is through
individual assertions but they do not allow to express that it is the only one in
a concept. Let us now consider (i : C)[C := C + j]. It is satisfied if i : C or
i = j. But it is not possible to express it without using a disjunction of ABoxes
and TBoxes which is not possible in standard ALC or its extensions lacking O.

If a DL contains O, the example of Figure 6.6 and Figure 6.5 no longer are
counter-examples because Z is not a bisimulation anymore. Indeed, for instance
in Figure 6.5, d2Zd3 but d3 = iJ whereas d2 6= iI contradicting (O).

6.4 The grey area

The technique that was used in the previous section cannot be applied directly
in the case of the logic ALCO. Indeed, we can show the following result.

Theorem 6.4.1. ALCOσ concepts are stable under ALCO-bisimulations.

Proof. The idea is to work by induction on the concept constructors. We actu-
ally work with the more expressive ALCOIQSelf .

• The concepts ofALCOIQSelf are know to be invariant forALCOIQSelf -
bisimulations.

• If the concept is either ⊥σ, {i}σ, cσ or (∃R.Self)σ, using the translations
of Section 6.2, one can obtain an equivalent concept in ALCOIQSelf .
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• If the concept is (¬φ)σ, (φtψ)σ and (φuψ)σ, this is proved by induction

• If y ∈ ((./ nRφ)[C := C ± i])I then, as the valuation of C does not affect
the valuation of R, yI ∈ {z|{w|(z, w) ∈ RI u w ∈ φ[C := C ± i]I} ./ n}.
By induction, for each w such that w ∈ φ[C := C ± i]I are there exists
w′ such that w′ ∈ φ[C := C ± i]J and wZw′. Due to (Q), there is a
bijection between the w and the w′ and the w′ are R-neighbors of y′.
Thus y′ ∈ ((./ nRφ)[C := C ± i])J .

• The same can be done the other way and for (./ nR−φ)[C := C ± i],
(./ nR−φ)[C := ψ], (./ nRφ)[R′ := R′ ± (i, j)], (./ nR−φ)[R′ := R′ ±
(i, j)], (./ nRφ)[R′ := Q], (./ nR−φ)[R′ := Q], (./ nRφ)[R′ := (i, j)] and
(./ nR−φ)[R′ := (i, j)].

• If y ∈ ((./ nRφ)[R := R + (i, j)])I then yI ∈ ({z|{w|(z, w) ∈ RI u w ∈
φ[R := R + (i, j)]I} ∪ {i|jI ∈ φ[R := R + (i, j)]I}) ./ n}. There are two
cases:

– If y 6= iI or jI 6∈ (φ[R := R + (i, j)])I or (iI , jI) ∈ RI then {i|jI ∈
φ[R := R+(i, j)]I} is either empty or a subset of {w|(z, w) ∈ RIuw ∈
φ[R := R+ (i, j)]I}. In that case, due to rule (Q) and the induction
hypothesis, there is a bijection between the R-neighbors in I and J
and the one satisfying φ[R := R + (i, j)] are thus the same number.
Hence y′ ∈ ((./ nRφ)[R := R+ (i, j)])J

– If not, the reasoning can be applied to all the R-neighbors satisfying
φ[R := R + (i, j)] of y and, due to rule (O) there is exactly one new
neighbor added by the substitution on each side. Thus y′ ∈ ((./
nRφ)[R := R+ (i, j)])J .

• The same can be done the other way and for (./ nR−φ)[R := R+ (i, j)].

• If y ∈ ((./ nRφ)[R := R − (i, j)])I then y ∈ ({z|{w|(z, w) ∈ RI u w ∈
φ[R := R − (i, j)]I}\{i|jI ∈ φ[R := R − (i, j)]I}) ./ n}. There are two
cases:

– If y 6= iI or jI 6∈ (φ[R := R − (i, j)])I or (iI , j〉) 6∈ RI then {i|jI ∈
φ[R := R − (i, j)]I} is either empty or disjoint from {w|(z, w) ∈
RI uw ∈ φ[R := R− (i, j)]I}. In that case, due to rule (Q) and the
induction hypothesis, there is a bijection between the R-neighbors in
I and J and the one satisfying φ[R := R − (i, j)] are thus the same
number. Hence y′ ∈ ((./ nRφ)[R := R− (i, j)])J

– If not, the reasoning can be applied to all the R-neighbors satisfying
φ[R := R− (i, j)] of y and, due to rule (O) there is exactly one new
neighbor deleted by the substitution on each side. Thus y′ ∈ ((./
nRφ)[R := R− (i, j)])J .

• The same can be done the other way and for (./ nR−φ)[R := R− (i, j)].
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• If y ∈ ((./ nRφ)[R := Q])I then y ∈ (./ nQφ[R := Q])I . Let w be such
that yQw and w ∈ φ[R := Q]I then there exists w′ such that wZw′ and
w′ ∈ φ[R := Q]J . As there is a bijection between the w’s and the w′’s,
y′ ∈ ((./ nRφ)[R := Q])I .

• The same can be done the other way round and for ((./ nR−φ)[R := Q])I

• If y ∈ ((./ nRφ)[R := (i, j)])I then either:

– y = iI and jI ∈ φ[R := (i, j)]I and then y′ = iJ and jJ ∈ φ[R :=
(i, j)]J and thus y′ ∈ ((./ nRφ)[R := (i, j)])J

– or, y 6= iI or jI /∈ φ[R := (i, j)]I and then y′ 6= iJ or jJ /∈ φ[R :=
(i, j)]J and thus y′ ∈ ((./ nRφ)[R := (i, j)])J

• The same can be done the other way round and for ((./ nR−φ)[R :=
(i, j)])I

• If y ∈ ((./ nRφ)[i �in j])I then if y ∈ {z|{w|(z, w) ∈ (RI\{(z, iI)} ∪
{(z, jI)|(z, iI) ∈ RI) u w ∈ φ[i �in j]I} ./ n}. As there is a bijection
between the R-neighbors of y satisfying φ[i �in j] and those of y′, if
iI ∈ φ[i �in j]I then iJ ∈ φ[i �in j]J , and, if jI ∈ φ[i �in j]I

then jJ ∈ φ[i �in j]J , there is a bijection between the elements of
{w|(y, w) ∈ (RI\{(y, iI)}) u w ∈ φ[i �in j]I} and those of {w|(y, w) ∈
(RI\{(y, iI)}) u w ∈ φ[i�in j]I}. Thus y′ ∈ ((./ nRφ)[i�in j])J .

• The same can be done the other way round and for (./ nRφ)[i �out j],
(./ nR−φ)[i�in j] and (./ nR−φ)[i�out j]

• ∃R.φ and ∀R.φ being special cases of (./ nRφ), they can be treated as
previously.

Theorem 6.4.1 could lead us to think that the addition of substitutions to
ALCO does not increase the expressiveness of the logic. This is not true. We
propose below another kind of binary relations that are able to distinguish
between ALCO and ALCOσ.

Definition 6.4.1. Given two interpretations I and J , a rooted-bisimulation
between I and J rooted in (x,x′) is a binary relation Z ⊆ (∆I×∆J ) such that:

(ALC1) d1Zd2 =⇒ ∀C ∈ C, (d1 ∈ CI ⇔ d2 ∈ CJ )

(ALC2) ∀R ∈ R, (d1Zd2 ∧ d1R
Ie1 =⇒ ∃e2.d2R

J e2 ∧ e1Ze2)

(ALC3) ∀R ∈ R, (d1Zd2 ∧ d2R
J e2 =⇒ ∃e1.d1R

Ie1 ∧ e1Ze2)

(rALC4) xZx′

This definition is extended for logics containing ALC the same way as the defi-
nition of bisimulations.
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The only difference with the definition of bisimulation is rule (ALC4) that is
replaced with rule (rALC4). It is easy to see that rooted-bisimulation are more
general than bisimulations. Indeed, any bisimulation is equivalent to the union
of rooted-bisimulations rooted in the nominals.

Definition 6.4.2. A concept C is stable under rooted-bisimulations if, for any
interpretations I, J , any rooted-bisimulation Z between I, J rooted in (x,x′)
and any y reachable from x, there exists y′ such that yZy′ and y ∈ CI ⇔ y′ ∈
CJ .

Theorem 6.4.2. ALCO-concepts are stable under rooted-bisimulations

Before tackling Theorem 6.4.2, we show an useful property.

Theorem 6.4.3. Given two interpretations I and J and a rooted-bisimulation
between I and J rooted in (x,x′) Z, if y is reachable from x then there exists y′

reachable from x′ such that yZy′ and if z′ is reachable from x′ then there exists
z reachable from x such that zZz′.

Proof. This is shown by induction on the length of the path from x to y (resp.
from x′ to z′).

From rule (rALC4), xZx′ thus the property is valid for paths of length 0.
Let’s assume the property is valid for paths of length N. Let’s pick y (resp.

z′) reachable such that the shortest path between x and y (resp. x′ and z′) if of
length N + 1, that is there exists w (resp. w′) such that there is a path of length
N between x and w (resp. x′ and w′). Due to the induction hypothesis, there
exists v′ (resp. v) reachable from x′ (resp. x) such that wZv′ (resp. vZw′).
But, thanks to (ALC2) (resp. (ALC3) ), that means that there exists y′ (resp.
z) such that v′RJ y′ (resp. vRIw) and yZy′ (resp. zZz′). Hence the property
is valid for paths of length N + 1.

Let us now prove Theorem 6.4.2.

Proof. Theorem 6.4.3 proves the existence, for each y reachable from r of y′

reachable from r′ such that yZy′.
We will do an induction on the constructors of ALCO-concepts.

⊥ As no element belongs to ⊥I or ⊥J , y ∈ ⊥I ⇔ y′ ∈ ⊥J

c This is given by the rule (ALC1)

¬ C By induction, if y ∈ CI ⇔ y′ ∈ CJ then y ∈ (¬C)I ⇔ y′ ∈ (¬C)J

C u D By induction, if y ∈ CI ⇔ y′ ∈ CJ and y ∈ DI ⇔ y′ ∈ DJ then
y ∈ (C u D)I ⇔ y′ ∈ (C u D)J

C t D By induction, if y ∈ CI ⇔ y′ ∈ CJ and y ∈ DI ⇔ y′ ∈ DJ then
y ∈ (C t D)I ⇔ y′ ∈ (C t D)J
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∃R.C If y ∈ (∃R.C)I then there exists z such that y RI z and z ∈ CI . From
(ALC2), there exists z′ such that y′ RJ z′ and zZz′. Then, by induction,
z′ ∈ CJ and thus y′ ∈ (∃R.C)J . The same can be done the other way
using (ALC3).

∀R.C If y ∈ (∀R.C)I then for all z such that y RI z, z ∈ CI . From (ALC2),
there exists z′ such that y′ RJ z′ and zZz′. Then, by induction, z′ ∈ CJ
and thus y′ ∈ (∀R.C)J . The same can be done the other way using
(ALC3).

o This is given by the rule O

∃R.Self If y ∈ (∃R.Self)I then yRIy. From rule (Self), y′RJ y′ thus y′ ∈
(∃R.Self)J

∃R−.C If y ∈ (∃R.C)I then there exists z such that z RI y and z ∈ CI . From
rule (I1), there exists z′ such that y′ RJ z′ and zZz′. Then, by induction,
z′ ∈ CJ and thus y′ ∈ (∃R.C)J . The same can be done the other way
using (I2).

∀R−.C If y ∈ (∀R.C)I then for all z such that z RI y, z ∈ CI . From (I1),
there exists z′ such that y′ RJ z′ and zZz′. Then, by induction, z′ ∈ CJ
and thus y′ ∈ (∀R.C)J . The same can be done the other way using (I2).

(./ nRC) If y ∈ (./ nRC)I then the cardinality of {z|yRIz u z ∈ CI} ./ n.
From (Q), there exist exactly as many z′ such that y′ RJ z′ and zZz′.
Then, by induction, z′ ∈ CJ and thus y′ ∈ (./ nRC)J . The same can be
done the other way.

(./ nR−C) If y ∈ (./ nR−C)I then the cardinality of {z|zRIy u z ∈ CI} ./ n.
From (IQ), there exist exactly as many z′ such that z′ RJ y′ and zZz′.
Then, by induction, z′ ∈ CJ and thus y′ ∈ (./ nR−C)J . The same can
be done the other way.

Theorem 6.4.4. ALCOσ-concepts are not stable under rooted-bisimulations.

Figure 6.7 provides a counter-example illustrating Theorem 6.4.4.
Let us prove that Z in this counter-example is indeed a rooted-bismulation

rooted in (d1, d3).

• (ALC1)

– d1Zd3 =⇒ (d1 ∈ CI1 ⇔ d3 ∈ CI2)X as C = {C}.

• (ALC2)

– As R = {R} and RI1 = ∅, d1Zd3∧d1R
I1e =⇒ ∃e′.d3R

I2e′∧eZe′X

• (ALC3)
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M1 M2

d1 : id2 : j d3 : i d4 : j

Figure 6.7: On the left, I1 is a model of (∀R.C)[R := R+ (i, j)]. On the right,
I2 is not. Nodes satisfying C are drawn in red. Plain arrows represent R.
Dashed arrows represent Z. The signature is {{C}, {R}, {i, j}}. M1 and M2

are (d1, d3)-rooted-bisimilar.

– As R = {R} and RI2 = ∅, d1Zd3 ∧ d3R
I2e′ =⇒ ∃e.d1R

I1e∧ eZe′X

• (rALC4)

– d1Zd3X

This result can be extended to the logics ALCOI, ALCOQ, ALCOSelf ,
ALCOIQ, ALCOISelf and ALCOIQSelf by adding the exact same condi-
tions from Definition 6.3.2. The exact same example of Figure 6.7 can be used
to prove these logics version of Theorem 6.4.4

• (I1)

– As R = {R} and RI1 = ∅, d1Zd3 ∧ d1R
−I1e =⇒ ∃e′.d3R

−I2e′ ∧
eZe′X

• (I2)

– As R = {R} and RI2 = ∅, d1Zd3∧d3R
−I2e′ =⇒ ∃e.d1R

I1e∧eZe′X

• (Q)

– As R = {R} and RI1 = RI2 = ∅, d1Zd3 =⇒ Z is a bijection
between the R-successors of d1 and those of d3X

• (IQ)

– As R = {R} and RI1 = RI2 = ∅, d1Zd3 =⇒ Z is a bijection
between the R−-successors of d1 and those of d3X

• (Self)

– As R = {R} and RI1 = RI2 = ∅, d1Zd3 ⇒ (d1R
I1d1 ⇔ d3R

I2d3)X
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6.5 Application to the hospital

Let us now illustrate how a program is proven correct in one of the Description
Logics presented so far. The logic ALCQUIO is chosen as it is one of the
smallest of those that we have proven closed under substitutions that allows us
to express the properties we need.

Let us first give a look at the properties that were stated in Section 3.3 and
check that they can be expressed. The first property is that “each member of
the medical staff is either a nurse or a physician but not both”. This can be
translated to ∀U.(MS⇒ ((NU u ¬ PH)t(¬ NU u PH))). The second property
is that “all patients and all medical staffers are persons”. This is equivalent to
∀U.(MS tPA ⇒PE). The third property states that each person that can write
in a folder can also read it. This property cannot be expressed in ALCQUIO or
any other description logic without role inclusion. It is thus dropped for now.
The fourth property has the same problem. It states that “each person that can
read a folder about a patient treats that patient”. The fifth property says that
“Only medical staffers can treat persons and only patients can be treated”. It
can be translated as ∀U.(∃treats.> ⇒MS) u ∀U.(∃treats−.> ⇒PA). Finally, the
sixth property is “Every patient has exactly one referent physician” that can be
written as ∀U.(PA ⇒ (= 1ref phys>)).

In this example, illustrated in Figure 6.8, the fourth transformation that
deletes a physician and re-affects all his patients to another physician in the
same department is used. For the sake of simplicity none of the precondi-
tion, postcondition and invariant feature all the properties that are required in
Section 3.3. The statement is the same as the one in Figure 4.3 but the precon-
dition and postcondition are different. The chosen precondition is ∃U.({ph1} u
PHu¬{ph2})u∃U.({ph2}uMS)u∀U.(∃ treats. > ⇒MS) that can be read as ph1

is an existing physician, ph2 is a member of the medical staff and only members
of the medical staff can treat people. The chosen postcondition is ∃U.({ph1} u¬
PH) u∀U.(∃ treats.> ⇒ MS) that means that ph1 no longer is a physician and
that only members of the medical staff can treat people. The invariants for the
loops are inv1 and inv2. inv2 is set to be equal to the postcondition while inv1

is ∃U.({ph1} u ¬PHu¬{ph2}) u ∃U.({ph2}uMS) u ∀U.(∃ treats.> ⇒MS).
One also has to translate the conditions into ALCQUIO. The condition of

the “if” statement is ∃d.((ph1, d) :works in ∧(ph2, d) :works in). ALCQUIO
does not allow variables. Using a quantifier, one can still express this condition
as c0 ≡ ∃U.(∃works in−.(ph1) u ∃works in−.(ph2)). Using the same inversion
of the edge, the condition of the first loop ∃p.(ph1, p) : treats can be written
as c1 ≡ ∃U.(∃treats−.ph1). Finally, the last condition ∃p.(p,ph1) : ref phys
becomes c2 ≡ ∃U.(∃ref phys.ph1).

Let us now check that the specification (Pre,s,Post) is correct. The correct-
ness formula is (Pre⇒ wp(s, Post))uvc(s, Post). As s is of the form if c0 then
s0, wp(s, Post) = c0 ⇒ wp(s0, Post) and vc(s, Post) = vc(s0, Post). Thus the
correctness formula is (Preu c0 ⇒ wp(s0, Post))uvc(s0, Post). In turn, s0 is of
the form PH:= PH- ph1; s1 and thus wp(s0, Post) = wp(s1, Post)[PH:= PH-
ph1] and vc(s0, Post) = vc(s1, Post) thus the correctness formula is (Preuc0 ⇒
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Pre: ∃U.({ph1} uPHu¬{ph2}) u ∃U.({ph2}uMS) u ∀U.(∃treats.> ⇒MS)
if ∃U.(∃works in−.{ph1}) u ∃U.(∃works in−.{ph2}) then

PH := PH - ph1;
while ∃U.(∃treats−.{ph1}) do

select p with ∃U.({p} u treats−.{ph1});
treats := treats - (ph1,p);
treats := treats + (ph2,p);

while ∃U.(∃ref phys.{ph1}) do
select p with ∃U.({p} u ∃ref phys.{ph1});
ref phys := ref phys - (p,ph1);
ref phys := ref phys + (p,ph2);

MS := MS- ph1;
Post: ∃U.({ph1} u ¬PH) u ∀U.(∃treats.> ⇒MS)

Figure 6.8: An example using the fourth transformation

wp(s1, Post)[PH:= PH- ph1]) u vc(s1, Post). Then s1 = s′1; s2 where s′1 is of
the form while c1 do s10. Thus wp(s1, Post) = inv1 and the correctness formula
becomes (Pre u c0 ⇒ inv1[PH:= PH- ph1]) u vc(s1, Post).

Let us now focus on Pre u c0 ⇒ inv1[PH:= PH- ph1]. From the rule 15
introduced in Section 6.2, inv1[PH:= PH- ph1] = (∃U.({ph1} u¬PHu¬{ph2}))
[PH:= PH- ph1]u(∃U.({ph2} uMS))[PH:= PH- ph1]u(∀U.(∃ treats.> ⇒MS))
[PH:= PH- ph1].

Let us now work with (∀U.(∃ treats.> ⇒MS))[PH:= PH- ph1]. From rule
90, its is equal to ∀U.(∃ treats.> ⇒MS)[PH:= PH- ph1]. One can now apply
rule 13 and 14 to get ∀U.((∃ treats.>)[PH:= PH- ph1]⇒MS[PH:= PH- ph1].
Applying the rules 68 and then 1 to the first part and 4 to the second part yields
∀U.(∃ treats.> ⇒MS).

Meanwhile, by applying rule 68, (∃U.({ph1} u ¬PH¬{ph2}))[PH:= PH-
ph1] = ∃U.(({ph1} u¬PHu¬{ph2}))[PH:= PH- ph1]. Let us now apply rule 15
to get ∃U.(({ph1}[PH:= PH- ph1]u(¬ PH)[PH:= PH- ph1]u(¬{ph2})[PH:=
PH- ph1])). Then, by applying the rules 2, 10 and 13, one obtains ∃U.({ph1}u
(¬ PHt{ph1})u¬{ph2}). One can now observe that this is equivalent to ∃U.({
ph1}u¬{ph2}). The same can be done with ∃U.({ph2}uMS) to prove that it is
left unchanged by the substitution. Thus inv1[PH:= PH- ph1] = ∃U.({ph1} u
¬{ph2}) u ∃U.({ph2}uMS)u ∀U.(∃treats.> ⇒MS). This is trivially implied by
Pre = ∃U.({ph1} uPHu{ph2}) u ∃U.({ph2}uMS) u ∀U.(∃treats.> ⇒MS).

One thus has to prove that vc(s1, Post) is valid. As vc(s1, Post) = (inv1 u
c1 ⇒ wp(s10, inv1))u (inv1 u¬c1 ⇒ wp(s2, Post))u vc(s10, inv1)u vc(s2, Post),
let us split the study of the validity of vc(s1, Post) in four parts.

Let us start with vc(s10, inv1). As s10 = s11; s12; s13, vc(s10, inv1) =
vc(s11, wp(s12; s13, inv1))uvc(s12, wp(s13, inv1))uvc(s13, inv1). But all of these
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vcs are equal to > and thus vc(s10, inv1) is trivially valid.
Let us now study inv1uc1 ⇒ wp(s10, inv1). As s10 = s11; s12; s13, wp(s10, inv1) =

wp(s11, wp(s12; s13, inv1)) = ∀p.(∃U.({p}u∃treats−.{ph1})⇒ wp(s12; s13, inv1).
Then, as both s12 and s13 are atomic transformations, wp(s12; s13, inv1) =
inv1[treats := treats + (ph2, p)][treats := treats − (ph1, p)]. Thus, one
has to prove that ∀p.(inv1 ∧ c1 ∧ ∃U.({p} u ∃treats−.{ph1}) ⇒ inv1[treats :=
treats + (ph2, p)][treats := treats − (ph1, p)].

Let us compute inv1[treats := treats + (ph2, p)][treats := treats − (ph1, p)].
Once more, it is straightforward that ∃U.({ph1}u¬PHu¬{ph2})u∃U.({ph2}uMS)
is left unmodified by the substitutions. It is alos obviously implied by inv1.

One thus focuses on ∀U.(∃TR.> ⇒MS)[treats := treats + (ph2, p)][treats :=
treats−(ph1, p)]. It is easily proved that it is equivalent to ∀U.((∃TR.>)[treats :=
treats + (ph2, p)][treats := treats − (ph1, p)] ⇒MS). By applying rule 31,
and then rule 1, one gets that (∃TR.>)[treats := treats + (ph2, p)][treats :=
treats − (ph1, p)] is equivalent to (({ph2} ⇒ ∃U.{p} t ∃treats.>) u (¬{ph2} ⇒
∃treats.>)[treats := treats −(ph1, p)]. Then, by applying rule 33, one can prove
that it is equivalent to ({ph2} ⇒ ∃U.{p}t(({ph1} ⇒ ∃treats.¬{p})∧(¬{ph1} ⇒
∃treats.>))) u (¬{ph2} ⇒ (({ph1} ⇒ ∃treats.¬{p}) ∧ (¬{ph1} ⇒ ∃treats.>))).

In order to prove that this is implied by inv1uc1u∃U.({p}u∃treats−.{ph1},
one has to distinguish four cases:

• {ph1}u{ph2} is satisfied: This is made impossible by ∃U.({ph1}u¬{ph2}).

• {ph1} u ¬{ph2} is satisfied: Then (∀U.∃treats.> ⇒MS)⇒
(∀U.∃treats.¬{p} ⇒MS) is what has to be proved valid and it obviously
is.

• {ph2} u ¬{ph1} is satisfied: Then ∃U.({ph2}uMS)⇒
({ph2} u ¬{ph1} ⇒MS) is what has to be proved valid and it obviously
is.

• ¬{ph1} u ¬{ph2} is satisfied: Then (∀U.∃treats.> ⇒MS)⇒
(∀U.∃treats.> ⇒MS) is what has to be proved valid and it obviously is.

Thus inv1 u c1 ⇒ wp(s10, inv1) is valid.
Let us now study inv1 u ¬c1 ⇒ wp(s2, Post). As s2 is of the form while c2

do, wp(s2, Post) = inv2. As inv1 ⇒ inv2, this is valid.
One now focuses on vc(s2, Post). It is equal to (inv2uc2 ⇒ wp(s20; s21; s22, inv2))u

(inv2 u ¬c2 ⇒ wp(s3, Post)) u vc(s20; s21; s22, Post). As previously, as s20 =
select p with ∃U.({p}u∃ref phys.{ph1}), s21 = ref phys := ref phys −(p,ph1)
and s22 = ref phys := ref phys + (p,ph2), vc(s20; s21; s22, Post) = >.

Let us focus first on the validity of inv2 u c2 ⇒ wp(s20; s21; s22, inv2). As
s20 = select p with ∃U.({p} u ∃ref phys.{ph1}), s21 = ref phys := ref phys −
(p,ph1) and s22 = ref phys := ref phys + (p,ph2), wp(s20; s21; s22, inv2) =
∀p.∃U.({p}u∃ref phys.{ph1})⇒ inv2[ref phys := ref phys + (p,ph1)][ref phys :=
ref phys − (p,ph2)]. As ref phys never occurs in inv2, it is left unmodified
by the substitutions. Thus, one has to prove that ∀p.(inv2 u c2 u ∃U.({p} u
∃ref phys.{ph1} ⇒ inv2) is valid. It is obviously the case as inv2 ⇒ inv2.

118



Finally, let us study inv2 u ¬c2 ⇒ wp(s3, Post). As s3 =MS :=MS − ph1,
wp(s3, Post) = Post[MS := MS−ph1]. As does not occur in Post, wp(s3, Post) =
Post. Then, as inv2 = Post, inv2 u ¬c2 ⇒ wp(s3, Post) is obviously valid.

6.6 Conclusion

This chapter dealt with Description Logics and how one could use them in the
graph tranformation framework that we have heretofore introduced. As Descrip-
tion Logics have several key arguments justifying their use, they were a prime
candidate as a logic used to prove the correctness of graph transformations.
Nevertheless, several of their shortcomings were pointed out.

The least expressive logics considered, ALC and its extensions without nom-
inals and some way to express properties of remote nodes, despite having very
low complexity are not closed under substitutions and thus require the definition
of alternate algorithm to prove the correctness of graph transformation.

The most expressive logics, ALCOU , ALCO@ and their extensions are closed
under substitutions but the rewriting system generates an exponential blow-up
in the size of the formulae that is highly detrimental.

Nonetheless, there exists several Description Logics that we didn’t consider.
For instance, ALCOIQbr, defined in [1], allows for more complex roles. Due to
these, it is possible to get rid of substitutions without the exponential blow-up
on the size of the formulae which makes it a better fit.
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Chapter 7

Using a logic with
reachability: C2PDL

We previously introduced the description logics as a possible choice as logics used
in order to transform graphs. Nevertheless, these logics have some shortcomings.
In particular, one may want to use reachability conditions that are impossible
to express in Description Logics or, for that matter, first-order logic. In order
to tackle that kind of properties, we use a logic that is much closer to dynamic
logics. This logic was used in [14].

Using dynamic logics makes sense. Indeed, the models of dynamic logics are
graphs and thinking about programs is usual in dynamic logics. To be more
precise, in dynamic logics, models often represent executions where nodes are
the various states of the data and edges represent the execution of programs.
Nonetheless, we do not use dynamic logics that way but as a formal system to
describe graphs. That is our edges are actual edges and programs are used to
modify the models.

After formally introducing the syntax of the logic, we prove that it is closed
under substitutions. We also prove that it is decidable. Finally, we introduce
restrictions on the rules so that it is possible to express the applicability condi-
tion.

7.1 Syntax

In this chapter, we introduce C2PDL , a logic that we introduce to define
pre- and postconditions and to compute the weakest precondition of a speci-
fication. It is a mix of Converse Propositional Dynamic Logic [27] and Com-
binatory Propositional Dynamic Logic [54], both commonly known as CPDL.
C2PDL contains elements of Propositional Dynamic Logic, that allows one to
define complex role constructors, and Hybrid Logic, which allows one to use
the power of nominals. C2PDL further extends the CPDLs in two ways: it
splits the universe into elements that are part of the model notwithstanding
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the substitutions and elements that may be created by an action or that have
been deleted; it also extends the notion of universal role to “total” roles over
subsets of the universe in order to be able to deal with these modifications of
the universe.

Definition 7.1.1 (Syntax of C2PDL ). Given three countably infinite and pair-
wise disjoint alphabets Σ, the set of names, Φ0, the set of atomic propositions,
Π0, the set of atomic programs, the language of C2PDL is composed of formu-
las and programs. We partition the set of names Σ into two countably infinite
alphabets Σ1 and Σ2 such that Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = ∅. Formulas φ and
programs α are defined as:
φ := i | φ0 | ¬φ | φ ∨ φ | 〈α〉φ
α := α0 | νS | α;α | α ∪ α | α∗ | α− | φ?

where i ∈ Σ, φ0 ∈ Φ0, α0 ∈ Π0 and S ⊆ Σ.
We denote by Π the set of programs and by Φ the set of formulas. As usual,

φ∧ψ stands for ¬(¬φ∨¬ψ) and [α]φ stands for ¬(〈α〉¬φ). We also write simply
ν instead of νΣ.

For now, the splitting of Σ seems artificial. It is actually grounded in the
use we want to make of the logic. Roughly speaking, Σ1 stands for the names
that are used in “the” current model whereas Σ2 stands for the names that may
be used in the future (or have been used in the past but do not participate to
the current model).

Definition 7.1.2 (Model). A model is a tuple M = (M,R,χ, V ) where M
is a set called the universe, χ : Σ → M is a surjective mapping such that
χ(ΣE) ∩ χ(ΣO) = ∅, R : Π → P(M2) and V : Φ → P(M) are mappings such
that:

• For each α0 ∈ Π0, R(α0) ∈ P(χ(ΣE)2)

• For each i ∈ Σ, V (i) = {χ(i)}

• R(νS) = χ(S)2 for S ⊆ Σ

• For each φ0 ∈ Φ0, V (φ0) ∈ P(χ(ΣE))

• R(α ∪ β) = R(α) ∪R(β)

• V (¬A) = M\V (A)

• R(A?) = {(s, s)|s ∈ V (A)}

• V (A ∨B) = V (A) ∪ V (B)

• R(α−) = {(s, t)|(t, s) ∈ R(α)}

• V (〈α〉A) = {s|∃t ∈M.((s, t) ∈ R(α) ∧ t ∈ V (A))}
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• R(α∗) =
⋃
k<ω R(αk) where αk stands for the sequence α; . . . ;α

of length k

• R(α;β) = {(s, t)|∃v.((s, v) ∈ R(α) ∧ (v, t) ∈ R(β))}

In the following, we write sRαt for (s, t) ∈ R(α)

Fig.7.1 gives an example of models. C2PDL will be used in this work to
label nodes and to express properties of attributed graphs.

From now on, we will only consider graphs over the alphabet (Φ,Π). Given a
graph G = (N,E, φN , φE , s, t) and a formula φ, we say that G |= φ if there exists
n ∈ N such that n |= φ where the universe M is the set of nodes N . R and V
are defined as usual: for φ0 ∈ Φ0 (resp. π0 ∈ Π0), V (φ0) = {x ∈ N |φ0 ∈ LN (x)}
(resp. R(π0) = {(x, y) ∈ N2|∃e ∈ E.s(e) = x ∧ t(e) = y ∧ LE(e) = π0}). R
and V are then extended to non-atomic propositions and programs following
the same rules defined in the models. As usual, a formula φ is satisfiable if there
exists a graph G such that G |= φ and unsatisfiable otherwise and it is valid if
for all models G, G |= φ and invalid otherwise. We denote by S a subset of C
which consists of names such that for each name s ∈ S there is at most one node
n ∈ N such that n |= s. One may remark that all models can be considered as
graphs. The converse is false.

Often, we will write i : C instead of i : {C} to say that node i is labelled
with the formula C.

Attributed graphs where all nodes are named will be called named graphs.
This notion of graphs will be used in the proofs.

Definition 7.1.3 (Named Graph). A named graph G is an attributed graph
such that the set of names S ⊆ C satisfies:

(a)∀s ∈ S.∃n ∈ N.s ∈ LN (n) (b)∀n ∈ N.LN (n) ∩ S 6= ∅
(c)∀n, n′ ∈ N,n 6= n′, LN (n) ∩ LN (n′) ∩ S = ∅

Notation: From (a), (b) and (c), it is obvious that, as each name labels
at least one node, each node is labeled by at least one name and each name
labels at most one node, it is possible to define two functions θ and µ such
that ∀s ∈ S, θ(s) is the node named s and ∀n ∈ N,µ(n) is a name of n. This
allows to define χ and thus named graphs and models are equivalent structures.
We will thus consider from now on that formulae are interpreted over named
graphs. Figure 7.1 shows a model and a counter-model of the formula [ν](1 ⇒
[R−][R−∗]¬1).

Example 7.1.1. Let us now come back to the running example of the Hospital,
presented in Section 3, by illustrating some of the properties.

• “Each member of the medical staff is either a nurse or a physician but not
both”  [ν](MS ⇒ (NU ∧ ¬PH) ∧ (¬MS ∧ PH).

• “All patients and all medical staffers are persons”  [ν]((PA ∨ MS)
⇒PE)
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i : 1¬1 ¬11 i : 1¬1 ¬11
R RR RR R

Figure 7.1: Model and counter-model. All nodes of the left graph satisfy the
formula [ν](1⇒ [R−][R−∗]¬1). This is not the case for the graph given on the
right since i 6|= (1⇒ [R−][R−∗]¬1).

• “Each person that can write in a folder can also read it” cannot be ex-
pressed as it needs to keep track of the person and the file

• “Each person that can read a folder about a patient treats that patien”
cannot be expressed as it needs to keep track of the person and the patient

• “Only medical staffers can treat persons and only patients can be treated”
 [ν]((〈treats〉 PE ⇒ MS) ∧ (〈treats−〉 > ⇒ PA))

• “Every patient has exactly one referent physician” cannot be expressed as
it is not possible to count neighbours

• “Every file references, albeit maybe indirectly, the Hospital Policy file”
 [ν](FI ⇒ 〈reference∗〉HP)

7.2 Closure under substitution

In this section, we start looking at whether C2PDL satisfies the requirements
that have been outlined in Chapter 5. We first prove that C2PDL is closed
under substitution.

First, though, we define well-formed formulae. Indeed, some sequences of
substitutions do not make sense. For instance, φ[new node(i)][C := C+i] would
create a node i after modifying it and thus either the node i didn’t exist when
its label changed, which shouldn’t be possible, or it existed and it doesn’t make
sense to create it anew.

Definition 7.2.1 (Well-formed formula). A formula is said to be well-formed
if it is possible to find a set E ⊆ Σ such that the following inference rules are
respected:

φE∪{i} i /∈ E
φ[add(i)]E

φE−{i} i ∈ E
φ[del(i)]E

φE θ 6= add(i), θ 6= del(i) i, j ∈ E
φ[θ]E

iΣ1 φΣ1
0

φE

(¬φ)E
φE1 φE2

(φ1 ∨ φ2)E
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We now work to prove that well-formed formulae are closed under substitu-
tions.

Theorem 7.2.1. C2PDL is closed under substitutions.

To prove the theorem, we introduce a rewriting system RS. Its goal is to
transform any formula where substitutions occur into a substitution-free for-
mula. It is not always possible to do that in one step. The rewriting system
thus contains rules that remove substitutions completely and other rules that
moves the substitution inward. Each rule is such that the left-hand side and
the right-hand side are equivalent.

Let σ, σ′ ∈ Θ, σ ∈ {[α0 := α], [α0 := (i, j)], [α0 := α0 + (i, j)], [α0 :=
α0 − (i, j)],[new node(i)], [new edge(i, j)], [del edge(i, j)], [i �in j], [i �out j]},
φ0 and φ1 ∈ Φ0, φ0 6= φ1, φ and ψ ∈ Φ, i ∈ Σ and α ∈ Π then RSφ is:

Rule φ1 : >σ  >

Rule φ2 : iσ  i

Rule φ3 : φ0σ
′  φ0

Rule φ4 : φ0[φ1 := φ0 ± i] φ0

Rule φ5 : φ0[φ0 := φ0 + i] φ0 ∨ i

Rule φ6 : φ0[φ0 := φ0 − i] φ0 ∧ ¬i

Rule φ7 : φ0[φ1 := φ] φ0

Rule φ8 : φ0[φ0 := φ] φ

Rule φ9 : φ0[φ1 := i] φ0

Rule φ10 : φ0[φ0 := i] i

Rule φ11 : φ0[del node(i)] φ0 ∧ ¬i

Rule φ12 : (¬φ)σ  ¬(φσ)

Rule φ13 : (φ ∨ ψ)σ  (φσ) ∨ (ψσ)

Rule φ14: (〈α〉φ)σ  〈ασ〉(φσ)

We now introduce rewriting rules allowing to get rid of the substitutions
occurring in programs. Let σ, σ′, σ′′ ∈ Θ, σ′ ∈ {[φ0 := φ], [φ0 := i], [φ0 :=
φ0 ± i], [new node(i)]}, σ′′ /∈ {[new node(i)], [del node(i)]}, S ⊆ Σ, φ0 and
φ1 ∈ Φ0 such that φ0 6= φ1, φ and ψ ∈ Φ, α0, α1 ∈ Π0, α0 6= α1 and α, and
β ∈ Π and i, j ∈ Σ, then RSα is:

Rule α1 : α0σ
′  α0

Rule α2 : α0[α1 := α1 ± (i, j)] α0

125



Rule α3 : α0[α0 := α0 + (i, j)] α0 ∪ (i?; νσ1 ; j?)

Rule α4 : α0[α0 := α0 − (i, j)] (¬i)?;α0 ∪ α0; (¬j)?

Rule α5 : α0[α1 := α] α0

Rule α6 : α0[α0 := α] α

Rule α7 : α0[α1 := (i, j)] α0

Rule α8 : α0[α0 := (i, j)] (i?; νσ1 ; j?)

Rule α9 : α0[del node(i)] (¬i)?;α0; (¬i)?

Rule α10 : α0[new edge(i, j)] α0

Rule α11 : α0[del edge(i, j)] (¬i)?;α0 ∪ α0; (¬j)?

Rule α12 : α0[i�in j] α0; ((¬i)? ∪ i?; ν; j?)

Rule α13 : α0[i�out j] (¬i?; (¬j)? ∪ j?; νΣE ; i?);α0

Rule α14 : νSσ
′′  νS

Rule α15 : νS [new node(i)] νS[new node(i)]

Rule α16 : νS [del node(i)] νS[del node(i)]

Rule α17 : (α;β)σ  (ασ); (βσ)

Rule α18 : (α ∪ β)σ  (ασ) ∪ (βσ)

Rule α19 : (α−)σ  (ασ)−

Rule α20 : (α∗)σ  (ασ)∗

Rule α21 : (φ?)σ  (φσ)?

The rules α15 and α16 introduce substitutions that affect sets and thus forces
the introduction of new rules. Let i ∈ Σ, S1, S2 ⊆ Σ:

Rule S1 : Σ1[add(i)] Σ1 ∪ {i}

Rule S2 : Σ1[del(i)] Σ1 ∩ {i}

Rule S3 : Σ2[add(i)] Σ2 ∩ {i}

Rule S4 : Σ2[del(i)] Σ2 ∪ {i}

Rule S5 : (S1 ∪ S2)σ  S1σ ∪ S2σ

Rule S6 : (S1 ∩ S2)σ  S1σ ∩ S2σ

Rule S7 : S1σ  S1σ
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Rule S8 : {i}σ  {i}

We now prove that these rules are correct. We first prove that they are
correct on atomic roles and concepts.

Lemma 4. Let R be one of rules φ1 - φ11, Ar be the right-hand side and Al be
the left-hand side of R. Given any model M = (M,R, χ, V ), V (Al) = V (Ar).

Proof. The proof uses the modelM′ = (M,R′, χ, V ′) obtained formM by using
the definitions in Section 3.1.

Rule φ1 : As V (>) is independent of the definition of V , R, Σ1 and Σ2, V (>σ) =
V (>).

Rule φ2 : As nodes are never renamed, V (iσ) = V (i).

Rule φ3 : As σ′ does not modify modifies V (φ0), V (φ0σ
′) = V (φ).

Rule φ4 : As only V (φ1) is modified, V (φ0[φ1 := φ1 ± i]) = V (φ0).

Rule φ5 : As V (φ0[φ0 := φ0 + i]) = V ′(φ0) = {χ(i)} ∪ V (φ0), V (φ0[φ0 :=
φ0 + i]) = V (φ0 ∨ i1).

Rule φ6 : As V (φ0[φ0 := φ0 − i]) = V ′(φ0) = V (φ0)\{χ(i)}, V (φ0[φ0 := φ0 −
i]) = V (φ0 ∧ ¬i).

Rule φ7 : As only V (φ1) is modified, V (φ0[φ1 := φ]) = V (φ0).

Rule φ8 : As V (φ0[φ0 := φ]) = V ′(φ0) and V ′(φ0) = V (φ), V (φ0[φ0 := φ]) =
V (φ).

Rule φ9 : As only V (φ1) is modified, V (φ0[φ1 := i]) = V (φ0).

Rule φ10 : As V (φ0[φ0 := i]) = V ′(φ0) = {χ(i)}, V (φ0[φ0 := i]) = V (i).

Rule φ11 : As V (φ0[del node(i)]) = V ′(φ) = V (φ)\{χ(i)}, V (φ0[del node(i)]) =
V (φ0 ∧ ¬i1).

We now do the same thing with the atomic programs.

Lemma 5. Let R be one of rules α1 - α13, Ar be the right-hand side and Al be
the left-hand side of R. Given any model M = (M,R, χ, V ), R(Al) = R(Ar).

Proof. The proof uses the modelM′ = (M,R′, χ, V ′) obtained formM by using
the definitions in Section 3.1.

Rule α1 : As σ does not modify R(α0), R(α0σ
′) = R(α0).

Rule α2 : As only R(α1) is modified, R(α0[α1 := α1 ± (i, j)]) = R(α0).

Rule α3 : AsR(α0[α0 := α0+(i, j)]) = R′(α0) = R(α0)∪{χ(i), χ(j)}, R(α0[α0 :=
α0 + (i, j)]) = R(α0 ∪ (i?; νΣ1

; j?)).
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Rule α4 : As R(α0[α0 := α0 − (i, j)]) = R′(α0) = R(α0)\{χ(i), χ(j)},
R(α0[α0 := α0 − (i, j)]) = R((¬i)?;α0 ∪ α0; (¬j)?).

Rule α5 : As only R(α1) is modified, R(α0[α1 := α]) = R(α0).

Rule α6 : As R(α0[α0 := α]) = R′(α0) = R(α), R(α0[α0 := α]) = R(α).

Rule α7 : As only R(α1) is modified, R(α0[α1 := (i, j)]) = R(α0).

Rule α8 : As R(α0[α0 := (i, j)]) = R′(α0) = {χ(i), χ(j)}, R(α0[α0 := (i, j)]) =
R(i?; νΣ1 ; j?).

Rule α9 As R(α0[del node(i)]) = R′(α0) = R(α0)\({(χ(i),m′)}∪{(m′, χ(i))}),
R(α0[del node(i)]) = R((¬i?);α0; (¬i)?).

Rule α10 As [new edge(i, j) does not modify R(α0), R(α0[new edge(i, j)) =
R(α0).

Rule α11 : As R(α0[del edge(i, j)]) = R′(α0) = R(α0)\{χ(i), χ(j)},
R(α0[del edge(i, j)]) = R((¬i)?;α0 ∪ α0; (¬j)?).

Rule α12 : AsR(α0[i�in j]) = R′(α0) = R(α0)\{(m′, i) ∈ R(α0)}∪{(m′, j)|(m′, i) ∈
R(α0)}, R(α0[i�in j]) = R(α0; ((¬i)? ∪ (i?; νΣ1

; j?))).

Rule α13 : AsR(α0[i�out j]) = R′(α0) = R(α0)\{(i,m′) ∈ R(α0)}∪{(j,m′)|(i,m′) ∈
R(α0)}, R(α0[i�out j]) = R(¬i?; ((¬j)? ∪ (j?; νΣ1 ; i?));α0).

We now prove that the rewriting of the sets is correct.

Proof. Rule S1 : As i2 is added to Σ1, χ(Σ1[add(i2)]) = χ(Σ1) ∪ {i2}

Rule S2 : As i2 is deleted from Σ1, χ(Σ1[del(i1)]) = χ(Σ1) ∩ {i1}

Rule S3 : As i1 is deleted from Σ2, χ(Σ2[add(i2)]) = χ(Σ2) ∩ {i2}

Rule S4 : As i1 is added to Σ2, χ(Σ2[del(i1)]) = χ(Σ2) ∪ {ii}

Rule S5 : As only Σ1 and Σ2 are modified by σ, χ((S1∪S2)σ) = χ(S1σ)∪χ(S2σ)

Rule S6 : As only Σ1 and Σ2 are modified by σ, χ((S1∩S2)σ) = χ(S1σ)∩χ(S2σ)

Rule S7 : As only Σ1 and Σ2 are modified by σ, χ(S2σ) = χ(S1σ)

Rule S8 : As only Σ1 and Σ2 are modified by σ, χ({i}σ) {i}

We now do the same with the other constructors:

Lemma 6. Let R be one of rules φ12 - φ14, Ar be the righthand side and Al be
the lefthand side of R. Given any model M = (M,R, χ, V ), V (Al) = V (Ar).
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Proof. The proof uses the modelM′ = (M,R′, χ, V ′) obtained formM by using
the definitions in Section 3.1.

Rule φ12 : V ((¬φ)σ) = V ′(¬φ) = M ∩ {V ′(φ)} = V (¬(φσ)).

Rule φ13 : V ((φ ∨ ψ)σ) = V ′(φ ∨ ψ) = V ′(φ) ∪ V ′(ψ) = V ((φσ) ∨ (ψσ)).

Rule φ14 : V ((〈α〉φ)σ) = V ′(〈α〉φ) = {s|∃t ∈ M.((s, t) ∈ R′(α) ∧ t ∈ V ′(φ)} =
V (〈ασ〉(φσ)).

Lemma 7. Let R be one of rules α14 - α21, Ar be the righthand side and Al be
the lefthand side of R. Given any model M = (M,R,χ, V ), R(Al) = R(Ar).

Proof. The proof uses the modelM′ = (M,R′, χ, V ′) obtained formM by using
the definitions in Section 3.1.

Rule α14 : As σ” does not modify S, R(νSσ”) = R(νS).

Rule α15 : R(νS [new node(i)) = R′(νS) = {(s, t)|(s, t) ∈ S[new node(i)]} =
R(νS[new node(i)]).

Rule α16 : R(νS [del node(i)) = R′(νS) = {(s, t)|(s, t) ∈ S[del node(i)]} =
R(νS[del node(i)]).

Rule α17 : R((α;β)σ) = R′(α;β) = {(s, t)|∃v.((s, v) ∈ R′(α)∧ (v, t) ∈ R′(β)} =
R((ασ); (βσ)).

Rule α18 : R((α ∪ β)σ) = R′(α ∪ β) = R′(α) ∪R′(β) = R((ασ) ∪ (βσ)).

Rule α19 : R((α−)σ) = R′(α−) = {(s, t)|(t, s) ∈ R′(α)} = R((ασ)−).

Rule α20 : R((α∗)σ) = R′(α∗) =
⋃
k≤ω R

′(αk) = R((ασ)∗).

Rule α21 : R((φ?)σ) = R′(φ?) = {(s, s)|s ∈ V ′(φ)} = R((φσ)?).

7.3 Decidability

Theorem 7.3.1. Given a formula φ of C2PDL , the satisfiability and the va-
lidity of φ are decidable.

In order to take into account the new constructors, we propose the following
axiom schemes and rules derived from the ones for CPDL that we prove sound
and complete. We will also prove the decidability of the satisfiability (resp.
validity) problem for C2PDL .

• PDL axioms:

(Bool) All boolean tautologies
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(�) [α](A→ B)→ ([α]A→ [α]B)

(;) < α;β > A↔< α >< β > A

(∪) < α ∪ β > A↔< α > A∨ < β > A

(?) < A? > B ↔ A ∧B
(*) < α∗ > A↔ A∨ < α >< α∗ > A

(-) < α > [α−]A↔ A

• Names

(Σ1) < νΣ > c

(Σ2) < νΣ > (c ∧A)→ [νΣ](c→ A)

• Universal programs

(νS1) ∀c, d ∈ S.c→< νS > d

(νS2) ∀{c, d} 6⊆ S.c→ [νS ]¬d
(νS3) < νS >< νS > A→< νS > A

(νS4) A→ [νS ] < νS > A

(νΣ1) A→< νΣ > A

(νΣ2) < α > A→< νΣ > A

• Optional nodes

(ΣO1) ∀c ∈ ΣO,∀φ ∈ Φ0.c→ ¬φ
(ΣO2) ∀c ∈ ΣO,∀α ∈ Π0.c→ [α]⊥ ∧ [α−]⊥

• Rules:
We give 5 deductive rules:

(Ax) If A is an axiom, ` A.

(MP) If ` A and ` A→ B, then ` B
(Ind) If ` [γ][αk]A, for all k < ω, then ` [γ][α∗]A

(Cov) If ` [γ]¬c, for all c ∈ Σ, then ` [γ]⊥
(Nec) If ` A, then ` [νΣ]A

Theorem 7.3.2 (Soundness). If ` A then � A.

Proof. This is a straightforward induction on `:

• Every node of the model M satisfies the boolean tautology A. Hence,
M � A.

• Let m be a node of the model M then:

– Either ∃m′ such that (m,m′) ∈ R(α) and m′ ∈ V (A∧¬B) and thus
m ∈ V (< α > (A ∧ ¬B)),
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– or ∀m′.(m,m′) 6∈ R(α) or m′ ∈ V (¬A ∨ B). Then either ∃m′′ such
that (m,m′′) ∈ R(α) and m′′ ∈ V (¬A) and thus m ∈ V (< α > ¬A),

– or ∀m′.(m,m′) 6∈ R(α) or m′ ∈ V (B) and then m ∈ V ([α]B).

In all possible cases, m ∈ V (< α > (A ∧ ¬B)∨ < α > ¬A ∨ [α]B)). Thus
m ∈ V ([α](A→ B)→ ([α]A→ [α]B)).

• Let m be a node of the model M then:

– Either ∃m′,m′′ such that (m,m′) ∈ R(α) and (m′,m′′) ∈ R(β) and
m′′ ∈ V (A), that is m ∈ V (< α >< β > A), and thus ∃m′′ such that
(m,m′′) ∈ R(α;β) and m′′ ∈ V (A) that is m ∈ V (< α;β > A),

– or ∀m′,m′′, (m,m′) 6∈ R(α) or (m′,m′′) 6∈ R(β) or m′′ 6∈ V (A), that
is m ∈ V ([α][β]¬A), and thus ∀m′′.(m,m′′) 6∈ R(α;β) or m′′ 6∈ V (A)
that is m ∈ V ([α;β]¬A).

In all possible cases, m ∈ V ((< α >< β > A∧ < α;β > A) ∨ ([α][β]¬A ∧
[α;β]¬A)). Thus m ∈ V (< α >< β > A↔< α;β > A).

• Let m be a node of the model M then:

– Either ∃m′ such that (m,m′) ∈ R(α) and m′ ∈ V (A), that is m ∈
V (< α > A) and m ∈ V (< α > A∨ < β > A), and thus ∃m′ such
that (m,m′) ∈ R(α∪β) and m′ ∈ V (A), that is m ∈ V (< α∪β > A),

– or ∃m′ such that (m,m′) ∈ R(β) and m′ ∈ V (A), that is m ∈ V (<
β > A) and m ∈ V (< α > A∨ < β > A), and thus ∃m′ such that
(m,m′) ∈ R(α ∪ β) and m′ ∈ V (A), that is m ∈ V (< α ∪ β > A),

– or ∀m′, either (m,m′) 6∈ R(α) and (m,m′) 6∈ R(β) or m′ 6∈ V (A),
that is m ∈ V ([α]¬A ∧ [β]¬A), and thus ∀m′, (m,m′) 6∈ R(α ∪ β) or
m′ 6∈ V (A) that is m ∈ V ([α ∪ β]¬A).

In all possible cases, m ∈ V (((< α > A∨ < β > A)∧ < α ∪ β > A) ∨
([α]¬A ∧ [β]¬A ∧ [α ∪ β]¬A)). Thus m ∈ V (< α ∪ β > A↔< α > A∨ <
β > A)

• Let m be a node of the model M then:

– Either m ∈ V (A) and m ∈ V (B), that is ∃m′ = m such that
(m,m′) ∈ R(A?) and m′ ∈ V (B) and thus m ∈ V (< A? > B),
and then m ∈ V (A ∧B),

– or m 6∈ V (A) or m 6∈ V (B), that is ∀m′.(m,m′) 6∈ R(A?) or m′ 6∈
V (B) and thus m ∈ [A?]¬B, and then m ∈ V (¬A ∨ ¬B)

In all possible cases, m ∈ V ((< A? > B∧A∧B)∨ ([A?]¬B∧ (¬A∨¬B))).
Thus m ∈ V (< A? > B ↔ A ∧B)

• Let m be a node of the model M then:

131



– Either existsk,m′ such that (m,m′) ∈ R(αk) and m′ ∈ V (A), that
is m ∈ V (< α∗ > A), and then either k = 0 thus m ∈ V (A) or k ≥ 1
and ∃m′′ such that (m,m′′) ∈ R(α) and (m′′,m′) ∈ R(αk−1) thus
m ∈ V (< α >< α∗ > A),

– or ∀k, ∀m′, (m,m′) 6∈ R(αk) or m′ 6∈ V (A), that is m ∈ V ([α∗]¬A).
In particular, m 6∈ V (A) and ∀m′′, either (m,m′′) 6∈ R(α) or ∀k′,
∀m(3), (m′′,m(3)) 6∈ R(αk) or m(3) 6∈ V (A), that is m ∈ V (¬A ∧
[α][α∗]¬A).

In all possible cases, m ∈ V ((< α∗ > A ∧ (A∨ < α >< /alpha∗ >
A) ∨ ([α∗]¬A ∧ ¬A ∧ [α][α∗]¬A)). Thus m ∈ V (< α∗ > A↔ A∨ < α ><
α∗ > A)

• Let m be a node of the model M then:

– Either ∃m′ such that (m,m′) ∈ R(α) and ∀m′′. ((m′,m′′) 6∈ R(α−)
or m′′ ∈ V (A)). As (m,m′) ∈ R(α), (m′,m) ∈ R(α−) and thus
m ∈ V (A),

– or ∀m′. (m,m′) 6∈ R(α) or ∃m′′. ((m′,m′′) ∈ R(α−) andm′′ 6∈ V (A))
that is m ∈ V ([α] < α− > ¬A).

In all cases, m ∈ V ([α] < α− > ¬A ∨A) thus m ∈ V (< α > [α−]A→ A).

• Let m be a node of the model M, by definition of νΣ, (m,χ(c)) ∈ R(νΣ)
thus m ∈ V (< νΣ > c)

• Let m be a node of the model M then:

– either χ(c) 6∈ V (A) and thus m ∈ V (< νΣ > (c∧¬A)) but then ∀m′′.
m′′ 6∈ V (c) = {χ(c)} or m′′ 6∈ V (A) thus m ∈ V ([νΣ](¬c∨¬A). Thus
m ∈ V ([νΣ](¬c ∨ ¬A)∧ < νΣ > (c ∧ ¬A)),

– or χ(c) ∈ V (A) and thus ∀m′,m′ 6∈ V (c) or m′ ∈ V (A) thus m ∈
V ([ν Sigma](¬c∨A). But then ∃m′′ = χ(c) such that m′′ ∈ V (c∧A)
and thus m ∈ V (< νΣ > (c ∧ A) thus m ∈ V ([νΣ](¬c ∨ A)∧ < νΣ >
(c ∧A)).

In all possible cases, m ∈ V (([νΣ](¬c∨¬A)∧ < νΣ > (c∧¬A))∧([νΣ](¬c∨
A)∧ < νΣ > (c ∧A))) that is m ∈ V (< νΣ > (c ∧A)↔ [νΣ](c→ A))

• Let m be a node of the modelM, S be a subset of Σ and c, d be elements
of S. Then:

– Either m ∈ V (c) = {χ(d)} and, as (χ(c), χ(d)) ∈ χ(S)2, (m,χ(d)) ∈
R(νS). Moreover as χ(d) ∈ V (d), m ∈ V (< νS > d) and thus
m ∈ V (¬c∨ < νS > d),

– or m 6∈ V (c) and thus m ∈ V (¬c∨ < νS > d).

In all possible cases, m ∈ V (¬c∨ < νS > d) that is m ∈ V (c→< νS > d)
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• Let m be a node of the modelM, S be a subset of Σ and c, d be such that
{c, d} 6⊆ S. Then:

– Either c 6∈ S and then:

∗ Either m ∈ V (c) = {χ(c)} which, as ∀m′ (χ(c),m′) 6∈ χ(S)2,
means m ∈ V ([νS ]¬d) thus m ∈ V (¬c ∨ [νS ]¬d),

∗ or m 6∈ V (c) thus m ∈ V (¬c ∨ [νS ]¬d),

– or c ∈ S and d 6∈ S and then:

∗ Either m ∈ V (c) = {χ(c)} which, as (χ(c), χ(d)) 6∈ χ(S)2,
∀m′.(m,m′) 6∈ R(νS) or m′ 6∈ V (d) thus m ∈ V (¬c ∨ [νS ]¬d),

∗ or m 6∈ V (c) and thus m ∈ V (¬c ∨ [νS ]¬d).

In all possible cases, m ∈ V (¬c ∨ [νS ]¬d) that is m ∈ V (c→ [νS ]¬d)

• Let m be a node of the model M then:

– Either ∃m′,m′′ such that (m,m′) ∈ R(νS), (m′,m′′) ∈ R(νS) and
m′′ ∈ V (A), that is m ∈ V (< νS >< νS > A, and then, as (m,m′′) ∈
χ(S)2, (m,m′′) ∈ R(νS) and thus m ∈ V (< νS > A),

– or ∀m′,m′′. (m,m′) 6∈ R(νS) or (m′,m′′) 6∈ R(νS) or m′′ 6∈ V (A).
But then, ∀m′. (m,m′) 6∈ R(νS) or ∀m′′. (m′,m′′) 6∈ R(νS) or
m′′ 6∈ V (A), that is m ∈ V ([νS ][νS ]¬A).

In all possible cases, m ∈ V ([νS ][νS ]¬A∨ < νS > A) that is m ∈ V (<
νS >< νS > A→< νS > A)

• Let m be a node of the model M then:

– Either m ∈ V (A) and then:

∗ either m ∈ χ(S) and ∀m′ such that (m,m′) ∈ νS then m′ ∈
χ(S) and thus (m′,m) ∈ R(νS) thus ∀m′. (m,m′) 6∈ R(νS) or
∃m′′ = m such that (m′,m′′) ∈ R(νS) and m′′ ∈ V (A), that is
m ∈ V ([νS ] < νS > A),

∗ or m 6∈ χ(S) and then ∀m′. (m,m′) 6∈ R(νS), that is m ∈
V ([νS ] < νS > A)

– or m 6∈ V (A) and thus m ∈ V (¬A).

In all possible cases, m ∈ V (¬A ∨ [νS ] < νS > A) that is m ∈ V (A →
[νS ] < νS > A)

• Let m be a node of the model M then:

– Either m ∈ V (A) and then ∃m′ = m such that (m,m′) ∈ R(νΣ) and
m′ ∈ V (A) thus m ∈ V (< νΣ > A),

– or m 6∈ V (A) and then m ∈ V (¬A)
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In all possible cases, m ∈ V (¬A∨ < νΣ > A) that is m ∈ V (A →< νΣ >
A) < α > A→< νΣ > A

• Let m be a node of the model M then:

– Either m ∈ V (< α > A) and then ∃m′ such that (m,m′) ∈ R(α) and
m′ ∈ V (A) but then (m,m′) ∈ R(νΣ) that is m ∈ V (< νΣ > A),

– or m 6∈ V (< α > A) and then m ∈ V ([α]¬A)

In all possible cases, m ∈ V ([α]¬A∨ < νΣ > A) that is m ∈ V (< α >
A→< νΣ > A)

• Let m be a node of the model M, φ ∈ Φ0 then:

– Either m ∈ V (c) = {χ(c)} and then as V (φ) ⊆ χ(ΣE) and χ(ΣE) ∩
χ(ΣO) = ∅, m 6∈ V (φ) and thus m ∈ V (¬φ),

– or m 6∈ V (c) and thus m ∈ V (¬c).

In all possible cases, m ∈ V (¬c ∨ ¬φ) that is m ∈ V (c→ ¬φ)

• Let m be a node of the model M, α ∈ Pi0 then:

– Either m ∈ V (c) and then as R(α) ⊆ χ(ΣE)2 and χ(ΣE)∩χ(ΣO) = ∅,
∀m′, (m,m′) 6∈ R(α) and (m′,m) 6∈ R(α) thus m ∈ V ([α]⊥∧ [α−]⊥),

– or m 6∈ V (c) and thus m ∈ V (¬c).

In all possible cases, m ∈ V (¬c ∨ [α]⊥ ∧ [α−]⊥) that is m ∈ V (c →
[α]⊥ ∧ [α−]⊥)

• Assume ` A and ` A→ B, then ∀m, m ∈ V (A) and m ∈ V (¬A∨B) thus
m ∈ V (B). That is ` B.

• Assume ` [γ][αk]A, for all k < ω, then ∀m, m ∈ V ([γ][αk]A, for all
k, that is ∀m′ such that (m,m′) ∈ R(γ), m′ ∈ V ([αk]A) for all k. As
∀m′′, (m′,m′′) ∈ R(αk) for some k or (m′,m′′) 6∈

⋃
k R(αk) = R(α∗),

that is (m′,m′′) 6∈ R(α∗) or m′′ ∈ V (A). Thus m′ ∈ V ([α∗]A) and thus
m ∈ V ([γ][α∗]A). That is ` [γ][α∗]A

(Cov) Assume ` [γ]¬c, for all c ∈ Σ, then ∀m, m ∈ V ([γ]¬c). Thus forallm′,
(m,m′) 6∈ R(γ) or m′ 6∈ V (c) for all c. But, as χ(Σ) = M , ∃c′ such that
m′ = χ(c′) Thus ∀m′, (m,m′) 6∈ R(γ). Thus m ∈ V ([γ]⊥). That is ` [γ]⊥.

(Nec) Assume ` A, then ∀m, m ∈ V (A), then ∀m′,m′′, (m′,m′′) 6∈ R(νΣ) or
m′′ ∈ V (A), thus m′ ∈ V ([νΣ]A). That is ` [νΣ]A

Theorem 7.3.3 (Completeness). If � A then ` A.

Once again, the proof is drawn from [54].
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Definition 7.3.1. A simple extension of C2PDL , or logic (over C2PDL ) is
any set of C2PDL formulae L such that:

• L contains all axioms of C2PDL

• L is closed under (MP ), (Ind), (Cov) and (Nec).

Definition 7.3.2. Let L be a logic, an L-theory is any set T ⊆ Φ such that:

• L ⊆ T

• T is closed under (MP ), (Ind) and (Cov).

Definition 7.3.3. A logic L (resp. a theory T ) is consistent if ⊥ 6∈ L (resp.
⊥ 6∈ T ).

Definition 7.3.4. A formula A is said to be closed if ∃B such that ` A ↔<
νΣ > B.

Definition 7.3.5. A logic L (resp. a theory T ) is maximal if ∀A ∈ Φ such that
A is closed, either A 6∈ L or A ∈ L (resp. ∀A ∈ Φ, either A 6∈ T or A ∈ T ).

Definition 7.3.6. By log(Γ, A) (resp. th(Γ, A)), we denote the least logic (resp.
theory) containing Γ ∪A.

Lemma 8 (Deduction lemma for theories). Let T be an L-theory, A,B ∈ Φ,
then A→ B ∈ T iff B ∈ th(T,A).

Proof. ⇐ Assume B ∈ th(T,A) and let T0 be {D|A→ D ∈ T}. As A→ A ∈ T ,
A ∈ T0. Let’s prove that T0 is an L-theory:

• ∀D ∈ T , ¬A ∨D ∈ T and thus L ⊆ T ⊆ T0.

• Assume D0 ∈ T0 and D0 → D1 ∈ T0. As A ∨ ¬A ∈ T , (A ∧
(D ∨ ¬D)) ∨ ¬A ∈ T thus (A ∧ ¬D) ∨ ¬A ∨ (A ∧ D) ∈ T that is
(A → D) → (A → (A ∧ D)) ∈ T . By replacing D with D0, we
obtain (A → D0) → (A → (A ∧ D0)) ∈ T and, as A → D0 ∈ T
and T is closed under (MP ), A → (A ∧ D0) ∈ T . By replacing D
with D0 → D1, we obtain (A → (D0 → D1)) → (A → (A ∧ (D0 →
D1))) ∈ T , A → (D0 → D1) ∈ T and, as T is closed under (MP ),
A → (A ∧ (D0 → D1)) ∈ T . Similarly, (A ∧ ¬D1) ∨ ¬A ∨ ¬D1 ∈ T
thus (A ∧ ¬D1 ∧ (D0 ∨ ¬D0)) ∨ ¬A ∨ ¬D1 ∈ T thus (A ∧ (¬A ∨
(D0 ∧ ¬D1))) ∨ (A ∧ (¬A ∨ ¬D0)) ∨ ¬A ∨ ¬D1 ∈ T that is (A →
(A ∧ (D0 → D1))) → ((A → (A ∧ D0)) → (A ∧ D1)) ∈ T . Then,
as (A → (A ∧ (D0 → D1))) → ((A → (A ∧D0)) → (A ∧D1)) ∈ T ,
A → (A ∧ (D0 → D1)) ∈ T and T is closed by (MP ), (A → (A ∧
D0)) → (A ∧ D1) ∈ T . As (A → (A ∧ D0)) → (A ∧ D1) ∈ T ,
(A→ (A ∧D0)) ∈ T and T is closed under (MP ), A ∧D1 ∈ T thus
D1 ∈ T0 thus T0 is stable by (MP ).
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• Assume ∀k < ω, [γ][αk]D ∈ T0, then ∀k < ω,A → [γ][αk]D ∈ T
and thus ∀k < ω, [A?; γ][αk]D ∈ T . But, as T is stable by (Ind),
[A?; γ][α∗]D ∈ T and thus A → [γ][α∗]D ∈ T that is [γ][α∗]D ∈ T0.
Thus T0 is stable by (Ind).

• Assume ∀c ∈ Σ, [γ]¬c ∈ T0, then ∀c ∈ Σ, A → [γ]¬c ∈ T and thus
∀c ∈ Σ, [A?; γ]¬c ∈ T . But, as T is stable by (Cov), [A?; γ]⊥ ∈ T
and thus A → [γ]⊥ ∈ T that is [γ]⊥ ∈ T0. Thus T0 is stable by
(Cov).

Thus T0 is an L-theory. As th(T,A) is the smallest theory containing
T ∪ A and T0 contains T ∪ A, th(T,A) ⊆ T0 but, as B ∈ th(T,A) then
B ∈ T0 that is A→ B ∈ T .

⇒ Assume A→ B ∈ T then, as th(T,A) is stable by (MP ) and A ∈ th(T,A),
B ∈ th(T,A).

Lemma 9. If ∀B, (B ∈ Γ ∪ A implies [νΣ]B ∈ th(Γ, A)), then th(Γ, A) is a
logic.

Proof. As th(Γ, A) is a theory, L ⊆ th(Γ, A) and thus all axioms of C2PDL are
contained in th(Γ, A) and th(Γ, A) is closed under (MP ), (Cov) and (Ind).

Assume C ∈ th(Γ, A). We prove by induction that [νΣ]C ∈ th(Γ, A):

• If C ∈ Gamma ∪A, then [νΣ]C ∈ th(Γ, A).

• If C results from the application of (MP ) on D ∈ th(Γ, A) and D → C ∈
th(Γ, A), from the induction hypothesis, [νΣ]D ∈ th(Γ, A) and [νΣ]D →
C ∈ th(Γ, A). But th(Γ, A) contains the axiom � where A = D, B =
C and α = νS , that is [νΣ](D → C) → ([νΣ]D → [νΣ]C) ∈ th(Γ, A).
Then, as th(Γ, A) is stable under (MP ) with A = [νΣ](D → C) and
B = ([νΣ]D → [νΣ]C), [νΣ]D → [νΣ]C ∈ th(Γ, A). Then, as th(Γ, A) is
stable under (MP ) with A = [νΣ]D and B = [νΣ]C, [νΣ]C ∈ th(Γ, A).

• If C results from the application of (Ind) on ∀k < ω.[γ][αk]D ∈ th(Γ, A)
then C = [γ][α∗]D. From the induction hypothesis, [νΣ; γ][αk]D ∈ th(Γ, A).
Then, as th(Γ, A) is stable under (Ind), [νΣ; γ][α∗]D ∈ th(Γ, A) and thus
[νΣ]C ∈ th(Γ, A).

• If C results from the application of (Cov) on ∀c ∈ Σ.[γ]¬c ∈ th(Γ, A) then
C = [γ]⊥. From the induction hypothesis, ∀c ∈ Σ.[νΣ; γ]¬c ∈ th(Γ, A).
Then, as th(Γ, A) is stable under (Cov), [νΣ; γ]⊥ ∈ th(Γ, A) and thus
[νΣ]C ∈ th(Γ, A).

Thus th(Γ, A) is stable under (Nec), thus th(Γ, A) is a logic.

Lemma 10. Let L be a logic and A be a closed formula, th(L,A) = log(L,A)
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Proof. ⊆ Let B ∈ L ∪ A, if B ∈ L by the stability of L under (MP ), [νΣ]B ∈
L ⊆ th(L,A).

Otherwise, B = A then, as A is closed, ∃C such that B ↔< νΣ > C ∈ L
and thus B →< νΣ > C ∈ L ⊆ th(L,A). Then, as th(L,A) is stable under
(MP ), B ∈ th(L,A) and B →< νΣ > C inth(L,A), < νΣ > C ∈ th(L,A).
Then, as th(L,A) contains (νS4) with S = Σ and A =< νΣ > C, it yields
< νΣ > C → [νΣ] < νΣ >< νΣ > C and thus [νΣ] < νΣ >< νΣ > C ∈
th(Γ, A). Then, as th(L,A) contains (νS3) with S = Σ and A = C, it
yields < νΣ >< νΣ > C →< νΣ > C ∈ th(Γ, A). Thus [νΣ] < νΣ > C ∈
th(Γ, A) and thus [νΣ]B ∈ th(Γ, A). Thus, from Lemma 9, th(L,A) is a
logic containing L ∪A. Thus log(L,A) ⊆ th(L,A).

⊇ By definition, a logic is a theory and log(L,A) contains L∪A thus th(L,A) ⊆
log(L,A).

Lemma 11 (Deduction lemma for logics). Let L be a logic and A be a closed
formula. Then A→ B ∈ L iff B ∈ log(L,A)

Proof. As L is an L-theory, from Lemma 8, A→ B ∈ L iff B ∈ th(L,A). But,
from Lemma 10, log(L,A) = th(L,A) and thus A→ B ∈ L iff B ∈ log(L,A)

Lemma 12 (Separation lemma for theories). Let T be a theory, A 6∈ T . Then
there exists a maximal theory T ∗ such that T ⊆ T ∗ and A 6∈ T ∗.

Proof. Let T0 = th(T,¬A). As A 6∈ T , ¬A =⇒ ⊥ 6∈ T . Then, from Lemma 8,
⊥ 6∈ T0 and thus T0 is consistent. Let B0, B1, . . . , be an enumeration of Φ.
By induction on n, we construct a chain T0 ⊆ T1 ⊆ . . . of consistent theories.
Their union will yield the required T ∗. The induction hypothesis is that Tn is
a consistent theory. It is the case for T0.

• If th(Tn, Bn) is consistent, then Tn+1 = th(Tn, Bn) is consistent.

• If th(Tn, Bn) is not consistent, then ⊥ ∈ th(Tn, Bn) and, from Lemma 8,
Bn =⇒ ⊥ ∈ Tn and thus 6 Bn ∈ Tn. Then:

– Either Bn 6= [γ]0 and Bn 6= [γ][α∗]A and then Tn+1 = Tn is consis-
tent,

– or Bn = [γ]0. Let Bn,c = [γ]¬c, if ∀c ∈ Σ, Bn,c ∈ Tn then, because Tn
is stable by (Cov), and ¬Bn ∈ Tn then Tn is inconsistent which, due
to the induction hypothesis, is not the case. Thus ∃c ∈ Σ such that
Bn,c 6∈ Tn. Then, from Lemma 8, Tn+1 = th(Tn,¬Bn,c) is consistent,

– or Bn = [γ][α∗]A. Let Bn,k = [γ][αk]A, if ∀k < ω, Bn,k ∈ Tn then,
because Tn is stable by (Ind), and ¬Bn ∈ Tn Tn is inconsistent
which, due to the induction hypothesis, is not the case. Thus ∃k < ω
such that Bn,k 6∈ Tn. Then, from Lemma 8, Tn+1 = th(Tn,¬Bn,k) is
consistent.
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Let T ∗ =
⋃
{Tn|n < ω}. We have:

• L ⊆ T ⊆ T0 ⊆ T ∗

• Let C0, C1 be such that C0 ∈ T ∗ and C0 → C1 ∈ T ∗, then ∃k0, k1 < ω
such that C0 ∈ Tk0

and C0 → C1 ∈ Tk1
that is C0 ∈ Tmax(k0,k1) and C0 →

C1 ∈ Tmax(k0,k1). As Tmax(k0,k1) is closed under (MP ), C1 ∈ Tmax(k0,k1)

and thus C1 ∈ T ∗. Then T ∗ is closed under (MP ).

• As ∀k, ¬A ∈ T0 ⊆ Tk and Tk is consistent, A 6∈ T ∗

• Assume ⊥ ∈ T ∗ then, as ⊥ → A is a boolean tautology, both ⊥ ∈ T ∗ and
⊥ → A ∈ T ∗. As T ∗ is closed under (MP ), then A ∈ T ∗. As it is not the
case, T ∗ is consistent.

• By construction, ∀B ∈ Φ either B ∈ T ∗ or ¬B ∈ T ∗

• Let Dc = [γ]¬c and D = [γ]0 = Bn. Suppose ∀c ∈ Σ.Dc ∈ T ∗ and
D 6∈ T ∗ then, by construction, for some c0 ∈ Σ, ¬Bn,c0 ∈ Tn+1 ⊆ T ∗ but
then ¬Bn,c0 ∈ T ∗ and Bn,c0 ∈ T ∗ which is impossible as T ∗ is consistent.
Thus T ∗ is closed under (Cov).

• Let Dk = [γ][αk]A and D = [γ][α∗]A = Bn. Suppose ∀k < ω.Dk ∈ T ∗ and
D 6∈ T ∗ then, by construction, for some k0 ∈ Σ, ¬Bn,k0

∈ Tn+1 ⊆ T ∗ but
then ¬Bn,k0

∈ T ∗ and Bn,k0
∈ T ∗ which is impossible as T ∗ is consistent.

Thus T ∗ is closed under (Ind).

Thus T ∗ is a maximal theory and T ⊆ T ∗ and A 6∈ T ∗.

Definition 7.3.7. LT = {A|[νΣ]A ∈ T}.

Lemma 13. If T is a maximal L-theory, then LT is a maximal logic and LT
is the greatest logic included in T .

Proof. • Let A be an axiom of C2PDL then A ∈ L as L is a logic. As L is
closed under (MP ), [νΣ]A ∈ L. As L ⊆ T , [νΣ]A ∈ T and thus A ∈ LT

• Assume C ∈ LT and C → D ∈ LT then [νΣ]C ∈ T and [νΣ](C → D) ∈ T .
As L ⊆ T and L contains (�) and T is closed under (MP ), [νΣ]C →
[νΣ]D ∈ T and then, by (MP ), [νΣ]D ∈ T and thus D ∈ LT . Thus LT is
closed under (MP ).

• Assume ∀k < ω.[γ][αk]A ∈ LT , then ∀k < ω.[νΣ; γ][αk]A ∈ T . As T is
closed under (Ind), [νΣ; γ][α∗]A ∈ T and thus [γ][αk]A ∈ LT . Thus LT is
closed under (Ind).

• Assume ∀c ∈ Σ.[γ]¬c ∈ LT , then ∀c ∈ Σ.[νΣ; γ]¬c ∈ T . As T is closed
under (Cov), [νΣ; γ]⊥ ∈ T and thus [γ]⊥ ∈ LT . Thus LT is closed under
(Cov).
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• Assume C ∈ LT then [νΣ]C ∈ T . Assume < νΣ > [νΣ]C ∈ T then as L ⊆
T and L contains (νS3) with S = Σ and A = ¬C, [νΣ]C → [νΣ][νΣ]C ∈ T .
As T is closed under (MP ), [νΣ][νΣ]C ∈ T and thus [νΣ]C ∈ T . Thus LT
is closed under (Nec).

• Let C be a closed formula. As T is maximal:

– either C ∈ T that is existsB. < νΣ > B ∈ T . As L ⊆ T and L
contains (νS4) for S = Σ and A =< νΣ > B, < νΣ > B → [νΣ] <
νΣ >< νΣ > B ∈ T and then, by (MP ), [νΣ] < νΣ >< νΣ > B ∈ T .
As L ⊆ T and L contains (νS3) for S = Σ and A = B and L is closed
under (Nec), [νΣ] < νΣ >< νΣ > B → [νΣ] < νΣ > B ∈ T and
then, by (MP ), [νΣ] < νΣ > B ∈ T and thus < νΣ > B ∈ T that is
C ∈ LT ,

– or ¬C ∈ T that is ∃B.[νΣ]¬B ∈ T and thus ¬B ∈ LT . But, as LT is
closed under (Nec), [νΣ]¬B ∈ LT and thus ¬C ∈ LT .

That is LT is maximal.

• Let L′ be a logic such that L′ ⊆ T . Let A′ ∈ L′. As L′ is closed under
(Nec), [νΣ]A′ ∈ L′ and thus [νΣ]A′ ∈ T that is A′ ∈ LT . Thus ∀L′ ⊆
T, L′ ⊆ LT .

• Let C ∈ LT then [νΣ]C ∈ T . As L ⊆ T and L contains (νΣ1) with A = ¬C,
¬C →< νΣ > ¬C ∈ T or, written in another way, [νΣ]C → C ∈ T . As T
is closed under (MP ), C ∈ T . Thus LT ⊆ T .

Thus LT is a maximal logic and it is the greatest included in T .

Lemma 14 (Separation lemma for logics). Let L be a logic, A 6∈ L. Then there
exists a maximal logic L∗ such that L ⊆ L∗ and A 6∈ L∗.

Proof. L is an L-theory thus, from Lemma 12, there exists a maximal theory
T ∗ such that L ⊆ T ∗ and A 6∈ T ∗. Then, from Lemma 13, LT∗ is a maximal
logic such that LT∗ ⊆ T ∗. Assume A ∈ LT∗ then A ∈ T ∗ which is not the case.
Thus LT∗ is a maximal L-logic, that is L ⊆ LT∗ , and A 6∈ LT∗ .

Lemma 15 (Lindenbaum lemma). If L is a consistent logic (resp. T is a con-
sistent theory) then there exists a maximal consistent logic L∗ (resp. a maximal
consistent theory T ∗) such that L ⊆ L∗ (resp. T ⊆ T ∗).

Proof. It is a direct consequence of the Separation lemmata with A = ⊥.

Lemma 16. If L is a consistent logic, then L has a model.

Proof. From Lemma 15, there exists a maximal consistent logic L∗ such that
L ⊆ L∗. Let’s define c d =< νΣ > (c ∧ d) ∈ L∗.

• As L contains (Σ1), so does L∗ and thus < νΣ > (c ∧ c) ∈ L∗. Thus c c
that is is reflexive.
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• Assume c d. As ∧ is commutative, < νΣ > (c ∧ d)↔< νΣ > (d ∧ c) ∈ L∗
and thus, by (MP ), d c that is is symmetric.

• Assume c d and d e. Then, as L∗ contains (Σ2) and is closed under
(MP ), [νΣ](d → e) ∈ L∗ and [νΣ](c → d) ∈ L∗. Then, as [νΣ](c → d) →
([νΣ](d → e) → ([νΣ](c → d) ∧ [νΣ](d → e))) is a boolean tautology and
thus in L∗, by applying (MP ) twice, [νΣ](c→ d)∧ [νΣ](d→ e) ∈ L∗. But,
as ([νΣ](c → d) ∧ [νΣ](d → e)) → [νΣ]((c → d) ∧ (d → e)) is a boolean
tautology and thus in L∗, by applying (MP ), [νΣ]((c→ d)∧(d→ e)) ∈ L∗
and thus [νΣ](c→ e) ∈ L∗. Then, from (Σ2) using (MP ), < νΣ > (c∧e) ∈
L∗ and thus c e that is is transitive.

Thus is an equivalence relation. Let [c] = {d|c d}, we construct M = Σ/ ,
χ(c) = [c], V (A) = {[c]| < νΣ > (c ∧ A) ∈ L∗} and R∗(α) = {([c], [d])| < νΣ >
(c∧ < α > d) ∈ L∗}. Let’s show that M = (M,χ, V,R) is a model.

• χ is obviously onto.

• Assume m ∈ χ(ΣO) ∩ χ(ΣE) that is ∃cO ∈ ΣO, cE ∈ ΣE such that [cO] =
[cE ] that is < νΣ > cO∧cE ∈ L∗. As Σ0∪ΣE = ∅, c0 6∈ ΣE and thus, from
(ΣS2), c0 → [νΣE ]¬cE . Meanwhile, from (ΣS1), cE →< νΣ > cE . Thus
< νΣ > (< νΣE > cE ∧ [νΣ]¬cE) ∈ L∗ which is false. As L∗ is consistent,
χ(ΣO) ∩ χ(ΣE) = ∅.

• Let i ∈ Σ, then V (i) = {[c]| < νΣ > (c ∧ i) ∈ L∗} = {[i]} = {χ(i)}.

• Let φ0 ∈ Φ0, assume ∃cO ∈ ΣO such that [cO] ∈ V (φ0) then < νΣ > (cO ∧
φ0) ∈  L∗. As ΣO1 is in L∗, cO → ¬φ0 and thus < νΣ > (¬φ0 ∧ φ0) ∈  L∗

which is impossible as L∗ is consistent. Thus V (φ0) ∈ P(χ(ΣE)).

• – Assume [c] ∈M\V (A) then < νΣ > (c∧A) 6∈ L∗. As L∗ is maximal,
[νΣ](c→ ¬A) ∈ L∗. As (Σ2) is in L∗ so is < νΣ > (c∧¬A) 6∈ L∗ and
thus [c] ∈ V (¬A). Thus M\V (A) ⊆ V (¬A).

– Otherwise [c] ∈ V (A) then < νΣ > (c∧A) ∈ L∗. If [c] ∈ V (¬A), then
< νΣ > (c∧¬A) ∈ L∗. As (Σ2) is in L∗ so is [νΣ](c→ ¬A) ∈ L∗ and
thus < νΣ > (A ∧ ¬A) ∈ L∗ as L∗ is consistent, it is impossible and
thus V (¬A) ⊆M\V (A).

Thus V (¬A) = M\V (A).

• – Assume [c] ∈ V (A) ∪ V (B) then:

∗ Either [c] ∈ V (A) and then < νΣ > (c ∧ A) ∈ L∗ and thus
< νΣ > (c ∧ (A ∨B)) ∈ L∗. Thus [c] ∈ V (A ∨B),

∗ or [c] ∈ V (B) and then < νΣ > (c ∧ B) ∈ L∗ and thus < νΣ >
(c ∧ (A ∨B)) ∈ L∗. Thus [c] ∈ V (A ∨B).

Thus V (A) ∪ V (B) ⊆ V (A ∨B)
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– Otherwise [c] 6∈ V (A) ∪ V (B) that is [c] ∈ M\(V (A) ∪ V (B)) =
(M\V (A)) ∩ (M\V (B)). Thus [c] ∈ M\V (A) that is [c] ∈ V (¬A)
from the previous point. Thus < νΣ > (c ∧ ¬A) ∈ L∗. Similarly,
[c] ∈M\V (A) and thus < νΣ > (c∧¬B) ∈ L∗. From (Σ2), [νΣ](c→
¬B) ∈ L∗ and thus < νΣ > (c ∧ ¬(A ∨ B)) ∈ L∗. Thus [c] ∈
V (¬(A ∨ B)) that is [c] ∈ M\V (A ∨ B) and thus [c] 6∈ V (A ∨ B).
Thus V (A ∨B) ⊆ V (A) ∪ V (B)

Thus V (A ∨B) = V (A) ∨ V (B).

• – Assume [c] ∈ {s|∃[d] ∈ M.((s, [d]) ∈ R(α) ∧ [d] ∈ V (A)} then
([c], [d]) ∈ R(α) and [d] ∈ V (A). Thus < νΣ > (c∧ < α > d) ∈ L∗
and < νΣ > (d ∧ A) ∈ L∗. As (Σ2) in L∗, [νΣ](d → A) ∈ L∗ and
thus < νΣ > (c∧ < α > A) ∈ L∗ that is [c] ∈ V (< α > A). Thus
{s|∃[d] ∈M.((s, [d]) ∈ R(α) ∧ [d] ∈ V (A)} ⊆ V (< α > A).

– Otherwise [c] 6∈ {s|∃[d] ∈M.((s, [d]) ∈ R(α) ∧ [d] ∈ V (A)} then ∀[d],
(([s], [d]) 6∈ R(α) or [d] 6∈ V (A)) that is ∀[d], (< νΣ > (c∧ < α >
d) 6∈ L∗ or < νΣ > (d ∧ A) 6∈ L∗). Then, by maximality of L∗, ∀[d],
(¬ < νΣ > (c∧ < α > d) ∈ L∗ or ¬ < νΣ > (d ∧ A) ∈ L∗ that
is ∀[d], ([νΣ](c → [α]¬d) ∈ L∗ or [νΣ](d → ¬A) ∈ L∗. Then ∀[d],
([νΣ](c→ [α](¬d∨¬A)) ∈ L∗ or, by (νΣ2) and (νS3), [νΣ; c?;α](d→
¬A)) ∈ L∗ that is [νΣ]c → [α](¬c ∨ (d → ¬A)) ∈ L∗. Thus ∀[d],
[νΣ; c?;α;A?]¬d ∈ L∗. As L∗ is stable under (Cov), [νΣ; c?;α;A?]⊥ ∈
L∗ that is [νΣ](c→ [α]¬A) ∈ L∗. By (Σ2), < νΣ > (c ∧ [α]¬A) ∈ L∗
and thus [c] ∈ V ([α]¬A) that is [c] 6∈ V (< α > A). Thus V (< α >
A) ⊆ {s|∃[d] ∈M.((s, [d]) ∈ R(α) ∧ [d] ∈ V (A)}.

Thus V (< α > A) = {s|∃[d] ∈M.((s, [d]) ∈ R(α) ∧ [d] ∈ V (A)}.

• Let α0 ∈ Π0, let cO ∈ ΣO, c ∈ Σ:

– such that ([cO], [c]) ∈ R(α) then < νΣ > (cO∧ < α0 > c) ∈ L∗.
But, from (ΣO2), < νΣ > (cO ∧ [α0]⊥) ∈ L∗ and thus, from (Σ2),
[νΣ](cO → [α0]⊥) ∈ L∗. Thus < νΣ > ([α0]¬c∧ < α0 > c) ∈ L∗

which is impossible as L∗ is consistent.

– such that ([c], [cO]) ∈ R(α) then < νΣ > (c∧ < α0 > c) ∈ L∗.
But, from (ΣO2), < νΣ > (cO ∧ [α−0 ]⊥) ∈ L∗ and thus, from (Σ2),
[νΣ](cO → [α−0 ]⊥) ∈ L∗. Thus < νΣ > (c∧ < α0 > [α−0 ]⊥) ∈ L∗.
But then, from (−), < νΣ > (c ∧ ⊥) ∈ L∗ which is impossible as L∗

is consistent.

Thus ∀c0 ∈ ΣO,∀c ∈ Σ, ([c0], [c]) 6∈ R(α0) and ([c], [c0]) 6∈ R(α0). Thus
R(α0) ∈ P(χ(ΣE)).

• Let S ⊆ Σ:

– Let c0, c1 ∈ S, from (ΣS1), < νΣ > (c0∧ < νS > c1) ∈ L∗ and thus
([c0], [c1]) ∈ R(νS). Thus χ(S)2 ⊆ R(νS).
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– Otherwise, {c0, c1} 6⊆ S and then, from (ΣS2), < νΣ > (c0∧[νS ]¬c1) ∈
L∗. Assume ([c0], [c1]) ∈ R(νS) then < νΣ > (c0∧ < νS > c1) ∈ L∗
and, from (Σ2), [νΣ](c0 →< νS > c1) ∈ L∗ and thus < νΣ > (<
νS > c1∧ [νS ]¬c1) ∈ L∗ which is impossible as L∗ is consistent. Thus
R(νS) ⊆ χ(S)2.

Thus χ(S)2 = R(νS)

• – Let ([c], [d]) ∈ R(α) ∪R(β) then:

∗ either ([c], [d]) ∈ R(α) and thus < νΣ > (c∧ < α > d) ∈ L∗

and then, from (∪); < νΣ > (c∧ < α ∪ β > d) ∈ L∗ and thus
([c], [d]) ∈ R(α ∪ β),

∗ or ([c], [d]) ∈ R(β) and thus < νΣ > (c∧ < β > d) ∈ L∗ and
then, from (∪); < νΣ > (c∧ < α ∪ β > d) ∈ L∗ and thus
([c], [d]) ∈ R(α ∪ β)

Thus R(α) ∪R(β) ⊆ R(α ∪ β).

– Let ([c], [d]) ∈ R(α ∪ β) then < νΣ > (c∧ < α ∪ β > d) ∈ L∗. Then,
from (∪), < νΣ > (c ∧ (< α > d∨ < β > d)) ∈ L∗. Then:

∗ either < νΣ > (c∧ < α > d) ∈ L∗ and then ([c], [d]) ∈ R(α),

∗ or < νΣ > (c∧ < β > d) ∈ L∗ and then ([c], [d]) ∈ R(β),

∗ or < νΣ > (c∧ [α]¬d∧ [β]¬d) ∈ L∗ and thus, from (Σ2, [νΣ](c→
([α]¬d ∧ [β]¬d)) ∈ L∗. Then < νΣ > ((< α > d∨ < β >
d) ∧ [α]¬d ∧ [β]¬d) ∈ L∗ which is impossible as L∗ is consistent.

Thus R(α ∪ β) ⊆ R(α) ∪R(β)

Thus R(α ∪ β) = R(α) ∪R(β)

• – Let ([c], [d]) ∈ {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))} then
< νΣ > (c∧ < α > e) ∈ L∗ and < νΣ > (e∧ < β > d) ∈ L∗

that is, from (Σ2), [νΣ](e →< β > d) ∈ L∗. Then < νΣ > (c∧ <
α >< β > d) ∈ L∗. Then, from (;), < νΣ > (c∧ < α;β > d) ∈ L∗
and then ([c], [d]) ∈ R(α;β). Thus {(s, t)|∃[e].((s, [e]) ∈ R(α) and
([e], t) ∈ R(β))} ⊆ R(α;β).

– Let ([c], [d]) 6∈ {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))} that
is ∀e. (([c], [e]) 6∈ R(α) or ([e], [d]) 6∈ R(β)). Assume < νΣ > (c∧ <
α > e) ∈ L∗ and < νΣ > (e∧ < β > d) ∈ L∗ then ([c], [e]) ∈ R(α)
and ([e], [d]) ∈ R(β) which is not the case. Thus ∀e. (< νΣ > (c∧ <
α > e) 6∈ L∗ or < νΣ > (e∧ < β > d) 6∈ L∗). As L∗ is maximal,
∀e. ([νΣ](¬c ∨ [α]¬e) ∈ L∗ or [νΣ](¬e ∨ [β]¬d) ∈ L∗). Thus ∀e.
([νΣ](c → [α](< β > d → ¬e) ∈ L∗ or, from (νΣ2), [νΣ; c?;α](<
β > d → ¬e) ∈ Then∗). Thus ∀e. [νΣ; c?;α; (< β > d)?]¬e) ∈ L∗.
As L∗ is closed under (Cov), [νΣ; c?;α; (< β > d)?]⊥ ∈ L∗ that is,
from (?) and (Σ2), [νΣ](c → [α](< β > d → ⊥)) ∈ L∗. Assume
([c], [d]) ∈ R(α;β) then < νΣ > (c∧ < α >< β > d) ∈ L∗. Thus <
νΣ > ([α](< β > d → ⊥)∧ < α >< β > d) ∈ L∗ which is impossible
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as L∗ is consistent. Thus R(α;β) ⊆ {(s, t)|∃[e].((s, [e]) ∈ R(α) and
([e], t) ∈ R(β))}.

Thus R(α;β) = {(s, t)|∃[e].((s, [e]) ∈ R(α) and ([e], t) ∈ R(β))}.

• – Let ([c], [d]) ∈ {(s, t)|(t, s) ∈ R(α)} then < νΣ > (d∧ < α > c) ∈ L∗.
From (Σ1), < νΣ > c ∈ L∗. Assume < νΣ > (c ∧ [α−]¬d) ∈ L∗

then, from (Σ2), [νΣ](c → [α−]¬d) ∈ L∗ and thus < νΣ > (d∧ <
α > [α−]¬d) ∈ L∗. But, from (−), < νΣ > (d ∧ ¬d) ∈ L∗ which is
impossible as L∗ is consistent. Thus, as L∗ is maximal, [νΣ](¬c∨ <
α− > d) ∈ L∗ that is [νΣ](c →< α− > d) ∈ L∗ and thus ([c], [d]) ∈
R(α−). Thus {(s, t)|(t, s) ∈ R(α)} ⊆ R(α−).

– Let ([c], [d]) 6∈ {(s, t)|(t, s) ∈ R(α)}. If < νΣ > (d∧ < α > c) ∈
L∗, ([c], [d]) ∈ {(s, t)|(t, s) ∈ R(α)} which is not the case thus, by
maximality of L∗, [νΣ](¬d ∨ [α]¬c) ∈ L∗. Assume ([c], [d]) ∈ R(α−),
then < νΣ > (c∧ < α− > d) ∈ L∗ that is, using (Σ2), [νΣ](c →<
α− > d) ∈ L∗ and thus [νΣ](d → [α] < α− > d) ∈ L∗. Then, from
(−), [νΣ](d → ¬d) ∈ L∗ that is, from (Σ2), < νΣ > (d ∧ ¬d) ∈ L∗
which is impossible as L∗ is consistent. Thus R(α−) ⊆ {(s, t)|(t, s) ∈
R(α)}.

Thus R(α−) = {(s, t)|(t, s) ∈ R(α)}.

• – Let ([c], [d]) ∈ R(α∗). Then, < νΣ > (c∧ < α∗ > d) ∈ L∗. Assume
∀k. < νΣ > (c∧ < αk > d) 6∈ L∗ then, as L∗ is maximal, ∀k.
[νΣ](¬c ∧ [αk]¬d) ∈ L∗ that is [νΣ; c?; ][αk]¬d ∈ L∗. But L∗ is closed
under (Ind) and thus [νΣ; c?; ][α∗]¬d ∈ L∗ that is [νΣ](c→ [α∗]¬d) ∈
L∗ and thus < νΣ > ([α∗]¬d∧ < α∗ > d) ∈ L∗ which is impossible
as L∗ is consistent. Thus R(α∗) ⊆

⋃
k<ω R(αk)

– Let’s prove by induction that < αk > A→< α∗ > A ∈ L∗:
∗ From (∗), A→< α∗ > A ∈ L∗ thus < α0 > A→< α∗ > A ∈ L∗

∗ Assume < αk > A→< α∗ > A ∈ L∗, then [αk+1]¬A∨ < αk+1 >
A ∈ L∗ being a tautology, thus [αk+1]¬A∨ < α >< αk > A ∈ L∗
and then, from the induction hypothesis, [αk+1]¬A∨ < α ><
α∗ > A ∈ L∗. But, from (∗), < α >< α∗ > A→< α∗ > A ∈ L∗
and thus < αk+1 > A→< α∗ > A ∈ L∗.

Then, assume ([c], [d]) ∈
⋃
k<ω R(αk). There exists k such that

([c], [d]) ∈ R(αk) and thus < νΣ > (c∧ < αk > d) ∈ L∗ but then, as
< αk > A →< α∗ > A ∈ L∗, < νΣ > (c∧ < α∗ > d) ∈ L∗ and thus
([c], [d]) ∈ R(α∗). Thus

⋃
k<ω R(αk) ⊆ R(α∗).

Thus R(α∗) =
⋃
k<ω R(αk).

• – Let ([c], [d]) ∈ R(A?) then < νΣ > (c∧ < A? > d) ∈ L∗. From (?),
< νΣ > (c ∧ A) ∈ L∗ and < νΣ > (c ∧ d) ∈ L∗. Thus [c] = [d]
and [c] ∈ V (A) thus ([c], [d]) ∈ {(s, s)|s ∈ V (A)}. Thus R(A?) ⊆
{(s, s)|s ∈ V (A)}
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– Let ([c], [d]) ∈ {(s, s)|s ∈ V (A)} then [c] = [d] and [c] ∈ V (A) thus
< νΣ > (c∧A) ∈ L∗ and< νΣ > (c∧d) ∈ L∗ thus< νΣ > (c∧ < A? >
d) ∈ L∗ and thus ([c], [d]) ∈ R(A?). Thus {(s, s)|s ∈ V (A)} ⊆ R(A?).

Thus R(A?) ⊆ {(s, s)|s ∈ V (A)}.

Thus M is a model.
Let A ∈ L then, as L is closed under (Nec), [νΣ]A ∈ L and as L contains

(Σ1), < νΣ > c ∈ L thus < νΣ > (c ∧ A) ∈ L ⊆ L∗. Thus M, [c] � A which is
the case for each c ∈ Σ. Thus M � A. Thus M is a model of L.

We can now prove the theorem itself:

Proof. Assume 6` A then A 6∈ L and also [νΣ]A 6∈ L thus log(L,< νΣ > ¬A) is
consistent and thus, from Lemma 16, has a model M. Thus M �< νΣ > ¬A
i.e. M 6� A and thus 6� A.

Theorem 7.3.4 (Decidability). The validity and satisfiability problems of C2PDL are
decidable.

The idea is similar to the one for CPDL, that is we prove that the ω-rules,
(Ind) and (Cov), can be replaced so that the set of valid formulae is recursively
enumerable. Then, we prove that if a formula is satisfiable then it is satisfied by
a finite model. In this case, there is a procedure, that may not stop, deciding if
the formula is valid and another one, that may not stop either, deciding if the
formula is unsatisfiable. As the formula can’t be both, one of them will reach a
result eventually.

Definition 7.3.8. Let FC2PDL be the logic obtained from C2PDL by dropping
the rules (Ind) and (Cov) and adding the axiom (ind): (A∧ [α∗](A→ [α]A))→
[α∗]A. Let `F denote provability in FC2PDL .

The theorems of FC2PDL form a recursively enumerable set.

Lemma 17. If `F A then ` A

Proof. It amounts to prove that ` ind. Let γ = (A∧ [α∗](A→ [α]A))?. Assume
there exists k < ω such that < γ >< αk > ¬A that is A ∧ [α∗](A → [α]A)∧ <
αk > ¬A. From (∗), applied k times, one obtains A ∧

∧
0≤l<k[αl](A→ [α]A) ∧

[αk](A→ [α]A ∧ [α][α∗](A→ [α]A))∧ < αk > ¬A. Then, A ∧
∧

0≤l<k[αl](A→
[α]A) yields

∧
0≤l≤k[αl]A and thus, adding < αk > ¬A an impossibility is

reached.
Thus ∀k < ω, [γ][αk]A which, from (Ind), yields [γ][α∗]A that is (A ∧

[α∗](A→ [α]A))→ [α∗]A. Thus (ind) is a theorem of C2PDL .

Definition 7.3.9. The Fischer-Ladner closure of a set of formulae Σ is the
smallest set FL that satisfies:

• Σ ⊆ FL

• FL is closed under sub-formulae
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• If [α ∪ β]A ∈ FL, [α]A ∈ FL and [β]A ∈ FL

• If [α;β]A ∈ FL, [α][β]A ∈ FL

• If [α∗]A ∈ FL, [α][α∗]A ∈ FL

• If [α−]A ∈ FL, [α]¬[α−]A ∈ FL

Lemma 18. The Fischer-Ladner closure of a finite set is finite.

Definition 7.3.10. We name canonical quasi-model the modelMc = (Mc, Rc, Vc)
where:

• Mc is the set of all maximal consistent sets of formulae

• for every program α and for all u, v ∈Mc, u Rc(α) v iff, for every formula
A, if [α]A ∈ u then A ∈ v

• for every atomic proposition φ, Vc(φ) = {u ∈Mc|φ ∈ u}

• for every name i, Vc(i) = {u ∈Mc|i ∈ u}

Mc is named a quasi-model because it is not a model. It is the template of
the model we will create to prove the correctness though.

Lemma 19. For all u ∈Mc and all formulae A, Mc, u ` A iff A ∈ u.

Proof. This is done by induction on the complexity of A.

• If A is an atomic proposition or a name, this is true by construction.

• If A = ¬B, by induction,Mc, u 6` B iff B 6∈ u. As u is maximal, B 6∈ u iff
A ∈ u and thus A ∈ u iff Mc, u ` A.

• If A = B ∨ C, Mc, u ` A iff either Mc, u ` B or Mc, u ` C iff , by
induction, either B ∈ u or C ∈ u iff, as u is maximal, B ∨ C ∈ u.

• If A = [α]B,

– Assume A ∈ u then for all v such that u Rc(α) v, B ∈ v by construc-
tion. By induction, Mc, v ` B and thus Mc, u ` A

– Assume Mc, u ` A, then if v is such that u Rc(α) v, Mc, v ` B. By
induction, B ∈ v. Assume A 6∈ u, A does not introduce additional
constraints and thus u ∪ A is consistent. This is impossible as u is
maximal. Thus A ∈ u.

Lemma 20. A is a theorem iff A is true in Mc.

145



Proof. If � A, every maximal consistent set contains A and thus, from lem-
maLemma 19, Mc, u ` A for all u ∈ Mc. Thus A is true in Mc. Otherwise,
{¬A} is consistent and, from Lemma 14, can thus be extended to a maximal
consistent set x. As x ∈Mc and A 6∈ x, Mc, x 6` A.

Lemma 21. ∀α, β, Rc(α ∪ β) = Rc(α) ∪Rc(β).

Proof. Assume uRc(α ∪ β)v and [α ∪ β]A ∈ u. Then, as u is maximal [α]A ∈ u
and [β]A ∈ u. Thus Rc(α) ∪Rc(β) ⊆ Rc(α ∪ β).

Assume neither uRc(α)v nor uRc(β)v. Then, there exists A and B such that
[α]A ∈ u, A 6∈ v, [β]B ∈ u and B 6∈ v. Then [α](A ∨B) ∈ u and [β](A ∨B) ∈ u
and thus, by maximality of u, [α ∪ β](A ∨ B) ∈ u. But A ∨ B 6∈ v thus it is
impossible that uRc(α ∪ β)v and thus Rc(α ∪ β) ⊆ Rc(α) ∪Rc(β).

Lemma 22. ∀α, β, Rc(α;β) = {(x, y)|∃z.(x, z) ∈ Rc(α) ∧ (z, y) ∈ Rc(β)}.

Proof. Assume uRc(α;β)v and [α;β]A ∈ u. Then, as u is maximal [α][β]A ∈ u.
Thus {(x, y)|∃z.(x, z) ∈ Rc(α) ∧ (z, y) ∈ Rc(β)} ⊆ Rc(α;β).

Assume uRc(α;β)v. Let Ci be the formulae in v. We define a new set of
formulae such that B0 = C0 and Bi = Bi+1 ∧Ci. We consider the set ∆ = {A :
[α]A ∈ u} ∪ {¬[β]¬Bn : n < ω}. Suppose ∆ is inconsistent. Then there are
A0, . . . , An ∈ {A : [α]A ∈ u} and i0, . . . , im such that {A0, . . . , Am,¬[β]¬Bi0 , . . . ,
¬[β]¬Bim} is an inconsistent set. Let k = max(i0, . . . , im), then {A0, . . . , Am,
¬[β]¬Bk} is inconsistent. Thus � A0 ∧ · · · ∧ Am ⇒ [β]¬Bk and thus � [α]A0 ∧
· · · ∧ [α]Am ⇒ [α][β]¬Bk. Then [α][β]¬Bk ∈ u and thus [α;β]¬Bk ∈ u
and thus ¬Bk ∈ v. As v is consistent, Bk 6∈ v which is contrary to the
definition of Bk. Thus ∆ is consistent. Thus, from Lemma 15, ∃x such
that Delta ⊆ x. Then, by definition of Mc, uRc(α)x and xRc(α)y. Thus
Rc(α;β) ⊆ {(x, y)|∃z.(x, z) ∈ Rc(α) ∧ (z, y) ∈ Rc(β)}.

Lemma 23. ∀α, β, Rc(α
−) = {(x, y)|(y, x) ∈ Rc(α)}.

Proof. Assume uRc(α
−)v. Pick A such that [α]A ∈ v. It is then impossible

that [α−]¬[α]A ∈ u thus ¬[α−]¬[α]A ∈ u. Hence A ∈ u. Therefore vRc(α)u
and thus {(x, y)|(y, x) ∈ Rc(α)} ⊆ Rc(α−).

Assume vRc(u)u. Pick A such that [α−]A ∈ u. It is then impossible that
¬[α−]¬[α]A ∈ v. Hence A ∈ v. Therefore uRc(α

−)v and thus Rc(α
−) ⊆

{(x, y)|(y, x) ∈ Rc(α)}.

Definition 7.3.11. Let M = (M,R,χ, V ) be a model and let Γ be any set of
formulae closed under sub-formulae. We define the equivalence relation ∼Γ on
M by:
s ∼Γ t iff ∀φ ∈ Γ, (M, s � φ iff M, t � φ).

We note [s]Γ the equivalence class of s with respect to ∼Γ. The structure
MΓ = (MΓ, RΓ, χΓ, VΓ) is called filtration of Mc with respect to Γ if:

• MΓ := {[s]Γ|s ∈Mc}
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• for every program α ∈ Γ, if sRc(α)t, then [s]ΓRΓ(α)[t]Γ

• for every program α ∈ Γ, if [s]ΓRΓ(α)[t]Γ, then all formulae A, [α]A ∈ s∩Γ
only if A ∈ t

• for every name in o ∈ Γ, if o ∈ s, [s]Γ ∈ χΓ(o)

• for every atomic proposition φ0 ∈ Γ, VΓ(φ0) = {[s]Γ|s ∈ Vc(φ0)}

Let’s prove that χΓ is a function. Assume o ∈ Γ, [s]Γ and [t]Γ such that
[s]Γ ∈ χΓ(o) and [t]Γ ∈ χΓ(o). Either s ∼Γ t and then [s]Γ = [t]Γ or there is
φ such that M, s � φ and M, t 6� φ. But then, s being maximal, < νMΓ >
(o u φ) ∈ s and < νMΓ > (o u ¬φ) ∈ s. This is impossible as s is consistent.
Thus #(χΓ(o)) ≤ 1. Moreover, < νMΓ

> o is consistent and thus #(χΓ(o)) = 1.
All nodes not named with names occurring in Γ can be unnamed and renamed
so that χΓ is onto.

Lemma 24. Let MΓ be the filtration of Mc with respect to a Γ. Then for each
formula A ∈ Γ and all s ∈Mc, Mc, s � A iff MΓ, [s]Γ � A.

Proof. The proof is by induction on A.

• For atomic propositions and names, this is by construction.

• If A = φ ∧ ψ, by the induction hypothesis, Mc, s � φ iff MΓ, [s]Γ � φ and
Mc, s � ψ iff MΓ, [s]Γ � ψ and thus Mc, s � A iff MΓ, [s]Γ � A.

• If A = ¬φ, by the induction hypothesis, M, s � φ iff MΓ, [s]Γ � φ and
thus M, s � A iff MΓ, [s]Γ � A.

• If A = [α]B, then:

– Assume Mc, s � A then, from Lemma 19, A ∈ s and thus, by con-
struction, B ∈ t for all t such that sRc(α)t. Then, by induction,
MΓ, [t]Γ � B. Thus, for all [t]Γ such that [s]Γ RΓ(α)[t]Γ,MΓ, [t]Γ � B
thus MΓ, [s]Γ � A

– Assume MΓ, [s] � A. Then for all t ∈Mc with sRc(α)t, MΓ, [t] � B
and thus, by induction, Mc, t � B. Thus Mc, s � A.

Lemma 25. If Γ is such that |Γ| = n, that is finite, |MΓ| ≤ 2n.

Proof. There are at most 2n equivalence classes for n formulae.

Definition 7.3.12. Let Γ be a set of formulae closed under sub-formulae. Let
M† = {MΓ, R

†, VΓ, χΓ} be a model such that, for all atomic programsπ ∈ Ψ,
[u]ΓR

†[v]Γ iff ∃u0 ∼Γ u∃v0 ∼Γ v.(u0R(π)v0).

There can actually be a lot of them as there are no conditions on programs
π 6∈ Γ.
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Lemma 26. ∀α ∈ Γ, if uRc(α)v, then [u]ΓR
†(α)[v]Γ.

Proof. This is done by induction on α.

• If α ∈ Π0, this true by construction.

• If α = β∪δ. Assume uRc(α)v then, by Lemma 21, uRc(β)v or uRc(δ)v so,
by induction, [u]ΓR

†(β)[v]Γ or [u]ΓR
†(δ)[v]Γ. In either case, [u]ΓR

†(α)[v]Γ.

• If α = β; δ. Assume uRc(α)v then, by Lemma 22, there exists x such that
uRc(β)x and xRc(δ)v so, by induction, [u]ΓR

†(β)[x]Γ and [x]ΓR
†(δ)[v]Γ

that is [u]ΓR
†(α)[v]Γ.

• If α = β−. Assume uRc(α)v then, by Lemma 23, vRc(β)u so, by induc-
tion, [v]ΓR

†(β)[u]Γ that is [u]ΓR
†(α)[v]Γ.

• If α = β∗. Assume uRc(α)v and not [u]ΓR
†(α)[v]Γ. Since M† is a model

with a finite universe, there exists B = o0 ∨ · · · ∨ on such that ∀w, B ∈ w
iff [u]ΓR

†(α)[w]Γ. In particular, B ∈ u. Moreover, as B 6∈ v, [α]B 6∈ u,
then, from (ind), [β∗](B → [β]B) 6∈ u. Thus, there exists x, y such that
uRc(β

∗)x, B ∈ x, xRc(β)y and B 6∈ y. Then, [u]ΓR
†(β∗)[x]Γ and, by

induction, [x]ΓR
†(β)[y]Γ and thus [u]ΓR

†(β∗)[y]Γ. Thus B ∈ y which is
not possible.

Lemma 27. ∀α ∈ Γ, if [u]ΓR
†(α)[v]Γ, then ∀A ∈ Γ, [α]A ∈ u ∩ ΓonlyifA ∈ v.

Proof. This is done by induction on α.

• Assume α = β ∪ δ and [u]ΓR
†(α)[v]Γ. Take any A such that [β ∪ δ]A ∈

u ∩ Γ. As Γ is closed under Fisher-Ladner conditions, [β]A ∈ u ∩ Γ and
[δ]A ∈ u∩Γ. AsM† is a model, either [u]ΓR

†(β)[v]Γ or [u]cR
†(δ)[v]Γ. By

induction, in either case, A ∈ v.

• Assume α = β; δ and [u]ΓR
†(α)[v]Γ. Take any A such that [β; δ]A ∈ u∩Γ.

Then, as Γ is closed under Fischer-Ladner conditions, [β][δ]A ∈ Γ. Since
M† is a model, there exists x such that [u]ΓR

†(β)[x]Γ and [x]cR
†(δ)[v]Γ.

By induction, [δ]A ∈ x and thus A ∈ v.

• Assume α = β− and [u]ΓR
†(α)[v]Γ. Take any A such that [β−]A ∈ u ∩ Γ.

As Γ is closed under Fischer-Ladner conditions, [β]¬[β−]A ∈ Γ. Assume
[β]¬[β−]A ∈ v ∪ Γ. As M† is a model, [v]ΓR

†(β)[u]Γ and thus, by induc-
tion, ¬[β−]A ∈ u which is impossible. Thus < β > [β−]A ∈ v and thus
A ∈ v.

• Assume α = β∗ and [u]ΓR
†(α)[v]Γ. Take any A such that [β∗]A ∈ u ∩

Γ. We prove that ∀x, y,∀i, if [x]Γ(R†(β))i[y]Γ then [β∗]A ∈ x only if
[β∗]A ∈ y by induction. The case i = 0 is trivial. Suppose the claim
holds for n, [x]Γ(R†(β))n+1[y]Γ and [β∗]A ∈ x. Then, as Γ is closed under
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Fischer-Ladner conditions, [β][β∗]A ∈ x. But then there is z such that
[x]ΓR

†(β)[z]Γ and [z]Γ(R†(β))n[y]Γ. By induction on the first hypothesis,
[β∗]A ∈ z and, by induction on the second hypothesis, [β∗]A ∈ y. AsM† is
a model, [u]ΓR

†(β∗)[v]Γ implies that there is j such that [u]Γ(R†(β))j [v]Γ
and thus [β∗]A ∈ v and thus A ∈ v.

Lemma 28. Let Γ be a finite set closed under Fischer-Ladner conditions. Then
M† is a filtration of Mc under Γ.

Proof. • MΓ := {[s]Γ|s ∈Mc} by construction

• for every program α ∈ Γ, if sRc(α)t, then [s]ΓRΓ(α)[t]Γ by Lemma 26.

• for every program α ∈ Γ, if [s]ΓRΓ(α)[t]Γ, then all formulae A, [α]A ∈ s∩Γ
only if A ∈ t by Lemma 27

• for every name in o ∈ Γ, if o ∈ s, [s]Γ ∈ χΓ(o) by construction

• for every atomic proposition φ0 ∈ Γ, VΓ(φ0) = {[s]Γ|s ∈ Vc(φ0)} by con-
struction

Lemma 29. If 6`F A then, for some finite model M, M 6� A.

Proof. Assume 6`F A then, from Lemma 20, there exists x such that A 6∈ x. We
call Γ the Fischer-Ladner closure of {A}. It is finite. We define accordinglyM†.
By Lemma 28, M† is a filtration and, by Lemma 24, M†, [x]Γ 6� A and M† is
a model.

C2PDL can be compared to other logics and it is possible to translate its
formulae into formulae of another logic. This can be used to prove decidability
of the logic in another way. For instance, Hybrid µ-Calculus[61] is known to be
decidable and can express most C2PDL formulae.

Hybrid µ-Calculus cannot express the separation between nodes in Σ1 and
Σ2, that is between nodes that currently exists and those that may be created
in the future. It is possible to use the same method used in Chapter 4 to avoid
creating and deleting nodes by having all nodes pre-exist and use a labeling
indicating those that currently do not exist and adding to the pre and postcon-
dition that nodes that do not exist do not satisfy atomic propositions and do
not have incoming or outgoing edges.

Hybrid µ-Calculus contains almost the same constructors as C2PDL . It
lacks the program closure but it allows for the µ and ν constructors. As 〈α∗〉φ
is equivalent to µx.(φ ∨ 〈α〉x), it is possible to rewrite the formulae of C2PDL
into formulae of Hybrid µ-calculus.
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7.4 Checking the applicability condition

The formula App(tag(ρ)) expresses the applicability of the rule tag(ρ). In other
words, it expresses the existence of a match of the left-hand side of tag(ρ). More
precisely App(tag(ρ)) is defined as follows:

App(tag(ρ)) = φnodes ∧ φedges
where φnodes =

∧
u∈tag(Nlhsρ )〈νΣ1〉(u ∧

∧
φ∈Ltag(lhsρ)

N (θ(u))
φ) and

φedges =
∧
e∈E|s(e)=θ(u)〈νΣ1

〉(u ∧ 〈Ltag(lhsρ)
E (e)〉tag(t(e))∧∧

e∈E|t(e)=θ(u)〈νΣ1
〉(u ∧ 〈Ltag(lhsρ)

E (e)−〉tag(s(e)).

φnodes states that the first condition of the match is satisfied i.e., all formulae
satisfied by a node of the left-hand side have to be satisfied by its image in the
graph. φedges does the same with edges: the image of an edge is labeled the
same as the edge, the image of its source is the source of its image and the image
of its target is the target of its image.

Tagging a rule may seem to reduce its applicability. Indeed, by choosing a
new name for each node of the left-hand side, the rule can now be applied only
at the nodes of the graph named accordingly. Let ρ be a rule such that LHSρ =
(Nρ = {i0, . . . in}, Eρ, Cρ,Rρ, LNρ , LEρ , sρ, tρ) is its left-hand side. In order to
prove that the application of ρ on a graph G = (NG, EG, CG,RG, LNG , LEG ,
sG, tG) is correct, one has to verify that for every match h = (hN , hE), the
postcondition is satisfied after the transformation associated with ρ is applied
at the hN (ik)’s. Instead of showing that, the verification proves that for any
graph, if the rule can be applied at the θ(u)’s, where θ is the function that
associates to each name of Σ a node of G and u ∈ tag(ρ), the postcondition is
satisfied after performing the transformation. As the u’s are fresh names, they
do not have any impact on the previous characterization of the graphs. Thus,
the validity of wp(ρ, Post) actually states that whatever the choice of θ, if the
rule can be applied, then the postcondition will be satisfied after it is applied.

Theorem 7.4.1. G |= App(tag(ρ))⇔ there exists a match h between lhsρ and
G.

Informally, the predicate NApp(s), used in the definition of the verification
conditions function vc, says that the strategy s cannot be applied. To express
NApp(s) one may wonder whether one can use the negation of App(s). The
answer is negative since App has been defined using dedicated names, that is to
say a rule is applied at a specific place defined by the added names introduced
by the function tag. Intuitively, if one wants to express that there is no match
for a rule whose left-hand side contains a cycle (say it is the second graph of
Figure 7.2), one needs to use universal quantification. For instance, in that case
it would be ∀i, j.[νΣ1](i ⇒ [R](j ⇒ [R]¬i)). One of them can be discarded to
produce the expression ∀i.[νΣ1](i ⇒ [R][R]¬i). Alas, this cannot be expressed
in C2PDL . The names only allow to express existential quantifiers. Indeed, to
express universal quantifiers, one needs to extend the logic with the binder ↓ of
hybrid logic which is enough to make the logic undecidable[4].
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To express formally NApp(s) in C2PDL , one needs to introduce some ad-
ditional definitions first.

Definition 7.4.1 (Explicitly Named Nodes, Non-Oriented Cycles). An explic-
itly named node is a node such that each disjunct of the disjunctive normal form
of its label contains a name. A non-oriented cycle, c, is a finite list of nodes
c = [n0, . . . , nk] such that (i) nk = n0 and (ii) ∀κ ∈ [0, k− 1],∃r ∈ Π0 such that
(nκ, nκ+1) ∈ R(r) or (nκ+1, nκ) ∈ R(r).

Definition 7.4.2 (Grove and thicket). A grove is a disjoint union of thickets.
A thicket is a connected graph such that it does not contain any non-oriented
cycle composed only of non explicitely named nodes. We call a strategy S relative
to a rewriting system R a grove-strategy if the left-hand sides of all the rules
appearing under a closure are groves.

Let lhs be a left-hand side. Let us split Nlhs into TE , the set of explicitly
named nodes, and TI = Nlhs\TE . For each maximally connected subgraph
composed only of nodes in TI , a distinguished node ri is selected. If there is a
maximally connected subgraph composed only of explicitly named nodes, an ri
is also picked for it. Now, everything is ready to define NApp( s).

1 NApp(ρ) =
∨
ri

[νΣ1
]NA(ri, ∅)

2 NA(n, V ) = (
∨
φ∈LN (n) ¬φ)∨ (

∨
e∈E|s(e)=n|s(e)∈TE∪(TI\V )[LE(e)]NA(t(e), V ∪

{n})) ∨
(
∨
e∈E|t(e)=n|t(e)∈TE∪(TI\V )[LE(e)−]NA(s(e), V ∪ {n})) if n 6∈ V

3 NA(n, V ) = ¬µ(n) if n ∈ TE ∩ V

4 NApp(ε) = >

5 NApp(s0 ⊕ s1) = NApp(s0) ∧NApp(s1)

6 NApp(s∗) = ⊥

7 NApp(s0; s1) = NApp(s0)

Rule 2 is the most involved. NA(n, V ) is used to describe what as to be
true for a node not to be n. V is used to track which nodes have already been
visited.

∨
φ∈LN (n) ¬φ states that there is at least one of the formulae satisfied by

n that is not satisfied while
∨
e∈E|s(e)=n|s(e)∈TE∪(TI\V )[LE(e)]NA(t(e), V ∪{n})

means that for there is a neighbor of n using an outgoing edge that cannot find
a match.

∨
e∈E|t(e)=n|t(e)∈TE∪(TI\V )[LE(e)−]NA(s(e), V ∪ {n}) has the same

signification but for incoming edges. Rule 3 is used to recall the names of the
explicitly named nodes that have already been visited without creating a cycle
in the execution. Rules 4 to 7 are exactly the same as for NApp(s,G). Rule 1
says that for at least one ri, it is not possible to find a node that would be a
match. It is noteworthy that there is no rule for N ∈ TI ∩ V . This is because
no such would need it as the left-hand side has to be grove.
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A B A B A

Figure 7.2: These two graphs are indistinguishable without names

Theorem 7.4.2. G |= NApp ↔ there does not exist a match h between lhsρ
and G.

Example 7.4.1. The rules of the sudoku example are really simple, having
only one-node left-hand side, and thus not very interesting as far as NApp is
concerned. We will thus consider the rule, say ρ, of Figure 8.2. There is only
one connected subgraph so one has to pick one distinguished node r0. Let us
choose, randomly, the node j as r0. Then NApp(ρ) = [νΣ1

]NA(j, ∅). As j is
not explicitly named, NA(j, ∅) = ¬B ∨ [β]NA(k, {j}) ∨ [α−]NA(i, {j}). As i
is not explicitly named either, NA(i, {j}) = ¬A as the only neighbor of i is j.
Finally, NA(k, {j}) = [β∗]¬C as the only neighbor of k is j. Thus NApp(ρ) =
[νΣ1

](¬B ∨ [β][β∗]¬C ∨ [α−]¬A).

7.5 Application to the hospital

We now illustrate how a graph rewriting system is proven correct in C2PDL . In
this example, illustrated in Figure 7.3, the second transformation that creates a
new patient. It also creates a folder to go with it and assigned to a physician. For
the sake of simplicity none of the precondition, postcondition and invariant fea-
ture all the properties that are required in Section 3.3. The chosen precondition
is (〈νΣ2

〉.pa1)∧(〈νΣ2
〉 fo1)∧(〈νΣ1

〉( ph1∧PH))∧([νΣ1
](PA∨MS)⇒ PE) that

can be read as ph1 is an existing physician, pa1 and fo1 do not currently exist
and all patients and medical staffers are persones. The chosen postcondition
is (〈νΣ1

〉.(pa1∧〈is about−〉 fo1∧〈 ref phys〉( ph1∧PH)) ∧ ([νΣ1 ](PA∨ MS) ⇒
PE) that means that fo1 now exists and that it is about pa1 that currently
exists too and whose referent physicien is ph1. In addition, patients and medical
staffers are still persons.

Let us now check that the specification (Pre,s,Post) is correct. The cor-
rectness formula is (Pre ⇒ wp(s, Post)) u vc(s, Post). As s is only one rule,
wp(s, Post) = App(tag(ρ)) ⇒ wp(tag(αρ, Post) and vc(s, Post) = >. Thus
the correctness formula is Pre u App(tag(ρ)) ⇒ wp(tag(αρ, Post)). As we
only use one rule, tag is the identity. Thus App(tag(ρ)) = 〈νΣ1〉(i∧PH∧
ph1∧〈works in〉j.

Let us now focus on wp(tag(αρ, Post))] that is Post[αρ]. We will now look
at the actions performed and how Post is modified.

• hospital in never occurs in Post and thus Post is left unaffected by
[hospital in:= hospital in+(k, j)]
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Pre: (〈νΣ2〉pa1) ∧ (〈νΣ2〉 fo1) ∧ (〈νΣ1〉( ph1∧PH)) ∧ ([νΣ1 ](PA∨ MS)⇒ PE)

i : {ph1, PH} j
works in

new node(k); pa1:= k;

PA:= PA + k; PE:= PE + k;

new node(l); fo1:= l; FO:= FO + l;

new edge(i,k); new edge(l,k)

new edge(i,l); new edge(k,j)

new edge(k,i)treats:= treats + (i, k);

ref phys:= ref phys + (k, i)

is about:= is about + (l, k);

read access:= read access + (i, l);

write access:= write access + (i, l);

hospital in:= hospital in + (k, j)

Post: (〈νΣ1
〉.(pa1∧〈is about−〉 fo1∧〈 ref phys〉( ph1∧PH))

∧([νΣ1
](PA∨ MS)⇒ PE)

Figure 7.3: An example using the second transformation

• write access never occurs in Post and thus Post is left unaffected by
[write access:= write access+(i, l)]

• read access never occurs in Post and thus Post is left unaffected by
[read access:= read access+(i, l)]

• is about occurs in 〈is about−〉 fo1. It is replaced by
〈 is about− ∪ (k?); νΣ1

; (l?)〉 fo1

• ref phys occurs in 〈ref phys〉(ph1∧ PH). It is replaced by
〈 ref phys∪k?; νΣ1

; i?〉(ph1∧ PH)

• treats never occurs in Post and thus Post is left unaffected by [treats:=
treats+(i, k)]

• None of the new edge substitutions affects Post

• FO never occurs in Post and thus Post is left unaffected by [FO:= FO+l]

• fo1 occurs in 〈(k?);is about−; (l?)〉 fo1. It is replaced by 〈 is about− ∪
(k?); νΣ1 ; (l?)〉l. It can also be rewritten as 〈 is about−〉l∨ 〈k?νSigma1〉l as
〈φ?〉ψ is equivalent to φ ∧ ψ.

• All occurrences of νΣ1
in Post are replaced by νΣ1∪{l} due to [new node(l)]
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• PE occurs in [νΣ1∪{l}(PA∨ MS) ⇒PE. It is replaced by [νΣ1∪{l}(PA∨
MS)⇒ (PE∨k).

• PA occurs in [νΣ1∪{l}(PA∨ MS)⇒ (PE∨k). It is replaced by
[νΣ1∪{l}](PA∨k∨ MS)⇒ (PE∨k).

• pa1 occurs in 〈νSigma1∪{l}〉 pa1∧φ. It is replaced with 〈νSigma1∪{l}〉k ∧ φ.

• All occurrences of νΣ1∪{l} in Post are replaced by νΣ1∪{k}∪{l} due to
[new node(k)]

We thus now have to prove that Pre ∧ App(tag(ρ)) ⇒ ((〈νΣ1∪{k}∪{l}〉k ∧
(〈is about−〉l ∨ 〈k?νΣ1∪{l}∪{k}〉l) ∧ 〈 ref phys∪k?; νΣ1∪{l}∪{k}; i?〉(i∧ph1))∧
[νΣ1∪{l}∪{k}](PA∨k∨ MS)⇒ (PE∨k)).

Let us work with [νΣ1∪{l}∪{k}](PA∨k∨ MS) ⇒ (PE∨k)). As Pre ⇒
[νΣ1 ](PA∨k∨ MS)⇒ (PE∨k)), only k and l actually interest us. k appears on
both sides of the implication and l, not existing from Pre, cannot be labeled
with PA or MS.

Let us deal with the first part now. 〈νΣ1∪{k}∪{l}〉k is trivially true. So
is, 〈νΣ1∪{k}∪{l}〉k ∧ 〈k?νΣ1∪{k}∪{l}〉l as k and l are in Σ1 ∪ {k} ∪ {l}. Finally
the same can be said for 〈νΣ1∪{k}∪{l}〉k ∧ 〈k?νΣ1∪{k}∪{l}; i?〉(PH∧ ph1) as it is
known from App(tag(ρ)) that 〈νΣ1〉i∧PH∧ ph1.

This transformation is thus correct.

7.6 Conclusion

In this chapter, we discussed another logic that can be used to describe graphs
and their transformations. C2PDL is an extension of dynamic logic that allows
the use of more complex programs (namely converse), the use of nominals to
uniquely identify nodes and a mechanism to handle nodes that do not currently
exist.
C2PDL allowed us to present an alternative logic to Description Logics as

a possible choice to express graph properties and prove programs correct. It
also gave us a better insight on what the conditions that were introduced in
Chapter 5 imply as we have shown additional condition that rules that appear
in closure strategies have to satisfy. Finally, and most importantly, C2PDL
allowed us to express reachability properties which are key in graph descriptions
and transformations.

We proved that C2PDL satisfies the conditions that we introduced is Chap-
ter 5. It can express graph properties, it is closed under substitutions, for the
actions that were introduced, it can express the application conditions given
that restrictions on the left-hand sides of rules are enforced and its validity
problem is decidable. We also gave an example proof for the running example
of how to prove, intuitively, that a specification is correct.
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Chapter 8

Graph Rewriting Systems

As explained in Section 1.3, imperative programming languages are far from
being the only option to create graph transformations. In this chapter, the
notion of logically decorated rewriting systems, LDRS, is introduced. It is the
same as the one introduced in [14].

Simply told, a rewriting rule has two components: a left-hand side, some-
times called head of the rule, and a right-hand side, sometimes called body of
the rule. The left-hand side of the rule is a graph that contains the nodes that
the rule intends to modify while the right-hand side contains the actions are
performed. In Section 8.1, the formal definition of a rule is given. Obviously,
using just one rule does not provide much transforming power. LDRS’s are sets
of rules that are used to modify a graph. LDRS’s are defined in Section 8.1 too.

The LDRS’s that we use are extensions of graph rewriting systems as de-
fined in [25] where graphs are attributed with logic formulae. In Section 8.1,
details are given why the ability to use formulae as attributes is important.
Among other things, it allows to express much more clearly and concisely trans-
formations. The left-hand sides of the rules are thus logically decorated graphs
whereas the right-hand sides are defined as sequences of atomic actions. These
actions constitute the set of elementary transformations used in graph transfor-
mation processes as defined in Section 1.3.

Obviously, the rules that are used cannot refer to the actual graph that is
modified. In order to find the pattern of the left)hand side of a rule inside an
actual graph, matches are used. A match is a pair of functions (fN , fE) that
associates to each node of the left-hand side a node of the actual graph and to
each edge an edge of the actual graph. The match also checks that attributes
of the elements of the left-hand side, both nodes and edges, correspond to the
ones of the matched elements. The formal definition of a match is given in
Section 8.2. Once each node and each edge of the left-hand side is matched
to an element of the actual graph, the actions can be performed. Each action
that should modify a node or an edge of the left-hand side modifies actually the
image of that element by the match in the actual graph.

Now that it is clearer how to apply a rule, one needs to understand how the
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GRS0 GRS1

i : S R := R+ i

i : R j R := R+ j

i : ¬R del node(i)

i : [r−∗]¬S del node(i)

ρ00 :

ρ01 :

ρ02 :

ρ1 :

Figure 8.1: Two LDRS dealing with the suppression of unreachable nodes.
Rules with atomic formulae are on the left. The rule with a non-atomic formula
is on the right.

LDRS’s modify graphs. An approach could be to choose to apply any rule for
which a match can currently be found. This approach actually restricts drasti-
cally the power of the user as she is not able to tailor the application of the rules
to its specific needs at a given point in the application of the transformation. A
more suitable and adaptable approach is to define strategies that explain how
the rules are to be applied. Strategies are formally introduced in Section 8.2
and examples are provided to help the reader grasp more easily how they work.

8.1 Graph Rewriting Systems

In this section, we introduce formally the notion of rewriting rule and of LDRS.

Definition 8.1.1 (Rule, LDRS). A rule ρ is a pair (LHS,α) where LHS, called
the left-hand side, is an attributed graph with C2PDL formulae as attributes and
α, called the right-hand side, is an action. Rules are usually written LHS → α.
A logically decorated rewriting system, LDRS, is a set of rules.

It is noteworthy that the left-hand side of a rule is an attributed graph,
that is it can contain nodes labeled with formulae. Once more, let us consider
any possible logic. The ability to label nodes in rules with formulae is not in-
significant. Indeed, these formulae can express reachability expression (closure
of a program), non-local properties (universal program), ... These node label-
ings allow to write more concise and simpler rewriting systems. For instance,
Figure 8.1 provides an example in which one wants to remove all unreachable
nodes from a start state from an automaton. Two LDRSs, GRS0 and GRS1,
for this problem are given. Without the closure constructor, one would point
out that the start states are reachable (rule ρ00), then say that every neighbor
of a reachable node is reachable (rule ρ01) and finally that all nodes that have
not been reached by applying the first two rules as much as possible are to be
removed (rule ρ02). GRS0 requires the explicit computation of the reachability
making the algorithm more complex. On the other hand, GRS1 only uses the
one rule that says that all nodes that are not reachable from a start state are
to be removed (rule ρ10).
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i : A j : B k :< D∗ > C
e0 e1

γ := γ + e1;β := β − e1;

Figure 8.2: An example of LDRS where the first β after an α on a path toward
a C becomes a γ. The dashed line represent the program α and the plain line
the program β.

It is worth noting that the impact of formulae in node labels is not limited
to graph rewriting. Indeed, let us consider the term-rewriting system of integer
arithmetic with multiplication. The classical way to deal with 0s in such a case is
to have rules saying that 0×x 0 and x×0 0. A wrong heuristic could lead to
considerable calls in the case of a term like a0×· · ·×ak×0×ak+1×· · ·×an where
the ais are terms. Considering terms as trees, and thus as graphs, it is possible to
improve on this set of rules by using the one rule i : ×∧〈((L∪R);×?)∗〉0 i : 0
saying that a node i such that i : × ∧ 〈((L ∪ R);×?)∗〉0, that is a node such
that it is a multiplication (i : ×) and there is a path of left- or right-operands
of multiplications that leads to a 0 (i : 〈((L ∪R);×?)∗〉0), rewrites to 0.

Example 8.1.1. Let us now give a small example of a slightly more involved
rule in Figure 8.2. One possible interpretation would be that it is required to
change the access policy in order to restrict acces to certain places. Once more,
this can be done using several different rules instead of the one. For instance,
a way to deal with that problem would be to label all nodes that access through
paths composed only of edges labelled β a node labelled D in a first time. Then
select those nodes labelled D that have an incoming edge labelled α and remove
from all the outgoing edges of these nodes the label β and add the label γ.

Rules allow to define more involved actions than atomic ones. Their power
is still limited, in order to produce more interesting transformations, strategies,
introduced in Section 8.2, are used. Nonetheless, up to now, each example was
made of one single rule. In general, rewriting systems contain many more rules
that are correspond to different actions.

Example 8.1.2. As a more thorough example, let us provide a very simple graph
rewriting system R that tries to produce a full and correct grid for sudoku. It
contains 16 rules, that are summarized in Figure 8.3. The graph is defined such
that all nodes correspond to one of the cells of the grid. The graph alphabet is
({P1, P2, P3, P4, 1, 2, 3, 4}, {R,C, SQ}). A node is labelled Pi’s if i is considered
a possible value for this cell of the grid. Meanwhile, a node is labelled i if i
is known to be the value of this cell. Edges are never modified and define the
relations between the cells. All cells on the same row are linked, from left to
right, with edges labelled R, all cells on the same column are linked, from top
to bottom, with edges labelled C and the top left cell of each square is linked
to each other cell of the square via edges labelled SQ. The rules ρR,J make
sure that when a line (resp. a column or a square) contains a cell with value J
(i : 〈(r ∪ r−)∗〉J), PJ is no longer available for all the cells on the line (resp.
column or square). The rules ρJ are used to pick one choice among those that
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i : PJ ∧ 〈(r ∪ r−)∗〉J PJ := PJ − i

i : PJ J := J + i;P1 := P1 − i;P2 := P2 − i;P3 := P3 − i;P4 := P4 − i

ρr,J :

ρJ :

Figure 8.3: A summary of the rules of R. In ρr,J , r must be replaced by either
R, C or SQ and J by 1, 2, 3 or 4. In ρJ , J must be replaced by 1, 2, 3 or 4

are available, namely J . It also removes all the possible choices are the value is
now known.

Example 8.1.3. We will use C2PDL to state some properties of the Sudoku
example. We are going to use a name for each cell of the grid (aij with 0 ≤
i, j ≤ 3 where i is the row and j the column in which the cell can be found).
We will also use three atomic programs R (resp. C and SQ) to state which
cells are on the same row (resp. column and square). Finally, we will need
eight atomic propositions 1 (resp. 2,3 and 4) and P1 (resp. P2,P3 and P4)
to state that a cell is known to contain 1 (resp. 2, 3 or 4) and that a cell
may contain 1 (resp. 2, 3 or 4). Thus we require that {aij |i, j ∈ [0, 3]} ⊂ Σ,
{i|i ∈ [1, 4]}∪{Pi|i ∈ [1, 4]} ⊂ Φ0 and {R,C, SQ} ⊂ Π0. As we do not create or
delete nodes, we do not make use of the possibility to change the set of definition
of the total program. For this example, ν stands for νΣ1

.
We define below a few relevant formulae.

• The atomic program C should describe columns :
cj = 〈ν〉(a0j ∧ 〈C〉(a1j ∧ 〈C〉(a2j ∧ 〈C〉a3j))) for j ∈ [0, 3]. cj describes
the successive elements of a column.
cj = 〈ν〉(a0j ∧ [C](a1j ∧ [C](a2j ∧ [C](a3j ∧ [C]⊥)))) for j ∈ [0, 3]. cj
says that there are no more elements in a column than those specified by
cj. Thus a column is specified by cj ∧ cj.

• A cell should contain, at most, one value: uI,J = [ν](I ⇒ ¬J) for I, J ∈
[1, 4], I 6= J and there is no doubt about it (e.g., Once a cell is assigned the
value I, it is no longer a candidate for any future potential assignement
PJ): uI,J = [ν](I ⇒ ¬PJ) for I, J ∈ [1, 4]

• If a cell has a value J , J cannot be the value of any other cell on the same
row, column or square vr,J = [ν](J ⇒ (([r][r∗]¬J) ∧ ([r−][r−∗]¬J))) for
J ∈ [1, 4] and r ∈ {R,C, SQ}.

Example 8.1.4. Finally, let us come back to the running Hospital example.
Figure 8.4 contains one rule for each of the actions defined in Section 3.3.

One can observe that the rules of Example 8.1.4 differ slightly in their defi-
nition from what has been introduced in Definition 8.1.1 in that the rules have
parameters, for instance ph1 and d1 for New Phys. This is actually due to a
difference in the purpose of the transformations. In Example 8.1.1, the trans-
formation is purely structural: one wants to change not a specific location but
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i : {d1, DE}

Transformation 1:

New Ph[ph1,d1]:

new node(j); ph1:= j; PH:= PH + j;

MS:= MS + j; PE:= PE + j;

new edge(e,j,i);

works in:= works in + e;

i : {ph1, PH} j
works in

Transformation 2:

New Pa[pa1,ph1,fo1]:

new node(k); pa1:= k;

PA:= PA + k; PE:= PE + k;

new node(l); fo1:= l; FO:= FO + l;

new edge(e0,i,k); new edge(e1,l,k)

new edge(e2,i,l); new edge(e3,k,j)

new edge(e4,k,i);treats:= treats + e0;

ref phys:= ref phys + e4

is about:= is about + e1;

read access:= read access + e2;

write access:= write access + e2;

hospital in:= hospital in + e3

i : {pa1, PA} j
hospital in

e
hospital in:= hospital in - e

Transformation 3:
Del Pa[pa1]:

i : {ph1, PH} j

k : {ph2, PH}

works in
e

works in

Transformation 4:

Del Ph[ph1,ph2]:
works in:= works in - e;

i�in k; i�out k

Figure 8.4: Transformation rules for the sample hospital model
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all the accesses so that they are safer. Similarly, the goal of Example 8.1.2 is to
globally affect the grid so that it becomes filled. On the other hand, in Exam-
ple 8.1.4, the action are specific to a given set of individuals that are not chosen
a priori by the programmer but will be selected depending on the use case. The
definition of a rule is thus slightly modified.

Definition 8.1.2 (Parametrized Rule). A parametrized rule ρ[~c] is a pair
(LHS,α) where LHS, called the left-hand side, is an attributed graph with
C2PDL formulae as attributes and α, called the right-hand side, is an ac-
tion. ~c is a vector of atomic concepts that are used to identify individuals. They
can occur in the left-hand side to select a given individual or in the right-hand
side to be set to be satisfied by a new element.

8.2 The problem of the match

Now that it has been made clear what rules are, one should consider how to
apply them. This is done through a match that scans the graph under study to
check wether or not there exists a set of nodes that match with the left-hand
side of a rule.

Definition 8.2.1 (Match). A match h between a left-hand side LHS and a
graph G is a pair of functions h = (hN , hE), with hN : NLHS → NG and
hE : ELHS → EG such that:

1. ∀n ∈ NLHS ,∀c ∈ LNLHS (n), hN (n) |= c

2. ∀e ∈ ELHS , LELHS (e) = LEG(e)

3. ∀e ∈ ELHS , sG(hE(e)) = hN (sLHS(e))

4. ∀e ∈ ELHS , tG(hE(e)) = hN (tLHS(e))

The third and the fourth conditions are classical and say that the source
and target functions and the match have to agree. The first condition says
that for every node n of the left-hand side, the node to which it is associated,
h(n), in G has to satisfy every concept that n satisfies. This condition clearly
expresses additional negative and positive conditions which are added to the
“structural” pattern matching. The second one ensures that the match respects
edge labeling.

Definition 8.2.2 (Rule application). A graph G rewrites to graph G′ using a
rule ρ = (LHS,α) iff there exists a match h from LHS to G. G′ is obtained
from G by performing actions in h(α)1. Formally, G′ = G[h(α)]. We write
G→ρ G

′ or G→ρ,h G
′.

1h(α) is obtained from α by replacing every node name,n, of LHS by h(n).
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Confluence of graph rewriting systems is not easy to establish. For instance,
orthogonal graph rewrite systems are not always confluent, see e.g.,[25]. That
is why we use a notion rewrite strategies to control the use of possible rules.
Informally, a strategy specifies the application order of different rules. It does
not ensure confluence, however. It does not point to where the matches are to be
found and it contains a choice constructor that is inherently non-confluent. This
is not a problem as scores of interesting rewriting problems are non-confluent.

Definition 8.2.3 (Strategy). Given a graph rewriting system R, a strategy is
a word of the following language defined by s:
s := ε (Empty strategy) ρ (Rule) s; s (Composition)

s⊕ s (Choice) s∗ (Closure)
where ρ is any rule in R.

We write G ⇒S G′ when G rewrites to G′ following the rules given by the
strategy S.

Informally, the strategy ”ρ1; ρ2” means that rule ρ1 should be applied first,
followed by the application of rule ρ2. The strategy ”ρ∗0; (ρ1 ⊕ ρ2)” means that
rule ρ0 is applied as far as possible, then followed either by ρ1 or ρ2. It is worth
noting that the closure is the standard “while” construct: if the strategy we
use is s∗, the strategy s is used as long as it is possible and not an undefined
number of times.

Example 8.2.1. For the sudoku example introduced in Example 8.1.2, a possible
strategy S1 could be: “As long as one can eliminate possibilities, do it. Then,
when it is no longer the case, make a choice in one of the blank cells and go
back to the first step”. S1 may be defined as S1 = ((

⊕
r∈{R,C,SQ},J∈[1,4] ρr,J)+;

(
⊕

J∈[1,4] ρJ))∗ where s+ stands for s; s∗.

In Figure 8.5, we provide the rules that specify how strategies are used to
rewrite a graph. For that we use the following two litterals: App(s, G) which
holds whenever graph G can be rewritten by the strategy s whereas NApp(s, G)
holds whenever graph G cannot be rewritten by strategy s. These litterals are
defined below
App(ρ,G) = > iff there exists a match h from the left-hand side of ρ to G
App(ε,G) = > App(s0 ⊕ s1, G) = App(s0) ∨App(s1)
App(s∗0, G) = > App(s0; s1, G) = App(s0)

It is worth noting that App(s,G) is not meant to denote that the whole
strategy can be applied to G, just that the next step can be applied. Indeed,
let’s assume the strategy s = (s0; s1)∗; s2 where s0 can be applied but may yield
a state where s1 cannot. App(s) says that the strategy can be applied which is
what we want as the fact that s0 may yield a state where s1 cannot be applied
indicates a shortcoming of the programmation (such should not be the case)
and the program will be considered incorrect. NApp is defined as ¬App.

In addition, App(ρ[~c]) must be defined in L. Obviously, this depends im-
mensely on the rules one wants to use. It is thus possible, for a given problem,
to use a logic that may not be powerful enough for other problems. Nonethe-
less, one of the requirements this entails on L is that it must allow some kind
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G⇒ε G
(Empty rule)

App(ρ,G) G→ρ G
′

G⇒ρ G
′ (Rule)

G⇒s0
G′′ G′′ ⇒s1

G′

G⇒s0;s1
G′

(Strategy composition)

G⇒s0
G′

G⇒s0⊕s1 G
′ (Choice left)

G⇒s1
G′

G⇒s0⊕s1 G
′ (Choice right)

NApp(s,G)

G⇒s∗ G
(Closure false)

G⇒s G
′′ G′′ ⇒s∗ G

′ App(s,G)

G⇒s∗ G
′ (Closure true)

Figure 8.5: Strategy application rules

of existential quantification so that the graph can be traversed to look for a
match. Obviously, the ∃-quantifier of first-order logic is a prime candidate but
some other mechanisms like individual assertions a : C in Description Logics[5]
or the @ operator of hybrid logic[4] can be used.

Requirement 5. L must be able to express App(ρ[~c]) for all rules ρ[~c] of the
graph rewrite system under study.

8.3 Hoare calculus

As previously, in order to show the correctness of a specification, we follow a
Hoare-calculus style and compute the weakest precondition wp(S, Post). For
that, we define the weakest preconditions of a formula Post induced by a strat-
egy, a rule, an action and an atomic action. The weakest precondition of
an elementary action, say a, and a postcondition Q is once again defined as
wp(a,Q) = Q[a] where Q[a] stands for the precondition consisting of Q to
which is applied a substitution induced by the action a that we denote by [a].
The rules for atomic actions are the same as the ones in Figure 5.1. The weakest
precondition calculus is presented in Figure 8.6 for actions and strategies.

wp(ε, Q) = Q wp(a;α, Q) = wp(a,wp(α,Q))
wp(ε, Q) = Q wp(s0; s1, Q) = wp(s0, wp(s1, Q))
wp(s0 ⊕ s1, Q) = wp(s0, Q) ∧ wp(s1, Q) wp(s∗, Q) = invs
wp(ρ, Q) = App(tag(ρ))⇒ wp(tag(αρ), Q)

Figure 8.6: Weakest preconditions for strategies. ε appears twice for the empty
list of actions and the empty strategy.

Apart from wp(ρ, Q), the weakest preconditions defined in here are the usual
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i : {ia, PJ} addC(ia, J); delC(ia, P1); delC(ia, P2); delC(ia, P3); delC(ia, P4)tag(ρJ) :

Figure 8.7: The rule ρJ is modified into tag(ρJ) with tag(i) = ia

ones. As in any other framework using Hoare logic, it requires the definition of
an invariant for each loop that has to be provided by the user.

The weakest precondition of a rule ρ = (lhsρ, αρ) and a postcondition Q is
given by wp(ρ, Q) = App(tag(ρ))⇒ wp(tag(αρ), Q) where tag : Nlhsρ → Σ is a
function which associates to every node, n, of the left-hand side of rule ρ, a fresh
name in Σ. These new names are used to keep track of the matching locations
within potential graphs rewritten by different instances of ρ during the execution
of a strategy. tag(ρ) = (tag(lhsρ), tag(αρ)) where tag(lhsρ) is a named graph
which consists of the graph lhsρ where the node labeling function is augmented
by tag, i.e., for all nodes, n, of lhsρ, LNtag(lhsρ)

(n) = LNlhsρ (n)∪tag(n). tag(αρ)

is obtained from αρ by substituting every node (in Nlhsρ), say i, by tag(i).
Fig.8.7 gives an example turning the left-hand side of a rule into a named graph
via a function tag.

The formula App(tag(ρ)) expresses the applicability of the rule tag(ρ). In
other words, it expresses the existence of a match of the left-hand side of tag(ρ).

Tagging a rule may seem to reduce its applicability. Indeed, by choosing
a new name for each node of the left-hand side, the rule can now be applied
only at the nodes of the graph named accordingly. Let ρ be a rule such that
LHSρ = (Nρ = {i0, . . . in}, Eρ, Cρ,Rρ, LNρ , LEρ ,
sρ, tρ) is its left-hand side. In order to prove that the application of ρ on a graph
G = (NG, EG, CG,RG, LNG , LEG , sG, tG) is correct, one has to verify that for
every match h = (hN , hE) (as defined in Definition 8.2.1), the postcondition is
satisfied after the transformation associated with ρ is applied at the hN (ik)’s.
Instead of showing that, the verification procedure proves that for any graph, if
the rule can be applied at the θ(u)’s, where θ is the function that associates to
each name of Σ a node of G and u ∈ tag(ρ), the postcondition is satisfied after
performing the transformation. As the u’s are fresh names, they do not have
any impact on the previous characterization of the graphs. Thus, the validity
of wp(ρ, Post) actually states that whatever the choice of θ is, if the rule can
be applied, then the postcondition will be satisfied after it is fired.

The weakest precondition associated to the closure of a strategy, say s∗, and
a postcondition Q is defined as wp(s∗, Q) = invs where invs is an invariant
associated to the strategy s. Roughly speaking s∗ could be seen as a while-loop
which needs invariants associated with additional proof obligations defined by
means of the function vc (verification conditions) given in Figure 8.8.

These definitions allow us to generate once more the formula Corr which we
have to prove valid.
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vc(ρ, Q) = > vc(s0; s1, Q) = vc(s0, wp(s1, Q)) ∧ vc(s1, Q)
vc(s0 ⊕ s1, Q) = vc(s0, Q) ∧ vc(s1, Q)
vc(s∗, Q) = (invs ∧NApp(s)⇒ Q) ∧ (invs ⇒ wp(s, invs)) ∧ vc(s, invs)

Figure 8.8: Verification conditions

8.4 Conclusion

In this chapter, we introduced a transformation framework using rewrite rules
and strategies. This is an approach that looks closer to the rewrite systems
used in category theory yet with a more algorithmic flavour. Among its most
interesting features, this frameworks allows to introduce explicit conditions on
edge and node labels. It allows more flexibility on the side of the user.

As usual when using rewrite rules, the key to the transformations lies in
the finding of a match. This introduces a new condition on the logic: in order
to be able to prove the correctness of a rewrite system, a logic has to be able
to express the existence of a match. This condition is the counterpart of the
condition on the expressibility of the select that was introduced in Chapter 4.

Moreover, the user usually has a clear understanding of what transforma-
tions should be performed and simply applying any rule for which there is a
match could yield many results that are unwanted. To tackle this problem,
strategies are introduced to reduce the possible transformations to the ones
that are intended.
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Chapter 9

First-order logic and (some
of) its fragments

Up to this chapter, several different logics have been featured that we deemed
interesting to describe graphs and their transformations be them Description
Logics, as in Chapter 6, or the logic we introduced in Chapter 7 that is closer to
dynamic logics and thus allows more flexibility in term of edge description. For
all these logics, we have observed that being able to express the applicability of
the rules was the harshest condition that we would like to impose on them. This
comes as no surprise as the definition of the match is a second-order formula
with quantification on node and edge labels.

It is possible to express the existence or absence of a match in first-order
logic though. In this chapter, we thus start by proving that first-order logic
meets all the requirements that we have put forward. Except that it is not
decidable.

In order to enquire a little further the condition on the expressibility of
the existence or absence of match, we study in this chapter two well-known
fragments of first-order logic that are known to be decidable yet close to the
boundary with undecidable logics. The first logic we study is C2[34], the two-
variable fragment of first-order logic with counting. This logic has been proven
decidable yet, even when dropping the counting quantifiers, equality and con-
stants, adding a third variable yields an undecidable logic[63]. This is a logic
that is particularly interesting in that it contains all the Description Logics we
considered extended with much more expressiveness in terms of edge descrip-
tions. Its main shortcoming is, obviously, that it allows only for two variables
and thus limits the graphs that can be described. The second logic we con-
sider is ∃∗∀∗[16], that is the fragment of first-order logic that contains, when
written in prenex normal form, only formulae with every existential quantifiers
preceding every universal quantifiers. These logics have been used in [12].

We prove that these logics are closed under substitutions, by proving that
first-order logic is and showing that the translation used in that case can be
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applied to these sub-logics, but focus much more on the fact that they can
express the applicability of a rule provided that, different, restrictions on the
rules are enforced. This, in turn, gives more insight on whether or not they are
suitable for any given system of rules whose correctness one is interested in.

None of these three logics comes with a mechanism to create or remove
elements. In order to circumvent this limitation, we add to the signature of
the logic, that is to the set of node and edge labels, an atomic formula Active.
Creating a new node becomes adding it to the Active nodes. This also requires
to add that ∀x, y.¬Active(x)⇒ (

∧
ψ an atomic unary predicate ¬ψ(x) ∧∧

r an atomic binary predicate ¬r(x, y) ∧ ¬r(y, x)).

9.1 First-order logic

First-order logic, FO, is a natural choice when one needs to pick a logic and
verification of graph transformations is not an exception. Yet, it is far from
perfect. First, it is not decidable and it thus goes against our stated goal to
be able to fully automatize the decision procedure. The other thing one has to
remember is that first order logic does not allow for parametrized quantifiers
and thus one has to use the trick presented in Chapter 4 to avoid creating and
deleting nodes instead adding a label Active that identifies the nodes that do
exist and stating that nodes that are not labeled as existing cannot be labeled
and have neither incoming or outgoing edges. With this limitation, one can then
prove that FO is a suitable logic for the verification of graph transformations.

Theorem 9.1.1. FO is closed under substitutions.

Proof. Let c, c′ be unary predicates, r be binary predicates, i, j be nominals,
φ, ψ be formulae, σ an atomic action. We consider whether or not a formula is
satisfiable at a node n,

• (∃x.φ)[σ])  ∃x.(φ[σ]) as the substitutions do not modify the existence
or not of a node.

• (φ∧ψ)[σ] φ[σ]∧ψ[σ] as if φ∧ψ is satisfied after performing σ, so must
be φ and ψ and the other way round.

• (¬φ)[σ]  ¬(φ[σ]) as if φ is not satisfied after performing σ, it is not
possible that φ be satisfied after performing σ.

• >[σ] > as no matter what action is performed, > is satisfied.

• c′(x)[c := φ] c′(x) as the valuation of c′ is left untouched.

• c(x)[c := φ] φ(x) as the cI
′

after performing c := φ is φI .

• c′(x)[c := i] c′(x) as the valuation of c′ is left untouched.

• c(x)[c := i] i(x) as the cI
′

after performing c := i is iI .
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• c′(x)[c := c+ i] c′(x) as the valuation of c′ is left untouched.

• c(x)[c := c+ i] c(x)∨ i(x) as the cI
′

after performing c := c+ i is cI ∪ iI .

• c′(x)[c := c− i] c′(x) as the valuation of c′ is left untouched.

• c(x)[c := c − i]  c(x) ∧ ¬i(x) as the cI
′

after performing c := c − i is
cI\iI .

• c(x)[r := (i, j)] c(x) as the valuation of c is left untouched.

• c(x)[r := α] c(x) as the valuation of c is left untouched.

• c(x)[r := r + (i, j)] c(x) as the valuation of c is left untouched.

• c(x)[r := r − (i, j)] c(x) as the valuation of c is left untouched.

• c(x)[new(i)] c(x) for c 6= Active as the valuation of c is left untouched.

• Active(x)[new(i)] Active(x) ∨ i(x) as the valuation of Active becomes
cI ∪ iI .

• c(x)[del(i)] c(x) ∧ ¬i(x) as cI
′

= cI\iI .

• c(x)[i�in j] c(x) as the valuation of c is left untouched.

• c(x)[i�out j)] c(x) as the valuation of c is left untouched.

• r(x, y)[c := i] r(x, y) as the valuation of r is left untouched.

• r(x, y)[c := φ] r(x, y) as the valuation of r is left untouched.

• r(x, y)[c := c+ i] r(x, y) as the valuation of r is left untouched.

• r(x, y)[c := c− i] r(x, y) as the valuation of r is left untouched.

• r′(x, y)[r := (i, j)] r′(x, y) as the valuation of r′ is left untouched.

• r(x, y)[r := (i, j)] i(x) ∧ j(y) as the valuation of r becomes {iI , jI}.

• r′(x, y)[r := α] r′(x, y) as the valuation of r′ is left untouched.

• r(x, y)[r := α] α(x, y) as the valuation of r becomes αI .

• r′(x, y)[r := r + (i, j)] r′(x, y) as the valuation of r′ is left untouched.

• r(x, y)[r := r + (i, j)] r(x, y) ∨ (i(x) ∧ j(y)) as rI
′

is rI ∪ (iI , jI).

• r′(x, y)[r := r − (i, j)] r′(x, y) as the valuation of r′ is left untouched.

• r(x, y)[r := r − (i, j)] r(x, y) ∧ (¬i(x) ∨ ¬j(y)) as rI
′

is rI\(iI , jI).

• r(x, y)[new(i)] r(x, y) as the valuation of r is left untouched.

• r(x, y)[del(i)] r(x, y)∧¬i(x)∧¬i(y) as rI
′

= rI\{(a, b)|a ∈ iI or b ∈ iI}.
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• r(x, y)[i�in j] (r(x, y)∧¬i(y))∨(r(x, i)∧j(y)) as rI
′

= rI∪{(a, j)|(a, i) ∈
rI}\{(a, i) ∈ rI}.

• r(x, y)[i �out j)]  (r(x, y) ∧ ¬i(x)) ∨ (r(i, y) ∧ j(x)) as rI
′

= rI ∪
{(j, b)|(i, b) ∈ rI}\{(i, b) ∈ rI}.

Additionally, FO is enough to express the existence or absence of a match.
Let App(ρ) = ∃n∈Lρxn.

∧
c∈LN (n) c(xn) ∧

∧
e∈Lρ LE(e)(xs(e), st(e)). App(ρ) is

equivalent to the existence of a match as
∧
c∈LN (n) c(xn) makes sure that the

first condition of Definition 8.2.1 is satisfied and
∧
e∈Lρ LE(e)(xs(e), st(e)) takes

care of the other three.

Example 9.1.1. First, let us observe that all of the invariants that we defined
can be expressed in first-order logic (Formulae on the right).

Property 1:
MS= NU⊕ PH  ∀x. MS(x)⇔ (NU(x) ∧ ¬ PH(x))∨

(¬NU(x)∧ PH(x))
Property 2:
PA∪ MS⊆ PE  ∀x.PA(x)∨MS(x)⇒ PE(x)
Property 3:
write access⊆ read access  ∀x, y.write access(x, y)⇒

read access(x, y)
Property 4:
read access◦ is about⊆ treats  ∀x, y, z.read access(x, y)∧

is about(y, z)⇒treats(x, z)
Property 5:
treats⊆ MS× PA  ∀x, y.treats(x, y)⇒ MS(x)∧ PA(y)
Property 6:
PA⇒ ∃=1 ref phys  ∀x.PA(x)⇒ (∃y. ref phys(x, y)∧

∀z.ref phys(x, z)⇒ z = y)

First-order logic is not decidable though, and thus one may want to use a
different logic in order to be able to decide the correctness of the considered
properties. In the following, we use the 2-variable fragment of first-order logic
with counting (C2)[34] and ∃∗∀∗, the fragment of first-order logic whose formula
in prenex form are of the form ∃i0, . . . , ik.∀j0, . . . , jl.A(i0, . . . , ik, j0, . . . , jl).

Let S be the specification (Pre, s, Post) associated to the hospital example.
Assume the strategy is s = New Ph[nph,neonat];Del Pa[opa] while R is the
one from Figure 8.4. This program P creates a new physician nph and lets
the patient opa leave the hospital. Let inv denote the conjunction of the ex-
pected properties. Let the precondition Pre be inv∧∃x.(neonat(x)∧DE(x))∧
∃x.(opa(x)∧PA(x))∧∀x.¬nph(x). Let the postcondition Post be inv∧∃x, y.(nph(x)
∧PH(x)∧works in(x, y)∧neonat(y)∧DE(y)). Proving the correctness of SPH
amounts to proving that Pre⇒ wp(S, Post) is valid. This is a formula in first-
order logic. In the following two sections, this specification is proven to be
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correct using two different decidable logics that are able to express part of Pre
and Post.

9.2 C2

C2 is the two-variable fragment of first-order logic with counting. Its formulae
are those of first-order logic than can be expressed with only two variables and
using the counting quantifier constructor ∃<nr.C. This constructor is such that
a node m satisfies ∃<nr.C if there exist less than n different nodes m0, . . . ,mn

such that r(m,mi) and C(mi).

Definition 9.2.1. Let U be a set of binary predicate, u ∈ U , B be a set of
binary predicate, b ∈ B, v, w be either x or y, n an integer. A formula φ of C2

is defined as:
φ := > | φ ∧ φ | ¬φ | ∃<nv.φv
φv := > | φv ∧ φv | ¬φv | u(v) | ∃<nv.φv | ∃<nw.φx,y where w 6= v
φx,y := > | φx,y ∧ φx,y | ¬φx,y | u(v) | b(v, w) | ∃<nv.φx,y

As usual, ⊥ means ¬>, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ ⇒ ψ means ¬φ ∨ ψ,
∃≥nv.φ means ¬∃<nv.φ, ∃v.φ means ∃≥1v.φ, ∀v.φ means ¬∃v.¬φ.

Definition 9.2.2. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We defined the
valuation of formulae:
>I = N
(φ ∧ ψ)I = φI ∩ ψI
(¬φ)I = N\φI

(∃<nv.φv)I =

{
N if there does not exist n nodesv1, . . . , vn such that vi |= φv
∅ otherwise

Let us now focus on v |= φv:
v |= > iff true
v |= (φv ∧ ψv) iff v |= φv and v |= ψv
v |= ¬φv iff v 6|= φv
v |= u(v) iff u ∈ φN (v)
v |= ∃<nv.φv iff there does not exist n nodes v′1, . . . , v

′
n

such that v′i |= φv
v |= ∃<vw.φx,y iff there does not exist n nodes w1, . . . , wn

such that

{
(v, wi) |= φx,y if wi = y
(wi, v) |= φx,y if wi = x

Let us now focus on (x, y) |= φx,y:
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a b

c

Figure 9.1: An example of graph that cannot be expressed in C2.

(x, y) |= > iff true
(x, y) |= (φx,y ∧ ψx,y) iff (x, y) |= φx,y and (x, y) |= ψx,y
(x, y) |= ¬φx,y iff (x, y) 6|= φx,y
(x, y) |= u(v) iff u ∈ φN (v)
(x, y) |= b(v, w) iff there exists e ∈ E.s(e) = v, t(e) = w and b ∈ φE(e)
(x, y) |= ∃<nx.φx,y iff there does not exist n nodes x′1, . . . , x

′
n

such that (x′i, y) |= φx,y
(x, y) |= ∃<ny.φx,y iff there does not exist n nodes y′0, . . . , y

′
n

such that (x, y′i) |= φx,y

Theorem 9.2.1 ([34]). The validity problem of C2 is decidable.

Ley us now check the requirements. C2 contains unary predicate that are
interpreted on nodes and binary predicates that are interpreted on edges. Pre
and Post are interpreted on graphs.

Theorem 9.2.2. C2 is closed under substitutions.

One can simply reuse the proof for FO.

Theorem 9.2.3. C2 cannot express App(ρ)

The graph of Figure 9.1 cannot be expressed using only two variables and
thus App for a rule which would have this graph as a left-hand side would not
be expressible in C2.
C2 seems thus to be unfit for the verification of graph transformations. Ac-

tually, as was the case previously, it just means that one has to restrict the rules
that one wants to verify to those that have left-hand sides that can be expressed
in the logic.

Example 9.2.1. C2 can express all the App(ρ) for the problem under study.

Proof.

• App(N Ph(ph1,d1)) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x)∧ph1(x))
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• App(N Pa(pa1,ph1,fo1,X)) = ∃x, y.(ph1(x)∧PH(x) ∧ works in(x, y)) ∧
∃x.(¬Active(x)∧pa1(x)) ∧ ∃x.(¬Active(x)∧fo1(x))

• App(D Pa(pa1)) = ∃x, y.(pa1(x)∧PA(x) ∧ hospital in(x, y))

• App(D Ph(ph1,ph2)) = ∃x, y.(ph1(x)∧PH(x)∧works in(x, y)∧∃x.(ph2(x)∧

PH(x) ∧ works in(x, y)))

One could be interested in what are the class of graphs that can actually
be expressed in C2. As shown in Figure 9.1, it is enough to have an undirected
cycle of length at least three. If the biggest undirected cycle is of length at most
two, it is possible to pick one node r as the “root” of the graph and state App(ρ)
as: App(rho) = ∃x.App(r, x, ∅) where:

• App(n, κ,S) =
∧
c∈LN (n) c(κ)

∧
∧
e|s(e)=t(e)=n LE(e)(κ, κ)

∧
∧
e,n′∈En,S ∃κ.((

∧
e′|s(e′)=n∧t(e′)=n′ LE(e′)(κ, κ))

∧ (
∧
s(e′)=n′∧t(e′)=n LE(e′)(κ, κ))

∧App(n′, κ,S))

• κ ∈ {x, y}

• x = y and y = x

• En,S = {e, n′|n′ /∈ S ∧ ((s(e) = n ∧ t(e) = n′)) ∨ (t(e) = n ∧ s(e) = n′))}

Example 9.2.2. The computation of App is not very complex yet it needs an
example to make it clearer. We compute step by step App for the graph of Fig-
ure 9.2. The node selected as the root is a. Thus App is ∃x.App(a, x, ∅). a
is labeled with A, does not have a self-loop and has two neighbours b and c.
App is thus ∃x.(A(x) ∧ (∃y.R(x, y) ∧ App(b, y, {a})) ∧ ∃y.(R(y, x) ∧ R′(y, x) ∧
App(c, y, {a}))). b is labeled with B and B′, does not have a self-loop and
has only one neighbour different from a, e. Thus App(b, y, {a}) is B(y) ∧
B′(y) ∧ ∃x.(R(x, y) ∧ App(e, x, {a, b}). e is labeled with E, has an R-self-
loop and one neighbour different from b and a, f . Thus App(e, x, {a, b}) is
equal to E(x) ∧ R(x, x) ∧ ∃y.(R(x, y) ∧ App(f, y, {a, b, e}). e is labeled with
E, does not have a self-loop and has no neighbour different from a, b and e.
Thus App(f, y, {a, b, e}) = F (y). c is labeled with C, does not have a self-loop
and has one neighbour, d, different from a. Thus App(c, y, {a}) is equal to
C(y) ∧ existsx.(R′(y, x) ∧ R(x, y) ∧ App(d, x, {a, c}). d is labeled with D, has
no self-loop and no neighbour different from a and c. Thus App(d, x, {a, c}) =
D(x). Thus App = ∃x.(A(x)∧∃y.(R(x, y)∧B(y)∧B′(y)∧∃x.(R(x, y)∧E(x)∧
R(x, x) ∧ ∃y.(R(x, y) ∧ F (y)))) ∧ ∃y.(R(y, x) ∧ R′(y, x) ∧ C(y) ∧ ∃x.(R(x, y) ∧
R′(y, x) ∧D(x)))).
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a : A

b : B,B′

c : C d : D

e : E

f : FR

R

R′

R′

R

R
R

R

Figure 9.2: An example for the computation of App

These conditions are enough to be able to express the existence of the
matches. Nonetheless, one could want to use C2 with more complex rules. In
order to tackle this problem, the same idea as was used in Chapter 7 is used.
We rename rules using special unary concepts oi. These concepts are such that
it is possible to uniquely identify elements inside the application of a rule so the
condition that ∃=1x.oi(x) is added for each oi that is used this way. One could
see that this condition states that the nodes where the actions will be performed
are, so to speak, pre-selected that is the original model already contains nodes
labeled with these concepts. This may seem wrong as one wants to prove that
the post-condition will stand no matter where the match is found. The calculus
actually solves the problem as it requires that the weakest precondition be valid.
As these new concepts never occur outside of the scope of the match, given two
graphs that differ only on which nodes satisfy these concepts, that is two graphs
such that the nodes where the match are found are different, one can prove that
the post-condition will stand.

As said in previously, C2 is not able to keep track of all variables so one
needs to use concepts to keep track of the modified nodes. The actual concepts
used are those obtained from tag. The expressions of App become:

• App(N Ph(ph1,d1)) = ∃x.(d1(x)∧DE(x)∧i(x))∧∃x.(¬Active(x)∧ph1(x)∧
j(x))

• App(N Pa(pa1,ph1,fo1)) = ∃x, y.(ph1(x)∧PH(x)∧ i(x)∧works in(x, y)∧
j(y)) ∧ ∃x.(¬Active(x)∧pa1(x) ∧ k(x)) ∧ ∃x.(¬Active(x)∧fo1(x) ∧ l(x))

• App(D Pa(pa1)) = ∃x, y.(pa1(x)∧PA(x) ∧ i(x) ∧ hospital in(x, y) ∧ j(y))

172



• App(D Ph(ph1,ph2)) = ∃x, y.(ph1(x)∧PH(x) ∧ i(x) ∧ works in(x, y) ∧
j(y) ∧ ∃x.(ph2(x)∧PH(x) ∧ k(x) ∧ works in(x, y)))

The same problem occurs also that these are not actually App and thus such
rules cannot be used under the Kleene star in a strategy.

Furthermore, C2 is not able to express Property 4: read access◦ is about⊆
treats as one would need to keep track of three variables at a time. On the
other hand, Property 6: ∀x.PA(x)⇒ ∃=1ref phys.> is a formula of C2.

9.3 ∃∗∀∗

The logic ∃∗∀∗ is the fragment of first-order logic such that its prefix in prenex
normal form is composed of a sequence of existential quantifiers and then a
sequence of universal quantifiers.

Definition 9.3.1. Let U be a set of binary predicate, u ∈ U , B be a set of
binary predicate, b ∈ B, x1, . . . , xk, a1, . . . , al be variables, v, w be two of them.
A formula φ of ∃∗∀∗ is defined as:
φ := ∃x0, . . . , xk,∀a0, . . . , al.ψ(x1, . . . , xk, a1, . . . , al)
ψ := > | ψ ∧ ψ | ¬φ | u(v) | b(v, w)

As usual, ⊥ means ¬>, φ ∨ ψ means ¬(¬φ ∧ ¬ψ), φ⇒ ψ means ¬φ ∨ ψ.

Definition 9.3.2. Let G = (N,E, C,R, φN , φE , s, t) be a graph. We defined the
valuation of formulae: (∃x1, . . . , xk,∀a1, . . . , al.ψ(x0, . . . , xk, a0, . . . , al))

I = N
iff there exist k nodes (x1, . . . , xk) such that for all choices of l nodes (a1, . . . , al),
(x1, . . . , xk, a1, . . . , al) |= ψ.
Let us define (x1, . . . , xk, a1, . . . , al) |= ψ:

(x1, . . . , al) |= > iff true
(x1, . . . , al) |= (φ ∧ ψ) iff (x1, . . . , al) |= φ and (x1, . . . , al) |= ψ
(x1, . . . , al) |= (¬φ) iff (x1, . . . , al) 6|= φ
(x1, . . . , al) |= u(v) iff u ∈ φN (v)
(x1, . . . , al) |= b(v, w) iff there exists e ∈ E. s(e) = v, t(e) = w and b ∈ φE(e)

Theorem 9.3.1. The validity problem of ∃∗∀∗ is decidable.

This is a well-known result.
One now wants to check all the requirements. ∃∗∀∗ contains unary predicate

that are interpreted on nodes and binary predicates that are interpreted on
edges.

Theorem 9.3.2. ∃∗∀∗ is closed under substitutions.

Proof. Once again, one just needs to reuse the proof for FO.

The handling of the definition of a match is much more complex. To be more
precise, ∃∗∀∗ cannot always express NApp(ρ) that is the absence of a match.

Theorem 9.3.3. ∃∗∀∗ cannot express all the NApp(ρ).
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x : ∀y.¬R(x, y)

Figure 9.3: An example of graph not expressible in ∃∗∀∗.

Proof. ∃∗∀∗ is obviously not closed under negation and thus let us assume the
existence of a rule ρ such that App(ρ) = ∃x.∀y.φ(x, y) with φ(x, y) a quantifier-
free formula using both x and y. Then NApp(ρ) = ¬App(ρ) = ∀x.∃y.¬φ(x, y)
is not a formula of ∃∗∀∗.

One thus just has to prove that such a rule exists. A rule whose left-hand
side is the one presented in Figure 9.3 is a rule whose absence of a match cannot
be expressed in ∃∗∀∗.

Once more, one could be interested in the class of graphs that can be ex-
pressed in ∃∗∀∗. Let’s assume none of the labels of the nodes contains quantifiers.
Then, using the same construction as for FO, one gets an essentially existen-
tially quantified formula, that is a formula of ∃∗∀∗. On the other hand, ¬App
is then essentially universally quantified and is thus also a formula of ∃∗∀∗. It
is possible to weaken this restriction by allowing nodes to be labeled with ex-
istential quantifiers but this does not increase the expressiveness as variables
introduced that way could be replaced with additional nodes.

Example 9.3.1. ∃∗∀∗ can express all the App(ρ) for the hospital problem.

Proof.

• App(N Ph(ph1,d1)) = ∃x.(d1(x)∧DE(x)) ∧ ∃x.(¬Active(x)∧ph1(x))

• App(N Pa(pa1,ph1,fo1)) = ∃x, y.(ph1(x)∧PH(x) ∧ works in(x, y))
∧ ∃x.(¬Active(x)∧pa1(x)) ∧ ∃x.(¬Active(x)∧fo1(x))

• App(D Pa(pa1)) = ∃x, y.(pa1(x)∧PA(x) ∧ hospital in(x, y))

• App(D Ph(ph1,ph2)) = ∃x, y, z.(ph1(x)∧PH(x)∧works in(x, y)∧ph2(z)∧
PH(z) ∧ works in(z, y)))

It is worth noting that the definition of App(ρ) introduces new existential
quantifiers as it checks for the existence of a match. This could seem to lead
to a problem as the formula no longer is in ∃∗∀∗. Actually, as the existentially
quantified variables do not depend on the previously defined universally quan-
tified variables, it is possible to move them at the beginning thus yielding a
formula in ∃∗∀∗.

174



Once again, one has to look at whether or not the properties of any given
problem are expressible in the logic under study. As could be expected, there
are properties that ∃∗∀∗ cannot express.

Example 9.3.2. ∃∗∀∗ is not able to express Property 6:PA⇒ ∃=1 ref phys as it
needs an existential quantifier after the universal ones to express the existence of
an edge labeled with ref phys. On the other hand, Property 4:∀x, y, z.read access(x, y)∧
is about(y, z)⇒ treats(x, z) is part of ∃∗∀∗.

9.4 Conclusion

In this chapter, we explore the implications of the condition that the logic be
able to express the existence of a match. We saw that this can result in either
undecidability (as is the case for full first-order logic) or in the introduction of
further restrictions on the rules in the case of sub-logics as C2 or ∃∗∀∗.

These logics are both closed under substitution and can express the applica-
bility of a restricted family of rules in addition to being decidable. They allow
to express different properties of the graphs and are thus complementary and
can be used in conjunction with other logics to express complex properties of
rewriting systems that are in the intersection of the family of rules that can be
expressed by each.
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Chapter 10

Implementation

In the previous chapters, several different logics and forms of graph transforma-
tion have been introduced. We also proved that they satisfied the requirements
that we put forward and thus that the verification could be fully automated. In
addition, we would like that, when a specification is incorrect, a counter-example
be shown. Nevertheless, we didn’t show any system that would implement such
proofs.

The reasons for that are multiple. First and foremost, our goal was to be
able to reuse existing provers for the logics that we used. Several of them do
not actually have any. Indeed, a C2PDL formula, for instance, can be proven to
be satisfiable using one of the two methods shown in Section 7.3 that is either
concurrently trying to build a model for it and proving that its negation is valid
or translating it to the Hybrid µ-calculus and using the algorithm for it. Neither,
to the best of our knowledge, has been fully implemented. In a similar way, the
fragments of first-order logic that have been studied in Chapter 9 are known to
be decidable but there is no actual prover for them that uses the algorithm used
to prove them. Indeed, similarly to C2PDL it is proven that they have finite
models but give no way to build the correct one.

One could argue that such provers, as for instance Vampire1Z3, E-Prover2

or Spass3, exist for first-order logic itself. The most obvious problem is the
undecidability of the logic that yields an algorithm that could fail even on a
decidable problem and thus strongly hinders our aim at fully automated proofs.
Even when the logic actually provides a prover for a decidable logic, as is the
case for the Description Logics for instance, the problem studied is not always
the one we are aiming at. Indeed, in most provers as Fact++[66] or HermiT[32],
the problem is to prove that a Knowledge Base is consistent. While we would
like our proofs to output counter-examples, these provers are given an example
and they want to prove that it makes sense. Thus they do not actually fulfill all

1http://www.vprover.org/
2http://www4.informatik.tu-muenchen.de/∼schulz/E/E.html
3http://www.mpi-inf.mpg.de/departments/automation-of-logic/software/

spass-workbench/
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datatype (’nr, ’nc, ’ni) concept =
Top
| Bottom
| AtomC bool ’nc
| NegC ”((’nr, ’nc, ’ni) concept)”
| BinopC binop ”((’nr, ’nc, ’ni) concept)” ”((’nr, ’nc, ’ni) concept)”
| NumRestrC ”(numres ord)” ”(nat)” ”’nr” ”((’nr, ’nc, ’ni) concept)”
| SubstC ”((’nr, ’nc, ’ni) concept)” ”((’nr, ’nc, ’ni) subst)”

datatype numres ord = Lt | Ge

datatype binop = Conj | Disj

datatype (’nr, ’nc, ’ni) subst =
RSubst ”’nr” subst op ”(’ni * ’ni)”
| CSubst ”’nc” subst op ”’ni”

datatype subst op = SDiff | SAdd

Figure 10.1: The syntax of ALCQ concepts

our needs as they are not able to produce graphs that would be incorrect input
for our specifications.

In this chapter, we present an implementation that we have performed to
try to solve this problem. It slightly diverges from our stated goals as it uses
ALCQ which has been proven not to be closed under substitutions. It is used
in conjonction with the imperative language defined in Chapter 4. This work
comes from [15] and [6].

10.1 Using Isabelle to prove soundness of the
Hoare-like calculus

Our stated goal is to be able to prove that programs are correct. In such a
situation, one expects that the proofs that are performed have some properties.
Among those, we may expect that the automated generation of the proofs is
actually sound itself, that is that you do not consider as theorems things that
can be false.

In order to achieve such a property, we used Isabelle[51]. Isabelle is a proof
assistant. We used it to define the syntax and semantics of ALCQ in addition
to the substitutions associated to part of the actions introduced in Section 3.1.

One may remember that it was proven in Section 6.3 thatALCQ is not closed
under substitutions. The same way, it lacks the expressivity needed to state the
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existence or absence of a match. It is thus needed to change our approach a
little. In order to tackle this problem, the logic is extended with quantifiers that
introduce new variables. We then make sure that we generate only essentially
universally quantified formulae as was explained in Section 5.4.

To be more precise, instead of working at concept level as we did previously
when working with Description Logics, we use facts and formulae. A fact, in the
present situation, is what is usually called an ABox assertion in the Description
Logic. Formulae in addition use quantifiers and substitutions. They also use
an explicit constructor for equality which makes the calculus considerable more
complex but is essential to deal with aliasing problems.

Definition 10.1.1. Given that φ is a concept, α is a role, a, b are nodes and
f0 and f1 are facts, a fact is one of:

• a : φ that means that a is labeled with φ

• a α b that means that the edge (a, b) is labeled with α

• a ¬α b that means that the edge (a, b) is not labeled with α

• a = b that means that a and b are equal

• a 6= b that means that a and b are different

• ¬f1 that means that f1 is false

• f0 ∧ f1 that means that both f0 and f1 are true

• f0 ∨ f1 that means that f0 or f1 is true

Given that σ is a substitution, f is a fact, a is a node and F0 and F1 are
formulae, a formula is one of:

• f that means that f is true

• ∀a.F1 that means that for all node n, F1 is true when all occurrences of a
are replaced by instances of n

• F1σ that means that F1 is true after performing the atomic action associ-
ated to σ

• ¬F that means that F1 is false

• F0 ∧ F1 that means that both F0 and F1 are true

• F0 ∨ F1 that means that F0 or F1 is true

The syntax of ALCQ is fairly simple yet there are already proofs that have
to be made to prove that the syntax is coherent. Indeed, more than the minimal
amount of needed constructors are defined for ALCQ. For instance, both φuψ
and ¬(φtψ) are formulae that can be written using the defined constructors yet
they should have the exact same interpretation. It is thus important to prove
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record (’d, ’nr, ’nc, ’ni) Interp =
interp d :: ’d set
interp c :: ’nc ⇒ ’d set
interp r :: ’nr ⇒ (’d * ’d) set
interp i :: ’ni ⇒ ’d

fun interp concept :: ”(’nr, ’nc, ’ni) concept ⇒
(’d, ’nr, ’nc, ’ni) Interp ⇒ ’d set” where
”interp concept Bottom i = {}”
| ”interp concept Top i = interp d i”
| ”interp concept (AtomC sign a) i = (if sign then (interp c i a)

else interp d i - (interp c i a))”
| ”interp concept (BinopC bop c1 c2) i =
interp binopC bop (interp concept c1 i) (interp concept c2 i)”
| ”interp concept (NegC c) i = interp d i - (interp concept c i)”
| ”interp concept (NumRestrC nro n r c) i = {x ∈ interp d i.
interp numres ord nro (Range (rel restrict (interp r i r) {x}
(interp concept c i))) n}”
| ”interp concept (SubstC c sb) i = interp concept c (interp subst sb i)”

Figure 10.2: The semantics of ALCQ concepts

that the semantic is the same for both. In order to spare space, only part of
this implementation is shown in the following but a more complete version can
be found at https://www.irit.fr/Climt/Software/smalltalc.html.

The first thing to do in Isabelle is to define the syntax of the logic itself.
It is shown in Figure 10.1. Three sets are defined with for the concepts (’nc),
roles (’nr) and individuals (or nodes) (’ni). There is only one unary constructor
NegC for the negation, a constructor for the binary operators for conjunction
and disjunction, another one for counting quantifier that uses a natural, a role,
a concept and another one for the substitutions. The only elementary actions
that are considered are C := C+i, C := C−i, r := r+(i, j) and r := r−(i, j). It
is worth noting that, for simplicity of writing, the definition of atomic concepts
can be negative or positive. The actual syntax is more complex as the logic
does not provide nominals to deal with individuals. Facts are added to state
whether or not nodes are equal, whether or not they belong to a concept and
whether or not they are linked by a role.

One then has to introduce the semantics of the logic and prove that it is
coherent. Figure 10.2 shows the semantics while Figure 10.3 shows some proofs.
The first thing to introduce in the models is that nodes are interpreted as the
basic elements of data (’d), that concepts are interpreted as sets and roles are
interpreted as sets of pairs. interp d returns the whole set of elements and is
used to access the whole valuation. One can then introduce the valuation of
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lemma Bottom NumRestrC:
”interp concept Bottom i = interp concept (NumRestrC Lt 0 r c) i”

by simp

lemma Top NumRestrC:
”interp concept Top i = interp concept (NumRestrC Ge 0 r c) i”

by simp

Figure 10.3: Short proofs about the semantics of ALCQ concepts

fun push csubst concept :: ”’nc ⇒ subst op ⇒ ’ni ⇒ ’ni
⇒ (’nr, ’nc, ’ni) concept ⇒ (’nr, ’nc, ’ni) form” where

”push csubst concept cr rop v x (AtomC sign a) =
(if cr = a then (case rop of
SDiff ⇒ neg norm form sign
(ConjFm (FactFm (Inst x (AtomC True a))) (FactFm (Eq False x v)))
| SAdd ⇒ neg norm form sign

(DisjFm (FactFm (Inst x (AtomC True a))) (FactFm (Eq True x v))))
else (FactFm (Inst x (AtomC sign a))))”

Figure 10.4: Part of the elimination of substitutions

any concept of the logic. It is then interesting to use Isabelle to prove that our
definitions are coherent. In particular, Figure 10.3 shows the proof that non
node can have strictly less than 0 r-neighbours satisfying c and that all nodes
have at least 0 r-neighbours satisfying c. This is done using only the definitions
of the semantics.

One now has to deal with substitutions. This is where formulae become
necessary to be able to express the result of substitutions. The tableau procedure
that proves that a specification is correct actually uses only facts as it is the
structure generated by the substitution elimination process. A few rules on
substitutions, namely the ones dealing with atomic concepts and addition or
removal of elements, are shown in Figure 10.4. This figure states that if the
concept that is modified (cr) is different from the one in the formula (a) then
the formula is left unmodified. On the other hand, if they are equal, and the
substitutions removed an element then the formula is modified by adding the
fact that the element that is removed is not the one that is considered. Mutatis
mutandis, when adding an element it is added that either the formula was
already true or the current element is the one that is added.

Once the removal of substitutions is done, one has to prove that it is correct
and that it terminates. Partial proofs for these two properties can be found in
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lemma interp form SubstFm FactFm Rel AtomR SDiff:
”interp fact (AtomR sign r x y) (interp subst (RSubst r SDiff (v1, v2)) i)
= interp form (subst AtomR SDiff sign r x y v1 v2) i”
by (simp add: subst AtomR SDiff def interp r modif def) fast

fun subst height concept :: ”(’nr, ’nc, ’ni) concept ⇒ nat” where
”subst height concept Bottom = 0”
| ”subst height concept Top = 0”
| ”subst height concept (AtomC sign a) = 0”
| ”subst height concept (BinopC bop c1 c2) =

max (subst height concept c1) (subst height concept c2)”
| ”subst height concept (NegC c) = subst height concept c”
| ”subst height concept (NumRestrC nro n r c) =subst height concept c”
| ”subst height concept (SubstC c sb) =

height concept c + subst height concept c”

lemma height concept positive [simp]: ”0 < height concept c”
by (induct c) auto

lemma push subst fact decr: ”extract subst fct = None =⇒
subst height form (push subst fact fct sb) sbsts’
< subst height fact fct (sb # sbsts’)”

apply (case tac sb)
apply (rule push subst fact decr rsubst) apply assumption+
apply (rule push subst fact decr csubst) apply assumption+
done

Figure 10.5: Proofs about the elimination of substitutions

182



fun wp dl :: ”(’r, ’c, ’i) stmt ⇒ (’r, ’c, ’i) qform ⇒ (’r, ’c, ’i) qform” where
”wp dl Skip Qd = Qd”
| ”wp dl (NAdd v c) Qd = QSubstFm Qd (CSubst c SAdd (Free v))”
| ”wp dl (NDel v c) Qd = QSubstFm Qd (CSubst c SDiff (Free v))”
| ”wp dl (EAdd v1 r v2) Qd =

QSubstFm Qd (RSubst r SAdd (Free v1, Free v2))”
| ”wp dl (EDel v1 r v2) Qd =

QSubstFm Qd (RSubst r SDiff (Free v1, Free v2))”
| ”wp dl (SelAss vs b) Qd =

bind list QAll vs (QImplFm (qform of form b) Qd)”
| ”wp dl (c1 ; c2) Qd = wp dl c1 (wp dl c2 Qd)”
| ”wp dl (IF b THEN c1 ELSE c2) Qd =

QIfThenElseFm (qform of form b) (wp dl c1 Qd) (wp dl c2 Qd)”
| ”wp dl (WHILE {iv} b DO c) Qd = (qform of form iv)”

Figure 10.6: Weakest preconditions in Isabelle

Figure 10.5. The first part is done by simply checking for each rule that the
formula on the left and the one on the right agree on models. To prove the
termination, a height is introduced that is proven to be natural, positive and
strictly decreasing and thus convergent toward 0. It is worth noting that the
definition of height used here is not the same as the one in Section 6.2 because
the problems are slightly different.

The next step is proving that the weakest preconditions and verification
conditions that were introduced in Section 5.2 are correct. This is done by
first defining the functions that compute the weakest preconditions and the
verification conditions. The weakest preconditions can be found in Figure 10.6.
One then has to prove that the Hoare-like calculus is sound. This proof can be
found in Figure 10.7. Actually, what is proven is that whenever vc(s, Post) is
valid, {wp(s, Post)}s{Post} is a correct specification. It is easy knowing this
theorem to prove that if vc(s, Post)∧ (Pre⇒ wp(s, Post)) then {Pre}s{Post}
is a correct specification.

10.2 Tableau procedure in Isabelle

Now that it has been proven that the Hoare-like calculus that we want to use is
sound, it becomes possible to designe a procedure that checks whether or not a
specification is correct. The only part that has not been shown yet is the one
that determines whether a formula is valid or not. This is done using a tableau
procedure. As previously, one of the main difficulties is that ALCQ is not closed
under substitutions and cannot express the existence or absence of a match and
that we are therefore forced to use facts and formulae as the basic blocks of the
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lemma vc sound:
”valid qform TYPE(’d) (vc c Q) =⇒` TYPE(’d) {wp dl c Q} c {Q}”

proof(induction c arbitrary: Q)
case (While iv b c)
show ?case
thm While’
proof(simp, rule While’)
from ‘valid qform TYPE(’d) (vc (While iv b c) Q)‘
have vc: ”valid qform TYPE(’d) (vc c (qform of form iv))”
and IQ: ”valid qform TYPE(’d) (QImplFm (QConjFm (qform of form iv)

(QNegFm (qform of form b))) Q)”
and pre: ”valid qform TYPE(’d) (QImplFm (QConjFm (qform of form iv)

(qform of form b)) (wp dl c (qform of form iv)))”
by (simp all add: valid qform def Let def)
have ”` TYPE(’d) {wp dl c (qform of form iv)} c {(qform of form iv)}”

by (rule While.IH [OF vc])
with pre show ”` TYPE(’d)
{QConjFm (qform of form iv) (qform of form b)} c
{(qform of form iv)}”

by(rule strengthen pre)
show ”valid qform TYPE(’d)(QImplFm (QConjFm (qform of form iv)

(QNegFm (qform of form b))) Q)” by(rule IQ)
qed
next
case (Seq c1 c2) thus ?case by (auto simp add: valid qform def)
next
case (If b c1 c2) thus ?case apply (auto intro: hoare.conseq simp

add: valid qform def lift impl def lift ite def)
apply (rule hoare.conseq) prefer 2 apply blast apply (clarsimp simp

add: valid qform def QIfThenElseFm def)+
apply (rule hoare.conseq) prefer 2 apply blast by (clarsimp simp

add: valid qform def QIfThenElseFm def)+
qed simp all

Figure 10.7: Proof of the soundness of the Hoare-like calculus
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definition ”disjfm applicable branch br f1 f2 =
(let fs = all forms br in 6 (List.member fs f1) ∧ 6 (List.member fs f2))”

definition ”apply disjfm branch br f f1 f2 =
(if disjfm applicable branch br f1 f2
then

AppRes 2 (Some (DisjFmRule rep f))
[add new form f1 (add inactive composite f br),
add new form f2 (add inactive composite f br) ]

else AppRes 0 None [add inactive composite f br])”

Figure 10.8: Rule for the disjunction of formulae

tableau procedure.

The tableau procedure contains several rules that have been written in Is-
abelle. It starts from a set of formulae that contains only the formula whose
satisfiability we are interested in and it generates a set of true formulae that
can be deduced from that formula. Rules like the one for the disjunction of
formulae, shown in Figure 10.8, create branches. To be more precise, this rule
is applied when there is a fact of the form F0 ∨ F1, but neither F0 nor F1 is
present. A choice has thus to be made and two branches are created, one with
F0 and one with F1. Branches allow to track choices in order to explore all
possible cases. When one looks at a branch, there are two possible cases either
the branch is saturated, that is it is no longer possible to apply any of the rules
of the tableau or it is possible to go on. If one branche is saturated, it closes
and the formula is satisfiable. On the other hand, if all branches yield a clash,
that is something that cannot be a model, the formula was unsatisfiable. The
list of possible clashs can be found in Figure 10.9.

Most clashes are self-evident. contains bottom branch occurs when the set
of formulae contains a : ⊥, contains contr concept branch occurs when the set of
formulae contains both a : φ and a : ¬φ, contains contr role branch occurs when
the set of formulae contains both a α b and a ¬α b, contains contre eq branch
occurs when the set of formulae contains a 6= a and contains falsefm branch oc-
curs when the set of formulae contains ⊥. Clashes linked to counting quantifiers
are a little bit more tricky: contains numrestrc clash branch occurs when the
set of formulae contains a : (< n α φ) and there is a set of cardinality at least
n that contains only α-neighbors of a labeled with φ.

This tableau procedure is proven to be sound, as shown in Figure 10.10.
Indeed, it proves that if a branch contains no clash, is finite and saturated then
it is satisfiable. In addition, the tableau procedure is proven to terminate and to
be complete, that is that all invalid formulae yield only branches with clashes.
It is thus possible to decide whether a formula is valid or not. Applied to the
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definition ”contains bottom branch br =
(case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒

contains bottom list icl) ”

definition ”contains contr concept branch br =
(case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒

contains contr concept list iac)”

definition ”contains contr role branch br =
(case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒

contains contr role list iar)”

definition ”contains contr eq branch br =
(case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒

contains contr eq list icl)”

definition ”contains falsefm branch br =
(case br of (Branch(n, alf, asf, ap, Inactive form(ico, iac, iar, ie, icl))) ⇒

contains falsefm list icl)”

definition ”contains numrestrc clash branch br =
(case br of (Branch(n, alf, asf, ap, ia)) ⇒

List.list ex
(λ f. case f of
FactFm(Inst x (NumRestrC Lt n r c)) ⇒
if n = 0 then True
else exist outgoing r c distincts from branch br x n r c
| ⇒ False) ap)”

definition ”contains clash branch br = (case br of
(Branch([], , , , )) ⇒

(contains bottom branch br ∨
contains contr concept branch br ∨
contains contr role branch br ∨
contains contr eq branch br ∨
contains falsefm branch br ∨
contains numrestrc clash branch br)
| ⇒ False)”

Figure 10.9: Possible clashes
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lemma not contains clash sati: ”
¬ contains clash (ab:: (’nr, ’nc, ’ni::new var set class) abox) =⇒
finite ab =⇒
is neg norm abox ab =⇒
saturated abox ab alc rule =⇒
satisfiable TYPE(’ni) ab”

apply (simp only: satisfiable def)
apply(rule tac x =

”canon interp (ab::(’nr, ’nc, ’ni::new var set class) abox)” in exI)
by (clarsimp simp add: canon interp satisfies form)

Figure 10.10: Soundness of the tableau procedure

correctness formula that was generated by the Hoare-like calculus, it allows to
decide whether a specification is correct or not.

In addition, the tableau procedure creates the canonical interpretation asso-
ciated with a saturated branch, that is a branch in which it is no longer possible
to apply any rule. This canonical interpretation can then be translated toward
a graph language in order to be displayed. As it is a model that satisfies the
negation of the formula that we aimed to prove valid, this interpretation gives
us a counter-model that can be used to understand why our specification was
incorrect and try to correct it.

10.3 Conclusion

In this chapter, we introduced an implementation that aims at bridging the gap
between the theoretical results that have been shown in the previous chapters
and our stated goal of having a fully automated proof system.

It actually uses a logic that we have proven not expressive enough to satisfy
the conditions that we set in term of closure under substitutions. Nonetheless,
by modifying ALCQ so that it becomes more expressive and using a dedicated
tableau method, we managed to produce an implementation that is able to
decide whether a program with conditions written in that logic is correct or
not.

In addition to providing an answer, this implementation produces counter-
models in case the program is incorrect so that it is possible for the user to see
what goes wrong and correct either a problem in the program or a case that
should have been treated in the precondition or the postcondition. On bigger
programs, this becomes much harder to find the source of the problem and we
are thus currently working on using the trace of the Hoare-like calculus to find
out what part of the program lead to the problem.

It is worth noting that this implementation does not correspond to our stated
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goal. Another implementation is being developed currently but is not mature
enough to be featured in this work. As there exists a lot of SAT solvers for first-
order logic, we decided to implement a program that would take a specification
for a set of rules and tries to prove them correct by generating the correctness
formula and checking it using one of these solvers. This is still slightly outside of
our objective as first-order logic is undecidable but it allows us to give a better
coverage of the various solutions that we have shown in the previous chapters.
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Chapter 11

Conclusion and future work

11.1 Results

In this work, we discussed the verification of graph transformation. Graph
transformation is ubiquitous and its correctness is thus of particular interest.
Nevertheless, a lot of graph properties require an expressivity that leads to
undecidability of their satisfiability problem. Our goal being to be able to decide
automatically whether or not a graph transformation specification is correct, we
restricted ourselves to problems that we could prove to be decidable. To do so,
we used mainly decidable logics and we only studied partial correctness of a
specification.

In order to showcase the transformations, we introduced two ways to modify
graphs that are closely linked. Both rely on a set of atomic actions that perform
elementary actions as creation or deletion of edges and nodes, relabeling and
so on. Some of the atomic actions, as global redirections, can be seen as being
more elaborate. Yet defining them as a sequence of atomic edge deletions and
creations would be at best cumbersome. We combine these atomic actions in
two different ways: either by using an imperative language[15] or using sets of
rules and strategies[14].

The imperative language contains, in addition to the atomic actions, some
usual constructs of imperative languages, as sequencing, if-then-else statements
and while loops, and more specific constructs as the non-deterministic select
that effectively instantiates a set of variables so that they match a pattern.

The other approach is closer to term-rewriting systems in that it defines rules
and strategies. This approach is also closer to the categorial approach to graph
transformations in its use of rules. Nonetheless, our rewriting systems strongly
differ from this approach in that the right-hand side is composed of a sequence
of atomic actions instead of containing a graph. This allows us to have a more
algorithmic view of the transformation instead of relying on the definition of a
single, double or sesqui-pushouts. Another key departure from usual methods
is the use of complex formulae as labels in the left-hand side of the rules. This
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allows for much more expressivity for the rules.
We defined a Hoare-like calculus for both approaches that introduces weak-

est preconditions to prove that a specification is correct. As both approaches
contain loops, either under the form of while-loops in the imperative case or un-
der the form of the closure strategy, the user is required to provide, in addition
to the specification, invariants for them. They also force the introduction of
verification conditions whose task is to prove that the invariants define correct
specifications for the transformations inside the loops.

All in all, this Hoare-like calculus is not much more complex than the classi-
cal one. As usual, it introduces substitutions, that allow to forward the atomic
actions to the underlying logic, that have to be accounted for. Its most complex
feature is the need for the ability to express the existence of a match for the
pattern defined by either a select-statement in the case of the imperative lan-
guage or by the left-hand side of a rule in the graph rewriting system approach.
Both substitutions and the existence of a match are unusual graph properties
and thus need to be discussed when a logic is introduced to describe the graph
properties[12].

What is obvious throughout the definition of the transformations, no matter
the format, and the introduction of the Hoare-like calculus is that everything
is parametrized by the logic, or logics, that have been chosen to define the
properties of graphs. In this work, we aimed at being able as much as possible
to provide definitive answers to the question of whether or not a specification
for a given transformation is correct and we thus focused on decidable logics
and looked at what we were requiring in addition from them.

The first set of logics that we proposed was the Description Logics family[13].
It is one of the most widely used family of logics to build ontologies, that is
describing graphs, and it offers a huge array of possibilities from the tractable
but little expressive EL, DLP and DL− Lite to the very expressive SROIQ.
We didn’t consider all these logics but we focused on the central ones, that
is the extensions of ALC that do not provide role axioms. These logics were
instrumental in our endeavour to identify what are the required features for a
logic to be able to deal with substitutions.

We also studied C2PDL, an extension of dynamic logics[14]. Our main goal
in using this logic was to be able to express reachability properties that are key
in the definition of a lot of structures, very interesting in conditions of graph
transformations and outside of first-order logic. It was also helpful in looking
more thoroughly at what where the implication of the requirement that the
existence of a match be expressible in the logic.

Finally, several of the most expressive fragments of first-order logic, namely
C2, the two-variable fragment with counting, and ∃∗∀∗, the fragment that con-
tains only formulae in which the prenex normal form is such that all existential
quantifiers occur before every universal quantifiers were studied[12]. Once more,
we proved that these logics were closed under substitutions and that, provided
some restrictions on the rules, they could express the existence or absence of a
match.

In order to make our work more concrete, we have started implementing
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several different aspects of our systems. We wrote a tool that rewrites trans-
formations written in our imperative language into Java code that can then
be used more easily[7]. Closer to our goal of proving the correctness of graph
transformation, we wrote a system for ALCQ using the imperative language
that proves that a specification is correct and outputs a counter-example if it is
not[15]. We also created a tool presented in [6] that combines the modification
of graphs and the proof that it is correct.

11.2 Perspectives

This work is self-contained and gives an overview of a possible algorithmic ap-
proach to graph transformation, shows how to prove specifications for such
transformation correct and provides keys, and possible choices, to determine
the best logic or logics that one can use to express a given problem. Nonethe-
less, this is only the first step toward the original objective of proving correctness
of graph transformation in all generality.

The main shortcoming of our results is that it does not allow for data.
The most basic example of graph handling is list ordering that rewrites a list
according to a given order notwithstanding any knowledge of the elements of
the list. We do not allow for such comparisons either in the properties or the
transformation itself as of today and it is a very important step that we need
to be able to perform.

Another direction is the implementation. Heretofore, only a small part of the
logics that we have presented are equipped with programs that actually prove
whether or not a specification is correct. This is unsatisfactory as we would
both like to be able to provides proofs no matter the choice of the - obviously
decidable - logic but also because we would like to be able to give a tool that
takes the specification and, using provers that it has been given, computes
the proof without having to develop a different tool for each one. The main
obstacle there is that even though the logic has to be closed under substitutions
the provers for the logics do not remove them and thus it is mandatory to add
a step, aware of the actual logic used, that removes the substitutions and this
step can hardly be automated without knowledge of the logic.

It would be also interesting to try and extend the available atomic actions.
Despite not being presented here, work has been started on the study of node
cloning and its relation to the various logics we discussed in addition to consid-
erations about how to handle edges in case of cloning. In particular, self-loops
can be handled in several different manners that yield different atomic actions.

Other important directions are in the increase of the expressivity of the
logic in order to be able to prove correct more interesting specifications and
attempts at reducing the complexity of the proofs that are intractable in all
cases considered thus far. This would go completely at reverse from what has
been done here as the requirements that we introduced require expressiveness
outside of the tractable logics but it would be particularly interesting to find
a smaller set of actions such that specifications can be proven correct in low-
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complexity logics.
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[14] Jon Haël Brenas, Rachid Echahed, and Martin Strecker. Proving correct-
ness of logically decorated graph rewriting systems. In 1st International
Conference on Formal Structures for Computation and Deduction, FSCD
2016, June 22-26, 2016, Porto, Portugal, pages 14:1–14:15, 2016.
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[69] Dániel Varró. Automated formal verification of visual modeling languages
by model checking. Software and System Modeling, 3(2):85–113, 2004.

[70] W3C. SPARQL query language. http://www.ormfoundation.org/. Ac-
cessed: 2016-05-15.

[71] W3C. SPARQL query language. https://www.w3.org/2001/sw/wiki/
SPARQL. Accessed: 2016-03-22.

[72] W3C. Word wide web consortium. https://www.w3.org. Accessed: 2016-
03-22.

198

http://www.ormfoundation.org/
https://www.w3.org/2001/sw/wiki/SPARQL
https://www.w3.org/2001/sw/wiki/SPARQL
https://www.w3.org


[73] Michael Wessel. Obstacles on the way to qualitative spatial reasoning with
description logics: Some undecidability results. In Working Notes of the
2001 International Description Logics Workshop (DL-2001), Stanford, CA,
USA, August 1-3, 2001, 2001.

[74] Frank Wolter and Michael Zakharyaschev. Dynamic description logics.
Advances in Modal Logic, 2:431–446, 1998.

199



In computer science as well as multiple other fields, graphs have become ubiqui-

tous. They are used to represent data in domains ranging from chemistry to archi-

tecture, as abstract structures or as models of the data or its evolution. In all these

domains, graphs are expected to evolve over time due to chemical reactions, update

of the knowledge or programs. Being able to deal with such transformations is an

extremely important and difficult task. In this work, our aim is to study the verifica-

tion of such graph transformation, that is how to prove that a graph transformation

is correct. Correctness of a graph transformation is more precisely defines as correct-

ness of a specification for the transformation containing additionally a precondition

and a postcondition. We decided to use a Hoare-like calculus generating the weakest

precondition for a postcondition and a transformation. If this weakest precondition

is implied by the actual precondition, the specification is correct. We chose a more

algorithmic approach to graph transformation by using atomic actions. We chose to

define two ways to build graph transformations: using an imperative programming

language and using rule-base rewriting systems. The main ingredient of the verifica-

tion of graph transformation is the logic that is chosen to represent the precondition,

the postcondition and the possible conditions internal to the transformation. So that

the logic can interact with the calculus, we require that the decision problem be de-

cidable, that the logic be closed under the substitutions introduced by the Hoare-like

calculus and that it has to be able to express the existence and absence of a match for

the transformation. The core result of this work is the identification and explanation

of these conditions.

En informatique comme dans de multiples autres domaines, les graphes peuvent

être trouvés partout. Ils sont utilisés pour représenter des données dans des domaines

allant de la chimie à l’architecture, en tant que structures abstraites ou que modèles des

données et de leurs évolutions. Dans tous ces domaines, il est prévisible que les graphes

évoluent au cours du temps suite à des réactions chimiques, une mise à jour des con-

naissance ou l’exécution d’un programme. Être capable de traiter ces transformations

est une tâche particulièrement importante et difficile. Dans ce travail, notre objectif

est d’étudier la vérification de telles transformations de graphes, c’est à dire comment

prouver qu’une transformation de graphes est correcte. La correction d’une transfor-

mation est plus précisément définie comme la correction d’une spécification pour cette

transformation contenant en plus une précondition et une postcondition. Nous avons

décidé d’utiliser un calcul à la Hoare générant une plus faible précondition pour une

postcondition et une transformation. Si cette plus faible précondition est impliquée par

la précondition, la spécification est correcte. Nous avons choisi une approche plus al-

gorithmique pour les transformation de graphes utilisant des actions atomiques. Nous

définissons deux moyens de construire des transformations de graphes: en utilisant un

langage impératif ou en utilisant des systèmes de règles de réécriture. Le principal

ingrédient est la logique qui est choisie pour représenter la précondition, la postcon-

dition et les possibles conditions internes. Pour que la logique puisse interagir avec le

calcul, nous demandons que le problème de décision soit décidable, qu’elle soit fermée

par substitutions et qu’elle soit capable d’exprimer l’existence ou l’absence d’un sous-

graphe affecté par la transformation. Le résultat central de ce travail est l’identification

et l’explication de ces conditions.
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