P. Odru, Le stockage de l'énergie, p.862835165

M. Skyllas-kazacos, M. Rychick, and R. Robins, All-vanadium redox battery

P. Leung, X. Li, C. Ponce-de-leon, L. Berlouis, C. T. John et al., Progress in redox flow batteries, remaining challenges and their applications in energy storage, RSC Advances, vol.325, issue.416, p.10125, 2012.
DOI : 10.1016/j.memsci.2008.08.025

Y. Frank, W. H. Fan, Z. Woodford, N. Li, K. C. Baram et al., Polysulde Flow Batteries Enabled by Percolating Nanoscale Conductor Networks, Nano Letters, vol.14, issue.4, p.22102218, 2014.

Z. Li, K. C. Smith, N. Dong, F. Y. Baram, J. Fan et al., Aqueous semi-solid ow cell : demonstration and analysis, Physical Chemistry Chemical Physics, issue.38, p.1515833, 2013.
DOI : 10.1039/c3cp53428f

J. Manicore and . Marc, Est-ce facile de stocker l'énergie ?, 2014.

R. Guillo, Stockage d'énergie par volant d'inertie, 2012.

M. Winter and R. J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors ?, Chemical Reviews, vol.104, issue.10, p.42454270, 2004.
DOI : 10.1002/chin.200450265

N. Duc and T. , Maitrise de Chimie : Nouvelle methode d'analyse rapide pour determiner la capacite de charge du LiFePO 4, 2011.

C. Blanc, Modeling of a vanadium redox ow battery electricity storage system

H. H. Girault, Analytical and physical electrochemistry. Fundamental sciences. EPFL ; Marcel Dekker, p.57353595, 2004.

M. Lachal, Study of insertion/deinsertion mechanisms of alkaline cations (Li+,Na+) within FePO 4 olivine structure for Li-ion and Na-ion batteries, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01216336

. Raaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, vol.2, issue.6, p.638, 2009.

A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2001.

F. Henn, Cours d'electrochimie L3 Chimie Physique et M1 materiaux concours, 2006.

J. Tarascon, Histoire et évolution des technologies d'accumulateurs, 2011.

S. Martinet and H. Rouault, Nouvelles voies dans les accumulateurs lithium et les electrolytes de batteries, Clefs CEA, issue.5051, p.130135, 2005.

P. Alotto, M. Guarnieri, and F. Moro, Redox ow batteries for the storage of renewable energy : A review, Renewable and Sustainable Energy Reviews, vol.29, p.325335, 2014.

M. Bartolozzi, Development of redox ow batteries. A historical bibliography

W. Wang, Q. Luo, B. Li, X. Wei, L. Li et al., Recent Progress in Redox Flow Battery Research and Development, Advanced Functional Materials, vol.48, issue.8, p.970986, 2013.
DOI : 10.1039/c2cc32466k

V. Amstutz, K. E. Toghill, F. Powlesland, H. Vrubel, C. Comninellis et al., Renewable hydrogen generation from a dual-circuit redox ow battery, Energy Environ. Sci, vol.7, issue.7, p.23502358, 2014.

C. R. Dennison, H. Vrubel, V. Amstutz, P. Peljo, K. E. Toghill et al., Redox Flow Batteries, Hydrogen and Distributed Storage, CHIMIA International Journal for Chemistry, vol.69, issue.12, p.753758, 2015.
DOI : 10.2533/chimia.2015.753

URL : https://infoscience.epfl.ch/record/214813/files/s8.pdf

J. W. Campos, M. Beidaghi, K. B. Hatzell, C. R. Dennison, B. Musci et al., Investigation of carbon materials for use as a owable electrode in electrochemical ow capacitors, Electrochimica Acta, vol.98, p.123130, 2013.

K. B. Hatzell, M. Beidaghi, J. W. Campos, C. R. Dennison, E. C. Kumbur et al., A high performance pseudocapacitive suspension electrode for the electrochemical ow capacitor, Electrochimica Acta, vol.111, p.888897, 2013.

P. Zhao, H. Zhang, H. Zhou, J. Chen, S. Gao et al., Characteristics and performance of 10kw class all-vanadium redox-ow battery stack, Journal of Power Sources, vol.162, issue.2, p.14161420, 2006.

P. K. Leung, C. Ponce-de-leon, C. T. Low, A. A. Shah, and F. C. Walsh, Characterization of a zinc-cerium ow battery, Journal of Power Sources, issue.11, p.19651745185, 2011.

Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai-liu et al., Nitrogen-doped mesoporous carbon for energy storage in vanadium redox ow batteries, Journal of Power Sources, issue.13, pp.1954375-4379, 2010.

D. Pletcher and R. Wills, A novel ow battery-A lead acid battery based on an electrolyte with soluble lead(II), Journal of Power Sources, vol.149, p.96102, 2005.

N. Da-mota, D. A. Finkelstein, J. D. Kirtland, C. A. Rodriguez, A. D. Stroock et al., Direct Borohydride/Cerium Fuel Cell with Power Density of Over 0.25 W/cm2, Abruna. Membraneless, Room-Temperature Journal of the American Chemical Society, issue.14, p.13460766079, 2012.

D. S. Aaron, Q. Liu, Z. Tang, G. M. Grim, A. B. Papandrew et al., Dramatic performance gains in vanadium redox ow batteries through modied cell architecture, Journal of Power Sources, vol.206, p.450453, 2012.

M. Skyllas-kazacos, Efficient Vanadium Redox Flow Cell, Journal of The Electrochemical Society, vol.134, issue.12, p.2950, 1987.
DOI : 10.1149/1.2100321

J. M. Friedrich, C. Ponce-de-leon, G. W. Reade, and F. C. Walsh, Reticulated vitreous carbon as an electrode material, Journal of Electroanalytical Chemistry, vol.561, p.203217, 2004.
DOI : 10.1016/j.jelechem.2003.07.019

URL : https://eprints.soton.ac.uk/43886/1/RVC_review.pdf

E. Kjeang, B. T. Proctor, A. G. Brolo, D. A. Harrington, N. Djilali et al., High-performance microuidic vanadium redox fuel cell
DOI : 10.1016/j.electacta.2007.01.062

B. Sun and M. Skyllas-kazakos, Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution, Electrochimica Acta, vol.36, issue.3-4, pp.513-517, 1991.
DOI : 10.1016/0013-4686(91)85135-T

B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo et al., Bismuth Nanoparticle Decorating Graphite Felt as a High-Performance Electrode for an All-Vanadium Redox Flow Battery, Nano Letters, vol.13, issue.3, p.13301335, 2013.
DOI : 10.1021/nl400223v

X. Li, H. Zhang, and Z. Mai, Hongzhang Zhang, and Ivo Vankelecom . Ion exchange membranes for vanadium redox ow battery (VRB) applications

H. Haubold, . Th, H. Vad, P. Jungbluth, and . Hiller, Nano structure of naon : a SAXS study, Electrochimica Acta, vol.46, pp.10-1115591563, 2001.

J. Chan-woong, S. Venkataramani, and S. C. Kim, Modication of Naon membrane using poly(4-vinyl pyridine) for direct methanol fuel cell, Polymer International, vol.55, issue.5, p.491499, 2006.

. Chih-yuan-chen, I. Jairo, M. C. Garnica-rodriguez, R. F. Duke, A. L. Costa et al., Naon/polyaniline/silica composite membranes for direct methanol fuel cell application, Journal of Power Sources, vol.166, issue.2, p.324330, 2007.

J. Xi, Z. Wu, X. Teng, Y. Zhao, L. Chen et al., Self-assembled polyelectrolyte multilayer modied Naon membrane with suppressed vanadium ion crossover for vanadium redox ow batteries, Journal of Materials Chemistry, issue.11, p.181232, 2008.

Q. Luo, H. Zhang, J. Chen, P. Qian, and Y. Zhai, Modication of Naon membrane using interfacial polymerization for vanadium redox ow battery applications, Journal of Membrane Science, vol.311, issue.12, p.98103, 2008.

S. Kim, J. Yan, B. Schwenzer, J. Zhang, and L. L. Liu, Zhenguo (Gary) Yang, and Michael A. Hickner. Cycling performance and eciency of sulfonated poly(sulfone) membranes in vanadium redox ow batteries, Electrochemistry Communications, issue.11, p.1216501653, 2010.

D. Chen, S. Wang, M. Xiao, and Y. Meng, Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox ow battery. Energy Conversion and Management, p.5128162824, 2010.

Z. Mai, H. Zhang, X. Li, C. Bi, and H. Dai, Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox ow battery application, Journal of Power Sources, vol.196, issue.1, p.482487, 2011.
DOI : 10.1016/j.jpowsour.2010.07.028

Q. Gostick and . Liu, Redox ow batteries : a review, Journal of Applied Electrochemistry, issue.10, p.4111371164, 2011.

C. Ponce-de-leon, A. Frias-ferrer, J. Gonzalez-garcia, D. A. Szanto, and F. C. Walsh, Redox ow cells for energy conversion, Journal of Power Sources, vol.160, issue.1, p.716732, 2006.

M. Skyllas-kazacos, M. H. Chakrabarti, S. A. Hajimolana, F. S. Mjalli, and M. Sa-leem, Progress in Flow Battery Research and Development, Journal of The Electrochemical Society, vol.1, issue.8, pp.158-55, 2011.
DOI : 10.1016/j.renene.2007.05.025

E. Sum, M. Rychcik, and M. Skyllas-kazacos, Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery, Journal of Power Sources, vol.16, issue.2, p.8595, 1985.
DOI : 10.1016/0378-7753(85)80082-3

A. Parasuraman, T. M. Lim, C. Menictas, and M. Skyllas-kazacos, Review of material research and development for vanadium redox ow battery applications, Electrochimica Acta, vol.101, p.2740, 2013.

M. Skyllas-kazacos, New All-Vanadium Redox Flow Cell, Journal of The Electrochemical Society, vol.133, issue.5, p.1057, 1986.
DOI : 10.1149/1.2108706

H. Vaadis and M. Skyllas-kazacos, Evaluation of membranes for the novel vanadium bromine redox ow cell, Journal of Membrane Science, vol.279, issue.12, p.394402, 2006.

Y. Fang-qin-xue, W. Wang, X. Wang, and . Wang, Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox ow battery, Electrochimica Acta, issue.22, p.5366366642, 2008.

Y. Liu, H. Xia, and . Liu, Studies on cerium (Ce4+/Ce3+)-vanadium(V2+/V3+) redox ow cell-cyclic voltammogram response of Ce4+/Ce3+ redox couple in H2so4 solution, Journal of Power Sources, vol.130, issue.12, p.299305, 2004.

A. Paulenova, S. E. Creager, J. D. Navratil, and Y. Wei, Redox potentials and kinetics of the Ce3+/Ce4+ redox reaction and solubility of cerium sulfates in sulfuric acid solutions, Journal of Power Sources, vol.109, issue.2, p.431438, 2002.
DOI : 10.1016/S0378-7753(02)00109-X

Y. H. Wen, J. Cheng, Y. Xun, P. H. Ma, and Y. S. Yang, Bifunctional redox ow battery : V(III)/V(II)-cystine(O2) system, Electrochimica Acta, issue.20, p.5360186023, 2008.
DOI : 10.1016/j.electacta.2007.11.073

M. Skyllas-kazacos, Novel vanadium chloride/polyhalide redox ow battery, Journal of Power Sources, vol.124, issue.1, p.299302, 2003.
DOI : 10.1016/s0378-7753(03)00621-9

M. Skyllas-kazacos, Vanadium/polyhalide redox ow battery. Google Patents, US Patent, vol.7320, p.844, 2008.
DOI : 10.1016/s0378-7753(03)00621-9

Q. Liu, A. E. Sleightholme, A. A. Shinkle, Y. Li, and L. T. Thompson, Non-aqueous vanadium acetylacetonate electrolyte for redox ow batteries, Electrochemistry Communications, vol.11, issue.12, p.23122315, 2009.

M. Skyllas-kazacos and Y. Limantari, Kinetics of the Chemical Dissolution of Vanadium Pentoxide in Acidic Bromide Solutions, Journal of Applied Electrochemistry, vol.34, issue.7, p.681685, 2004.
DOI : 10.1023/B:JACH.0000031168.03880.1a

M. Skyllas-kazacos, G. Kazacos, G. Poon, and H. Verseema, Recent advances with UNSW vanadium-based redox ow batteries, International Journal of Energy Research, vol.34, issue.2, p.182189, 2010.
DOI : 10.1002/er.1658

P. K. Leung, C. Ponce-de-leon, and F. C. Walsh, An undivided zinccerium redox ow battery operating at room temperature (295 K), Electrochemistry Communications, vol.13, issue.8, p.770773, 2011.
DOI : 10.1016/j.elecom.2011.04.011

A. Oury, Accumulateurs au plomb-acide méthanesulfoniquèa circulation d'électrolyte pour les applications photovoltaiques et support des réseaux, 2013.

N. Hagedorn and L. Thaller, Design exibility of redox ow systems Intersociety Energy Conversion Engineering conference, 1982.

L. Thaller, Electrically Rechargeable Redox Flow Cells, 1974.

B. Jonshagen and P. Lex, The zinc/bromine battery system for utility and remote area applications, Power Engineering Journal, vol.13, issue.3, p.142148, 1999.

H. S. Lim, Zinc-Bromine Secondary Battery, Journal of The Electrochemical Society, vol.124, issue.8, p.1154, 1977.
DOI : 10.1149/1.2133517

F. G. Will and H. S. Spacil, Performance analysis of zincbromine batteries in vehicle and utility applications, Journal of Power Sources, vol.5, issue.2, p.173188, 1980.

G. D. Simpson, An Algebraic Model for a Zinc/Bromine Flow Cell, Journal of The Electrochemical Society, vol.136, issue.8, p.2137, 1989.
DOI : 10.1149/1.2097226

K. J. Cathro, K. Cedzynska, and D. C. Constable, Some properties of zinc/bromine battery electrolytes, Journal of Power Sources, vol.16, issue.1, p.5363, 1985.
DOI : 10.1016/0378-7753(85)80003-3

R. J. Remick and P. G. Ang, Electrically rechargeable anionically active reduction-oxidation electrical storage-supply system. Google Patents, 1984.

P. Zhao, H. Zhang, H. Zhou, and B. Yi, Nickel foam and carbon felt applications for sodium polysulde

R. Clarke, B. Dougherty, S. Harrison, P. Millington, and S. Mohanta, redox system includes cerium ions complexed by an organic acid or a chelating agent and a second element or compound that reduces hydrogen overpotential, Google Patents, p.941, 2004.

J. Collins, X. Li, D. Pletcher, R. Tangirala, D. Stratton-campbell et al., A novel ow battery : A lead acid battery based on an electrolyte with soluble lead(II). Part IX : Electrode and electrolyte conditioning with hydrogen peroxide, Journal of Power Sources, vol.195, issue.9, p.29752978, 2010.

A. Colin, Power ow, des societaux :énergie propre, sure et écace, 2014.

V. Amstutz, K. E. Toghill, . Comninellis, . Ch, and H. H. Girault, Les batteries redox pour le stockage d'énergie, 2012.

A. D. Stroock, Chaotic Mixer for Microchannels, Science, vol.295, issue.5555, p.647651, 2002.
DOI : 10.1126/science.1066238

A. Frias-ferrer, J. Gonzalez-garcia, V. Saez, C. Ponce-de-leon, and F. C. Walsh, The eects of manifold ow on mass transport in electrochemical lter-press reactors, AIChE Journal, vol.54, issue.3, p.811823, 2008.

R. Ferrigno, A. D. Stroock, T. D. Clark, M. Mayer, and G. M. Whitesides, Membraneless Vanadium Redox Fuel Cell Using Laminar Flow, Journal of the American Chemical Society, vol.124, issue.44, p.1293012931, 2002.
DOI : 10.1021/ja020812q

URL : http://gmwgroup.harvard.edu/pubs/pdf/805.pdf

J. Wook-lee, M. Goulet, and E. Kjeang, Microuidic redox battery, Lab on a Chip, vol.13, issue.13, p.2504, 2013.

W. A. Bra, M. Z. Bazant, and C. R. Buie, Membrane-less hydrogen bromine ow battery, Nature Communications, vol.4, 2013.

E. R. Choban, P. Waszczuk, and P. J. Kenis, Characterization of Limiting Factors in Laminar Flow-Based Membraneless Microfuel Cells, Electrochemical and Solid-State Letters, vol.3, issue.7, p.348, 2005.
DOI : 10.1021/la048417w

S. Ranga, L. Jayashree, E. R. Gancs, A. Choban, D. Primak et al., Air-Breathing Laminar Flow-Based Microuidic Fuel Cell, Journal of the American Chemical Society, issue.48, p.1271675816759, 2005.

A. Zebda, L. Renaud, M. Cretin, C. Innocent, R. Ferrigno et al., Membraneless microchannel glucose biofuel cell with improved electrical performances, Sensors and Actuators B: Chemical, vol.149, issue.1, p.4450, 2010.
DOI : 10.1016/j.snb.2010.06.032

M. Goulet and E. Kjeang, Co-laminar ow cells for electrochemical energy conversion, Journal of Power Sources, vol.260, p.186196, 2014.
DOI : 10.1016/j.jpowsour.2014.03.009

URL : http://summit.sfu.ca/system/files/iritems1/16513/etd9599_.pdf

Y. Matsuda, K. Tanaka, M. Okada, Y. Takasu, and T. Matsumura-inoue, A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte, Journal of Applied Electrochemistry, vol.1982, issue.6, p.909914, 1988.
DOI : 10.1007/BF01016050

J. Mun, M. Lee, J. Park, and D. Oh, Doo-Yeon Lee, and Seok-Gwang Doo. Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2-bipyridine) Complex Electrolyte, Electrochemical and Solid-State Letters, issue.6, pp.15-80, 2012.

Q. Liu, A. A. Shinkle, Y. Li, C. W. Monroe, L. T. Thompson et al., Non-aqueous chromium acetylacetonate electrolyte for redox ow batteries, Electrochemistry Communications, vol.12, issue.11, p.16341637, 2010.

J. G. Ibanez, Aqueous Redox Transition Metal Complexes for Electrochemical Applications as a Function of pH, Journal of The Electrochemical Society, vol.134, issue.12, p.3083, 1987.
DOI : 10.1149/1.2100344

A. A. Shinkle, T. J. Pomaville, A. E. Sleightholme, L. T. Thompson, and C. W. Monroe, Solvents and supporting electrolytes for vanadium acetylacetonate ow batteries, Journal of Power Sources, vol.248, p.12991305, 2014.

B. Hwang, M. Park, and K. Kim, Ferrocene and Cobaltocene Derivatives for Non-Aqueous Redox Flow Batteries, ChemSusChem, vol.8, issue.2, p.310314, 2015.

Y. Ding, Y. Zhao, and G. Yu, A Membrane-Free Ferrocene-Based High-Rate Semiliquid Battery, Nano Letters, vol.15, issue.6, p.41084113, 2015.
DOI : 10.1021/acs.nanolett.5b01224

S. Er, C. Suh, M. P. Marshak, and A. Aspuru-guzik, Computational design of molecules for an all quinone redox ow battery, Chem. Sci, vol.6, issue.2, p.885893, 2015.

C. J. Gerhardt, X. Galvin, A. Chen, R. G. Aspuru-guzik, M. J. Gordon et al., A metal-free organic/inorganic aqueous ow battery, Nature, issue.7482, p.505195198, 2014.

Q. Chen, M. R. Gerhardt, L. Hartle, and M. J. Aziz, A Quinone-Bromide Flow Battery with 1 W/cm2 Power Density, Journal of the Electrochemical Society, vol.163, issue.1, pp.5010-5013, 2015.
DOI : 10.1149/2.0021601jes

K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim et al., Alkaline quinone ow battery, Science, issue.6255, p.34915291532, 2015.
DOI : 10.1126/science.aab3033

K. Lin, R. Gómez-bombarelli, E. S. Beh, L. Tong, Q. Chen et al., A redox-flow battery with an alloxazine-based organic electrolyte, Nature Energy, vol.27, issue.9, p.16102, 2016.
DOI : 10.1021/jp907209a

K. Nakahara, . Iwasa, Y. Satoh, . Morioka, . Iriyama et al., Rechargeable batteries with organic radical cathodes, Chemical Physics Letters, vol.359, issue.5-6, pp.5-6351354, 2002.
DOI : 10.1016/S0009-2614(02)00705-4

X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu et al., TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries, Advanced Materials, vol.10, issue.45, p.76497653, 2014.
DOI : 10.1039/B710098A

A. K. Padhi, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.144, issue.4, p.1188, 1997.
DOI : 10.1149/1.1837571

M. M. Thackeray, W. I. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Materials Research Bulletin, vol.18, issue.4, p.461472, 1983.
DOI : 10.1016/0025-5408(83)90138-1

K. Mizushima, . Jones, J. Wiseman, and . Goodenough, Li x CoO 2 : A new cathode material for batteries of high energy density, Solid State Ionics, pp.3-4171174, 1981.

J. Moring and E. Kostiner, The crystal structure of NaMnPO4, Journal of Solid State Chemistry, vol.61, issue.3, p.379383, 1986.
DOI : 10.1016/0022-4596(86)90046-0

J. Luo, W. Cui, P. He, and Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte, Nature Chemistry, vol.155, issue.9, p.760765, 2010.
DOI : 10.1038/nchem.763

C. Julien, A. Mauger, K. Zaghib, and H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, vol.1, issue.1, p.132154, 2014.
DOI : 10.1149/1.2171828

URL : https://hal.archives-ouvertes.fr/hal-00991398

Q. Huang, H. Li, M. Gratzel, and Q. Wang, : towards a redox flow lithium-ion battery, Phys. Chem. Chem. Phys., vol.133, issue.6, p.1793, 2013.
DOI : 10.1016/S0376-7388(97)00092-6

E. Zanzola, C. R. Dennison, A. Battistel, P. Peljo, H. Vrubel et al., Redox Solid Energy Boosters for Flow Batteries: Polyaniline as a Case Study, Electrochimica Acta, vol.235, p.664671, 2017.
DOI : 10.1016/j.electacta.2017.03.084

M. Duduta, B. Ho, V. C. Wood, P. Limthongkul, V. E. Brunini et al., Semi-Solid Lithium Rechargeable Flow Battery, Advanced Energy Materials, vol.142, issue.4, p.511516, 2011.
DOI : 10.1149/1.2048468

S. Hamelet, T. Tzedakis, J. Leriche, S. Sailler, D. Larcher et al., Non-Aqueous Li-Based Redox Flow Batteries, Journal of the Electrochemical Society, vol.159, issue.8, p.15913601367, 2012.
DOI : 10.1149/2.071208jes

URL : https://hal.archives-ouvertes.fr/hal-00870471

E. Ventosa, D. Buchholz, S. Klink, C. Flox, L. Gomes-chagas et al., Non-aqueous semi-solid ow battery based on Na-ion chemistry. P2-type Na, Chem. Commun, issue.34, p.5172987301, 2015.
DOI : 10.1039/c4cc09597a

URL : http://pubs.rsc.org/en/content/articlepdf/2015/cc/c4cc09597a

H. Parant, G. Muller, T. Le-mercier, J. M. Tarascon, P. Poulin et al., Flowing suspensions of carbon black with high electronic conductivity for ow applications : Comparison between carbons black and exhibition of specic aggregation of carbon particles, Carbon, 2017.

K. Dai, X. Xu, and Z. Li, Electrically conductive carbon black (CB) lled in situ microbrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution, Polymer, issue.3, p.48849859, 2007.

N. Mahmood, C. Zhang, H. Yin, and Y. Hou, Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells, J. Mater. Chem. A, vol.6, issue.133, p.1532, 2014.
DOI : 10.1002/cssc.201200564

C. Portet, P. L. Taberna, P. Simon, E. Flahaut, and C. Laberty-robert, High power density electrodes for Carbon supercapacitor applications, Electrochimica Acta, vol.50, issue.20, p.5041744181, 2005.
DOI : 10.1016/j.electacta.2005.01.038

URL : https://hal.archives-ouvertes.fr/hal-00467492

M. Hassar, Inuence des nano-charges de noir de carbone sur le comportement mécanique de matériaux composites Application au blindage électromagnétique, 2013.

K. Kampioti, Nanocarbon from food waste : dispersions and applications, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01536074

H. P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, vol.32, issue.5, p.759769, 1994.
DOI : 10.1016/0008-6223(94)90031-0

L. Madec, M. Youssry, M. Cerbelaud, P. Soudan, D. Guyomard et al., Surfactant for Enhanced Rheological, Electrical, and Electrochemical Performance of Suspensions for Semisolid Redox Flow Batteries and Supercapacitors, ChemPlusChem, vol.60, issue.2, p.396401, 2015.
DOI : 10.1016/j.electacta.2011.11.059

URL : https://hal.archives-ouvertes.fr/hal-01115624

M. Youssry, L. Madec, P. Soudan, M. Cerbelaud, D. Guyomard et al., Non-aqueous carbon black suspensions for lithium-based redox ow batteries : rheology and simultaneous rheo-electrical behavior, Physical Chemistry Chemical Physics, issue.34, p.1514476, 2013.
DOI : 10.1039/c3cp51371h

S. Rwei, F. Ku, and C. , Dispersion of carbon black in a continuous phase : Electrical, rheological, and morphological studies, Colloid & Polymer Science, vol.280, issue.12, p.11101115, 2002.

. Rogac, Inuence of dispersing additives on the conductivity of carbon black pigment dispersion, Journal of Coatings Technology and Research, vol.8, issue.5, p.553561, 2011.

L. Vaisman, H. D. Wagner, and G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, vol.128, issue.130, pp.128-1303746, 2006.
DOI : 10.1016/j.cis.2006.11.007

J. Hilding, E. A. Grulke, Z. G. Zhang, and F. Lockwood, Dispersion of Carbon Nanotubes in Liquids, Journal of Dispersion Science and Technology, vol.1, issue.8, p.141, 2003.
DOI : 10.1021/nl010039h

L. Guardia, M. J. Fernández-merino, J. I. Paredes, P. Solís-fernández, S. Villar-rodil et al., High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants, Carbon, vol.49, issue.5, p.4916531662, 2011.
DOI : 10.1016/j.carbon.2010.12.049

A. Luna, J. Yuan, W. Neri, C. Zakri, P. Poulin et al., Giant Permittivity Polymer Nanocomposites Obtained by Curing a Direct Emulsion, Langmuir, vol.31, issue.44, p.311223112239, 2015.
DOI : 10.1021/acs.langmuir.5b02318

URL : https://hal.archives-ouvertes.fr/hal-01305941

M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, High Weight Fraction Surfactant Solubilization of Single-Wall Carbon Nanotubes in Water, Nano Letters, vol.3, issue.2, p.269273, 2003.
DOI : 10.1021/nl025924u

R. Bandyopadhyaya, E. Nativ-roth, O. Regev, and R. Yerushalmi-rozen, Stabilization of Individual Carbon Nanotubes in Aqueous Solutions, Nano Letters, vol.2, issue.1, p.2528, 2002.
DOI : 10.1021/nl010065f

Y. Dror, Y. Cohen, and R. Yerushalmi-rozen, Structure of gum arabic in aqueous solution, Journal of Polymer Science Part B: Polymer Physics, vol.5, issue.22, p.4432653271, 2006.
DOI : 10.1051/jphys:0197600370120146100

A. Bicho, A. Cecília, A. Roque, A. S. Cardoso, P. Domingos et al., In vitro studies with mammalian cell lines and gum arabic-coated magnetic nanoparticles, Journal of Molecular Recognition, vol.21, issue.3, p.536542, 2010.
DOI : 10.1088/0957-4484/19/26/265602

D. Stauer and A. Aharony, Introduction to percolation theory. Routledge , London, rev. 2. ed., transferred to digital print edition, p.249097091, 2003.

Y. Geng, M. Y. Liu, J. Li, X. M. Shi, and J. Kim, Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, vol.39, issue.12, pp.1876-1883, 2008.
DOI : 10.1016/j.compositesa.2008.09.009

A. Celzard, E. Mcrae, C. Deleuze, M. Dufort, G. Furdin et al., Critical concentration in percolating systems containing a high-aspect-ratio ller, Physical Review B, issue.10, p.5362096214, 1996.

I. Balberg, C. H. Anderson, S. Alexander, and N. Wagner, Excluded volume and its relation to the onset of percolation, Physical Review B, vol.44, issue.7, p.39333943, 1984.
DOI : 10.1007/3-540-11471-8_4

I. Balberg, N. Binenbaum, and N. Wagner, Percolation Thresholds in the Three-Dimensional Sticks System, Physical Review Letters, vol.51, issue.17, p.14651468, 1984.
DOI : 10.1111/j.1749-6632.1949.tb27296.x

A. Lonjon, Nanocomposite conducteur polymère/nanols métalliques : élaboration et analyse des propriétés physiques, 2010.

J. Yuan, A. Luna, W. Neri, C. Zakri, T. Schilling et al., Graphene liquid crystal retarded percolation for new high-k materials, Nature Communications, vol.12, p.8700, 2015.
DOI : 10.1021/nl203023k

URL : https://hal.archives-ouvertes.fr/hal-01306002

B. Krause, P. Pötschke, and L. Häuÿler, Inuence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites, Composites Science and Technology, issue.10, p.6915051515, 2009.

A. Helal, T. Divoux, and G. H. Mckinley, Simultaneous Rheoelectric Measurements of Strongly Conductive Complex Fluids, Physical Review Applied, vol.7, issue.6, 2016.
DOI : 10.1122/1.4882021

URL : https://hal.archives-ouvertes.fr/hal-01417303

R. J. Hunter, Foundations of colloid science, 2001.

. Quantachrome, Particle size and zeta potential of dispersions in original concentration, Quantachrome Particle World, 2009.

M. Ruths and J. Israelachvili, Nanotribology and Nanomechanics, An Introduction (Chapter 13), 2005.

J. Li, J. Chun, N. S. Wingreen, R. Car, I. A. Aksay et al., Use of dielectric functions in the theory of dispersion forces, Physical Review B, vol.243, issue.23, p.71, 2005.
DOI : 10.1063/1.1336569

A. Thill, Agrégation des particules : structure, dynamique et simulation

Y. Wang, Y. Pan, X. Zhang, and K. Tan, Impedance spectra of carbon black lled high-density polyethylene composites, Journal of Applied Polymer Science, vol.98, issue.3, p.13441350, 2005.

R. Ou, R. A. Gerhardt, C. Marrett, A. Moulart, and J. S. Colton, Assessment of percolation and homogeneity in ABS/carbon black composites by electrical measurements, Composites Part B: Engineering, vol.34, issue.7, p.607614, 2003.
DOI : 10.1016/S1359-8368(03)00085-4

A. Plyushch, J. Macutkevic, P. P. Kuzhir, J. Banys, V. Fierro et al., Dielectric properties and electrical conductivity of flat micronic graphite/polyurethane composites, Journal of Nanophotonics, vol.10, issue.1, p.12511, 2015.
DOI : 10.1117/1.JNP.10.012511

R. N. Othman and A. N. Wilkinson, THE IMPEDANCE CHARACTERIZATION OF HYBRID CNT-SILICA EPOXY NANOCOMPOSITES, International Journal of Automotive and Mechanical Engineering, vol.10, p.18321840, 2014.
DOI : 10.15282/ijame.10.2014.1.0152

D. Gon, H. , and G. M. Choi, Computer simulation of the electrical conductivity of composites : the eect of geometrical arrangement, Solid State Ionics, vol.106, issue.12, p.7187, 1998.

H. Warren, R. D. Gately, O. Patrick, R. Brien, M. Gorkin et al., Electrical conductivity, impedance, and percolation behavior of carbon nanober and carbon nanotube containing gellan gum hydrogels, Journal of Polymer Science Part B : Polymer Physics, issue.13, p.52864871, 2014.

S. Liu, L. Kaplan, and . Gray, AC response of fractal interfaces ? Solid State Ionics, pp.18-196571, 1986.

E. Barsoukov and J. R. Macdonald, Impedance spectroscopy : theory, experiment, and applications, 2005.
DOI : 10.1002/0471716243

E. Kjeang, B. Roesch, J. Mckechnie, D. A. Harrington, N. Djilali et al., Integrated electrochemical velocimetry for microuidic devices, Microuidics and Nanouidics, vol.3, issue.4, p.403416, 2007.
DOI : 10.1007/s10404-006-0128-1

URL : http://www.sfu.ca/%7Eekjeang/publications-research/PDF/Integrated+Electrochemical+Velocimetry+for+Microfluidic+Devices%2C+Microfluidics+and+Nanofluidics.pdf

J. Kuta and E. Yeager, The inuence of cations on the electrode kinetics of ferricyanide-ferrocyanide system on the rotating gold electrode, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.59, issue.1, p.110112, 1975.

D. R. Lide, Handbook of Chemistry and Physics, 2003.

J. H. Wang and J. W. Kennedy, Self-diusion Coecients of Sodium Ion and Iodide Ion in Aqueous Sodium Iodide Solutions, Journal of the American Chemical Society, vol.72, p.20802083, 1950.

I. Ru, V. J. Friedrich, and K. Csillag, Transfer Diusion. 111 Kinetics and Mechanism of the Triiodide-Iodide Exchange Reaction, The Journal of Physical Chemistry, vol.76, 1972.

W. Zhang, H. A. Stone, and J. D. Sherwood, Mass Transfer at a Microelectrode in Channel Flow, The Journal of Physical Chemistry, vol.100, issue.22, p.94629464, 1996.
DOI : 10.1021/jp960027y

T. Okada, S. Moller-holst, O. Gorseth, and S. Kjelstrup, Transport and equilibrium properties of Naon membranes with H+ and Na+ ions

K. G. Darrall and G. Oldham, The diusion coecients of the tri-iodide ion in aqueous solutions, Journal of the Chemical Society, vol.A, p.2584, 1968.

M. Stanley and W. , The role of ternary phases in cathode reactions, Journal of The Electrochemical Society, vol.123, p.315320, 1976.

C. Delmas, H. Cognac-auradou, J. M. Cocciantelli, M. Ménétrier, and J. P. Doumerc, The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation, Solid State Ionics, vol.69, issue.3-4, pp.257-264
DOI : 10.1016/0167-2738(94)90414-6

D. Giaume, X. Petrissans, and P. Barboux, Eect of pressure on capacitor electrodes formed with oxide nanoparticles, Journal of Power Sources, vol.272, p.100106, 2014.

W. Li, J. R. Dahn, and D. S. Wainwright, Rechargeable Lithium Batteries with Aqueous Electrolytes, Science, vol.264, issue.5162, p.11151118, 1994.
DOI : 10.1126/science.264.5162.1115

J. Come, P. Taberna, S. Hamelet, C. Masquelier, and P. Simon, Electrochemical Kinetic Study of LiFePO 4 Using Cavity Microelectrode, Journal of The Electrochemical Society, issue.10, pp.158-1090, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00842563

E. Deiss, D. Häringer, P. Novák, and O. Haas, Modeling of the chargedischarge dynamics of lithium manganese oxide electrodes for lithium-ion batteries, Electrochimica Acta, vol.46, pp.26-2741854196, 2001.

Z. Liu, X. Qin, H. Xu, and G. Chen, One-pot synthesis of carboncoated nanosized LiTi 2 (PO 4 ) 3 as anode materials for aqueous lithium ion batteries, Journal of Power Sources, vol.293, p.562569, 2015.

D. Sun, Y. Jiang, H. Wang, Y. Yao, G. Xu et al., Advanced aqueous rechargeable lithium battery using nanoparticulate LiTi 2 (PO 4 ) 3 /c as a superior anode, Scientic Reports, vol.5, issue.1, 2015.

T. , L. Mercier, J. Gaubicher, E. Bermejo, Y. Chabre et al., Morphology and electrochemical behavior of an ultrane LiMn 2 O 4 powder obtained by a new route, from freeze-dried precursors, Journal of Materials Chemistry, vol.9, issue.2, p.567570, 1999.

J. P. Tu, H. M. Wu, Y. Z. Yang, and W. K. Zhang, Spray-drying technology for the synthesis of nanosized LiMn 2 O 4 cathode material, Materials Letters, issue.3, p.61864867, 2007.

H. Yan, X. Huang, and L. Chen, Microwave synthesis of LiMn 2 O 4 cathode material, Journal of Power Sources, pp.81-82647650, 1999.

B. Nageswara-rao, P. Muralidharan, P. R. Kumar, L. Venkateswarlu, and N. Satyanarayana, Fast and Facile Synthesis of LiMn 2 O 4 Nanorods for Li Ion Battery by Microwave Assisted Hydrothermal and Solid State Reaction Methods, International Journal of Electrochemical Sciences, vol.9, pp.1207-1220, 2014.

K. B. Hatzell, M. Boota, and Y. Gogotsi, Materials for suspension (semi-solid) electrodes for energy and water technologies, Chemical Society Reviews, vol.163, issue.23, p.86648687, 2015.
DOI : 10.1149/2.0011601jes

. Kumbur, Eects of ow cell design on charge percolation and storage in the carbon slurry electrodes of electrochemical ow capacitors, Journal of Power Sources, vol.247, p.489496, 2014.

F. Chen, M. Chang, and M. Lin, Analysis of membraneless formic acid microfuel cell using a planar microchannel, Electrochimica Acta, vol.52, issue.7, pp.2506-2514, 2007.
DOI : 10.1016/j.electacta.2006.09.011

A. Bazylak, D. Sinton, and N. Djilali, Improved fuel utilization in microuidic fuel cells : A computational study, Journal of Power Sources, vol.143, issue.12, p.5766, 2005.

R. Guinebretiere, Diraction des rayons X sur échantillons polycristallins : instrumentation et étude de la microstructure, p.237971909, 2006.

M. Maccario, Caractérisation de nanomatériaux C-LiFePO 4 optimisés pour matériaux d'électrode positive pour batteries lithium-ion. Determination du mécanisme de désintercalation

T. Ohzuku, Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell, Journal of The Electrochemical Society, vol.137, issue.3, p.769, 1990.
DOI : 10.1149/1.2086552

T. Quan-chao-zhuang, L. Wei, Y. Du, L. Cui, S. Fang et al., An Electrochemical Impedance Spectroscopic Study of the Electronic and Ionic Transport Properties of Spinel LiMn 2 O 4, The Journal of Physical Chemistry C, issue.18, p.11486148621, 2010.

T. Eriksson, LiMn 2 O 4 as a Li-Ion Battery Cathode From Bulk to Electrolyte Interface, 2001.

G. G. Amatucci, N. Pereira, T. Zheng, and J. Tarascon, Failure Mechanism and Improvement of the Elevated Temperature Cycling of LiMn[sub 2]O[sub 4] Compounds Through the Use of the LiAl[sub x]Mn[sub 2???x]O[sub 4???z]F[sub z] Solid Solution, Journal of The Electrochemical Society, vol.2, issue.88, p.171, 2001.
DOI : 10.1149/1.1390750

C. V. Ramana, A. Mauger, F. Gendron, C. M. Julien, and K. Zaghib, Study of the Li-insertion/extraction process in FePO 4 /LiFePO 4, Journal of Power Sources, vol.187, issue.2, p.555564, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00357449

R. Malik, F. Zhou, and G. Ceder, Kinetics of non-equilibrium lithium incorporation in LiFePO 4, Nature Materials, vol.10, issue.8, p.587590, 2011.

S. Chung, J. T. Bloking, and Y. Chiang, On the electronic conductivity of phospho-olivines as lithium storage electrodes, Nature Materials, vol.1, issue.11, p.702703, 2003.
DOI : 10.1038/nmat732

C. Delacourt, Apport de la chimie des solutions à la préparation de phosphates de métaux de transition : Inuence de la structure et de la morphologie sur le comportement électrochimique dans les accumulateurs au lithium, 2005.

P. He, X. Zhang, Y. Wang, L. Cheng, and Y. Xia, Lithium-Ion Intercalation Behavior of LiFePO[sub 4] in Aqueous and Nonaqueous Electrolyte Solutions, Journal of The Electrochemical Society, vol.121, issue.2, p.144, 2008.
DOI : 10.1149/1.1373658

W. Porcher, P. Moreau, B. Lestriez, S. Jouanneau, F. L. Cras et al., Stability of LiFePO 4 in water and consequence on the Li battery behaviour, Ionics, vol.14, issue.6, p.583587, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00396736

M. S. Islam, Recent atomistic modelling studies of energy materials: batteries included, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.160, issue.10, p.32553267, 1923.
DOI : 10.1021/cr020731c

M. and S. Whittingham, Lithium Batteries and Cathode Materials, Chemical Reviews, vol.104, issue.10, p.42714302, 2004.

M. Koltypin, V. Pol, A. Gedanken, and D. Aurbach, The Study of Carbon-Coated V[sub 2]O[sub 5] Nanoparticles as a Potential Cathodic Material for Li Rechargeable Batteries, Journal of The Electrochemical Society, vol.143, issue.8, p.605, 2007.
DOI : 10.1149/1.1393357

B. Liu, X. Li, Q. Zhao, J. Liu, S. Liu et al., Insight into the mechanism of photocatalytic degradation of gaseous o-dichlorobenzene over ower-type V 2 O 5 hollow spheres, J. Mater. Chem

J. C. Hunter, Preparation of a new crystal form of manganese dioxide: ??-MnO2, Journal of Solid State Chemistry, vol.39, issue.2, p.142147, 1981.
DOI : 10.1016/0022-4596(81)90323-6

D. Larcher, Synthesis of MnO[sub 2] Phases from LiMn[sub 2]O[sub 4] in Aqueous Acidic Media, Journal of The Electrochemical Society, vol.145, issue.10, p.3392, 1998.
DOI : 10.1149/1.1838818