. Aristote, De anima. Number ISBN 9782711620463, Librairie Philosophique Vrin, 1995.

J. A. Sundlov, D. M. Fontaine, T. L. Southworth, B. R. Branchini, and A. M. Gulick, Crystal Structure of Firefly Luciferase in a Second Catalytic Conformation Supports a Domain Alternation Mechanism, Biochemistry, vol.51, issue.33, pp.516493-6495, 2012.
DOI : 10.1021/bi300934s

E. Conti, P. Nick, P. Franks, and . Brick, Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes, Structure, vol.4, issue.3, pp.287-298, 1996.
DOI : 10.1016/S0969-2126(96)00033-0

M. Zinaida, A. S. Kaskova, I. V. Tsarkova, and . Yampolsky, 1001 lights : luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine, Chem. Soc. Rev, vol.45, pp.6048-6077, 2016.

M. Kakiuchi, S. Ito, M. Yamaji, R. Vadim, S. Viviani et al., Spectroscopic Properties of Amine-substituted Analogues of Firefly Luciferin and Oxyluciferin, Photochemistry and Photobiology, vol.98, issue.2, pp.486-494, 2017.
DOI : 10.1021/j100096a001

C. Miura, M. Kiyama, S. Iwano, K. Ito, R. Obata et al., Synthesis and luminescence properties of biphenyl-type firefly luciferin analogs with a new, near-infrared light-emitting bioluminophore, Tetrahedron, vol.69, issue.46, pp.699726-9734, 2013.
DOI : 10.1016/j.tet.2013.09.018

C. C. Woodroofe, P. L. Meisenheimer, D. H. Klaubert, Y. Kovic, J. C. Rosenberg et al., Novel Heterocyclic Analogues of Firefly Luciferin, Biochemistry, vol.51, issue.49, pp.519807-9813, 2012.
DOI : 10.1021/bi301411d

P. Amit, H. Jathoul, J. C. Grounds, M. A. Anderson, and . Pule, A dualcolor far-red to near-infrared firefly luciferin analogue designed for multiparametric bioluminescence imaging, Angewandte Chemie International Edition, issue.48, pp.5313059-13063, 2014.

R. C. Steinhardt, J. M. Neill, C. M. Rathbun, D. C. Mccutcheon, M. A. Paley et al., Design and Synthesis of an Alkynyl Luciferin Analogue for Bioluminescence Imaging, Chemistry - A European Journal, vol.119, issue.11, pp.3671-3675, 2016.
DOI : 10.1002/ange.200701931

X. Xue-qin-ran, J. D. Zhou, and . Goddard, The spectral?structural relationship of a series of oxyluciferin derivatives, ChemPhysChem, vol.16, issue.2, pp.396-402, 2015.

C. C. Woodroofe, J. W. Shultz, M. G. Wood, J. Osterman, J. J. Cali et al., N-Alkylated 6???-Aminoluciferins Are Bioluminescent Substrates for Ultra-Glo and QuantiLum Luciferase: New Potential Scaffolds for Bioluminescent Assays, Biochemistry, vol.47, issue.39, pp.4710383-10393, 2008.
DOI : 10.1021/bi800505u

N. Kh, S. Tafreshi, M. Hosseinkhani, M. Sadeghizadeh, and . Sadeghi, Bijan Ranjbar, and Hossein Naderi-Manesh. The influence of insertion of a critical residue (arg356) in structure and bioluminescence spectra of firefly luciferase, Journal of Biological Chemistry, vol.282, issue.12, pp.8641-8647, 2007.

Y. Modestova and N. N. Ugarova, Color-shifting mutations in the cdomain of l. mingrelica firefly luciferase provide new information about the domain alternation mechanism, BBA) -Proteins and Proteomics, pp.18641818-1826, 2016.

I. Mikhail, N. N. Koksharov, and . Ugarova, Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue e457 with a strong red shift of bioluminescence, Photochem. Photobiol. Sci, vol.12, pp.2016-2027, 2013.

R. Bruce, D. M. Branchini, M. H. Ablamsky, L. Murtiashaw, H. Uzasci et al., Thermostable red and green lightproducing firefly luciferase mutants for bioluminescent reporter applications, Analytical Biochemistry, vol.361, issue.2, pp.253-262, 2007.

R. Vadim, D. Viviani, R. Amaral, F. G. Prado, and . Arnoldi, A new blue-shifted luciferase from the brazilian amydetes fanestratus (coleoptera : Lampyridae) firefly : molecular evolution and structural/functional properties, Photochem. Photobiol. Sci, vol.10, pp.1879-1886, 2011.

F. Liu, Y. Liu, L. D. Vico, and R. Lindh, A CASSCF/CASPT2 approach to the decomposition of thiazole-substituted dioxetanone: Substitution effects and charge-transfer induced electron excitation, Chemical Physics Letters, vol.484, issue.1-3, pp.69-75, 2009.
DOI : 10.1016/j.cplett.2009.11.009

I. Navizet, D. Roca-sanjuán, L. Yue, Y. Liu, N. Ferré et al., Are the Bio- and Chemiluminescence States of the Firefly Oxyluciferin the Same as the Fluorescence State?, Photochemistry and Photobiology, vol.133, issue.2, pp.319-325, 2013.
DOI : 10.1021/ja201752p

URL : https://hal.archives-ouvertes.fr/hal-00751875

R. Berraud-pache and I. Navizet, QM/MM calculations on a newly synthesised oxyluciferin substrate: new insights into the conformational effect, Physical Chemistry Chemical Physics, vol.7, issue.39, pp.27460-27467, 2016.
DOI : 10.1186/s13321-015-0060-z

URL : https://hal.archives-ouvertes.fr/hal-01496834

E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, vol.38, issue.6, pp.1049-1070, 1926.
DOI : 10.1007/BF01399113

M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik, vol.24, issue.20, pp.457-484, 1927.
DOI : 10.1002/andp.19273892002

A. Szabo and N. S. Ostlund, Modern Quantum Chemistry : Introduction to Advanced Structure Theory, 1996.

M. Olivucci, Computational photochemistry. Number, 2005.

J. C. Slater, The Theory of Complex Spectra, Physical Review, vol.35, issue.10, pp.1293-1322, 1929.
DOI : 10.1007/BF01379806

C. C. Roothaan, New Developments in Molecular Orbital Theory, Reviews of Modern Physics, vol.46, issue.2, pp.69-89, 1951.
DOI : 10.1051/jcp/1949460497

G. G. Hall, The Molecular Orbital Theory of Chemical Valency. VIII. A Method of Calculating Ionization Potentials, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.205, issue.1083, pp.541-552, 1083.
DOI : 10.1098/rspa.1951.0048

E. M. Per, A. Siegbahn-almlöf, B. O. Heiberg, and . Roos, The complete active space scf (casscf) method in a newton?raphson formulation with application to the hno molecule, The Journal of Chemical Physics, vol.74, issue.4, pp.2384-2396, 1981.

B. O. Roos, P. R. Taylor, E. M. Per, and . Sigbahn, A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach, Chemical Physics, vol.48, issue.2, pp.157-173, 1980.
DOI : 10.1016/0301-0104(80)80045-0

K. Andersson, B. O. Roos, and P. Malmqvist, Second???order perturbation theory with a complete active space self???consistent field reference function, The Journal of Chemical Physics, vol.23, issue.2, pp.1218-1226, 1992.
DOI : 10.1016/0009-2614(91)90407-Z

. Chr, M. S. Møller, and . Plesset, Note on an approximation treatment for manyelectron systems, Phys. Rev, vol.46, pp.618-622, 1934.

O. Björn, K. Roos, and . Andersson, Multiconfigurational perturbation theory with level shift ? the cr2 potential revisited, Chemical Physics Letters, vol.245, issue.2, pp.215-223, 1995.

G. Ghigo, O. Björn, P. Roos, and . Malmqvist, A modified definition of the zeroth-order hamiltonian in multiconfigurational perturbation theory (caspt2) Chemical Physics Letters James Finley, Per Åke Malmqvist, Björn O. Roos, and Luis Serrano-Andrés. The multi-state caspt2 method, Chemical Physics Letters, vol.39634, issue.2882, pp.142-149299, 1998.

P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Physical Review, vol.80, issue.3B, pp.864-871, 1964.
DOI : 10.1088/0370-1328/80/5/307

W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review, vol.119, issue.4A, pp.1133-1138, 1965.
DOI : 10.1103/PhysRev.119.1153

N. Mardirossian and M. Head-gordon, ??B97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy, Physical Chemistry Chemical Physics, vol.5, issue.21, pp.9904-9924, 2014.
DOI : 10.1021/ct9004905

J. P. Perdew, A. Ruzsinszky, J. Tao, N. Viktor, G. E. Staroverov et al., Prescription for the design and selection of density functional approximations: More constraint satisfaction with fewer fits, The Journal of Chemical Physics, vol.23, issue.6, p.62201, 2005.
DOI : 10.1002/jcc.20078

S. H. Vosko, L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Canadian Journal of Physics, vol.58, issue.8, pp.1200-1211, 1980.
DOI : 10.1139/p80-159

URL : http://www.nrcresearchpress.com/doi/pdf/10.1139/p80-159

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, pp.3865-3868, 1996.
DOI : 10.1063/1.446965

J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, vol.20, issue.11, pp.6671-6687, 1992.
DOI : 10.1103/PhysRevB.20.3136

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, vol.103, issue.1-3, pp.215-241, 2008.
DOI : 10.1002/ijch.199300041

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, The Journal of Chemical Physics, vol.30, issue.13, pp.6158-6170, 1999.
DOI : 10.1021/j100180a030

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, The Journal of Physical Chemistry, vol.98, issue.45, pp.9811623-11627, 1994.
DOI : 10.1021/j100096a001

A. D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.460205

A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Physical Review A, vol.28, issue.6, pp.3098-3100, 1988.
DOI : 10.1103/PhysRevB.28.1809

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevA.20.397

T. Yanai, P. David, . Tew, C. Nicholas, and . Handy, A new hybrid exchange???correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters, vol.393, issue.1-3, pp.1-351, 2004.
DOI : 10.1016/j.cplett.2004.06.011

S. Grimme, Accurate description of van der Waals complexes by density functional theory including empirical corrections, Journal of Computational Chemistry, vol.101, issue.12, pp.1463-1473, 2004.
DOI : 10.1021/jp001766o

S. Grimme, Semiempirical hybrid density functional with perturbative second-order correlation, The Journal of Chemical Physics, vol.122, issue.3, p.34108, 2006.
DOI : 10.1016/j.cplett.2004.05.063

T. Schwabe and S. Grimme, Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects, Physical Chemistry Chemical Physics, vol.116, issue.38, pp.4398-4401, 2006.
DOI : 10.1007/s002140050269

O. Björn, V. Roos, P. Veryazov, and . Widmark, Relativistic atomic natural orbital type basis sets for the alkaline and alkaline-earth atoms applied to the ground-state potentials for the corresponding dimers, Theoretical Chemistry Accounts, vol.111, issue.2, pp.345-351, 2004.

O. Widmark, Main group atoms and dimers studied with a new relativistic ano basis set, The Journal of Physical Chemistry A, vol.108, issue.15, pp.2851-2858, 2004.

A. R. Leach, Molecular Modelling : Principles and Applications. Number ISBN 0582239338, 1996.

J. W. Ponder, Tinker, software tools for molecular design, version 5.1 ; department of biochemistry and molecular biophysics, washington university school of medicine, st. louis, mo, 2005.

B. R. Brooks, C. L. Brooks, A. D. Mackerell, L. Nilsson, R. J. Petrella et al., CHARMM: The biomolecular simulation program, Journal of Computational Chemistry, vol.103, issue.13, pp.301545-1614, 2009.
DOI : 10.1021/ci034261e

J. W. Ponder, C. Wu, P. Ren, V. S. Pande, J. D. Chodera et al., Current Status of the AMOEBA Polarizable Force Field, The Journal of Physical Chemistry B, vol.114, issue.8, pp.2549-2564, 2010.
DOI : 10.1021/jp910674d

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, The Journal of Chemical Physics, vol.79, issue.2, pp.926-935, 1983.
DOI : 10.1016/0009-2614(80)85344-9

W. Michael, W. L. Mahoney, and . Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions, The Journal of Chemical Physics, vol.112, issue.20, pp.8910-8922, 2000.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, The Journal of Chemical Physics, vol.15, issue.8, pp.813684-3690, 1984.
DOI : 10.1039/fs9821700055

D. J. Evans and B. L. Holian, The Nose???Hoover thermostat, The Journal of Chemical Physics, vol.83, issue.8, pp.4069-4074, 1985.
DOI : 10.1146/annurev.fl.18.010186.001331

C. Hans and . Andersen, Molecular dynamics simulations at constant pressure and/or temperature, The Journal of Chemical Physics, vol.72, issue.4, pp.2384-2393, 1980.

P. Sherwood, A. H. De-vries, M. F. Guest, G. Schreckenbach, C. A. Richard et al., QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis, Journal of Molecular Structure: THEOCHEM, vol.632, issue.1-3, pp.1-28, 2003.
DOI : 10.1016/S0166-1280(03)00285-9

A. Warshel and M. Levitt, Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme, Journal of Molecular Biology, vol.103, issue.2, pp.227-249, 1976.
DOI : 10.1016/0022-2836(76)90311-9

S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma, J. Michael et al., A new {ONIOM} implementation in gaussian98. part i. the calculation of energies, gradients, vibrational frequencies and electric field deri- vatives1, Journal of Molecular Structure : {THEOCHEM}, pp.461-4621, 1999.

N. Ferré and J. G. Ángyán, Approximate electrostatic interaction operator for QM/MM calculations, Chemical Physics Letters, vol.356, issue.3-4, pp.3-4331, 2002.
DOI : 10.1016/S0009-2614(02)00343-3

X. Assfeld and J. Rivail, Quantum chemical computations on parts of large molecules: the ab initio local self consistent field method, Chemical Physics Letters, vol.263, issue.1-2, pp.100-106, 1996.
DOI : 10.1016/S0009-2614(96)01165-7

M. Dean, R. A. Philipp, and . Friesner, Mixed ab initio qm/mm modeling using frozen orbitals and tests with alanine dipeptide and tetrapeptide, Journal of Computational Chemistry, vol.20, issue.14, pp.1468-1494, 1999.

J. Gao, P. Amara, C. Alhambra, and M. J. Field, A Generalized Hybrid Orbital (GHO) Method for the Treatment of Boundary Atoms in Combined QM/MM Calculations, The Journal of Physical Chemistry A, vol.102, issue.24, pp.4714-4721, 1998.
DOI : 10.1021/jp9809890

K. Støchkel, C. N. Hansen, J. Houmøller, L. M. Nielsen, K. Anggara et al., On the Influence of Water on the Electronic Structure of Firefly Oxyluciferin Anions from Absorption Spectroscopy of Bare and Monohydrated Ions in Vacuo, Journal of the American Chemical Society, vol.135, issue.17, pp.1356485-6493, 2013.
DOI : 10.1021/ja311400t

B. Mennucci, E. Cances, and J. Tomasi, Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method:?? Theoretical Bases, Computational Implementation, and Numerical Applications, The Journal of Physical Chemistry B, vol.101, issue.49, pp.10506-10517, 1997.
DOI : 10.1021/jp971959k

E. Cances, B. Mennucci, and J. Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, The Journal of Chemical Physics, vol.27, issue.8, pp.3032-3041, 1997.
DOI : 10.1016/0009-2614(83)80005-0

A. Bondi, van der Waals Volumes and Radii, The Journal of Physical Chemistry, vol.68, issue.3, pp.441-451, 1964.
DOI : 10.1021/j100785a001

M. Darrin, M. York, and . Karplus, A smooth solvation potential based on the conductor-like screening model, The Journal of Physical Chemistry A, vol.103, issue.50, pp.11060-11079, 1999.

G. Scalmani and M. J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism, The Journal of Chemical Physics, vol.132, issue.11, p.114110, 2010.
DOI : 10.1021/j100161a070

M. Wanko, M. Hoffmann, T. Frauenheim, and M. Elstner, Effect of Polarization on the Opsin Shift in Rhodopsins. 1. A Combined QM/QM/MM Model for Bacteriorhodopsin and Pharaonis Sensory Rhodopsin II, The Journal of Physical Chemistry B, vol.112, issue.37, pp.11462-11467, 2008.
DOI : 10.1021/jp802408g

D. Jacquemin, E. A. Perpete, A. D. Laurent, X. Assfeld, and C. Adamo, Spectral properties of self-assembled squaraine???tetralactam: a theoretical assessment, Physical Chemistry Chemical Physics, vol.129, issue.8, pp.1258-1262, 2009.
DOI : 10.1039/b817720a

URL : https://hal.archives-ouvertes.fr/hal-01389037

D. Lohse, B. Schmitz, and M. Versluis, Snapping shrimp make flashing bubbles, Nature, vol.83, issue.6855, pp.477-478, 2001.
DOI : 10.1103/PhysRevLett.83.2437

E. , F. Schubert, T. Gessmann, and J. Kim, Light Emitting Diodes, 2000.

U. Mitschke and P. Bauerle, The electroluminescence of organic materials, Journal of Materials Chemistry, vol.10, issue.7, pp.1471-1507, 2000.
DOI : 10.1039/a908713c

A. Jiménez and M. J. Navas, Chemiluminescence detection systems for the analysis of explosives, Journal of Hazardous Materials, vol.106, issue.1, pp.1-8, 2004.
DOI : 10.1016/j.jhazmat.2003.07.005

G. J. Lofthouse, H. Suschitzky, B. J. Wakefield, R. A. Whittaker, and B. Tuck, Synthesis and chemiluminescent reactions of some 3-alkoxycarbamoylbenzo[b]furan-2(3H)-ones, Journal of the Chemical Society, Perkin Transactions 1, pp.1634-1639, 1979.
DOI : 10.1039/p19790001634

S. Schramm, I. Navizet, P. Naumov, N. K. Nath, R. Berraud-pache et al., The light emitter of the 2-coumaranone chemiluminescence : Theoretical and experimental elucidation of a possible model for bioluminescent systems, European Journal of Organic Chemistry, issue.4, pp.2016678-681, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01334763

S. Schramm, L. Francisco-monteiro-leite-ciscato, P. Oesau, R. Krieg, F. Richter et al., Investigations on the synthesis and chemiluminescence of novel 2-coumaranones -ii, ARKIVOC, pp.44-59, 2015.

H. D. Steven, M. A. Haddock, J. F. Moline, and . Case, Bioluminescence in the sea, Annual Review of Marine Science, vol.2, issue.1, pp.443-493, 2010.

A. Miranda, J. A. Paley, and . Prescher, Bioluminescence : a versatile technique for imaging cellular and molecular features, Med. Chem. Commun, vol.5, pp.255-267, 2014.

D. M. Close, T. Xu, G. S. Sayler, and S. Ripp, In Vivo Bioluminescent Imaging (BLI): Noninvasive Visualization and Interrogation of Biological Processes in Living Animals, Sensors, vol.141, issue.1, pp.180-206, 2010.
DOI : 10.1371/journal.pone.0008316

J. Martin, K. L. Rogers, C. Chagneau, and P. Brûlet, In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila, PLoS ONE, vol.60, issue.3, pp.1-8, 2007.
DOI : 10.1371/journal.pone.0000275.s009

. Ho-taek, E. K. Song, B. K. Jordan, W. Lewis, J. Liu et al., Rat model of metastatic breast cancer monitored by mri at 3 tesla and bioluminescence imaging with histological correlation, Journal of Translational Medicine, vol.7, issue.1, p.88, 2009.

A. Eva, . Naumann, R. Adam, . Kampff, A. David et al., Monitoring neural activity with bioluminescence during natural behavior, Nat Neurosci, vol.13, pp.513-510, 2010.

M. Spencer, E. J. Steinberg, W. H. Poziomek, K. R. Engelmann, and . Rogers, A review of environmental applications of bioluminescence measurements, Chemosphere, vol.30, issue.11, pp.2155-2197, 1995.

G. Fermi, M. F. Perutz, B. Shaanan, and R. Fourme, The crystal structure of human deoxyhaemoglobin at 1.74 ?? resolution, Journal of Molecular Biology, vol.175, issue.2, pp.159-174, 1984.
DOI : 10.1016/0022-2836(84)90472-8

R. Anandakrishnan, B. Aguilar, and A. V. Onufriev, H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Research, vol.40, issue.W1, pp.537-541, 2012.
DOI : 10.1093/nar/gks375

K. Tang, J. Zhang, and J. Liang, Fast Protein Loop Sampling and Structure Prediction Using Distance-Guided Sequential Chain-Growth Monte Carlo Method, PLoS Computational Biology, vol.112, issue.10, p.1003539, 2014.
DOI : 10.1371/journal.pcbi.1003539.s001

URL : http://doi.org/10.1371/journal.pcbi.1003539

S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. E. Dawid et al., Coarse-Grained Protein Models and Their Applications, Chemical Reviews, vol.116, issue.14, pp.7898-7936, 2016.
DOI : 10.1021/acs.chemrev.6b00163

J. Kästner, S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen et al., Umbrella sampling Multidimensional free-energy calculations using the weighted histogram analysis method, Wiley Interdisciplinary Reviews : Computational Molecular Science Journal of Computational Chemistry, vol.1, issue.611, pp.932-942, 1995.

B. Roux, The calculation of the potential of mean force using computer simulations, Computer Physics Communications, vol.91, issue.1-3, pp.275-282, 1995.
DOI : 10.1016/0010-4655(95)00053-I

M. Mezei, X. Meng, H. Zhang, and M. Cui, Molecular docking : A powerful approach for structure-based drug discovery, Current Computer-Aided Drug Design, vol.7, issue.2, pp.146-157, 2011.

R. B. Jacob, T. Andersen, and O. M. Mcdougal, Accessible highthroughput virtual screening molecular docking software for students and educators, PLOS Computational Biology, vol.8, issue.5, pp.1-5, 2012.

E. Lindahl, S. Mark, and . Sansom, Membrane proteins: molecular dynamics simulations, Current Opinion in Structural Biology, vol.18, issue.4, pp.425-431, 2008.
DOI : 10.1016/j.sbi.2008.02.003

F. Khalili-araghi, J. Gumbart, P. Wen, M. Sotomayor, E. Tajkhorshid et al., Molecular dynamics simulations of membrane channels and transporters, Current Opinion in Structural Biology, vol.19, issue.2, pp.128-137, 2009.
DOI : 10.1016/j.sbi.2009.02.011

A. Ken, J. L. Dill, and . Maccallum, The protein-folding problem, 50 years on, Science, vol.338, issue.6110, pp.1042-1046, 2012.

C. M. Dobson, Protein folding and misfolding, Nature, vol.418, issue.6968, pp.884-890, 2003.
DOI : 10.1038/418729a

Y. Cheng, J. Zhu, and Y. Liu, Theoretical tuning of the firefly bioluminescence spectra by the modification of oxyluciferin, Chemical Physics Letters, vol.591, pp.156-160, 2014.
DOI : 10.1016/j.cplett.2013.11.023

S. Chen, I. Navizet, R. Lindh, Y. Liu, and N. Ferré, Hybrid QM/MM Simulations of the Obelin Bioluminescence and Fluorescence Reveal an Unexpected Light Emitter, The Journal of Physical Chemistry B, vol.118, issue.11, pp.2896-2903, 2014.
DOI : 10.1021/jp412198w

D. Adèle, A. Laurent, D. Blondel, and . Jacquemin, Choosing an atomic basis set for td-dft, soppa, adc(2), cis(d), cc2 and eom-ccsd calculations of lowlying excited states of organic dyes, Theoretical Chemistry Accounts, vol.134, issue.6, pp.1-11, 2015.

J. , P. Zobel, J. J. Nogueira, and L. Gonzalez, The ipea dilemma in caspt2, Chem. Sci, vol.8, pp.1482-1499, 2017.

I. Navizet, Y. Liu, N. Ferré, H. Xiao, W. Fang et al., Color-Tuning Mechanism of Firefly Investigated by Multi-Configurational Perturbation Method, Journal of the American Chemical Society, vol.132, issue.2, pp.706-712, 2010.
DOI : 10.1021/ja908051h

URL : https://hal.archives-ouvertes.fr/hal-00749370

G. Kova?evi´kova?evi´c and V. Veryazov, Luscus : molecular viewer and editor for molcas, Journal of Cheminformatics, vol.7, issue.1, pp.1-10, 2015.

F. Aquilante, L. De-vico, N. Ferré, G. Ghigo, P. Malmqvist et al., MOLCAS 7: The Next Generation, Journal of Computational Chemistry, vol.104, issue.331, pp.31224-247, 2010.
DOI : 10.1080/00268970600662390

URL : https://hal.archives-ouvertes.fr/hal-01460198

R. S. Mulliken, Electronic Population Analysis on LCAO???MO Molecular Wave Functions. I, The Journal of Chemical Physics, vol.207, issue.10, pp.1833-1840, 1955.
DOI : 10.1063/1.1747438

J. Chai and M. Head-gordon, Long-range corrected hybrid density functionals with damped atom???atom dispersion corrections, Physical Chemistry Chemical Physics, vol.110, issue.44, pp.6615-6620, 2008.
DOI : 10.1007/s002140050249

URL : https://digital.library.unt.edu/ark:/67531/metadc929924/m2/1/high_res_d/949212.pdf

F. Melaccio, M. Olivucci, R. Lindh, and N. Ferré, Unique QM/MM potential energy surface exploration using microiterations, International Journal of Quantum Chemistry, vol.79, issue.13, pp.3339-3346, 2011.
DOI : 10.1063/1.445869

URL : https://hal.archives-ouvertes.fr/hal-01415208

S. Chen, Y. Liu, I. Navizet, N. Ferré, W. Fang et al., Systematic Theoretical Investigation on the Light Emitter of Firefly, Journal of Chemical Theory and Computation, vol.7, issue.3, pp.798-803, 2011.
DOI : 10.1021/ct200045q

URL : https://hal.archives-ouvertes.fr/hal-00692848

T. Hirano, Y. Hasumi, K. Ohtsuka, S. Maki, H. Niwa et al., Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence, Journal of the American Chemical Society, vol.131, issue.6, pp.2385-2396, 2009.
DOI : 10.1021/ja808836b

C. Song and Y. M. Rhee, Dynamics on the Electronically Excited State Surface of the Bioluminescent Firefly Luciferase???Oxyluciferin System, Journal of the American Chemical Society, vol.133, issue.31, pp.12040-12049, 2011.
DOI : 10.1021/ja201752p

T. Hirano, Y. Hasumi, K. Ohtsuka, S. Maki, H. Niwa et al., Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence, Journal of the American Chemical Society, vol.131, issue.6, pp.2385-2396, 2009.
DOI : 10.1021/ja808836b

L. Pinto, D. Silva, J. C. Esteves, and . Silva, Computational studies of the luciferase light-emitting product : Oxyluciferin Emission properties of oxyluciferin and its derivatives in water : Revealing the nature of the emissive species in firefly bioluminescence, Journal of Chemical Theory and Computation The Journal of Physical Chemistry B, vol.7, issue.1196, pp.809-8172638, 2011.

Y. Noguchi, M. Hiyama, M. Shiga, O. Sugino, and H. Akiyama, Reverse Stability of Oxyluciferin Isomers in Aqueous Solutions, The Journal of Physical Chemistry B, vol.120, issue.34, pp.8776-8783, 2016.
DOI : 10.1021/acs.jpcb.6b04963

P. Naumov, Y. Ozawa, K. Ohkubo, and S. Fukuzumi, Structure and Spectroscopy of Oxyluciferin, the Light Emitter of the Firefly Bioluminescence, Journal of the American Chemical Society, vol.131, issue.32, pp.11590-11605, 2009.
DOI : 10.1021/ja904309q

J. Joris, S. P. Snellenburg, R. J. Laptenok, P. Desa, K. M. Naumov et al., Excited-state dynamics of oxyluciferin in firefly luciferase, Journal of the American Chemical Society, vol.138, issue.50, pp.16252-16258, 2016.

S. Hosseinkhani, Molecular enigma of multicolor bioluminescence of firefly luciferase, Cellular and Molecular Life Sciences, vol.132, issue.7, pp.1167-1182, 2011.
DOI : 10.1021/ja102885g

C. S. Cucinotta, A. Ruini, A. Catellani, and A. Stirling, Ab Initio Molecular Dynamics Study of the Keto???Enol Tautomerism of Acetone in Solution, ChemPhysChem, vol.4, issue.6, pp.1229-1234, 2006.
DOI : 10.1016/S1386-1425(97)00013-9

G. Alagona and C. Ghio, Keto-enol tautomerism in linear and cyclic ??-diketones: A DFT study in vacuo and in solution, International Journal of Quantum Chemistry, vol.811, issue.10, pp.1840-1855, 2008.
DOI : 10.1515/znb-1990-0420

N. Cheron, D. Jacquemin, and P. Fleurat-lessard, A qualitative failure of B3LYP for textbook organic reactions, Physical Chemistry Chemical Physics, vol.128, issue.19, pp.7170-7175, 2012.
DOI : 10.1063/1.2834918

URL : https://hal.archives-ouvertes.fr/hal-01116249

M. Page and J. W. Mciver-jr, On evaluating the reaction path Hamiltonian, The Journal of Chemical Physics, vol.88, issue.2, pp.922-935, 1988.
DOI : 10.1063/1.444229

M. Page, C. Doubleday, and J. W. Mciver-jr, Following steepest descent reaction paths. the use of higher energy derivatives with ab initio electronic structure methods, The Journal of Chemical Physics, issue.8, pp.935634-5642, 1990.

P. Hrant, H. B. Hratchian, and . Schlegel, Accurate reaction paths using a hessian based predictor?corrector integrator, The Journal of Chemical Physics, vol.120, issue.21, pp.9918-9924, 2004.

H. P. Hratchian and H. B. Schlegel, Following Reaction Pathways Using a Damped Classical Trajectory Algorithm, The Journal of Physical Chemistry A, vol.106, issue.1, pp.165-169, 2002.
DOI : 10.1021/jp012125b

I. Navizet, Y. Liu, N. Ferré, D. Roca-sanjuán, and R. Lindh, The Chemistry of Bioluminescence: An Analysis of Chemical Functionalities, ChemPhysChem, vol.14, issue.17, pp.123064-3076, 2011.
DOI : 10.1016/0263-7855(96)00018-5

URL : https://hal.archives-ouvertes.fr/hal-00749782

E. H. White, E. Rapaport, H. H. Seliger, and T. A. Hopkins, The chemi- and bioluminescence of firefly luciferin: An efficient chemical production of electronically excited states, Bioorganic Chemistry, vol.1, issue.1-2, pp.92-122, 1971.
DOI : 10.1016/0045-2068(71)90009-5

S. Fetzner, Oxygenases without requirement for cofactors or metal ions, Applied Microbiology and Biotechnology, vol.60, issue.3, pp.243-257, 2002.

A. Chun-gang-min, X. N. Min-ren, J. Li, L. Fu-guo, Y. Yi-zou et al., The formation and decomposition of firefly dioxetanone, Chemical Physics Letters, vol.506, issue.4, pp.269-275, 2011.

M. Deluca and M. E. Dempsey, Mechanism of oxidation in firefly luminescence, Biochemical and Biophysical Research Communications, vol.40, issue.1, pp.117-122, 1970.
DOI : 10.1016/0006-291X(70)91054-5

T. Nakatsu, S. Ichiyama-hiratake, A. Saldanha, N. Kobashi, K. Sakata et al., Structural basis for the spectral difference in luciferase bioluminescence, Nature, vol.6, issue.468, pp.440372-376, 2006.
DOI : 10.1038/8263

A. Figure, Les 8 orbitales actives sélectionnées en CASSCF pour la structure 4G36-O2- min

A. Figure, Les 8 orbitales actives sélectionnées en CASSCF pour la structure Int-O2 avec D-coord = 2.3 Å, pp.67-68

A. Figure, Les 8 orbitales actives sélectionnées en CASSCF pour la structure Int-t-O2 avec D-coord = 1.8 Å, pp.67-68

A. Figure, Les 8 orbitales actives sélectionnées en CASSCF pour la structure Int-t-O2 avec D-coord = 1.5 Å. References 1 C, Biochemistry, vol.51, pp.9807-9813, 2012.

-. Cheng, J. Zhu, and Y. Liu, Theoretical tuning of the firefly bioluminescence spectra by the modification of oxyluciferin, Chemical Physics Letters, vol.591, pp.156-160, 2014.
DOI : 10.1016/j.cplett.2013.11.023

Q. Ran, X. Zhou, and J. D. Goddard, The Spectral-Structural Relationship of a Series of Oxyluciferin Derivatives, ChemPhysChem, vol.12, issue.2, pp.396-402, 2015.
DOI : 10.1002/cphc.201100389

P. Da-silva and J. C. Da-silva, Computational Studies of the Luciferase Light-Emitting Product: Oxyluciferin, Journal of Chemical Theory and Computation, vol.7, issue.4, pp.809-817, 2011.
DOI : 10.1021/ct200003u

M. Miura, S. Kiyama, K. Iwano, R. Ito, T. Obata et al., Synthesis and luminescence properties of biphenyl-type firefly luciferin analogs with a new, near-infrared light-emitting bioluminophore, Tetrahedron, vol.69, issue.46, pp.9726-9734, 2013.
DOI : 10.1016/j.tet.2013.09.018

I. Koksharov and N. N. Ugarova, Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence, Photochemical & Photobiological Sciences, vol.12, issue.11, pp.2016-2027, 2013.
DOI : 10.1039/c3pp25363e

Y. Navizet, N. Liu, H. Ferré, W. Xiao, R. Fang et al., Color-Tuning Mechanism of Firefly Investigated by Multi-Configurational Perturbation Method, Journal of the American Chemical Society, vol.132, issue.2, pp.706-712, 2010.
DOI : 10.1021/ja908051h

URL : https://hal.archives-ouvertes.fr/hal-00749370

M. Ghose, O. V. Rebarz, L. Maltsev, C. Hintermann, E. Ruckebusch et al., Emission Properties of Oxyluciferin and Its Derivatives in Water: Revealing the Nature of the Emissive Species in Firefly Bioluminescence, The Journal of Physical Chemistry B, vol.119, issue.6, pp.2638-2649, 2015.
DOI : 10.1021/jp508905m

URL : https://hal.archives-ouvertes.fr/hal-01158651

Y. Hirano, K. Hasumi, S. Ohtsuka, H. Maki, M. Niwa et al., Spectroscopic Studies of the Light-Color Modulation Mechanism of Firefly (Beetle) Bioluminescence, Journal of the American Chemical Society, vol.131, issue.6, pp.2385-2396, 2009.
DOI : 10.1021/ja808836b

P. Da-silva and J. C. Da-silva, Computational Studies of the Luciferase Light-Emitting Product: Oxyluciferin, Journal of Chemical Theory and Computation, vol.7, issue.4, pp.809-817, 2011.
DOI : 10.1021/ct200003u

. Hosseinkhani, Molecular enigma of multicolor bioluminescence of firefly luciferase, Cellular and Molecular Life Sciences, vol.132, issue.7, pp.1167-1182, 2010.
DOI : 10.1021/ja102885g

-. Chen, Y. Liu, I. Navizet, N. Ferré, W. Fang et al., Systematic Theoretical Investigation on the Light Emitter of Firefly, Journal of Chemical Theory and Computation, vol.7, issue.3, pp.798-803, 2011.
DOI : 10.1021/ct200045q

URL : https://hal.archives-ouvertes.fr/hal-00692848

Y. Navizet, N. Liu, D. Ferré, R. Roca-sanjuán, and . Lindh, The Chemistry of Bioluminescence: An Analysis of Chemical Functionalities, ChemPhysChem, vol.14, issue.17, pp.3064-3076, 2011.
DOI : 10.1016/0263-7855(96)00018-5

URL : https://hal.archives-ouvertes.fr/hal-00749782

P. Jathoul, H. Grounds, J. C. Anderson, and M. A. Pule, A Dual-Color Far-Red to Near-Infrared Firefly Luciferin Analogue Designed for Multiparametric Bioluminescence Imaging, Angewandte Chemie International Edition, vol.18, issue.48, pp.13059-13063, 2014.
DOI : 10.1016/j.chembiol.2011.09.019

R. Branchini, J. C. Rosenberg, D. M. Fontaine, T. L. Southworth, C. E. Behney et al., Bioluminescence Is Produced from a Trapped Firefly Luciferase Conformation Predicted by the Domain Alternation Mechanism, Journal of the American Chemical Society, vol.133, issue.29, pp.11088-11091, 2011.
DOI : 10.1021/ja2041496

B. Anandakrishnan, A. V. Aguilar, and . Onufriev, H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations, Nucleic Acids Research, vol.40, issue.W1, pp.537-541, 2012.
DOI : 10.1093/nar/gks375

D. Navizet, L. Roca-sanjuán, Y. Yue, N. Liu, R. Ferré et al., Are the Bio- and Chemiluminescence States of the Firefly Oxyluciferin the Same as the Fluorescence State?, Photochemistry and Photobiology, vol.133, issue.2, pp.319-325, 2013.
DOI : 10.1021/ja201752p

URL : https://hal.archives-ouvertes.fr/hal-00751875

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, issue.3, pp.327-341, 1977.
DOI : 10.1016/0021-9991(77)90098-5

J. G. Ferré, Approximate electrostatic interaction operator for QM/MM calculations, Chemical Physics Letters, vol.356, issue.3-4, pp.331-339, 2002.
DOI : 10.1016/S0009-2614(02)00343-3

W. Ponder and . Tinker, Software Tools for Molecular Design, version 6, 2004.

M. Melaccio, R. Olivucci, N. Lindh, and . Ferré, Unique QM/MM potential energy surface exploration using microiterations, International Journal of Quantum Chemistry, vol.79, issue.13, pp.3339-3346, 2011.
DOI : 10.1063/1.445869

URL : https://hal.archives-ouvertes.fr/hal-01415208

D. P. Yanai, N. C. Tew, and . Handy, A new hybrid exchange???correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Letters, vol.393, issue.1-3, pp.51-57, 2004.
DOI : 10.1016/j.cplett.2004.06.011

S. Chen, I. Navizet, R. Lindh, Y. Liu, and N. Ferré, Hybrid QM/MM Simulations of the Obelin Bioluminescence and Fluorescence Reveal an Unexpected Light Emitter, The Journal of Physical Chemistry B, vol.118, issue.11, pp.2896-2903, 2014.
DOI : 10.1021/jp412198w

D. Becke, Density???functional thermochemistry. III. The role of exact exchange, The Journal of Chemical Physics, vol.98, issue.7, pp.5648-5652, 1993.
DOI : 10.1063/1.460205

W. Lee, R. G. Yang, and . Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B, vol.20, issue.2, pp.785-789, 1988.
DOI : 10.1103/PhysRevA.20.397

D. G. Zhao and . Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, vol.103, issue.1-3, pp.215-241, 2008.
DOI : 10.1002/ijch.199300041

J. Chai and M. Head-gordon, Long-range corrected hybrid density functionals with damped atom???atom dispersion corrections, Physical Chemistry Chemical Physics, vol.110, issue.44, pp.6615-6620, 2008.
DOI : 10.1007/s002140050249

URL : https://digital.library.unt.edu/ark:/67531/metadc929924/m2/1/high_res_d/949212.pdf

E. Mennucci, J. Cances, and . Tomasi, Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method:?? Theoretical Bases, Computational Implementation, and Numerical Applications, The Journal of Physical Chemistry B, vol.101, issue.49, pp.10506-10517, 1997.
DOI : 10.1021/jp971959k

B. Cances, J. Mennucci, and . Tomasi, A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics, The Journal of Chemical Physics, vol.27, issue.8, pp.3032-3041, 1997.
DOI : 10.1016/0009-2614(83)80005-0

P. Andersson, B. O. Malmqvist, and . Roos, Second???order perturbation theory with a complete active space self???consistent field reference function, The Journal of Chemical Physics, vol.23, issue.2, pp.1218-1226, 1992.
DOI : 10.1016/0009-2614(91)90407-Z

O. Roos, R. Lindh, P. Malmqvist, V. Veryazov, and P. Widmark, Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set, The Journal of Physical Chemistry A, vol.108, issue.15, pp.2851-2858, 2004.
DOI : 10.1021/jp031064+

A. Murugan, J. Kongsted, Z. Rinkevicius, and H. Agren, Color modeling of protein optical probes, Phys. Chem. Chem. Phys., vol.12, issue.6, pp.1107-1112, 2012.
DOI : 10.1039/b927489h

A. Murugan, J. M. Olsen, J. Kongsted, Z. Rinkevicius, K. Aidas et al., Amyloid Fibril-Induced Structural and Spectral Modifications in the Thioflavin-T Optical Probe, The Journal of Physical Chemistry Letters, vol.4, issue.1, pp.70-77, 2013.
DOI : 10.1021/jz3018557

B. Ding, P. Naumov, and Y. Liu, (Sea Firefly) Lumophore, Journal of Chemical Theory and Computation, vol.11, issue.2, pp.591-599
DOI : 10.1021/ct5009203

T. Wilson and J. W. Hastings, BIOLUMINESCENCE, Annual Review of Cell and Developmental Biology, vol.14, issue.1, pp.197-230, 1998.
DOI : 10.1146/annurev.cellbio.14.1.197

J. Vieira, L. Pinto-da-silva, J. C. Esteves, and . Silva, Advances in the knowledge of light emission by firefly luciferin and oxyluciferin, Journal of Photochemistry and Photobiology B: Biology, vol.117, pp.33-39, 2012.
DOI : 10.1016/j.jphotobiol.2012.08.017

M. A. Dubinnyi, Z. M. Kaskova, N. S. Rodionova, M. S. Baranov, A. Y. Gorokhovatsky et al., Luciferin, Angewandte Chemie International Edition, vol.134, issue.24, pp.7065-7067, 2015.
DOI : 10.1021/ja3045212

K. V. Purtov, V. N. Petushkov, M. S. Baranov, K. S. Mineev, N. S. Rodionova et al., The Chemical Basis of Fungal Bioluminescence, Angewandte Chemie International Edition, vol.110, issue.28, pp.8124-8128, 2015.
DOI : 10.1021/cr9002193

A. Roda, M. Mirasoli, E. Michelini, M. D. Fusco, M. Zangheri et al., Progress in chemical luminescence-based biosensors: A critical review, Biosensors and Bioelectronics, vol.76, pp.164-179, 2016.
DOI : 10.1016/j.bios.2015.06.017

M. Zangheri, L. Cevenini, L. Anfossi, C. Baggiani, P. Simoni et al., A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection, Biosensors and Bioelectronics, vol.64, pp.63-68, 2015.
DOI : 10.1016/j.bios.2014.08.048

L. J. Kricka, Clinical applications of chemiluminescence, Analytica Chimica Acta, vol.500, issue.1-2, pp.279-286, 2003.
DOI : 10.1016/S0003-2670(03)00809-2

B. Matuszczak, Lineare und cyclische N-Acetyl-??-aryl-glycine: Synthese und Chemilumineszenz-Untersuchungen, Monatshefte f??r Chemie - Chemical Monthly, vol.442, issue.12, pp.1291-1303, 1996.
DOI : 10.1007/BF00807797

B. Matuszczak, Lineare und CyclischeN-Acetyl-?-arylglycine, 3. Mitt. Synthese und Chemilumineszenz-Untersuchungen von Naphthol- und Phenanthrol-Amidoalkylierungsprodukten, Monatshefte f???r Chemie Chemical Monthly, vol.55, issue.8-9, pp.945-951, 1997.
DOI : 10.1007/BF00807104

B. Matuszczak and J. Prakt, Linear and cyclicN-acyl-?-arylglycines. IV. Novel 3-Substituted 3-Acylaminobenzo[b]furan-2(3H)-ones: Synthesis and chemiluminescence studies, Journal f???r Praktische Chemie/Chemiker-Zeitung, vol.1979, issue.1, pp.20-25, 1998.
DOI : 10.1002/cber.19220550211

L. F. Ciscato, F. H. Bartoloni, A. S. Colavite, D. Weiss, R. Beckert et al., Evidence supporting a 1,2-dioxetanone as an intermediate in the benzofuran-2(3H)-one chemiluminescence, Photochem. Photobiol. Sci., vol.101, issue.1, pp.32-37, 2014.
DOI : 10.1021/ja00516a005

F. H. Bartoloni, M. A. De-oliveira, L. F. Ciscato, F. A. Augusto, E. L. Bastos et al., Chemiluminescence Efficiency of Catalyzed 1,2-Dioxetanone Decomposition Determined by Steric Effects, The Journal of Organic Chemistry, vol.80, issue.8, pp.3745-3751, 2015.
DOI : 10.1021/acs.joc.5b00515

M. M. Sidky, A. A. El-kateb, M. R. Mahran, I. T. Hennawy, and H. A. El-malek, ORGANOPHOSPHORUS COMPOUNDS XXXIX. THE ACTION OF ALKYL PHOSPHITES ON OXAZOLIDINEDIONES. A NOVEL SYNTHESIS OF CARBAMIC ACID DERIVATIVES, Phosphorous and Sulfur and the Related Elements, vol.44, issue.1, pp.11-15, 1987.
DOI : 10.1021/ja01100a061

G. J. Woolfe and P. J. Thistlethwaite, Excited-state prototropic reactivity in salicylamide and salicylanilide, Journal of the American Chemical Society, vol.102, issue.23, pp.6917-6923, 1980.
DOI : 10.1021/ja00543a003

R. Polá?ek, P. Májek, K. Hrobo?ová, and J. Sádecká, Fluorescence Spectroscopy as a Tool for Determination of Coumarins by Multivariate Calibration, Journal of Fluorescence, vol.34, issue.2, pp.297-293, 2015.
DOI : 10.1016/S0169-7439(01)00155-1

A. Gauche and .. Structure-en-ruban-d, une hélice ? et représentation en tout atome des résidus la composant. A droite, structure en ruban de deux feuillets ? antiparallèles en jaune ainsi que d'une boucle "épingle a cheveu" reliant ces deux feuillets, p.65

C. Le, U. Le, L. Sicho, and .. Le-modèle-levitt-et-warshel, Représentation en tout-atome d'un tripeptide ainsi que les modèles grosgrain correspondant 97 Les modèles présentés sont le Rosetta centroid mode (CEN) Le code couleur est le suivant : O rouge, H noir, C cyan, N bleu, pseudo-atomes orange et bleu foncé. Les pseudo-liaisons de distances variables sont représentées sous forme de ressort, p.72

V. Viviani and .. , Photos de l'espèce bioluminescente Amydetes viviani à gauche et de l'espèce bioluminescente Phrixothrix hirtus à droite. Crédits photos : Prof, p.99

G. Représentation-de-la-conformation-des-domaines-c-terminaux-de-la-structure, 2. Av-b, . Gauche, G. De-la-structure, and . Av-b-et-4g37-À-droite....., Les structures sont comparées en superposant les domaines N-terminaux, représentés en bleu cyan, des deux protéines. La protéine GB Av -B est dessinée en ruban bleu, la 2D1R en vert et la 4G37 en orange. Les résidus colorés en rouge, p.100

C. De-la-structure-construite-de-la, G. Av-a-construite-et-la-structure-cristallographique, G. Av-a-complète, and .. , La structure construite de la GB Av -A-construite est dessinée en ruban bleu de prusse, et la GB Av -A en violet. Les structures sont comparées en superposant les domaines N-terminaux, représentés en bleu cyan, des deux protéines, p.102

G. Structure-du-site-actif-de-la and .. Av, du tableau 10.1, superposée avec la structure du système de la luciole 2D1R. Les structures sont comparées en superposant leur domaines N-terminaux. L'OxyLH 2 dans l'image (2) du tableau 10.1 est représentée en tout atomes. De la structure modèle 2D1R, seule OxyLH 2 est représentée en vert pour plus de clarté. Le résidu Ser 245, représenté en CPK correspond à une substitution entre 2D1R (Phe) et GB Av (Ser), p.102

C. En-jaune, Les structures sont comparées en superposant leur domaines Nterminaux Le résidu Ser 245 et la molécule d'eau ajoutée artificiellement sont représentés en, p.104

G. Comparaison-entre-les-domaines-c-terminaux-de-la-structure and . Av, B+OxyLH 2 -closed et 2D1R à gauche et de la structure GB Av -Bclosed_w_OxyLH 2 et 2D1R à droite. Les structures sont comparées en superposant les domaines N-terminaux, représentés en bleu cyan, des deux protéines. La protéine GB Av -B+OxyLH 2 -closed est dessiné en ruban bleu foncé, 2D1R en vert et la GB Av -B-closed_w_OxyLH 2 en bleu roi. . . . . . . 106

G. Structure-du-site-actif-de-la and . Av, B+OxyLH 2 -closed de l'image (2) du tableau 10.4, superposée avec la structure du système de la luciole 2D1R. Les structures sont comparées en superposant leur domaines N-terminaux

S. Transitions-Électroniques-entre, S. Obtenues-en, Q. Mm, and A. Ms-caspt2-/-mm-obtenu-avec-une-base, un espace actif 16-in- 14 avec 2 états électroniques, un level shift de 0.1 et un IPEA shift de 0.1. TD-DFT/MM obtenu avec une base 6-311G(2d,p) sur une structure optimisée dans l'état S1 avec la fonctionnelle, p.86

S. Transitions-Électroniques-entre, S. Obtenues-en, and Q. , MM avec une base 6-311G(2d,p) sur une structure optimisée dans l'état S1 avec la fonctionnelle indiquée, p.93