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Introduction

This thesis contains two different subjects. The first part introduces
finite element methods to deal with the observational data with random
noise arising from the thin plate spline problem and elliptic boundary prob-
lems. The goal is to investigate the stochastic convergence of the finite el-
ement method which characterizes the tail property of the probability dis-
tribution function of the finite element error. The second part introduces a
mathematical and numerical framework for tissue property imaging from
the cellular and the macroscopic scale. The mathematical models in this
part help to understand the dependence of the conductivity of the tissue
on the frequency and micro structure of the cells. A method for anisotropy
imaging is also demonstrated in this Part. The imaging methods and re-
construction algorithms are developed for the corresponding models. Ad-
ditional introductions for both subjects will be given respectively in this
chapter.

0.1 Finite element methods with the observational data

In Part I, two cases are considered. One is the the thin plate spline smoother
model and the other one is the elliptic boundary equations with uncertain
boundary data. In this part, stochastic convergences of the finite element
methods are proved for each problem.

The thin plate spline smoother is a classical model for finding a smooth
function from the knowledge of its observation at scattered locations which
may have random noises. In Chapter 1, a nonconforming Morley finite
element method to approximate thin plate spline model is considered.

The spline model for scattered data has been extensively studied in the
literature. In [27] it is proved that the model has a unique solution in
H2(Rd) under certian conditions. Explicit formula of the solution is con-
structed in [27] based on radial basis functions. In [111] the convergence
rate for the expectation of the error is derived. Under the assumption that
the additional random noises are also sub-Gaussion random variables, [32]
proved the stochastic convergence of the error in terms of the empirical
norm for d = 1. The stochastic convergence which provides additional tail
information of the probability distribution function for the random error is
very desirable for the approximation of random variables. We refer to [114]
for a detailed analysis of the thin plate spline smoothers.

It is well-known that the numerical method based on radial basis func-
tions to solve the thin plate spline smoother requires to solve a symmetric
indefinite dense linear system of equations of the size O(n), which is chal-
lenging for applications with very large data sets [92]. Conforming finite
element methods for the solution of thin plate model are studied in [12]
and the references therein. In [92] a mixed finite element method is pro-
posed and the expectation of the finite element error is proved.
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In this Chapter, we provide the optimal choice of smoothing parameter
and propose a self-consistent iterative algorithm to determine the smooth-
ing parameter based on our theoretical analysis. Numerical examples are
presented to confirm the theoretical analysis and to show the competitive
performance of the self-consistent algorithm for finding the smoothing pa-
rameter.

In Chapter 2, we propose a finite element method for solving elliptic
equations with the observational Dirichlet boundary data which may sub-
ject to random noises. The method is based on the weak formulation of
the Lagrangian multiplier. We show the convergence of the random finite
element error in expectation and, when the noise is sub-Gaussian, in the
Orlicz ψ2-norm which implies the probability that the finite element error
estimates are violated decays exponentially. Numerical examples are pre-
sented to support this result.

In many scientific and engineering applications involving partial dif-
ferential equations, the input data such as sources or boundary conditions
are usually given through the measurements which may be subject to ran-
dom noises. A different perspective of solving partial differential equations
with uncertain input data due to incomplete knowledge or inherent vari-
ability in the system has drawn considerable interests in recent years (see
e.g. [101, 23, 40, 108] and the references therein). The goal of those studies
is to learn about the uncertainties in system outputs of interest, given in-
formation about the uncertainties in the system inputs which are modeled
as random fields. This goal usually leads to the mathematical problem of
breaking the curse of dimensionality for solving partial differential equa-
tions having large number of parameters.

The classical problem of finding a smooth function from the knowledge
of its observation at scattered locations subject to random noises is well
studied in the literature [115]. One popular model to tackle this classical
problem is to use the thin plate spline model [27, 111], which can be effi-
ciently solved by using finite element methods [13, 92, 19]. But the method
we propose in this Chapter is more efficient. One can combine the tech-
niques developed in this chapter with the weak formulations given in [104]
to deal with the observational Dirichlet boundary condition.

0.2 Two imaging methods and analysis of cell model
for electropermeabilization

In Part II, we propose and analyze two imaging methods: the linearized
model in multi-frequency electrical impedance tomography and the imag-
ing of anisotropy conductivity using Diffusion Tensor. At the end of this
Part, we analyze the well-posedness of the cell model for electropermeabi-
lization and propose a dynamical homogenization scheme.

In Chapter 3, we provide a mathematical analysis of the linearized in-
verse problem in multifrequency electrical impedance tomography. We
consider the isotropic conductivity distribution with a finite number of un-
known inclusions with different frequency dependence.

Electrical impedance tomography (EIT) is a diffusive imaging modal-
ity in which the conductivity distribution of the concerned object is recov-
ered from the electrode voltage measurements on the boundary, induced
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by (multiple) known injected currents. The modality is safe, cheap and
portable, and has the potential to be an established clinical imaging method
in a multitude of applications [47]. However, the EIT inverse problem is
severely ill-posed. An approach to improve this problem is multi-frequency
electrical impedance tomography (mfEIT), also known as EIT spectroscopy,
which is also attracting attention in recent years. There have been several
studies on frequency-difference imaging, see [38, 94, 119, 96, 76, 60, 75].

Our main contributions are as follows. First, we systematically discuss
mfEIT reconstruction in the following three different scenarios, i.e., known
spectral profiles, partially known spectral profiles and unknown spectral
profiles. This analysis generalizes the existing studies, especially [96]. Sec-
ond, we provide a rigorous justification of mfEIT for handling geometrical
errors. Third, we present a novel group sparse reconstruction algorithm of
iterative shrinkage type, which is easy to implement and converges fast.
The extensive numerical experiments fully confirm our discussions.

In Chapter 4, we present a mathematical and numerical framework for
a procedure of imaging anisotropic electrical conductivity tensor using a
novel technique called Diffusion Tensor Magneto-acoustography.

MAT-MI is a new noninvasive modality for imaging electrical conduc-
tivity distributions of biological tissue [118, 72, 77, 122, 71, 117, 74]. In the
experiments, the biological tissue is placed in a static magnetic field. A
pulsed magnetic field is applied to induce an eddy current inside the con-
ductive tissue. Diffusion Tensor Imaging (DTI) is a non-invasive technique
for characterizing the diffusion properties of water molecules in tissues (see
e.g. [14] and the references therein). Imaging conductivity tensors in the
tissue with DTI is based on the correlation property between diffusion and
conductivity tensors [110]. This linear relationship can be used to charac-
terize the conductivity tensor.

Once the conductivity directions of anisotropy are determined, one needs
only to reconstruct a cross-property factor which is a scalar function. How-
ever, up to now, all techniques have assumed an isotropic conductivity dis-
tribution in the image reconstruction problem to simplify the underlying
mathematical theory [5, 90]. In this Chapter, we firstly formulate a new
image reconstruction method of an anisotropic conductivity tensor distri-
bution by combining the MAT-MI and DTI techniques. We propose an op-
timal control approach for reconstructing the cross-property factor relating
the diffusion tensor to the anisotropic electrical conductivity tensor. We
prove convergence and Lipschitz type stability of the algorithm and present
numerical examples to illustrate its accuracy.

In Chapter 5, the cell model for Electropermeabilization is demonstrated.
The technique of electropermeabilization is employed to make the chemother-
apeutical treatment of cancer more efficient and avoid side-effects. Instead
of spreading out drugs over the whole body, electropermeabilization makes
it possible to focus drug application on special areas. The mechanism of
electropermeabilization relies on careful exposition of biological tissue to
electrical fields: this changes the membrane properties of the cells such that
treatment can enter more easily just at precisely defined areas of the tissue
[54, 81].

For treatment planning in electropermeabilization, one is interested in
the percentage of electroporated cells over the whole tissue to make deci-
sions in the short term how to gear treatment [64, 26, 81]. We tackle the
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next step in electropermeabilization monitoring and investigate the ques-
tion of determining microscopic parameters from macroscopic measure-
ments. The modelling used stems from general physiological tissue models
for cells, asymptotically simplified by Neu and Krassowska [83]. Whereas
the mathematical well-posedness of the model of that model is not avail-
able in the literature, there exists an investigation of well-posedness for a
similar model in [58].

In order to describe the relation between macroscopic and microscopic
quantities, we apply the homogenization scheme in [4] to the cell model
of Neu and Krassowska [83]. This not only describes isotropic effective
parameters such as classical theory [85], but includes also anisotropy.

In this Chapter, we study effective parameters in a homogenization model
as the next step to monitor the microscopic properties in clinical practice.
We start from a physiological cell model for electropermeabilization and
analyze its well-posedness. For a dynamical homogenization scheme, we
prove convergence and then analyze the effective parameters, which can be
found by macroscopic imaging methods. We demonstrate numerically the
sensitivity of these effective parameters to critical microscopic parameters
governing electropermeabilization. This opens the door to solve the inverse
problem of reconstructing these parameters.

The results of Chapters 1 and 2 are from [19] and [18], respectively. The
results of Chapter 3, 4, and 5 are from [11], [8] and [6], respectively.
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Chapter 1

FEM for the thin plate spline
model

1.1 Introduction

In this chapter, we show the convergence analysis of finite element method
for the thin plate model and the method to choose the optimal parameter.

The thin plate spline smoother is a classical mathematical model for
finding a smooth function from the knowledge of its observation at scat-
tered locations which may be the subject to random noises. Let Ω be a
bounded Lipschitz domain in Rd (d ≤ 3) and u0 ∈ H2(Ω) be the unknown
smooth function. Let {xi}ni=1 ⊂ Ω be the scattered locations in the domain
where the observation is taken. We want to approximate u0 from the noisy
data yi = u0(xi) + ei, 1 ≤ i ≤ n, where {ei}ni=1 are independent and identi-
cally distributed random variables on some probability space (X,F ,P) sat-
isfying E[ei] = 0 and E[e2

i ] ≤ σ2. Here and in the sequel E[X] denotes the
expectation of the random variable X . The thin plate spline smoother, i.e.,
D2-spline smoother to approximate u0, is defined to be the unique solution
of the following variational problem

min
u∈H2(Ω)

1

n

n∑
i=1

(u(xi)− yi)2 + λn|u|2H2(Ω), (1.1)

where λn > 0 is the smoothing parameter.
The spline model for scattered data has been extensively studied in the

literature. For Ω = Rd, it is proved in [27] that (1.1) has a unique solution
un ∈ H2(Rd) when the set T = {xi : i = 1, 2, · · · , n} is not collinear (i.e. the
points in T are not on the same plane). An explicit formula of the solution
is constructed in [27] based on radial basis functions. [111] derived the
convergence rate for the expectation of the error |un − u0|2Hj(Ω)

, j = 0, 1, 2.
Under the assumption that ei, i = 1, 2, · · · , n, are also sub-Gaussion random
variables, [32] proved the stochastic convergence of the error in terms of the
empirical norm ‖un − u0‖n := (n−1

∑n
i=1 |un(xi)− u0(xi)|2)1/2 when d = 1.

The stochastic convergence which provides additional tail information of
the probability distribution function for the random error is very desirable
for the approximation of random variables. We refer to [114] for further
information on the thin plate spline smoothers.

It is well-known that the numerical method based on radial basis func-
tions for solving the thin plate spline smoother requires to solve a sym-
metric indefinite dense linear system of equations of the size O(n), which
is challenging for applications with very large data sets [92]. Conforming
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finite element methods for the solution of thin plate model are studied in
[12] and the references therein. In [92] a mixed finite element method for
solving ∇un is proposed and the expectation of the finite element error is
proved. The advantage of the mixed finite element method in [92] lies in
that one can use simple H1(Ω)-conforming finite element spaces. The H1

smoother in [92] that the mixed finite element method aims to approximate
is not equivalent to the thin plate spline model (1.1).

In this chapter we consider the nonconforming finite element approxi-
mation to the problem (1.1). We use the Morley element [82, 99, 116] which
is of particular interest for solving fourth order PDEs since it has the least
number of degrees of freedom on each element. The difficulty of the finite
element analysis for the thin plate smoother is the low stochastic regularity
of the solution un. One can only prove the boundedness of E[|un|2H2(Ω)] (see
Theorem 1.2.1 below). This difficulty is overcome by a smoothing operator
based on the C1-element for any Morley finite element functions. We also
prove that the probability distribution function of the empirical norm of the
finite element error has an exponentially decaying tail. For that purpose we
also prove the convergence of the error ‖un− u0‖n in terms of the Orlicz ψ2

norm (see Theorem 1.4.1 below) which improves the result in [32].
One of the central issues in the application of the thin plate model is the

choice of the smoothing parameter λn. In the literature it is usually made by
the method of cross validation [114]. The analysis in this chapter suggests
that the optimal choice should be

λ1/2+d/8
n = O(σn−1/2(|u0|H2(Ω) + σn−1/2)−1). (1.2)

Since, in practical applications, one does not know u0 and the upper bound
of the variance σ, we propose a self-consistent algorithm to determine λn
from the natural initial guess λn = n−

4
4+d . Our numerical experiments

show this self-consistent algorithm performs rather well.
The layout of the chapter is as follows. In Section 1.2 we recall some

preliminary properties of the thin plate model. In Section 1.3 we introduce
the nonconforming finite element method and show the convergence of the
finite element solution in terms of the expectation of Sobolev norms. In Sec-
tion 1.4 we study the tail property of the probability distribution function
for the finite element error based on the theory of empirical process for sub-
Gaussion noises. In Section 1.5 we introduce our self-consistent algorithm
for finding the smooth parameter λn and show several numerical examples
to support the analysis in this chapter.

1.2 The thin plate model

In this section we collect some preliminary results about the thin plate smoother
(1.1). In this chapter, we will always assume that Ω is a bounded Lipschitz
domain satisfying the uniform cone condition. We will also assume that
T are uniformly distributed in the sense that [111] there exists a constant
B > 0 such that hmax

hmin
≤ B, where

hmax = sup
x∈Ω

inf
1≤i≤n

|x− xi|, hmin = inf
1≤i 6=j≤n

|xi − xj |.
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It is easy to see that there exist constantsB1, B2 such thatB1n
−1/d ≤ hmax ≤

Bhmin ≤ B2n
−1/d.

We write the empirical inner product between the data and any function
v ∈ C(Ω̄) as (y, v)n = 1

n

∑n
i=1 yiv(xi). We also write (u, v)n = 1

n

∑n
i=1 u(xi)v(xi)

for any u, v ∈ C(Ω̄) and the empirical norm ‖u‖n = ( 1
n

∑n
i=1 u

2(xi))
1/2 for

any u ∈ C(Ω̄). By [111, Theorems 3.3-3.4], there exists a constant C > 0
depending only on Ω, B such that for any u ∈ H2(Ω) and sufficiently small
hmax,

‖u‖L2(Ω) ≤ C(‖u‖n + h2
max|u|H2(Ω)), ‖u‖n ≤ C(‖u‖L2(Ω) + h2

max|u|H2(Ω)).
(1.3)

It follows from (1.3) and Lax-Milgram lemma that the minimization prob-
lem (1.1) has a unique solution un ∈ H2(Ω). The following convergence
result is proved in [111].

Lemma 1.2.1. Let Un ∈ H2(Rd) be the solution of the following variational prob-
lem:

min
u∈D−2L2(Rd)

‖u− y‖2n + λn|u|2H2(Rd), (1.4)

where D−2L2(Rd) = {u|Dαu ∈ L2(Rd), |α| = 2}. Then there exist constants
λ0 > 0 and C > 0 such that for any λn ≤ λ0 and nλd/4n ≥ 1,

E
[
‖Un − u0‖2n

]
≤ Cλn|u0|2H2(Ω) +

Cσ2

nλ
d/4
n

, (1.5)

E
[
|Un|2H2(Ω)

]
≤ C|u0|2H2(Ω) +

Cσ2

nλ
1+d/4
n

. (1.6)

Define the bilinear form a : H2(Ω)×H2(Ω)→ R as

aΩ(u, v) =
∑

1≤i,j≤d

∫
Ω

∂2u

∂xi∂xj

∂2v

∂xi∂xj
dx, ∀u, v ∈ H2(Ω). (1.7)

It is obvious that |u|2H2(Ω) = a(u, u) for any u ∈ H2(Ω).

Theorem 1.2.1. Let un ∈ H2(Ω) be the unique solution of (1.1). Then there exist
constants λ0 > 0 and C > 0 such that for any λn ≤ λ0 and nλd/4n ≥ 1,

E
[
‖un − u0‖2n

]
≤ Cλn|u0|2H2(Ω) +

Cσ2

nλ
d/4
n

, (1.8)

E
[
|un|2H2(Ω)

]
≤ C|u0|2H2(Ω) +

Cσ2

nλ
1+d/4
n

. (1.9)

Proof. It is clear that un ∈ H2(Ω) and Un ∈ H2(Rd) satisfy the following
variational forms:

λnaΩ(un, v) + (un, v)n = (y, v)n, ∀v ∈ H2(Ω), (1.10)
λnaRd(Un, w) + (Un, w)n = (y, w)n, ∀w ∈ H2(Rd). (1.11)

Let F : H2(Ω)→ D−2L2(Rd) be the extension operator defined by

Fu = argmin
v∈D−2L2(Rd),v|Ω=u

|v|H2(Ω).



14 Chapter 1. FEM for the thin plate spline model

It is known [27, 111] that Fu = u in Ω and |Fu|H2(Rd) ≤ C|u|H2(Ω) for some
constant C > 0. We write ũ = Fu in Rd in the following. Thus, it follows
from (1.10)-(1.11) that

λnaΩ(un − Un, v) + (un − Un, v)n = λnaRd\Ω̄(Un, ṽ), ∀v ∈ H2(Ω),

which implies by taking v = un − Un|Ω ∈ H2(Ω) that

λn|un − Un|2H2(Ω) + ‖un − Un‖2n ≤ λn|Un|H2(Rd)|ũn − Ũn|H2(Rd)

≤ Cλn|Un|H2(Rd)|un − Un|H2(Ω),

where Ũn = F (Un|Ω). Therefore

|un − Un|2H2(Ω) ≤ C|Un|
2
H2(Rd), ‖un − Un‖2n ≤ λn|Un|2H2(Rd). (1.12)

Since Un is the solution of (1.4) and Ũn = Un in Ω, we have |Un|H2(Rd) ≤
|Ũn|H2(Rd) ≤ C|Un|H2(Ω). Therefore, E[|un|2H2(Ω)] ≤ CE[|Un|2H2(Ω)], which
implies (1.9) by using (1.6). Similarly one obtains (1.8) from the second
estimate in (1.12) and (1.5)-(1.6). This completes the proof.

Theorems 1.2.1 and 1.2.1 suggest that an optimal choice of the parameter
λn is such that λ1+d/4

n = O((σ2n−1)|u0|−2
H2(Ω)

).

1.3 Nonconforming finite element method

In this section we consider the nonconforming finite element approxima-
tion to the thin plate model (1.1) whose solution un ∈ H2(Ω) satisfies the
following weak formulation

λnaΩ(un, v) + (un, v)n = (y, v)n, ∀v ∈ H2(Ω). (1.13)

We assume that Ω is a polygonal or polyhedral domain in Rd (d = 2, 3) in
the reminder of this chapter. LetMh be a family of shape regular and quasi-
uniform finite element meshes over the domain Ω. We will use the Morley
element [82] for 2D, [116] for 3D to define our nonconforming finite element
method. The Morley element is a triple (K,PK ,ΣK), where K ∈ Mh is a
simplex in Rd, PK = P2(K) is the set of second order polynomials in K,
and ΣK is the set of the degrees of freedom. In 2D, for the element K with
vertices ai, 1 ≤ i ≤ 3, and mid-points bi of the edge opposite to the vertex
ai, 1 ≤ i ≤ 3, ΣK = {p(ai), ∂νp(bi), 1 ≤ i ≤ 3,∀p ∈ C1(K)}. In 3D, for the
element K with edges Sij which connects the vertices ai, aj , 1 ≤ i < j ≤ 4,
and faces Fj opposite to aj , 1 ≤ j ≤ 4, ΣK = { 1

|Sij |
∫
Sij
p, 1 ≤ i < j ≤

4, 1
|Fj |
∫
Fj
∂νp, 1 ≤ j ≤ 4,∀p ∈ C1(K)}. Here ∂νp is the normal derivative of

p of the edges (2D) or faces (3D) of the element. We refer to Figure 1.1 for
the illustration of the degrees of freedom of the Morley element.

Let Vh be the Morley finite element space

Vh = {vh : vh|K ∈ P2(K), ∀K ∈Mh, f(vh|K1) = f(vh|K2), ∀f ∈ ΣK1 ∩ ΣK2}.

The functions in Vh may not be continuous in Ω. Given a set G ⊂ R2, let
Mh(G) = {K ∈ Mh : G ∩ K 6= ∅} and N(G) the number of elements in
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FIGURE 1.1: The degrees of freedom of 2D Morley (left) and
3D Morley (right) element.

Mh(G). For any vh ∈ Vh, we define

v̂h(xi) =
1

N(xi)

∑
K′∈Mh(xi)

(vh|K′)(xi), i = 1, 2, · · · , n. (1.14)

Notice that if xi is located inside some element K, thenMh(xi) = {K} and
v̂h(xi) = vh(xi), i = 1, 2, · · · , n. With this definition we know that (v̂h, ŵh)n
and (e, ŵh)n are well-defined for any vh, wh ∈ Vh.

Let

ah(uh, vh) =
∑

K∈Mh

∑
1≤i,j≤d

∫
K

∂2uh
∂xi∂xj

∂2vh
∂xi∂xj

dx, ∀uh, vh ∈ Vh.

The finite element approximation of the problem (1.13) is to find uh ∈ Vh
such that

λnah(uh, vh) + (ûh, v̂h)n = (y, v̂h)n, ∀vh ∈ Vh. (1.15)

Since the sampling point set T is not collinear, by Lax-Milgram lemma,
problem (1.15) has a unique solution.

Let IK : H2(K)→ P2(K) be the canonical local nodal value interpolant
of Morley element [99, 116] and Ih : L2(Ω) → Vh be the global nodal value
interpolant such that (Ihu)|K = IKu for any K ∈Mh and piecewise H2(K)
functions u ∈ L2(Ω). We introduce the mesh dependent semi-norm | · |m,h,
m ≥ 0,

|v|m,h =

 ∑
K∈Mh

|v|2Hm(K)

1/2

,

for any v ∈ L2(Ω) such that v|K ∈ Hm(K), ∀K ∈Mh.

Lemma 1.3.1. We have

|u− IKu|Hm(K) ≤ Ch2−m
K |u|H2(K), ∀u ∈ Hm(K), 0 ≤ m ≤ 2,(1.16)

‖u− Îhu‖n ≤ Ch2|u|H2(Ω), ∀u ∈ H2(Ω), (1.17)

where hK is the diameter of the element K and h = maxK∈Mh
hK .
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Proof. Since IKp = p for any p ∈ P2(K) [116], estimate (1.16) follows from
the standard interpolation theory for finite element method [21]. More-
over, we have, by local inverse estimates and the standard interpolation
estimates

‖u− IKu‖L∞(K) ≤ inf
p∈P2(K)

[
‖u− p‖L∞(K) + |K|−1/2‖IK(u− p)‖L2(K)

]
≤ Ch

2−d/2
K |u|H2(K).

Let TK = {xi ∈ T : xi ∈ K, 1 ≤ i ≤ n}. By assumption, T is uniformly
distributed and the mesh is quasi-uniform, and hence the cardinal #TK ≤
Cnhd. Thus

‖u− Îhu‖2n ≤
1

n

∑
K∈Mh

#TK‖u− IKu‖2L∞(K) ≤ Ch
4|u|2H2(Ω).

This proves (1.17).

The following property of Morley element will be used below.

Lemma 1.3.2. Let K,K ′ ∈ Mh and F = K ∩ K ′. There exists a constant C
independent of h such that for any vh ∈ Vh, |α| ≤ 2,

‖∂α(vh|K − vh|K′)‖L∞(F ) ≤ Ch2−|α|−d/2(|vh|H2(K) + |vh|H2(K′)).

Proof. By [116, Lemma 5] we know that

‖vh|K − vh|K′‖L2(F ) ≤ Ch3/2(|vh|H2(K) + |vh|H2(K′)).

By using the inverse estimate we then obtain

‖∂α(vh|K − vh|K′)‖L∞(F ) ≤ Ch−|α|‖vh|K − vh|K′‖L∞(F )

≤ Ch−|α|−(d−1)/2‖vh|K − vh|K′‖L2(F )

≤ Ch2−|α|−d/2(|vh|H2(K) + |vh|H2(K′)).

This proves the lemma.

Lemma 1.3.3. There exists a linear operator Πh : Vh → H2(Ω) such that for any
vh ∈ Vh,

|vh −Πhvh|m,h ≤ Ch2−m|vh|2,h, m = 0, 1, 2, (1.18)
‖v̂h −Πhvh‖n ≤ Ch2|vh|2,h, (1.19)

where the constant C is independent of h.

Proof. We will only prove the lemma for the case d = 2. The case of d = 3
will be briefly discussed in the Appendix A. We will construct Πhvh by us-
ing the Agyris element. We recall [21, P.71] that for any K ∈ Mh, Agyris
element is a triple (K,PK ,ΛK), where PK = P5(K) and the set of de-
grees of freedom, with the notation in Figure 1.2, ΛK = {p(ai), Dp(ai)(aj −
ai), D

2p(ai)(aj−ai, ak−ai), ∂νp(bi), 1 ≤ i, j, k ≤ 3, j 6= i, k 6= i,∀p ∈ C2(K)}.
Let Xh be the Agyris finite element space

Xh = {vh : vh|K ∈ P5(K),∀K ∈Mh, f(vh|K1) = f(vh|K2),∀f ∈ ΛK1 ∩ ΛK2}.
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FIGURE 1.2: The degrees of freedom of Agyris element (left)
and Hermite triangle of type (5) (right).

It is known that Xh ⊂ H2(Ω).
We define the operator Πh as follows. For any vh ∈ Vh, wh := Πhvh ∈ Xh

such that for any K ∈Mh, wh|K ∈ P5(K) and

∂α(wh|K)(ai) =
1

N(ai)

∑
K′∈Mh(ai)

∂α(vh|K′)(ai), 1 ≤ i ≤ 3, |α| ≤ 2, (1.20)

∂ν(wh|K)(bi) = ∂ν(vh|K)(bi), 1 ≤ i ≤ 3. (1.21)

Here Mh(ai) and N(ai) are defined above (1.14). To show estimate (1.18)
we follow an idea in [21, Theorem 6.1.1] and use the element Hermite trian-
gle of type (5) [21, P.102], which is a triple (K,PK ,ΘK), where PK = P5(K)
and the set of degrees of freedom ΘK = {p(ai), Dp(ai)(aj−ai), D2p(ai)(aj−
ai, ak − ai), Dp(bi)(ai − bi), 1 ≤ i, j, k ≤ 3, j 6= i, k 6= i,∀p ∈ C2(K)}. The
finite element space of Hermite triangle of type (5) is H1 conforming and a
regular family of Hermite triangle of type (5) is affine-equivalent. For any
K ∈Mh, denote by pi, pij , pijk, qi the basis functions associated with the de-
grees of freedom p(ai), Dp(ai)(aj−ai), D2p(ai)(aj−ai, ak−ai), Dp(bi)(ai−
bi), 1 ≤ i, j, k ≤ 3, j 6= i, k 6= i.

For any vh ∈ Vh, we also define a linear operator qh := Λhvh as follows:
for any K ∈Mh, qh|K ∈ P5(K) and

∂α(qh|K)(ai) =
1

N(ai)

∑
K′∈Mh(ai)

∂α(vh|K′)(ai), 1 ≤ i ≤ 3, |α| ≤ 2, (1.22)

D(qh|K)(bi)(ai − bi) = D(vh|K)(bi)(ai − bi), 1 ≤ i ≤ 3. (1.23)

Then from the definition of Morley element and Hermite triangle of type
(5), we know that φh|K := (vh − qh)|K ∈ P5(K) satisfies

φh(x) =
∑

i,j=1,2,3,j 6=i
D(φh|K)(ai)(aj − ai)pij(x)

+
∑

i,j,k=1,2,3,j 6=i,k 6=i
D2(φh|K)(ai)(aj − ai, ak − ai)pijk(x).

Since a regular family of Hermite triangle of type (5) is affine-equivalent, by
standard scaling argument [21, Theorem 3.1.2], we obtain easily |qi|Hm(K) +

|pi|Hm(K) + |pij |Hm(K) + |pijk|Hm(K) ≤ Ch1−m
K , m = 0, 1, 2. Thus, for m =
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0, 1, 2,

|φh|Hm(K) ≤ Ch1−m
K

 3∑
i=1

∑
1≤|α|≤2

h|α||∂α(vh|K)(ai)− ∂α(qh|K)(ai)|2
1/2

.

(1.24)
By Lemma 1.3.2 and the fact that ∂α(qh|K)(ai) is the local average of ∂αvh
over elements around ai in (1.22)

|∂α(vh|K)(ai)− ∂α(qh|K)(ai)| ≤ Ch1−|α|

 ∑
K′∈Mh(ai)

|vh|2H2(K′)

1/2

, ∀1 ≤ |α| ≤ 2.

Inserting the above estimate into (1.24), we get

|vh − qh|Hm(K) ≤ Ch2−m

 ∑
K′∈Mh(K)

|vh|2H2(K′)

1/2

, m = 0, 1, 2. (1.25)

By (1.20)-(1.23) we know that qh − wh ∈ P5(K) and satisfies

qh(x)− wh(x) =

3∑
i=1

D(qh|K − wh|K)(bi)(ai − bi)qi(x).

On the other hand, for 1 ≤ i ≤ 3,

D(qh|K − wh|K)(bi)(ai − bi) = ∂ν(qh|K − vh|K)(bi)[(ai − bi) · ν],

since ∂ν(wh|K)(bi) = ∂ν(vh|K)(bi) by (1.21) and the tangential derivative
of (qh|K − wh|K) vanishes as a consequence of (1.20) and (1.22). Since
|qi|Hm(K) ≤ Ch1−m

K for m = 0, 1, 2, we then obtain that

|qh − wh|Hm(K) ≤ Ch2−m

(
3∑
i=1

|∂ν(qh|K − vh|K)(bi)|2
)1/2

≤ Ch2−m

 ∑
K′∈Mh(K)

|vh|2H2(K′)

1/2

, m = 0, 1, 2, (1.26)

where in the second inequality we have used the fact that by the inverse
estimate and (1.25),

|∂ν(qh|K − vh|K)(bi)| ≤ |qh − vh|W 1,∞(K) ≤ Ch−1
K |qh − vh|H1(K)

≤ C

 ∑
K′∈Mh(K)

|vh|2H2(K′)

1/2

.

Combining (1.25) and (1.26) shows (1.18).
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To show (1.19), we use the notation in the proof of Lemma 1.3.1, the
inverse estimate and (1.18) to get

‖v̂h − wh‖2n ≤
C

n

∑
K∈Mh

#TK‖vh − wh‖2L∞(K) ≤ C‖vh − wh‖
2
L2(Ω) ≤ Ch

4|vh|22,h.

This completes the proof.

For any function v which is piecewise in C2(K) for any K ∈ Mh, we
use the convenient energy norm

|‖v|‖h =
(
λn|v|22,h + ‖v̂‖2n

)1/2
.

Here v̂(xi), i = 1, 2, · · · , n, is defined as in (1.14), that is, v̂(xi) is the local
average of all v|K′(xi), where K ′ ∈Mh such that xi ∈ K ′.

Theorem 1.3.1. Let un ∈ H2(Ω) be the unique solution of (1.13) and uh ∈ Vh be
the solution of (1.15). Then there exist constants λ0 > 0 and C > 0 such that for
any λn ≤ λ0 and nλd/4n ≥ 1,

E
[
‖u0 − ûh‖2n

]
≤ C(λn + h4)|u0|2H2(Ω) + C

[
1 +

h4

λn
+

(
h4

λn

)1−d/4]
σ2

nλ
d/4
n

.

(1.27)
In particular, if h4 ≤ Cλn, we have

E
[
‖u0 − ûh‖2n

]
≤ Cλn|u0|2H2(Ω) +

Cσ2

nλ
d/4
n

. (1.28)

Proof. We start by using the Strang lemma [21]

|‖un−ûh|‖h ≤ C inf
vh∈Vh

|‖un− v̂h|‖h+C sup
06=vh∈Vh

|λnah(un, vh) + (un − y, v̂h)n|
|‖vh|‖h

.

(1.29)
By Lemma 1.3.1 we have

inf
vh∈Vh

|‖un − v̂h|‖h ≤ C(λ1/2
n + h2)|un|H2(Ω). (1.30)

Since for any vh ∈ Vh, Πhvh ∈ H2(Ω), by (1.13) and the fact that yi = u0(xi)+
ei, i = 1, 2, · · ·n, we obtain

λnah(un, vh) + (un − y, v̂h)n

= λnah(un, vh −Πhvh) + (un − y, v̂h −Πhvh)n

≤ λn|un|H2(Ω)|vh −Πhvh|2,h + ‖un − u0‖n‖v̂h −Πhvh‖n + (e, v̂h −Πhvh)n.

Now by using Lemma 1.3.3 we have

sup
06=vh∈Vh

|λnah(un, vh) + (un − y, v̂h)n|
|‖vh|‖h

≤ Cλ1/2
n |un|H2(Ω) + C

h2

λ
1/2
n

‖un − u0‖n + sup
06=vh∈Vh

|(e, v̂h −Πhvh)n|
|‖vh|‖h

. (1.31)
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Since ei, i = 1, 2, · · · , n, are independent and identically distributed ran-
dom variables, we have

E
[
|(e, v̂h −Πhvh)n|2

]
= σ2n−1‖v̂h −Πhvh‖2n ≤ Cσ2n−1h4|vh|22,h,

where we have used Lemma 1.3.3 in the last inequality.
LetNh be the dimension of Vh which satisfiesNh ≤ Ch−d since the mesh

is quasi-uniform. Recall that if {Xi}Nhi=1 are random variables, E[sup1≤i≤Nh |Xi|] ≤∑Nh
i=1 E[|Xi|]. then we have

E

[
sup

06=vh∈Vh

|(e, vh −Πhvh)n|2

|‖vh|‖2h

]
≤ Nh· sup

0 6=vh∈Vh
E
[
|(e, vh −Πhvh)n|2

|‖vh|‖2h

]
≤ Cσ

2h4−d

nλn
.

(1.32)
Combining (1.29)-(1.32) we obtain

E
[
|‖un − ûh|‖2h

]
≤ CλnE

[
|un|2H2(Ω)

]
+ C

h4

λn
E
[
‖un − u0‖2n

]
+ C

σ2h4−d

nλn
.

This completes the proof by using Theorem 1.2.1.

1.4 Stochastic convergence

In this section we study the stochastic convergence of the error ‖u0 − ûh‖n
which characterizes the tail property of P(‖u0 − ûh‖n ≥ z) for z > 0. We
assume the noises ei, i = 1, 2, · · · , n, are independent and identically dis-
tributed sub-Gaussian random variables with parameter σ > 0. A random
variable X is sub-Gaussion with parameter σ if it satisfies

E
[
eλ(X−E[X])

]
≤ e

1
2
σ2λ2

, ∀λ ∈ R. (1.33)

The probability distribution function of a sub-Gaussion random variable
has a exponentially decaying tail, that is, if X is a sub-Gaussion random
variable, then

P(|X − E[X]| ≥ z) ≤ 2e−
1
2
z2/σ2

, ∀z > 0. (1.34)

In fact, by Markov inequality, for any λ > 0,

P(X − E[X] ≥ z) = P(λ(X − E[X]) ≥ λz) ≤ e−λzE[eλ(X−E[X])] ≤ e−λz−
1
2
σ2λ2

.

Taking λ = z/σ2 yields P(X − E[X] ≥ z) ≤ e−
1
2
z2/σ2

. Similarly, one can
prove P(X − E[X] ≤ −z) ≤ e−

1
2
z2/σ2

. This shows (1.34).

1.4.1 Stochastic convergence of the thin plate splines

We will use several tools from the theory of empirical processes [112, 32] for
our analysis. We start by recalling the definition of Orlicz norm. Let ψ be a
monotone increasing convex function satisfying ψ(0) = 0. Then the Orilicz
norm ‖X‖ψ of a random variable X is defined by

‖X‖ψ = inf

{
C > 0 : E

[
ψ

(
|X|
C

)]
≤ 1

}
. (1.35)
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By using Jensen inequality, it is easy to check that ‖X‖ψ is a norm. In the
following we will use the ‖X‖ψ2 norm with ψ2(t) = et

2 − 1 for any t > 0.
By definition we know that

P(|X| ≥ z) ≤ 2 e
−z2/‖X‖2ψ2 , ∀z > 0. (1.36)

The following lemma is from [112, Lemma 2.2.1]. It shows the inverse of
this property.

Lemma 1.4.1. If there exist positive constants C,K such that P(|X| > z) ≤
Ke−Cz

2
, ∀z > 0, then ‖X‖ψ2 ≤

√
(1 +K)/C.

Let T be a semi-metric space with the semi-metric d and let {Xt : t ∈ T}
be a random process indexed by T . Then the random process {Xt : t ∈ T}
is called sub-Gaussian if

P(|Xs −Xt| > z) ≤ 2e−
1
2
z2/d(s,t)2

, ∀s, t ∈ T, z > 0. (1.37)

For a semi-metric space (T, d), an important quantity to characterize the
complexity of the set T is the entropy which we now introduce. The cov-
ering number N(ε, T, d) is the minimum number of ε-balls that cover T . A
set is called ε-separated if the distance of any two points in the set is strictly
greater than ε. The packing number D(ε, T, d) is the maximum number
of ε-separated points in T . logN(ε, T, d) is called the covering entropy and
logD(ε, T, d) is called the packing entropy. It is easy to check that [112, P.98]

N(ε, T, d) ≤ D(ε, T, d) ≤ N(
ε

2
, T, d). (1.38)

The following maximal inequality [112, Section 2.2.1] plays an impor-
tant role in our analysis.

Lemma 1.4.2. If {Xt : t ∈ T} is a separable sub-Gaussian random process, then

‖ sup
s,t∈T

|Xs −Xt|‖ψ2 ≤ K
∫ diamT

0

√
logD(ε, T, d) dε.

Here K > 0 is some constant.

The following result on the estimation of the entropy of Sobolev spaces
is due to Birman-Solomyak [15].

Lemma 1.4.3. LetQ be the unit square in Rd and SWα,p(Q) be the unit sphere of
the Sobolev space Wα,p(Q), where α > 0, p ≥ 1. Then for ε > 0 sufficient small,
the entropy

logN(ε, SWα,p(Q), ‖ · ‖Lq(Q)) ≤ Cε−d/α,

where if αp > d, 1 ≤ q ≤ ∞, otherwise if αp ≤ d, 1 ≤ q ≤ q∗ with q∗ =
p(1− αp/d)−1.

For any δ > 0, ρ > 0, define

Sδ,ρ(Ω) := {u ∈ H2(Ω) : ‖u‖n ≤ δ, |u|H2(Ω) ≤ ρ}. (1.39)

The following lemma estimates the entropy of the set Sδ,ρ(Ω).
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Lemma 1.4.4. There exists a constant C independent of δ, ρ, ε such that

logN(ε, Sδ,ρ(Ω), ‖ · ‖L∞(Ω)) ≤ C
(
ρ+ δ

ε

)d/2
.

Proof. By (1.3) we have for any u ∈ Sδ,ρ(Ω), ‖u‖H2(Ω) ≤ C(‖u‖L2(Ω) +
|u|H2(Ω)) ≤ C(‖u‖n + |u|H2(Ω)) ≤ C(δ + ρ), where we have used the fact
that hmax ≤ Cn−1/d ≤ C. The lemma now follows from Lemma 1.4.3.

The following lemma is proved by the argument in [112, Lemma 2.2.7].

Lemma 1.4.5. {En(u) := (e, u)n : u ∈ H2(Ω)} is a sub-Gaussian random
process with respect to the semi-distance d(u, v) = ‖u − v‖∗n, where ‖u‖∗n :=
σn−1/2‖u‖n.

Proof. By definition En(u) − En(v) =
∑n

i=1 ciei, where ci = 1
n(u − v)(xi).

Since ei is a sub-Gaussion random variable with parameter σ and E[ei] =

0, by (1.33), E[eλei ] ≤ e
1
2
σ2λ2

,∀λ > 0. Thus, since ei, i = 1, 2, · · · , n, are
independent random variables,

E
[
eλ
∑n
i=1 ciei

]
≤ e

1
2
σ2λ2

∑n
i=1 c

2
i = e

1
2
σ2n−1λ2‖u−v‖2n = e

1
2
d(u,v)2λ2

.

This shows En(u)− En(v) is a sub-Gaussion random variable with param-
eter d(u, v). By (1.34) we have

P(|En(u)− En(v)| ≥ z) ≤ 2e−
1
2
z2/d(u,v)2

, ∀z > 0.

This shows the lemma by the definition of sub-Gaussion random process
(1.37).

The following lemma which improves Lemma 1.4.1 will be used in our
subsequent analysis.

Lemma 1.4.6. If X is a random variable which satisfies

P(|X| > α(1 + z)) ≤ C1e
−z2/K2

1 , ∀α > 0, z ≥ 1,

where C1,K1 are some positive constants, then ‖X‖ψ2 ≤ C(C1,K1)α for some
constant C(C1,K1) depending only on C1 and K1.

Proof. If y ≥ 2α, then z = (y/α)− 1 ≥ 1. Thus

P(|X| > y) = P(|X| > α(1 + z)) ≤ C1 exp

[
− 1

K2
1

( y
α
− 1
)2
]
.

Since ( yα − 1)2 ≥ 1
2( yα)2 − 1 by Cauchy-Schwarz inequality, we obtain

P(|X| > y) ≤ C1e
1

K2
1 e
− y2

2K2
1α

2
= C1e

1

K2
1 e
− y2

K2
2 ,

where K2 :=
√

2αK1. On the other hand, if y < 2α, then

P(|X| > y) ≤ e
y2

K2
2 e
− y2

K2
2 ≤ e

2

K2
1 e
− y2

K2
2 .
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Therefore, P(|X| > y) ≤ C2e
−y2/K2

2 , ∀y > 0, whereC2 = max(C1e
1/K2

1 , e2/K2
1 ).

This implies by Lemma 1.4.1,

‖X‖ψ2 ≤
√

1 + C2K2 = C(C1,K1)α, where C(C1,K1) =
√

2K1

√
1 + C2,

which completes the proof.

Theorem 1.4.1. Let un ∈ H2(Ω) be the solution of (1.13). Denote by ρ0 =
|u0|H2(Ω) + σn−1/2. If we take

λ1/2+d/8
n = O(σn−1/2ρ−1

0 ), (1.40)

then there exists a constant C > 0 such that

‖ ‖un − u0‖n ‖ψ2 ≤ Cλ1/2
n ρ0, ‖ |un|H2(Ω) ‖ψ2 ≤ Cρ0. (1.41)

Proof. We will only prove the first estimate in (1.41) by the peeling argu-
ment. The other estimate can be proved in a similar way. From (1.10) it
follows that

‖un − u0‖2n + λn|un|2H2(Ω) ≤ 2(e, un − u0)n + λn|u0|2H2(Ω). (1.42)

Let δ > 0, ρ > 0 be two constants to be determined later, and

A0 = [0, δ), Ai = [2i−1δ, 2iδ), B0 = [0, ρ), Bj = [2j−1ρ, 2jρ), i, j ≥ 1.
(1.43)

For i, j ≥ 0, define

Fij = {v ∈ H2(Ω) : ‖v‖n ∈ Ai , |v|H2(Ω) ∈ Bj}.

Then we have

P(‖un − u0‖n > δ) ≤
∞∑
i=1

∞∑
j=0

P(un − u0 ∈ Fij). (1.44)

Now we estimate P(un−u0 ∈ Fij). By Lemma 1.4.5, {(e, v)n : v ∈ H2(Ω)} is
a sub-Gaussion random process with respect to the semi-distance d(u, v) =
σn−1/2‖u− v‖n. It is easy to see that

diamFij ≤ σn−1/2 sup
u−u0,v−u0∈Fij

(‖u− u0‖n + ‖v − u0‖n) ≤ 2σn−1/2 · 2iδ.

Then by (1.38) and the maximal inequality in Lemma 1.4.2 we have

‖ sup
u−u0∈Fij

|(e, u− u0)n|‖ψ2 ≤ K

∫ σn−1/2·2i+1δ

0

√
logN

(ε
2
, Fij , d

)
dε

= K

∫ σn−1/2·2i+1δ

0

√
logN

( ε

2σn−1/2
, Fij , ‖ · ‖n

)
dε.
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By Lemma 1.4.4 we have the estimate for the entropy

logN
( ε

2σn−1/2
, Fij , ‖ · ‖n

)
≤ logN(

ε

2σn−1/2
, Fij , ‖ · ‖L∞(Ω))

≤ C

(
2σn−1/2 · (2iδ + 2jρ)

ε

)d/2
.

Therefore,

‖ sup
u−u0∈Fij

|(e, u− u0)n‖ψ2 ≤ K

∫ σn−1/2·2i+1δ

0

(
2σn−1/2 · (2iδ + 2jρ)

ε

)d/4
dε

= Cσn−1/2(2iδ + 2jρ)d/4(2iδ)1−d/4

≤ Cσn−1/2[2iδ + (2iδ)1−d/4(2jρ)d/4]. (1.45)

By (1.42) and (1.36) we have for i, j ≥ 1:

P(un − u0 ∈ Fij) ≤ P(22(i−1)δ2 + λn22(j−1)ρ2 ≤ 2 sup
u−u0∈Fij

|(e, u− u0)n|+ λnρ
2
0)

= P(2 sup
u−u0∈Fij

|(e, u− u0)n| ≥ 22(i−1)δ2 + λn22(j−1)ρ2 − λnρ2
0)

≤ 2 exp

− 1

Cσ2n−1

(
22(i−1)δ2 + λn22(j−1)ρ2 − λnρ2

0

2iδ + (2iδ)1−d/4(2jρ)d/4

)2
 .

Now we take

δ2 = λnρ
2
0(1 + z)2, ρ = ρ0, where z ≥ 1. (1.46)

Since by assumption λ1/2+d/8
n = O(σn−1/2ρ−1

0 ) and σn−1/2ρ−1
0 ≤ 1, we have

λn ≤ C for some constant. By some simple calculation we have for i, j ≥ 1,

P(un − u0 ∈ Fij) ≤ 2 exp

−C ( 22(i−1)z(1 + z) + 22(j−1)

2i(1 + z) + (2i(1 + z))1−d/4(2j)d/4

)2
 .

By using the elementary inequality ab ≤ 1
pa

p + 1
q b
q for any a, b > 0, p, q >

1, p−1 + q−1 = 1, we have (2i(1 + z))1−d/4(2j)d/4 ≤ (1 + z)2i + 2j . Thus

P(un − u0 ∈ Fij) ≤ 2 exp
[
−C(22iz2 + 22j)

]
.

Similarly, one can prove for i ≥ 1, j = 0,

P(un − u0 ∈ Fi0) ≤ 2 exp
[
−C(22iz2)

]
.

Therefore, since
∑∞

j=1 e
−C(22j) ≤ e−C < 1 and

∑∞
i=1 e

−C(22iz2) ≤ e−Cz
2
, we

finally obtain

∞∑
i=1

∞∑
j=0

P(un − u0 ∈ Fij) ≤ 2
∞∑
i=1

∞∑
j=1

e−C(22iz2+22j) + 2
∞∑
i=1

e−C(22iz2)

≤ 4e−Cz
2
.
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Now inserting the above estimate into (1.44) we have

P(‖un − u0‖n > λ1/2
n ρ0(1 + z)) ≤ 4e−Cz

2
, ∀z ≥ 1. (1.47)

This implies by using Lemma 1.4.6 that ‖‖un − u0‖n‖ψ2 ≤ Cλ
1/2
n ρ0, which

completes the proof.

We remark that (1.47) implies that

lim
z→∞

lim
n→∞

P(‖un − u0‖n > λ1/2
n ρ0(1 + z)) = 0.

In terms of the terminology of the stochastic convergence order, we have
‖un − u0‖n = Op(λ

1/2
n )ρ0 which by assumption (1.40) yields

‖un − u0‖n = Op(n
− 2

4+d )σ
4

4+d ρ
− 4

4+d

0 .

This estimate is proved in [32, Section 10.1.1] when d = 1. Our result in
Theorem 1.4.1 is stronger in the sense that it also provides the tail property
of the probability distribution function of the random error ‖un − u0‖n.

1.4.2 Stochastic convergence of the finite element method

The following lemma provides the estimate of the entropy of finite dimen-
sion subsets [32, Corollary 2.6].

Lemma 1.4.7. Let G be a finite dimensional subspace of L2(Ω) of dimension N >
0 and GR = {f ∈ G : ‖f‖L2(Ω) ≤ R}. Then

N(ε,GR, ‖ · ‖L2(Ω)) ≤ (1 + 4R/ε)N , ∀ε > 0.

Lemma 1.4.8. Let Gh := {vh ∈ Vh : |‖vh|‖h = (λn|vh|22,h + ‖v̂h‖2n)1/2 ≤ 1}.
Assume that h = O(λ

1/4
n ) and nλd/4n ≥ 1. Then

‖ sup
vh∈Gh

|(e, v̂h −Πhvh)n| ‖ψ2 ≤ Cσn−1/2λ−d/8n .

Proof. Similar to the proof of Lemma 1.4.5 we know that {Ên(vh) := (e, v̂h−
Πhvh)n, ∀vh ∈ Gh} is a sub-Gaussion random process with respect to the
semi-distance d̂(vh, wh) = σn−1/2‖(v̂h−Πhvh)− (ŵh−Πhwh)‖n. By Lemma
1.3.3, for any vh ∈ Gh, ‖v̂h − Πhvh‖n ≤ Ch2|vh|2,h ≤ Ch2λ

−1/2
n ≤ C, where

we have used the assumption h = O(λ
1/4
n ) in the last inequality. This im-

plies that the diameter of Gh is bounded by Cσn−1/2. Now by the maximal
inequality in Lemma 1.4.2

‖ sup
vh∈Gh

|(e, v̂h −Πhvh)n| ‖ψ2 ≤ K
∫ Cσn−1/2

0

√
logN

(ε
2
, Gh, d̂

)
dε. (1.48)
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For any vh ∈ Vh, by Lemma 1.3.3, Πhvh ∈ H2(Ω) and thus by (1.3)

‖Πhvh‖L2(Ω) ≤ C(h2
max|Πhvh|H2(Ω) + ‖Πhvh‖n)

≤ C(n−2/dλ−1/2
n + ‖Πhvh − v̂h‖n + ‖v̂h‖n)

≤ C(n−2/dλ−1/2
n + Ch2λ−1/2

n + 1)

≤ C,

where we have used h = O(λ
1/4
n ) and nλd/4n ≥ 1 in the last inequality. Thus

‖vh‖L2(Ω) ≤ ‖vh−Πhvh‖L2(Ω)+‖Πhvh‖L2(Ω) ≤ Ch2|vh|2,h+C ≤ C, ∀vh ∈ Gh.
(1.49)

Moreover, by Lemma 1.3.3 and the inverse estimate,

d̂(vh, wh) ≤ Cσn−1/2h2|vh−wh|2,h ≤ Cσn−1/2‖vh−wh‖L2(Ω), ∀vh, wh ∈ Vh.
(1.50)

Now since the dimension of Vh is bounded by Ch−d, Lemma 1.4.7 together
with (1.49)-(1.50) implies

logN
(ε

2
, Gh, d̂

)
= logN

( ε

Cσn−1/2
, Gh, ‖ · ‖L2(Ω)

)
≤ Ch−d(1 + σn−1/2/ε).

Inserting this estimate to (1.48)

‖ sup
vh∈Gh

|(e, v̂h −Πhvh)n| ‖ψ2 ≤ C

∫ Cσn−1/2

0

√
Ch−d(1 + σn−1/2/ε) dε

≤ Ch−d/2σn−1/2.

This completes the proof since h = O(λ
1/4
n ).

The following theorem is the main result of this section.

Theorem 1.4.2. Let uh ∈ Vh be the solution of (1.15). Denote by ρ0 = |u0|H2(Ω)+

σn−1/2. If we take

h = O(λ1/4
n ) and λ1/2+d/8

n = O(σn−1/2ρ−1
0 ), (1.51)

then there exists a constant C > 0 such that

‖ ‖ûh − u0‖n ‖ψ2 ≤ Cλ1/2
n ρ0, ‖ |uh|H2(Ω) ‖ψ2 ≤ Cρ0. (1.52)

Proof. By (1.29)-(1.31) we have

λ1/2
n |uh|H2(Ω) + ‖ûh − u0‖n

≤ C(1 +
h2

λ
1/2
n

)‖un − u0‖n + C(h2 + λ1/2
n )(|un|H2(Ω) + |u0|H2(Ω))

+ C sup
0 6=vh∈Vh

|(e, v̂h −Πhvh)n|
|‖vh|‖h

.

The theorem follows now from Theorem 1.4.1, Lemma 1.4.8 and the as-
sumption σn−1/2 ≤ Cλ1/2+d/8

n ρ0.
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FIGURE 1.3: The surface plot of the exact solution u0.

By (1.36), we know from Theorem 1.4.2 that

P(‖ûh − u0‖n ≥ z) ≤ 2e−z
2/(Cλnρ2

0), ∀z > 0,

that is, the probability density function of the random error ‖ûh − u0‖n de-
cays exponentially as n→∞.

1.5 Numerical examples

From Theorem 1.4.2 we know that the mesh size should be comparable
with λ1/4

n . The smoothing parameter λn is usually determined by the cross-
validation in the literature [114]. Here we propose a self-consistent algo-
rithm to determine the parameter λn based on λ1/2+d/8

n = σn−1/2(|u0|H2(Ω)+

σn−1/2)−1 as indicated in Theorem 1.4.2. In the algorithm we estimate
|u0|H2(Ω) by |uh|2,h and σ by ‖uh − y‖n since ‖u0 − y‖n = ‖e‖n provides
a good estimation of the variance by the law of large number.

Algorithm 1.5.1. (SELF-CONSISTENT ALGORITHM FOR FINDING λn)
1◦ Given an initial guess of λn,0;
2◦ For k ≥ 0 and λn,k known, compute uh with the parameter λn,k over a quasi-
uniform mesh of the mesh size h = λ

1/4
n,k ;

3◦ Compute λ1/2+d/8
n,k+1 = ‖uh − y‖nn−1/2(|uh|2,h + ‖uh − y‖nn−1/2)−1.

Now we show several examples to confirm our theoretical analysis. We
will always take Ω = (0, 1)× (0, 1) and {xi}ni=1 being uniformly distributed
over Ω. We take u0 = sin(2πx2 + 3πy)e

√
x3+y, see Figure 1.3. The finite

element mesh of Ω is construct by first dividing the domain into h−1 ×
h−1 uniform rectangles and then connecting the lower left and upper right
vertices of each rectangle.

Example 1.5.1. In this example we show that the choice of the smoothing param-
eter λn by (1.51) is optimal. We set ei, i = 1, 2, · · · , n, being independent normal
random variables with variance σ = 1 and n = 2500. Since |u0|H2(Ω) ≈ 200,
(1.51) suggests the optimal choice of λn ≈ 3 × 10−6. Figure 1.4 shows that λn =
1×10−6 is the best choice among 11 different choices λn = 10−k, k = 1, 2, · · · , 10.
Here we also choose the mesh size h = λ

1/4
n according to Theorem 1.4.2.
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FIGURE 1.4: The empirical error ‖u0 − uh‖n for 11 different
choices of λn = 10−k, k = 0, 1, · · · , 10. The mesh size h = λ

1/4
n .

(a) (b)

FIGURE 1.5: (a) The linear dependence of the empirical error
‖u0 − uh‖n on λ1/2n for σ = 1. (b) The linear dependence of the
empirical error ‖u0 − uh‖n on λ1/2n for combined random noises.

Example 1.5.2. In this example we show that the empirical error ‖u0 − uh‖n
depends linearly on λ

1/2
n to confirm (1.52). We set ei, i = 1, 2, · · · , n, to be

independent normal random variables with variance σ = 1. We take n varying
from 2500 to 9 × 104. In this test we use the optimal λn and take the mesh size
h = λ

1/4
n . Figure 1.5 (a) shows clearly the linear dependence of the empirical error

on λ1/2
n . We also run the test for combined random errors, i.e., ei = ηi +αi, where

ηi and αi are independent normal random variables with variance σ1 = 1 and
σ2 = 10. Figure 1.5 (b) shows also the linear dependence of the empirical error on
λ

1/2
n .

Example 1.5.3. We test the efficiency of the Algorithm 1.5.1 to estimate the smooth-
ing parameter λn. We will show two experiments of different noise levels. In the
first test we set ei, i = 1, 2, · · · , n, being independent normal random variables
with variance σ = 1 and n = 2500. Figure 1.6 (a) and (b) show clearly that the
sequence of {λn,k} generated by Algorithm 1.5.1 converges. λn,16 = 4.12× 10−6

agrees with the optimal choice 3×10−6 given by (1.51). Furthermore, ‖uh−y‖n =
0.99 provides a good estimate of the variance σ.
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(a) (b)

(c) (d)

FIGURE 1.6: (a) The solution uh at the end of iteration for σ = 1.
(b) The empirical error ‖u0−uh‖n of each iteration for σ = 1. (c)
The solution uh at the end of iteration for the combined random
error ei = ηi + αi. (d) The empirical error ‖u0 − uh‖n of each

iteration for the combined random error ei = ηi + αi.

We now consider the combined random noise. Let ei = ηi+αi, i = 1, 2, · · · , n,
where ηi and αi are independent normal random variables with variance σ1 = 1
and σ2 = 10. It is obvious that σ2 = Ee2

i = σ2
1 + σ2

2 = 101. Let n = 4 × 104.
Again Figure 1.6 (c) and (d) show the sequence {λn,k} generated by Algorithm
1.5.1 converges. Now λn,19 = 2.16 × 10−5 which fits well the optimal choice
1.03× 10−5 given by (1.51). Also ‖uh − y‖n = 10.07 gives a good estimate of the
variance σ.
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Chapter 2

Elliptic problems with
observational boundary data

2.1 Introduction

In this chapter, we discuss another application of empirical process. Here,
we demonstrate the Dirichlet problem with observational boundary data
and analyze the convergence of FEM for this problem.

In many scientific and engineering applications involving partial dif-
ferential equations, the input data such as sources or boundary conditions
are usually given through the measurements which may subject to random
noises. Let Ω ⊂ R2 be a bounded domain with smooth boundary Γ. In this
chapter we consider the problem to find u ∈ H1(Ω) such that

−∆u = f in Ω, u = g0 on Γ. (2.1)

Here f ∈ L2(Ω) is given but the boundary condition g0 ∈ H2(Γ) is gener-
ally unknown. We assume that we know the measurements gi = g0(xi)+ei,
i = 1, 2, · · · , n, where T = {xi : 1 ≤ i ≤ n} is the set of the measurement
locations on the boundary Γ and ei, i = 1, 2, · · · , n, are independent iden-
tically distributed random variables over some probability space (X,F ,P)
satisfying E[ei] = 0 and E[e2

i ] = σ > 0. In this chapter P denotes the prob-
ability measure and E[X] denotes the expectation of the random variable
X . We remark that for simplicity we only consider the problem of observa-
tional Dirichlet boundary data in this chapter and the problem with obser-
vational sources f or other type of boundary conditions can be studied by
the same method.

A different perspective of solving partial differential equations with un-
certain input data due to incomplete knowledge or inherent variability in
the system has drawn considerable interests in recent years (see e.g. [101,
23, 40, 108] and the references therein). The goal of those studies is to
learn about the uncertainties in system outputs of interest, given informa-
tion about the uncertainties in the system inputs which are modeled as ran-
dom field. This goal usually leads to the mathematical problem of breaking
the curse of dimensionality for solving partial differential equations having
large number of parameters.

The classical problem to find a smooth function from the knowledge
of its observation at scattered locations subject to random noises is well
studied in the literature [114]. One popular model to tackle this classical
problem is to use the thin plate spline model [27, 111] which can be effi-
ciently solved by using finite element methods [12, 92, 19]. The scattered
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data in our problem (2.1) are defined on the boundary of the domain and a
straightforward application of the method developed in [27, 111, 12, 92, 19]
would lead to solve a fourth order elliptic equation on the boundary which
would be much more expansive than the method proposed in this chapter.

Our method is based on the following weak formulation of Lagrangian
multiplier for (2.1) in [100]: Find (u, λ) ∈ H1(Ω)×H−1/2(Γ) such that

(∇u,∇v) + 〈λ, v〉 = (f, v), ∀v ∈ H1(Ω), (2.2)
〈µ, u〉 = 〈µ, g〉, ∀µ ∈ H1/2(Γ), (2.3)

where (·, ·) is the duality pairing between H1(Ω) and H1(Ω)′ which is an
extension of the inner product of L2(Ω) and 〈·, ·〉 is the duality pairing be-
tween H1/2(Γ) and H−1/2(Γ) which is an extension of the inner product of
L2(Γ). Let Ωh be a polygonal domain which approximates the domain Ω.
Let Vh ⊂ H1(Ωh) and Qh ⊂ L2(Γ) be the finite element spaces for approxi-
mating the field variable and the Lagrangian multiplier. Our finite element
method is defined as follows: Find (uh, λh) ∈ Vh ×Qh such that

(∇uh,∇vh)Ωh + 〈λh, vh〉n = (Ihf, vh)Ωh , ∀vh ∈ Vh,
〈µh, uh〉n = 〈µh, g〉n, ∀µh ∈ Qh,

where (·, ·)Ωh is the inner product of L2(Ωh), 〈·, ·〉n is some quadrature rule
for approximating 〈·, ·〉, and Ih is some finite element interpolation operator
(we refer to Section 2.2 for the precise definitions). We remark that while
the method of Lagrangian multiplier is one of the standard ways in enforc-
ing Dirichlet boundary condition on smooth domains, it is essential here
for solving the problem with Dirichlet observational boundary data even
when the domain Ω is a polygon. One can also combine the techniques de-
veloped in this chapter with other weak formulations in [104] to deal with
the observational Dirichlet boundary condition.

Our analysis in Section 2.3 shows that

E
[
‖u− uh ◦ Φ−1

h ‖L2(Ω)

]
≤ Ch2| lnh|∆(u, f, g0) + C| lnh|(σn−1/2), (2.4)

where ∆(u, f, g0) = ‖u‖H2(Ω) + ‖f‖H2(Ω) + ‖g0‖H2(Γ) and Φh : Ωh → Ω
is the Lenoir homeomorphism defined in Section 2.3 . This error estimate
suggests that in order to achieve the optimal convergence, one should take
the number of sampling points satisfying σn−1/2 ≤ Ch2 to compute the so-
lution over a finite element mesh of the mesh size h. For problems having
Neumann or Robin boundary conditions, the same method of the analy-
sis in this chapter yields this relation should be changed to σn−1/2 ≤ Ch.
This suggests the importance of appropriate balance between the number
of measurements and the finite element mesh sizes for solving PDEs with
random observational data.

If the random variables ei, 1 ≤ i ≤ n, are also sub-Gaussian, we prove
by resorting to the theory of empirical processes that for any z > 0,

P
(
‖u− uh ◦ Φ−1

h ‖L2(Ω) ≥
[
h2| lnh|∆(u, f, g0) + | lnh|(σn−1/2)

]
z
)
≤ 2e−Cz

2
.

This implies that the probability of the random error ‖u−uh‖L2(Ω) violating
the error estimate in (2.4) decays exponentially.
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The layout of the chapter is as follows. In Section 2.2 we introduce
our finite element formulation and derive an error estimate based on the
Babuška-Brezzi theory. In Section 2.3 we study the random finite element
error in terms of the expectation. In Section 2.4 we show the stochastic con-
vergence of our method when the random noise is sub-Gaussion. In Section
2.5 we report some numerical examples to confirm our theoretical analysis.

2.2 The finite element method

We start by introducing the finite element meshes. LetMh be a mesh over
Ω consisting of curved triangles. We assume that each elementK ∈Mh has
at most one curved edge and the edge of the elementK is curved only when
its two vertices all lie on the boundary Γ. For anyK ∈Mh, we denote K̃ the
straight triangle which has the same vertices as K. We set Ωh = ∪K∈Mh

K̃
and assume that the mesh M̃h = {K̃ : K ∈ Mh} over Ωh is shape regular
and quasi-uniform:

hK̃ ≤ CρK̃ , ∀K ∈Mh, hK̃ ≤ ChK̃′ , ∀K,K
′ ∈Mh, (2.1)

where hK̃ and ρK̃ are the diameter of K̃ and the diameter of the biggest
circle inscribed in K̃. The finite element space for the field variable is then
defined as

Vh = {vh ∈ C(Ω̄h) : vh|K̃ ∈ P1(K̃), ∀K̃ ∈ M̃h},

where P1(K̃) is the set of the linear polynomials on K̃. As usual, we demote
h = maxK̃∈M̃h

hK̃ .
Let Eh = {K ∩ Γ : K ∈ Mh} be the mesh of Γ which is induced from

Mh. We assume that each element E ∈ Eh is the image of the reference
element Ê = [0, 1] under a smooth mapping FE . Since the boundary Γ is
smooth, the argument in [21, Theorem 4.3.3] implies that if the diameter of
the element hE is sufficiently small,

‖D̂FE‖L∞(Ê) ≤ ChE , ‖DTF
−1
E ‖L∞(E) ≤ Ch−1

E , ∀E ∈ Eh, (2.2)

where D̂ is the derivative in Ê andDT is the tangential derivative on Γ. It is
then obvious that there are constants C1, C2 independent of the meshMh

such that C1h ≤ hE ≤ C2h, ∀E ∈ Eh. We use the following finite element
space for the Lagrangian multiplier [104]:

Qh = {µh ∈ C(Γ) : µh|E = µ̂h ◦ F−1
E for some µ̂h ∈ P1(Ê), ∀E ∈ Eh},(2.3)

where P1(Ê) is the set of linear polynomials over Ê.
We assume that the measurement locations T are uniformly distributed

over Γ in the sense that [111] there exists a constant B > 0 such that smax
smin
≤

B, where

smax = sup
x∈Γ

inf
1≤i≤n

s(x, xi), smin = inf
1≤i 6=j≤n

s(xi, xj).

Here s(x, y) is the arc length between x, y ∈ Γ. It is easy to see that there
exist constants B1, B2 such that B1n

−1 ≤ smax ≤ Bsmin ≤ B2n
−1.
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We introduce the empirical inner product between the data and any
function v ∈ C(Γ) as 〈g, v〉n =

∑n
i=1 αigiv(xi). We also write 〈u, v〉n =∑n

i=1 αiu(xi)v(xi) for any u, v ∈ C(Γ) and the empirical norm ‖u‖n =
(
∑n

i=1 αiu
2(xi))

1/2 for any u ∈ C(Γ). We remark that the empirical norm
is in fact a semi-norm on C(Γ). The weights αi, i = 1, 2 · · · , n, are chosen
such that 〈u, v〉n is a good quadrature formula for the inner product 〈u, v〉
that we describe now.

Let TE = T∩E be the measurement points inE ∈ Eh. Since the measure-
ment locations are uniformly distributed, nE = #TE ∼ nhE . We further as-
sume that tj,E = F−1

E (xj), j = 1, 2 · · · , nE , are ordered as 0 = t0,E ≤ t1,E <
t2,E < · · · < tnE ,E ≤ tnE+1,E = 1. We remark that the vertices of the element
E need not be at the measurement locations. Denote ∆tj,E = tj,E − tj−1,E ,
j = 1, 2, · · · , nE + 1. We define the following quadrature formula

QTE (w) =

nE∑
j=1

ωj,Ew(tj,E), ∀w ∈ C(Ê), (2.4)

where ω1,E = ∆t1,E + 1
2∆t2,E , ωj,E = 1

2(∆tj,E + ∆tj+1,E), j = 2, · · · , nE −
1, ωnE ,E = 1

2∆tnE ,E + ∆tnE+1,E .

Lemma 2.2.1. There exists a constant C independent of TE such that∣∣∣∣∫ 1

0
w(t)dt−QTE (w)

∣∣∣∣ ≤ C

∫ 1

0
|w′′(t)|dt+

1

2
∆t1,E

∫ t1,E

t0,E

|w′(t)|dt

+
1

2
∆tnE+1,E

∫ tnE+1,E

tnE,E

|w′(t)|dt, ∀w ∈W 2,1(Ê).

Proof. We introduce the standard piecewise trapezoid quadrature rule

Q̃TE (w) =

nE+1∑
j=1

∆tj,E
w(tj−1,E) + w(tj,E)

2
, (2.5)

which is exact for linear functions. By the Bramble-Hilbert lemma we know
that there exists a constant C such that∣∣∣∣∫ 1

0
w(t)dt− Q̃TE (w)

∣∣∣∣ ≤ C ∫ 1

0
|w′′(t)|dt, ∀w ∈W 2,1(Ê).

Now the lemma follows since

QTE (w)− Q̃TE (w) (2.6)

=
1

2
∆t1,E(w(t1,E)− w(t0,E)) +

1

2
∆tnE+1,E(w(tnE ,E)− w(tnE+1,E)).

This completes the proof.

Now for any v ∈ C(Γ) we can define the following quadrature rule
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which defines the weights αj , j = 1, 2, · · · , n, in the empirical inner prod-
uct, ∫

Γ
vds =

∑
E∈Eh

∫ 1

0
v(FE(t))|F ′E(t)|dt (2.7)

≈
∑
E∈Eh

nE∑
j=1

ωj,E |F ′E(tj,E)|v(xj)

=
n∑
j=1

αjv(xj), αj =
∑

E∈Eh,xj∈TE

ωj,E |F ′E(tj,E)|.

Since ∆t1,E ≤ C∆t2,E ,∆tnE+1,E ≤ C∆tnE ,E , and ∆tj,E/∆tk,E ≤ C for any
j, k = 2, · · · , nE , because the points in T are uniformly distributed, we have
ωj,E ∼ 1/nE ∼ 1/(nhE). This implies by (2.2) that there exist constants
B3, B4 such that

B3n
−1 ≤ αj ≤ B4n

−1, j = 1, 2, · · · , n. (2.8)

Let yj , j = 1, 2, · · · , J , be the nodes of the mesh Mh on Γ. For any
vh ∈ Vh, we define Πhvh ∈ Qh such that Πhvh(yj) = vh(yj), j = 1, 2, · · · , J .
For any E ∈ Eh, let Ẽ be the segment connecting two vertices of E and
denote FẼ : Ê → Ẽ the affine mapping from the reference element Ê to Ẽ.
Then (Πhvh)(FE(t)) = vh(FẼ(t)), ∀t ∈ Ê.

Now we are in the position to define the finite element solution for the
problem (2.2)-(2.3). Given f ∈ H2(Ω) and the observation gi at xi of the
boundary value g0(xi), i = 1, 2, · · ·n, find (uh, λh) ∈ Vh ×Qh such that

(∇uh,∇vh)Ωh + 〈λh,Πhvh〉n = (Ihf, vh)Ωh , ∀vh ∈ Vh, (2.9)
〈µh,Πhuh〉n = 〈µh, g〉n, ∀µh ∈ Qh, (2.10)

where (·, ·)Ωh is the inner product of L2(Ωh) and Ih : C(Ω̄)→ Vh is the stan-
dard Lagrange interpolation operator. The interpolation operator Ih can be
replaced by the Clément interpolant [22] if the source f is less regular. We
remark that the computation in (2.9)-(2.10) does not involve any geometric
representation of the boundary Γ due to the introduction of the quadrature.

Following [88, 104] we introduce the following mesh-dependent Sobolev
norms

‖v‖21/2,h =
∑
E∈Eh

h−1
E ‖v‖

2
L2(E), ‖v‖

2
−1/2,h =

∑
E∈Eh

hE‖v‖2L2(E), ∀v ∈ L
2(Γ).

We use the following norms for functions vh ∈ Vh, µh ∈ Qh

‖vh‖Vh =
(
‖∇vh‖2L2(Ωh) + ‖Πhvh‖21/2,h

)1/2
, ‖µh‖Qh = ‖µh‖−1/2,h.

We consider now the well-posedness of the discrete problem (2.9)-(2.10)
in the framework of Babuška-Brezzi theory. We start from the following
simple lemma.
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Lemma 2.2.2. There exists a constant C such that

|〈1, v〉 − 〈1, v〉n| ≤ C
∑
E∈Eh

∫ 1

0

(
hE |v̂′′E |+ h2

E |v̂′E |+ h3
E |v̂E |

)
dt, ∀v ∈W 2,1(Γ),

where v̂E(t) = v|E(FE(t)) for any E ∈ Eh.

Proof. We first note that since Γ is smooth, we have |F ′′E(t)| ≤ Ch2
E , |F ′′′E (t)| ≤

Ch3
E for any E ∈ Eh. Since

|〈1, v〉 − 〈1, v〉n| ≤
∑
E∈Eh

∣∣∣∣∫
E
vds−QTE (v̂E(t)|F ′E(t)|)

∣∣∣∣ ,
the lemma follows easily from Lemma 2.2.1 by taking w = v̂E(t)|F ′E(t)| in
each element E ∈ Eh. We omit the details.

Lemma 2.2.3. Let Kh = {vh ∈ Vh : 〈Πhvh, µh〉n = 0, ∀µh ∈ Qh}. There exists
a constant α > 0 independent of h, n such that

(∇vh,∇vh)Ωh ≥ α‖vh‖
2
Vh
, ∀vh ∈ Kh.

Proof. For simplicity we write ṽh = Πhvh ∈ Qh for any vh ∈ Vh. Then
〈ṽh, ṽh〉n = 0 for any vh ∈ Kh. By Lemma 2.2.2 for v = ṽ2

h we obtain after
some simple computations

|〈ṽh, ṽh〉 − 〈ṽh, ṽh〉n| ≤ Ch(‖∇vh‖2L2(Ωh) + Ch1/2‖∇vh‖L2(Ωh)‖ṽh‖L2(Γ)).

Thus

‖ṽh‖21/2,h ≤ Ch
−1‖ṽh‖2L2(Γ) = Ch−1|〈ṽh, ṽh〉 − 〈ṽh, ṽh〉n|

≤ C‖∇vh‖2L2(Ωh) + Ch‖∇vh‖L2(Ωh)‖ṽh‖1/2,h.

This shows ‖∇vh‖2L2(Ωh) ≥ C‖ṽh‖
2
1/2,h and completes the proof.

Lemma 2.2.4. There exists constants C1, C2 > 0, h0 > 0 independent of h, n
such that for h ≤ h0,

C1‖µh‖L2(Γ) ≤ ‖µh‖n ≤ C2‖µh‖L2(Γ), ∀µh ∈ Qh.

Proof. Since µ̂h(t) = µh(FE(t)) is linear in Ê for any E ∈ Eh, we use Lemma
2.2.2 for v = µ2

h to obtain

|〈µh, µh〉 − 〈µh, µh〉n| ≤ C
∑
E∈Eh

∫
Ê
hE |µ̂h|2dt ≤ C‖µh‖2L2(Γ).

This shows the right inequality. Next by definition we have

〈µh, µh〉n =
∑
E∈Eh

QTE (µ̂2
h|F ′E |). (2.11)
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From (2.5) and (2.2) we know that for any E ∈ Eh,

Q̃TE (µ̂2
h|F ′E |) =

1

2

nE∑
j=0

∫ tj+1

tj

(
µ̂h(tj)

2|F ′E(tj)|+ µ̂2
h(tj+1)|F ′E(tj+1)|

)
dt

≥ ChE

nE∑
j=0

∫ tj+1

tj

(
µ̂h(tj)

2 + µ̂h(tj+1)2
)
dt

≥ ChE

nE∑
j=0

∫ tj+1

tj

|µ̂h(t)|2dt,

where in the last inequality we have used the fact that µ̂h is linear in Ê and
the Jensen inequality for convex functions. Thus |Q̃TE (µ̂2

h|F ′E |)| ≥ C‖µh‖2L2(E),∀E ∈
Eh. On the other hand, by (2.6) we have

|QTE (µ̂2
h|F ′E |)− Q̃TE (µ̂2

h|F ′E |)| ≤ ChE‖µh‖2L2(E).

Therefore, by (2.11), ‖µh‖n ≥ C‖µh‖L2(Γ) for sufficiently small h. This com-
pletes the proof.

We have the following inf-sup condition for the empirical inner product.

Lemma 2.2.5. There exists a constant h0, β > 0 independent of h, n such that for
h ≤ h0,

sup
vh∈Vh\{0}

〈Πhvh, µh〉n
‖vh‖Vh

≥ β‖µh‖Qh , ∀µh ∈ Qh.

Proof. The proof follows an idea in [87] where the inf-sup condition for the
bilinear form 〈vh, µh〉 is proved. Let yj , j = 1, 2, · · · , J , be the nodes of
the meshMh on Γ and denote ψj , j = 1, 2, · · · , J , the corresponding nodal
basis function of Vh.

For any µh ∈ Qh, we define vh(x) =
∑J

j=1 µh(yj)ψj(x) ∈ Vh. It is easy to
check that

‖vh‖2Vh ≤ C
J∑
j=1

|µh(yj)|2 ≤ Ch−1‖µh‖2L2(Γ). (2.12)

From the definition of Πhvh ∈ Qh we know that Πhvh = µh on Γ. Thus by
Lemma 2.2.4,

〈Πhvh, µh〉n = ‖µh‖2n ≥ C‖µh‖2L2(Γ).

This completes the proof by using (2.12).

By Lemma 2.2.4 we know that for any vh ∈ Vh, µh ∈ Qh

|〈Πhvh, µh〉n| ≤ C‖Πhvh‖L2(Γ)‖µh‖L2(Γ) ≤ C‖vh‖Vh‖µh‖Qh .

Now by the standard Babuška-Brezzi theory (cf., e.g., [16, Proposition 5.5.4])
we obtain the following theorem.

Theorem 2.2.1. There exists a constant h0 > 0 independent of h, n such that for
any h ≤ h0, the discrete problem (2.9)-(2.10) has a unique solution (uh, λh) ∈
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Vh ×Qh. Moreover, for any (uI , λI) ∈ Vh ×Qh, we have

‖uh − uI‖Vh + ‖λh − λI‖Qh ≤ C
3∑
i=1

Mih,

where the errors M1h,M2h,M3h are defined by

M1h = sup
vh∈Vh\{0}

|(∇uI ,∇vh)Ωh + 〈λI ,Πhvh〉n − (Ihf, vh)Ωh |
‖vh‖Vh

,

M2h = sup
µh∈Qh\{0}

|〈µh,ΠhuI − g0〉n|
‖µh‖Qh

, M3h = sup
µh∈Qh\{0}

|〈µh, e〉n|
‖µh‖Qh

.

2.3 Convergence of the finite element method

We will use the Lenoir homeomorphism Φh : Ωh → Ω [70]. The map-
ping Φh is defined elementwise: for any K̃ ∈ M̃h, Φh|K̃ = ΨK is a C2-
diffeomorphism from K̃ to K. If no edge of K belongs to ∂Ωh, ΨK = I , the
identity. If one edge Ẽ of K̃ lies on ∂Ωh which corresponds to the curved
edge E of K ∈Mh, ΨK maps Ẽ onto E and ΨK = I , the identity, along the
other two edges of K̃. We need the following properties of ΨK from [70] in
the following lemma.

Lemma 2.3.1. The following assertions are valid for any K̃ ∈ M̃h and K ∈Mh.
1◦ The mapping ΨK : K̃ → K satisfies the following estimates

‖Ds(ΨK − I)‖L∞(K̃) ≤ Ch
2−s, ∀s ≤ 2, sup

x∈K̃
|J(ΨK)(x)− 1| ≤ Ch,

where J(ΨK) denotes the modulus of the Jacobi determinant of ΨK .
2◦ The mapping Ψ−1

K : K → K̃ satisfies

‖Ds(Ψ−1
K − I)‖L∞(K) ≤ Ch2−s, ∀s ≤ 2, sup

x∈K
|J(Ψ−1

K )(x)− 1| ≤ Ch.

Let rh : L1(Ωh) → Vh be the Clément interplant [21] which enjoys the
following properties

|v − rhv|Hj(K̃) ≤ Ch
m−j |v|Hm(∆K̃), ∀K̃ ∈ M̃h, 0 ≤ j ≤ m,m = 1, 2, (2.1)

|v − rhv|Hj(e) ≤ Chm−j−1/2|v|Hm(∆e), ∀e ∈ Ẽh, 0 ≤ j < m,m = 1, 2, (2.2)

where Ẽh is the set of all sides of the mesh M̃h, and for any set A ⊂ Ωh, ∆A

is the union of the elements surrounding A. We remark that (2.1) is proved
in [21] and (2.2) is the consequence of (2.1) and the following scaled trace
inequality

|v|L2(e) ≤ Ch−1/2‖v‖L2(∆e) + Ch1/2‖∇v‖L2(∆e), ∀v ∈ H
1(Ωh).

We will assume in this section that the solution u ∈ H2(Ω) and thus λ ∈
H1/2(Γ). By the trace theorem, there exists a function λ̃ ∈ H1(Ω) such that
λ̃ = λ on Γ and ‖λ̃‖H1(Ω) ≤ C‖λ‖H1/2(Γ). Now we define the following
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interpolation operator Rh : L2(Ω)→ L2(Ω)

Rhv = [rh(v ◦ Φh)] ◦ Φ−1
h , ∀v ∈ L2(Ω).

We notice that similar interpolation functions are used in [70] where the
Clément interpolation operator is replaced by the Lagrangian interpolation
operator. The following theorem can be easily proved by using Lemma
2.3.1 and (2.1)-(2.2).

Lemma 2.3.2. For any v ∈ H2(Ω), we have ‖v−Rhv‖Hj(Ω) ≤ Chm−j‖v‖Hm(Ω),
‖v −Rhv‖Hj(Γ) ≤ Chm−j−1/2‖v‖Hm(Ω), 0 ≤ j ≤ m− 1,m = 1, 2.

For any vh ∈ Vh, we denote v̌h = vh ◦ Φ−1
h which is a function defined

in Ω. Let Ω∗ = ∪K∈M∗hK, whereM∗h is the set of all elements having one
curved edge. Obviously, |Ω∗| ≤ Ch. By definition Φh = ΨK is identity for
K ∈ Mh\M∗h. Then it is easy to check by using Lemma 2.3.1 that (cf. [70,
Lemma 8]) for any vh, wh ∈ Vh,

|(∇vh,∇wh)Ωh − (∇v̌h,∇w̌h)| ≤ Ch‖v̌h‖H1(Ω∗)‖w̌h‖H1(Ω∗). (2.3)

Now by the Poincáre inequality, it is easy to see that ‖v‖L2(Ω) ≤ C‖∇v‖L2(Ω)+
C‖v‖1/2,h,∀v ∈ H1(Ω). Thus by (2.3)

‖v̌h‖H1(Ω) ≤ ‖∇v̌h‖L2(Ω) + C‖v̌h‖1/2,h ≤ C‖vh‖Vh + Ch1/2‖v̌h‖H1(Ω),

which implies, for sufficiently small h,

‖v̌h‖H1(Ω) ≤ C‖vh‖Vh , ∀vh ∈ Vh. (2.4)

Lemma 2.3.3. Let (u, λ) ∈ H2(Ω) ×H1/2(Γ) be the solution of (2.2)-(2.3). We
have

‖u− uh ◦ Φ−1
h ‖H1(Ω) + ‖λ− λh‖−1/2,h ≤ Ch‖u‖H2(Ω) +

3∑
i=1

Mih,

where Mih, i = 1, 2, 3, are defined in Theorem 2.2.1 with uI = rh(u ◦ Φh) ∈ Vh
and λI = Rhλ̃ ∈ Qh.

Proof. We first observe that by Lemma 2.3.2

‖λ− λI‖L2(Γ) ≤ Ch1/2‖λ̃‖H1(Ω) ≤ Ch1/2‖λ‖H1/2(Γ) ≤ Ch
1/2‖u‖H2(Ω).

Notice that ǔh = Rhu, we obtain by Lemma 2.3.2, (2.4), and Theorem 2.2.1
that

‖u− uh ◦ Φ−1
h ‖H1(Ω) + ‖λ− λh‖−1/2,h

≤ ‖u−Rhu‖H1(Ω) + ‖λ−Rhλ̃‖−1/2,h + C(‖uh − uI‖Vh + ‖λh − λI‖Qh)

≤ Ch‖u‖H2(Ω) + C

3∑
i=1

Mih.

This completes the proof.

Lemma 2.3.4. We have M1h ≤ Ch| lnh|1/2(‖u‖H2(Ω) + ‖f‖H2(Ω)).
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Proof. We first note that by (2.2) we have

(∇u,∇v̌h) + 〈λ, v̌h〉 = (f, v̌h), ∀vh ∈ Vh.

Now since Πhvh = v̌h on Γ, for any vh ∈ Vh, we have

|(∇uI ,∇vh)Ωh + 〈λI ,Πhvh〉n − (Ihf, vh)Ωh |
≤ |(f, v̌h)− (Ihf, vh)Ωh |+ |(∇uI ,∇vh)Ωh − (∇u,∇v̌h)|+ |〈λ, v̌h〉 − 〈λI , v̌h〉n|.

Since Φh = ΨK is identity for K ∈Mh\M∗h, we have

(f, v̌h)− (Ihf, vh)Ωh =
∑

K∈M∗h

∫
K̃

((f ◦ΨK)vhJ(ΨK)− Ih(f ◦ΨK)vh)dx,

which implies by using Lemma 2.3.1 that

|(f, v̌h)− (Ihf, vh)Ωh |
≤ Ch‖f‖L2(Ω∗)‖v̌h‖L2(Ω∗) + Ch2‖f‖H2(Ω)‖vh‖L2(Ω).

Obviously, ‖f‖L2(Ω∗) ≤ Ch1/2‖f‖L∞(Ω) ≤ Ch1/2‖f‖H2(Ω). Moreover, by the
well-known embedding theorem [91]

‖v‖Lp(Ω) ≤ Cp1/2‖v‖H1(Ω), ∀v ∈ H1(Ω), ∀p > 2,

we have

‖v‖L2(Ω∗) ≤ C|Ω∗|
1
2
− 1
p p1/2‖v‖H1(Ω) ≤ Ch

1
2
− 1
p p1/2‖v‖H1(Ω).

By taking p = ln(h−1) we obtain then

‖v‖L2(Ω∗) ≤ Ch1/2| lnh|1/2‖v‖H1(Ω), ∀v ∈ H1(Ω). (2.5)

This implies

|(f, v̌h)− (Ihf, vh)Ωh | ≤ Ch
2| lnh|1/2‖f‖H2(Ω)‖vh‖Vh . (2.6)

By Lemma 2.3.2, (2.3) and (2.4) we have

|(∇uI ,∇vh)Ωh − (∇u,∇v̌h)| (2.7)
≤ |(∇uI ,∇vh)Ωh − (∇ǔI ,∇v̌h)|+ |(∇(u− ǔI),∇v̌h)|
≤ Ch‖u‖H2(Ω)‖vh‖Vh .

By using Lemma 2.2.2 one can prove

|〈v̌h, w̌h〉n − 〈v̌h, w̌h〉| ≤ Ch‖vh‖H1(Ωh)‖wh‖H1(Ωh), ∀vh, wh ∈ Vh. (2.8)

Thus

|〈λI , v̌h〉n − 〈λI , v̌h〉| ≤ Ch‖rh(λ̃ ◦ Φh)‖H1(Ωh)‖vh‖H1(Ωh)

≤ Ch‖u‖H2(Ω)‖vh‖Vh ,



2.3. Convergence of the finite element method 41

which implies by using Lemma 2.3.2 that

|〈λ, v̌h〉 − 〈λI , v̌h〉n| ≤ Ch‖u‖H2(Ω)‖vh‖Vh . (2.9)

The estimate for M1h now follows from (2.6), (2.7) and (2.9).

Lemma 2.3.5. We have M2h ≤ Ch‖u‖H2(Ω).

Proof. We first we observe that the argument in the proof of Lemma 2.2.1
implies that∣∣∣∣∫ 1

0
w(t)dt−QTE (w)

∣∣∣∣ ≤ C‖w′‖L2(Ê), ∀w ∈ H
1(Ê).

For any v ∈ H1(Γ), by taking w(t) = v̂E(t)|F ′E(t)| in each element E ∈ Eh,
where v̂E(t) = v|E(FE(t)), we know that

|〈1, v〉 − 〈1, v〉n| ≤ C
∑
E∈Eh

(hE‖v̂′E‖L2(Ê) + h2
E‖v̂E‖L2(Ê)).

We use the above inequality for v = µhϕ, where ϕ = u− ǔI in Γ, to obtain

|〈µh, ϕ〉 − 〈µh, ϕ〉n| ≤ C
∑
E∈Eh

‖µ̂h‖L2(Ê)(hE‖ϕ̂E‖L2(Ê) + h2
E‖ϕ̂′E‖L2(Ê)),

where we have used the fact ‖µ̂h‖W 1,∞(Ê) ≤ C‖µ̂h‖L2(Ê) since µ̂h ∈ P1(Ê).
This implies by using Lemma 2.3.2 again

|〈µh, u− ǔI〉 − 〈µh, u− ǔI〉n|
≤ C‖µh‖L2(Γ)(‖u−Rhu‖L2(Γ) + h|u−Rhu|H1(Γ))

≤ Ch3/2‖u‖H2(Ω)‖µh‖L2(Γ).

This completes the proof.

The following theorem shows the convergence of the finite element so-
lution in the sense of expectation.

Theorem 2.3.1. We have

E
[
‖u− uh ◦ Φ−1

h ‖H1(Ω) + h1/2‖λ− λh‖L2(Γ)

]
≤ Ch| lnh|1/2(‖u‖H2(Ω) + ‖f‖H2(Ω)) + Ch−1(σn−1/2).

Proof. By Lemmas 2.3.3-2.3.5 we are left to estimate E[M3h]. We first observe
that

E

[
sup

µh∈Qh\{0}

|〈µh, e〉n|2

‖µh‖2Qh

]
≤ Ch−1E

[
sup

µh∈Qh\{0}

|〈µh, e〉n|2

‖µh‖2L2(Γ)

]
. (2.10)

Let Nh be the dimension of Qh and let {ψj}Nhj=1 be the orthonormal basis
of Qh in the L2(Γ) inner product. Then for any µh =

∑Nh
j=1(µh, ψj)ψj , by



42 Chapter 2. Elliptic problems with observational boundary data

Cauchy-Schwarz inequality and (2.8)

|〈µh, e〉n|2 ≤
C

n2
‖µh‖2L2(Γ)

Nh∑
j=1

(
n∑
i=1

eiψj(xi)

)2

.

Since ei, i = 1, 2, · · · , n, are independent and identically random variables,
we have

E

[
sup

µh∈Qh\{0}

|〈µh, e〉n|2

‖µh‖2L2(Γ)

]
≤ Cσ

2

n2

Nh∑
j=1

n∑
i=1

ψj(xi)
2.

Since the number of measurement points in E, #TE ≤ CnhE and Nh ≤
Ch−1, we obtain by using the inverse estimate that

Nh∑
j=1

n∑
i=1

ψj(xi)
2 ≤ Cnh

Nh∑
j=1

∑
E∈Eh

‖ψj‖2L∞(E) ≤ CNhn ≤ Cnh−1.

Therefore

E

[
sup

µh∈Qh\{0}

|〈µh, e〉n|2

‖µh‖2L2(Γ)

]
≤ Ch−1(σ2n−1). (2.11)

This, together with (2.10), yields

E

[
sup

µh∈Qh\{0}

|〈µh, e〉n|2

‖µh‖2Qh

]
≤ Ch−2(σ2n−1),

which completes the proof.

The following lemma will be useful in deriving the improved estimate
for ‖u− uh ◦ Φ−1

h ‖L2(Ω).

Lemma 2.3.6. We have

E

[
sup

µh∈Qh\{0}

|〈e, µh〉n|
‖µh‖H1/2(Γ)

]
≤ C| lnh|(σn−1/2).

Proof. Let h0 = h ≤ 1 and hi = h(p+1−i)/(p+1) for 1 ≤ i ≤ p, where p ≥ 1 is
an integer to be determined later. Obviously hi ≤ hi+1, 0 ≤ i ≤ p. Let Ehi
be a uniform mesh over the boundary Γ and Qhi the finite element space
defined in (2.3) over the mesh Qhi . Let {ykhi}

Nhi
k=1 be the nodes of the mesh

Ehi , i = 0, · · · , p. We introduce the following Clément-type interpolation
operator πhi : L1(Γ)→ Qhi such that for any v ∈ L1(Γ),

(πhiv)(ykhi) =
1

|S(ykhi)|

∫
S(ykhi

)
v(x)ds(x), 1 ≤ k ≤ Nhi ,

where S(ykhi) is the union of the two elements sharing the common node
ykhi . It is easy to show by scaling argument that

‖v − πhiv‖L2(Γ) ≤ hmi ‖v‖Hm(Γ), ∀v ∈ H1(Γ),m = 0, 1.
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Thus by the theory of real interpolation of Sobolev spaces, e.g., [17, Propo-
sition 12.1.5],

‖v − πhiv‖L2(Γ) ≤ Ch
1/2
i ‖v‖H1/2(Γ), ∀v ∈ H

1/2(Γ). (2.12)

Now we introduce the telescope sum

µh =

p−1∑
i=0

(µhi − µhi+1
) + µhp , ∀µh ∈ Qh = Qh0 , (2.13)

where µhi = πhiµh ∈ Qhi , 0 ≤ i ≤ p+ 1. By (2.12)

‖µhi − µhi+1
‖L2(Γ) ≤ Ch

1/2
i+1‖µh‖H1/2(Γ). (2.14)

Then the same argument in proving (2.11) implies

E

[
sup

µh∈Qh\{0}

|〈e, µhi − µhi+1
〉n|

‖µh‖H1/2(Γ)

]
≤ Ch1/2

i+1h
−1/2
i (σn−1/2),

E

[
sup

µh∈Qh\{0}

|〈e, µhp〉n|
‖µh‖H1/2(Γ)

]
≤ Ch−1/2

p (σn−1/2).

By (2.13) we then obtain

E

[
sup

µh∈Qh\{0}

|〈e, µh〉n|
‖µh‖H1/2(Γ)

]
≤ C(p+ 1)h

− 1
2(p+1) (σn−1/2).

This completes the proof by taking the integer p such that p < | lnh| ≤
p+ 1.

Theorem 2.3.2. We have

E
[
‖u− uh ◦ Φ−1

h ‖L2(Ω)

]
≤ Ch2| lnh|(‖u‖H2(Ω) + ‖f‖H2(Ω) + ‖g0‖H2(Γ)) + C| lnh|(σn−1/2).

Proof. Let (w, p) ∈ H1(Ω)×H−1/2(Γ) be the solution of the following prob-
lem

(∇w,∇v) + 〈p, v〉 = (u− ǔh, v), ∀v ∈ H1(Ω), (2.15)
〈µ,w〉 = 0, ∀µ ∈ H−1/2(Γ). (2.16)

By the regularity theory of elliptic equations, (w, p) ∈ H2(Ω) ×H1(Ω) and
satisfies

‖w‖H2(Ω) + ‖p‖H1(Ω) ≤ C‖u− ǔh‖L2(Ω). (2.17)

Let wI = Ih(w ◦ Φh) ∈ Vh be the Lagrange interpolation of w ∈ H2(Ω) and
pI = rh(p◦Φh) ∈ Vh be the Clément interpolation of p ∈ H1(Ω). By (2.16) we
know that w = 0 on Γ and consequently, wI = 0 on Γh, w̌I = wI ◦ Φ−1

h = 0
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on Γ. Now by using (2.2)-(2.3), (2.9)-(2.10) we obtain

‖u− ǔh‖2L2(Ω) (2.18)
= (∇(w − w̌I),∇(u− ǔh)) + 〈p− p̌I , u− ǔh〉
+ [(f, w̌I)− (Ihf, w̌I)Ωh ] + [(∇wI ,∇uh)Ωh − (∇w̌I ,∇ǔh)]

+ [〈p̌I , u− ǔh〉 − 〈p̌I , u− ǔh〉n]− 〈p̌I , e〉n
:= I + · · ·+ VI.

By Lemma 2.3.1 and (2.17) we have

|I|+ |II| ≤ Ch‖u− ǔh‖H1(Ω)‖u− ǔh‖L2(Ω). (2.19)

By (2.6) and (2.17)

|III| ≤ Ch2| lnh|1/2‖f‖H2(Ω)‖wI‖Vh (2.20)

≤ Ch2| lnh|1/2‖f‖H2(Ω)‖u− ǔh‖L2(Ω).

Since Φh|K = I for K ∈Mh\M∗h, by (2.3), Lemma 2.3.1 and (2.17) we have

|IV| ≤ Ch‖w̌I‖H1(Ω∗)‖ǔh‖H1(Ω∗).

Now by using (2.5), Lemma 2.3.1, and (2.17), we have

‖ǔh‖H1(Ω∗) ≤ ‖u− ǔh‖H1(Ω) + Ch1/2| lnh|1/2‖u‖H2(Ω),

‖w̌I‖H1(Ω∗) ≤ Ch‖u− ǔh‖L2(Ω) + Ch1/2| lnh|1/2‖u− ǔh‖L2(Ω).

This implies

|IV| ≤ C
[
h‖u− ǔh‖H1(Ω) + h2| lnh|‖u‖H2(Ω)

]
‖u− ǔ‖L2(Ω). (2.21)

To estimate the term V we first use the triangle inequality

|V| ≤ |〈p̌I , u− ǔI〉 − 〈p̌I , u− ǔI〉n|+ |〈p̌I , uI − ǔh〉 − 〈p̌I , ǔI − ǔh〉n|

By using Lemma 2.2.2 for v = p̌I(u− ǔI) one obtains easily

|〈p̌I , u− ǔI〉 − 〈p̌I , u− ǔI〉n| ≤ Ch2‖g0‖H2(Γ)‖p̌I‖L2(Γ)

≤ Ch2‖g0‖H2(Γ)‖u− ǔh‖L2(Ω),

where we have used the estimate ‖p̌I‖L2(Γ) ≤ C‖p‖H1(Ω) ≤ C‖u− ǔh‖L2(Ω).
By (2.8) and (2.17) we have

|〈p̌I , uI − ǔh〉 − 〈p̌I , ǔI − ǔh〉n| ≤ Ch‖pI‖H1(Ωh)‖uI − uh‖H1(Ωh)

≤ Ch‖uI − uh‖H1(Ωh)‖u− ǔh‖L2(Ω).

Thus

|V| ≤ Ch2(h−1‖u− ǔh‖H1(Ω) + ‖u‖H2(Ω) + ‖g0‖H2(Γ))‖u− ǔh‖L2(Ω).(2.22)
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By inserting (2.19)-(2.22) into (2.18) we finally obtain that

‖u− ǔh‖L2(Ω) ≤ Ch2| lnh|
[
‖u‖H2(Ω) + ‖f‖H2(Ω) + ‖g0‖H2(Γ)

]
(2.23)

+ Ch‖u− ǔh‖H1(Ω) + sup
µh∈Qh\{0}

|〈e, µh〉n|
‖µh‖H1/2(Γ)

.

The lemma now follows from Theorem 2.3.1 and Lemma 2.3.6.

2.4 Sub-Gaussian random errors

In this section, we will study the convergence of our finite element method
when the random errors added to the boundary data are sub-Gaussian. We
will use the theory of empirical processes [111, 112].

Definition 2.4.1. A random variable X is called sub-Gaussian with parameter σ
if

E[eλ(X−E[X])] ≤ eσ2λ2/2, ∀ λ ∈ R.

The following definition on the Orilicz ψ2-norm will be used in our anal-
ysis.

Definition 2.4.2. Let ψ2 = ex
2 − 1 and X be a random variable. The ψ2 norm of

X is defined as

‖X‖ψ2 = inf

{
C > 0 : E

[
ψ2

(
|X|
C

)]
≤ 1

}
.

It is known that [112, Lemma 2.2.1] if ‖X‖ψ2 ≤ K, then

P(|X| > z) ≤ 2 exp

(
− z2

K2

)
, ∀ z > 0. (2.1)

Inversely, if

P(|X| > z) ≤ C exp

(
− z2

K2

)
, ∀ z > 0, (2.2)

then ‖X‖ψ2 ≤
√

1 + CK.

Definition 2.4.3. Let (T, d) be a semi-metric space, a stochastic process {Xt : t ∈
T} is called a sub-Gaussian process with respect to the semi-metric d, if

P(|Xt −Xs| > z) ≤ 2 exp

(
−1

2

z2

d2(t, s)

)
, ∀ s, t ∈ T, z > 0.

For a semi-metric space (T, d), the covering number N(ε, T, d) is the
minimum number of ε-balls that covers T . A set is called ε-separated if the
distance of any two points in the set is strictly greater than ε. The packing
number D(ε, T, d) is the maximum number of ε-separated points in T . It is
easy to check that [112, P.98]

N(ε, T, d) ≤ D(ε, T, d) ≤ N(
ε

2
, T, d). (2.3)
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The following maximum inequality can be found in [112, Section 2.2.1].

Lemma 2.4.1. If {Xt : t ∈ T} is a separable sub-Gaussian process with respect to
the semi-metric d, then

‖ sup
s,t∈T

|Xt −Xs|‖ψ2 ≤ K
∫ diamT

0

√
D(ε, T, d) dε.

Here K > 0 is some constant.

The following lemma provides the estimate of the covering number for
finite dimensional subsets [32, Corollary 2.6].

Lemma 2.4.2. Let G be a finite dimensional subspace of L2(D) of dimension N >
0 and GR = {f ∈ G : ‖f‖L2(D) ≤ R}. Then

N(ε,GR, ‖ · ‖L2(D)) ≤ (1 + 4R/ε)N , ∀ε > 0.

Theorem 2.4.1. We have

‖ ‖u− uh ◦ Φ−1
h ‖H1(Ω) ‖ψ2 + h1/2‖ ‖λ− λh‖L2(Γ) ‖ψ2

≤ Ch| lnh|1/2(‖u‖H2(Ω) + ‖f‖H2(Ω)) + Ch−1(σh−1/2).

Proof. By Lemmas 2.3.3-2.3.5 we are left to estimate ‖M3h‖ψ2 . Let Fh =
{µh ∈ Qh : ‖µh‖L2(Γ) ≤ 1}, then

‖M3h‖ψ2 ≤ h−1/2‖ sup
µh∈Fh

〈|µh, e〉n|‖ψ2 . (2.4)

For any µh ∈ Fh, denote by En(µh) = 〈µh, e〉n. Then En(µh) − En(µ′h) =∑n
i=1 ciei, where ci = αi(µh − µ′h)(xi), i = 1, 2, · · · , n. For any λ > 0, since

αi ≤ B4n
−1 by (2.8),

E
[
eλ
∑n
i=1 ciei

]
≤ e

1
2
λ2σ2

∑n
i=1 c

2
i ≤ e

1
2
B4λ2σ2n−1‖µh−µ′h‖

2
n = e

1
2
σ2

1λ
2
,

where σ1 = B4σn
−1/2‖µh − µ′h‖n. Thus En(µh)− En(µ′h) is a sub-Gaussian

process with the parameter σ1. This implies by (2.1) that

P(|En(µh − µ′h)| > z) ≤ 2e−z
2/2σ2

1 , ∀z > 0.

Thus En(µh) is a sub-Gaussian random process with respect to the semi-
distance d(µh, µ

′
h) = ‖µh − µ′h‖∗n, where ‖µh‖∗n = B4σn

−1/2‖µh‖n.
By Lemma 2.2.4 we know that the diameter of Fh in terms of the semi-

distance d is bounded by 2C2B4(σn−1). By maximal inequality in Lemma
2.4.1 and (2.3) we have

‖ sup
µh∈Fh

|〈µh, e〉n|‖ψ2 ≤ K

∫ 2C2B4σn−1/2

0

√
logN(

ε

2
, Fh, ‖ · ‖∗n) dε

= K

∫ 2C2B4σn−1/2

0

√
logN(

ε

2B4σn−1/2
, Fh, ‖ · ‖n) dε.

By Lemma 2.2.4 and Lemma 2.4.2 we know that for any δ > 0,

N(δ, Fh, ‖ · ‖n) ≤ N(C−1
1 δ, Fh, ‖ · ‖L2(Γ)) ≤ (1 + 4C1/δ)

Nh ,
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where Nh is the dimension of Qh which is bounded by Ch−1. Therefore,

‖ sup
µh∈Fh

|〈µh, e〉n|‖ψ2 ≤ Ch−1/2

∫ 2C2B4σn−1/2

0

√
log

(
1 +

Cσn−1/2

ε

)
dε

≤ Ch−1/2(σn−1/2). (2.5)

This shows ‖M3h‖ψ2 ≤ Ch−1(σn−1/2) by (2.4).

By (2.2), Theorem 2.4.1 implies that the probability of the H1-finite ele-
ment error violating the convergence orderO(h| lnh|1/2(‖u‖H2(Ω)+‖f‖H2(Ω))+

h−1(σn−1/2)) decays exponentially.

Theorem 2.4.2. We have

‖ ‖u− uh ◦ Φ−1
h ‖L2(Ω) ‖ψ2

≤ Ch2| lnh|(‖u‖H2(Ω) + ‖f‖H2(Ω) + ‖g0‖H2(Γ)) + C| lnh|(σn−1/2).

Proof. Let Gh = {µh ∈ Qh : ‖µh‖H1/2(Γ) ≤ 1}. By (2.23) we are left to show

‖ sup
µh∈Gh

|〈µh, e〉n|‖ψ2 ≤ C| lnh|(σn−1/2). (2.6)

Again we use the telescope sum in (2.13) and obtain

‖ sup
µh∈Gh

|〈µh, e〉n|‖ψ2 (2.7)

≤
p−1∑
i=0

‖ sup
µh∈Gh

|〈µhi − µhi+1
, e〉n|‖ψ2 + ‖ sup

µh∈Gh
|〈µhp , e〉n|‖ψ2 .

By the same argument as the one in the proof of (2.5) and using (2.14) we
have

‖ sup
µh∈Gh

|〈µhi − µhi+1
, e〉n|‖ψ2 ≤ Ch

1/2
i+1(h

−1/2
i + h

−1/2
i+1 )(σn−1/2),

‖ sup
µh∈Ghp

|〈µh, e〉n|‖ψ2 ≤ Ch−1/2
p (σn−1/2).

Inserting the above estimates into (2.7) shows (2.6) by taking p such that
| lnh| < p ≤ | lnh|+ 1.

By (2.2), Theorem 2.4.2 implies that the probability of the L2-finite ele-
ment error violating the convergence orderO(h2| lnh|(‖u‖H2(Ω)+‖f‖H2(Ω)+

‖g0‖H2(Γ)) + | lnh|(σn−1/2)) decays exponentially.

2.5 Numerical examples

In this section, we show several numerical experiments to verify the the-
oretical analysis in this chapter. The analyses in Section 2.3 and Section
2.4 suggest that the optimal convergence rate can be achieved by taking
n = O(h−4). For the examples below, we take the exact solution u0 =
sin(5x+ 1) sin(5y + 1).
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(a) H1 convergence (b) L2 convergence

FIGURE 2.1: The log-log plot of the convergence rate on the
unit square.

n h H1 error α L2 error β

n = h−1 0.1000 8.8686 0.3978
0.0125 24.3951 0.4866 0.1394 -0.5043

n = h−2 0.1000 2.8101 0.1348
0.0125 2.7125 -0.0170 0.0167 -1.0037

n = h−3 0.1000 0.9637 0.0537
0.0125 0.3094 -0.5464 0.0017 -1.6649

n = h−4 0.1000 0.6325 0.0380
0.0125 0.0838 -0.9721 6.3816e-4 -1.9656

TABLE 2.1: The convergence rate α in the H1 norm and β in
the L2 norm on the unit square.

Example 2.5.1. We take Ω = (0, 1)× (0, 1). We construct the finite element mesh
by first dividing the domain into h−1×h−1 uniform rectangles and then connecting
the lower left and upper right angle. We set {xi}ni=1 being uniformly distributed
on Γ, and ei, i = 1, 2, · · · , n, being independent normal random variables with
variance σ = 2. We take different n = h−i, i = 1, 2, 3, 4. Figure 2.1 shows the
convergence rate of the error in the H1 and L2 norm for each choice of n. Table 2.1
show the convergence rate α in the H1 norm and the convergence rate β in the L2

norm.
We observe that the numerical results confirm our theoretical analysis. The op-

timal convergence rate is achieved when choosing n = h−4 while the other choices
do not achieve optimal convergence. For example, when n = h−2, the L2 error is
approximately O(h1) and no convergence for the H1 error.

Example 2.5.2. We take Ω to be the unit circle. The mesh is depicted in Figure
2.2. We set {xi}ni=1 being uniformly distributed on Γ, and let ei = ηi + αi, i =
1, 2, · · · , n, where ηi and αi are independent normal random variables with vari-
ance σ1 = 1 and σ2 = 10ei, i = 1, 2, · · · , n. We take different n = h−i,
i = 1, 2, 3, 4. Figure 2.3 shows the convergence rate of the error in the H1 and
L2 norm for each choice of n. Table 2.2 shows the convergence rate α in the H1
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FIGURE 2.2: The uniform mesh for the unit circle with mesh
size h = 0.1.

(a) H1 convergence (b) L2 convergence

FIGURE 2.3: The log-log plot of the convergence rate on the
unit circle.

norm and the convergence rate β in the L2 norm. Here again we observe the nu-
merical results confirm our theoretical analysis.
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n h H1 error α L2 error β

n = h−1 0.1000 46.5037 2.5872
0.0125 127.832 0.4863 0.9527 -0.4804

n = h−2 0.1000 13.1775 0.8668
0.0125 16.1040 0.0964 0.1133 -0.9787

n = h−3 0.1000 5.4157 0.2924
0.0125 1.7581 -0.5410 0.0113 -1.5665

n = h−4 0.1000 2.0009 0.0980
0.0125 0.2527 -0.9950 0.0016 -1.9790

TABLE 2.2: The convergence rate α in the H1 norm and β in
the L2 norm on the unit circle.
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Part II

Two imaging methods and
analysis of cell model for
electropermeabilization
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Chapter 3

The Linearized inverse
problem in multifrequency EIT

3.1 Introduction

In this chapter, we propose a linearized method to solve the multifrequency
EIT problem.

Electrical impedance tomography (EIT) is a diffusive imaging modal-
ity in which the conductivity distribution of the concerned object is recov-
ered from the electrode voltage measurements on the boundary, induced
by (multiple) known injected currents. The modality is safe, cheap and
portable, and has the potential to be an established clinical imaging method
in a multitude of applications [47]. However, the EIT inverse problem is
severely ill-posed, and up to now, the resulting image quality is rather mod-
est when compared with other modalities. This has motivated numerous
studies on EIT imaging techniques.

The static imaging, which aims at recovering the absolute conductiv-
ity values, has so far achieved only limited success in practice. This is at-
tributed to the fact that the electrode voltages are insensitive to localized
conductivity changes, and thus the reconstructions are very sensitive to in-
evitable data noise as well as modelling errors, e.g., the boundary shape
and electrode positions (and contact impedances). Hence, apart from ac-
curate data, a very accurate forward model is also required for the success
of static imaging, which is often difficult to obtain in practice. One promi-
nent idea is to use difference imaging, in the hope of cancelling out the
errors due to boundary shape, electrode and other systematic errors. One
traditional approach to overcome these issues is the time difference imag-
ing, where an image of the resulting conductivity change is produced by
inverting a linearized sensitivity model. A second approach is multifre-
quency electrical impedance tomography (mfEIT), also known as electrical
impedance tomography spectroscopy, and it has attracted some attention
in recent years.

In mfEIT, one exploits the frequency dependence of the conductivity
distribution. Experimentally, researchers have observed that many biolog-
ical tissues exhibit strong frequency dependence within certain frequency
ranges [31, 30, 69]. In mfEIT, the boundary voltage measurements are recorded
simultaneously, whilst varying the modulation frequency of the injected
current. The multifrequency approach is expected to be especially useful
for diagnostic imaging of physiological conditions such as acute stroke,
brain injury, and breast cancer, since patients are admitted into care after
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the onset of the pathology and a baseline recording of healthy tissue is not
available.

There have been several studies on frequency-difference imaging. Sev-
eral earlier pieces of works include [38, 94, 119]. For example, a multifre-
quency experimental design which provides up to 64 electrodes for imag-
ing the head was described in [119]. In these useful works, the simple fre-
quency difference (between two neighboring frequencies) was often em-
ployed. Seo et al. [96] proposed a weighted frequency difference imaging
technique, which is based on a suitable weighted voltage difference be-
tween any two sets of data. It was numerically shown that the approach
can accommodate geometrical errors, including imperfectly known bound-
ary. This approach can improve the reconstruction quality when the back-
ground is frequency dependent. Recently, Malone et al. [76] proposed a
nonlinear reconstruction scheme, which uses all multifrequency data di-
rectly to reconstruct the volume fraction distribution of the tissues, and
validated the approach on phantom experimental data; see also [75] for a
recent probabilistic reconstruction-classification based technique. We also
refer to [60] for a related mathematical study.

In this work, we shall analyze mfEIT in the linearized regime, by lin-
earizing the forward model around the homogeneous background conduc-
tivity, as customarily adopted in practice [47, 2]. We shall discuss both the
mathematically convenient continuum model and the practically popular
complete electrode model. Our main contributions are as follows. First, we
systematically discuss mfEIT reconstruction in the following three differ-
ent scenarios, i.e. known spectral profiles, partially known spectral profiles
and unknown spectral profiles. This analysis generalizes the existing stud-
ies, especially [96]. Second, we provide a rigorous justification of mfEIT for
handling geometrical errors. Third, we present a novel group sparse recon-
struction algorithm of iterative shrinkage type, which is easy to implement
and converges fast. The extensive numerical experiments fully confirm our
discussions.

The rest of the chapter is organized as follows. In Section 3.2, we math-
ematically formulate mfEIT using a continuum model, and analyze three
important scenarios, depending on the knowledge of the spectral profiles.
Then, in Section 3.3, we illustrate the potential of mfEIT in handling the
modelling error due to an imperfectly known boundary shape. These anal-
yses are then extended to the more realistic complete electrode model in
Section 3.4. In Section 3.5, we present a novel group sparse reconstruc-
tion algorithm. Last, in Section 3.6, extensive numerical experiments are
presented to illustrate the approach both with a known and with an imper-
fectly known boundary.

3.2 The Continuum Model

In this section, we mathematically formulate multifrequency electrical impedance
tomography (mfEIT) in the continuum model. The extensions to an im-
perfectly known boundary and the complete electrode model will be de-
scribed in Sections 3.3 and 3.4 below. Let Ω be an open bounded domain
in Rd (d = 2, 3), occupied by the object, with a smooth boundary ∂Ω. Then
the mfEIT forward problem reads: given any input flux f ∈ L2(∂Ω) with
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∫
∂Ω fds = 0 and the frequency-dependent conductivity distribution σ(x, ω),

find u(x, ω) such that
−∇ · (σ(x, ω)∇u(x, ω)) = 0 in Ω,

σ(x, ω)
∂u

∂ν
= f(x) on ∂Ω,∫

∂Ω
u(x, ω)ds = 0,

(3.1)

where ω is the frequency,∇ denotes the gradient with respect to the spatial
variable x, and ν is the unit outward normal direction to the boundary ∂Ω.
The weak formulation of problem (3.1) is given by: find u = u(x, ω) ∈
H1(Ω), with the grounding condition

∫
∂Ω u(x, ω)ds = 0, such that∫

Ω
σ∇u · ∇vdx =

∫
∂Ω
fvds, v ∈ H1(Ω).

Throughout, we assume that the frequency-dependent conductivity dis-
tribution σ(x, ω) takes the following separable form:

σ(x, ω) =
K∑
k=0

σk(x)sk(ω), (3.2)

where K + 1 is the number of spectral profiles, and {sk(ω)}Kk=0 are a col-
lection of (possibly only partially known) material spectra, often referred
to as endmembers, and {δσk(x)}Kk=0 are scalar functions representing the
corresponding proportions, also known as abundances, following the ter-
minology in the hyperspectral unmixing literature [59]. Further, we shall
assume

σ0(x) = 1 + δσ0(x),

σk(x) = δσk(x), k = 1, . . . ,K,

where the δσks are small (in suitable Lp(Ω) norms) so that a linearized
model is valid. The δσks, including the background δσ0, are all unknown
and represent the small inclusions/anomalies in the object Ω. We assume
that they have compact spatial supports in the domain Ω, and are disjoint
from each other. We also assume that the background spectral profile s0(ω)
is known.

In order to gain sufficient information about the conductivity distribu-
tion σ(x, ω), we apply M linearly independent input currents {fn}Mn=1 ⊂
L2(∂Ω), with the grounding condition

∫
∂Ω fnds = 0, to the boundary ∂Ω.

Let {un ≡ un(x, ω)}Mn=1 ⊂ H1(Ω) be the corresponding solutions to (3.1),
i.e., ∫

Ω
σ∇un · ∇vdx =

∫
∂Ω
fnvds, v ∈ H1(Ω). (3.3)

Then the mfEIT inverse problem is to recover the abundances {δσk}Kk=0

and/or other quantities of interest from noisy measurements of the elec-
trode voltage {un(x, ω)}Mn=1 on the boundary ∂Ω at a number of modulating
frequencies {ωq}Qq=1.

Next we derive the linearized model for the inverse problem. The lin-
earized model is customarily employed in EIT applications due to its com-
putational convenience [47, 2]. In this work, we adopt a linearized model
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based on an integral representation. Let vm ∈ H1(Ω) be the potential cor-
responding to the unperturbed conductivity distribution σ0(x, ω) ≡ s0(ω)
with the input current fm, namely∫

Ω
σ0∇vm · ∇vdx =

∫
∂Ω
fmvds, v ∈ H1(Ω). (3.4)

We observe that vm = v∗m/s0(ω), where v∗m is the solution of (3.4) corre-
sponding to the case s0 ≡ 1. In other words, the dependence of vm on the
frequency ω is explicit. By taking v = vm in (3.3) and v = un in (3.4), and
subtracting the two identities, we obtain

K∑
k=0

sk(ω)

∫
Ω
δσk∇un · ∇vmdx =

∫
∂Ω

(fnvm − fmun)ds.

Hence, under the approximation ∇un(x, ω) ≈ ∇vn(x, ω) in the domain Ω
(valid in the linear regime), and using the identity vm = v∗m/s0(ω), we arrive
at the following linearized model

K∑
k=0

sk(ω)

∫
Ω
δσk∇v∗n · ∇v∗mdx = s0(ω)2

∫
∂Ω

(fnvm − fmun)ds. (3.5)

Note that the right hand side of this identity is completely known: un is
the measured electrode voltage data (and thus depends on the frequency
ω), and vm can be computed (using the reference conductivity σ0(x, ω) ≡
s0(ω)), and thus it is known upon simple computation. Next, we triangu-
late the domain Ω into a shape regular quasi-uniform mesh of simplicial
elements {Ωl}Ll=1 such that Ω = ∪Ll=1Ωl, and consider a piecewise constant
approximation of the inclusions δσks: for k = 0, . . . ,K,

δσk(x) ≈
L∑
l=1

(δσk)lχΩl(x),

where χΩl is the characteristic function of the lth element Ωl, and (δσk)l de-
notes the value of the kth abundance δσk in the lth element Ωl. Upon substi-
tuting the approximation into (3.5), we have the following finite-dimensional
linear inverse problem

K∑
k=0

sk(ω)

L∑
l=1

(δσk)l

∫
Ωl

∇v∗n · ∇v∗mdx = s0(ω)2

∫
∂Ω

(fnvm − fmun)ds.

Last, we introduce the sensitivity matrix M and the data vector X . We
use a single index j = 1, . . . , J with J = M2 for the index pair (m,n) with
j = M(m− 1) + n, and introduce the sensitivity matrix M = [Mjl] ∈ RJ×L
with its entries Mjl given by

Mjl =

∫
Ωl

∇v∗n · ∇v∗mdx (j ↔ (m,n)),
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which is independent of the frequency ω. Likewise, we introduce a data
vector X(ω) ∈ RJ with its jth entry Xj(ω) given by

Xj(ω) = s0(ω)2

∫
∂Ω

(fnvm(ω)− fmun(ω))ds (j ↔ (m,n)).

Upon writing the vectors Ak = (δσk)l ∈ RL, k = 0, . . . ,K, we obtain the
following linear system (parameterized by the frequency ω)

M
K∑
k=0

sk(ω)Ak = X(ω). (3.6)

In the mfEIT inverse problem, the abundance vectors {Ak}Kk=0 are of pri-
mary interest and have to be estimated from the frequency dependent data
X(ω), and occasionally the spectral profiles {sk(ω)}Kk=γ1 are also of interest.
(Recall that the background spectral profile s0(ω) is always supposed to be
known.) Depending on the further a priori knowledge available about the
spectral profiles {sk(ω)}Kk=1, we distinguish the following three cases:

(a) All the spectral profiles {sk(ω)}Kk=0 are known.

(b) The spectral profiles {sk(ω)}Kk=1 may not be fully known, but their
frequency dependence differs substantially.

(c) The spectral profiles are only partially known, and we aim at a partial
recovery of the abundances.

These three cases are of different degree of challenge, and we shall discuss
them separately below.

3.2.1 Case (a): Known Spectral Profiles

First we consider the case when the spectral profiles {sk(ω)}Kk=0 are all
known. In some applications, this does not represent a restriction, since
the spectral profiles of many materials can actually be measured accurately
(see e.g. [29] for the electrical conductivity of tissues at frequencies below
1 MHz). Suppose that we can measure the boundary voltage u(x, ω) at Q
distinct frequencies {ωq}Qq=1. Then by writing S = (Skq) ∈ R(K+1)×Q, with
Skq = sk(ωq), we get from (3.6) the following matrix equation

MAS = X, (3.7)

where the matrix X = [X(ω1) . . . X(ωQ)] ∈ RJ×Q. In equation (3.7), the
sensitivity matrix M can be precomputed, and the spectral profile matrix
S and data X are known: Only the abundance matrix A = [A0 . . . AK ] ∈
RL×(K+1) is unknown. It is natural to assume that a sufficiently large num-
ber of frequencies are taken, so that the corresponding spectral profile ma-
trix S is incoherent in the sense that Q ≥ K + 1 and rank(S) = K + 1 (and
presumably S is also well-conditioned). Then the matrix S admits a right
inverse S−1. By letting Y = XS−1 we obtain

MA = Y.
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These are K + 1 decoupled (and usually undetermined) linear system. By
letting Y = [Y0 . . . YK ] ∈ RJ×(K+1), we have K + 1 independent (finite-
dimensional) linear inverse problems

MAk = Yk, k = 0, . . . ,K, (3.8)

where Ak represents the kth abundance. Here each linear system deter-
mines one and only one abundance Ak. The stable and accurate numerical
solution of these ill-conditioned linear systems by suitable regularization
techniques will be discussed in detail in Section 3.5 below.

The condition rank(S) = K + 1 on the matrix S is necessary and suffi-
cient for the full decoupling of the abundances, and the well-conditioning
of S ensures a stable decoupling procedure. It specifies the condition under
which the abundance unmixing is practically feasible, and also the proper
selection of the frequencies {ωq}Qq=1 such that rank(S) = K + 1. Note
that the condition rank(S) = K + 1 depends essentially on the indepen-
dence/incoherence of the continuous spectral profiles {sk(ω)}Kk=0 (or fre-
quency contrast). In the absence of this spectral incoherence, a fully de-
coupling is impossible. For example, consider the simple case of two end-
members, with s0(ω) = 1 + ω, s1(ω) = 2 + 2ω. Then no matter how many
frequencies one chooses, the spectral matrix S is always of rank one. Thus
it is impossible to separate the two abundances, and instead only a linear
combination can be obtained.

The right inverse Y = XS−1 can alternatively be viewed as a least-
squares procedure

min
Y ∈RJ×(K+1)

‖X − Y S‖F .

This formulation exhibits clearly that for a rank-deficient spectral matrix
S, the proposed approach yields the minimum-norm matrix Y compati-
ble with the data, and for an inconsistent S, it yields a best approxima-
tion via projection (even though the physical interpretation is less clear).
In addition, by the perturbation theory for least-squares problems [37], the
well-conditioning of the spectral matrix S implies that the procedure is also
stable with respect to small perturbations in the spectral profiles.

It is worth noting that this approach represents a natural generalization
of the weighted frequency difference EIT (fdEIT) method proposed in [96],
where only two abundances and two frequencies are considered (K = 1
and Q = 2).

Example 1. Consider the case with K = 1 and Q = 2, namely, two inclusions
and two frequencies. We write

X = [X(ω1) X(ω2)] and S =

[
s0(ω1) s0(ω2)
s1(ω1) s1(ω2)

]
.

Therefore, if S is invertible, we obtain

Y = XS−1 =
s0(ω1)

detS

[
s1(ω2)

s0(ω1)
X(ω1)− s1(ω1)

s0(ω1)
X(ω2) X(ω2)− s0(ω2)

s0(ω1)
X(ω1)

]
.

The second column of Y recovers exactly the weighted fdEIT method discussed in
[96]. Thus our method generalizes [96], as the recent work [56]. Our approach
is slightly more general since it directly incorporates the multifrequency data. The
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use of multiple frequencies is expected to improve the numerical stability, especially
when high correlation may occur between neighboring frequencies and possibly the
spectral profiles themselves are not precisely known. Further, the use of multiple
frequencies enables completely decoupling multiple inclusions, instead of only one
inclusion, which can be very useful in practice. It is also worth noting that in the
special case of constant background spectral profile s0(ω1) = s0(ω2), the approach
reduces to the usual frequency difference. This delineates the region of validity of
the usual frequency difference imaging for processing multifrequency data. We also
note that the invertibility of spectral file matrix S is equivalent to the fact that the
two rows of S are not collinear, i.e., the two frequency profiles are incoherent, and
there is frequency dependent conductivity contrast.

3.2.2 Case (b): Spectral Profiles with Substantially Different Fre-
quency Dependence

Next we consider the case when some of (or, possibly all) the spectral pro-
files {sk(ω)}Kk=1 are not known, but do not change rapidly with the fre-
quency ω, if compared to the remaining ones. Thus, instead of using the
data X(ω) directly, it is natural to differentiate the relation (3.6) with re-
spect to ω to eliminate the contributions from the abundances whose end-
members do not vary much with the frequency ω. This discriminating effect
is useful in practice. For example, it is known that the conductivity of the
malign tissues is more sensitive with respect to the frequency variation in
certain frequency ranges [106, 69], even though the conductivity of healthy
tissues in the background may exhibit fairly complex structure. The differ-
entiation procedure provides a valuable tool in such scenarios.

More precisely, let P ⊆ {0, 1, . . . ,K} be such that

d

dω
sp(ωq)�

d

dω
sk(ωq), p ∈ P, k ∈ {0, 1, . . . ,K} \ P. (3.9)

By differentiating (3.6) with respect to the frequency ω we obtain

M

K∑
k=0

Ak
d

dω
sk(ω) =

d

dω
X(ω).

In view of the assumption (3.9), this equality may be rewritten as

M
∑
p∈P

Ap
d

dω
sp(ω) ≈ d

dω
X(ω). (3.10)

In other words, the contributions from the remaining profiles are negligible,
provided that the abundances Ak are comparable in magnitude. Different
reconstruction schemes should be used depending on whether the spectral
profiles {sp(ω)}p∈P are known.

Case (b1): The Spectral Profiles {sp(ω)}p∈P are not Known

In the case when the spectral profiles {sp(ω)}p∈P are not known, the linear
system (3.10) cannot be simplified further. By solving this underdetermined
system, we can recover at most

∑
p∈P s

′
p(ω)Ap, namely a linear combination



60 Chapter 3. The Linearized inverse problem in multifrequency EIT

of the inclusions. Since the weights {s′p(ω)}p∈P are unknown, it is impos-
sible to separate the abundances. However, in the particular case, when
P = {p} (i.e., |P| = 1), the abundance δσp may be recovered up to an un-
known multiplicative constant, which gives the support information.

We illustrate the technique with an example.

Example 2. Consider the case K = 1, and two linear frequency profiles, i.e.,

s0(ω) = α0 + β0ω and s1(ω) = α1 + β1ω,

with β0 � β1. Then the differentiation imaging amounts to

β0MA0 + β1MA1 = X ′(ω).

If MA0 and MA1 are comparable, then β0 � β1 implies that the contribution
of β0MA0 to the data is negligible (in comparison with β1MA1). Hence upon
differentiation, the technique allows to recover the dominant component β1MA1,
which upon linear inversion yields β1A1, which in particular contains the support
information about the abundance A1, and also its magnitude up to a multiplicative
constant. Further, for known β1, it allows full recovery of the abundance A1.

Case (b2): The Spectral Profiles {sp(ω)}p∈P are Known

If the spectral profiles {sp(ω)}p∈P are known, it is possible to perform the
same analysis of Case (a) (in Section 3.2.1) to system (3.10). Taking mea-
surements at Q distinct frequencies ω1, . . . , ωQ, we have

M
∑
p∈P

Aps
′
p(ωq) ≈ X ′(ωq), q = 1, . . . , Q.

Then, by writing S̃ = (S̃pq) ∈ R|P|×Q, with S̃pq = s′p(ωq), we get

MAS̃ = X ′

where the matrix X ′ = [X ′(ω1) . . . X ′(ωQ)] ∈ RJ×Q. Then the inversion
step is completely analogous to that discussed in Section 3.2.1, provided
that the incoherence condition rank S̃ = |P| (as well as well-conditioning)
holds. All the inclusions Ap, p ∈ P , can be recovered.

Numerical Implementation

In the implementation, we take the forward difference between neighbor-
ing frequencies

M

K∑
k=0

Ak
sk(ωq+1)− sk(ωq)

ωq+1 − ωq
=
X(ωq+1)−X(ωq)

ωq+1 − ωq
. (3.11)

It approximates the first order derivative s′k(ωq) with the forward difference

d

dω
sk(ωq) ≈

sk(ωq+1)− sk(ωq)
ωq+1 − ωq

.
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If more than one neighboring frequencies are available, it is also possible to
use higher order difference formulas to get more accurate approximations
of the derivative s′k(ω), e.g., central difference scheme (on a nonuniform
frequency grid)

d

dω
sk(ωq) ≈

δω2
q−1(sk(ωq+1)− sk(ωq)) + δω2

q (sk(ωq)− sk(ωq−1))

δωqδωq−1(δωq + δωq−1)
,

where δωq = ωq+1 − ωq. In practice, these represent different ways to per-
form differentiation imaging. However, their robustness with respect to
noise in the data might differ due to the well-known ill-posed nature of
numerical differentiation [43]. In this work, we shall use the forward differ-
ence scheme (3.11).

3.2.3 Case (c): Partially Known Spectral Profiles, Partial Recovery
of the Abundances

In practice, it is also of interest to recover some information about the abun-
dances when the spectral profiles {sk(ω)} are only partially known. Unfor-
tunately, in general, this is infeasible. But, one can still obtain some infor-
mation under certain a priori knowledge. To discuss the situation, recall
the notation Yk = MAk, cf. (3.8). Then

Y0s0(ωq) + . . .+ YKsK(ωq) = X(ωq), q = 1, . . . , Q. (3.12)

Now suppose the frequency dependence of the spectral profiles {sk(ω)}Kk=0

are polynomial type, namely

sk(ω) =

N∑
n=0

αnkω
n.

Inserting this expression in the identity (3.12) yields

N∑
n=0

K∑
k=0

(αnkYk)ω
n = X(ω).

By taking a sufficiently large number of modulating frequencies {ωq}Qq=1,
and using the identity principle for polynomials, we can compute the quan-
tities

Bn :=
K∑
k=0

αnkYk, n = 0, . . . , N.

Note that adding more frequencies would not add more information about
Yk and αjk than {Bn}Nn=0. In other words, the quantities {Bn}Nn=0 repre-
sent the essential information content in the data {X(ωq)}Qq=1 about the un-
knowns {Yk}Kk=0 and {αnk : k = 0, . . . ,K, n = 0, . . . , N}. Depending on
K, N and the number of unknowns among the weights αnk of the spec-
tral profiles, some inclusions Yk can be reconstructed without knowing the
corresponding spectral profiles. In other situations, there may be more un-
knowns than the number of equations, and it may be infeasible to deter-
mine all of them.
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Instead of providing a general analysis of all possible cases, we present
two examples that explain the different situations that may appear.

Example 3. Consider the case K = 1. For every n we have B0 = α0
0Y0 + α0

1Y1

and Bn = αn0Y0 + αn1Y1, whence

Y1 = (α0
0α

n
1 − α0

1α
n
0 )−1(α0

0Bn − αn0B0).

Since the spectral profile s0 is always assumed to be known, so are the quantities
α0

0 and αn0 . Therefore, Y1 may be reconstructed up to a multiplicative constant c,
provided that α0

0α
n
1 − α0

1α
n
0 6= 0, without assuming any knowledge of the corre-

sponding spectral profile s1. Note that this nonzero condition simply represents
the incoherence of the spectral profiles s0 and s1. Finally, by solving the under-
determined system MA1 = cY1, the inclusion δσ1 can be reconstructed up to the
multiplicative constant c.

In addition, assuming a unique recovery of the linearized EIT inverse problem,
the knowledge of the quantityB0 allows to recover an unknown linear combination
of the abundances A0 and A1, and in particular the union of their supports. Since
the supports of A0 and A1 are assumed to be disjoint from each other, this piece of
information allows the support of the abundance A0 to be recovered, given that the
support of the abundance A1 has already been reconstructed.

Example 4. Note that if K = 2 and N = 1, we get only

α0
0Y0 + α0

1Y1 + α0
2Y2 = B0 and α1

0Y0 + α1
1Y1 + α1

2Y2 = B1

which is vastly insufficient to determine all the unknowns. However, a calculation
similar to the one presented in the previous example shows that Y2 can be deter-
mined up to a multiplicative constant if K = N = 2 and s1 is known, provided
that a certain nonzero condition is satisfied. Like before, by solving the under-
determined system MA2 = cY2, the inclusion δσ2 can be reconstructed up to a
multiplicative constant, in particular its support. Like before, assuming a unique
recovery with the linearized inverse problem, the union of the supports of δσ0 and
δσ1 may be determined.

With obvious modifications, the preceding discussion is also valid for
more general basis functions φn(ω) which form a unisolvent system on the
set of measured frequencies {ωq}Qq=1 [25, pp. 31–32].

3.3 Imperfectly Known Boundary

In this part, we illustrate the significant potentials of mfEIT for handling
modelling errors, as in the case of an imperfectly known boundary. The
analysis may be extended to other interesting scenarios, including imper-
fectly known contact impedances or injected currents. Here we shall dis-
cuss only the specific case of an imperfectly known boundary. This has
long been one of the main obstacles in some practical applications of the
EIT imaging [1, 63, 62]. It is known that the use of a slightly incorrect
boundary can lead to significant errors in the reconstruction. mfEIT was
proposed as one promising strategy to partially overcome the challenge in
[96], where its potential was also numerically demonstrated. Here we shall
present an analysis of the approach in the linearized regime which justifies
these numerical findings.
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We denote the true but unknown physical domain by Ω̃, and the compu-
tational domain by Ω, which is an approximation to Ω̃. Next we introduce a
forward map F : Ω̃ → Ω, x̃ → x, which is assumed to be a smooth orienta-
tion preserving map with a sufficiently smooth inverse map F−1 : Ω → Ω̃.
We denote the Jacobian of the map F by JF , and the Jacobian of F with
respect to the surface integral by JSF .

Suppose now that the function ũn(x̃, ω) satisfies problem (3.1) in the
true domain Ω̃ with a conductivity σ̃(x̃, ω) and input current f̃n on ∂Ω̃ with∫
∂Ω̃
f̃nds = 0, namely

−∇x̃ · (σ̃(x̃, ω)∇x̃ũn(x̃, ω)) = 0 in Ω̃,

σ̃(x̃, ω)
∂ũn(x̃, ω)

∂ν̃
= f̃n on ∂Ω̃,∫

∂Ω̃
ũn(x̃, ω)ds̃ = 0.

(3.13)

Here the frequency-dependent conductivity σ̃(x̃, ω) takes a separable form
(cf. (3.2))

σ̃(x̃, ω) =

K∑
k=0

sk(ω)σ̃k(x̃), (3.14)

with σ̃0(x̃) = 1 + δσ̃0(x̃), and σ̃k(x̃) = δσ̃k(x̃), k = 1, . . . ,K, where δσ̃k are
small and their supports are disjoint and stay away from the boundary ∂Ω̃.
The weak formulation of problem (3.13) (by suppressing the dependence on
the frequency ω) is given by: find ũn(·, ω) ∈ H1(Ω̃) with

∫
∂Ω̃
ũn(x̃, ω)ds̃ = 0

such that∫
Ω̃
σ̃(x̃)∇x̃ũn(x̃) · ∇x̃ṽ(x̃)dx̃ =

∫
∂Ω̃
f̃nṽds̃, ṽ ∈ H1(Ω̃). (3.15)

Let us now discuss the experimental setup. The practitioner chooses a
current density defined on the computational domain, namely a function fn
on ∂Ω such that

∫
∂Ω fn ds = 0. This current is then applied to the unknown

boundary ∂Ω̃ of the real domain Ω̃. The deformation of the boundary has
to be taken into account: the applied current f̃n on ∂Ω̃ results to be

f̃n = (fn ◦ F )| det JSF |. (3.16)

Note that this implies directly
∫
∂Ω̃
f̃nds̃ = 0, as desired. This induces the

electric potential ũn ∈ H1(Ω̃) given by (3.13) or, equivalently, by (3.15).
Like in Section 3.2, the electric potential ũn is assumed to be measured on
∂Ω̃. However, because of the incorrect knowledge of the boundary, the
measured quantity is in fact un := ũn ◦ F−1 restricted to the computational
boundary ∂Ω.

Remark 3.3.1. The factor | det JSF | has a certain physical interpretation. The cur-
rent density on ∂Ω̃ is locally defined by J̃ = I/area(Ã), where I is the current
injected through a small surface Ã ⊆ ∂Ω̃. Thus

J̃ =
I

area(Ã)
=

I

area(A)

area(A)

area(Ã)
= J

area(A)

area(Ã)
,
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where J is the corresponding current density on A := F (Ã) ⊆ ∂Ω. Therefore,
the factor |det JSF | is nothing other than the infinitesimal version of area(A)

area(Ã)
as

area(Ã) → 0. It is worth pointing out that the following relation holds trivially
true: ∫

∂Ω̃
f̃nũnds̃ =

∫
∂Ω
fnunds.

In physical terms, the integral
∫
∂Ω fnunds represents the power needed to maintain

the potential un on the boundary ∂Ω. In other words, the choice (3.16) preserves
the needed power for the measured data, and it agrees with the one adopted in [63].

We shall consider only the case that the computational domain Ω is a
small variation of the true physical domain Ω̃ (but comparable with the in-
clusions δσk), so that the linearized regime is valid. Specifically, we write
the map F : Ω̃ → Ω by F (x̃) = x̃ + εφ̃(x̃), where ε is a small scalar param-
eter and the smooth function φ̃(x̃) characterizes the domain deformation.
Further, let F−1(x) = x+ εφ(x) be the inverse map, which is also smooth.

To examine the influences of the domain deformation on the linearized
inverse problem discussed in Section 3.2, we introduce the solution vm ∈
H1(Ω) relative to the reference conductivity distribution σ0(x, ω) = s0(ω)
in the computational domain Ω corresponding to the flux fm, i.e.,∫

Ω
σ0∇vm · ∇vdx =

∫
∂Ω
fmvds, v ∈ H1(Ω), (3.17)

which is computable over the computational domain Ω (and solvable by
the assumption

∫
∂Ω fmds = 0).

We can now state the corresponding linearized inverse problem. As a
byproduct of the proof, we have that, even for an isotropic conductivity σ̃ in
the true domain Ω̃, cf. (3.14), in the computational domain Ω the equivalent
conductivity σ(x, ω) is generally anisotropic (or matrix valued).

Proposition 1. Set δσk = δσ̃k ◦ F−1 for k = 0, 1, . . . ,K and v∗m = s0(ω)vm for
m = 1, . . . ,M . The linearized inverse problem on the computational domain Ω is
given by

s0(ω)ε

∫
Ω

Ψ∇v∗n·∇v∗mdx+
K∑
k=0

sk(ω)

∫
Ω
δσk∇v∗n·∇v∗mdx = s0(ω)2

∫
∂Ω

(fnvm−fmun)ds,

(3.18)
for some smooth function Ψ : Ω→ Rd×d, which is independent of the frequency ω.

Proof. First, we derive the governing equation for the variable un = ũn◦F−1

in the domain Ω from (3.15). Denote by v = ṽ ◦ F−1 ∈ H1(Ω). By the chain
rule we have∇x̃ũn◦F−1 = (J tF ◦F−1)∇xun, where the superscript t denotes
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the matrix transpose. Thus, we deduce∫
Ω̃
σ̃(x̃)∇x̃ũn(x̃) · ∇x̃ṽ(x̃)dx̃

=

∫
Ω

(σ̃ ◦ F−1)(x)(J tF ◦ F−1)(x)∇un(x) · (J tF ◦ F−1)(x)∇v(x)|det JF−1(x)|dx,

=

∫
Ω

(JF ◦ F−1)(x)(σ̃ ◦ F−1)(x)(J tF ◦ F−1)(x)∇un(x) · ∇v(x)|det JF−1(x)|dx

=

∫
Ω
σ(x, ω)∇un(x) · ∇v(x)dx,

where the transformed conductivity σ(x, ω) is given by [107, 63, 62]

σ(x, ω) =

(
JF (·)σ̃(·, ω)J tF (·)
|det JF (·)|

◦ F−1

)
(x). (3.19)

Moreover, by (3.16) we have
∫
∂Ω̃
f̃nṽds̃ =

∫
∂Ω fnvds. Therefore, in view of

(3.15) the potential un satisfies∫
Ω
σ(x, ω)∇un(x, ω) · ∇v(x)dx =

∫
∂Ω
fnvds, v ∈ H1(Ω). (3.20)

Then by choosing v = vm in (3.20) and v = un in (3.17), we arrive at∫
Ω

(σ − σ0)∇un · ∇vmdx =

∫
∂Ω

(fnvm − fmun)ds. (3.21)

Note that JF = I + εJ
φ̃

, and JF−1 = I + εJφ = I − εJ
φ̃
◦F−1 +O(ε2), since ε

is small. It is known that |det JF | = 1 + εdivφ̃+O(ε2) [45, equation (2.10)].
Then the transformed conductivity σ(x, ω) can be explicitly written as

σ(x, ω) = σ̃(·, ω)(1 + εdivφ̃(·))−1(I + ε(J
φ̃
(·) + J t

φ̃
(·))) ◦ F−1(x) +O(ε2)

= σ̃(·, ω)((1− εdivφ̃(·))I + ε(J
φ̃
(·) + J t

φ̃
(·))) ◦ F−1(x) +O(ε2)

= σ̃(·, ω) ◦ F−1(x) + Ψ(x)ε+O(ε2).

where Ψ = (J
φ̃

+ J t
φ̃
− divφ̃I) ◦ F−1 is smooth and independent of the

frequency ω. Upon collecting terms, this together with the separable form
of σ̃(x̃, ω) in (3.14) yields

σ(x, ω) ≈ s0(ω)I + εs0(ω)Ψ(x) +
K∑
k=0

δσk(x)sk(ω)I. (3.22)

Upon substituting it into (3.21) and invoking the approximation∇un ≈ ∇vn
in the domain, we obtain the desired expression.

By Proposition 1, in the presence of an imperfectly known boundary
with the deformation magnitude ε comparable with the inclusions {δσk}Kk=0,
there is one additional dominant source of errors in the linearized inverse
problem: the perturbed sensitivity system contains an additional anisotropic
component εΨ, resulting from the domain deformation. As a consequence,
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a direct inversion of the linearized model (3.18) is unsuitable. This is consis-
tent with the empirical observation that a slightly incorrect boundary can
lead to completely erroneous reconstructions [1, 34].

This issue can be resolved by using the proposed multifrequency ap-
proach. Indeed, by rearranging the terms in (3.18) we obtain

s0(ω)

∫
Ω

(εΨ+δσ0)∇v∗n·∇v∗mdx+
K∑
k=1

sk(ω)

∫
Ω
δσk∇v∗n·∇v∗mdx = s0(ω)2

∫
∂Ω

(fnvm−fmun)ds.

(3.23)
This equation is completely analogous to (3.5), with the only difference
lying in the additional term εΨ. Therefore, all the methods discussed in
Section 3.2 may be applied straightforwardly, since the right hand side is
known. The background perturbation δσ0 will never be properly recon-
structed, due to the pollution of the error term εΨ. However, the inclusions
corresponding to the other frequency profiles may be reconstructed, since
they are affected by the deformation only through δσk = δσ̃k ◦ F−1. In
other words, the location and shape can be slightly deformed. Thus we
have shown that mfEIT is a very effective method to eliminate the mod-
elling errors caused by the boundary uncertainty. Only the background
anomaly (i.e., the inclusion δσ0) is affected, and so cannot be reconstructed.
All the other inclusions may be imaged successfully.

3.4 The Complete Electrode Model

In this section we adapt the approach discussed in Sections 3.2 and 3.3 to the
more realistic complete electrode model, which has been shown to repro-
duce the experimental data within measurement precision [20] and is cur-
rently regarded as the most accurate model in a number of applications. We
discuss the cases of a perfectly known and an imperfectly known boundary
separately.

3.4.1 Perfectly Known Boundary

First we consider the case of a perfectly known boundary. Let Ω be an open
bounded domain in Rd (d = 2, 3), with a smooth boundary ∂Ω. We denote
the set of electrodes by {ej}Ej=1 ⊂ ∂Ω, which are disjoint from each other,
i.e., ēi ∩ ēk = ∅ if i 6= k. The applied current on the jth electrode ej is de-
noted by Ij , and the current vector I = (I1, . . . , IE)t satisfies

∑E
j=1 Ij = 0

by the law of charge conservation. Let the space RE� be the subspace of
the vector space RE with zero mean, i.e., I ∈ RE� . The electrode volt-
ages U = (U1, . . . , UE)t are also normalized so that U ∈ RE� . Then the
mathematical formulation of the complete electrode model (CEM) reads
[20, 102]: given the frequency-dependent conductivity distribution σ(x, ω),
frequency-independent positive contact impedances {zj}Ej=1 and an input
current pattern I ∈ RE� , find the potential u(·, ω) ∈ H1(Ω) and the electrode
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voltages U ∈ RE� such that

−∇ · (σ(x, ω)∇u(x, ω)) = 0 in Ω,

u+ zj
∂u

∂νσ
= Uj on ej , j = 1, 2, . . . , E,∫

ej

∂u

∂νσ
ds = Ij for j = 1, 2, . . . , E,

∂u

∂νσ
= 0 on ∂Ω\ ∪Ej=1 ej ,

(3.24)

where ∂u
∂νσ

denotes the co-normal derivative (σ∇u) · ν. The second line de-
scribes the contact impedance effect: When injecting electrical currents into
the object, a highly resistive thin layer forms at the electrode-electrolyte in-
terface (due to certain electrochemical processes), which causes potential
drops across this interface. The potential drop is described by Ohm’s law,
with the positive constants {zj}Ej=1 being contact impedances. In practice,
it was observed that the contact impedances {zj}Ej=1 are inversely propor-
tional to the conductivity of the object [48, 52], and thus we can write

zj = s0(ω)−1cj , (3.25)

for some constants cj > 0 independently of the frequency, since by assump-
tion, near the boundary ∂Ω we have σ(x, ω) = s0(ω). The metallic elec-
trodes are perfect conductors, and hence the voltage Uj on the jth electrode
ej is a constant. The weak formulation of model (3.24) is given by: find
(u, U) ∈ H := H1(Ω) × RE� (equipped with the product norm) such that
[102]∫

Ω
σ(x, ω)∇u(x, ω)·∇v(x)dx+

E∑
j=1

z−1
j

∫
ej

(u−Uj)(v−Vj)ds =
E∑
j=1

IjUj , (v, V ) ∈ H.

The bilinear form defined on the left hand side is coercive and continuous
on the space H, and thus by Lax-Milgram theorem there exists a unique
solution (u(·, ω), U(ω)) ∈ H.

Consider M input currents {In}Mn=1 ⊂ RE� , and let {(un, Un)}Mn=1 ⊂ H be
the corresponding solutions to the complete electrode model (3.24), i.e.,

∫
Ω
σ(x, ω)∇un(x, ω)·∇v(x, ω)dx+

E∑
j=1

z−1
j

∫
ej

(un−Un,j)(v−Vj)ds =
E∑
j=1

In,jVj , (v, V ) ∈ H.

(3.26)
The electrode voltages Un ∈ RE� can be measured in practice, and are used
to recover the conductivity distribution σ(x, ω). To derive a linearized model,
like before, let (vm, Vm) ∈ H be the solution corresponding to the unper-
turbed conductivity field with σ0(x, ω) = s0(ω):∫

Ω
σ0(x, ω)∇vm(x, ω)·∇v(x, ω)dx+

E∑
j=1

z−1
j

∫
ej

(vm−Vm,j)(v−Vj)ds =

E∑
j=1

Im,jVj , (v, V ) ∈ H.

(3.27)
Like in the continuum model, in view of the relation (3.25), we can write
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(v∗m, V
∗
m) = s0(ω)(vm, Vm) for the solution corresponding to the case σ0 ≡ 1.

Now we assume that the conductivity σ(x, ω) follows the separable form
(3.2). Using the weak formulations for (un, Un) and (vm, Vm), we deduce
immediately

K∑
k=0

sk(ω)

∫
Ω
δσk(x)∇un(x, ω) · ∇vm(x, ω)dx =

E∑
j=1

(In,jVm,j − Im,jUn,j).

Then, under the approximation∇un ≈ ∇vn in the domain Ω, and the piece-
wise constant approximation on the inclusions δσks on the quasi-uniform
triangulation {Ωl}Ll=1 of the domain Ω, we have

K∑
k=0

sk(ω)
L∑
l=1

(δσk)l

∫
Ωl

∇v∗n · ∇v∗mdx = s0(ω)2
E∑
j=1

(In,jVm,j − Im,jUn,j).

This formula is almost identical with that for the continuum model, cf. (3.5),
and formally their only difference lies in the computation of the data vector
X(ω). Hence, all the discussions in Section 3.2 can be adapted straightfor-
wardly to the complete electrode model. In particular, all inversion meth-
ods discussed there can be directly applied to this case.

3.4.2 Imperfectly Known Boundary

Now we consider the case of an imperfectly known boundary. As in Section
3.3, let Ω̃ be the unknown true domain with a smooth boundary ∂Ω̃, and Ω
be the computational domain with a smooth boundary ∂Ω. Accordingly,
let {ẽj}Ej=1 ⊂ ∂Ω̃ and {ej}Ej=1 ⊂ ∂Ω be the real and computational elec-
trodes, respectively and assume they satisfy the usual conditions discussed
above. Then we introduce a sufficiently smooth orientation preserving for-
ward map F : Ω̃→ Ω, with a sufficiently smooth inverse F−1 : Ω→ Ω̃, and
we denote the restriction of F to the boundary ∂Ω̃ by f : ∂Ω̃ → ∂Ω. We
write F−1(x) = x + εφ(x), where ε > 0 denotes the magnitude of the do-
main deformation. For simplicity, further, it is assumed that there is no fur-
ther electrode movement apart from domain deformation, i.e., ej = f(ẽj),
j = 1, . . . , E. With the frequency-dependent conductivity σ̃(x̃, ω) of the
separable form (3.14) and input current In ∈ RE� , by (3.24), the quantity
(ũn(x̃, ω), Ũn(ω)) ∈ H̃ ≡ H1(Ω̃)× RE� satisfies

−∇x̃ · (σ̃(x̃, ω)∇x̃ũn(x̃, ω)) = 0 in Ω̃,∫
ẽj

∂ũn
∂ν̃σ̃

ds̃ = In,j on ẽj , j = 1, 2, . . . , E,

zj
∂ũn
∂ν̃σ̃

+ ũn = Ũn,j on ẽj , j = 1, 2, . . . , E

∂ũn
∂ν̃σ̃

= 0 on ∂Ω̃ \ ∪Ej=1ẽj ,

(3.28)
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The weak formulation of the problem is given by: find (ũn(x̃, ω), Ũn(ω)) ∈
H̃ such that∫

Ω̃
σ̃(x̃, ω)∇x̃ũn(x̃, ω) · ∇x̃ṽ(x̃)dx̃+

E∑
j=1

z−1
j

∫
ẽj

(ũn(x̃, ω)− Ũn,j(ω))(ṽ(x̃)− Ṽj)ds̃ =
E∑
j=1

In,j Ṽj , (ṽ, Ṽ ) ∈ H̃.

In the experimental setting, on the computational domain Ω, the injected
current In ∈ RE on the electrodes {ej}Ej=1 is known, and the correspond-
ing voltage Ũn(ω) ∈ RE can be measured. The inverse problem is to re-
cover the inclusion profiles {δσ̃k}Kk=0 from the measured electrode voltages
{Ũn(ω)}Mn=1 at a number of frequencies {ωq}Qq=1.

Now we can state the corresponding linearized inverse problem for the
complete electrode model with an imperfectly known boundary. Consider
the potential un(·, ω) = ũn(·, ω) ◦F−1, and the associated electrode voltages
Un = Ũn.

Proposition 2. Let the reference solutions (vm, Vm) ∈ H be defined by (3.27) and
the conductivity σ̃ be of the form (3.14). Set z = |det JSF−1 |, δσk = δσ̃k ◦ F−1

for k = 0, 1, . . . ,K and (v∗m, V
∗
m) = s0(ω)(vm, Vm) for m = 1, . . . ,M . The

linearized inverse problem on the computational domain Ω is given by

s0(ω)ε

∫
Ω

Ψ∇v∗n · ∇v∗mdx+
K∑
k=0

sk(ω)

∫
Ω
δσk∇v∗n · ∇v∗mdx

= s0(ω)2
E∑
j=1

(In,jVm,j − Im,jUn,j)− s0(ω)

E∑
j=1

cj

∫
ej

(z − 1)

(
∂v∗m
∂ν

)2

ds.

(3.29)

for some smooth function Ψ : Ω→ Rd×d, which is independent of the frequency ω.

Proof. Proceeding as in the proof of Proposition 1, by a change of variables
(and suppressing the variable ω), since ej = f(ẽj) we deduce∫

Ω̃
σ̃(x̃)∇x̃ũn(x̃) · ∇x̃ṽ(x̃)dx̃

=

∫
Ω

(σ̃ ◦ F−1)(x)(J tF ◦ F−1)(x)∇un · (J tF ◦ F−1)(x)∇v(x)| det JF−1(x)|dx.∫
ẽj

(ũn − Ũn,j)(ṽ − Ṽj)ds̃ =

∫
ej

(un − Un,j)(v − Vj)|det JSF−1 |ds,

where v = ṽ ◦ F−1 ∈ H1(Ω) and Vj = Ṽj . Hence, the pair (un(·, ω), Un(ω))
satisfies∫

Ω
σ(x, ω)∇un(x, ω)·∇v(x)dx+

E∑
j=1

z−1
j

∫
ej

(un−Un,j)(v−Vj)z ds =

E∑
j=1

In,jVj , (v, V ) ∈ H,
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where the transformed conductivity σ(x, ω) is given by (3.19). By combin-
ing this identity with (3.27), we obtain∫

Ω
(σ−σ0)∇un·∇vmdx =

E∑
j=1

(In,jVm,j−Im,jUn,j)+
E∑
j=1

∫
ej

(z−1)(un−Un,j)
∂vm
∂νσ0

ds.

In view of [45, 44] we can expand z as

z = 1 + ε(Divφt − (d− 1)Hφν) +O(ε2), (3.30)

where Div denotes the surface divergence, φt and φν denote the tangential
and normal components of the vectorial function φ on the boundary ∂Ω,
respectively, and H is the mean curvature of ∂Ω. In particular, z−1 = O(ε).
Therefore, by linearization we can write∫
ej

(z−1)(un−Un,j)
∂vm
∂νσ0

ds ≈
∫
ej

(z−1)(vn−Vn,j)
∂vm
∂νσ0

ds = −zj
∫
ej

(z−1)

(
∂vm
∂νσ0

)2

ds.

Inserting this approximation in the above identity we obtain∫
Ω

(σ−σ0)∇un·∇vmdx =

E∑
j=1

(In,jVm,j−Im,jUn,j)−
E∑
j=1

zj

∫
ej

(z−1)

(
∂vm
∂νσ0

)2

ds.

The rest of the proof follows as in Proposition 1, and thus it is omitted.

By proceeding as in the continuum model, we can rewrite (3.29) as

s0(ω)

∫
Ω

(εΨ + δσ0)∇v∗n · ∇v∗mdx+
K∑
k=1

sk(ω)

∫
Ω
δσk∇v∗n · ∇v∗mdx

= s0(ω)2
E∑
j=1

(In,jVm,j − Im,jUn,j)− s0(ω)

E∑
j=1

cj

∫
ej

(z − 1)

(
∂v∗m
∂ν

)2

ds.

(3.31)

When compared with the linearized model in the continuum case, cf. (3.23),
we observe the presence of the additional error term s0(ω)Cm, where

Cm(ω) := −
E∑
j=1

cj

∫
ej

(z − 1)

(
∂v∗m
∂ν

)2

ds,

that comes from the boundary deformation. The formula (3.31) is perfectly
consistent with (3.23): in the continuum case, the contact impedance effect
is not taken into account, and un = Un on the electrodes, namely cj = 0,
whence Cm = 0.

All the preceding analysis easily carries forward to the case cj > 0, as
we now discuss. Before treating the general case, let us consider the simple
scenario where z ≡ 1 on the electrodes ∪jej .

Example 5. Recall that z(x) = | det JSF−1(x)| for x on the boundary ∂Ω. Physi-
cally, the factor z represents the length deformation relative to the map F−1 : ∂Ω→
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∂Ω̃, as we remarked earlier. Thus, it may be reasonable to assume that the parametriza-
tion of the electrodes {ej}Ej=1 is known, which implies z ≡ 1 on the electrodes ∪jej .

In such a case, we immediately obtain Cm ≡ 0. whence

s0(ω)

∫
Ω

(εΨ+δσ0)∇v∗n·∇v∗mdx+
K∑
k=1

sk(ω)

∫
Ω
δσk∇v∗n·∇v∗mdx = s0(ω)2

E∑
j=1

(In,jVm,j−Im,jUn,j).

This identity is completely analogous to (3.23), and the same comments on the
reconstruction procedure are valid here, since the right hand side is known. In
particular, by applying any of the techniques discussed in Section 3.2 to multifre-
quency measurements, it is possible to eliminate the error coming from the domain
perturbation εΨ, as this affects only the inclusion δσ0 (corresponding to s0). All
the other inclusions δσk, k = 1, . . . ,K, may be successfully reconstructed.

Now we consider the general case when z 6≡ 1 on the electrodes ∪jej .
This corresponds to a situation where the length (or the area) of the elec-
trodes is not precisely known. Thus, the additional error term s0(ω)Cm in
the linearized model (3.31) has to be taken into account. The key observa-
tion is that Cm is independent of the frequency ω. The difference imaging
method discussed in Section 3.2.2 may be directly applied here, provided
that 0 /∈ P , i.e., if the frequency profile s0(ω) does not vary substantially
with respect to the frequency ω. Indeed, in this case the error term s0(ω)Cm
disappears upon differentiating the relation (3.31), and the inversion step
may be performed as in Section 3.2.2.

The method of Section 3.2.1 (and, thus, the particular case discussed in
Section 3.2.3) may be also directly applied, since the dependence of the error
term s0(ω)Cm with respect to the frequency ω follows exactly the spectral
profile s0(ω). Namely, its influence on the reconstruction step can be essen-
tially lumped into the component δσ0, like the conductivity perturbation εΨ
discussed earlier. Thus, all the inclusions δσk, k = 1, . . . ,K, corresponding
to the remaining frequency profiles s1, . . . , sK may be completely recon-
structed. Alternatively, one may see this from the linear system as follows.
When multiplying the right hand side of the system of equations associ-
ated to (3.31) by S−1, the error term s0(ω)Cm cancels out in all the systems
MAk = Yk, for k = 1, . . . ,K. This follows by elementary linear algebra,
since

S−1 = C [s0(ω1) , . . . , s0(ωQ)]

 s0(ω1) · · · s0(ωQ)
...

...
...

sK(ω1) · · · sK(ωQ)


−1

= [C , 0 , . . . , 0],

where the notation C denotes the column vector corresponding to the error
terms Cm (see Example 1 for the simple case when Q = 2 and K = 1).

3.5 Group Sparse Reconstruction Algorithm

For all the scenarios discussed in the previous sections, one arrives at a
number of (decoupled) linear systems

MAk = Yk k = 0, . . . ,K, (3.32)
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where M ∈ RJ×L is the sensitivity matrix, Ak ∈ RL are the unknown abun-
dances, and Yk ∈ RJ is a known piece of data. These linear systems are
often under-determined, and severely ill-conditioned, due to the inherent
ill-posed nature of the EIT inverse problem. Below we describe one strat-
egy for the stable and accuracy solution of the linear system (3.32) based on
the idea of regularization; we refer to [93, 95, 53] for general discussions on
regularization methods.

There are several natural aspects to take into consideration for the reg-
ularization term, especially sparsity, grouping, disjoint sparsity and bound
constraints.

(1) For k = 0, 1, 2, . . . ,K, we can assume that the abundances Ak =
(δσk)l ∈ RL are sparse with respect to the pixel basis (piecewise con-
stant approximation). This suggests minimizing

min
Ak∈Λ

‖Ak‖1 subject to ‖MAk − Yk‖ ≤ εk

for each k = 0, 1, . . . ,K. Here ‖·‖1 denotes the `1 norm of a vector. The
set Λ represents a box constraint on the unknown vector Ak, since the
conductivity σ remains bounded from below and above by positive
constants, due to physical constraint, and εk > 0 is an estimate of the
noise level in the data Yk. This `1 optimization problem can be solved
efficiently by many algorithms, e.g., iterative soft thresholding.

(2) In EIT applications, it is also reasonable to assume that each abun-
dance Ak is clustered, and this refers to the concept of group sparsity.
The grouping effect is useful to remove the undesirable spikes typ-
ically observed for the `1 penalty alone. There are several different
approaches to this task. The elastic net [57] is one simple way to re-
alize grouping. In this work, we shall develop an approach easy to
implement, inspired by the dynamic group sparsity proposed in [51].
It allows to dynamically realize group sparsity without knowing the
supports of the Aks nor their sizes.

(3) The support of the inclusions Ak are assumed to be disjoint from each
other. The disjoint supports ofAks can be simply promoted by adding
a term that penalizes the scalar product of the absolute values of the
Aks, as was done in [113].

Remark 3.5.1. Note that (1) and (2) refer to methods in which the abundancesAks
are recovered separately, while (3) to methods in which all theAks are reconstructed
simultaneously.

Next we construct an efficient iterative algorithm, termed as group iter-
ative soft thresholding, for achieving the goals outlined above. It combines
the strengths of the classical iterative soft thresholding algorithm [24] and
the grouping effect in the dynamical group sparse recovery [51]: the former
is easy to implement and has a built-in regularizing effect, whereas the lat-
ter encourages the group sparsity pattern. In implementation, it is a simple
modification of the classical iterative soft thresholding algorithm for `1 op-
timization (by omitting the subscript i in the abundance): given an initial
guess A0, construct an approximation iteratively by

Aj+1 = Ssjα(gj),
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where the proxy gj is defined by

gj = Aj − sjM t(MAj − Y ). (3.33)

Observe that M t(MAj − Y ) is the gradient of the fitting term 1
2‖MA −

Y ‖2 at the current iterate Aj , and hence gj is essentially a gradient descent
update of the current reconstructionAj . The scalar α > 0 is a regularization
parameter and sj > 0 is the step length. One simple choice of the step size
sj is the constant one sj = 1/‖M‖2, which ensures the convergence of the
algorithm [24]. The soft thresholding operator Sλ for λ > 0 is defined by

Sλ(t) = max(|t| − λ, 0) sign(t),

and it is applied componentwise when the argument is a vector.
In the proposed group iterative soft thresholding algorithm, instead of

performing the thresholding on the proxy gj directly, we take into account
the neighboring influence. Following [51], this is easily achieved by com-
puting a generalized proxy djl of the lth element by

djl = |gjl |
2 +

∑
k∈Nl

wlk|gjk|
2, (3.34)

where wlk are nonnegative weights, and Nl denotes the neighborhood of
the lth element. The weights wlk determine the strength of correlation be-
tween the components: The smaller the magnitude of wlk is, the weaker
the correlation strength between the lth and the kth components is, and if
wlk = 0 for all k ∈ Nl, it does not encourage grouping at all. In our imple-
mentation, we take wlk = β, for some constant β > 0, for all neighboring
elements. Physically, in EIT, the neighborhoodNl of the lth element consists
of all elements in the triangulation that share one edge with the lth element,
and may be expanded to include also elements sharing one node. Then the
vector dj is used to reweigh the thresholding step by

d̄j = max(dj)−1dj , (3.35)

The quantity d̄j indicates a normalized grouping effect: the larger is d̄jl , the
more likely the lth element belongs to the group, and thus the less thresh-
olding should be applied to it. This can be easily achieved by rescaling the
regularization parameter α to be inversely proportional to d̄jl , with

ᾱjl = α/d̄jl , l = 1, . . . , L, (3.36)

and last perform the projected thresholding with a spatially variable regu-
larization parameter ᾱj

Aj+1 = PΛ(Ssj ᾱj (g
j)). (3.37)

where PΛ denotes the pointwise projection onto the constraint set Λ. The
complete procedure is listed in Algorithm 3.5.1. Here N is the maximum
number of iterations. Since the solutionA is expected to be sparse, a natural
choice of the initial guess A0 is the zero vector. The regularization param-
eter α plays a crucial role in the performance of the reconstruction quality:
the larger the value α is, the sparser the reconstructed abundance is. There
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are several strategies available for the classical iterative soft thresholding,
e.g., discrepancy principle and balancing principle. In this work, we shall
test the feasibility of the algorithm only with the regularization parameter
α determined in a trial-and-error manner. One can terminate the algorithm
by monitoring the relative change of the iterates.

Algorithm 3.5.1. GROUP ITERATIVE SOFT THRESHOLDING.
1: Input M , Y , W , N , α, N and A0.
2: for j = 1, . . . , N do
3: Compute the proxy gj by (3.33).
4: Compute the generalized proxy dj by (3.34).
5: Compute the normalized proxy d̄j by (3.35).
6: Adapt the regularization parameter ᾱj by (3.36).
7: Update the abundance Aj+1 by the group thresholding (3.37).
8: Check the stopping criterion.
9: end for

Last, we note that the disjoint sparsity can be enforced conveniently in
Algorithm 3.5.1. Specifically, we first compute the normalized proxy d̄k,j

for the abundance Ak separately according to (3.35), and then at each com-
ponent l = 1, . . . , L, we update them by

d̄k,jl =

{
d̄k,jl if k = k∗l ,

ε otherwise,
k∗l = arg max

k=0,...,K
d̄k,jl ,

where ε > 0 is a small number to avoid numerical overflow. This step ef-
fectively only retains the most likely abundance component (with the likeli-
hood for the kth abundance given by d̄k,j), and sets to zero all the remaining
ones. Hence, it enforces the disjoint sparsity as desired.

3.6 Numerical Experiments and Discussions

In this section we present some numerical results to illustrate the analytic
study in Sections 3.2-3.4. We present results only for the complete electrode
model (3.24), since the results for the simpler continuum model (3.1) are
similar. The general setting for the numerical experiments below is as fol-
lows. The computational domain is taken to be the unit circle Ω = {(x1, x2) :
x2

1 + x2
2 < 1}. There are sixteen electrodes {ej}Ej=1 (with E = 16) evenly

distributed along the boundary ∂Ω, each of length π/16, thus occupying
one half of the boundary ∂Ω; see Fig. 3.1(a) for a schematic illustration of
the electrode placement. The contact impedances {zj}Ej=1 on the electrodes
{ej}Ej=1 are all set to unit, and the background conductivity σ0 is taken to
be σ0 ≡ 1. Further, we shall always assume that the spectral profile s0(ω)
for the background is the constant one s0 ≡ 1. This is not a restriction,
since s0(ω) is always known, and one can rescale the spectral profiles so
that s0 ≡ 1. We measure the electrode voltages U for all 15 sinusoidal in-
put currents. The complete electrode model (3.24) is discretized using a
piecewise linear finite element method on a shape regular quasi-uniform
triangulation of the domain Ω [33]. The conductivity is represented on a
coarser finite element mesh using a piecewise constant finite element basis.
The electrode voltages are generated on a much finer mesh in order to avoid
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(a) computational domain Ω (b) imperfectly known domain Ω̃

FIGURE 3.1: The electrode arrangement for the computa-
tional domain Ω and for an imperfectly known domain Ω̃
(used in Example 9). The curved segments in red denote
the electrodes. The electrodes in (a) are equally spaced, but

those in (b) are not.

the inverse crime. Then the noisy data U δ is generated by adding compo-
nentwise Gaussian noise to the exact data U † := U(σ†) corresponding to
the true conductivity σ†(x, ω) as follows

U δj = U †j + εmax
l
|U †l − Ul(σ0)|εj , j = 1, . . . , E,

where ε is the noise level, and εj follow the standard normal distribution.
We shall present the numerical results for the cases of known boundary

and of imperfectly known boundary separately, and discuss only cases a)
and b) with spectral profiles that are either fully known or have substan-
tially different frequency dependence. Case c), corresponding to the case of
partially known spectral profiles, will not be discussed, since the inversion
is totally analogous to that of case a), except for simple algebraic manipu-
lations. For the solutions of the underdetermined linear systems (3.32), we
use the group iterative soft thresholding algorithm listed in Algorithm 3.5.1
with a constant step size. The regularization parameter α used in each sepa-
rate reconstruction was determined by a trial-and-error manner, and it was
set to 10−2 for all examples presented below. We did not implement the
disjoint sparsity, since in all the examples under consideration the recon-
struction are already very satisfactory. However, it is expected that with
higher noise levels or in the case of almost touching inclusions, enforcing
disjoint sparsity might give enhanced reconstructions. The algorithm is al-
ways initialized with a zero vector. Numerically, we observe that it con-
verges steady and fast. All the computations were performed using MAT-
LAB 2013a on a 2.5G Hz and 6G RAM personal laptop.

3.6.1 Perfectly Known Boundary

First, we illustrate the approach in the case of a perfectly known boundary.

Example 6. Consider three square inclusions; the two inclusions on the top share
the same spectral profile s1(ω), and the one on the bottom has a second spectral
profile s2(ω), cf. Fig. 3.2(a) for an illustration. In the experiments, we consider the
following two cases:
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(i) The spectral profiles s1(ω) and s2(ω) are given by s1(ω) = 0.1ω + 0.1 and
s2(ω) = 0.2ω.

(ii) The spectral profiles s1(ω) and s2(ω) are given by s1(ω) = 0.1ω + 0.1 and
s2(ω) = 0.02ω.

In either case, we take measurements at Q = 3 frequencies, ω1 = 0, ω2 = 0.5 and
ω3 = 1.
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(c) recovered δσ2

FIGURE 3.2: Numerical results for Example 6(i) with 1%
noise in the data, and fully known spectral profiles. The re-
constructions were obtained using the direct approach dis-

cussed in Section 3.2.1.

The numerical results for Example 6 with ε = 1% noise in the data are
shown in Figs. 3.2 and 3.4 for cases (i) and (ii), respectively. In case (i),
the two frequencies have about the same magnitude, and the (rectangular)
spectral matrix S is nonsingular. Assuming the knowledge of the spectral
profiles, the direct approach discussed in Section 3.2.1 separates well the
two sets of inclusions thanks to their incoherent spectral profiles. The recov-
ery is very localized within a clean background, the supports match closely
the true supports (and are clearly disjoint from each other) and the magni-
tude of the inclusions are well retrieved. The latter observation is a distinct
feature of the proposed group sparse recovery algorithm discussed in Sec-
tion 3.5. Hence, if both profiles are known exactly and incoherent, then the
two sets of inclusions can be fairly recovered. Case (ii) is similar, except
that the variation of the spectral profile s2(ω) is now much smaller. The
preceding observations remain largely valid, except that the inclusion cor-
responding to s2(ω) involves minor spurious oscillations. This is attributed
to the presence of noise in the data: the noise level is comparable with ef-
fective contributions from the inclusion. Hence, for the accurate recovery
of the inclusions separately, the data should be reasonably accurate, as ex-
pected.

The well-conditioning of the spectral profile matrix S implies the ro-
bustness of the direct approach with respect to perturbations of the spectral
profiles, as mentioned in Section 3.2.1. To confirm this, we present in Fig. 3.3
the reconstructions using imprecisely known spectral profiles, where the
spectral matrix is perturbed by additive Gaussian noise with a zero mean
and standard deviation proportional to the entry magnitude. Even only
with three modulating frequencies, the reconstructions remain fairly stable,
up to 20% perturbation of the spectral profiles, indicating the robustness
of the approach. This is consistent with the experimental findings in [75],
where the feasibility of the abundance separation with imprecise spectral
profiles was numerically demonstrated.
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(d) recovered δσ2

FIGURE 3.3: Numerical results for Example 6(i) with 1%
noise in the data, and imprecisely known spectral profiles.
The reconstructions in (a) and (b) are obtained with the
spectral matrix S perturbed by additive Gaussian noise
with mean zero and standard deviation 10% of the entry
magnitude, and those in (c) and (d) with 20% noise, both by

the direct approach of Section 3.2.1.
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FIGURE 3.4: Numerical results for Example 6(ii) with 1%
noise in the data. The reconstructions in panels (b) and (c)
are obtained with fully known spectral profiles using the
direct approach in Section 3.2.1, and that in panel (d) is ob-
tained without knowing the spectral profiles, using differ-

ence imaging in Section 3.2.2.
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With Example 6(ii), we also illustrate difference imaging discussed in
Section 3.2.2. Since the variation of the frequency profile s2(ω) is small, this
technique is also applicable, and the reconstruction of the first set of inclu-
sions, in the absence of the knowledge of the spectral profiles, is shown
in Fig. 3.4(d). The reconstruction recovers the inclusions up to a multi-
plicative constant very well, and it is almost completely free from spuri-
ous oscillations. This clearly shows the capability of difference imaging in
Section 3.2.2 for spectral profiles with substantially different frequency de-
pendence.

Example 7. Consider three rectangular inclusions on the top left, top right and
bottom with spectral profiles s1(ω), s2(ω) and s3(ω), respectively, cf. Fig. 3.5a for
an illustration. In the experiments, we consider the following two cases:

(i) The spectral profiles s1(ω), s2(ω) and s3(ω) are given by s1(ω) = 0.2ω +
0.2, s2(ω) = 0.1ω2, and s3(ω) = 0.2ω + 0.1, respectively.

(ii) The spectral profiles s1(ω), s2(ω) and s3(ω) are given by s1(ω) = 0.02ω +
0.02 and s2(ω) = 0.1ω2, and s3(ω) = 0.2ω + 0.1, respectively.

In either case, we take measurements at three frequencies, ω1 = 0, ω2 = 0.5 and
ω3 = 1.

The numerical results for Example 7(i) and 7(ii) are shown in Figs. 3.5
and 3.6, respectively. If all three spectral profiles are known, the use of three
frequencies yields almost perfect separation of the three inclusions by using
the method of Section 3.2.1: the recovered inclusions are well clustered in
a clean background, and their supports and magnitudes are correctly iden-
tified. Note that in the case of Example 7(ii), the spectral profile s1(ω) is
much smaller, and thus the recovery of the inclusion δσ1 is more suscepti-
ble to noise, whereas the recovery of the remaining two are far more stable.

The results in Fig. 3.6 indicate that with known spectral profiles s2(ω)
and s3(ω) and unknown s1(ω), since s1(ω) varies little with respect to ω,
the difference imaging technique proposed in Section 3.2.2 can recover ac-
curately both the magnitude and support of the inclusions δσ2 and δσ3.
These observations fully confirm the discussions in Section 3.2.2.
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(d) recovered δσ3

FIGURE 3.5: Numerical results for Example 7(i) with 1%
noise in the data, with fully known spectral profiles. The
reconstructions are obtained by the direct approach in Sec-

tion 3.2.1.

3.6.2 Imperfectly Known Boundary

Now we illustrate the approach in the case of an imperfectly known bound-
ary. In the first example, the unknown true domain Ω̃ is an ellipse centered
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(f) recovered δσ3

FIGURE 3.6: Numerical results for Example 7(ii) with 1%
noise in the data. Here (b)-(d) are the reconstructions with
fully known spectral profiles, while for (e) and (f) only the
spectral profiles s2(ω) and s3(ω) are known, and the re-
constructions are obtained by difference imaging in Section

3.2.2.

at the origin with semi-axes a and b, Ea,b = {(x1, x2) : x2
1/a

2 + x2
2/b

2 < 1},
and the computational domain Ω is taken to be the unit circle.

Example 8. Consider two square inclusions, on the top and on the bottom of the
ellipse, with spectral profiles s1(ω) = 0.2ω+ 0.2 and s2(ω) = 0.1ω2, respectively.
We consider the following two cases:

(i) The true domain Ω̃ is Ea,b with a = 1.1 and b = 0.9;

(ii) The true domain Ω̃ is Ea,b with a = 1.2 and b = 0.8.

In either case, we take three frequencies, ω1 = 0, ω2 = 0.5 and ω3 = 1.
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FIGURE 3.7: Numerical results for Example 8(i) with 0.1%
noise in the data, fully known spectral profiles. The recon-
structions are obtained using difference imaging technique

in Section 3.2.2.

The numerical results are given in Figs. 3.7 and 3.8 with 0.1% noise in
the data, for cases (i) and (ii), respectively. Even though not presented, we
note that a direct application of the classical EIT imaging technique can only
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FIGURE 3.8: Numerical results for Example 8(ii) with 0.1%
noise in the data, fully known spectral profiles. The recon-
structions in panels (b)-(c) are based on difference imaging
technique in Section 3.2.2, and those in panels (d)-(f) are

based on the direct approach in Section 3.2.1.

produce useless reconstruction, due to the presence of significant modelling
errors. Numerically one can verify that for both cases, the contribution from
domain deformation is actually one order of magnitude larger than that
due to the genuine inclusions, which justify the much smaller noise level
0.1%. By exploiting the frequency incoherence, the multi-frequency EIT al-
lows the separation of contributions from different abundances, and hence
recovering each inclusion accurately.

From Fig. 3.7, we observe that the difference imaging from Section 3.2.2
can recover the two inclusions accurately, and further, the two inclusions
can be separated, due to their incoherent spectral profiles. However, the
shape of the recovered inclusion tends to be slightly deformed and location
slightly shifted. This is consistent with the discussions in Section 3.4: the
unknown boundary induces a slightly deformed conductivity of the inclu-
sions, in addition to the anisotropic component.

In Fig. 3.8 we present the results related to Example 8(ii). The preceding
observations on difference imaging still hold, cf. Fig. 3.8(a) and (b). The
direct approach of Section 3.2.1 works equally well: the recovered δσ1 and
δσ2 are fairly accurate in terms of the location and magnitude; and the re-
sults are comparable with those obtained by difference imaging. Surely, the
recovered δσ0 contains only the spurious conductivity induced by the do-
main deformation. Should there be any true inclusion δσ0 corresponding to
the spectral profile s0(ω), it will be washed away by the deformation error
εΨ in (3.31). The preceding discussions fully confirm the analysis in Section
3.4: the multifrequency approach is capable of discriminating the perturba-
tion due to domain deformation from the genuine inclusions by either the
direct reconstruction in Section 3.2.1 or the difference imaging in Section
3.2.2.

Last we present one example where the electrodes are misplaced, but
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the length of the electrodes do not change, i.e., the factor z in the bound-
ary integral can be set to the unit (see Example 5). This is a special case
of the imperfectly known boundary case, where the forward map F maps
the domain Ω onto itself. However, the forward map is not the identity
or a rotation operator, and thus it will induce an anisotropic conductivity,
especially in the regions near the boundary.

Example 9. The true domain Ω̃ is identical with the computational domain Ω, the
unit circle, but every other electrode is shifted by an angle of π/32, while the length
of each electrode remains unchanged; see Fig. 3.1(b) for a schematic illustration.
There are two rectangular inclusions, on the top and on the bottom of the ellipse,
with spectral profiles s1(ω) = 0.2ω + 0.2 and s2(ω) = 0.1ω2, respectively. We
take the measurement at three frequencies ω1 = 0, ω2 = 0.5 and ω3 = 1.
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(c) recovered δσ2
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(e) recovered δσ1
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(f) recovered δσ2

FIGURE 3.9: Numerical results for Example 9 with 0.1%
noise in the data, fully known spectral profiles. The recon-
structions shown in panels (b)-(c) are based on difference
imaging in Section 3.2.2, whereas those in panels (d)–(f) are
based on the direct approach of the method discussed in

Section 3.2.1.

The numerical results for Example 9 are summarized in Fig. 3.9. The
analysis in Section 3.3 and in §3.4.2 indicates that the conductivity pertur-
bation due to the domain deformation can be limited to the background
component δσ0, as above. The numerical results confirm the analysis: when
using the direct approach discussed in §3.2.1, there are many pronounced
perturbations around the boundary in the reconstructed δσ0, due to the do-
main deformation. However, the reconstructed δσ1 and δσ2 are fairly rea-
sonable in location and size, albeit slightly deformed. The differentiation
imaging can also remove the contributions due to unknown electrode loca-
tions and separate the contributions from the two inclusions. This is fea-
sible since the frequency profiles are incoherent both before and after the
differentiation.

In summary, as expected from the analysis of Sections 3.3 and 3.4.2, the
mfEIT technique has significant potential in handling modelling errors. The
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inclusion δσ0 corresponding to the background frequency profile s0 may
not be reconstructed. However, by using the multifrequency method, the
remaining inclusions {δσk}Kk=1 can be correctly recovered by either the di-
rect approach in Section 3.2.1 or the difference imaging approach in Section
3.2.2, provided that the corresponding spectral profiles (or their derivatives)
are sufficiently incoherent.
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Chapter 4

A method to image anisotropy
conductivity

4.1 Introduction

In this chapter, we describe a novel method of reconstructing images of
an anisotropic conductivity tensor distribution inside an electrically con-
ducting subject in Magneto-acoustic Tomography with Magnetic Induction
(MAT-MI).

MAT-MI is a new noninvasive modality for imaging electrical conduc-
tivity distributions of biological tissue [118, 72, 77, 122, 71, 117, 74]. In the
experiments, the biological tissue is placed in a static magnetic field. A
pulsed magnetic field is applied to induce an eddy current inside the con-
ductive tissue. In the process, the tissue emits ultrasound waves which
can be measured around the tissue. The first step in the MAT-MI imaging
problem is to recover the acoustic source in the scalar wave equation from
measurements at a set of locations around the object. This problem has been
studied in many works, including [28, 41, 50, 65, 103]. The second step in
the MAT-MI is to reconstruct the electrical conductivity distribution from
knowledge of the acoustic source.

Considering the fact that most biological tissues are known to have
anisotropic conductivity values [10, 78, 110], the primary goal of MAT-MI
should be the imaging of an anisotropic conductivity tensor distribution.
However, up to now, all techniques have assumed an isotropic conductivity
distribution in the image reconstruction problem to simplify the underly-
ing mathematical theory [5, 90]. In this chapter, we firstly formulate a new
image reconstruction method of an anisotropic conductivity tensor distri-
bution. We combine MAT-MI with Diffusion Tensor Imaging (DTI).

DTI is a non-invasive technique for characterizing the diffusion proper-
ties of water molecules in tissues (see e.g. [14] and the references therein).
Imaging conductivity tensors in the tissue with DTI is based on the correla-
tion property between diffusion and conductivity tensors [110]. This linear
relationship can be used to characterize the conductivity tensor. Once the
conductivity directions of anisotropy are determined, one needs only to re-
construct a cross-property factor which is a scalar function. In [46, 66], it
is shown how to recover this factor in Current Density Impedance Imag-
ing. In [9], a multifrequency electrical impedance approach is developed
for estimating the ratio between the largest and the lowest eigenvalue of
the electrical conductivity tensor. An iterative procedure for reconstruct-
ing anisotropic conductivities from internal current densities has been pro-
posed in [98].
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In the process of the MAT-MI experiment, the tissue is placed in a con-
stant static magnetic background field B0 = (0, 0, 1). A pulsed magnetic
stimulation of the form B1u(t) is applied, where the vector field B1 is con-
stant and u(t) is the time variation. Let γ denote the conductivity,Eγ denote
electric field, and Ω be the domain to be imaged. Then the electric field sat-
isfies the following Maxwell equations

∇× Eγ = B1 in Ω,
∇ · (γEγ) = 0 on Ω,
γEγ · ν = 0 on ∂Ω.

(4.1.1)

The second step of MAT-MI is to reconstruct γ from the known internal data
∇ · (γEγ ×B0) on Ω.

In this chapter, we will consider the anisotropic conductivity case with
γ being a tensor. With DTI, one can measure the water self-diffusion tensor,
which will characterize the electrical conductivity tensor [110]. Then we
can assume that the tensor γ is of the form

γ(x) = σ(x)D(x), (4.1.2)

with the tensor D(x) being measured from DTI and the cross-property fac-
tor σ being a scalar function to be reconstructed. We will focus on the sec-
ond step of MAT-MI combined with DTI, i.e., on reconstructing the cross-
property factor σ from the internal data given by∇·(γEγ×B0) with known
conductivity tensor D(x).

In the following, we assume that D(x) is a positive definite symmetric
matrix everywhere and write it as D = T

′
ΣT , where D = diag(e1, e2, e3),

e1 ≥ e2 ≥ e3 are the eigenvalues of D(x). The columns of T
′

are the corre-
sponding eigenvectors. As we can always write σ = σ0e1T

′
diag(1, e2/e1, e3/e1)T ,

we assume that e1 = 1 hereinafter.

4.2 Notation and preliminaries

In this section, we introduce the notation for the mathematical analysis. Let
Ω be a bounded Lipschitz domain in R3. A typical point x = (x1, x2, x3) ∈
R3 denotes the spatial variable. Throughout this chapter, the standard no-
tation for Hölder and Sobolev spaces and their norms is used. If there is no
confusion, we omit the dependence on the domain.

Assumption 1. Let σ and D be positive functions belonging to C1,β , β > 0 and
assume that

c1 ≤ σ(x) ≤ c2, ∀x ∈ Ω, (4.2.1)

and
λ‖ξ‖22 ≤ ξ

′
Dξ ≤ ‖ξ‖22, ∀ξ ∈ R3, (4.2.2)

for some constants λ, c1, c2 > 0.

Here we state several useful results on elliptic partial differential equa-
tions with Neumann boundary conditions.

We say that u ∈ H1 is a weak solution of the Neumann boundary value
problem {

∇ · (σD∇u) = −∇ · E, in Ω,
(σD∇u+ E) · ν = 0, on ∂Ω,

(4.2.3)
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if ∫
Ω
σD∇u · ∇ϕdx = −

∫
Ω
E · ∇ϕdx, ∀ϕ ∈ H1. (4.2.4)

We give a brief proof of the following regularity result and standard
energy estimate.

Proposition 3. Suppose that σ and D satisfy Assumption 1. For field E ∈ L2,
the Neumann problem (4.2.3) has a solution u ∈ H1. The solution u is unique up
to an additive constant and satisfies the estimate

‖∇u‖L2 ≤ c−1
1 λ−1‖E‖L2 . (4.2.5)

Proof. The proof of the existence and uniqueness up to an additive constant
is a standard result by the Lax-Milgram Theorem. We refer the readers to
[109]. In the following, we prove the gradient estimate (4.2.5).

It follows from the ellipticity condition (4.2.2) that

c1λ‖∇u‖2L2 ≤
∫

Ω
σ∇u ·D∇u dx.

Taking the test function ϕ in Definition 4.2.4 to be the solution u, we have
that ∫

Ω
σD∇u · ∇udx = −

∫
Ω
E · ∇u dx.

Consequently, applying the Cauchy-Schwarz inequality, we obtain that

c1λ‖∇u‖2L2 ≤
∣∣∣∣−∫

Ω
E · ∇udx

∣∣∣∣ ≤ ‖∇u‖L2‖E‖L2 ,

and (4.2.5) follows.

Proposition 4. Let σ and D satisfy Assumption 1. Then the system (4.1.1) is
uniquely solvable and there exists a constant C and Ci (1 ≤ i ≤ 3) depending on
λ, c1, c2 and Ω, such that

‖EσD‖L2 ≤ C1, (4.2.6)

‖EσD‖L∞(Ω) ≤ C2, (4.2.7)

‖EσD‖C1,γ(Ω) ≤ C3. (4.2.8)

Moreover, if σ1 and σ2 satisfy Assumption 1, we have the following bound for the
electric field difference,

‖Eσ1D − Eσ2D‖L2(Ω) ≤ C‖σ1 − σ2‖L2(Ω). (4.2.9)

‖Eσ1D − Eσ2D‖H1(Ω) ≤ C‖σ1 − σ2‖H1(Ω). (4.2.10)

Proof. Let us first reduce the system (4.1.1) to a Neumann boundary value
problem. Let Ẽ = 1

2(−y, x, 0). We can readily check that∇×Ẽ = B1. Hence
∇× (EσD − Ẽ) = 0 and we can write EσD = Ẽ +∇u. Substituting this into
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(4.1.1), we have that u solves the Neumann boundary value problem{
∇ · (σD∇u) = −∇ · (σDẼ), in Ω,

(σD∇u+ σDẼ) · ν = 0, on ∂Ω.
(4.2.11)

With the help of proposition 3, we get

‖EσD‖L2 ≤ C1.

From the standard Lp estimate for elliptic equations [35, Chapter 9] and
the Sobolev Embedding Theorem, we know thatEσD is a bounded function
in W 2,p(Ω) for any p > 2. Hence, EσD is uniformly bounded by a constant
C, which depends only on r0, λ, c1, c2, and Ω. Then (4.2.7) is proved.

With the assumption of C1,γ property, we would obtain the C2,γ Hölder
continuity[39] of u, i.e., theC1,γ continuity ofEσD. Estimate (4.2.8) has been
proven.

Next, we estimate the electric field difference. We denote Ei = EσiD, for
i = 1, 2. Note that E1 − E2 is curl-free. We set

∇u = E1 − E2.

Then, u satisfies the equation{
∇ · (σ1D∇u) = −∇ · ((σ1 − σ2)DE2), in Ω,
D∇u · ν = 0, on ∂Ω.

(4.2.12)

With the same argument for proving (4.2.6), we obtain that

‖∇u‖L2 ≤ c−1
1 λ−1‖(σ1 − σ2)DE2‖L2 .

Thus, we conclude from (4.2.7) that

‖E1 − E2‖L2 ≤ C‖(σ1 − σ2)‖L2 .

From the standard theory of elliptic equations

‖u‖H2(Ω) ≤ C‖∇ · ((σ1 − σ2)DE2)‖L2(Ω), (4.2.13)

which implies (4.2.10).

4.3 Uniqueness and stability

With the notation of the previous section, we will show the well-posedness
of the inverse problem in a certain functional space.

We prove the following theorem on the stability of the inverse problem.

Theorem 4.3.1. Let F (σ) = ∇ · (σDEσD × B0). Suppose Assumption 1 is
satisfied and σ1 − σ2 ∈W 1,∞

0 . If there exist constants K, L and η such that

‖∇σi‖L∞ ≤ K (4.3.1)

|1− λ| ≤ η (4.3.2)
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‖∇(σ1 − σ2)‖L2(Ω) ≤ L‖σ1 − σ2‖L2(Ω), (4.3.3)

then
c‖σ1 − σ2‖L2(Ω) ≤ ‖F (σ1)− F (σ2)‖L2(Ω) (4.3.4)

holds for some positive constant c.

Proof. We denote Ei = EσiD, i = 1, 2 and write the data difference as

F (σ1)− F (σ2) = ∇ · (σ1DE1 ×B0)−∇ · (σ2DE2 ×B0)

= ∇ · ((σ1 − σ2)DE1 ×B0) +∇ · (σ2D(E1 − E2)×B0).

Then, we can rewrite F (σ1)− F (σ2) as

F (σ1)− F (σ2) = I1 + I2 + I3 + I4,

where

I1 = ∇ · ((σ1 − σ2)E1 ×B0),

I2 = ∇ · (σ2(E1 − E2)×B0),

I3 = ∇ · ((σ1 − σ2)(D − I)E1 ×B0),

I4 = ∇ · (σ2(D − I)(E1 − E2)×B0),

where I is the identity matrix.
Next we multiply F (σ1)−F (σ2) by σ1−σ2 and integrate over Ω. For Ii,

i = 1, 2, 3, 4, we can estimate the integrals
∫

Ω(σ1−σ2)Ii separately. We have∫
Ω

(σ1 − σ2)I1dx =

∫
Ω

(
(σ1 − σ2)(σ1 − σ2)∇ · (E1 ×B0)

+(σ1 − σ2)∇(σ1 − σ2) · (E1 ×B0)

)
dx

=
1

2

∫
Ω

(σ1 − σ2)(σ1 − σ2)∇ · (E1 ×B0)dx

=
1

2
‖σ1 − σ2‖2L2(Ω).

Here we use the equality ∇ · (E1 × B0) = 1 which can be easily checked
from the identity∇ · (E1 ×B0) = B0 · (∇×E1)−E1 · (∇×B0) = 1. On the
other hand,∣∣∣∣∫

Ω
(σ1 − σ2)I2dx

∣∣∣∣ =

∣∣∣∣∫
Ω

(σ1 − σ2)∇σ2 · ((E1 − E2)×B0))dx

∣∣∣∣
≤ KC‖σ1 − σ2‖2L2(Ω).

Here the assumption (4.3.1) and inequality (4.2.9) have been used.
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Now we turn to the terms I3 and I4. We have∣∣∣∣∫
Ω

(σ1 − σ2)I3dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

(σ1 − σ2)(σ1 − σ2)∇ · ((D − I)E1 ×B0)

+(σ1 − σ2)∇(σ1 − σ2) · ((D − I)E1 ×B0))dx

∣∣∣∣
=

∣∣∣∣−∫
Ω

(σ1 − σ2)∇(σ1 − σ2) · ((D − I)E1 ×B0)dx

∣∣∣∣
≤ ηLC‖σ1 − σ2‖2L2(Ω).

In the last inequality we have used estimate (4.2.7) together with the as-
sumptions (4.3.2) and (4.3.3). Finally, we have∣∣∣∣∫

Ω
(σ1 − σ2)I4dx

∣∣∣∣ =

∣∣∣∣ ∫
Ω

(σ1 − σ2)σ2∇ · ((D − I)(E1 − E2)×B0)

+(σ1 − σ2)∇σ2 · ((D − I)(E1 − E2)×B0))dx

∣∣∣∣
=

∣∣∣∣−∫
Ω
σ2∇(σ1 − σ2) · ((D − I)(E1 − E2)×B0)dx

∣∣∣∣
≤ ηLC‖σ1 − σ2‖2L2(Ω).

Here we have used the assumptions (4.3.2), (4.3.3) and inequality (4.2.9).

Let K and η be such that KC + 2ηLC < 1
2 . We obtain∫

Ω
(σ1 − σ2)(F (σ1)− F (σ2)) ≥ c‖σ1 − σ2‖2L2(Ω),

for some constant c, which proves the theorem.

Now we are ready to introduce a functional framework for which the
inverse problem is well defined. We assume that σ is known on the bound-
ary of Ω. In what follows, we let σ∗, the true cross-property factor of Ω,
belong to a bounded convex subset of C1,β(Ω) given by

S̃ = {σ := σ0 + α|α ∈ S},

where σ0 is some positive function satisfying Assumption 1 and

S = {α ∈ C1,β
0 (Ω)| c1 ≤ α+ σ0 ≤ c2, |∇(α+ σ0)|L∞ ≤ K,

‖∇α‖L2(Ω) ≤ L‖α‖L2(Ω), ‖α‖L2(Ω) ≤ c3}
(4.3.5)

with c1, c2, c3 and c3 being positive constants. In other words, we can write
S̃ = σ0 + S.

It is clear that the distribution of the electric field EσD depends nonlin-
early on the factor σ and∇·(σDEσD×B0) is nonlinear with respect to σ. We
first examine the Fréchet differentiability of the forward operator F . Then,
some useful properties of the Fréchet derivative at σ, DF [σ], are presented.
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To introduce the Fréchet derivative, we consider the following Neu-
mann boundary value problem{

∇ · (σD∇ϕh) = −∇ · (hDEσD), in Ω,
(σD∇ϕh + hDEσD) · ν = 0, on ∂Ω,

(4.3.6)

and{
∇ · (σD∇Φg) = −∇ · (σD(B0 ×∇g)), in Ω,
(σD∇Φg + σD(B0 ×∇g)) · ν = 0, on ∂Ω,

(4.3.7)
where h ∈ S is the increment to the factor σ.

By the same arguments as those in [90], together with Theorem 4.3.1, it
is natural to conclude the following result that insures the well-posedness
of the inverse problem.

Theorem 4.3.2. For σ and D satisfying Assumption 1 and (4.3.2), the operator F
is bounded and Fréchet differentiable at σ ∈ S̃. Its Fréchet derivative at σ, DF [σ],
is given by

DF [σ](h) = ∇ · ((σD∇ϕh + hDEσD)×B0), (4.3.8)

where ϕh solves (4.3.6). Meanwhile, DF [σ]∗, i.e., the adjoint of DF [σ] is defined
as below,

DF [σ]∗(g) = −DEσD · ∇Φg −∇g · (DEσD ×B0), (4.3.9)

where Φg solves (4.3.7). Furthermore, we have the following stability result,

c‖h‖L2(Ω) ≤ ‖DF [σ](h)‖L2 ≤ C‖h‖L2(Ω), ∀h ∈ S, (4.3.10)

for some constant C which depends on λ, c1, c2 and Ω and the constant c is defined
in Theorem 4.3.1.

Proof. The definition ofDF [σ](h) and (4.3.10) follow from [90] and Theorem
4.3.1. Here we only give a brief proof of the formulation of DF [σ]∗.

First by multiplying (4.3.6) by Φg and (4.3.7) by ϕh, we get after an inte-
gration by parts,∫

Ω
σD(B0 ×∇g) · ∇ϕhdx = −

∫
Ω
σD∇ϕh · ∇Φgdx =

∫
Ω
hDEσD · ∇Φgdx.

(4.3.11)
Then we are ready to compute DF [σ]∗(g). We have∫

Ω
DF [σ](h)gdx =

∫
Ω
∇ · ((σD∇ϕh + hDEσD)×B0)gdx

= −
∫

Ω
((σD∇ϕh + hDEσD)×B0) · ∇gdx

= −
∫

Ω
−σD∇ϕh · ∇Φg + h(DEσD ×B0) · ∇gdx

= −
∫

Ω
hDEσD · ∇Φg + h(DEσD ×B0) · ∇gdx.

This proves (4.3.9).
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4.4 The reconstruction method

4.4.1 Optimization scheme

It is natural to formulate the reconstruction problem for σ∗ as a least-square
problem. To find σ∗ we minimize the functional

J(σ) =
1

2
‖F (σ)− F (σ∗)‖2L2(Ω)

over σ ∈ S̃.
We can now apply the gradient descent method to minimize the dis-

crepancy functional J . Define the iterates

σn+1 = T [σn]− µDJ [T [σn]], (4.4.1)

where µ > 0 is the step size and T [f ] is any approximation of the Hilbert

projection fromL2(Ω) onto S̃ with S̃ being the closure of S̃ (in theL2-norm).
The presence of the projection T is necessary because σn might not be in

S̃.
Using the definition of J we can show that the optimal control algorithm

(4.4.1) is nothing else than the following projected Landweber iteration [68,
42, 49] given by

σn+1 = T [σn]− µDF ∗[T [σn]](F (T [σn])− F (σ∗)). (4.4.2)

For completeness, we state the convergence result of Landweber scheme
here without proof. We refer to [7, 49] for details.

Theorem 4.4.1. The sequence defined in (4.4.2) converges to the true cross-property
factor σ∗ of Ω in the following sense: there exists ε > 0 such that if ‖T [σ1] −
σ∗‖L2(Ω) < ε, then

lim
n→+∞

‖σn − σ∗‖L2(Ω) = 0.

4.4.2 A quasi-Newton method

It has been observed in [90] that the challenge of the Landweber iteration
lies in the difficulty of evaluating the adjoint operator of the Fréchet deriva-
tive. To avoid taking too many derivatives, we introduce a more efficient
way to reconstruct the conductivity. This is a generalization of the quasi-
Newton method proposed in [90] for the anisotropic case with known con-
formal class. In the following, we describe this algorithm and prove its
convergence in S̃.

Let σ be the scalar conductivity distribution function and let D be the
known conformal class matrix-valued function. The forward operator is
given by

F (σ) = ∇ · (σDEσD ×B0),

where Eσ satisfies the system
∇ · (σDEσD) = 0, in Ω,

∇× EσD = B1, in Ω,

σDEσD · ν = 0, on ∂Ω.
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Algorithm 4.4.1.

Step 0. Select an initial conductivity σ1 ∈ S̃ and set k = 1.
Step 1. Calculate the associated electric fieldEk by solving the boundary value

problem 
∇× Ek = B1, in Ω,
∇ · (σkDEk) = 0, in Ω,
σkDEk · ν = 0, on ∂Ω.

(4.4.3)

Step 2. Calculate the updated conductivity by solving the stationary advection-
diffusion equation with the inflow boundary condition:{

∇ · (σk+1/2DEk ×B0) = g, in Ω,

σk+1/2 = σ∗, on ∂Ω−,
(4.4.4)

where ∂Ω− = {x ∈ ∂Ω | DEk(x)×B0 · ν(x) < 0}.
Step 3. Let σk+1 = T [σk+1/2], where T is the Hilbert projection operator onto

S̃. Set k = k + 1 and go to (4.4.3).

4.4.3 Convergence analysis

In the algorithm above, one updates the electric field E and then updates
the cross-factor σ later. Using the same argument as for proving the well-
posedness, we could get the following convergence results.

Theorem 4.4.2. Suppose that the cross-factor σ∗ ∈ S̃ and D satisfies Assumption
1 and (4.3.2). Let {σk} be determined by the Algorithm 4.4.1. Then for proper
constants K,L and η in (4.3.5) and (4.3.2), there exists a constant c < 1 such that

‖σk+1 − σ∗‖L2(Ω) ≤ c‖σk − σ∗‖L2(Ω). (4.4.5)

Proof. Note that T is a projection and S̃ is convex. Then, we have that T is
nonexpansive and ‖σk+1−σ∗‖ ≤ ‖σk+1/2−σ∗‖ follows. It is left to estimate
‖σk+1/2 − σ∗‖.

First we subtract∇ · (σ∗DEk ×B0) from both sides of (4.4.4)to get

∇ · ((σk+1/2 − σ∗)DEk ×B0) = ∇ · (σ∗D(E∗ − Ek)×B0). (4.4.6)

Multiplying by σk+1/2 − σ∗ and integrating over Ω yields∫
Ω

(σk+1/2−σ∗)∇·((σk+1/2−σ∗)DEk×B0) =

∫
Ω

(σk+1/2−σ∗)∇·(σ∗D(E∗−Ek)×B0).

(4.4.7)
We split the terms into∫

Ω
(σk+1/2 − σ∗)∇ · ((σk+1/2 − σ∗)Ek ×B0)

+(σk+1/2 − σ∗)∇ · ((σk+1/2 − σ∗)(D − I)Ek ×B0)

=

∫
Ω

(σk+1/2 − σ∗)∇σ∗ · (D(E∗ − Ek)×B0) + (σk+1/2 − σ∗)σ∗∇ · ((D − I)(E∗ − Ek)×B0).

Integrating by parts gives
∫

Ω(σk+1/2 − σ∗)∇ · ((σk+1/2 − σ∗)Ek × B0) =
1
2‖σk+1/2 − σ∗‖2L2(Ω).
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The second term in the left hand side can be estimated as follows:∣∣∣∣∫
Ω

(σk+1/2 − σ∗)∇ · ((σk+1/2 − σ∗)(D − I)Ek ×B0)

∣∣∣∣
=

∣∣∣∣∫
Ω

(σk+1/2 − σ∗)2∇ · ((D − I)Ek ×B0)

∣∣∣∣
≤ Cη‖σk+1/2 − σ∗‖2L2(Ω).

Here the smallness of D − I and the C1 property of Ek (4.2.8) have been
used.

For the right hand side, we have∣∣∣∣∫
Ω

(σk+1/2 − σ∗)∇σ∗ · (D(E∗ − Ek)×B0)

∣∣∣∣ ≤ CK‖σk+1/2−σ∗‖L2(Ω)‖σk−σ∗‖L2(Ω),

and ∣∣∣∣∫
Ω

(σk+1/2 − σ∗)σ∗∇ · ((D − I)(E∗ − Ek)×B0)

∣∣∣∣
≤ Cη‖σk+1/2 − σ∗‖L2(Ω)‖σk − σ∗‖H1(Ω)

≤ C(L+ 1)η‖σk+1/2 − σ∗‖L2(Ω)‖σk − σ∗‖L2(Ω).

Here we have used property (4.2.10) and the fact that σk ∈ S̃.
With the above estimates, as we did in Theorem 4.3.1, let KC + η(L +

2)C < 1
2 . We derive

‖σk+1/2 − σ∗‖L2(Ω) ≤ c‖σk − σ∗‖L2(Ω), (4.4.8)

where c is a constant smaller than 1. Hence,

‖σk+1 − σ∗‖L2(Ω) ≤ c‖σk − σ∗‖L2(Ω), (4.4.9)

which proves the theorem.

4.4.4 Numerical experiments

In this section, we present some numerical experiments to validate the re-
construction method proposed in Algorithm 4.4.1 and evaluate its robust-
ness to measurement noise. To simplify the computation, we convert this
three-dimensional problem into an equivalent two-dimensional problem
assuming that the domain of interest is the cube [0, 1]3 and the conductivity
and the diffusion tensors are invariant along the third dimension. More-
over, we assume that the diffusion tensor D is of form

D =

d11 d12 0
d21 d22 0
0 0 1

 , (4.4.10)

where dij ’s are constant plus some perturbations as shown in Figure 4.1.
The non-zero part of the perturbation functions are used to characterize the
anisotropy.
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(a) d11 (b) d12 (c) d22

FIGURE 4.1: Components of the diffusion tensor.

We use a uniform finite element triangular mesh over the two-dimensional
unit square. The number of cells is 256 in each direction. The total num-
ber of triangles and vertices are 217 and 2572, respectively. Both the el-
liptic equation with a Neumann boundary condition and the stationary
advection-diffusion equation are solved using the finite element method
of first order implemented with FEniCS [73]. The internal data F (σ) used
for the reconstruction are synthetic data that are generated using the same
solver. These data are commonly used to refer to the “noise-free” data, al-
though they may contain some numerical errors.

For all examples, we use the same initial guess, constant function 0.2,
and the same true cross-property factor (Figure 4.2(a)) given by

σ(x1, x2) =


0.6, r ≤ 0.12,

0.4s3(6s2 − 15s+ 10) + 0.2, 0.12 < r < 0.46,

0.2, others ,

where r(x1, x2) =
√

(x1 − 0.5)2 + (x2 − 0.5)2 and s = 0.46−r
0.12 . The inter-

nal data generated with the diffusion tensor as in (4.4.10) is shown in Fig-
ure 4.2(b). We also produce the data in the isotropic case (Figure 4.2(c)).
The effect of the anisotropy can be observed clearly. The error-decay of the
reconstruction with the noise-free data is shown in Figure 4.4(a). The final
error is smaller than 2× 10−3. We only display the last iterate here.

This inverse problem bears a Lipschitz type stability and we avoid low-
ering the regularity of the cross-property factor using Algorithm 4.4.1. There-
fore, the robustness of the reconstruction scheme to noisy data is expected.
We perform the numerical tests with noisy data by perturbing the internal
functional g in the following way:

gδ = g + δ‖g‖ w

‖w‖
,

where w is a function taking values uniformly distributed in [−1, 1] and δ is
the noise level.

Figure 4.3 shows the noisy data with noise level δ = 24% and the recon-
structed cross-property factor. We do not use further regularization tech-
niques since the regularization method may depend on the type of the noise
in practical cases. But the projection onto the feasible space acts as a regu-
larization scheme.
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(a) True conductivity (b) Internal data (c) Internal data with
isotropic diffusion tensor

FIGURE 4.2: Conductivity distribution and the internal
data.

(a) Noisy data (b) Reconstructed σ

FIGURE 4.3: Reconstruction with noisy data (δ = 24%).

(a) Error decay with noise-free data. (b) Reconstruction error versus noise
level.

FIGURE 4.4: Reconstruction error.
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4.5 Concluding remarks

In this chapter, we have considered the reconstruction of an anisotropic con-
ductivity from MAT-MI data which is conformal to a known diffusion ten-
sor measured from DTI. The data is the internal functional ∇ · (σEσ × B0)
throughout the domain. We have analyzed the linearization of the prob-
lem and the stability of the inversion. A local Lipschitz type stability esti-
mate has been established for a certain class of anisotropic conductivities.
A quasi-Newton type reconstruction method with projection has been in-
troduced and its convergence has been proved. Numerical experiments
demonstrate the effectiveness of the proposed approach and its robustness
to noise.

In light of the numerical experiments, we have the following observa-
tions.

1. The effect of the electrical anisotropy is remarkably significant and
can not be neglected in the reconstruction of electrical conductivity in
MAT-MI.

2. There is still a room for improvement of the admissible class of con-
ductivities. The convergence of the proposed algorithm has been ob-
served for more general cases.

3. For the inversion with noisy data, oscillation in the reconstructed con-
ductivity is observed. Regularization methods prompting sparsity,
such as total variation regularization may be employed for a more
stable reconstruction.
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Chapter 5

Analysis of cell model for
electropermeabilization

5.1 Introduction

In this chapter, we give the analysis of the cell model for electroperme-
abilization and use a homogenization method to show the effects of cell
parameter to the effective conductivity.

The technique of electropermeabilization (formerly referred to as elec-
troporation) is employed to make the chemotherapeutical treatment of can-
cer more efficient and avoid side-effects. Instead of spreading out drugs
over the whole body, electropermeabilization makes it possible to focus
drug application on special areas. The mechanism of electropermeabiliza-
tion relies on careful exposition of biological tissue to electrical fields: this
changes the membrane properties of the cells such that treatment can enter
more easily just at precisely defined areas of the tissue [54, 81].

The local change in microscopic tissue properties, which electroperme-
abilization effects, occurs only with field strengths above a certain thresh-
old. On the other hand, too strong fields result in cell death. One therefore
thinks of electropermeabilization occurring within a certain threshold of in-
tensity of the local electric field [26].

For treatment planning in electropermeabilization, one is interested in
the percentage of electroporated cells over the whole tissue to form deci-
sions in the short term how to gear treatment [64, 26, 81].

One would like supervise the electropermeabilization using measure-
ments of the electric field distribution with image modalities like in [64]. In
that work, measurements of magnetic resonance electrical impedance to-
mography [97] have been employed to find the electrical field distribution.
A threshold is then applied to find the electroporated cells.

Yet this approach is only the first step in a larger program:

• the electrical field distribution reconstructed by an imaging modality
is a macroscopic quantity;

• the thresholding hypothesis is a simplification and should be refined
[26];

• the minimum transmembrane voltage governing electropermeabiliza-
tion is determined by specific cell characteristics like the curvature of
the cell membrane [67].

One solution to find about microscopic parameters from measurements is
to take general models and do a specific parameter fitting with preselected
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cells like in [26]. In clinical practice, though, a preselected cell population
may be unavailable for the analysis.

In this chapter, we tackle the next step in electropermeabilization mon-
itoring and investigate the question to determine microscopic parameters
from macroscopic measurements. The modelling used stems from general
physiological tissue models for cells, asymptotically simplified by Neu and
Krassowska [83]. Whereas the mathematical well-posedness of the model
of that model is not available in the literature, there exists an investigation
of well-posedness for a similar model in [58]. In this chapter, demonstrate
the local well-posedness of the asymptotic cell model of [83], as well as the
absence of a blow up. A variant of the model is shown to be globally well-
posed.

In order to describe the relation between macroscopic and microscopic
quantities, we apply the homogenization scheme in [4] to the cell model
of Neu and Krassowska [83]. This not only describes isotropic effective
parameters such as classical theory [85], but includes also anisotropy. We
provide a convergence analysis for the homogenized solution.

Then we study numerically the sensitivity of the effective parameters
to:

• the conductivities of the extra- and intracellular media;

• the shape of the cell membrane;

• the volume fraction of the cells;

• the lattice structure of the cells.

We refer to research in [67, 55, 80, 84, 89], where these critical parameters for
electropermeabilization have been investigated, partly from an empirical or
computer simulation point of view.

The structure of the chapter is as follows. In Section 5.2, we introduce
the model of [83] on the cellular scale. In Section 5.3, we investigate its well-
posedness properties. In Section 5.4, we perform the homogenization and
show the convergence of the homogenized solution. In Section 5.5, we pro-
vide a sensitivity analysis of the effective parameters, showing dependence
on microscopic properties, summarized in Table 5.2. A discussion and final
remarks in Section 5.6 conclude the article.

5.2 Modelling electropermeabilization on the cellular
scale

5.2.1 Membrane model

Let Y b Rd be a bounded domain representing the cell, and let Γ ⊂ Y be
the membrane of the cell. Let

Y \ Γ = Yi ∪ Ye,

where Yi (resp. Ye) is be the inner (resp. the outer) domain. Let σi(x) be the
conductivity of the cell domain Yi, and σe(x) be the conductivity outside
the cells on Ye.
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Let u0 be an imposed voltage on the boundary of Y . An electrostatic
model for the electrical field u(x, t) on Y in the inner and outer domain is

∇ · (σ(x) ∇u(x, t)) = 0 on Y \ Γ = Yi ∪ Ye, (5.2.1)
u = u0 on ∂Y , with ∆u0 = 0 in Y,

(5.2.2)

σen¯
· ∇u+ = σin¯

· ∇u− = σn
¯
· ∇u = σ∂nu on Γ. (5.2.3)

Here and throughout this chapter, ∂n denotes the normal derivative.

5.2.2 Electropermeabilization models

In addition to the membrane model, a time-varying conductivity σm(x, t)
for x ∈ Γ is taken account of. The general effect of electropermeabilization
is described by relating σm and the membrane thickness δ to the transmem-
brane potential (TMP) jump u+(x, t) − u−(x, t) := [u](x, t) in an ordinary
differential equation (ODE) on Γ:

σ(x)n
¯
· ∇u(x, t) =

cm
δ
∂t[u](x, t) +

σm ([u](x, t), t)

δ
[u](x, t) on Γ. (5.2.4)

Here, the vector n
¯

is the outward normal to Γ, ∂n is the normal derivative,
the superscripts ± denote the limits for outside and inside Yi, and cm is a
positive constant.

The membrane conductivity σm in (5.2.4) is described by different mod-
els. In [55], Mir et al. propose a static model based on

σm([u]) = σm0 +K (eβ[u] − 1), (5.2.5)

for some constants σm0,K, and β, and used the model (5.2.1)-(5.2.4) and
(5.2.5) as a boundary-value problem for an elliptic equation with nonlinear
transmission conditions at the membrane.

The classical and more involved model for σm due to Neu and Kras-
sowska [83] is explained in the following. It assumes that σm is the sum
of σm0 and an electropermeabilization current. The latter is proportional to
the pore density N , which in turn is governed by an ordinary differential
equation:

σm([u], t) = σm0 + βN([u], t) on Γ×]0, T [,

(5.2.6)

N([u], 0) = N0(x) on Γ,
(5.2.7)

∂tN([u], t) = α e

(
[u](x,t)
Vep

)2 (
1− N([u], t)

N0
e
−q
(

[u](x,t)
Vep

)2)
on Γ×]0, T [,

(5.2.8)

where α, β, q, and N0 are constants, Vep is the minimum transmembrane
voltage for electropermeabilization, and T is the final time.
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Given the condition

u(x, t) = uref on Y for t < 0, (5.2.9)

the initial value problem (5.2.1)-(5.2.4) and (5.2.6)-(5.2.9) is then solved on
Y×]0, T [.

Another model for σm has been developed in [58]. Together with (5.2.6),
(5.2.7), one uses the dynamics

∂tN([u], t) = max
(
β([u])−N([u],t)

τep
, β([u])−N([u],t)

τres

)
with

β(λ) = (1 + tanh(kep(|λ| − Vep)))/2,

and given constants τep, τres, and kep.

5.3 Wellposedness of the electropermeabilization model

In this section, we treat the classical electropermeabilization model model
(5.2.1)-(5.2.4) and (5.2.6)-(5.2.9) and study it in the form of an ODE on the
membrane Γ.

As a preliminary step, let us prove the following representation of the
pore density N .

Lemma 5.3.1. (i) For [u] = v, the solution of the initial value problem in
(5.2.7), (5.2.8) is

N(x, t) = e
−
∫ t
0

α
N0

e
(1−q)

(
v(x,τ)
Vep

)2

dτ
N0+

∫ t

0
α e

(
v(x,s)
u0

)2

e
−
∫ t
s

α
N0

e
(1−q)

(
v(x,τ)
Vep

)2

dτ
ds

 .

(5.3.1)

(ii) The pore density N , considered as a mapping v(x, t) 7→ N(v(x, t), t)

C([0, T ], C(Γ))× [0, T ]→ C([0, T ], C(Γ)), (5.3.2)

maps bounded sets to bounded sets.

Proof. Note that the solution to a linear inhomogeneous ordinary differen-
tial equation

∂

∂t
N(t) = A(t)N(t) + b(t) (5.3.3)

is given by [3, Thm. 5.14]

N(t) = U(t, 0) N0 +

∫ t

s
U(t, s) b(s) ds, (5.3.4)

where

U(t, s) =

∫ t

s
A(τ) dτ.

Equation (5.2.8) is a special form of (5.3.3), and the coefficients A and b are

A(t) = − α

N0
e

(1−q)
(

[u](t)
Vep

)2

,
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and

b(t) = α e

(
[u](t)
Vep

)2

.

Inserting A and b into the general solution (5.3.4), we directly obtain the
representation (5.3.1) in (i).

Using the norm ‖v‖C(Γ) = supx∈Γ |v(x)|, the boundedness property in
(ii) is then immediate.

Remark 5.3.1. In practice, it is clear that the potential v stays finite. One may
therefore choose a real number M > 0 and work instead of N(v, t) with the func-
tion

NM (v, t) := N(vM , t) with vM :=


|v| |v| ≤M
M |v| > M
−M |v| < M

. (5.3.5)

For ‖v‖L∞(Γ) < M , this cutoff preserves the pore density: NM (v, t) = N(v, t).
In Lemma 5.3.3, it is shown that the function v 7→ NM (v, t)vM , considered in
C((0, T );L2(Γ)), has a global Lipschitz property.

5.3.1 Reduction to an ordinary differential equation

Definition 1 (Stekhlov-Poincaré operators). LetHs(Γ) be the standard Sobolev
space on Γ of order s. Let f ∈ H

1
2 (Γ) be given. Define solutions of Dirich-

let boundary value problems and assign the Neumann data via the Stekhlov-
Poincaré operators Λc, Λe: H1/2(Γ)→ H−1/2(Γ) and Λ0: H1/2(∂Ω)→ H−1/2(Γ),

Λcf := ∂nP1, Λef := ∂nP2, Λ0f := ∂nP3,

where Pi, i = 1, 2, 3 are solutions to{
∆P1 = 0 in Yi,
P1 = f on Γ,

and 
∆P2 = 0 in Ye,
P2 = 0 on ∂Y,
P2 = f on Γ,


∆P3 = 0 in Ye,
P3 = f on ∂Y,
P3 = 0 on Γ.

The following results hold.

Lemma 5.3.2. (i) Solving the problem (5.2.1)-(5.2.4) and (5.2.6)-(5.2.9) for u =
(ui, v, ue) on Yi ∪ Γ ∪ Ye is equivalent to solving the initial value problem

cm
δ
∂tv +

σm
δ

(v, t)v + ΛcB
−1v = G,

v(0) = ϕ,
(5.3.6)

for v on Γ, with the correspondence

ui = −B−1(v + Λ−1
e Λ0g),

ue = ui + v.

Here, B = Id+ Λ−1
e Λ0, G = −ΛcB

−1Λ−1
e Λ0g, and

σm(v, t) = σm0(x) + βN(v, t). (5.3.7)
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(ii) The linear operator ΛcB
−1 : H1(Γ) → L2(Γ) is m-accretive. In particular,

one has
∀v : 〈ΛcB−1v, v〉L2 ≥ 0, (5.3.8)

where 〈 , 〉L2 is the scalar product on L2(Γ).

Proof. The reduction of the time-dependent model on Ω to the initial value
problem on Γ in (5.3.6), using the Steklov-Poincaré operators, is the same
as in [58, Lemma 9]. The property in (ii) is shown in [58, Lemma 8].

For establishing existence and uniqueness results (in Theorem 5.3.1), we
use the following lemma on the Lipschitz property of the function NM in-
troduced in Remark 5.3.1.

Lemma 5.3.3. LetM > 0, and letNM (v, t) = N(vM , t) with vM = sgn(v) min(|v|,M)
be the modified pore density defined by (5.3.5). Then

v 7−→ NM (v, t)vM

is global Lipschitz in C((0, T );L2(Γ)).

Proof. Let v1, v2 ∈ C((0, T );L2(Γ)). One has the algebraic identity

N(v1M , t)v1M −N(v2M , t)v2M =(
N(v1M , t)v1M −N(v1M , t)v2M

)
+
(
N(v1M , t)v2M −N(v2M , t)v2M

)
.

(5.3.9)

Using the boundedness of vM , (5.3.9) shows that it suffices to prove that
N(vM , t) is global Lipschitz in C((0, T );L2(Ω)).

Consider the explicit form of N(v, t) in (5.3.1). As ‖vM‖L∞ ≤ M , there
exists a constant L(M) such that

|N(v1M , t)−N(v2M , t)|2 ≤ L(M)

∫ t

0
|v1(x, s)− v2(x, s)|2ds. (5.3.10)

Therefore, we have

‖N(v1M , t)v1M −N(v2M , t)v2M‖C((0,T );L2(Γ)) ≤ C(M)‖v1 − v2‖C((0,T );L2(Γ)),
(5.3.11)

and the global Lipschitz property of NM in C((0, T );L2(Ω)) holds.

Using Lemma 5.3.3, we now come to the well-posedness results. For
this end, we introduce the following auxiliary problem. As a variant to
(5.2.4), we consider

σ(x)n
¯
· ∇u(x, t) =

cm
δ
∂t[u](x, t) +

σm ([u]M (x, t), t)

δ
[u]M (x, t) on Γ. (4’)

Using the same procedure as in Lemma 5.3.2, we find that the model
(5.2.1)-(5.2.3),(4’) and (5.2.6)-(5.2.9) is equivalent to solving

cm
δ
∂tṽ +

σm(ṽM , t)

δ
ṽM + ΛcB

−1ṽ = G,

ṽ(0) = ϕ.
(5.3.12)
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Let us now state the well-posedness properties of our initial value prob-
lems on Γ.

Theorem 5.3.1. Let G ∈ C1((0, T );H1(Γ)) and ϕ ∈ H2(Γ).

(i) The initial value problem in (5.3.12) has a unique global solution ṽ ∈ C([0, T ];H2(Γ)).

(ii) For the initial value problem (5.3.6), there is a t0 > 0 such that there exists
a solution v ∈ C([0, t0[;H2(Γ)).

(iii) The solution in (ii) is unique on C([0, t1], H2(Γ)) for any closed interval
[0, t1] ⊂ [0, t0[.

Proof. (i): Let M > ‖ϕ‖L∞ be a constant and consider the initial value prob-
lem (5.3.12). Fix a number T > 0.

Due to the global Lipschitz property of NMvM shown in Lemma 5.3.3,
one can apply the fixed point argument in [58, Thm.10]) to conclude that
there exists a unique solution ṽ ∈ C([0, T ];L2(Γ)) solving (5.3.12).

If one additionally assumes that G ∈ C1([0, T ];H1(Γ)) and ϕ ∈ H2(Γ),
then one can likewise conclude ṽ ∈ C1([0, T ];H2(Γ)). Then we have that
∂nui ∈ L2(Γ). With such boundary regularity, we infer ũi ∈ H3/2(Yi), sim-
ilarly ũe ∈ H3/2(Ye). Then ṽ = ũe − ũi ∈ C([0, T ];H1(Γ)). Using this
argument once again, we have that ṽ = ũe − ũi ∈ C([0, T ];H2(Γ)).

(ii): We will now show that the solution ṽ to (5.3.12) found in point (i)
solves locally the original problem (5.3.6). – Using the Sobolev embedding
theorem one has that

ΛcB
−1ṽ ∈ C([0, T ];H1(Γ)) ↪→ C([0, T ];C(Γ)).

Take a constant CM such that, for any t ≤ T , one has∥∥∥∥σm(ṽM , t)

δ
ṽM + ΛcB

−1ṽ +G

∥∥∥∥
C(Γ)

≤ CM .

Define

t0 :=
cm
δ

M − ‖ϕ‖L∞
CM

.

Then, for t ≤ t0, one gets

‖ṽ(x, t)‖L∞(Γ) ≤ ‖ϕ‖L∞ + tCM ,

≤M.

But for ‖ṽ‖∞ < M , one has that ṽM = ṽ and NM (ṽ, t) = N(ṽ, t). There-
fore, the expressions in (5.3.6) and (5.3.12) are the same, which implies that,
locally, ṽ solves as well the original initial value problem (5.3.6).

(iii): Take two solutions v, w to (5.3.6) inC1([0, t1], H2(Γ)). Due to closed-
ness of [0, t1] and continuity of the norm ‖.‖H2 → R, there exists a M > 0
such that for every t ∈ [0, t1], one has

‖v(t)‖H2 < M and ‖w(t)‖H2 < M.

But then the cutoff with respect toM does not change the functions: vM = v
and wM = w. Therefore, v and w also solve (5.3.12). But for that ODE, one
has a global uniqueness property. Therefore v = w on [0, t1].
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We now give a more detailed analysis of the terms in equation (5.3.6) to
show that a solution cannot blow up in finite time (see Theorem 5.3.2).

Note that for σm given by (5.2.6), there exists a C ∈ R such that one has
for all v that

〈σm(v, t)v, v〉L2 ≥ C‖v‖2L2 . (5.3.13)

This immediately follows from the expression of the membrane conductiv-
ity in (5.2.6) and the fact that both the pore density N as well as NM in
(5.3.5) are positive.

Theorem 5.3.2. For a function v ∈ C1([0, t0[, L2(Γ)) which solves (5.3.6), it is
impossible that

‖v(tk)‖L2(Γ) −→t→b ∞ for b ∈ [0, t0[.

Proof. Take as an indirect assumption a blow up-sequence ‖v(tk)‖X → ∞
with tk → b. Without loss of generalization, we may choose tk ∈ [0, t0[ ∩W ,
where W is a neighborhood of b such that v is nonzero on [0, t0[ ∩ W . Due
to the C1-regularity property of v(t) and v 6= 0, the function

[0, t0[ ∩W → R : t 7−→ ‖v(t)‖L2

is then continuously differentiable.
The sequence tk → b(x) having the Cauchy property, the slope of the

secants satisfies
|‖v(tk+1)‖−‖v(tk)‖|

tk+1 − tk
−→∞,

as well. We then will work with a sequence τk such that

∂t‖v(τk)‖L2 −→∞, (5.3.14)

chosen by the mean-value theorem.

Consider equivalently to (5.3.6) the equation

σ(v)v = G− Cm∂tv − ΛcB
−1v.

Take the L2-scalar product with v and take account of 〈∂tv, v〉 = ‖v‖ ∂t‖v‖.
Then estimate the right-hand side with the Cauchy-Schwarz inequality and
the accretivity property (5.3.8):

〈σ(v)v, v〉L2 = 〈G, v〉L2 − Cm〈∂tv, v〉L2 − 〈ΛcB−1v, v〉L2 ,

≤ ‖G‖L2‖v‖L2 − Cm‖v‖L2 ∂t‖v‖L2 .

Divide by ‖v‖L2 to find

〈σ(v)v, v〉2
‖v‖L2

≤ ‖G‖L2 − Cm∂t‖v‖L2 . (5.3.15)

From (5.3.13), we already know that the left-hand side stays positive.
Evaluate then expressions in inequality (5.3.15) for the sequence τk in

(5.3.14). The result is that the right-hand side would tend to −∞, which is
impossible. This shows that no blow up of v in L2 can occur.
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5.4 Homogenization

Let Ω be a bounded domain in R2, which carries a periodic structure made
up by periodic open sets εY . The reference domain Y = Yi∪Ye∪Γ contains
a cell inside with membrane Γ, where Yi is the intracellular domain and Ye
is the extracellular domain. The whole domain Ω is thus composed of

Ω = Ω+ ∪ Ω− ∪ Γε,

where Ω+ is the collection of extracellular domains, Ω− is the collection of
intracellular domains and Γε is the collection of membranes.

We write the thickness of the membrane of the cells εY in the form

δ = ε δ0,

where ε is the scale of the cell and δ0 is the reference cell membrane thick-
ness for Y .

As in [10], we want to study behavior of the electrical field on this cell
cluster and recover features of the microscopic cell model from tissue mea-
surements. Considering the cell model in (5.2.1)-(5.2.4) and (5.2.6)-(5.2.9)
for a domain Y , we first give the model equation for uε in Ω:

∇ · (σ(x)∇uε(x, t)) = 0 in Ω+,

∇ · (σ(x)∇uε(x, t)) = 0 in Ω−,

[σ∇uε · n] = 0 on Γε,

cm
δ

∂

∂t
[uε] +

1

δ
σm([uε]M , t)[uε]M = σ∂nu

−
ε on Γε,

[uε](x, 0) = Sε on Γε,

uε(x, t) = 0 on ∂Ω,

(5.4.1)

where Sε(x) = εS1(x, xε ) + R(ε) and σm = σm0 + βN([uε], t). The pore
density N([uε], t) is governed by (5.2.8).

Here, in the second equation on Γε, the quantity [uε]M is understood in
the sense of the definition in (5.3.5), i.e., [uε]M = sgn([uε]) min(|[uε]|,M) for
a constant M > 0.

Given the physical observation that the voltage v stays bounded, it is
reasonable that for proper M > 0, the system (5.4.1) is an accurate model
for the real potential. Given Lemma 5.3.2 and Theorem 5.3.1, it is also well-
posed.

We want to explore the limit of the solution uε as ε → 0. For this end,
we start with an energy estimate on the solution uε which will be needed
later when investigating the limit.

Proposition 5. (i) We have for uε in (5.4.1) the energy estimate∫ t

0

∫
Ω
σ|∇uε|2dx dt+

1

ε

∫
Γε

[uε]
2(x, t)dS ≤ C. (5.4.2)

(ii) In particular, the estimate ∫
Γε

[uε]
2dS ≤ Cε (5.4.3)
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holds.

Proof. Multiply (5.4.1) by uε, then integrate by parts to find∫ t

0

∫
Ω
σ|∇uε|2dx dt+

α

2ε

∫
Γε

[uε]
2(x, t)dS

+
1

ε

∫ t

0

∫
Γε

σm([uε]M , τ)[uε][uε]M (x, t)dS dt =
α

2ε

∫
Γε

[Sε]
2(x)dS. (5.4.4)

The statement is then derived from the fact that

σm[uε][uε]M ≥ 0

and Sε(x) = εS1(x, xε ) + o(ε).

For now, let us formally assume that the solution uε of (5.4.1) has the
form

uε(x, t) = u0(x, t) + εu1(x,
x

ε
, t) + o(ε). (5.4.5)

We will calculate the equation for u0 in Subsection 5.4.1 and then prove rig-
orously that uε converges in an appropriate sense to u0 in Subsection 5.4.2.

5.4.1 Formal calculation of the homogenization limit

To find the precise form of the terms in the ansatz (5.4.5), we can apply
the arguments developed in [4]. For this end, it is required that for the
membrane conductivity one has that

σm(0, t) = constant.

(see [4, Secs. 3.2 and 3.3]). This condition can be ensured for the model
(5.2.6), together with (5.2.8): From (5.3.1), one can prove that N(0, t) = N0,
and therefore σm(0, t) = constant.

Before calculating the limit, we first give some definitions. Introduce
the transform

T : H1/2(Γ)→ C([0, T ], H1
p (Y )),

where

H1
p (Y ) =

{
u is periodic in Y : u|Yi ∈ H1(Yi) and u|Ye ∈ H1(Ye),

∫
Y
u = 0

}
,

by
T (s)(y, t) := v(y, t)

with v being the solution to the following system with boundary data s:

∇ · (σ(x)∇v) = 0 in Yi,
∇ · (σ(x)∇v) = 0 in Ye,

[σ∇v · n] = 0 on Γ,

cm
δ0

∂

∂t
[v] +

1

δ0
σm(0, t)[v] = σ∂nv

− on Γ,

[v](x, 0) = s on Γ.
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We define next the cell problems χ0 : Ω→ Rd and χ1 : Ω× (0, T )→ Rd. For
this, let e

¯h
be the h-th unit vector in Rd. Then the component χ0

h ∈ H1
p (Y )

satisfies

∇ · (σ(x)∇χ0
h) = 0 in Yi,

∇ · (σ(x)∇χ0
h) = 0 in Ye,

[σ(∇yχ0
h − e

¯h
) · n

¯
] = 0 on Γ,

[χ0
h](x, 0) = 0 on Γ.

The component χ1
h is defined by

χ1
h = T (σ(∇yχ0

h − e
¯h

) · n
¯
). (5.4.6)

By a calculation analogous to [4, Sec.3], one finds that the candidate u0 in
equation (5.4.5) satisfies

div

[
−σ0∇xu0 −A0∇xu0 −

∫ t

0
A1(t− τ)∇xu0(x, τ)dτ + F

¯
(x, t)

]
= 0.

(5.4.7)
Here, the matrices A0, A1, and F

¯
(x, t) are defined by

σ0 = σ1|Yi|+ σ2|Ye|,

(A0)jh =

∫
Γ
[σ]χ0

hnjdS,

(A1)jh =

∫
Γ
[σχ1

h]njdS,

F
¯

=

∫
Γ
[σT (S1(x, ·))](y, t) n

¯
dS,

(5.4.8)

where σi = σ|Yi and σe = σ|Ye , with χ0
h, χ

1
h and T given above.

5.4.2 Convergence

While in Subsection 5.4.1, we derived the formal limit (5.4.7) for the ansatz
of the asymptotic expansion (5.4.5), we now state its convergence proper-
ties.

Theorem 5.4.1. For the periodic solution uε in (5.4.1) and the homogenized solu-
tion u0 in (5.4.7), we have the convergence

uε → u0

weakly in L2([0, T ]× Ω) and strongly in L1
loc([0, T ],Ω).

The proof relies on arguments developed in [4]. For the sake of a read-
ability, we outline them in the appendix, and only prove here the crucial
lemma needed for their adaption to our case.

Lemma 5.4.1. For M > 1, there exists a constant C(M) such that∫ T

0

∫
Γε

|σm(0, t)[uε]− σm([uε]M , t) [uε]M dS |dt ≤ Cε. (5.4.9)
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Symbol Value Definition
σi 0.455 intracellular conductivity
σe 5 extracellular conductivity
L 2× 10−4 computation domain size
r 0.5× 10−4 cell radius
δ 5× 10−9 membrane thickness
rp 0.76 pore radius
σp 0.0746 pore conductivity
Vep 0.258 characteristic voltage of electropermeabilization
α 109 electropermeabilization parameter
N0 1.5× 109 equilibrium pore density
cm 9.5× 10−12 membrane capacitance

TABLE 5.1: Model parameters used for the numerical com-
putations.

Proof. We have

σm(0, t)[uε]− σm([uε]M , t) [uε]M

= σm(0, t)[uε]− σm([uε]M , t) [uε] + σm([uε]M , t) ([uε]− [uε]M ).

By the explicit form of N(v, t) in (5.3.1) and |vM |L∞ ≤ M , there exists a
constant L(M) such that

|N([uε]M , t)−N(0, t)|2 ≤ L(M)

∫ t

0
[uε]

2
Mds, (5.4.10)

and σm([uε]M , t) ≤ C(M).
Together with the fact that

∣∣∣∫ T0 [uε]− [uε]M ds
∣∣∣ ≤ ∫ T0 [uε]

2ds, we can thus
conclude that∫ T

0

∫
Γε

∣∣σm(0, t)[uε]− σm([uε]M , t) [uε]M
∣∣ dS dt ≤ C(M)ε.

The lemma then follows by the energy estimate (5.4.3).

5.5 Numerical experiments

In the preceding section, we have modeled macroscopic processes as ho-
mogenized quantities with specific effective material parameters. In this
section we show the sensitivity of the effective parameters to microscopic
properties relevant in electropermeabilization.

We use FEM with mesh generator [86] to implement all the numerical
simulations. We present the numerical experiments from two aspects: First
we will simulate the single cell model (5.3.6) and show the electropermeabi-
lization at cell level. Next we show how the microscopic parameters affect
effective parameters and anisotropy properties in the homogenized model
(5.4.7).
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FIGURE 5.1: (a) Evolution of the transmembrane potential
(TMP) v at the pole of the cell. (b) TMP along the cell mem-

brane after 2 µs′.

5.5.1 Electropermeabilization simulation for a single cell

We simulate the single cell model (5.3.6) in a square domain [0, L]×[0, L], the
cell is a circular in the center of the square with cell radius r. The parameter
β in (5.2.8) is given by

β =
2πr2

pσpδ

πrp + 2δ
. (5.5.1)

All the parameters are given in Table 5.1. Figure 5.1 shows the results for
the time evolution and the voltage after 2 µs′.

5.5.2 Homogenization for electropermeabilization model

In this section, we show the sensitivity of the effective parameters σ0, A0,
and A1 in (5.4.7) to

• the conductivities σo and σi;

• the shape of the cell with membrane Γ;

• the volume fraction f = vol(Yi)
vol(Y ) ;

• the lattice of the cells in the domain Ω.
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FIGURE 5.2: Cell shapes used in numerical examples (see
text and Table 5.2). Example 1 uses the first mesh. Exam-
ple 2 uses the cells in the first row. Example 3 uses the cells
in the second row. Example 4 uses the cells in the last row.

We perform four experiments, the results of which are found in Table 5.2.

Example 1. We fix the shape and size of the cell and change the ratio of
the interior and exterior conductivities σi and σe.

Example 2. In this example, we show how the shape of the cell mem-
brane produces different effective anisotropy properties. We fix conductiv-
ities and the volume fraction of the cell, but take as cell shapes ellipses with
different excentricity a/b.

Example 3. We investigate the effect of different volume fractions of a
cell with the same shape.

Example 4. In this example, we show how the angle of the lattice in
which the cells are arranged affects the effective parameters.

For all these experiments, Table 5.2 presents the reactions of the effective
conductivity σ0 and the effective anisotropy properties A0 and A1(0) to the
microscopical change. One sees clearly that σ0, as well as A0 and A1 react
to a change of cell and conductivity parameters. Most of the sensitivity
functions are in fact monotonic.

The best contrast is seen in:

• the reaction of σ0 to the change in conductivity σi/σe and to a change
in the lattice angle φ;

• the reaction of both A0 and A1 to the cell shape.

The volume fraction alone does not show so much contrast in the anisotropy
of the effective parameters.

Given the results of the sensitivity analysis, it is promising to infer shape
parameters from macroscopic effective properties in electropermeabiliza-
tion, as it was done in [10] from multifrequency admittivity measurements.
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effective conductivity σ0 eigenvalues λ1/λ2 of A0 eigenvalues λ1/λ2 of A1(0).

Example 1: Difference in conductivity (ratio σi/σe of interior and exterior conductivity).

Example 2: Difference in cell shape: change of the excentricity a/b (see Fig. 5.2, 1st row).

Example 3: Difference in volume fraction of the cells (see Fig. 5.2, 2nd row).

Example 4: Difference in angle φ of the lattice arrangement (see Fig. 5.2, 3rd row).

TABLE 5.2: Changes in microscopic parameters and the re-
action of the effective parameters in (5.4.7).
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5.6 Concluding remarks

We introduced a homogenization scheme relating critical microscopic and
macroscopic quantities in electropermeabilization. The sensitivity analysis
of the effective parameters showed this dependence and opens the door to
solve the inverse problem to monitor those critical microscopic quantities
in practice.

While setup optimization for electropermeabilization has been studied
using computer simulations, for instance, in [81, 105, 36, 79, 80], from our
approach comes an additional constraint: for mapping of the effective pa-
rameters A1 and A0, two currents have to be applied which are nowhere
parallel. An electrode configuration providing this allows for unique re-
construction [61].
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Concluding remarks

In this thesis, two different parts have been discussed.
In many scientific and engineering applications involving partial dif-

ferential equations, the input data such as sources or boundary conditions
are usually given through the measurements which may be subject to ran-
dom noises. We have considered two cases in the finite element method
with observational data in Part I: the thin plate spline model and the ellip-
tic boundary equations with uncertain boundary data. We have analyzed
the stochastic convergence based on the empirical process theory and in-
vestigated the stochastic convergence of the FEM which characterizes the
tail property of the probability distribution function of the finite element
error.

The methods used in these two cases can be extended to other forward
problems with random input. This gives a way to choose the optimal dis-
crete size (mesh size or system’s degree of freedoms) to balance the random
error. Also in the case of the thin plate spline model it has been shown that
the self-consistent iterative Algorithm 1.5.1 is quiet efficient for determin-
ing the smoothing parameter. This kind of algorithm might be applied to
other similar problems in practice.

Another promising aspect of the thesis is inverse problems. With un-
certain input data, inverse problems can be very unstable because of their
inherent ill-posedness. The methods introduced in the first parts pave a
way to improve these issues. Yet more work is needed in this direction.

In Part II, we have discussed two imaging methods: the linearized model
in multi-frequency EIT and the imaging of anisotropic conductivity using
Diffusion Tensor, for isotropic and anisotropic conductivity reconstruction
respectively. We have also analyzed the well-posedness of the cell model
for electropermeabilization and a dynamical homogenization scheme. The
mathematical models in this part help us to understand the dependence of
the conductivity of the tissue on the frequency and the microoaganisation
of the cells.

For the first imaging method, we have systematically discussed mfEIT
reconstruction in the following three different scenarios: known spectral
profiles, partially known spectral profiles and unknown spectral profiles.
This analysis generalizes the existing studies. It has very promising appli-
cations to other multi-frequency imaging problems and multi-wavelength
problems.

The second imaging method gives a way to reconstruct anisotropic con-
ductivity distributions with DIT. We have firstly formulated a new image
reconstruction method of an anisotropic conductivity tensor distribution by
combining the MAT-MI and the DTI techniques. But a more difficult and
important problem is to reconstruct full anisotropy conductivity and to de-
velop a stable imaging technique for such problems.

We have also analyzed the well-posedness of the cell model for elec-
tropermeabilization and proposed a dynamical homogenization scheme.
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We have studied the effective parameters in a homogenization model as
the next step to monitor the microscopic properties in clinical practice. We
have numerically demonstrated the sensitivity of these effective parame-
ters to critical microscopic parameters governing electropermeabilization.
This opens the door to solve the inverse problem of reconstructing these
parameters.

With these three chapters in Part II, we could better understand the ef-
fective conductivity and have better ways to image the isotropic or anisotropic
conductivity distributions. Also, they show the challenging directions for
improving our understanding of the corresponding fundamental problems.
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Appendix A

Proof of Lemma 1.3.3 when
d = 3

The proof is very similar to the proof for 2D case in Section 1.4. We will
construct Πhvh by using the three dimensional C1 element of Zhang con-
structed in [121] which simplifies an earlier construction of Zenisek [120].
For any tetrahedron K ∈ Mh, the C1 − P9 element in [121] is a triple
(K,PK ,ΛK), where PK = P9(K) and the set of degrees of freedom ΛK
consists of the following 220 functionals: for any p ∈ C2(K),

1◦ The nodal values of p(ai), Dp(ai)(aj−ai), D2p(ai)(aj−ai, ak−ai), D3(ai)(aj−
ai, ak − ai, al − ai), D4p(ai)(aj − ai, ak − ai, al − ai, an − ai), 1 ≤ i ≤
4, 1 ≤ j ≤ k ≤ l ≤ n ≤ 4, i 6∈ {j, k, l, n}, where {ai}4i=1 are the vertices
of K; (120 functionals)

2◦ The 2 first order normal derivatives ∂νkp(aij) and 3 second order normal
derivatives ∂2

νkνl
p(bij), ∂

2
νkνl

p(cij) on the edge with vertices ai, aj , 1 ≤
i 6= j ≤ 4, where νk, k = 1, 2, are unit vectors perpendicular to the
edge, and aij = (ai + aj)/2, bij = (2ai + aj)/3, cij = (ai + 2aj)/3; (48
functionals)

3◦ The nodal value p(aijk) and 6 normal derivatives ∂νp(anijk) on the face
with vertices ai, aj , ak, 1 ≤ i, j, k ≤ 4, i 6= j, j 6= k, k 6= i, n =
1, 2, · · · , 6, where aijk is the barycenter of the face and a1

ijk = (2ai +

aj + ak)/4, a
2
ijk = (ai + 2aj + ak)/4, a

3
ijk = (ai + aj + 2ak)/4, a

4
ijk =

(4ai + aj + ak)/6, a
5
ijk = (ai + 4aj + ak)/6, a

6
ijk = (ai + aj + 4ak)/6; (24

functionals)

4◦ The nodal values p(di), 1 ≤ i ≤ 4, at internal points d1 = (2a1 +a2 +a3 +
a4)/5, d2 = (a1 + 2a2 + a3 + a4)/5, d3 = (a1 + a2 + 2a3 + a4)/5, d4 =
(a1 + a2 + a3 + 2a4)/5. (4 functionals)

Let Xh be the finite element space

Xh = {vh : vh|K ∈ P9(K),∀K ∈Mh, f(vh|K1) = f(vh|K2),∀f ∈ ΛK1 ∩ ΛK2}.

It is known that Xh ⊂ H2(Ω). We define the operator Πh as follows. For
any vh ∈ Vh, wh := Πhvh ∈ Xh such that for any K ∈ Mh, wh|K ∈ P9(K),
for the degrees of freedom at vertices ai, 1 ≤ i ≤ 4,

∂α(wh|K)(ai) =
1

N(ai)

∑
K′∈Mh(ai)

∂α(vh|K′)(ai), |α| ≤ 4, (A.0.1)
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for the degrees of freedom on the edge with vertices ai, aj , 1 ≤ i 6= j ≤ 4,

∂νk(wh|K)(aij) =
1

N(aij)

∑
K′∈Mh(aij)

∂νk(vh|K′)(aij), k = 1, 2, (A.0.2)

∂νkνl(wh|K)(bij) =
1

N(bij)

∑
K′∈Mh(bij)

∂νkνl(vh|K′)(bij), k, l = 1, 2, (A.0.3)

∂νkνl(wh|K)(cij) =
1

N(cij)

∑
K′∈Mh(cij)

∂νkνl(vh|K′)(cij), k, l = 1, 2, (A.0.4)

for the degrees of freedom on the faces with vertices ai, aj , ak, 1 ≤ i, j, k ≤
4, i 6= j, j 6= k, k 6= i,

(wh|K)(aijk) =
1

N(aijk)

∑
K′∈Mh(aijk)

(vh|K′)(aijk), (A.0.5)

∂ν(wh|K)(anijk) =
1

N(anijk)

∑
K′∈Mh(anijk)

∂ν(vh|K′)(anijk), n = 1, 2 · · · , 6,

(A.0.6)
and finally for the degrees of freedom at the interior points di, 1 ≤ i ≤ 4,

(wh|K)(di) = (vh|K)(di). (A.0.7)

To show the desired estimate (1.18) in 3D we use the C0-P9 element in [121]
which is a triple (K,PK ,ΘK), where PK = P9(K) and the set of degrees of
freedom ΘK is defined by replacing some of the degrees of freedom of the
C1 − P9 element ΛK as follows:

1◦ For the edge with vertices ai, aj , 1 ≤ i 6= j ≤ 4, replace the 2 edge first
order normal derivatives by Dp(aij)(ak − aij), Dp(aij)(al − aij) and
denote the corresponding nodal basis functions pkij(x), plij(x), where
ak, al are the other 2 vertices of K other than ai, aj ;

2◦ For the edge with vertices ai, aj , 1 ≤ i 6= j ≤ 4, replace the 3 edge second
order normal derivatives by D2p(bij)(ak − bij , al − bij), D2p(cij)(ak −
bij , al−bij) and denote the corresponding nodal basis functions pklij (x), qklij (x),
where ak, al are the other 2 vertices of K other than ai, aj ;

3◦ For the face with vertices ai, aj , ak, 1 ≤ i, j, k ≤ 4, i 6= j, j 6= k, k 6= i,
replace the face normal derivatives by Dp(anijk)(al − anijk) and denote
the corresponding nodal basis functions pnijk(x), where al is the vertex
of K other than ai, aj , ak, n = 1, 2 · · · , 6.

A regular family of this C0 − P9 element is affine-equivalent. For any
vh ∈ Vh, we also define an operator qh := Λhvh in a similar way as the def-
inition of Πh by replacing the average normal derivatives in (A.0.2)-(A.0.4)
and (A.0.6) by the corresponding directional derivatives in the definition of
degrees of freedom for the C0 − P9 element. By the same argument as that



Appendix A. Proof of Lemma 1.3.3 when d = 3 117

in the proof of 2D case in Section 1.4 we have

|vh − qh|Hm(K) ≤ Ch2−m

 ∑
K′∈Mh(K)

|vh|2H2(K′)

1/2

, m = 0, 1, 2. (A.0.8)

Next we expend qh − wh ∈ P9(K) in terms of the nodal basis functions
of the C0 − P9 element. From the definition of the C1 − P9 and C0 − P9

elements, we have qh − wh = φe + φf in K, where the edge part of the
function qh − wh is

φe(x) =
∑

1≤i6=j≤4

{k,l}∈{1,2,3,4}\{i,j},k 6=l

[
D(qh|K − wh|K)(aij)(ak − aij)pkij(x)

+ D(qh|K − wh|K)(aij)(al − aij)plij(x)
]

+
∑

1≤i6=j≤4

{k,l}∈{1,2,3,4}\{i,j},k≤l

[
D2(qh|K − wh|K)(bij)(ak − bij , al − bij)pklij (x)

+ D2(qh|K − wh|K)(cij)(ak − cij , al − cij)qklij (x)
]
,

and the face part of the function qh − wh is

φf (x) =
∑

1≤i,j,k≤4,i 6=j,j 6=k,k 6=i
{l}∈{1,2,3,4}\{i,j,k}

6∑
n=1

D(qh|K − wh|K)(anijk)(al − anijk)pnijk(x).

Since the tangential derivatives of qh−wh along the edges vanish, we obtain
by the same argument as that in the proof of 2D case in Section 1.4 that

|φe|Hm(K) ≤ Ch2−m

 ∑
K′∈Mh(K)

|vh|2H2(K′)

1/2

, m = 0, 1, 2. (A.0.9)

On any face F of K, qh − wh − φe ∈ P9(F ) and its nodal values at 3
vertices up to 4th order derivatives vanish, its first order normal derivative
at the midpoint and two second order normal derivatives at two internal
trisection points on 3 edges vanish, and the nodal value at the barycenter
also vanishes. This implies qh − wh − φe = 0 on any face of the element K.
Let τnijk be the tangential unit vector on the face of vertices ai, aj , ak such
that

al − anijk = [(al − anijk) · τnijk]τnijk + [(al − anijk) · ν]ν.

Now by (A.0.4), (A.0.8)-(A.0.9), and the inverse estimate we have

|D(qh|K − wh|K)(anijk)(al − anijk)|
≤ |[(al − anijk) · τnijk]Dφe(anijk)τnijk|+ |[(al − anijk) · ν]D(qh|K − wh|K)(anijk)ν|

≤ Ch1/2

 ∑
K′∈Mh(K)

|vh|2h2(K′)

1/2

. (A.0.10)
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Since a regular family of C0 − P9 element is affine-equivalent, we have
|pnijk|Hm(K) ≤ Ch3/2−m, m = 0, 1, 2. Therefore, by (A.0.10) we obtain

|φf |Hm(K) ≤ Ch2−m

 ∑
K′∈Mh(K)

|vh|2H2(K′)

1/2

, m = 0, 1, 2. (A.0.11)

Combining (A.0.8), (A.0.9), (A.0.11) yields the desired estimate (1.18) in 3D
since vh −wh = (vh − qh) + φe + φf in K. The estimate (1.19) can be proved
in the same way as the proof for the 2D case in Section 1.4. This completes
the proof. �
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Appendix B

Convergence for
homogenization

B.1 Convergence for homogenization

We give here the outline of the method used in [4]. It shows how Lemma
5.4.1 is used to prove Theorem 5.4.1 for our application.

Theorem B.1.1. For the solution uε in (5.4.1) and the homogenized solution u0

in (5.4.7), we have the convergence

uε → u0

weakly in L2([0, T ]× Ω) and strongly in L1
loc([0, T ],Ω).

Proof. From the estimate (5.4.2) we get, extracting subsequences if needed

uε → u0, σ∇uε → ξ weakly in L2([0, T ]× Ω),

uε → u0 strongly in L1
loc([0, T ],Ω).

(B.1.1)

Next, consider the weak formulation of system (5.4.1):∫ T

0

∫
Ω
σ∇uε · ∇ψ dx dt+

1

ε

∫ T

0

∫
Γε

σm([uε]M )[uε]M [ψ] dS dt

−cm
δ

∫ T

0

∫
Γε

[uε]
∂

∂t
[ψ] dS dt− cm

δ

∫
Γε

[uε](0)[ψ](0) dS = 0.

(B.1.2)

The general idea is to pass to the limit ε→ 0 in this equation, and therefore
to obtain the equation for u0. This is possible for special test functions ψ.

Choose for ψ the functions ϕ wεh(x, t) for h = 1, . . . , d, where ϕ is a
smooth with compact support on Ω, and wεh is built by the cell functions χ1

and χ2:

wεh(x, t) := xh − εχ0
h

(x
ε
− ε
)∫ T

t
χ1
h

(x
ε
, τ − t

)
dτ.

For this definition, given in [4, (5.1)] one has the weak formulation in [4,
(5.2)-(5.4)].

By subtracting the weak equation (B.1.2) for ψ = wεh(x, t) and the equa-
tions [4, (5.2)-(5.4)], one can isolate the term

∫ ∫
σ∇uε∇ϕwεh dx dt:∫ T

0

∫
Γε

σ∇uε∇ϕwεh dx dt = K1ε +K2ε +K3ε, (B.1.3)
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with

K1ε =

∫ T

0

∫
Γε

σ∇wεh∇ϕuε dx dt,

K2ε = −cmε
∫

Γε

(S1(x,
x

ε
) +Rε)ϕ

∫ T

0
[χ2
h](
x

ε
, τ)dτdS,

K3ε =
1

ε

∫ T

0

∫
Γε

(
σm(0, t)[uε]− σm([uε], t)[uε]

)
[wεh]ϕ dS dt.

(B.1.4)

The limits of K1ε and K2ε are the same as in [4, p.18], whereas for the limit
K3ε, one can show that K3ε → 0 by Lemma 5.4.1. One can take then the
limit ε → 0 in (B.1.3) in order to obtain information on the specific form of
the limit u0 in (B.1.1). We get

−
∫ T

0

∫
Ω
ξ · ∇ϕxh dx dt =

∫ T

0

∫
Ω
ϕ(x)Fh(x, τ); dx dτ

+

∫ T

0

∫
Ω
u0(x, t)(σ0I +A0)e

¯h
+

∫ t

0
u0(x, τ)A1(t− τ)e

¯h
dτ · ∇ϕ(x) dx dt

(B.1.5)

withA0,A1, F
¯

defined as in (5.4.8). Choosing ψ = ϕ xh in (B.1.2), combining
with (B.1.5), and differentiating in T gives then expressions which show
that u0 ∈ L2([0, T ], H1(Ω)) and that actually (5.4.7) is the correct equation
of the limit u0.
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Résumé 
 

Cette thèse contient deux sujets différents. 

Dans la première partie, nous avons 

considéré deux cas.  L'un est le modèle plus 

lisse de la plaque mince et l'autre est les 

équations des limites elliptiques avec des 

données limites incertaines. Dans cette 

partie, les convergences stochastiques des 

méthodes des éléments finis sont prouvées 

pour chaque problème. 

 

Dans la deuxième partie, nous fournissons 

une analyse mathématique du problème 

inverse linéarisé dans la tomographie 

d'impédance électrique multifréquence. Nous 

présentons un cadre mathématique et 

numérique pour une procédure d'imagerie du 

tenseur de conductivité électrique anisotrope 

en utilisant une nouvelle technique appelée 

Tentomètre de diffusion Magnéto-

acoustographie et proposons une approche 

de contrôle optimale pour reconstruire le 

cross-property facteur reliant le tenseur de 

diffusion au tenseur de conductivité électrique 

anisotrope. Nous démontrons la convergence 

et la stabilité du type Lipschitz de l'algorithme 

et présentons des exemples numériques pour 

illustrer sa précision. Le modèle cellulaire 

pour Electropermécanisme est démontré. 

Nous étudions les paramètres efficace dans 

un modèle d'homogénéisation. Nous 

démontrons numériquement la sensibilité de 

ces paramètres efficaces aux paramètres 

microscopiques critiques régissant 

l'électropermécanisme. 
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Abstract 
 

This thesis contains two different subjects. In 

first part, two cases are considered. One is 

the thin plate spline smoother model and the 

other one is the elliptic boundary equations 

with uncertain boundary data. In this part, 

stochastic convergences of the finite element 

methods are proved for each problem.  

 

In second part, we provide a mathematical 

analysis of the linearized inverse problem in 

multifrequency electrical impedance 

tomography. We present a mathematical and 

numerical framework for a procedure of 

imaging anisotropic electrical conductivity 

tensor using a novel technique called 

Diffusion Tensor Magneto-acoustography and 

propose an optimal control approach for 

reconstructing the cross-property factor 

relating the diffusion tensor to the anisotropic 

electrical conductivity tensor. We prove 

convergence and Lipschitz type stability of 

the algorithm and present numerical 

examples to illustrate its accuracy. The cell 

model for Electropermeabilization is 

demonstrated. We study effective parameters 

in a homogenization model. We demonstrate 

numerically the sensitivity of these effective 

parameters to critical microscopic parameters 

governing electropermeabilization. 
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