V. Tests, 100 3.6.1 Convergence en norme H 1, p.101

C. Allena, Simulation of multiple morphogenetic movements in the Drosophila embryo by a single 3D finite element model, Journal of the Mechanical Behavior of Biomedical Materials, vol.3, issue.4, 2010.
DOI : 10.1016/j.jmbbm.2010.01.001

URL : https://hal.archives-ouvertes.fr/hal-00765613

T. Aubin, Nonlinear analysis on manifolds. Monge-Ampere equations, 1982.
DOI : 10.1007/978-1-4612-5734-9

D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation : Numerical methods, 1997.

. Bird, Dynamics of polymeric liquids. Volume 1. Fluid mechanics, volume vol1, 1987.

. Bird, Dynamics of polymeric liquids Kinetic theory, volume vol2, 1987.

W. Blankenship, J. T. Blankenship, and E. Wieschaus, Two new roles for the drosophila ap patterning system in early morphogenesis, Dev, vol.128, p.5129, 2001.

S. C. Brenner and L. R. Scott, Numerical optimization : theoretical and practical aspects, Science & Business Media, 2008.

H. Brezis, The mathematical theory of finite element methods, 1983.

. Brezzi, . Fortin, F. Brezzi, and M. Fortin, Mixed and hybrid finite element methods, 1991.
DOI : 10.1007/978-1-4612-3172-1

F. Cazals, M. Pouget, . Institut, . De, . En-informatique-et et al., Estimating Differential Quantities using Polynomial fitting of Osculating Jets Mathematical elasticity Theory of shells, Cell Nature Cell Biol. [Cazals and Pouget, vol.3, 2000.

. Ciarlet, . Raviart, P. G. Ciarlet, and P. Raviart, Interpolation theory over curved elements, with applications to finite element methods, Computer Methods in Applied Mechanics and Engineering, vol.1, issue.2, pp.217-249, 1972.
DOI : 10.1016/0045-7825(72)90006-0

. Collinet, Local and tissue-scale forces drive oriented junction growth during tissue extension, Nature Cell Biology, vol.420, issue.10, pp.1247-1258, 2015.
DOI : 10.1109/83.650848

URL : https://hal.archives-ouvertes.fr/hal-01428973

P. Destuynder, A classification of thin shell theories, Acta Applicandae Mathematicae, vol.XIV, issue.1, 1985.
DOI : 10.1007/978-94-009-9541-3

G. Dziuk, Finite Elements for the Beltrami operator on arbitrary surfaces, 1988.
DOI : 10.1007/978-3-322-96662-9

E. Dziuk, G. Dziuk, and C. M. Elliott, Finite elements on evolving surfaces, IMA Journal of Numerical Analysis, vol.27, issue.2, pp.262-292, 2007.
DOI : 10.1093/imanum/drl023

E. Dziuk, G. Dziuk, and C. M. Elliott, Finite element methods for surface PDEs, Acta Numerica, vol.22, pp.289-396, 2013.
DOI : 10.1017/S0962492913000056

. Elliott, Modelling cell motility and chemotaxis with evolving surface finite elements, Journal of The Royal Society Interface, vol.64, issue.1-2, p.20120276, 2012.
DOI : 10.1007/s00285-011-0404-x

URL : http://rsif.royalsocietypublishing.org/content/royinterface/9/76/3027.full.pdf

. Gilbarg, . Trudinger, D. Gilbarg, N. S. Trudinger, J. A. Glazier et al., Elliptic partial differential equations of second order Simulation of the differential adhesion driven rearrangement of biological cells, Springer Science & Business Media. [Glazier and Graner Phys. Rev. E, vol.224, issue.47, pp.2128-2154, 1993.

F. Hecht, Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation Construction d'une base de fonctions p 1 non conforme à divergence nulle dans R 3 . RAIRO-Analyse numérique, Nature, vol.15, issue.2, pp.119-150, 1981.

C. Heine and C. Heine, Computations of form and stability of rotating drops with finite elements, Isoparametric finite element approximation of curvature on hypersurfaces, 2003.
DOI : 10.1093/imanum/drl007

C. Heine, Computations of form and stability of rotating drops with finite elements, IMA Journal of Numerical Analysis, vol.26, issue.4, 2006.
DOI : 10.1093/imanum/drl007

W. Helfrich, Abstract, Zeitschrift f??r Naturforschung C, vol.28, issue.11-12, pp.11-12693, 1973.
DOI : 10.1515/znc-1973-11-1209

P. Henrot, A. Henrot, and M. Pierre, Variation et optimisation de formes : une analyse géométrique, 2005.
DOI : 10.1007/3-540-37689-5

/. Av-fiacco and . Mccormick, nonlinear programming : Sequential unconstrained minimization techniques. xiv+ 210 s. m. fig

W. Koiter, On the foundations of the linear theory of thin elastic walls, 1970.

W. Koiter, General Theory of Shell Stability, Thin Shell Theory, pp.63-87, 1980.
DOI : 10.1007/978-3-7091-2442-0_2

. Kostrikin, Linear algebra and geometry. Gordon and Breach Science Publishers, 1997.

C. M. Lye and B. Sanson, Tension and Epithelial Morphogenesis in Drosophila Early Embryos, PLoS Biol, 2011.
DOI : 10.1016/B978-0-12-385065-2.00005-0

P. Madhavan and S. Mardare, Forces and Tension in Development Analysis of discontinuous Galerkin methods on surfaces Inaquality of korn's type on compact surfaces without boundary, Chinese Annals of Mathematics, pp.145-187, 2003.

J. Nedelec, Intensity of vortices : from soap bubbles to hurricanes Scientific Reports, p.3455, 1976.

P. Niculescu, C. Niculescu, L. Persson, I. Nitschke, A. Voigt et al., Convex functions and their applications : a contemporary approach A finite element approach to incompressible two-phase flow on manifolds, Science & Business Media. [Nitschke et al. Journal of Fluid Mechanics, vol.708, pp.418-438, 2006.
DOI : 10.1007/0-387-31077-0

. Nitschke, A finite element approach to incompressible two-phase flow on manifolds, Journal of Fluid Mechanics, vol.4, 2009.
DOI : 10.1098/rspa.1998.0273

L. Rauzi, Rauzi and Leptin (2013) Physical models of mesoderm invagination in drosophila embryo, 2013.

. Rauzi, Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis, Nature Cell Biology, vol.420, issue.12, pp.1401-1410, 2008.
DOI : 10.1529/biophysj.105.071506

URL : https://hal.archives-ouvertes.fr/hal-00428938

. Rauzi, Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis, Nature Cell Biology, vol.420, issue.12, pp.1401-1410, 2008.
DOI : 10.1529/biophysj.105.071506

URL : https://hal.archives-ouvertes.fr/hal-00428938

. Reuther, . Voigt, S. Reuther, and A. Voigt, The interplay of curvature and vortices in flow on curved surfaces. arXiv preprint arXiv :1406.5021, 2012.

P. Saramito, Complex fluids : modeling and algorithms, 2016.
DOI : 10.1007/978-3-319-44362-1

. Young, Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function., Genes & Development, vol.7, issue.1, pp.29-41, 1993.
DOI : 10.1101/gad.7.1.29

URL : http://genesdev.cshlp.org/content/7/1/29.full.pdf

.. Exemple-de-surface-?-définie-comme-le-niveau-zéro, La fonction ? est définie sur R 2 . La bande U ? de largeur ? est représentée en jaune. Chaque point contenu dans U ? s'écrit de façon unique par la décomposition (2.2.6), p.24

. Supatto, Visualisation d'un embryon de Drosophile et vecteurs déformation lors du début de l'extension de la bande germinale, tiré de, Les triangles désignent le sillon, p.132, 2005.

. Blanchard, Rate of strain (arbitrary units) along the AP axis in the flow of figure 5.7. At the bottom, the outline of the ventral side of the embryo surface is recalled, with dots at mesh intersections with the sagittal plane (y = 0) colour-coded in red where myosin is present and black elsewhere. The rate of strain is calculated along lines at different distances from the ventral midline. Distances are normalised by the radius of the embryo shape in the transverse plane. Negative strain rates correspond to tissue compression, positive ones to tissue elongation (either by cell shape changes, or by AP?DV intercalations, see, p.144, 2009.