Z. Xu and C. Gao, Graphene fiber: a new trend in carbon fibers, Materials Today, vol.18, issue.9, pp.480-492, 2015.
DOI : 10.1016/j.mattod.2015.06.009

J. Donnet and R. C. Bansal, Carbon Fibers, 1998.
DOI : 10.1016/B0-12-227410-5/00082-X

URL : https://hal.archives-ouvertes.fr/hal-01220967

A. Standage and R. Prescott, High Elastic Modulus Carbon Fibre, Nature, vol.31, issue.5045, p.169, 1966.
DOI : 10.1038/211169a0

R. 1. Sengupta and R. , A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Progress in Polymer Science, vol.36, issue.5, pp.638-670, 2011.
DOI : 10.1016/j.progpolymsci.2010.11.003

H. Im, J. Kim-etcheverry, M. , and S. E. Barbosa, Thermal conductivity of a graphene oxide?carbon nanotube References 1 Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement, Materials, vol.5, issue.6, pp.1084-1113, 2012.

A. W. Kelly and . Tyson, Tensile properties of fibre-reinforced metals: Copper/tungsten and copper/molybdenum, Journal of the Mechanics and Physics of Solids, vol.13, issue.6, pp.329-1339, 1965.
DOI : 10.1016/0022-5096(65)90035-9

E. Mä-der, Adhesion of PBO fiber in epoxy composites, Journal of materials science, pp.42-8047, 2007.

W. Zhou, Atomically localized plasmon enhancement in monolayer graphene, Nature Nanotechnology, vol.262, issue.3, pp.161-165, 2012.
DOI : 10.1126/science.262.5131.218

C. B. Carter and D. B. Williams, Transmission electron microscopy, 2009.
DOI : 10.1007/978-3-319-26651-0

Q. Wu, Nano-analysis on the structure and chemical composition of the interphase region in carbon fiber composite, Composites Part A: Applied Science and Manufacturing, vol.56, issue.56, pp.143-149, 2014.
DOI : 10.1016/j.compositesa.2013.10.003

S. Yang, Graphene?Based Nanosheets with a Sandwich Structure, Angewandte Chemie International Edition, issue.28, pp.49-4795, 2010.
DOI : 10.1002/ange.201001634

. Based and . Ferrari, s study [5], the low loss peak position can be used to evaluate the mass density of the probed region. To analyze different phases in the composites, the low loss spectra were acquired from all three composites. Figure 4.11A shows the HAADF STEM image of a GNP/epoxy composite, which the bright thin line in the center corresponds to the GNP

T. Malis, S. Cheng, and R. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM, Journal of Electron Microscopy Technique, vol.16, issue.2, pp.193-200, 1988.
DOI : 10.1111/j.1365-2818.1984.tb00489.x

K. Iakoubovskii, Thickness measurements with electron energy-loss spectroscopy. Microscopy research and technique, pp.71-626, 2008.
DOI : 10.1002/jemt.20597

URL : http://pubman.nims.go.jp/pubman/item/escidoc:1587374:1/component/escidoc:1587373/mrt626.pdf

R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope, 2011.

T. Eberlein, U. Bangert, R. Nair, R. Jones, M. Gass et al., Plasmon spectroscopy of free-standing graphene films, Physical Review B, vol.25, issue.23, pp.233406-233409, 2008.
DOI : 10.1016/0375-9601(67)90683-4

A. C. Ferrari, Density, sp 3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy, Physical Review B, issue.16, pp.62-11089, 2000.

L. Laffont, M. Monthioux, and V. Serin, Plasmon as a tool for in situ evaluation of physical properties for carbon materials, Carbon, vol.40, issue.5, pp.767-780, 2002.
DOI : 10.1016/S0008-6223(01)00196-8

A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan et al., Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy, Physical Review B, vol.621, issue.16, 2000.

L. Ponsonnet, C. Donnet, K. Varlot, J. M. Martin, A. Grill et al., EELS analysis of hydrogenated diamond-like carbon films, Thin Solid Films, vol.319, issue.1-2, pp.1-2, 1998.
DOI : 10.1016/S0040-6090(97)01094-8

R. A. Rosenberg, P. J. Love, and V. Rehn, ) near-edge x-ray-absorption fine structure of graphite, Physical Review B, vol.51, issue.6, pp.4034-4037, 1986.
DOI : 10.1103/PhysRevLett.51.2052

H. Fan, C. Hartshorn, T. Buchheit, D. Tallant, R. Assink et al., Modulus???density scaling behaviour and framework architecture of nanoporous self-assembled silicas, Nature Materials, vol.64, issue.6, pp.418-423, 2007.
DOI : 10.1038/nmat1913

M. A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Yu et al., Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, vol.3, issue.12, pp.3884-3890, 2009.
DOI : 10.1021/nn9010472

F. Delale and F. Erdogan, On the Mechanical Modeling of the Interfacial Region in Bonded Half-Planes, Journal of Applied Mechanics, vol.55, issue.2, pp.317-324, 1988.
DOI : 10.1115/1.3173677

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Materials, vol.42, issue.3, pp.183-191, 2007.
DOI : 10.1038/nmat1849

X. Ji, Y. Xu, W. Zhang, L. Cui, and J. Liu, Review of functionalization, structure and properties of graphene/polymer composite fibers, Composites Part A: Applied Science and Manufacturing, vol.87, pp.29-45, 2016.
DOI : 10.1016/j.compositesa.2016.04.011

S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney et al., Graphene-based composite materials, Nature, vol.83, issue.7100, pp.442-282, 2006.
DOI : 10.1063/1.1616976

Y. Wyser, Y. Leterrier, and J. A. , Må nson, Analysis Of Failure Mechanisms In Platelet- Reinforced Composites, Journal of Materials Science, vol.36, issue.7, pp.1641-1651, 2001.
DOI : 10.1023/A:1017583432728

C. Hsueh, A two-dimensional stress transfer model for platelet reinforcement, Composites Engineering, vol.4, issue.10, pp.1033-1043, 1994.
DOI : 10.1016/S0961-9526(09)80005-1

D. E. Kranbuehl, M. Cai, A. J. Glover, and H. C. Schniepp, Measurement of the interfacial attraction between graphene oxide sheets and the polymer in a nanocomposite, Journal of Applied Polymer Science, vol.64, issue.6, pp.122-3739, 2011.
DOI : 10.1016/S0006-3495(93)81433-4

L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil et al., Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite, Advanced Materials, vol.3, issue.24, pp.22-2694, 2010.
DOI : 10.1002/adma.200904264

G. Guo and Y. Zhu, Cohesive-Shear-Lag Modeling of Interfacial Stress Transfer Between a Monolayer Graphene and a Polymer Substrate, Journal of Applied Mechanics, vol.82, issue.3, pp.31005-031005, 2015.
DOI : 10.1115/1.4029635

T. Jiang, R. Huang, and Y. Zhu, Interfacial Sliding and Buckling of Monolayer Graphene on a Stretchable Substrate, Advanced Functional Materials, vol.12, issue.3, pp.396-402, 2014.
DOI : 10.1038/nmat3542