. 19-v-o-i-d-nodea, 20 childs [ label ] = end ; 21 } 22 NodeA * NodeA : : get ( i n t label ) { 23 r e t u r n childs [ label ] ; 24 } Complexity Given n values, a base b and if d digits are required for representing the biggest element, the complexity of the radix sort is given by O(d(n + b) In today's computer, the radix sort is often encoded using a base 2 8 = 256, thus since the numbers are encode into 32 or 64 bits, we obtain d = log 64 ) = 8. Thus for sorting n number, it usualy cost 4(n + 256) = 4n + 1024. This complexity implies that the choice of the base depends strongly on the maximal value and on the number of values. Sorting 4 integers encoded in 32 bits is not efficient using a radix sort, but for sorting hundreds or millions of them, the radix sort is recommended, 32 ) = 4 ord = log 256, 2001.

V. Alfred, . Aho, E. John, and . Hopcroft, The design and analysis of computer algorithms. Pearson Education India, Bibliography, 1974.

B. Sheldon and . Akers, Binary decision diagrams, IEEE Trans. Computers, vol.27, issue.17, pp.509-516, 1978.

F. James and . Allen, Maintaining Knowledge about Temporal Intervals, Commun. ACM, vol.26, issue.11, pp.832-843, 1983.

H. Reif-andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann, A Constraint Store Based on Multivalued Decision Diagrams, CP, pp.118-132, 2007.

]. Barbieri, F. Pachet, P. Roy, and M. Esposti, Markov Constraints for Generating Lyrics with Style, ECAI, pp.115-120, 2012.

]. N. Beldiceanu, M. Carlsson, and T. Petit, Deriving Filtering Algorithms from Constraint Checkers, CP'04, pp.107-122, 2004.

N. Beldiceanu and T. Petit, Cost Evaluation of Soft Global Constraints, International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming, pp.80-95, 2004.

]. N. Beldiceanu, M. Carlsson, S. Demassey, and T. Petit, Global Constraint Catalogue: Past, Present and Future, Constraints, vol.2, issue.1, pp.21-62, 2007.

]. Bergman, W. Jan-van-hoeve, and J. N. Hooker, Manipulating MDD Relaxations for Combinatorial Optimization, CPAIOR, pp.20-35, 2011.

]. Bergman, A. Andre, A. Cire, H. Sabharwal, V. Samulowitz et al., Parallel Combinatorial Optimization with Decision Diagrams, International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pp.351-367, 2014.

]. Bergman, A. Andre, W. Cire, and . Van-hoeve, MDD Propagation for sequence Constraints, Journal of Artificial Intelligence Research, vol.14, pp.697-722, 2014.

D. Bergman and A. A. Cire, Multiobjective Optimization by Decision Diagrams, pp.86-95, 2016.

]. Bergman, A. Andre, W. Cire, J. Van-hoeve, and . Hooker, Decision Diagrams for Optimization, 2016.

J. Régin, Arc consistency for general constraint networks: preliminary results, pp.43-151, 1997.

]. C. Bessière and J. Régin, Refining the Basic Constraint Propagation Algorithm, Proceedings of IJCAI'01, pp.309-315, 2001.

E. Christian-bessiere, B. Hebrard, T. Hnich, and . Walsh, Disjoint, partition and intersection constraints for set and multiset variables, International Conference on Principles and Practice of Constraint Programming, pp.138-152, 2004.

J. Christian-bessière, . Régin, H. Roland, Y. Yap, and . Zhang, An optimal coarse-grained arc consistency algorithm, Artificial Intelligence, vol.165, issue.2, pp.165-185, 2005.

E. Bessiere, G. Hebrard, Z. Katsirelos, É. Kiziltan, C. Picard-cantin et al., The Balance Constraint Family, Principles and Practice of Constraint Programming -20th International Conference Proceedings, pp.174-189, 2014.

]. Boussemart, C. Lecoutre, and C. Piette, XCSP3: An integrated format for benchmarking combinatorial constrained problems, 2016.

S. Karl, . Brace, L. Richard, R. E. Rudell, and . Bryant, Efficient implementation of a BDD package, Proceedings of the 27th ACM, pp.40-45, 1991.

P. Briggs and L. Torczon, An efficient representation for sparse sets, ACM Letters on Programming Languages and Systems, vol.2, issue.1-4, pp.59-69, 1993.

P. Frederick, A. Brooks, . Hopkins, G. Peter, W. Neumann et al., An Experiment in Musical Composition, Electronic Computers IRE Transactions on, issue.3, pp.175-182, 1957.

E. Randal and . Bryant, Graph-based algorithms for boolean function manipulation. Computers, IEEE Transactions on, vol.100, issue.14, pp.677-691, 1986.

E. Randal and . Bryant, Symbolic Boolean manipulation with ordered binary-decision diagrams, ACM Computing Surveys (CSUR), vol.24, issue.6, pp.293-318, 1992.

. Bmw-cheng, M. Kenneth, J. Choi, . Ho-man, J. Lee et al., Increasing constraint propagation by redundant modeling: an experience report, Constraints, vol.4, issue.2, pp.167-192, 1999.

C. Kenil, . Cheng, H. Roland, and . Yap, Constrained decision diagrams, Proceedings of the National Conference on Artificial Intelligence, p.366, 2005.

C. K. Kenil, R. H. Cheng, and . Yap, Maintaining Generalized Arc Consistency on Ad Hoc r-Ary Constraints, CP, pp.509-523, 2008.

]. K. Cheng and R. Yap, An MDD-based generalized arc consistency algorithm for positive and negative table constraints and some global constraints, Constraints, vol.177, issue.2???3, pp.154-165, 2010.

C. Kenil, W. Cheng, . Xia, H. Roland, and . Yap, Space-Time Tradeoffs for the Regular Constraint, CP, pp.223-237, 2012.

J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron et al., Compact-Table: Efficiently Filtering Table Constraints with Reversible Sparse Bit-Sets, International Conference on Principles and Practice of Constraint Programming, pp.207-223, 2016.

A. Derrien and J. Fages, Thierry Petit and Charles Prud'homme. A Global Constraint for a Tractable Class of Temporal Optimization Problems, Principles and Practice of Constraint Programming ? CP 2015, pp.105-120, 2015.

]. Dixon, Onset detection revisited, Proceedings of the 9th International Conference on Digital Audio Effects, pp.133-137, 2006.

A. Raphael, J. L. Finkel, and . Bentley, Quad trees a data structure for retrieval on composite keys, Acta informatica, vol.4, issue.1, pp.1-9, 1974.

A. Pierre-flener, B. Frisch, Z. Hnich, I. Kiziltan, T. Miguel et al., Matrix modelling, Proc. of the CP-01 Workshop on Modelling and Problem Formulation, 2001.

F. Focacci and M. Milano, Global Cut Framework for Removing Symmetries, Principles and Practice of Constraint Programming -CP 2001, 7th International Conference Proceedings, pp.77-92, 2001.

]. Galvane, M. Christie, C. Lino, and R. Ronfard, Camera-on-rails, Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, SA '15, 2015.

]. Galvane, R. Ronfard, C. Lino, and M. Christie, Continuity Editing for 3D Animation, AAAI Conference on Artificial Intelligence, 2015.

]. G. Gange, P. Stuckey, and R. Szymanek, MDD propagators with explanation, Constraints, vol.14, issue.3, pp.407-429, 2011.

]. Gange, J. Peter, P. Stuckey, and . Van-hentenryck, Explaining Propagators for Edge-Valued Decision Diagrams, Principles and Practice of Constraint Programming, pp.340-355, 2013.

I. P. Gent, C. Jefferson, I. Miguel, and P. Nightingale, Data Structures for Generalised Arc Consistency for Extensional Constraints, Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, pp.191-197, 2007.

C. Gervet, Sets and Binary Relation Variables Viewed as Constrained Objects, ICLP Workshop on Logic Programming with Sets, 1993.

E. Gómez, Tonal Description of Music Audio Signals, 2006.

T. Hadzic, S. Subbarayan, M. Rune, . Jensen, R. Henrik et al., Fast backtrack-free product configuration using a precompiled solution space representation, small, vol.10, issue.59, pp.3-14, 2004.

]. Hadzic, J. N. Hooker, O. Barry, P. Sullivan, and . Tiedemann, Approximate Compilation of Constraints into Multivalued Decision Diagrams, CP, pp.448-462, 2008.

H. Harvey, CSPLib Problem 010: Social Golfers Problem. http://www.csplib.org/Problems/prob010

S. Hoda, W. Jan-van-hoeve, and J. N. Hooker, A Systematic Approach to MDD-Based Constraint Programming, CP, pp.266-280, 2010.

N. John and . Hooker, Integrated methods for optimization, 2007.

N. John and . Hooker, Decision diagrams and dynamic programming, International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pp.94-110, 2013.

E. John, R. Hopcroft, . Motwani, D. Jeffrey, and . Ullman, Automata theory, languages, and computation, International Edition, vol.24, 2006.

P. Vinasétan-ratheil-houndji, L. Schaus, Y. Wolsey, and . Deville, The stockingcost constraint, International Conference on Principles and Practice of Constraint Programming, pp.382-397, 2014.

D. Jurafsky, H. James, and . Martin, Speech and language processing, pp.130-238, 2014.

]. G. Katsirelos and T. Walsh, A Compression Algorithm for Large Arity Extensional Constraints, Proc. CP'07, pp.379-393, 2007.

K. Shinji and E. M. Clarke, A parallel algorithm for constructing binary decision diagrams, Computer Design: VLSI in Computers and Processors ICCD'90. Proceedings, 1990 IEEE International Conference on, pp.220-223, 1990.

E. Donald and . Knuth, The art of computer programming Combinatorial algorithms, part 1. Pearson Education India, 2011.

J. Frédéric-koriche, P. Lagniez, S. Marquis, and . Thomas, Compiling Constraint Networks into Multivalued Decomposable Decision Graphs, IJCAI, pp.332-338, 2015.

]. Lai and S. Sastry, Edge-valued binary decision diagrams for multi-level hierarchical verification, Proceedings of the 29th ACM/IEEE Design Automation Conference, pp.608-613, 1992.

C. Lecoutre, C. Likitvivatanavong, and R. H. Yap, A Path-Optimal GAC Algorithm for Table Constraints, ECAI, pp.510-515, 2012.

C. Lecoutre, N. Paris, O. Roussel, and S. Tabary, Propagating Soft Table Constraints, Principles and Practice of Constraint Programming, pp.390-405, 2012.

C. Lecoutre, C. Likitvivatanavong, H. Roland, and . Yap, STR3: A path-optimal filtering algorithm for table constraints, Artificial Intelligence, vol.220, pp.1-27, 2015.

O. Lhomme and J. Régin, A Fast Arc Consistency Algorithm for n-ary Constraints, Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference, pp.405-410, 2005.

E. Maestre, R. Ramírez, S. Kersten, and X. Serra, Expressive Concatenative Synthesis by Reusing Samples from Real Performance Recordings, Computer Music Journal, vol.23, issue.3, pp.23-42, 2009.

]. Mairy, P. Van-hentenryck, and Y. Deville, An Optimal Filtering Algorithm for Table Constraints, Principles and Practice of Constraint Programming, pp.496-511, 2012.

]. Mairy, Y. Deville, and C. Lecoutre, The Smart Table Constraint, International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pp.271-287, 2015.

A. Malapert, C. Guéret, N. Jussien, A. Langevin, and L. Rousseau, Two-dimensional pickup and delivery routing problem with loading constraints, First CPAIOR Workshop on Bin Packing and Placement Constraints (BPPC'08), 2008.

M. Miller and R. Drechsler, Implementing a multiplevalued decision diagram package, Multiple-Valued Logic Proceedings . 1998 28th IEEE International Symposium on, pp.52-57, 1998.

]. R. Mohr and G. Masini, Good Old Discrete Relaxation, Proceedings of ECAI-88, pp.651-656, 1988.

A. Teich and . Tyagi, Comparison of data structures for storing Pareto-sets in MOEAs, Evolutionary Computation CEC'02. Proceedings of the 2002 Congress on, pp.843-848, 2002.

]. M. Nair, On Chebyshev-Type Inequalities for Primes, The American Mathematical Monthly, vol.89, issue.2, pp.126-129, 1982.
DOI : 10.2307/2320934

F. Pachet, P. Roy, G. Barbieri, C. Sony, and . Paris, Finite-length Markov processes with constraints. transition, p.14, 2001.

A. Palmieri, J. Régin, and P. Schaus, Parallel Strategies Selection, International Conference on Principles and Practice of Constraint Programming, pp.388-404, 2016.

]. A. Papadopoulos, P. Roy, and F. Pachet, Avoiding Plagiarism in Markov Sequence Generation, Proceeding of the Twenty- Eight AAAI Conference on Artificial Intelligence, pp.2731-2737, 2014.

A. Papadopoulos, F. Pachet, P. Roy, and J. Sakellariou, Exact Sampling for Regular and Markov Constraints with Belief Propagation, International Conference on Principles and Practice of Constraint Programming, pp.341-350, 2015.

D. Wayne and . Pennington, Reservoir Geophysics, pp.140-243, 2001.

G. Perez and J. Régin, Improving GAC-4 for Table and MDD Constraints, Principles and Practice of Constraint Programming -20th International Conference. Proceedings, pp.606-621, 2014.

G. Perez and J. Régin, Efficient operations on MDDs for building constraint programming models, International Joint Conference on Artificial Intelligence, IJCAI-15, pp.11-184, 2015.

G. Perez and J. Régin, Relations between MDDs and Tuples and Dynamic Modifications of MDDs based constraints . arXiv preprint, 2015.

G. Perez and J. Régin, Constructions and In-Place Operations for MDDs Based Constraints, Integration of AI and OR Techniques in Constraint Programming, pp.279-293, 2016.

G. Perez and J. Régin, MDDs are Efficient Modeling Tools: An Application to Dispersion Constraints, Integration of AI and OR Techniques in Constraint Programming, p.2017, 2017.

G. Perez and J. Régin, MDDs: Sampling and Probability Constraints, Principles and Practice of Constraint Programming, p.2017, 2017.

G. Perez and J. Régin, Soft and Cost MDD Propagators, AAAI Conference on Artificial Intelligence, pp.11-140, 2017.

]. L. Perron, Or-toolsCP Solvers: Modeling, Applications , Integration, and Standardization, pp.2013-177, 2013.

]. G. Pesant, A Regular Language Membership Constraint for Finite Sequences of Variables, Proc. CP'04, pp.482-495, 2004.

]. G. Pesant and J. Régin, SPREAD: A Balancing Constraint Based on Statistics, CP'05, pp.460-474, 2005.
DOI : 10.1007/11564751_35

]. Petit, J. Régin, and C. Bessiere, Specific Filtering Algorithms for Over-Constrained Problems, Principles and Practice of Constraint Programming?CP, pp.451-463, 2001.

T. Quimper and . Walsh, Global Grammar Constraints, CP'06, pp.751-755, 2006.

]. Quimper and L. Rousseau, A large neighbourhood search approach to??the?? multi-activity shift scheduling problem, Journal of Heuristics, vol.10, issue.2, pp.373-392, 2010.

O. Michael, D. Rabin, and . Scott, Finite automata and their decision problems, IBM journal of research and development, vol.3, issue.2, pp.114-125, 1959.

]. Régin, Generalized Arc Consistency for Global Cardinality Constraint, pp.209-215, 1996.

R. Rossi, S. D. Prestwich, and S. A. Tarim, Statistical Constraints, ECAI 2014 -21st European Conference on Artificial Intelligence Czech Republic - Including Prestigious Applications of Intelligent Systems, pp.777-782, 2014.

P. Roy, G. Perez, J. Régin, A. Papadopoulos, F. Pachet et al., Enforcing Structure on Temporal Sequences: The Allen Constraint, International Conference on Principles and Practice of Constraint Programming, pp.786-801, 2016.
DOI : 10.1007/11889205_64

S. Daniel, C. Eugene, and . Freuder, Configuration as composite constraint satisfaction, Proceedings of the Artificial Intelligence and Manufacturing Research Planning Workshop, pp.153-161, 1996.

P. Deville, J. Dupont, and . Régin, The Deviation Constraint, CPAIOR'07, pp.260-274, 2007.

P. Deville, J. Dupont, and . Régin, Future and trends of constraint programming, chapter Simplification and extension of the SPREAD Constraint, ISTE, pp.95-99, 2007.

P. Schaus, Y. Deville, and P. Dupont, Bound- Consistent Deviation Constraint In Principles and Practice of Constraint Programming -CP, 13th International Conference Proceedings, pp.620-634, 2007.

]. Schaus, P. Van-hentenryck, and J. Régin, Scalable Load Balancing in Nurse to Patient Assignment Problems, International Conference on AI and OR Techniques in Constriant Programming for Combinatorial Optimization Problems, pp.248-262, 2009.

P. Schaus, J. Régin, R. Van-schaeren, W. Dullaert, and B. Raa, Cardinality Reasoning for Bin-Packing Constraint: Application to a Tank Allocation Problem, Principles and Practice of Constraint Programming, pp.815-822

]. P. Schaus and J. Régin, Bound-consistent spread constraint, EURO Journal on Computational Optimization, vol.12, issue.4, 2014.

N. Kyriakos, N. D. Sgarbas, . Fakotakis, K. George, and . Kokkinakis, Incremental construction of compact acyclic NFAs, Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, pp.482-489, 2001.

E. Claude and . Shannon, A symbolic analysis of relay and switching circuits, Electrical Engineering, vol.57, issue.12, pp.713-723, 1938.

A. Srinivasan, T. Ham, S. Malik, K. Robert, and . Brayton, Algorithms for discrete function manipulation ICCAD-90, Computer-Aided Design IEEE International Conference on, pp.92-95, 1990.

T. Stornetta and F. Brewer, Implementation of an efficient parallel BDD package, Proceedings of the 33rd annual Design Automation Conference, pp.641-644, 1996.