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FOREWORD

What is this Ph.D. thesis about? At a basic level the answer is: understanding the formation
of structures in a particular class of system with a large number of components. This special
class concerns systems formed with particles interacting with each other via long-range interac-
tions. The most obvious examples are self-gravitating systems and plasmas but many more sys-
tems are concerned. These interactions are opposed to the short-range interactions (e.g. shocks
with 0-range or nearest neighbor interactions) and can drive a system out-of-equilibrium. The
dynamics of these long-range systems is the primary interest of this Ph.D. thesis. It will be
studied through kinetics equations. The dif�culty lies in the richness of these equations. The
goal of my work is to depict the dynamics around stationary states with simpler equations, this
is called dimensional reduction.

The manuscript is composed of two independent parts: one concerning an experimental
collaboration on a cold atom system with supposedly long-range interactions and another one
which can be considered as the main part on bifurcations in collisionless kinetic systems.

Main results of this Ph.D. thesis

In the experimental collaboration part, the main result is the proposition of two experiments
that could con�rm or not the analogy between Large Magneto Optical Traps and a Non-Neutral
Plasma. Preliminary experimental results are discussed with a relatively good matching with
theory and simulations. However de�nitive conclusions remain uncertain.

In the second part, the main achievements are the bifurcation analysis for �ve different ki-
netic systems. Numerical simulations were done in some of these systems fully supporting the
theoretical claims. These results elucidate partially the dynamics around steady states of out-
of-equilibrium systems with long-range interactions and in at least one case predicts a behavior
that might be relevant in galactic systems. Our results could prove to be very generic thanks
to the universal character of bifurcation analysis. For example, bifurcation regimes found for
Vlasov systems with a small dissipation are like the one obtained for two dimensional �uids; we
also conjecture a Triple Zero bifurcations around non homogeneous Vlasov states. Moreover,
along this Part we raise many questions and observations on the unstable manifold technique
used after J.D. Crawford and the possibility of exact dimensional reductions.
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I NTRODUCTION

The Newton's law of universal gravitation describes one of the most fundamental forces,
thus since we all experience it directly we will use it as a guiding thread of this introduction.
Newton was able to derive planets motions around the sun associating this force with equations
of motion he postulated. In other words, he solved a one body problem (since the Sun is
considered �xed because of its large mass), meaning he could predict the motion of planets
(position and velocity) in time. The natural sequel for this problem is the two-body problem,
that we also know exactly how to solve. However, upon increasing the number of bodiesN from
two to three the problem incredibly more dif�cult: no general solutions are known and chaos
emerges. A chaotic system can behave very differently for two very close initial conditions,
making its analytical description dif�cult. For even larger systems with a large numberN of
self-gravitating bodies, knowing the exact evolution is therefore hopeless.

What can we say about the evolutions of aN � body systems with gravitational like
interactions?

The statistical physics �eld was actually developed to understand many body systems, not
by describing the exact evolution for all bodies but rather by �nding the most probable one.
The construction of various statistical ensembles such as the Microcanonical/Canonical/Grand
Canonical ensemble with quantities such as entropies lead for example to thermodynamics as
we teach it nowadays. Laws are essentially known for the non-interacting gas (perfect gas)
or for short-range interactions, which is enough to solve a lot of various problems from heat
engine to social dynamics. In these problems, a natural assumption is to consider ensemble
additivity meaning that if a system is composed of two subsystems 1 and 2, the total energy is
approximatively the sum of the individual energies of the subsystemsE1 + E2 = E1+2 . This
turns out to be true for short-range interactions in the largeN limit.

But is this Bachelor statistical physics useful for our self-gravitating problem where long-
range interactions are at stake? First let's set our de�nition1 of long-range interactions. We will
say two bodies are interacting with long-range interactions if their potential of interactionV(r )

1. Depending on the �eld one can �nd different de�nitions. For example, one can �nd that interaction with
in�nite range are "long-range". That is not our de�nition.
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and more generally their force of interactionsF(r ) satis�es

V(r ) r !1�
cst
r �

or F(r ) r !1�
cst

r � +1
; with � � D = spatial dimension: (1)

For example, a Coulomb/Newton interaction is long-range since its� = 1 < D = 3. From this
mathematical de�nition, we immediately see why this boundary exists2 at � = D. Consider-
ing the total interaction energy of one particle centered atr = 0 in a constant distribution of
particles3 � 0 we get

Vint = � 0

Z

r 2 RD
V(r ) dD r � lim

L !1
� 0LD � � =

(
cst if � > D

1 if � � D:
(2)

This phenomenon leads to the non extensivity of long-range systemsE1 + E2 6= E1+2 . Long-
range systems display other intriguing particularities such as nonequivalence of the different
statistical ensembles and negative heat capacity. For review of those systems see [CDR09,
DRAW02, CGML08] or the introductory and very understandable talks of J. Barré and H.
Touchette [ICT16] at the ICTP of Trieste at the Conference on Long-Range-Interacting Many
Body Systems: from Atomic to Astrophysical Scales.

To have a rather broad overview of the different systems displaying long-range forces, one
can refer to the program of the ICTP conference program4 in Trieste, where a lot of differ-
ent �elds were represented. The most obvious example are self-gravitating systems with many
astrophysical examples and plasma systems [EE02] with Coulomb forces between electron or
ions. Another example that will be presented in this thesis is the large Magneto-Optical Trap
(MOT). One also �nds examples in hydrodynamics [Mil90, RS91], atomic physics, nuclear
physics and for Rydberg gases [DRAW02, CGML08] or spin systems [SJM15]. Character-
istic behaviors of long-range systems have been observed in some nonlinear optics experi-
ments [XVF+ 15].

One can argue that we know the fate of any Hamiltonian system (including self-gravitating
one) because they should at some point reach Boltzmann-Gibbs statistical equilibrium. Never-
theless, another particularity of long-range systems is that they possess what we call a Quasi Sta-
tionary State (QSS) that has a very long relaxation time. Thus, we will need out-of-equilibrium
tools. For example, the Large deviation theory [BBDR05] or �uctuation dissipation theo-
rems [Kub66] are precious to give statistical information. Entropy methods with applications
closer to our concern are also possible [RTBPL14, LB99, Per06]. Note that non Hamiltonian
systems are by nature out-of-equilibrium e.g. system with non-conservative forces and coupled
oscillator systems. In this thesis, we are interested in the temporal evolution of out equilibrium
system around their stationary states (or QSS). To do so we will use the kinetic description of
the system. The kinetic description is often said to be at the mesoscopic scale since it is an
intermediate description in between the microscopic scale and macroscopic scale. The micro-
scopic scale describes the evolution of every particle via the different equations of motion. The
macroscopic scale describes the evolution of macroscopic observable such as the mean velocity,
temperature, pressure, etc. see Figures 1 and 2.

2. In Part Two, in order to simplify the manuscript we will use only a simple all-to-all coupling (� = 0 < D ),
but the main physicals phenomena remain. More generic potentials are considered in our publications.

3. In all the manuscript the term particles will refer to the components of the system studied, be it atoms, stars,
electrons, oscillators, crickets, etc.

4. http://indico.ictp.it/event/7612/other-view?view=ictptimetable
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THE VLASOV EQUATION

The Vlasov equation is one of the fundamental kinetic equations. It will be the main evolu-
tion equation of this thesis (all other equations will be related to it in some way). Here we show
formally how the Vlasov equation emerges from the microscopic description of long-range sys-
tems. Then, once velocity is integrated, one can obtain macroscopic equations (for observables
such as velocity, pressure, etc.). All the reasoning is summarized in Figure 2.

The evolution of aN bodies Hamiltonian system is governed by2N � D �rst order equations
of the form

_~ri = ~vi ; (3a)

m _~vi =
X

i 6= j

~F(~rj � ~ri ): (3b)

As mentioned earlier, solving this problem analytically is utopian, so a statistical approach of
the problem must be developed. The exact position and velocity of each particles is no longer
considered but rather the densityf of particles in the phase space(~r;~v) is. This forms the
mesoscopic approach. Thus, we keep track of both spatial distribution and speed distribution
of particles in time. A macroscopic approach would erase the velocity information ; therefore,
the kinetic approach can solve more subtle phenomena such as phase mixing and emergence of
instabilities due to velocity resonances as we will see later.

There are several ways to construct the Vlasov equation from Eq. (3), here we postulate its
form and show that it is the relevant equation to study. The empirical density function is de�ned
as

f E (~r;~v; t) =
NX

i =1

� (~r � ~ri (t)) � (~v � ~vi (t)) ; (4a)

with ZZ
f E (~r;~v; t) d3~rd3~v = N: (4b)

This singular distribution still contains all information on the particles. It is possible to show5

thatf E is a weak6 solution of the Vlasov equation,

@t f + ~v � ~r r f +
~FMF [f ]

m
� ~r vf = 0; (5a)

~F[f ]MF (~r) =
ZZ

~F(~r � ~r0)f (~r0;~v0; t) d3~r0d3~v0; (5b)
ZZ

f (~r;~v; t) d3~rd3~v = N: (5c)

For a distribution,f (~r;~v; t)d3~rd3~v gives the number of particles in the phase space volume
(~r + d~r;~v + d~v) at a timet. In this evolution equation, the distribution evolves through an
advection term and a nonlinear term with a self-consistent mean �eld force~FMF [f ](~r).

5. The Vlasov equation can be found writing the density conservation along trajectoriesdf E =dt = 0 .
6. Weak means that is must be integrated with some test function to make sense.
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We just constructed the Vlasov equation from the singular empirical distribution, but is it
possible to construct in the largeN limit a smooth distribution describing accurately the par-
ticles evolution? How close are the exact dynamics off E to a smoothed version of itf ? If
the two start "closely", how will they evolve through Vlasov dynamics? To measure this, one
de�nes a suitable distance between two distributionsd(f 1; f 2) and look at its time evolution
d(f (t); f E (t)) . It is possible to show [BH77, Dob79, NW80] that this distance is at most expo-
nential:

d(f (t); f E (t)) � d(f (0); f E (0))et=� ; (6)

where� is a constant independent of the initial condition andN . So, over a time scaleO (� )
the two distributions will stay close by. Moreover, the empirical distribution converges toward

the smoothed distribution asd(f (0); f E (0)) = O
�

1=
p

N
�

. So, if � does not depend onN , we

expect the continuous description to be valid over a time scale� c = O (ln N ). This estimate can
be made sharper for Vlasov steady states as� c = O

�
N �

�
, � > 0. We nameviolent relaxation

the time� v during which a particles system evolves according to the Vlasov dynamics, after
which thecollisional relaxation dominates. These different time steps are summarized on
Figure 1. The demonstration7 relies heavily on the long-range nature of the interactions to

Figure 1 – Schematic representation of the different time scales in a long-range system.

construct the mean �eld force. This means that the Vlasov equation is not well suited for
systems with short-range interactions. In theN ! 1 limit, particles only feel the mean force
~FMF [f ] created by the whole distribution of particles, thus correlations vanish. Therefore, the
exact interactions between two particles do not matter anymore.

The Vlasov equation has many interesting properties, amongst them, it possesses an in�nite
number of preserved quantities called the Casimir invariants [Mor00]

Cs[f ] =
ZZ

s[f ](~r;~v; t) d3~rd3~v; (7)

wheref is a Vlasov solution, meaning that_Cs[f ] = 0 (where the dot denotesd=dt) for any
generic functions. Thus, in addition to the energy, entropy, momentum, angular momentum,
etc. which are conserved in standard Hamiltonian systems, there are an in�nite number of in-
tegrals of motion. This gives to the Vlasov equation an in�nite number of stationary states.
Another very surprising feature associated with the Vlasov �ow is that it can relax to its initial
state after a perturbation with constant entropy. More precisely, the phase space distribution

f (~r;~v; t) oscillates more and more in the velocity variable while the integrated density
Z

f d3~v

does relax (see Section V.4). This phenomenon is the Landau damping (or non-entropic re-
laxation) and was discovered in the linear case by L.D. Landau [Lan46], a proof for the full
nonlinear Vlasov equation has been given recently by C. Mouhot and C. Villani [MV11].

7. To be fair, rigorous mathematical derivation are not yet obtained for Coulomb/Newton potential. Demon-
strations without cut off are limited toF (r ) � r � � with � < 1 [JH11]. However, in 1D, interaction potential are
much more regular and rigorous results exist [Tro86].
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Remark .1
— The word collision has different meaning here depending on the context. For short-range

systems, collision refers to real collision between two particles and in this context, they
would be essential, while long-range systems are dominated by mean �eld. A kinetic de-
scription of short-range system leads to the Boltzmann equation. For long-range systems
collisions or collisional effects mean �niteN effects, in fact correlations. In the astro-
physical community, the Vlasov equation is called the collisionless Boltzmann equation.

— So far, we have used a deterministic approach, meaning that for a given initial distribution
f E the Vlasov equation gives the deterministic evolution of particles. Another approach
is the probabilistic one, considering for example the mean �eld evolution of particles
over different initial conditions distributed along a givenf init distribution. It uses the
propagation of chaos theory [Szn91, Mon16]. Its use led to a recent proof of the mean
�eld limit of the Vlasov equation for Coulomb/Newton potential with a very small cut-off
scaling likeN � 1=3+ � .

Figure 2 – Schematic representation of the different possible scales of description. On the arrow
are the different functions linking two different scales.

With distribution functions, it is easy to construct macroscopic observables such as the mean

velocity hvi (~r) =
Z

~vf d3v and the temperatureT(~r) =
Z

m~v2

2
f d3v. To obtain the associ-

ated evolution equation one must do some approximation valid within some regime; for example
�uid equations such as gyro�uid equations can be derived [BH07, SR00] from the Vlasov equa-
tion. In this thesis, we do not study this macroscopic behavior. In out-of-equilibrium systems
the velocity distribution is in general not simply a Gaussian and leads to counter-intuitive effect
like Landau damping (damping without dissipation) that could not be predicted by macroscopic
equations.

GOALS AND OUTLINE OF THE THESIS

The goal of this thesis is to study the behavior of out-of-equilibrium many body systems with
long-range interactions. It is divided in two very different parts. In the �rst Part, we study a real
experimental set-up and give theoretical and numerical predictions. In the second Part we focus
on the bifurcation technique developed by J.D. Crawford for kinetic equations.

Part One is devoted to the study of an experimental Magneto-Optical Trap (MOT). We col-
laborated with Guillaume Labeyrie and Robin Kaiser of the Non Linear Institute of Nice (INLN)
and Bruno Marcos of the Laboratory J.A. Dieudonné. The standard modeling for large MOT
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composed of neutral atoms predicts effective Coulomb like interactions between particles (via
photon rescattering). Therefore a kinetic description through the Vlasov-Fokker-Planck equa-
tion (Vlasov equation with friction and diffusion) is expected to be accurate. The goal of the
collaboration is to test experimentally the long-range nature of those effective forces, since the
literature still lacks an irrefutable experiment. The main idea was to observe plasma physics
effects such as the Debye length as an experimental proof. In Chapter I we present the stan-
dard modeling through atomic physics leading to a plasma like description of a large MOT.
We introduce then the basics of plasma physics through the Non Neutral Plasma (NNP) model.
Chapter II is dedicated to the introduction of the different observables and tools used to analysis
and probe a cold atom cloud. In Chapter III we present and discuss different realistic measure-
ments (theoretically and numerically) that could highlight plasma phenomena, and compare
them to the preliminary experiments realized by G. Labeyrie.

Part Two is devoted to bifurcations around steady states of kinetic equations. Kinetic equa-
tion such as the Vlasov one are nonlinear self-consistent partial differential equations, they have
a very rich dynamics such as an in�nite number of stationary states, �lamentation of the phase
space8 , strong wave/particles resonances, non-entropic relaxation, etc., thus their mathematical
and physical understanding is far from being complete. The bifurcation study is a natural strat-
egy to simplify the dynamics in speci�c cases (e.g. neighboring of stationary states close to an
instability threshold). One hope is that these bifurcations might structure the whole dynamics;
another motivation is to obtain a classi�cation of these bifurcations (by studying various kinetic
equations) as there is for standard (dissipative) systems (saddle-node, pitchfork, Hopf, etc.).
However, due to the previously mentioned dif�culties standard bifurcation techniques such as
multiple-timescale analysis or center manifold fail [CH89, HC89, MH13, HM13].

In Chapter IV we present the unstable manifold technique introduced by J.D. Crawford in the
context of kinetic equations [Cra94a, Cra94b, Cra95a, Cra95b] which overcomes some of the
dif�culties met by standard expansions. The price to pay is that this approach is not well sup-
ported mathematically and that the description of the bifurcation is incomplete but qualitatively
correct providing precious informations on the bifurcation nature. We shall use this technique
for the rest of the manuscript. Chapter V review quickly the standard results for the bifurca-
tion around homogeneous steady states of the Vlasov equation. In Chapter VI we present our
results on the bifurcation around inhomogeneous states obtained in collaboration with Y.Y. Ya-
maguchi. In this case, we also obtain with a center manifold approach a �nite three-dimensional
reduction agreeing well with the numerical simulations. In Chapter VII, we perform a similar
analysis for homogeneous Vlasov-Fokker-Planck states, in particular we show how interplay
between a weak instability and weak dissipation gives rise to several regimes.

In Chapter VIII we introduce another kinetic equation based on the Kuramoto model de-
scribing coupled oscillator systems. It shares many similarities with the Vlasov equation and
was also studied by J.D Crawford. We then once again use in Chapter IX the unstable manifold
technique for the Kuramoto model with inertia and in Chapter X with delayed interactions (with
and without inertia).

As one can already tell from this outline the work of J.D. Crawford is very important in this
thesis since he has laid the foundation of the bifurcation study for both Vlasov and Kuramoto
equation. Therefore, the overall procedure will be similar every time but we will see that each
speci�c case has its own physical and technical issues. We will summarize in Chapter XI
our results, classi�cations and conjectures for the bifurcation analysis of the various kinetic

8. The �lamentation refers to the highly oscillating behavior of the distribution functionf (~r;~v; t) with respect
to the velocity variable.
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equations studied.
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PART ONE

EXPERIMENTAL COLLABORATION :
DEBYE LENGTH IN

M AGNETO -OPTICAL -TRAPS?
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CHAPTER I

FROM M AGNETO -OPTICAL -TRAPS TO

PLASMA

A large part of low energy physics is concerned with set-up at cold temperatureT . mK,
where lasers are used to manipulate atoms for their useful and interesting classical or quantum
properties. To reach weak temperature experiments the radiation pressure exercised by lasers is
used. It is the force felt by an atom when it absorbs a photon, possibly decreasing its velocity
via momentum transfer. That mechanism is at the origin of the "cold atom" �eld. A widely
used set-up because of its relative simplicity is the Magneto Optical Trap (MOT); its essential
components are

— Neutral atoms (such as Rubidium, Strontium)
— Two magnet coils set in anti-Helmholtz con�guration (producing a magnetic �eld gradi-

ent),
— Six lasers (one pair for each spatial dimension),
— A vacuum chamber.

At low atom numberN . 104, the physics is relatively well understood. Thanks to radiation
pressure of the six lasers the trapping and cooling of atoms is achieved. Moreover, in this
regime no interactions between atoms are considered and the particles dynamics is essentially
a Brownian motion. In metrology with atomic clocks [KHS+ 16], the low atoms speed is used
for high precisions measurements.

However, whenN & 105, the physics sees several qualitative changes, some effective inter-
actions between atoms appear... Indeed, for MOTs with a large number of particles it has been
observed that the cloud sizeL increases with the number of atomsN , whereas forN < 104, the
sizeL was independent ofN . So, there must be a repulsive process developing. Because of this
repulsion, the atom cloud cannot be compressed inde�nitely, preventing for example Bose Ein-
stein condensation, that are since its �rst realization in the 90s [AEM+ 95] a very active topic.
With the advent of more powerful laser sources, it is now possible to prepare very large MOTs
(VLMOT) with 1011 atoms [CKL14], where collective effects are enhanced.
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The description of this collective behavior is far from being well understood. Neutral atoms
interact with the trap composed of lasers and a magnetic �eld and with each other through ab-
sorption and emission of photons with rules given by the energy levels of atoms of the trap (an
exact description should then depend on the atom species and it hyper�ne structure). In 1988
Dalibard [Dal88] showed that absorption of the laser light in the cloud results in an effective
attracting force between atoms like one dimensional gravity: the so-call Shadow Effect. Dal-
ibard was the �rst to describe effective interactions between particles and formally his model
for VLMOT bears similarities with a galactic model of self-gravitating stars. However, this
description didn't explain why in experiments whenN is increased, the cloudL also increases,
in fact it predicts the opposite.

The current "standard model" to describe VLMOTs was then proposed in [WSW90] by T.
Walker, D. Sesko and C. Wieman (2001 Nobel prize winner), it includes an effective Coulombian-
like force between two level atoms, due to multiple scattering of photons. According to this pic-
ture, VLMOTs thus share similarities with a Non Neutral Plasma (NNP). In this plasma physics
model electrons are all interacting through Coulomb interactions in a neutralizing background
(as large positive ions).

The main question in this part is then can we observe plasma physics phenomenon in VL-
MOT? Is there any chance to observe Landau damping in a VLMOT? We will quickly answer
negatively to this question in the second part Bifurcations of this thesis making a bridge between
the two parts. Indeed, the friction range for the experimental MOT is too large to observe Lan-
dau damping. So, what else could we seek? Debye length? Instabilities and bifurcations? In
this thesis, we will search for the analog of Debye length which is characteristic of plasmas and
Coulomb interactions. More generally the goal is to search for evidence of long-range interac-
tions between atoms via direct correlation and response to an external potential measurement.

In this chapter, I will �rst retrace the standard modeling of VLMOTs. Then I will present
the Non Neutral Plasma model, introducing the different characteristic parameters in the MOT
units.

1 STANDARD MODEL FOR MOT

All the numerical values given here for the MOT are taken from [CKL14, GPLK10, Ste01].
For the French readers, I recommend the Collège de France lecture by J. Dalibard [Dal14],
to get a clear introductory picture of the cold atom �eld. Also, one can read the review of
Cohen-Tannoudji for his 1998 Nobel prize [CT98] on manipulation of atoms with photons.

1.1 The trapping

The idea behind Magneto-Optical-Trap is to trap atoms in the velocity and position space
thanks to one pair of magnet coils and six lasers in all of the six directions of space, as repre-
sented in Figure I.1.

For a two energy level atom,jgi ground state andjei excited state trapping occurs via ab-
sorption and emission of photons from the Laser (see Figure I.2). Basically, absorbing a photon
coming from the left will push the atom to the right (see Section I.1.1.c).

The detuning� = ! L � ! atom is the quantity that measures the energy difference between
a photon with frequency! L and the excitation energy! atom of the atoms. In practice, it can
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Figure I.1 – Schematic representation of a Magneto-Optical-Trap (MOT) with six Lasers and
two magnet coils creating a linear gradient of magnetic �eld.

Figure I.2 – Schematic representation of the transitionjgi ! j ei for an absorbed photon of
momentum and frequency(~~kL ; ! L ) with an atomic transition of natural frequency! atom . The
detuning of the lasers� = ! L � ! atom is negative here.
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be tuned1 very well, in a typical range0 � d . j� j � 8 � d, where� d � 10MHz is the natural
width of the transition. For the Rubidium atoms used in experiments� d = 2� � 6:06MHz. In
short Doppler and Zeeman effects modify detuning to favor absorption of photon as a function
of speed and position for cooling and trapping atoms (see Section I.1.1.a and I.1.1.b).

1.1.a Doppler effect

The idea to cool neutral atoms with lasers was �rst proposed in 1975 by T. Hänsch and
A. Schawlow[HS75] (and independently by Wineland and Dehmelt [WD75] for ions). Due
to Doppler effect an atom with speedvi > 0 sees photons coming from the left (in the same
direction) with a shifted frequency! left = ! L � kL vi and from the right (opposite direction)
! right = ! L + kL vi . The effective detuning with photon of opposite direction is then~� opposite =
� + kL jvi j. To favor absorption of photons with opposite direction (to reduce the atom velocity
after absorption) the detuning� must be negative (redshifted Laser).

1.1.b Zeeman effect

Zeeman effect is the energy split of an exited level due to the coupling of an external magnetic
�eld ~B with the total magnetic dipole moment of electrons~� J = ~� L + ~� S (J = L + S is the
total angular momentum,L is the angular momentum andS is the spin angular momentum).
Let's take the example of aJ = 0 ! J 0 = 1 transition. Ground statejg; J = 0i with no
magnetic moment is not affected while exited state withje; J = 1i sees an energy shift (for
weak magnetic �eld)

� EZeeman = gJ mJ � B B(~r);

wheremJ = 0; � 1 is the quantum magnetic number andgJ is the Landé factor for the atom
considered and� B the Bohr magneton, a universal constant describing the magnetic moment of
an electron. Setting two counter propagating lasers with opposite circular polarization� + and
� � , Figure I.3, will then select the transition with theme = +1 or me = � 1 respectively.

The magnetic �eld created by the two anti-Helmholtz magnetic coils is

B(x; y; z) = j� r Bj
�

x~ex +
1
2

(y~ey + z~ez)
�

(I.1)

wherej� r Bj ' 10G�cm� 1 is the value of the constant gradient imposed. In the end the effective
detuning depend on position~� = � � mJ gJ � B j� r i Bjr i =~, we call� i = gJ � B j� r i Bj=~.

1. The lasers wavelength can be slightly modi�ed with an acoustic-optic modulator.
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Figure I.3 – Representation of the Zeeman effect in a MOT set up. The energy level 1 is de-
generate in three levelsme = +1 ; 0; � 1 (dotted lines) due to the magnetic �eld. The constant
magnetic gradient insures a linear spatial dependency upon the energy levelsme = +1 ; � 1.
Two counter propagating lasers (red lines) with opposite polarization� + and� � , to select ab-
sorption of photons with levelsme = +1 andme = � 1 respectively.

1.1.c Radiation pressure

The �rst MOT was reported in [RPC+ 87] for Sodium atoms using the radiation pressure of
photons on atoms. We describe here the basic mechanisms for two level atoms.

— Absorption: atoms gain~~kL

— There are two different mechanism for an atom to relax toward equilibrium
� Stimulated emission. Emission of the photon in the same direction, so the total mo-

mentum gain for the atom is zero, Figure I.4.
� Spontaneous emission Figure I.4. The atom is reemitted with a random direction.

In particular, the probability to be reemitted in direction~~k0
L is the same that the

probability to be reemitted in� ~~k0
L , so the momentum gain is on average~

D
~k0

L

E
=

0. In general, this probability is assumed to be isotropic. So, on average the total

process absorption+emission gives a gain of~~kL + ~
D

~k0
L

E
= ~~kL .

So, the total force in average is
~Frad = ~~kL re (I.2)

where
re = � dPe (I.3)

is the rate of spontaneous emission [Dal14], withPe the probability to be in the excited state.
This population number is given by optical Bloch equations mixing a coherent process of in-
teraction atom-laser and incoherent process of spontaneous emission. It gives, if the laser is
not too powerful (i.e. that the Rabi frequency
 r of one atom should be very small compared
to the optical frequency! L ' 384� 1012 Hz, which can be checked after the fact). The Rabi
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Figure I.4 – Schematic representation of the two different scattering processes stimu-
lated/spontaneous emission. The red color stands for the energy.

frequency2 is the oscillation frequency between exited and fundamental state due to the laser
forcing


 r =
dpE

~
= � d

r
I

2I sat
(I.4)

whereE is the electric �eld of amplitude,dp the transition dipole moment for the transition
1 ! 2. In experiments, we use the intensity of the laserI and the saturation intensityI sat

(de�ne thought Eq. (I.4)). For our experimental regimesI � I sat (see Section I.3.2 for typical
experimental values), hence we have indeed
 r � 107 Hz � ! L . WhenI=I sat = 1 sponta-
neous and stimulated emission are equally probable.

The saturation parameter

s =
I=I sat

1 + 4� 2=� 2
d

(I.5)

is related to
Pe =

1
2

s
1 + s

: (I.6)

Hence, the radiation pressure is

Frad =
1
2

~kL � d
s

1 + s
: (I.7)

Note that this approach, i.e. consider a mean force for all the photon absorptions/emission cy-
cles, is valid for a �xed saturation rates. Hence the spatial and velocity dependency ofs
(through Zeeman and Doppler effect) must be smooth in order that after a photon hits(~r +
� ~r;~v + � ~v) t s(~r;~v). The recoil speed after one hit for an atom is

� v =
~kL

m
Rb
' 5:98 mm/s: (I.8)

2. Here we are just interested in the modulus of the Rabi frequency, a complex description includes a phase
term with the Laser.
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The condition is then

! r = kL � v =
~k2

L

m
� � d (I.9)

which is known as thethick band condition. For Rubidium atoms this condition is satis�ed
with ! r = 4:82� 104 Hz and� d = 3:80� 107 Hz.

We will note the lasers propagating in the same direction as the axisI + and the opposite one
I � .

In the weak saturation regimes0 = s(~r = 0;~v = 0) � 1,

Frad t
1
2

~kL s(~r;~v):

Therefore, in one dimension3 in a weakly saturated regimes0 � 1adding the Doppler/Zeeman
detuning yields the radiation force

~Frad � ~ei =
I 0

I s

~kL � d

2

0

B
B
B
@

"left laser"= I +z }| {
1

1 + 4
�

� � kL vi � � i r i

� d

� 2 �

"right laser"= I �z }| {
1

1 + 4
�

� + kL vi + � i r i

� d

� 2

1

C
C
C
A

: (I.10)

Expanding the denominator for small Doppler/Zeeman shifts gives a linearized force with a
friction and harmonic trapping term,

~Frad � ~ei ' � m
v i � m! 2
0r i for

�
�
�
�
kL vi

�

�
�
�
� � 1;

�
�
�
� i r i

�

�
�
� � 1; (I.11)

where we de�ne the coef�cients below.
— The effective friction parameter


 =
I 0

I s

8~k2
L

m
(� � )=� d

(1 + 4� 2=� 2
d)2 :

Rough estimation gives
 � 9:6 � 103 s� 1 for s0 � 0:1.
— The effective pulsation of the trap

! 2
0 =

I 0

I s

8~kL �
m

(� � )=� d

(1 + 4� 2=� 2
d)2 =

�
kL


:

In this con�guration, the cloud is supposed to have cylindrical symmetry because� x =
2� y = 2� z, but experimentally this asymmetry is compensated via different intensities,
so in the following we will consider a spherical symmetry with� = � x = � y = � z =
gJ � B j� r Bj=~. SincegJ � 1, � = 8:8 � 109 m� 1s� 1 so! 0 � 3 � 103 Hz.

From this force modeling one can de�ne a quality factorQ = ! 0=
 as for damped oscillators.

HereQ t 0:3 lower than
1
2

meaning that atoms act like over damped oscillators.

From the small velocity expansion one can see that in this limit the lasers act as "optical mo-
lasses" inducing friction for atoms. Similarly, the magnetic �eld will act as harmonic trapping
on atoms.

3. In principle interference terms should be added when summing the effect of the six lasers. A rigorous
treatment [Dal14] shows that fors0 � 1 they can be neglected.
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Another important parameter of the model is the on resonant cross section

� 0 =
~! L � d

2I sat
; (I.12)

it is related to the probability of an incident photon to be absorbed by an atom. For nonzero
detuning the cross section is

� L =
� 0

(1 + 4� 2=� 2
d)2 :

For circular polarization� � , [Ste01] gives� 0 ' 2:9 � 10� 9cm2.

1.2 Diffusion

The previous Doppler effect would in principle cool atoms to zero temperature. But there
are of course �uctuations setting a lower bound to the minimal temperature. The origin of those
�uctuations is the random speed due to the large number of absorption/emission cycle giving to
the atoms a random recoil force. It is natural to assume that atoms undergo a Brownian motion,
allowing us to de�ne a diffusion coef�cientDp [GA80, Dal14],

Dp = ~2k2
L � ds0 (I.13)

so, at equilibrium, after a short time of equilibration4 � 1=
 (rememberQ < 1) the temperature
is given by

kBT =
Dp

m

=

~
2

� 2 + � 2
d=4

j� j
: (I.14)

The temperature diverges at very small detuning, which of course is nonphysical since in this
regime the linear assumption of Eq. (I.10) is not valid.

The minimal possible temperature (in the Doppler limit)Tmin is for � = � � d=2,

kBTmin =
~� d

2
: (I.15)

For Rubidium atoms,Tmin ' 145� K, which gives an order of magnitude for the real MOT
temperature and for the speedv0 =

p
kBT=m ' 11:9 cm/s with this speed we can check

self consistently5 the Brownian motion assumption and the development made in Eq. (I.10).
Due to more complex structure than two energy levels, there exists systems with sub-Doppler
temperatures [MYMB10, CHB+ 14].

4. 1=
 =
m

~k2
L

1
2s0

& 100� s for s0 = 0 :1 (which we can consider to be the largest acceptable saturation

parameter in the smalls0 limit).

5. The speed recoil is small in front of the mean speed
� v
v0

= 2
p

! r =� d � 1 validating the Brownian

approach.
kL v0

� d
=

p
! r =� d � 1 so the linearization is valid.
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1.3 Shadow effect: an effective attractive force between atoms

In 1988 Dalibard proposed the �rst model to describe effective interaction between atoms [Dal88].
Indeed, for atoms trapped in a harmonic potential. He considers the fact that the laser is ab-
sorbed as it crosses the cloud, so its entrance intensityI 0 will be reduced at the cloud exit.
This position dependence of the laser intensity for a laser propagating on thez+ � axis (other
direction lead to similar expressions) can be written as:

I + (x; y;z + d z) � I + (x; v; z) = absorption

= �

0

B
B
B
@

I + [f ](x; y; z)
Z

R
� (z; v0

z)f (x0; y0; z0; v0
z)� (x � x0)� (y � y0) dv0

xdv0
ydv0

z

| {z }
portion of absorbed photons

1

C
C
C
A

dz

(I.16)

with I + (�1 ) = I 0 and the absorption section (depending on the detuning and thus on position
and velocity via the Doppler/Zeeman effect)

� � (z; vz) =
� 0

1 + 4
�

� � kL vz � �z
� d

� 2 : (I.17)

So
dI �

dz
(z) = �

�
I � [f ](z)

Z

R
� � (z; v0)f (z; v0

z) dv0
z

�
(I.18)

and

~Frad � ~ei =
~kL � d

2

0

B
B
B
@

I + [f ](r i )=Is

1 + 4
�

� � kL vi � � i r i

� d

� 2 �
I � [f ](r i )=Is

1 + 4
�

� + kL vi + � i r i

� d

� 2

1

C
C
C
A

: (I.19)

with the formal solutions of Eq. (I.18),

I + [f ](z) = I 0 exp
�

�
Z z

�1

Z

R
� + (z0; v0)f (z0; v0

z) dv0
zdz0

�
(I.20a)

I � [f ](z) = I 0 exp
�

�
Z + 1

z

Z

R
� � (z0; v0)f (z0; v0

z) dv0
zdz0

�
: (I.20b)

To quantify absorption in the cloud we use an experimentally rather accessible quantity: the
optical density (or optical thickness)b(� ) de�ned as

e� b = exp
�

�
Z 1

�1

Z

R
� + (z0; v0)f (z0; v0

z) dv0
zdz0

�
: (I.21)

For the VLMOT used at INLN its value it typicallyb(� = 0) ' 100.
If we suppose the absorption to be small for working regime� �=� d ' 4, we can expand the

exponential terms6 to get a total radiation force of the form

~Frad = � m
~v � m! 2
0~r + ~Fs[f ](~r) + o

� �
�
�
�
kL vi

�

�
�
�
� ;

�
�
�
� i r i

�

�
�
� ; b

�
; (I.22)

6. Note that in fact even for� = � 4� d, b � 1 which is not small, so the expansion might not be valid. But
since there is no better theory available in this regime we keep the expansion.
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where

~Fs[f ](~r) =
� I 0

I sat

~kL � d
2 � L

�
1 + 4 (�=� d)2� 2

" �� Z x

�1
�

Z + 1

x

�
� (x0; y0; z0)� (y � y0)� (z � z0) dx0dy0dz0

�
~ex

�� Z x

�1
�

Z + 1

x

�
� (x0; y0; z0)� (x � x0)� (z � z0) dx0dy0dz0

�
~ey

�� Z z

�1
�

Z + 1

z

�
� (x0; y0; z0)� (x � x0)� (y � y0) dx0dy0dz0

�
~ez

#

:

(I.23)

The corresponding two body force is

(~Fs) int (x; y; z) � ~ex = I 0
� 2

L

c
sign(x)� (y)� (z); (I.24)

wheresign(x < 0) = � 1 andsign(x > 0) = +1 . Note that numerically one must introduce
some spatial extent to the Dirac functions as in [BMW14]. Writing the divergence of this new
force gives,

~r � ~Fs = � 6I 0
� 2

L

c
� (x; y; z): (I.25)

The computation of the divergence of a Newtonian force would give the same result! Explaining
the analogy between gravitational systems and MOT. Nevertheless, this force is different from
Newton force because it does not derive from a potential, indeed it is rotational,~r� ~Fs 6= 0, and
~Fs 6= ~r Vs for aVs(~r). Therefore~Fs = ~r � ~As + ~r Vs for some couple( ~As; Vs). Physically the
system is driven out-of-equilibrium by the six laser, this non-potential force is the mathematical
translation of this fact, it induces particle �ux in the system [BMW14] and complicates the
mathematical analysis (a Hamiltonian is not de�ned for these cases).

Remark I.1
Note that@x jxj = sign(x) / (~Fs) int (x) which shows that in one dimension the shadow ef-
fect is a conservative force (it is exactly one-dimensional gravity). It is the additional spatial
dimensions that make the force non conservative.

1.4 Multiple scattering: an effective Coulomb force between atoms

The shadow effect is a �rst step for an effective interaction model between atoms, neverthe-
less this attractive force does not explain satisfactorily experimental observations that shows in-
compressibility of the MOT that results in a growing cloud sizeL [CKL14, GPLK10, WSW90].
This naturally leads one to think that in a VLMOT there is non-negligible repulsive interac-
tions between atoms. Two years after Dalibard's paper, Walker et al. proposed the hypothesis
in [WSW90] that this repulsion comes from a multiple scattering effect; indeed, so far, we have
not considered what happened to a rescattered photon. There are two different possibilities for
a reemitted photon

— Stimulated emission. This process is forgotten since it does not contribute to the total
momentum change of atoms.

— Spontaneous emission. The atom is reemitted with a random direction. So, its probabil-
ity to encounter an atom at distancer is proportional to1=(4�r 2) which is the inverse

Université Côte d'Azur 36



1. STANDARD MODEL FOR MOT

surface of ar � radius sphere. The bumped atom is then pushed by this incident pho-
ton. Considering the large number of spontaneous emission cycles between two atoms,
one can justify7 an effective repulsive force between atoms to be~Fc / 1=r2. So, if we
assumeisotropic spontaneous emission, remembering the absorption rate~re Eq. (I.3)
(emission rate should be equal), the average force~Fc between atoms is

~Fc(~r) =
~kL � d

2
I 0

I s

s
1 + s

h� R i
4�

~r
r 3

s� 1= I 0
� L h� R i

4�c
~r
r 3

; (I.26)

whereh� R i is the average cross-section of rescattered photon. It is expected thath� R i >
� L since some reemitted photons are very close to resonance, so their probability of ab-
sorption is increased. In fact, the reemission spectrum is quite involved to determine and
several photon frequencies are possible [Mol69]. Photons divide in to two contributions:
elastic scattering with a reemitted frequency centered in! R = ! L and inelastic scattering
with 
 R = ! L � 
 R , with 
 R a frequency shift that can be computed in some regimes.
The photons with! L +
 R have a detuning closer to zeros and a high absorption probabil-
ity resulting in a high� R that is the dominant contribution. The ratio of elastic scattering

over the total scattering is [Mol69, SCF92]
1

1 + s
:

1.5 Other quantum effects

Rubidium atoms or other atoms used in MOT are in general more complex than a two energy
level description, with hyper�ne level leading to other cooling/trapping mechanism such as the
Sisyphus effect [DLN+ 94, DCT89]. Nevertheless, in general these effects are forgotten because
in regimes studied they are small (in general for small saturation parameters0).

For Rubidium [DAC+ 00, Ste01] due to the coupling of total angular momentum of the elec-
tron J and nuclear magnetic momentumI which is much smaller, another energy splitting
occurs with a new quantum numberF = J + I , describing the hyper�ne structure of atoms.
The magnetic �eldB splits eachF level into2F + 1 levels which has a linear dependence for
smallB (more precisely if the shift induced byB is small in front of the hyper�ne splitting). So,
the actual Landé factor for Rb87 should satisfygF 6= gJ . For example, the two-level transition
used for trapping with Rubidium isFg = 2 ! Fe = 3.

In parallel to the hyper�ne structure effects, there is the "dressed atom" approach that com-
putes the rescattering cross sectionh� R i [RHV11] and deals with the physics at large saturation
s0 [MS79, LPR+ 89]. For example, in [MYMB10] and [CHB+ 14] the effect ofI 0=Isat (small
or not) is clearly measured and compared with the Doppler prediction, leading to sub-Doppler
measurements.

7. A similar argument for writing the radiation pressure Eq. (I.7) should be used, verifying that the thick band
approximation is enough to write an average force between two atoms.
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2 SUM UP AND QUESTIONS

2.1 Sum-Up of the model

The standard model describing a MOT is then
— Radiation pressure of laser! Doppler effect favors cooling of atoms! friction force

~Ffr = � m
~v
— Magnet coils! splitting of energy levels! favor absorption of con�ning photons!

position trapping (Zeeman effect)! ~Ftr = � m! 2
0~r

— The effective repulsive interaction between atoms (due to multiple scattering) is given by
a potential satisfying a Poisson equation~Fc / h � R i � L ~r=r3

— Due to attenuation of the lasers in the cloud, there is an effective attractive force~r � ~Fs /
� � 2

L � .
One expects for VLMOTh� R i > � L , so the Coulomb like force is the dominant interaction
force. This mean that the Walker et al. model does indeed predict a cloud size growing with
the number of particles since the repulsion dominated. It means that up to some modi�cation
(trapping, friction diffusion, shadow force) a VLMOT behave like a plasma of charged particles.
Of course, this conclusion is appealing as plasma physics is very rich and well investigated. But
due to the relative complexity of the various effects considered for the model it is also legitimate
to question this "to good to be true" vision of VLMOT. In the next Section, we review some
experiments linked with those questions.

2.2 Experimental con�rmation?

The Doppler/Zeeman cooling and trapping have been observed since the beginning of MOTs
with for example temperature measurements and cloud size (e.g. [RPC+ 87, SF91, MYMB10]).
The shadow effect has also been observed in 1D or 2D MOTs (meaning the magnetic �eld is
very strong in two or one dimension leading to consider only the other(s) remaining dimension)
with respectively cigar or disc shapes. Indeed, in those asymmetric setting multiple scattering
is expected to be much weaker, the reason being that most of the rescattered photons escape the
trap in another dimension of the MOT.

A list of the experimental clues in favor of this form of long-range Coulomb force is the
following

— Scaling experiments [CKL14, GPLK10, Gat08] whereL � N � 1=3. A skeptic would say
as a disclaimer that other types of non long-range interactions can give the same scaling
e.g. imagine a set of tennis balls (hard spheres) bound together also haveL � N 1=3.

— Coulomb explosion. [PSDJ00, Pru12] tested the expansion speed of a cloud when the
Zeeman trapping is turned off The result shows a good agreement with what is predicted
for a similar Coulomb gas.

— MOT instabilities. In the works [TMK10, LMK06], the authors tested some instability
threshold for the MOT due to the non linearity in the radiation pressure. If the instability
criterion is found using the Coulomb force for the multiple scattering, it is also not a
direct test of the force.

To the author's knowledge these are the only experimental evidences agreeing quantitatively
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with the Coulomb nature of the repulsion. Of course, �nding the Debye length in a MOT would
incontestably highlight the plasma like nature of VLMOT. That is what we will seek.

3 NON NEUTRAL PLASMA

We have seen in previous Section that if one forgets about the shadow effect, the VLMOT
description in term of forces is equivalent to a plasma formed by electrons pushing each other
via Coulomb force and trapped by a harmonic trap. This model is known as the Non Neutral
Plasma (NNP) model. NNP experiments are done with a Penning trap [DMF88, MDB+ 88] that
traps one charged species (e.g. electrons) with a magnetic and electric �eld. Another similar
model, that we will also refer to is the One Component Plasma (OCP). It is a plasma com-
posed with electrons embedded in a uniform neutralizing background of large positive ions
(see [DO99, Ich82, TLB99] for reviews on the subject).

The primary goal of the collaboration and this work is to highlight the similitudes between
VLMOT "standard model" and NNP with observables unilaterally characteristic of Coulomb
interactions (more selective than the scaling lawL � N 1=3). At this point we had two ideas,
one was to look directly at the correlations in the system and compare them with those of the
NNP model. The other idea was to force the system with an external sinusoidal potential and
look at the response of the cloud, a dependence on the force nature (attractive/repulsive and
short/long-range) is then expected depending on the sinusoidal modulation.

After de�ning precisely NNP model and giving its essential parameters and features such
as the Debye length we will do a recap of the different expected experimental values for the
VLMOT comparing it with some true plasma in Table I.1.

Then we will present different relevant observables of an NNP adapted to a VLMOT.

3.1 Presentation of NNP model

3.1.a Standard NNP model

The NNP model is formed with a single charged species, in general electrons, trapped with
a harmonic force. TheN electrons interact through long-range Coulomb force

~Fc =
C
r 3

~r (I.27)

where hereC = I 0
� L h� R i

4�c
t 10� 34 N�m2. For electronsCelec = q2=(4�� 0) ' 2 � 10� 28 N�m2

(q the electron charge and� 0 the vacuum permittivity). So, there is an order106 difference and
the effective repulsion between MOT's atoms coupling is very weak.

The Poisson equation satis�ed by the associated potentialVc is

� Vc = � 4�C � (~r): (I.28)

TheN evolution equations for the standard NNP systems are
_~ri = ~vi ; (I.29a)

m _~vi = ~Ftrap (~r) +
X

i 6= j

~Fc(~rj � ~ri ) (I.29b)
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where~Ftrap (~r) = � m! 2
0~r. WhenN ! 1 , as we have seen in the Introduction we can write in

the mean �eld approximation the Vlasov equation

@t f + ~v � ~r r f +

�
~Fc[f ] + ~Ftrap

�

m
� ~r vf = 0: (I.30)

3.1.b NNP model for the MOT

When adding the other forces present in a MOT to the NNP model, such as friction, diffusion
and shadow effect we get

_~ri = ~vi ; (I.31a)

m _~vi = � 
~v i � m! 2
0~ri +

X

i 6= j

~Fint (~rj � ~ri ) + ~� (t); (I.31b)

where~Fint = ~Fc + ~Fs, � is a stochastic Gaussian variable accounting for the random noise8

h� (t)i = 0 (I.32a)

h� (t1)� (t2)i = 2
k BT � (t2 � t1) (I.32b)

Then again in the largeN limit one gets the Vlasov-Fokker-Planck equation

@t f + ~v � ~r r f +

�
~Ftrap + ~Fc[f ] + ~Fs

�

m
� ~r vf = 
 ~r v

�
~vf +

kBT
m

~r vf
�

(I.33a)

and the associated Poisson equations

~r � ~Fc = � � � c = 4�C�; (I.33b)

~r � ~Fs = � 6�d�: (I.33c)

The friction and diffusion model possess a return toward thermal equilibrium that the original
Vlasov equation does not have. In [RHV11] is considered the Fokker-Planck equation without
expanding the radiation pressure force, leading to a position and velocity dependent diffusion
coef�cient and drift term. In our regime of low saturation and thick band, their model reduces
to our equation Eq. (I.33a).

After a fast time9 1=
 , the velocity distribution relaxes to a Gaussian equilibrium leading for
the spatial density evolution to a Fokker-Planck equation (also called nonlinear Smoluchowski
equation)


@t � (~r) = ~r �
�

! 2
0~r� +

1
m

(~Fc + ~Fs)[� ]� +
kBT
m

~r �
�

: (I.34)

From now on we will formally forget about the Shadow effect.Indeed since it has the same
divergence as the Coulomb force (with an opposite sign) it suf�ces to rescale the Coulomb
parameterC to include its effect. The non potential part effects of the Shadow force will be then
neglected. Actually, simulations with the full Shadow effect were performed and in the regimes
relevant for the experiment, it did not add signi�cant changes, justifying our assumption for a
�rst exploration of the long-range effects.

8. A Gaussian noise is motivated by the discussion Section I.1.2.

9. Indeed in standard experiments the quality factorQ = ! 0=
 is in the over-damped regimeQ <
1
2

.
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Density pro�le for zero temperature

The most natural observable is the density pro�le of the cloud. Without correlation at zero
temperature, the density solution of Eq. (I.34) is expected to have "rigid" boundaries� (~r) =
� 0(~r)�( L � r ) whereL is the cloud radius10.

From Eq. (I.34) atT = 0 K one possible solution satis�es for� 6= 0

m! 2
0~r + ~Fc[� ] = 0:

Applying the divergence operator~r� gives a constant density pro�le forr < L ,

� (~r) =
3m! 2

0

4�C
�( L � r ) (I.35a)

with the inside density

� 0 =
3m! 2

0

4�C
: (I.35b)

The cloud radiusL can be computed from the normalization condition
Z

R3
� (~r) d3r = 4�

Z 1

0
r 2� (r ) dr =

4�L 3� 0

3
= N ; (I.36)

thus,

L =
�

NC
m! 2

0

� 1=3

: (I.37)

SoL / N 1=3 for the NNP model. This was more or less observed in [CKL14].

Density pro�le for non-interacting cloud

The in this case analytically tractable limit of the model is when particles do not interact with
each other; they just feel the trapping due to the Zeeman/Doppler effect and the thermal motion.

From Eq. (I.34), one possible solution satis�es for each direction

m! 2
0r i � + kBT@r i � = 0;

giving (with the normalization condition)

� T (~r) =
N

2� 3=2

�
m! 2

0

kBT

� 3=2

exp
�

�
m! 2

0

kBT
~r2

2

�
; (I.38)

which does not display anyN � scaling size. We can de�ne the characteristic length (sometime
called Gaussian length or one particle length) for this system as

lg =

s
kBT
m! 2

0
:

10. For non-zero temperature, this rigid boundary is softened and one expects� (r ) ! 0 for r ! 1 .
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3.1.c Debye length

In the OCP model, the classic computation made by Debye and Hückel [HD23] shows the
existence of a typical correlation length between particles. This is the famous Debye length. In
the context of a plasma with electron and large positive ions, there is a simple interpretation.
The positive ions screen the long-range interactions between electrons for long distance, see
Figure I.5, so the effective sphere of in�uence for one electron is given by the Debye radius.

Figure I.5 – Schematic representation of a neutral plasma (OCP model) exhibiting a Debye
length of effective interaction.

In the VLMOT model, the neutralizing background of positive ions (OCP model) is replaced
by the trapping potential (NNP model). Formally a Debye length is also expected. We will only
show the Debye-Hückel computation for this case.

Imagine the system is at statistical equilibrium with a constant density pro�le� 0 and you add
a small perturbation, one particle at~r = 0. The perturbed pro�le is given by the Boltzmann
factor

� (~r) = � 0e� � tot (~r )=(kB T ) ; (I.39)

and the associated Poisson equation for the total potential is

� � tot [� (~r)] = � � c[� (~r)] + � � tr (~r) = � 4�C� (~r) � m! 2
0 � 4�C� (~r): (I.40)

When the temperature is large with respect to the potential created (typically
� tot

kB T
� 1), it

is legitimated to expand

� � tot = � 4�C� 0 +
4�c
kB T

� 0� tot + 3m! 2
0 � 4�C� (~r): (I.41)

De�ning the Debye length11 as

� D =

s
kBT

3m! 2
0
; (I.42)

we get a total potential of the form
�

� �
1

� 2
D

�
� tot = � 4�C� (~r); (I.43)

11. Note thatlg =
p

3� D
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and solution is known as the Yukawa potential

� tot (r ) = C
e� r=� D

r
: (I.44)

So, the typical potential created by a particle is screened (strongly attenuated) for distance larger
than the Debye length. For� D ! 1 , this potential is again the Coulomb potential as expected.

3.1.d Plasma parameter

The experimental set up is believed to be in a 'gas like phase' quanti�ed by the plasma
parameter� which is the ratio of the typical potential energy between two particles to the
typical kinetic energy of a particle

� =
C=a
kBT

=
C

kBT

�
m! 2

0

C

� 1=3

=
a2

3� 2
D

(I.45)

wherea is the mean distance between particles

a =
L

N 1=3
=

�
C

m! 2
0

� 1=3

: (I.46)

Note that in� � 1 regime we justify the derivation made for the Debye length in Eq. (I.43),
which means that for other regime� > 1 the Debye length is not physically relevant any more.
It becomes smaller than the inter-particles distance Eq. (I.45).

This is the unique parameter determining the system state for the NNP model (when the
system size is in�nite or with periodic boundary conditions), it measures the correlation in the
system. For the standard OCP model, there is one phase transition from liquid phase to solid
phase (see the Los Alamos National Laboratory Plasma group website12 for nice illustrations),

Fluid Solid

Gas-likej Liquid-like

� � 1 j � � 1 � 100 � > 175

For the �nite sized MOT, we also consider

h = lg=L (I.47)

which quanti�es in a way the �nite size and temperature effects.
To have a gas like phase and a quasi-step function density pro�le we need

� =
a2

l2
g

� 1 (I.48)

h =
lg
L

� 1 (I.49)

this regime is believed to be the one of the VLMOT of INLN.

12. http://www.lanl.gov/projects/dense-plasma-theory/research/one-component-plasma.php
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A last characteristic plasma parameter is the plasma frequency (also called Langmuir fre-
quency) de�ned for a MOT as

! p =

r
4�� 0C

m
=

p
3! 0: (I.50)

It characterizes the fast oscillation of the atoms when small perturbations move aside a plasma
from a homogeneous distribution. In fact, those oscillations can be related to the Landau damp-
ing mechanism that we will study in details in Section V.4.

3.2 Some numerical values for experimental MOT

In our MOT, the plasma parameter is weak� � 10� 4, which means that the interactions are
weak in comparison with kinetic energy. Thus, one does not expect a liquid or crystal structure
in the atomic cloud but rather a gas like medium. This is the weak correlations regime.

Small MOTs size has been measured (e.g. [RPC+ 87]) to be of the order of100� m. In
these MOTs we expect no Coulomb interactions between atoms. Hence the particles follow a
Gaussian distribution Eq. (I.38) withlg � 100� m. Sincelg =

p
3� D , we have an expectation

value for the Debye length, that in principle should remain true for very large MOTS with
repulsive interactions.

In Table I.1 we present some typical value for known weakly coupled (� � 1) plasma and
compare them with the VLMOT. Despite that the INLN MOT is far from known a regime of
plasma it shares some parameters with magnetic fusion plasma.

T (K) � 0 (cm-3) L (cm) � h a (cm) � D (cm) ! p (rad/s)

Magnetic Fusion 108 1014 100 10� 7 10� 4 10� 5 10� 2 6 � 1011

Solar Wind 105 10 6� 105 10� 8 10� 3 0:1 2� 105 7 � 103

Galactic center 107 102 1017 10� 10 10� 14 0:08 3� 103 6 � 105

VLMOT 10� 4 1011 1 10� 4 0.01 10� 4 10� 2 103

Table I.1 – Some typical parameters for weakly coupled plasma.

So far we have gathered a number of parameters to characterize the system. Here we try to
give an overview of them with some typical experimental values.

The number of atoms can be varied over several orders of magnitudes fromN = 106 to 1011

for the INLN MOT. For N � 1011 one hasL ' 1cm with a density� 0 � 1011 atoms/cm3.
The on resonance optical thickness is computed with the measured maximal density (which is
assumed constant along the cloud) and the cloud sizeL Eq. (I.21),

b0 = 2L� 0� 0 � 100:

It might seem large and completely invalidate the smallb hypothesis needed to express the
shadow effect but it decreases quickly with the detuning since

b(� ) =
b0

1 + 4� 2=� 2
d

; (I.51)

insuring that experimental working detuningb(j� j) � 1.
Here is a list of several other values
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— kL =
2�
780

nm� 1 is the wavenumber of the laser

— m = mRd = 1:443� 10� 25 kg is the atom mass (whilemelectron = 9:1 � 10� 31 kg)
— Two energy level rubidium atoms� E = ~! atom ' 1:589eV, with the corresponding

wavelength� atom = 780:241nm (in vacuum)
— Temperature� 150� K
— I 0 t 1:2mW/cm� 2 lasers intensity
— I s = 1:67mW/cm� 2 [Ste01].
— � d = 2� � 6:06MHz natural width of the atomic transition for Rubidium atoms at

resonance at! atom

— � 0 ' 2:9 � 10� 9cm2

— C = I 0
� L h� R i

4�c
t 2 � 10� 34 N�m2 (while Celectron = 2 � 10� 28 N�m2)

Also, to be useful the probing of the Debye length by a laser must satisfy� D =� L � 1
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CHAPTER II

THEORETICAL AND EXPERIMENTAL

OBSERVABLES

The analogy between the MOT and NNP model is now established. The aim of this Chapter
is to de�ne the characteristic observable of the NNP model (and in general long-range systems)
that could be use in a real experiment. We will also introduce our numerical simulations to
illustrate those observable. In next Chapter, all those tools will serve the experimental proposal
to see long-range effects.

1 DENSITY

The most obvious observable is the one point density function� (~r) that depends directly
on the interactions. Due to the supposed isotropy of the system one can in general consider
only � (~r) = � (r ). However experimentally, one cannot1 access this 3D pro�le and only an
integrated pro�le� x (x),

� x (x) =
Z L

� �

Z L

� �
� (

p
x2 + y02 + z02) dy0dz0: (II.1)

It corresponds to what is seen when the cloud is observed with �uorescence on a slice� � <
y = 0 < � .

The �uorescence technique consists in changing brutally the detuning of the con�ning lasers
from the working experimental value to the largest detuning possiblej� j = 8� d and observing
the photon emitted. The switch and measurement are fast enough so that the atom positions
do not change much. If single scattering events are diminished "/ � L #" at large detuning,

1. In principle a tomography, which gives� (r ), is doable but experimentally somehow painful to set up.
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scattering followed by rescattering on another atom" / � L � R � " is furthermore diminished.
Therefore, photons on the CCD camera mainly come from single scattering events and so are
linked with the position of atoms. The resulting pro�le is more accurate than directly looking
at the emitted light from the cloud at smaller detuning [CKL14] where both types of scattering
are mixed.

So experimentally we will compare two things with the Coulomb model
— The shape of� x (r )
— The scaling of the cloud radius with various quantities. Practically it is easy to change

� The detuning� with the disadvantage that it changes both interactions and tempera-
ture.

� The number of particlesN , that should be a well-controlled and predicted quantity.
The cloud size is experimentally measured as the Full Width at Half Maximum (FWHM) of the
�uorescence pro�le. Per the standard model Eq. (I.35),

� x (x) /
p

L2 � x2�( L � r )

andL � N 1=3. [CKL14] gives
— approximatively the goodN � scaling
— a density pro�le� x (x) which is not very well �tted by the theory.

2 PAIR DISTRIBUTION FUNCTION

The pair distribution functiong(2) is a direct measure of correlation in the system, it is de�ned
through the one and two point density function,

� (2) (~r2; ~r1) = g(2) (~r2; ~r1)� (~r1)� (~r2); (II.2)

where� (2) (~r2; ~r1) measures the probability of two atoms being at~r2 and~r1. If g(2) = 1, it means
there are no correlations, thus a particle at~r1 will see a homogeneous density around it with no
particular exclusion zone. For a weakly correlated plasma� � 1 the pair correlation function
can be found by the Debye-Hückel theory (similar calculation to that of Section I.3.1.c) as

g(2) (~r1; ~r2 � ~r1j) ' g(2) (r ) ' 1 �
a�
r

e� r=� D ' exp
�

�
a�
r

e� r=� D

�
(II.3)

where we assumed the isotropy; the last equality an interpolation betweeng(2) (r = 0) = 0 and
the Debye-Hückel theory, its validity is discussed in [BH80]. For smallr � � D it is very close
to zero, meaning two particles cannot collide (because of the interaction), then it goes quickly
to 1, meaning forr > � D one particle "sees" a homogeneous repartition of particles.

Theoretically and numerically this quantity is very interesting and accessible, but experimen-
tally it is not directly accessible. It would require position tracking for particles. Note that for
some "dusty" plasma experiment with heavy ions it is feasible [SVH+ 04].
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3 NUMERICAL EXAMPLES

The major issue with the simulation of a VLMOT is the number of particles. Due to the
machine limitations, the simulated particle number cannot be higher than aboutN � 105. Thus,
obtaining both lowh of Eq. (I.47) and� of Eq. (I.45) is dif�cult. The only way to decrease one
without increasing the other is to have a largeN . In fact, to geth � 102 and� � 10� 4 as in the
experiment we would need aboutN � 109 particles...!

Nevertheless, we expect the main features we seek to remain. Thus, in Part One we will
perform molecular dynamics simulations withN = 163842.

The inter-particles distancea of Eq. (I.46) is relatively well known in experiments since both
the number of particles and the size of the cloud are controlled. It is thus natural to usea to
de�ne dimensionless distances.

3.1 Numerical details

All MOT numerical simulations are performed via a 3D molecular dynamics (MD) code with
a parallel implementation on a Graphical Processing Units (GPU). I gratefully acknowledge
Bruno Marcos who provided the code in its original structure (for pure self-gravitating systems).
I added to the code friction, diffusion3 and trapping. For some tests I also coded the Shadow
Force. The code performs a time integration for theN particles evolving through Eq. (I.31).

— The interaction force is coded in parallel: thanks to the block structure of GPUs the
force Fi felt by an atomi can be computed simultaneously for manyis. Compared
with a standard Central Processing Unit (CPU) computation the number of operations is
still proportional toN (N � 1) but with a coef�cient greatly diminished. The speed-up
depends on the number of particles, the problem and the GPU used, but here it is at least
100 times.

— The whole Langevin dynamics (with friction and diffusion) is coded according to a sec-
ond order Leapfrog algorithm [ISP10].

The advantage of this code is that it computes exactly all force terms. Indeed, other codes such
as GADGET [Spr05], make approximations using the long-range nature of the force to gain in
computation time. It is also a disadvantage because GADGET codes are much faster. In our
simulations we �nd a compromise between a large particle number and a reasonable simulation
time withN = 16384.

2. This number was chosen because it is a power of two and it is optimal for GPU computing.
3. The cuRAND library [CGM14] allows fast random Gaussian number generation on GPU.
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3.2 Numerics

For one snapshot the density is computed as

� (r ) =
X

~r1

� � r (j~r1j � r )
V} (r )

; (II.4)

whereV} = 4� (r 3 � (r � � r )3)=3 is the volume of a 3D ring betweenr andr + d r Then it
is averaged over at least 50 snapshots. Simulations are shown in Figure II.1(a), for different

(a) Density pro�le� (r ). We noted the theoretical length
L given by Eq. (I.37).

(b) Pair correlation functiong(2) (r ).

Figure II.1 – Density and pair correlation functions from MD simulations for three different
temperatures (see Table II.1 for parameters value).

dimensionless temperaturesT. For h � 1 the pro�le is a step function while forh � 1 it
has a Gaussian shape. The length of the cloudL indicated on the Figure is well recovered in
simulation as well as the density� 0 = 298. The pair correlation functiong(2) is computed as
follows:

g(2) (r ) =
1

Nz

X

r 1<�

� (2) (r;~r 1)
� (r1)

=
X

r 1<z

X

~r26= ~r1

� � r (j~r2 � ~r1j � r )
V} (r )� (r1)

(II.5)

where

� � r (r 0 � r ) =

(
1; jr 0 � r j < � r

0; elsewhere:
(II.6)

Here� is a parameter that should be smaller than the cloud radius but large enough to sample
many particles. Just a note, the larger limit of g(2) is supposed to be1, but obviously for a
�nite system it will go to 0. It does not matter since the correlation effects we seek are found
for smallr .
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Figure II.2 –1 � g(2) (r ) for three different temperatures in a simulation with standard Coulom-
bian interaction. Also, plotted is the analytical expression ofg(2) (r ) with the computed values
of � D , a and� (see Table II.1 for parameter values)

Numerical test

To see these correlation effects (i.e. wheng(2) (r ) 6= g(2)
MF (r ) = 1 ) we look at1 � g(2) (r )

in Figure II.2. We compare the simulations with the theory of Eq. (II.3) with the theoretical
parameters (hence it is not a �t). The effect of temperature is clear: on one hand for high cor-
relations (low temperature) the theory is less accurate. On the other hand for high temperature,
�uctuations are higher which may also damage the precision.

T = 1 T = 4 T = 20

� D 0.0577 0.115 0.258

h 0.0245 0.0490 0.110

� 0.862 0.215 0.0431

Table II.1 – Parameters used in the MD simulations for different temperatures. We also have
temperature independent parameters:
 = 100, mC = 0:08, N = 16384, ! 0 = 10 soL = 2:36,
a = 0:093, � 0 = 298 for the three different temperatures.
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4 STRUCTURE FACTOR

If the pair correlation function was clear to interpret and density independent, it could not
be directly observed in experiment4. However, the static structure factorS(~k) has the advan-
tage that it can be directly linked to the experimental diffraction pro�le (see Appendix A.1).
Following [HM06], we de�ne the structure factor as

S(~k) =
�

1
N

� (~k)� (� ~k)
�

=

*
1
N

�
�
�
�
�

X

i

e� i~k�~r i

�
�
�
�
�

2+

(II.7)

where the bracket stands for an ensemble average and we have used the empirical density Eq. (4a)
to obtain the last expression

� (~k) =
Z

� (~r)e� i~k�~r d~r =
Z NX

i =1

� (~r � ~ri )e� i~k�~r d~r =
NX

i =1

e� i~k�~r i : (II.8)

The ensemble average is crucial to see correlations, removing it carelessly would erase them.
Another formulation of the structure factor highlights their role

S(~k) =

*
1
N

�
�
�
�
�

X

i

e� i~k�~r i

�
�
�
�
�

2+

=

*
1
N

NX

i =1

NX

j =1

e� i~k�(~r i � ~r j )

+

= 1 +

*
1
N

NX

i =1

NX

j 6= i

e� i~k�(~r i � ~r j )

+

= 1 +

*
1
N

NX

i =1

NX

j 6= i

Z Z
e� i~k�(~r1 � ~r2 ) � (~r � ~ri )� (~r � ~rj ) d~r1d~r2

+

= 1 +
1
N

ZZ
e� i~k�(~r1 � ~r2 ) � (2) (~r1; ~r2) d~r1d~r2

(II.9)

where we used the de�nition of the empirical two point density function. So, neglecting correla-
tions would correspond to considering� (2) = � (~r1)� (~r2). For an isotropic in�nite homogeneous
media (N ! 1 ), one can write

S(k) = 1 + � 0

Z
e� i~k�~r d~r + � 0

Z
(g(2) � 1)e� i~k�~r d~r = 1 + � 0Vtot � (k) � 4�� 0

Z
a�
r

e� r=� D e� i~k�~r d~r

= N� (k) + 1 �
4�a � � 0

k2 + 1=� 2
D

= N� (k) + 1 �
� � 2

D

k2 + 1=� 2
D

= N� (k) +
k2

k2 + 1=� 2
D

(II.10)

where the 3D Fourier transform was directly obtained from the modi�ed Poisson equation Eq. (I.43)
that is satis�ed by the Yukawa potential. The Dirac function corresponds to the unscattered ra-
diation. Without interactionsg(1) = 1, so one would expect

SMF = N� (k) + 1 :

In our problem, the structure factor will be modi�ed for large wavelength due to the �nite
size effect, resulting in a spread peak re�ecting the Fourier transform of the density pro�le, not
just a Dirac peak.

4. However if the media is in�nite, homogeneous, and isotropic it can be computed via the structure factor.
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Numerical test

ComputingS(j~kj = k) for a MD simulation of a trapped Coulomb cloud gives Figure II.3,
— The main peak inS(k = 0) = N correspond to the unscattered radiation.
— For smallk � 1=L, a large peak with many bump, re�ecting the step function pro�le of

the cloud
— For largek, the structure factor goes to 1. This contribution is always present and stands

for a background noise.
— For intermediatek � 1=� D , a small gap is formed and is deeper when the temperature is

smaller (thus it depends on� D ). This is characteristic of the Coulomb correlations.

Figure II.3 – Structure factorS(k) from MD simulations averaged in all~k directions at a �xed
j~kj = k for three different temperatures. We indicated the position of the peak corresponding to
the cloud size2�a=L . For other parameters see Table II.1.

We compare these simulations with the exact overcritical expression Eq. (II.10) fork � 1=L in
Figure II.4. Once again, the simulation/theory agreement is very good.

5 COMPARISON WITHOUT CORRELATIONS

We have a clear prediction for an experimental measurement of correlations: a "dip" in the
structure factor characteristic of Coulomb interactions with a functional dependence that leads
directly to the Debye length. Nevertheless, to be sure that this "dip" corresponds to correlations
we can compare it with the structure factor of a cloud with no correlations (see Figure III.1).
We propose two different ways to achieve this, one that will be useful for numerics and one that
shall be used in experiments.
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Figure II.4 – Structure factorS(k) from MD simulations averaged in all~k directions at a �xed
j~kj = k for three different temperatures. We plot the non �tted theoretical expression Eq. (II.10).
We indicated the position of the different Debye length. Theoretical values used are given in
Table II.1.

5.1 Random arrangement

Numerically we know the density pro�le, it is then easy to draw random particle positions
according to this pro�le. With this procedure, we have a cloud with the exact same density
pro�le but without any correlation between particles, in particular we expectg(2) (r ) = 1 . This
method is also very useful for the structure factor since the density pro�le plays an important
role, so keeping it constant allows us to distinguish the correlation effects without assuming an
ideal pro�le. This will be very useful when we study different interaction models (with a priori
different density shapes). However, we cannot apply this procedure in experiments.

5.2 Turning off the trap and interactions

In the experiment one cannot turn off interaction without turning off the lasers and thus the
whole trap. When it is done, particles evolve freely with constant speed and direction. After a
timetD = � D =hjvji (typical time to "escape" the Debye radius), we expect correlations to have
diminished greatly. Plotting the new structure factor5 (Figure II.5) gives as expected a "closing

5. From now on we normalize the structure factor byS(0).
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of the dip". Note thattD is estimated as

tD =
� D

hjvji
=

r
kBT

3m! 2
0r

8kBT
�m

=
r

�
24! 2

0
t 1 ms:

Figure II.5 – Structure factorS(k) from MD simulations with the trap ON (interaction force
+ friction/diffusion + harmonic force) and after turning OFF the trap (evolution at constant
velocity~v). We wait respectivelytD , 2tD , 3tD and plot the associate structure factor to observe
the correlations disappearing.

.

Experimentally this method is well controlled. The escape time hastD small enough so the
density pro�le doesn't change too much (and so the structure factor). However, an issue of this
method is that it cannot be simply transposed for the modulations experiment we will propose
Section III.2.

6 DIFFRACTION AND STRUCTURE FACTOR : LINK WITH

EXPERIMENTS

As explained in Appendix A.1, there is a simple link between the structure factorS(~k) and
the experimental diffracted intensity. However, the real diffracted intensity contains multiple
scattering (which is not contained inS(k)) events that can screen the effect we seek. These
events are typically measured by the optical thicknessb(� ) Eq. (I.51). For largeb, multiple
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scattering is very important, while for very smallbthe diffraction is mainly composed of single
scattering. We show in Figure A.1 that forb � 1 these effects are small and thus can be forgotten
for this �rst exploration. A laser emits a wave~E in / eik L z~ez. The wave is diffracted in direction

Figure II.6 – Sketch of an incident beam~ki diffracted on an atom with an angle� .
.

~kf = kL (cos' k sin� k ; sin' k sin� k ; cos� k), see Figure II.6. In our regimes, it is natural to
consider elastic scatteringj~kf j = j~ki j = kL j~ezj). The difference vector~k = ~ki � ~kf appears
naturally (see Eq. (A.4)) in computation of the diffracted light, thus we will studyS(~k) =
S(� k ; ' k).
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CHAPTER III

L OOKING FOR DEBYE LENGTH AND

OTHER PLASMA PHYSICS EFFECTS

The goal of the experimental collaboration is to highlight the repulsive long-range nature
of the effective forces between atoms as it was predicted by [WSW90]. As we have seen no
experimental measurement has yet con�rmed with no ambiguities these forces.

In this Chapter, we come to what is the result of Part One: experimental proposals to measure
the Debye length or at least stress the long-range nature of the forces. We �rst brie�y review
the direct diffraction response method with a more realistic Laser shape. However, in real
experiment this method might give a signal way too weak to be observed. The other experiment
idea is to force the MOT with an external potential and look at its response. This latter should
be characteristic of the nature of the effective interaction forces. The numerics and theoretical
prediction are compared to the preliminary experiment done by the INLN team.The theoretical
and experimental data are consistent nevertheless it remains dif�cult to draw conclusion
on the presence or not of long-range forces.Indeed, the effect sought might be cover by
density effects due to the existence of two diffraction regimes that crossover about where the
experiment probed.

1 DIRECT PROBING

1.1 With a Gaussian probing beam

In real experiments the probing Laser (in thez direction) is not an ideal plane wavesEG /
eik L z but has a Gaussian envelope. Thus, we consider following expression for the probing
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Laser
ELaser / eik L ze� 2 x 2+ y 2

w 2 ;

wherew is the Laser waist1. If the Laser waistw is smaller than the cloud's size (typically in
experimentsL ' 8mm andw ' 2mm) it has the advantage to soften borders. Figure III.1
clearly shows how in the diffraction response border effects are suppressed with a Gaussian
beam. We also compare this pro�le with an another one without correlations. This uncorrelated
cloud was obtained via the procedure explained in Section II.5.1 (we randomly drawn particles
along the density of the correlated cloud). Clearly the small dip disappears with correlations.

Figure III.1 – Structure factor with a Gaussian probing beamSG(k) and with a plane waveS(k).
The "random" curve is obtained for a random drawing of particles as suggested in Section II.5.1.
We plot the non �tted theoretical expression Eq. (II.10) of the Structure factor. Theoretical
values used are given in Table II.1, hereT = 4.

1.2 Comparison with experiments

The correlations of the Coulomb forces are characterized by a small dip in the diffracted
intensity as explained in Section II.5. We expect the background intensity to be of the order
1=Nd, whereNd is the number of diffracting atoms. If the probing beam is larger than the
cloud all atoms diffract soNd = N andS(k ! 1 )=S(0) = 1 =N � 10� 10! Such contrast
leaves no hope to observe any dip neark = 1=� D (even with a Gaussian beam whereNd is
smaller the contrast would be too large). The best experimental resolution is about �ve orders
of magnitudes...

A mask was used to hide the central peak in order diminish the contrast but preliminary
experiments where pessimistic. Thus, this experiment was abandoned.

1. There is in principle also a dependence of the waist dependence on the longitudinal directionw(z) but for
the Laser used, this effect is very small sincez < z R = 41 m, wherezR is the Rayleigh length.
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2 RESPONSE TO AN EXTERNAL POTENTIAL

Since the dip characterizing the Debye correlation is very hard to detect in experiments, we
must change strategy. Going from a static measurement, to a response to an external forcing
measurement, increasing the signal to measure. Note that not only the measurement principle
is different but also the effect sought. In previous experiments, we wanted to analyze the posi-
tion of particles to �nd some special arrangement between them: correlations, characteristic of
Coulomb interactions. Here we no longer look directly for correlations between particles, but
rather for a response characteristic of Coulomb forces (or more generally long-range interac-
tions).

2.1 Experiment principle

We apply a modulation in one direction~ex of the cloud and measure the response depending
on the modulation length. The modulating potential is made experimentally by focusing two
interfering laser beam on the cloud. It shape is

� ext = A sin(kex)

where the angle between the two modulating Lasers determines the wavelengthke andA is the
modulation amplitude. The Fokker-Planck equation predicts the density response in stationary
regime

~r �
h
(~Ftr + ~Fc[� ])� � kBT ~r � � � ~r � ext

i
= 0; (III.1)

so around the constant pro�le� (~r) = � 0 + �� (~r), the linear response inA is (neglecting border
effects of the cloud)

� �� � � 2
D �� = �

A
kBT

k2
e� 0 sin(kex); (III.2a)

so

�� (x; y; z) =
A

kBT
� 0 k2

e

k2
e + � 2

D
sin(kex) (III.2b)

with � D = 1=� D , where we used that~Fc[� ] + ~Ftr = 0. Hence the modulated pro�le has a
clear amplitude dependence on the modulation numberke and it is characteristic of Coulomb
interactions (another force would have given a different result). Hence if we measure this shape
it will prove the experimentally the Coulomb-like model of VLMOT [WSW90]. In next Section,
we will discuss this dependence in terms of long-range interactions.

Remark III.1
Here we have done a 3D computations assuming an in�nite homogeneous unmodulated density.
Of course, the border effects (as �nite size and temperature) might modify slightly the pro�le
and response, but it seems quite safe to assume that at �rst order and fork � 1=L they can be
neglected
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2.2 Fluorescence-like density pro�le

2.2.a The Response function

A direct observation of the modulation effects consists in looking directly at the density
pro�le � x (x) via the �uorescence technique. In the Fourier spectrum, we expect a peak at
kx = ke with height proportional to the response function

B(k) =
k2

k2 + � 2
D

; (III.3)

there are also some density effects fork . 1=L since� 0 is not a perfect in�nite constant den-
sity pro�le. Without interactions between particles (thus with no Debye length), the response
function isB(ke) = 1 . For other type of interaction forces this response function changes. The
interpretation here can be put this way

— For large scalek < � D , moving atoms on large distance will cost much (so the response
will diminish) since particles interact via long-range forces, moving on large scale will
imply moving a lot of particles and modify(N � 1) terms in their potential energy.

— On the contrary for largek > � D (small modulations), it will cost less to move on small
scale involving less.

For short range repulsion, the response has an opposite pro�leB(ke ! 0) = cst (a particle
sees only its neighbors, hence for modulation larger than a given scale the response is constant)
while B(ke) will decrease for largeke.

For attractive long-range forces, we also expectB(largeke) ! cst, but for large scale pertur-
bation, we expect an instability to develop at a certain scalekJ , wherekJ is the Jeans wavenum-
ber. This is the Jeans instability [Jea02, BT11] well known for galactic systems: when a self-
gravitating system is too large its kinetic pressure cannot compensate the gravitational force and
the system collapses.

2.2.b Numerical Simulations

In Figure III.2 we plot a simulation of the modulated density pro�le� x (x) (for a �xed temper-
ature) for two different modulations. As expected the amplitude grows withke. In Figure III.3
we plot the response to modulation (peak of the Fourier transform atk = ke) for severalke

and different temperatures and compare the result with the response functionB(ke). The ratio
between the amplitude response for different temperatures agrees with the factor(kBT)� 1 in
Eq. (III.2b). For small temperature, the simulations do not match perfectly the theory, this is
because is the regimeA=T > 1 the linear theory is expected to fail. Nevertheless, we see that
the essential features ofB(ke) remain, just the effective1=� D seems shifted to the left, thus
there is a larger effective� D outside linear regime. Effective(� 1

D )e� and� 4
D seems to about the

same.
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Figure III.2 – Integrated density pro�le� x (x) with and without an external potential with ampli-
tudeA = 8 and wavenumberke. Whenke increases the response also increases. HereT = 20
and other theoretical values used are given in Table II.1.

Figure III.3 – Amplitude of the Fourier transformFTj� x j(ke). We plot the theoretical expression
of the responseB(ke) = Eq. (III.3) for the theoretical parameters given in Table II.1. The
external amplitude isA = 8. The linear theory works better forA=T small.
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2.2.c Experiments

This method requires experimentally to be able to see the modulations in the �uorescence
pro�le and then deduce its Fourier spectrum. This set up can be seen more generally as testing
the long-range character of the interaction; an increasing response withke would be a signature
of a long-range repulsion.

Unfortunately, it seems that �uorescence techniques are not accurate enough, less than10%
changes are in the noise of the density pro�le. Our small modulations are thus not observed at
all. Also, larger modulation intensity seems not possible without completely destabilizing the
MOT.

2.3 Diffraction

Since the �uorescence technique is not accurate enough, an alternative way to measure the
density modulation is diffraction. It is very accurate, but interpreting the results is not straight-
forward, as we will now explain.

As explained in Sections II.4 and III.1, to predict the diffraction pro�le we must study the
perturbed structure factor

S(~k) = S0(~k) +
�

1
N

�� (~k)� 0(� ~k)
�

+
�

1
N

�� (� ~k)� 0(~k)
�

+
�

1
N

�� (~k)�� (� ~k)
�

(III.4)

whereS0 is the unmodulated structure factor (without external potentialA = 0).
In this modulation experiment it is legitimate to neglect the correlations because here they

are very small as we have already painfully experimented, Section III.1. So, we can write for a
symmetric density pro�le

S(~k) = S0(~k) +
2
N

�� (~k)� 0(~k) + �� (~k)2 + O ( correlation) : (III.5)

The perturbed density Fourier transform can be easily related to the unperturbed Fourier trans-
form thanks to the shift in~k induced by thesin function

FT [ � (x) sin(kex)] (kx ) =
1
2

(� (kx � ke) � � (kx + ke)) ;

whereFT[ � ](kx ) stands for the Fourier Transform of the density� .

2.3.a Expression of the~k vector

The goal of this subsection is to introduce some effects that may not be intuitive for reader
concerning 1D and 3D diffraction calculus. For example,j~k � ~kej 6= jk � kej in 3D while it is
true in 1D. The diffracted wavenumber vector is (see Figure II.6)

~k = ( kx ; ky; kz) = ( � cos� k sin� k ; � sin� k sin� k ; 1 � cos� k);

and its norm is
k = 2kL sin(� k=2); (III.6)
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so� k = 2 arcsin(k=(2kL )) . A simple calculus shows that

~k =

0

@� k

s

1 �
�

k
2kL

� 2

cos' k ; � k

s

1 �
�

k
2kL

� 2

sin' k ;
k2

2kL

1

A : (III.7)

In experiments, we observeS(� k ; � k). Two modulated density produces two diffraction
peaks in' k = 0 and� . The angle� k is directly linked withj~kj. Due to the modulation, we
expect a peak inS(~k) aroundk � ke. The perturbed wave vector expression after the shift due
to the modulation is

j~k � ~kej =
q

k2
x + k2

y + k2
z + k2

e � 2kxke =

vu
u
t k2 + k2

e � 2kke

s

1 �
�

k
2kL

� 2

cos� k : (III.8)

The minimum of this norm is reached aroundk = ke with � k = 0 or � (those will correspond
experimentally to the two-diffraction discs observed).

We expect the Debye length to be around100� m sok � 104 m� 1, with kL =
106

0:78
m� 1, so

ke=kL � 1. Hence, we can safely expand the square root in Eq. (III.8), to get withjkj ' ke and
� k = 0 (for example)

jke ~ek � ke ~ex j =
k2

e

2kL
+ ke � O

 �
ke

2kL

� 2
!

' kz 6= 0:

(III.9)

This computation shows that due to the 3D nature of the system, one must not a priori forget
about the longitudinal direction~ez in the diffraction. It will be the origin of two regimes of
diffraction.

Therefore, the perturbed Fourier transform is at the peakk ' ke

� (ke) ' � 0(ke) +
A

2kBT
B(ke)

�
� 0

�
k2

e

2kL

�
� � 0 (2ke)

�
: (III.10)

Here remember that� (k = 0) = N and also that the Fourier transform of the pro�le decrease
very quickly to 0 withk increasing (the more regular� (r ) is the faster its Fourier transform tends
to 0). The dominant term in the structure factor2 is for NA=(kBT) � 1 (for 10%modulation
andN � 1010 the approximation is safe) andke & 1=L (for smallerke the unperturbed term
becomes of the same order),

S(ke) ' 1 +
1
N

�
A

2kBT

� 2

B 2(ke)
�

� 0

�
k2

e

2kL

�� 2

; (III.11)

where have neglected terms with large argument in� (k). Due to its fast variation aroundk �
1=L it is dangerous to replace the last term by� 0(k = 0) = N . In next Section, we give a
simple illustration of this fact.

2. We keep the +1 background term which for largek is dominant.
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2.3.b A simple example: existence of two diffraction regimes Raman-Nath/Bragg

In this Section, I will give a simple example where two different regimes are easily observer
in the diffraction response.

Let's take a 3D cube of atoms� 0(x; y; z) = � 0�( L � x)�( L � y)�( L � z), modulated
such that�� = ~A� 0 sin(kex) were we set a constant~A = AB (ke) (for example with a trapped
non interacting cloud). It means that here we do not seek interaction effects just the regimes
of diffraction. The diffractionS(k) response is maximum (forgetting of course the undiffracted
peak ink = 0) for k ' ke. Standard calculation gives

�� (~k) = 4 � 0 ~A
sin(kzL z)

kz

sin(kyL y)
ky

�
sin((kx � ke)L x )

(kx � ke)
�

sin((kx + ke)L x )
(k + ke)

�
: (III.12)

so, with Eq. (III.11) we have

S(~k) � S0(~k) '
1
N

 
4� 0 ~A
2kBT

! 2 �
sin(kzL z)

kz

sin(kyL y)
ky

sin((kx � ke)L x )
(kx � ke)

� 2

(III.13)

where we have neglected correlation terms and cross termed terms in Eq. (III.5) which are neg-
ligible for k > 1=L.

— If kzL z � 1 (thin media) then the diffraction is independent of the density along the
longitudinal direction~ez. The max of this function is reached forkx = ke andky = 0.
So, the peak response is constant withke and its amplitude is constant

S(ke) �
1
N

�
� 2

0
~AL zL yL x

� 2
:

— Now if kzL z � 1, the peaks of diffraction are still situated aroundk ' ke. We can still
setky = 0, but this time we must also consider the additional dependence onkz 6= 0.

The peak response is now, rememberingkz '
k2

e

2kL
,

S(ke) �
1
N

0

@
4� 0

~AL yL x sin
�

k2
e

2kL
L z

�

k2
e=(2kL )

1

A

2

:

So, in this simple example we have seen the existence of two diffraction regimes:
— kzL z � 1, response is constant with the modulationke

No density effects: Raman-Nath regime of diffraction.
— kzL z & 1, response has ak� 4

e dependence with the modulation
Strong longitudinal density effects: Bragg regime of diffraction.

It shows clearly that the diffraction response to modulation displays a slope change due only to
density effects without any link with the response functionB(~ke). Of course, it is problematic,
because it will interfere with the slope change effect expected from the long-range interactions!

The criteria for these two regimes is in terms of a critical wavelength� (c)
e (or wavenumber

k(c)
e ) of modulation

� (c)
e = 2�

r
L z

2kL
=

p
�L z� L or k(c)

e =

r
2kL

L z
: (III.14)

Université Côte d'Azur 64



2. RESPONSE TO AN EXTERNAL POTENTIAL

So, for a cloud of radiusL t 6mm and a laser� L = 780 nm, the regime change is expected
at � (c)

e t 120� m... which is the worst case scenario since the Debye length is also expected
around100� m!

Thus in the following, we will need to distinguish/separate the "density effects" from the
"long-range effects". To do so theoretically, we will often setB(ke) = 1 , which corresponds
to a response without interaction, to compare with a case with interactions.

Remark III.2
One physical picture for those regimes is: considers at the cloud entrance a series of Gaussian
beams with a waist given by the size of diffracted object, which is here the density modulation
of size� e = 2�=k e. That beam will propagate and spread in perpendicular plane, Raman-Nath
regime corresponds to the situation where two adjacent beams do not superpose which is to say
the Rayleigh length

zR = �
� 2

e

� L

is smaller than the longitudinal size of the cloudL z. WhenzR > L z beams overlap: it is the
Bragg regime. In the context of ultrasonic light diffraction this criteria Eq. (III.14) between
Raman-Nath/Bragg is also known [KC67].

2.3.c Diffraction discs

In the previous Section, we have seen on a simple example that we expect for a homogeneous
distribution of particles with no interactions a diffraction pro�le with

— � e � � (c)
e , S(� e) / � 4

e,
— � e � � (c)

e , S(� e) / � 0
e.

Here we will show how measuring the total intensity of diffraction discs(� e) (and not only its
maximum) affects the scaling in adding a linear contribution� e

— � e � � (c)
e , R(� e) / � 5

e,
— � e � � (c)

e , R(� e) / � 1
e.

Indeed, in experiments is measured the total intensity of diffraction discs (to which we remove
the unmodulated pro�le). It is de�ned as follow

R(� e) =
Z � e+ � �

� e � � �

Z ' e+ � '

' e � � '

(S � S0)( � e + � 0
� ; ' e + � 0

' ) d� 0
� d� 0

' (III.15)

where � e is the associated angle of the modulation Eq. (III.7) and(� � ; � ' ) are chosen large
enough to enclose the diffraction disc.

A simple calculation of the integral of(S � S0)(~ke +d~k) in two extreme cases (step function
and Gaussian) can give an idea of the effect on the response scaling of this computation.

— For the step function density pro�le Eq. (III.13), we expand around the peak at(� =
� e + ��; ' = 0 + �' ), which gives a term like

' sinc2(ke�' ):

This term integrated give something proportional to
1
ke

� � e

— For a peak with Gaussian shape, one expects

e� w2 j~k? � ke~ex j2=8 = e� w2 (~k2
? + k2

e � 2k? ke cos� )=8
~k? � ~ke/ e� w2k2

e �� 2=4e� w2 �k= 8 (III.16)

this term integrated gives something proportional to1=ke / � e.
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In conclusion, it seems rather generic that forke < k L , the total surface intensity of the diffrac-
tion peakR has an extra linear dependency with� e when compared to the peak maximumS.

2.3.d Comparison theory simulations

Simulations

The various components of this experiment and associated predictions are now theoretically
established with simple examples.

We show on Figure III.4 the result of the diffraction on simulated clouds for three differ-
ent temperatures. We donot plot the surface of the diffraction discs as suggested in Sec-
tion III.2.3.c, but rather the maximum of this diffraction disc (corresponding tok = ke and
� = 0 or � ). We do so just to get a �rst illustration of the Bragg/Raman-Nath regimes versus
long-range effects without additional "surface effects". Furthermore, we chose an in�nite waist
(corresponding to a plane wave) to avoid other additional effects. In Section III.2.3.e we will
consider both effects.

The Figure III.4 shows indeed a regime change where it is expected at� e = � (a)
e . Moreover,

the effects of the long-range interactions are clear for� e & � D : the response decreases. In
between the two crossover the response is almost constant which is expected. A cloud with no
long-range effects would have a constant response for large modulation� e � � D (instead of a
decreasing one); but for small modulation� e � � (c)

e the response will be (as with interactions)
dominated by "density effects" (Bragg regime).

Figure III.4 – Maximum response of the diffraction discsS(k) for simulated cloud with different
temperatures (Table II.1). The waist is in�nite here andkL = 1800. The amplitude perturbation
is A = 8. We show the two diffraction regimes Bragg and Raman-Nath predicted by theory and
well observed here.
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Removing density effects

Here we have chosen this example so the crossover for diffraction does not occur where
long-range effects happen. But in the experimental set up both might happen at the same place
obscuring the result.

Thus, how could we see without ambiguities the long-range effects without any of these
density effects, keeping just the response functionB(ke).

In equation Eq. (III.11) we can rewrite the density term to get

S(ke) � S0(ke) '
�

AB (ke)
2kBT

� 2 �
S0

�
k2

e

2kL

�
� 1

�
: (III.17)

Hence the response is linked with the unmodulated structure factor at small anglesk2
e=(2kL ).

So, in principle measuring theses small angles for the unmodulated structure factorS0 of the
same cloud would give the density contribution. Then dividing by this same term

S(ke) � S0(ke)
S0 ((k2

e=(2kL )) � 1
'

�
AB (ke)
2kBT

� 2

; (III.18)

just leaves the response functionB(ke) 3.
To test this prediction, for the same simulations than in Figure III.4, we plot in Figure III.5 the

height of the diffracted peakS(� e) 4 by a probing beam larger than the cloud (so not a Gaussian
beam) divided by the corresponding diffraction response at small anglesS(� 2

e=(�� L )) . Finally,

we plot (with no �t) the remaining term predicted theoretically
�

A
2kBT

� 2

B 2(� e) for A = 8 and

T = 20 (where the linear regime is valid), with the simulation parameters, and it �ts very well
the simulations! For other regimes where the response is nonlinear (A=kBT > 1), our method
still work to highlight long-range effects but the theoretical amplitude (not shown) is different
from simulations. The interest to perform such simulations is to check that even with an intense
laser the effects sough remain. For very small modulations the denominator of Eq. (III.18) is
very close to zero explaining the points out of range.

Once again if there were no long-range interactionsB(� e) = 1 , the response on Figure III.5
would be constant.

It is an excellent means to test our predictions with simulations. Experimentally one may
think that measuring the structure factor for small angles would be easy since one expect a large
response for small angles. The problem is that the signal might be too strong and varying too
much to be well captured. Also, measuring small angles requires to change the experimental set
up so that it might be hard to measure both small angles and large angles with one experimental
con�guration.

3. All the +1 terms can be forgotten for the region of interest.
4. So in principle it is not exactly the disc area experimentally measured.
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Figure III.5 – Amplitude of diffracted peaks with respect to� e without the "density effects"
measured as in Eq. (III.18) whereS0 andS where obtained from simulations forT = 1; 4; 20.
We compare with the theoretical expression of the r.h.s. of Eq. (III.18) forT = 20. It is the
same data that in Figure III.4.

2.3.e Comparison theory/experiments

Comparison

In order to compare theory and experiments we have to choose a density pro�le. We chose
a simple one that can be tracked analytically in Fourier space. In the perpendicular direction
of the probing we know that border effects will be "cut" by the Gaussian beam, while in thez
direction we expect a step like structure. Hence, we chose� (~r) = Eq. (A.5) and compute its
Fourier transform.

In Figure III.6 is plotted the result of one experiment for two different detuning� = � 4� d; � 3� d.
We compare these results with the theoretical diffraction response viaS(� e) � S0(� e) of the
pro�le Eq. (A.5). The parametersL; w; N are chosen to be the same that in the experiment. In-
deed, the waist and atom number is well controlled and the length can be easily extracted from
a density pro�le. The only adjusted parameter here is the vertical amplitude of the theoretical
response (in arbitrary units), that we set so it coincides with the experimental curves. On the
three theoretical curves, we change the value of the Debye length� D to observe its effect.

The conclusions of this comparison are
— Experimental crossover coincides with the one predicted Eq. (III.14)
— In the Bragg regime the theoretical prediction has a smaller response. The difference

could be explained by the fact that the density pro�le chosen differs certainly with the
real one, and in this region. Exact form of the density might play a role. For example, a
sharper density pro�le decreases slower in this region.

— Theoretically we observe oscillations in Bragg regime (it is to be expected for a step
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function). The experimental pro�le also displays such oscillation (to a lesser extent)
around� e = 70 � m. We will discuss this next paragraph.

— In the Raman-Nath regime the slopes of experiment and theory are both about 1 as ex-
plained in Section III.2.3.c (the response is not constant as in Figure III.4, because this
time we consider the whole disc of diffraction). For larger modulation we expect the
long-range effects to take place, which we see clearly for� D = 100 � m. Unfortu-
nately, the theory agrees well with the experiment only for the non interacting case with
B(� e) = 1 and to some extend with the� D = 300 � m case. Hence at this point it is not
possible to be conclusive on the presence of long-range interactions.

For a Debye length, larger than300� m (blue dashed line), the long-range effects are rather
hard to see in the measurement range. Thus, differentiate between the case without interaction
(dashed doted black line) for large Debye length is dif�cult! One could be tempted to extent
the measurement range to conclude but �nite size effects of the waistk � 1=w will become
dominant.

Figure III.6 – Power of the diffracted discs with a Gaussian beam in G. Labeyrie's experiments
(crosses) and in theory (lines). The detuning is�=� d = � 3 and� 4, N � 1010, L = 7:41mm,
w = 2:2mm. We compare the theoretical model with the same parametersL; w at various
Debye length� = 100; 300� m. The "rigidity" of the step function Eq. (A.5) is chosen arbitrary
at l = 100 � m (it does not change much the results). We indicate the theoretical Bragg/Raman-
Nath regime change by the tick� (c)

e ' 135� m. We also show the theoretical extreme case with
no interactionsB(� e) = 1 . The vertical dotted line shows the separation of the two diffraction
regimes. The vertical dashed lines show at which� e the diffracted discs plotted Figure III.7
and III.8 were taken.
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Split bump

In the experiment, some split diffraction discs have been observed, Figure III.7(b), corre-
sponding to the small oscillation in the experimental response near� e ' 70� m. Can we
explain this observation? To explain simply their origin, one has to remember that the response
has a dependence with the longitudinal pro�le Eq. (III.10), so around a peakk = ke + �k , the
response is

S(k) / S0

�
k2

e + 2ke�k
2kL

�
:

If this small angle happens to correspond to a "hole" in the Fourier pro�le (as in Figure II.3 for
ka < 1), then the diffracted discs can be split in two parts. We illustrate that with our theoretical
model with parameters provided by the experiments (thus with no adjustment to �t). We can
see in Figure III.6, (dashed lines) that a split bump is also expected around� e = 76:5� m. We
show this disc Figure III.8(b). It very close in term of� e to the experimental observation!

In Figure III.7(a) we show an experimental diffraction disc at� e = 64:2� m (see the left
vertical dashed line of Figure III.6) where no split is expected. There is indeed no particular
asymmetry and the disc is circular. The corresponding theoretical expectation is also, Fig-
ure III.8(a), not split. It is quite reassuring to have a theory able to explain and describe with

(a) � e = 64:2� m (b) � e = 75:7� m

Figure III.7 – Experimental diffraction discs for� e = 75:68� m in the experiment

rather good precision this non trivial/intuitive experimental observations.

3 CONCLUSIONS

We suggested different experiments to "see" and measure the Debye length in VLMOT.
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(a) � e = 64:2� m (b) � e = 76:5� m

Figure III.8 – Theoretical diffractions discsS(�; � ), L = 7:51mm.

Static diffraction experiment

The �rst experiment (see Section III.1) is a direct diffraction measure on a static MOT. It has
the upside of directly measuring the correlations in the system. The downside is that the effect
sought is very small and hard to observe. However, with a Gaussian beam, it is possible to "in-
crease" the effect by reducing the contrast between the background and the non-diffracted beam
(see Figure III.1). A well-disposed mask should help to reduce the central peak contribution
and its tail but so far has not yielded anything.

Modulation experiments

Modulation experiments (section III.2) have the advantage that the effects foreseen are much
bigger than correlations. They do not try to directly measure the correlations of the particles but
rather the in�uence of long-range interaction in the cloud's response.

Density response via �uorescence

The �uorescence experiment (section III.2.2) is well controlled theoretically and numeri-
cally. Furthermore, the expected effect is clear: we want to observe a response in the amplitude
of the modulated density asB(� e) = Eq. (III.3). With a precise signal, we could even extract
the Debye length value.

A less demanding result would be to simply observe a decreasing response when� e grows.
This would be enough to conclude on the presence of long-range forces.

However, since the amplitude modulation of the density is small and the �uorescence imag-
ing is mysteriously (of what I have heard) not really accurate, the hope to see any modulation is
thin.
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Diffraction response

The diffraction experiment (Section III.2.3) is more sensitive since experimental signals have
been seen and measured. However, the result interpretation is less direct. The measurement is
plagued by two regimes of diffraction that cross over near the supposed Debye length. Nev-
ertheless, after simple estimations we believe that we discovered the essential features of this
measurement; it seems that the experimental pro�les measured are quite well understood.

The remaining problem is that no long-range effects are seen unequivocally since experi-
ments and theoretical predictions for� D = 300 � m and� D ! 1 match up to� e ' 800� m
where the size of the waist could modify the response. Hence several possibilities occur:

� There are no repulsive long-range effects (or they are very weak and not the dominant
contribution) thus there is no Debye length in VLMOT. The repulsion mechanism is
provided by a non long-range force. An extreme case would be that there are only contact
interactions. Note that in this case the scalingL � N 1=3 observed in [CKL14] would
still be valid. Another possibility could be a Yukawa interaction between particles due
for example to a very fast reabsorption of rescattered photons. This could be the case of
the photon emitted at resonance in the Mollow triplet [Mol69]. Numerical tests of these
cases have been started.

� The Debye length is too large for our experimental window (meaning our estimation
� D � 100� m is wrong). We can either enlarge this window, or reduce the Debye length
by increasing for example the trap pulsation! 0 or reducing the temperature.

� There are attractive long-range effect dominant for large modulation screening the effect
of the repulsive force, which might be of shorter range than expected.

� Another pessimistic possibility is that we did not interpret correctly the theory and thus
experimental data, or that we neglected a serious phenomenon (like multiple scattering).
Thus, our inconclusive interpretation is wrong.

So far, we did not consider the full Shadow effect (Section I.1.3). In the case where the Coulomb
description is false and the true repulsion is of shorter range, the attractive Shadow force could
dominate at long-range. Either way (Coulomb forces or not), the �rst order derivation5 (at
small optical thicknessb � 1 Eq. (I.21) and Eq. (I.22)) of this effect could be wrong in the
experimental regime whereb � 1, bringing additional attractive effects that could possibly
explain the data.

So, to conclude this Part, a serious theoretical proposal has been made with consistent ex-
perimental data. Nevertheless, strong long-range effects as expected with the standard model
for MOT do not seem to appear. More experiments should be made with different parameters
as well as simulations with various type of interactions. If some more accurate �uorescence
technique is developed to observe the modulated density pro�les, one could directly measure
the amplitude response and compare it with the response functionB(� e).

5. Even the numerical simulations of this force are considering only the �rst order expression.
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ADDENDUM

Additional comparisons between the experimental data and the Coulomb simulations were
done and presented for my Ph.D. defense. I summarize here these results.

We studied experimental static (without modulations) density pro�les measured by �uores-
cence (see Section II.1) for different detuning. The more the detuning is large the more we ex-
pect repulsive interactions between atoms to be weak. Hence, for large detuning the cloud size
should be smaller and its shape should be Gaussian. We superposed these data with the� x (x)
obtained by Coulomb simulations (see Eq. (II.1)) for well-chosen parameters on Figure III.9.
The �rst thing to notice is that the �ts work quite well for the various detuning, meaning the

Figure III.9 – Experimental density� x (x) obtained by �uorescence for� �=� d = 4; 6 compared
with MD simulation (lines) of a tapped Coulomb gas. The inset shows the extrapolated Debye
length� D and the cloud radiusL. (The density plots for� �=� d = 5; 8 are not shown here).

trapped Coulomb gas model is coherent with experiments. Knowing the simulation parameters
allow us to extrapolate the experimental parameters, in particular the Debye length (which is
linked to the size of the distribution tails). However, for the �ts to work we have set the Debye
length around1mm which is much larger than our100� m expectation6. This "measurement"
of a very large Debye length is consistent with the modulation results (see Section III.2) where
we did not observe long-range effects around100� m. Instead the experimental response pro-
�les were matching the theory uniquely for very large Debye (see Figure III.6).

6. Remember that this number is related with the sizelg =
p

3� D of small MOTs. For example see [RPC+ 87]
for cloud measurements.
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Therefore, these results offer a more conclusive statement than before: the Coulomb model
with a Debye of the order of1mm are consistent with experiments. We look at the Debye
length expression Eq. (I.42) to understand the difference between the "measurements" and the
expectation. Either the temperatureT is 100 times larger which is unlikely or either the trap
pulsation! 0 is ten times weaker. This latter possibility sounds fair since the trapping effect is
being attenuated by the cloud thickness. This will be the object of new investigations.
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CHAPTER IV

I NTRODUCTION TO BIFURCATION

As we have seen in the Introduction the Vlasov equation describes the violent relaxation,
i.e. the evolution over timescales� v � � c = O

�
N �

�
(see Figure 1) of particle systems inter-

acting with long-range interactions before the collisional relaxation takes over and drives the
system toward statistical equilibrium. Thus, this "out-of-equilibrium" process can be arbitrar-
ily long (e.g. galaxies haveN t 1011 so collisional effects can be ignored over lifetime of
� 1010 years [BT11]) and their study is relevant by the Vlasov equation. Also for purely out-
of-equilibrium systems, such as coupled oscillators, where each oscillator is driven at its own
rhythm, there is no de�ned Boltzmann equilibrium so only the kinetic description can give in-
formation on the system state. The dynamics of kinetic equations like the Vlasov is very rich
due to advection, nonlinearity and self-consistent mean-�eld force. It leads to numerous effects
such as �lamentation of the phase space, strong resonance phenomena, in�nite number of sta-
tionary states, BGK modes [BGK57], echo plasma effect [MWGO68], etc. We are not going to
focus on a speci�c physical system. Rather we will try to advance the general understanding of
bifurcation in the Vlasov equation and other related models, with the hope it may be useful for
various situations: tokamaks, galaxies, synchronization, etc.

To study dynamical evolution of those systems a natural starting point is to consider the
linear evolution off = f 0 + g around a reference statef 0,

@tg = L g + N [g] (IV.1)

whereL andN are respectively a linear and nonlinear operators acting on a function space
for in�nite-dimensional systems orRn for �nite-dimensional systems.

The stability of the reference state depends on the spectrum of the linear operator. Eigen-
values� are de�ned with their associated eigenspace of eigenvectors	 �

1 through the equation

L 	 = � 	 : (IV.2)

1. The subscript� will be dropped in most of the manuscript.
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From Eq. (IV.1) the linear evolution of a solutiong = A(t)	 parallel to an eigenvector will be
determined by the sign ofRe� (where� is has the largest real part, which we suppose is simple)

_A = �A ) g / e�t ; (IV.3)

— Re� < 0 the system is said to be (spectrally) stable, because small perturbations of the
reference states are damped to zero. However even if the system is linearly stable for
large initial perturbations nonlinear effects could take over.

— Re� > 0 the system is said to be (spectrally) unstable, after an exponential growth
regime, nonlinear effects can
� Saturate the perturbation. Typically, we have a negative cubic term of the form

_A = �A � j c3jjAj2A + O
�
jAj4A

�
(IV.4)

is expected for symmetric systemsA  ! � A.
� Amplify the perturbation which typically yields

_A = �A + jc3jjAj2A + O
�
jAj4A

�
: (IV.5)

In physical systems, the perturbation eventually saturates with higher order terms at
some levelO (1).

— Re� = 0 the system is said to be neutrally stable. The perturbation is purely oscillating
and will neither grow or damp. We say it is a neutral mode.

When the system depends on a parameter� , which could be temperature, coupling, initial
velocity distribution width, etc., it can undergo a bifurcation going from a stable state to an
unstable state i.e.Re� �<� c < 0 to Re� �>� c > 0. For a good introduction, quite complete
and suitable, to bifurcation theory see [Cra91b]. The goal of bifurcation theory is to describe a
qualitative change in a system structure occurring when some parameter is varied. It can be how
a homogeneous plasma (with a zero-total electric �eld) can go unstable, meaning the electron
distribution will develop some structure producing an electric �eld. Biological systems also
display bifurcation, e.g. an asynchronous crowd of clapping people synchronizing. As we shall
see later to quantify this structure change we will de�ne the concept of order parameter.

A particularity of the kinetic equations we study is that they possess an"in�nite number
of neutral modes" 2 called a continuous spectrum. This in�nite structure is directly linked
with the dimensionality (and dif�culty) of the problem. In the simplest bifurcation analysis
with one positive mode� � 1 and other negative modes� < 0, one can easily separate the two
timescales: during timej� j � 1 � � � 1, the system goes quickly on the unstable manifold, so a
description of the instability will only require one to describe the unstable direction associated
with � > 0 and the problem dimension will be reduced from two to one. Here with one neutral
mode (or a continuum) one could be tempted to do the same, but removing such modes which
are never damped could be very risky. In fact, as we will see, these modes are responsible for
stronger nonlinear effects.

We provide a detailed example of such neutral mode effects on a simple tractable example
of �nite dimension, following [Cra91a]. We will introduce the unstable manifold reduction
technique used later and which already exhibits its limitations, and compare it with the more
standard central manifold technique.The goal of the center/unstable manifold technique is
always to reduce the dimension of the problem to get a simpler expression of the dynamics
close to the bifurcation. Thus one obtains the nonlinear generalization of the eigenvector

2. Strictly speaking this denomination is abusive.
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associated with neutral/unstable eigenvalue.Of course, in �nite dimension we know how
to deal with neutral modes and their effect is known; it suf�ces to include them in the center
manifold (which for many neutral mode might be not satisfactory), but their effect on the un-
stable manifold is less known. In the following �nite-dimensional example, we aim to show the
features of such unstable expansion with one neutral mode. Because bifurcations are in general
classi�ed in "universal categories" (e.g. saddle-node, transcritical, pitchfork, Hopf bifurcation),
it makes sense to study a simpler case hoping to gather a general understanding.

Then we introduce the formalism for the in�nite-dimensional case, present a rigorous de�-
nition for the spectral problem and provide a tractable example where the continuous spectrum
leads to damping.

1 A BIFURCATION EXAMPLE IN FINITE -DIMENSION

This example is taken from [GH13, Cra91b]. Let's consider a system that can be reduced to
a two-dimensional system of o.d.e.

_r = �r + a1zr + a2r 3 (IV.6a)

_z = �z + b1r 2 + b2z2 (IV.6b)

with an eigenvalue� 2 R associated with the amplituder (t) and� 2 R associated with the
modez(t). � � 0 will be �xed while � will be crossing 0 to become unstable.

1.1 Exact solution

We want to study the behavior of the system when� > 0 and� � 0. One question is, what is
the dependence of the bifurcated solutions around(r0; z0) = (0 ; 0) on the instability parameter
� ? A set of stationary solutions close to the origin can be found to be

8
>><

>>:

r 2
1 =

� (�a 1 � �b 2)
b1a2

1
(1 + O ( �; � )) ;

z1 = �
� + a2r 2

1

a1
:

(IV.7)

— First we see that to exist the solution needsb1a1 < 0 or if � = 0 b1b2 < 0 ("saturating
conditions"). In practice, we want bothb1a1 < 0 andb1b2 < 0 to study(r1 ; z1 ) with
�xed parameters and varying� .

— The solution scaling is

r 2
1 �

�
b1a1

�; when � ! 0 and� < 0 (IV.8)

— The solution scaling is

r 2
1 � �

b2

b1a2
1
� 2; when � ! 0 and� = 0 (IV.9)

This latter scaling is different from the usual "pitchfork scaling" (also called here Hopf

scaling)r1 6= O
� p

�
�

.
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The modi�cation provoked by the presence of a neutral mode on the imaginary axis is clear- it
changes the �nal scaling of the solution. The solution with neutral mode is much smaller than
without one. Therefore, when neutral modes couple with unstable modes one expect nonlinear-
ities to be much stronger (saturating the perturbation at much weaker amplitudes).

1.2 Center manifold approach

Now imagine that we cannot guess directly solutions, what can we say about the evolution of
the systems and the scaling of its steady states near the origin? The center manifold approach is
a dynamical expansion around a stationary point of the full model Eq. (IV.7). For this example,
we have(r0; z0) = (0 ; 0). We separate the contributions of fast and slow modes. The fast
manifold will regroup the contribution of eigenvalues with a �nite negative real part. These
modes will be quickly damped and thus will not contribute to the "slow" dynamics. On the slow
manifold, we consider modes around the imaginary axis (withRe� t 0). For example, here
� < 0 is on the fast manifold and the� t 0 is on the slow manifold. The center manifold treats
the� mode as a perturbation of a neutral mode. It is described by writing Eq. (IV.6) as

�
_r
_z

�
=

�
0 0
0 �

�

| {z }
L 0

�
r
z

�
+

�
�r + a1zr + a2r 3

b1r 2 + b2z2

�

| {z }
N �

: (IV.10)

— If � < 0, the dynamics will go quickly (as� 1=j� j) close to the center manifoldW c, so
it is legitimate for small� to parametrize this center manifold as

(r; z) 2 W c then (r; z) = ( r; h � (r )) ; (IV.11)

with h� (r ) a regular function forr close tor0. Actually, rigorous mathematical re-
sults [HI10] exist to justify that indeed for any initial condition suf�ciently close to
(r0; z0), the dynamics will be well described by this� -dependent manifold. The cen-
ter manifold is the nonlinear extension of the eigenspace associated with neutral modes.
The expansion ofh� (r ) in a series ofr , gives then an expression of the dynamics_r = � � �
at every order. The saturation scaling also gives

r 2
1 �

�
b1a1

�; � ! 0 and� < 0

as in the exact asymptotic solution. So, we have successfully reduced the dimensionality
from 2 to 1.

— If � = 0, Eq. (IV.11) is no longer the center manifold and thus has no reason to describe
well the dynamics. Actually, in this case, the center manifold is of dimension 2 at criti-
cality. So, no further reduction is possible now! The system dimension is still 2 and the
scaling is not clear.
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1.3 Unstable manifold approach

The unstable manifold is based on the idea that only unstable modesRe� > 0 are important.
It does not consider eventual slow modes (e.g.� = 0 or modes close to the imaginary axis). Of
course these slow modes can be important to describe the full dynamics, hence leaving them
aside could lead to an incomplete or wrong reduction. In our example the linear operator has a
positive eigenvalue� and the� mode,

�
_r
_z

�
=

�
� 0
0 �

�

| {z }
L �

�
r
z

�
+

�
a1zr + a2r 3

b1r 2 + b2z2

�

| {z }
N

: (IV.12)

In the unstable manifold picture modes different from� quickly relax and thus the remaining
"slow" dynamics is one-dimensional. The unstable manifoldW u in Eq. (IV.6) appears then as a
one-dimensional manifold tangent to ther direction near(r; z) = (0 ; 0):

(r; z) 2 W u then (r; z) = ( r; h(r )) (IV.13)

with h(0) = h0(0) = 0 (deduced by symmetryr ! � r ). We can build as previously the
unstable manifold for� 6= 0 and then takes� ! 0. In the � < 0 case similar mathematical
results as for the center manifold hold, while for� = 0 there is no result insuring that this
manifold is attractive and thus that it describes well the dynamics close to it.

Let's construct it! From_z = h0(r ) _r and Eq. (IV.6b) we get

h0(r )
�
�r + a1h(r )r + a2r 3

�
= �h (r ) + b1r 2 + b2h(r )2: (IV.14)

The following expansion holds for regular maps3 (which is assumed to be true near the origin)

hn (r ) =
nX

j � 1

� j r 2j ; (IV.15)

with 8
>><

>>:

� 1 =
b1

2� � �

� n =
� 2a2(n � 1)� n� 1 +

P n� 1
j =1 (b2 � 2ja 1)� j � n� j

2n� � �
n � 2:

(IV.16)

The one-dimensional equation is then

_r = �r + ( a1� 1 + a2)
| {z }

c3

r 3 + � 2|{z}
c5

r 5 + O
�
r 7

�
: (IV.17)

So, at leading order

r 2
1 �

� (� � 2� )
a1b1 + a2(2� � � )

(IV.18)

—
r 2

1 �
�

b1a1
�; � ! 0 with � < 0 (IV.19)

which is the same scaling as the exact asymptotic solution.

3. The even symmetry can be demonstrate using ther ! � r transformation or by computing every odd
coef�cients ofh(r ) and �nding zero.

81 Laboratoire Jean-Alexandre Dieudonné



CHAPTER IV. INTRODUCTION TO BIFURCATION

(a) � = � 0:35. The double arrows show that the dy-
namics is quickly attracted on the unstable manifold. It
follows a slow one-dimensional dynamics on this mani-
fold.

(b) � = � 0:01 = � � . The unstable manifold is no
longer attractive and does not describe completely the
full dynamics.

(c) � = 0 . The unstable manifold is no longer attractive and
does not describe completely the full dynamics.

Figure IV.1 – Phase space(r; z), for � = 0:01, a1 = 1, a2 = � 1, b1 = 0:1, b2 = 0:1 with
(r (0); z(0)) = (10 � 5; 10� 6). The full line is the exact trajectory computed through the full
dynamics Eq. (3). Dashed lines are the unstable manifoldhn (r ) computed at ordersO

�
r 2n

�
.

The points represent the equilibrium.

— For � = 0, the unstable manifold still exists and we can look at the limit� ! 0 as it
should tend toward the previous two-dimensional center manifold. It gives

r 2
1 � �

2
b1a1

� 2; � ! 0 with � = 0 (IV.20)

which is different from the exact asymptotic solution, but still possesses the same scaling
and sign. A �rst observation is that higher orders are not negligible. Indeed when� = 0,
at the saturation level isr1 / � , furthermore� n / 1=� 2n� 1, so

O (�r 1 ) = O
�
c3r 3

1

�
= O

�
c5r 5

1

�
= O

�
c2n+1 r 2n+1

1

�
= O

�
� 2

�
; (IV.21)

which prevents in principle any truncation!
A crucial remark is that this unstable manifold expansion with neutral modes induces diverg-
ing coef�cients. Which does not appear in classical dynamical equations (here with� � 0).
Nevertheless, the �rst nonlinear coef�cient is enough to obtain the right scaling. To appreciate
those assertions, we plot on Figure IV.1 the phase space trajectory for one initial condition and
compare it with the result given by the unstable manifold. We compute the unstable manifold
hn (r ) at various ordersO

�
r 2n

�
to see its convergence towards the full dynamics.
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— For j� = � 0:35j � � = 0:01, we are in a regime where the unstable manifold should
describe well the dynamics. Indeed, in Figure IV.1(a), we clearly see that the end points
are almost the same even at the quadratic order inh(r ). We can verify numerically that
other initial condition close to the origin(r0; z0) are also attracted by the manifoldh(r ).

— For j� = � 0:01j � � = 0:01 Figure IV.1(b) and� = 0 Figure IV.1(c), the timescales
associated with ther andz direction are not dissociable anymore and we don't expect
the unstable manifold to be attractive. We see that the effects of the neutral mode are
to fold the dynamics and to saturate the end pointr1 at a lower level (thus nonlinear
effects are stronger). This folding behavior can't be captured by the unstable manifold
expansion Eq. (IV.15) which is a function (thus can't have two images). Furthermore, a
one-dimensional dynamics can't fold and oscillate. However it is interesting to see that
the unstable manifoldhn (r ) converges withn "as closely as possible" to the "branch
point singularities". This phenomenon is the translation of the in�nite series Eq. (IV.21).

1.4 Conclusion

This simple example highlighted the effect of a neutral mode coupled with an unstable mode
on the bifurcation analysis resulting in

— Nonlinear effects are much stronger with a neutral mode.
— The center manifold expansion works when� < 0 but for � = 0 the dimensional re-

duction is limited by the number of neutral modes. Hence it is legitimate to think that in
general with a continuous spectrum it will not be of any help.

— The unstable manifold expansion predicts the correct scaling but does not describe the
effective dynamics e.g. a spiral behavior. Furthermore, no mathematical theorem insures
us that it is attractive with respect the dynamics close to the origin.

— The unstable manifold expansion is plagued with a diverging coef�cient. At the satura-
tion level, every orderO

�
c2n+1 r 2n+1

�
contributes the same.

— It reduces the dimension of the problem.
For a system with a continuous neutral spectrum one expect those effects to be stronger!

We will see that it is the case for Vlasov systems but that for the standard Kuramoto system
despite the continuous spectrum the nonlinear saturation expansion behaves "normally" and the
unstable manifold describes well the dynamics... However, when adding for example a second
harmonic coupling, diverging coef�cientsc2n+1 appear. So, there is more to understand and say
than the "continuous spectrum induces singular behavior"4....

This example should motivate using unstable manifold expansions for more complex prob-
lem where there is not only one neutral mode but an in�nity and where exact solutions are
hopeless (and thus dimensional reduction more than needed). So, using that expansion will
possibly provide us with the right scaling for the bifurcation but one does not expect to get a
true dimensional reduction in the sense of going from an in�nite-dimensional system to a 1D or
2D unstable manifold. That is to say the expansion won't capture the full dynamic but will tell
us if the bifurcation is discontinuous or continuous with its saturation scaling, which is a big
qualitative argument.

4. This will be the running mystery of my Ph.D.
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2 INFINITE -DIMENSIONAL SYSTEMS

2.1 Spectral problem

In this Section, we brie�y review some functional analysis result about spectral analysis of
in�nite-dimensional operators that are different from the �nite-dimensional case.

The mathematical framework to study the spectrum of linear operator for partial differential
equation is more involved than the one used to study ordinary differential equation. The �rst
difference is the dimension of the problem which is respectively in�nite and �nite. To get
an easy vision of �nite/in�nite dimension one can look at the initial conditions for those two
problems

— For a system ofn ordinary differential equation (o.d.e.), the initial condition is a vector
belonging toRn

— For a partial differential equation, the initial condition is a function, for example we can
choose initial distributionsf 0 such thatf 0(q; p) 2 L2([� �; � [� R) \ C 1 ([� �; � [� R).

In this work we choose5 to use only this following functional spaceB = L2([� �; � [� R) \
C 1 ([� �; � [� R). It corresponds to continuous quadratically integrable functions with regular
derivatives. The partial differential equations will be decomposed in a linearL and nonlinear
N operator. These operators will act on the function space e.g.

L : B �! B : (IV.22)

An operatorL is bounded (continuous) if

8u 2 B; k L uk � Mu;

for some norm onL2 andM > 0. In our context, we study the spectrum of an unbounded
operatorL acting on af 2 B . The choice of the function spaceB is important and can change
the spectrum.

The resolvent set of an operatorL is

� (L ) = f � 2 C; (L � �I ) is bijective and(L � �I )� 1 is boundedg;

where denoteI the identity operator. For every� 2 � (L ) we can de�ne the resolvent
operator as

R� (L ) = ( L � �I )� 1: (IV.23)

The complementary set� (L ) = C=� (L ) is called the spectrum ofL . It is not just the set
of its eigenvalues as in �nite dimension, it is also composed of two other types of spectrum: the
continuous and the residual spectrum that are regrouped in essential spectrum denomination.

— The point spectrum is composed of eigenvalues de�ned as

� P (L ) = f � 2 C; (L � �I ) is not injectiveg;

meaning that there is a non zero vector	 de�ned onB such that

L 	 = � 	 : (IV.24)

Its physical interpretation as characterizing the modes of a system still holds.

5. Some of our results may extend to broader functional spaces.
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— The continuous spectrumconsists of

� C (L ) = f � 2 C; (L � �I ) is injective and with a dense image but not surjectiveg:

One can show that the densely de�ned inverse operator(L � �I )� 1 is not bounded
(sometime this latter assertion is chosen as the de�nition for� C (L )). As we will see
later when highlighting its physical role this spectrum is a key ingredient in the Vlasov
dynamics.

— The residual spectrumconsists of

� R(L ) = f � 2 C; (L � �I ) is injective but has not a dense imageg:

Its physical interpretation is not clear at all6. In all of the manuscript, we will forget this
type of spectrum.

2.2 Free transport example

The continuous spectrum has mixing properties. In the Vlasov context the mixing occurs
in the velocity space with oscillations at scale thinner and thinner in time. It is something
referred as �lamentation of the phase space. Here following [Vil10, BMT13] we show how
the continuous spectrum of the advection operator is responsible for this phase mixing and a
damping while there is no dissipation mechanism (such as friction), it is sometime referred as
non-entropic relaxation. There are other informative examples with continuous spectra like the
Baker's transformation [RS80]. Other cases of continuous spectrum and mixing are known in
the context of �uid mechanics [SW51, Mie92, PQ02].

The advection equation is

@t f (q; p; t) + p@qf (q; p; t) = 0 ; (IV.25a)

L f = � p@qf; (IV.25b)

L k f k = � ikpf k ; (IV.25c)

where we have rewritten its advection term as a linear operator Eq. (IV.25b) and its spatial
Fourier transform Eq. (IV.25c). It is one of the simplest partial differential equation one can
think of, for example, we know its solutions. Thus this makes a good example to study the effect
of a continuous spectrum, indeed the advection operator spectrum is composed exclusively of a
continuous part with no "true" eigenvalue.

Trying to solve the eigenvalue problem gives for an eigenvector(� � )k(q; p) = ( � � )k(p)eikq

(� + ikp)( � � )k(p) = 0 :

For Re� 6= 0, this equation has no solutions except the null vector, so� P (L ) is empty over
C=iR. What aboutRe� = 0? Since the operator

(L k � �I )� 1g(p) =
g(p)

� + ikp

6. One reason could be that in quantum mechanics where spectral theory of in�nite-dimensional operative
appeared �rst in physics, operators are often self-adjoint and one can show that this type of operator has an empty
residual spectrum.
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is clearly unbounded for� 2 iR, by de�nition � is in the continuous spectrum,� 2 � c(L k).
To every� on the imaginary axis is associated a generalized eigenvectors

(� � )k(q; p) = � (� + ikp)eikq :

We talk about generalized eigenvectors because they are not de�ned in the space of solutionB,
but can be de�ned in a larger functional space that includes distributions like the Dirac Delta
function. The conclusion is thus that there is a continuous spectrum on the whole imaginary
axis for the advection operator7.

In addition, the exact solution of the equation is known as

f (q; p; t) = f i (q � pt; p) =
X

k

(f̂ i )k(p)e� ikpt eikq (IV.26)

where f (q; p;0) = f i (q; p). To highlight the role of the continuous spectrum generalized
eigenspace we can write

f k = ( f̂ i )k(p)eik (q� pt) = ( f̂ i )k(p)
Z

Re � =0
� (� + ikp)eikq + �t d� = ( f̂ i )k(p)

Z

Re � =0
(� � )k(q; p)e�t d�;

(IV.27)
where we used the Fourier representation of the exponential.

Another way to treat this problem and see the damping due to phase mixing is go to the
Fourier transform in both spaceq ! k and velocityp ! � . It gives

FT (q;p) [f ](k; �; t ) = FT (q;p) [f i ](k; � + kt);

where we used the de�nition of the Fourier transform and indexes change to get this expression.
The Riemann-Lebesgue lemma says that the more a function is regular the more its Fourier
transform decays quickly. For analytic function inp the decay is exponential in� , so

FT (q;p) [f i ](k; � + kt) = O
�
e�j � + ckt j

�
=

8
><

>:

cst fork = 0; �xed �

O
�
e� cjkjt

�
for k 6= 0; �xed �

cst for� = � kt

(IV.28)

wherec is a constant. It means the zeroth spatial modes is unchanged. All otherk 6= 0 modes
are damped exponentially fast. The answer to the question where does the initial energy go

or why is entropy conserved8 given the last term of Eq. (IV.28): the energy
Z

p2f dp is trans-

ported in time to higher and higher velocity modes� = � kt (cascade from low to high velocity
modes). This is the mixing (�lamentation) phenomena: at some point the phase space distribu-
tion seems completely homogeneous and the high frequency oscillations in the velocity space
become "invisible"9. Mathematically,

f (q; p; t)
weakly
�!
t !1

f 1 (p) =
Z

f i (q; p) dq; (IV.29)

7. If the velocity variable was con�ned on a subset ofR, the spectrum ofL k would not �ll the whole imaginary
axis.

8. It is preserved since it is just advection.
9. In practice even a very small dissipation process (physical or numerical) provides a cut off for those high

velocity modes as we will see later in the Vlasov-Fokker-Planck Chapter VII.
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meaning the initial distribution will relax to a spatially homogeneous distributionf 1 (p). Here
the weak convergence (as opposite to strong convergence) means that to make sense the dis-
tribution has to be integrated against some test function. The physical meaning becomes clear
with this example, the function converges in time for everyk 6= 0 and� , but not for� = � kt.
So, the mixing phenomena only can produce damping/relaxation, therefore even though the
equation is reversible, the observables (integrated quantities over the velocity) act as if there
were dissipation. For example, the space density

FT (q;p) [f i ](k; kt) =
Z

f i (q � pt; p) dp

converges strongly to its end state. Since� = 0 there are no oscillations in velocity space
anymore, just the damping, so this velocity integration produces a loss of information over the
localization of energy.

2.3 Nonlinear analysis for bifurcation

The analysis of linear in�nite-dimensional systems relied mainly on their spectrum. We talk
about bifurcation when a system goes from spectrally stable (or neutrally stable) to spectrally
unstable. In this case, we need to consider the effects of nonlinear terms. To study the nonlin-
ear problem there exists several different methods, like the center manifold [Van89, VI92], the
Lyapunov-Schmidt reduction, multiple scale analysis... In �nite-dimensional cases or in some
in�nite-dimensional cases these techniques work �ne and provide an accurate reduced descrip-
tion of the full dynamics close to the bifurcation. However in presence of a continuous spectrum
these methods are not trivially transposable since the slow manifold (part of the spectrum close
to or on the imaginary axis) is of in�nite-dimension. In these cases, to the author knowledge
there are not many examples where a rigorous bifurcation analysis was performed. For the stan-
dard Kuramoto model (that we will examine in Chapter VIII) the �rst rigorous mathematical
treatment was made by H. Chiba [Chi13, CN11] in a quite technical paper. One of his key idea
is to use larger function space where the continuous spectrum is no longer on the imaginary
axis. Another demonstration more generic and closer to the work of C. Mouhot and V. Villani
also using larger function space was provided by H. Dietert [Die16b]. We will come back on
those results in Section VIII.4.

However, this standard Kuramoto case may be very unique (because of its nonlinear struc-
ture) so that for other systems (e.g. the Vlasov equation) this idea of larger function space might
not be enough to deal with the bifurcation analysis. Moreover, in addition to the continuous
spectrum dif�culty, a wave/particles resonance occurs for Vlasov systems making for example
the multiple time scale analysis fails (see discussion in [CH89]).

Hence we will not try to generalize the previously cited, well-established methods to our
cases but we will rather stick10 to one ef�cient but incomplete method: the unstable manifold
technique. It has the advantage to be formally doable even with a continuous spectrum and
resonances (that appear as singularities). This method has so far always proven to give qualita-
tively correct informations (scaling and bifurcation nature). However, as in the �nite example
case with a neutral mode� = 0 (see Figure IV.1(c)) it will not a priori provide the complete
dynamics (like oscillations of the order parameter).

In next Chapters we will use the same procedure to deal with the each different case i.e. treat
the linear analysis and construct the unstable manifold. However note that each case has its

10. With one exception where the center manifold is doable (see Section VI.9).
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own dif�culties and solving the eigenvalue/eigenvector problem as well as building the unstable
manifold will require different techniques almost every time.

3 PHYSICAL MOTIVATIONS

At the beginning of the 20th century the Boltzmann equation was the standard equation used
to describe the evolution of particle systems in position-velocity phase space. In 1938 A. Vlasov
showed11 that the Boltzmann equation was not suited to describe plasma and that due to the
presence of long-range forces the collisions term should be removed and replaced by a self-
consistent term acting as a mean �eld potential for every particle. The resulting kinetic equa-
tion was then studied by Landau [Lan46]. He showed by formal calculus that plasma excitations
should be damped (if some stability criterion was satis�ed) even though there are no dissipation
terms in the equation (energy and entropy are conserved in time). The Landau damping is non
intuitive since it is based on the previously seen phase mixing and Landau's demonstration used
mathematical tools such as the analytic continuation, obscuring the physical result. Realness
of Landau damping has since then been established numerically [CK76, Man97, ZGS01] (I up-
loaded an example on my website12) and experimentally [CP70, MW64]. Quite recently his
result was completed by C. Villani and C. Mouhot [MV11], they showed that Landau damping
can also occur when keeping nonlinear terms of the equation, with some mathematical maxi-
mum bound for the perturbation. I recommend the lecture notes of C. Villani [Vil10] on this
topic compiling a lot of mathematical and physical knowledge on the Vlasov equation. For a
discussion on the Landau damping in the Vlasov-gravity case see [Kan98].

Plasma stability was therefore understood, but it has been observed that some cold homo-
geneous plasma with a bump in their velocity distribution could become unstable and form
some small non homogeneous structures resulting in a non zero electric �eldE, this is called
the bump-on-tail instability. Various plasma instabilities were discovered such as two stream
instabilities. The initial instability is caused by the resonant interaction between �uctuation
(perturbation) of the initial zero electric �eld and particles with the same phase velocity. Then
at the nonlinear level particles are trapped by the wave created by the now nonzero electric �eld.
Mathematically to understand this process, we consider �rst the linear instability and the asso-
ciated exponential growth and then the nonlinear saturating effects. This analysis could provide
the �nal electric �eld amplitudeE1 after a perturbation with respect to some small instability
parameterj� � � cj. At this point two contradictory results emerged in the literature: one predi-
catingE1 /

p
j� � � cj (called Hopf scaling) [SR76, JR81, BMWZ85, Den85] while the other

�nding a much smaller amplitudeE1 / j � � � cj2 (called trapping scaling) [OWM71, Dew73].
In the Hopf scaling group for example, Simon and Rosenbluth [SR76] lead a multiple scale ex-
pansion producing some singular terms that were regularized with ad hoc prescriptions. In the
other group the trapping scaling was found with some adiabatic approximation or introduced as
an ansatz. Careful numerical simulations [Den85, SRS88] and even experiments [TDM87] con-

11. Although he was not the �rst one to write it, he correctly recognized that for long-range interaction as
mentioned in [PCMM15] the Boltzmann interaction term was inadequate [Vla68] "or a system of charged particles
the kinetic equation method which considers only binary interactions – interactions through collisions – is an
approximation which is strictly speaking inadequate, so that in the theory of such systems an essential role must
be played by the interaction forces, particularly at large distances and, hence, a system of charged particles is, in
essence, not a gas but a distinctive system coupled by long-range forces."

12. http://math.unice.fr/~metivier/video.html
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�rmed that the correct scaling was the "trapping scaling". J.D. Crawford tried a heavy approach
without any approximation on the characteristic time of the nonlinearity� NL ; he developed a
theory considering all the eigenvalues and continuous spectrum [CH89], deriving an in�nite
system of coupled o.d.e. for the amplitude evolution of each mode. Nevertheless, this heavy
computation was useless to predict anything. In 1994 he published a paper [Cra94a] where
he only considered the unstable mode and the unstable manifold reducing drastically the di-
mension of the problem. Despite the singularities present in his analysis (like in IV.1) he was
able to predict a bifurcation with a scaling consistent with numerics and experiments. His re-
sult is very powerful because the method is very generic (as we shall use it for the rest of the
manuscript). More recent works by D. del-Castillo-Negrete [dCN98b, dCN98a] later general-
ized in [BMT13], also con�rmed this result by this time �nding an in�nite dimensional normal
form13 for this bifurcation (in the spirit of T.M. O'Neil, J.H. Malmberg and J.H. Winfrey) called
the Single-Wave-Model (SWM). Actually, this SWM proved to describe a lot more systems than
bifurcation around homogeneous Vlasov states since it also accounts for bifurcation of a large
class of Hamiltonian systems such as Shear �ow and the XY model.

In Chapter IV we review in detail the classic results on Landau damping and on the unstable
manifold used by J.D. Crawford. Since all other Chapters will be based on this method we will
explain the computation in full details.

A natural sequel to this well-known case is to consider bifurcation around steady non ho-
mogeneous states withE0 6= 0. To illustrate this we will switch from plasma to astrophysical
systems (the formalism is the same) where these non homogeneous situations are more frequent.
Consider the self-gravitating system evoked in the introduction with a steady radial distribution
of stars, how will it bifurcate? Does Landau damping still exist? Is an unstable manifold expan-
sion or SWM still possible? How does the resonance phenomena survive? In Chapter VI we
brie�y review the formalism and results used for non homogeneous Landau damping obtained
by J. Barré, A. Olivetti and Y.Y. Yamaguchi. Then we present our study of the unstable manifold
for the bifurcation around inhomogeneous states obtained in collaboration with J. Barré and Y.Y.
Yamaguchi. This work was published in [BMY16] and holds for generic potentials. A poten-
tial astrophysical application will be considered. As we will show the effect of wave/particles
resonances is weaker, nevertheless we can still talk about Landau damping (with certain mod-
i�cations) and trapping scalingE1 � E0 / j � � � cj2. However, this time it is not because
of a "resonant trapping" thus a SWM is not expected... Moreover we present recent results
(not published yet) where a three-dimensional reduction of the bifurcation is achieved without
any singularities in the coef�cients (contrary to the unstable manifold) as well as a convincing
agreement with simulations. This reduced systems known as the Triple Zero bifurcation could
be very generic for degenerate14 Hamiltonian systems (with weak resonances).

In Part One we used the Vlasov-Fokker-Planck equation to describe atom evolution in an
optical molasses with Coulomb like interaction. From a theoretical point of view, how the
in�nite-dimensional properties (continuous spectrum, Landau damping, Casimir invariant, etc.)
of the Vlasov equation are modi�ed in the presence of small friction? In Chapter VII we answer
these questions and give the different regimes of bifurcation with respect to friction. For small
friction, the solution will behave as the pure Vlasov equation with trapping scaling while for
large friction we will get a more standard Hopf scaling. This question is very important since in
a sense it allows the linking of the different approaches mentioned above (predicting different
scaling) and the understanding the role of friction in the nonlinear terms.

13. A normal form can be seen as the simplest way to describe a given bifurcation highlighting its essential
features.

14. Degenerate in the sense of the Poisson brackets [MH13, HM13]
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CHAPTER V

VLASOV SYSTEMS AROUND

HOMOGENEOUS EQUILIBRIUM

In this Chapter, we retrace known results obtained mainly by L.D. Landau and J.D. Craw-
ford on the bifurcation around homogeneous states of the Vlasov equation. Historically in the
early 20th century the Vlasov equation was used to describe the physics of plasmas where the
interaction potential is the Coulomb oneVCoulomb (r ) = C3=jr j or astrophysical systems using
Newton interactions. In this Part, we restrict to the one dimensional Vlasov equation referred
with the abbreviation 1D (one spatial dimension + one velocity dimension). A lot of essential
features survive in 2D or 3D systems such as Landau damping while 1D has the advantage of
keeping the analysis rather simple. Despite this, in in 3D new types of bifurcation might appear
but the essential physical mechanism of the 1D case should remain.

A way to generalize the Coulomb/Newton potential in other dimensions is to use the Poisson
equation it satis�es as a de�nition, for attractive systems this gives

V3D(r ) = � G3=jr j; (V.1a)

V2D(qx ; qy) = G2 log(jq2
x + q2

y j); (V.1b)

V1D(q) = G1jqj: (V.1c)

To avoid heavy generic computations, we will restrict in this manuscript to a particular interac-
tion potential between particles, the so-called Hamiltonian Mean Field potential [AR95]. It is
de�ned through the �rst mode of the Fourier series of the 1D potential

V1D(q) = G1jqj = � 2G1

1X

k=1

cos(kq)
k2

; (V.2)

so
VHMF (q) = � cosq: (V.3)
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In fact, it is also the potential term of a pendulum and because of its simplicity we will carry out
a lot of explicit computations. Here this choice is only motivated by simplifying the formalism.
Moreover, this choice allows direct comparison with numerics (we only use a Vlasov-HMF
solver) and an easy physical picture. Another motivation is that this potential is also used in
the Kuramoto model studied later in Chapters VIII, IX, X so the comparison between the two
models will be easier. Lastly, although it was originally used to study toy models some physical
systems display HMF interactions [SJM15]. Nevertheless, the following bifurcation problems
were also solved for more generic potential with the same results, see [Cra95a, BMY16].
Throughout this Section, we will keep track of what is generic and what is not.

In order to apply the unstable manifold techniques for kinetic equations with a continuous
spectrum (after the �nite dimensional example of Section IV.1) in different cases, it will be
useful to redo Crawford's original calculations [Cra94a, Cra95a] for what will be considered as
the "standard-case" of this thesis.

1 INITIAL PROBLEM

For the HMF interaction potential the microscopic equations for particles on a 1D ring1,
(q; p) 2] � �; � ] � R are for thei th particles

_qi = pi ; (V.4a)

_pi = �
1
N

X

i 6= j

sin(qj � qi ); (V.4b)

where we set the particles massmp = 1. The associated Vlasov-HMF equation giving the
evolution of the densityF (q; p; t) is

@tF + p@qF � @q� [F ]@pF = 0 (V.5a)

� [F ](q) =
Z 1

�1

Z �

� �
VHMF (q � q0)F (q0; p0; t) dq0dp0 = VHMF ?q

Z 1

�1
F dp (V.5b)

Z 1

�1

Z �

� �
F dqdp = 1 (V.5c)

where?q is the convolution in space (this formulation makes easy the Fourier transform).
From now on we will omit the integration bounds. For the HMF potential the mean �eld poten-
tial � [F ] becomes

� [F ](q) = � M c[F ](t) cosq � M s[F ](t) sinq = �j M j cos(q � ' M ) (V.5d)

M [F ] = M c[F ] + iM s[F ] =
ZZ

Feiq dqdp; (V.5e)

whereM is in general referred as the magnetization of the system and' M the phase of the
potential (de�ned as the phase of the magnetization). Eq. (V.5a) describes the time evolution of
the densityF (q; p; t) in the phase space(q; p); Eq. (V.5b) de�nes the self-consistent mean �eld
potential� [F ](q) (for real systems it is a relevant macroscopic observable like the electric �eld

1. Since the potential is periodic it is a natural choice to have periodic boundary conditions.
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of a plasma); Eq. (V.5e) de�nes the HMF order parameter called magnetization and Eq. (V.5c)
is the normalization condition, true for all timet. For M = 0 the system is unmagnetized
(spatially homogeneous), forjM j = 1 the particles distribution is a delta Dirac function (fully
magnetized). Without loss of generality we choose in the following' M = 0 so that the energy
minimum is situated inq = 0. In this Section the initial magnetizationM (t = 0) = M 0 = 0 is
zero which means that the system is spatially homogeneous (unmagnetized).

The basic question we ask here is what is the fate of a perturbation around a homoge-
neous stationary state?We decompose the solution as

F (q; p; t) = f (0) (p) + f (q; p; t);

where we have the following normalization conditions
ZZ

f (0) dqdp = 1;
ZZ

f dqdp = 0:

To perform the unstable manifold analysis we rewrite the problem in terms of a linearL and
nonlinearN operator

@t f = L f + N [f ] (V.6a)

L f = � p@qf + @q� [f ](f 0)0(p) (V.6b)

N f = @q� [f ]@pf: (V.6c)

2 SPECTRUM OF THE HOMOGENEOUS VLASOV OPERATOR

The latter term of Eq. (V.6b) is a compact perturbation of the advection operator Eq. (IV.25b)
(because it is of rank two) so it doesn't change the essential spectrum [Kat95] that is the con-
tinuous spectrum. Therefore, the mixing phenomenon studied in Section IV.2.2 is expected to
remain, the difference is that now there might be some eigenvalues where for the advection the
spectrum was only composed of the continuous one. A complete analysis of the spectrum of
Eq. (V.6b) is given in [Deg86].

2.1 Eigenvalue problem

Let's look at the spectral problem for an eigenvalue� associated with an eigenvector	 k .
From the linear Vlasov operator Eq. (V.6b) we get in the Fourier space

L k f k = � ikpf k + 2�ik (VHMF )k

Z
f k dv � (f 0)0(p) (V.7)

where(VHMF )k = � (� 1;k + � � 1;k )=2.
For k = 0 it is direct to see thatL 0 = 0 so � = 0 is an eigenvalue and any function

	 n =  (p) 6= 0 is an associated eigenvector. So, there is always an 0 mode with an eigenspace
of in�nite-dimension. It is related to the in�nite number of possible stationary states. Without
spatial structure the mean �eld force is zero. As we shall see later, adding dissipation breaks
this structure.
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Fork 6= 0 we take	 k =  k(p)eikq , we �nd

(� + ikp) k = � ik� (f 0)0(� 1;k + � � 1;k )
Z

 k dp: (V.8)

It gives forRe� 6= 0

 k(p) = � ik�
(f 0)0(p)
� + ikp

; (V.9)

where have chosen the normalization
Z

 k dp = 1: (V.10)

The normalization condition gives us the dispersion relations2 � k(� ) whose roots are the eigen-
values

� k(� ) = 1 + ik�
Z

(f 0)0(p)
� + ikp

dp; (V.11)

for k = � 1. For generic potential, eachk 6= 0 has its dispersion relation but it just changes the
prefactor in front of the integral. It is easy to observe by taking the complex conjugate(� k(� )) �

that if � is an eigenvalue for� k so is� � for � � k . Similarly, if � is an eigenvalue for� k so is
� � for � � k . It already gives precious information which is that if there is one stable eigenvalue
there is also one unstable. Therefore, a marginally stable equilibrium requires that there are no
solutions to Eq. (V.11), which says that only the continuous spectrum relaxes the system with
no additional damping of a negative eigenvalue. The stability criterion is obtained by taking the
limit � r = Re � ! 0+ , one has to be careful performing this limit and use the Plemej formula

lim
� ! 0

Z
g(p)

p � i�
dp = PV

Z
g(p)

p
dp + i�g (0): (V.12)

This formula is counter intuitive since it gives a �nite imaginary part to the limit while one could
have expected that it should go to zero. In fact, this formula can be obtained by deforming the
integration path in the complex plane as in Figure V.4(a) to avoid the singularities as� ! 0.
Thus, we get the following stability criteria

I [f 0] = �(0 + + i� i ) = 1 + �
�

PV
Z

(f 0)0(p)
p + � i =k

dp + i� (f 0)0(� � i =k)
�

: (V.13)

For I [f 0] > 0, f 0 is spectrally stable [Oga13] meaning that there is no eigenvalues (neither
positive nor negative). At criticality, bothRe(V.13) = Im( V.13) = 0 which implies that
(f 0)0(� � i =k) = 0 . Hence for an initial Gaussian distribution� i = 0 and the eigenvalue is
real. For a Coulomb repulsive potential one can obtain a similar criterion, the difference being
that due to the change of sign in front of the integral Gaussian distribution are always stable.
Unstable distributions have bump(s) on their tail(s) and are associated with a complex pair of
eigenvalues.

Remark V.1
Unless speci�ed we will always assume that the eigenvalues ofL k are simple� 0

k(� ) 6= 0 in all
the manuscript. However there might be some confusion here indeed the full dispersion relation

2. This denomination is abusive since the dispersion relation is strictly de�ned by the relation� k (� ) = 0 .
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of L is given by�( � ) = � 1(� )� � 1(� ), so a real eigenvalue will be of multiplicity two for the
full operatorL ,

� 0(� ) = � 0
1(� ) � � 1(� )

| {z }
=0

+ � 1(� )
| {z }

=0

� 0
� 1(� ) = 0

but simple with respect toL k and the dispersion relation� 0
k(� ) 6= 0. However, in [CH89] with

spectral deformation technique is shown that at criticality� c 2 iR is simple.

2.2 Continuous spectrum

Now that we know the eigenvalues we want to characterize the continuous spectrum over
the imaginary axis, see Figure V.1, �nding its associated generalized eigenvectors. Looking for
� k(q; p) = � k(p)eikq associated with� 2 iR gives

(� + ikp)� k = � ik� (f 0)0(� 1;k + � � 1;k )
Z

� k dp: (V.14)

Dividing by (� + ikp) gives a singular contribution (in the distribution sense) [VK55, Cas59],

� k(p) = � ik� PV
(f 0)0(p)
� + ikp

+ � (� + ikp)A(� ); (V.15)

for some functionAk(� ) andk = � 1 where we have imposed
Z

� k dp = 1:

These are the van Kampen modes are all excited during phase mixing [Bra98, BMT13]. The
normalization condition gives

A(� 2 iR) = 1 + ik� PV
Z

(f 0)0(p)
� + ikp

dv: (V.16)

3 ADJOINT PROBLEM

In linear algebra, the notion of scalar product with projection and basis is crucial. It al-
lows for example to decompose a vector in the basis formed by eigenfunctions. What about
in�nite-dimensional systems with a continuous spectrum? Does such decomposition still hold?
In [Cas59], K.M. Case shows the completeness of the basis formed by the eigenvector and gen-
eralized eigenvector. We �rst need to de�ne a scalar product and what is called a dual (adjoint)
space of functions upon which to project (as the bra and ket in quantum mechanics or line and
column vector in �nite-dimensional systems).
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Figure V.1 – Spectrum of the linear homogeneous Vlasov operator with one continuous spec-
trum on the imaginary axis. Here we show an unstable case with two eigenvalues�; � � real (in
a stable case these two would disappear but not the continuous spectrum).

3.1 Adjoint operator construction

We denoteB� the dual functional space of our spaceB (which is different in general). We
de�ne the "scalar product" over the two space forf 2 B andg 2 B � as

(g; f ) =
Z

hg; f i dq (V.17a)

where

hg; f i =
Z

g� f dp: (V.17b)

The dual (adjoint) operatorL y is then de�ned by the relation

(g;L f ) =
�
L y g; f

�
: (V.18)

Similarly, to what has been done previously, we can look for the eigenvalues and eigenvectors
for this operator. Let's make explicit the derivation ofL y,

(g;L f ) = �
ZZ

g� p@qf dqdp �
ZZ

g� (q; p)f 0(p)
� ZZ

@q cos(q � q0)f (q0; p0) dq0dp0

�
dqdp

=
ZZ �

p@qg� + � [g� (f 0)0]
�

f dqdp =
�
L y g; f

�

(V.19)

where we have use integration by part in the �rst member and integral exchange in the second
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one to write the second line. So

L y g = p@qg + � [@qg(f 0)0] (V.20a)

L y
k gk = ikpgk + � k [@qg(f 0)0]: (V.20b)

3.2 Eigenvalue problem

We denote by a tilde the adjoint eigenvectors (not to be mistaken with the� for the complex
conjugate). We have to solve

L y e	 k = � � e	 k (V.21)

which gives fore	 k = ~ k(p)eikq =(2� ) andRe� 6= 0

~ k(p) =
1

(� 0
k(� )) �

1
� � � ikv

; (V.22)

where we have chosen the normalization factor so that
�

e	 k ; 	 k

�
=

D
~ k ;  k

E
= 1: (V.23)

Indeed, the derivative with respect to� of the relation dispersion� 0
k(� ) appears naturally in the

normalization, one can check that

D
~ k ;  k

E
= �

ik�
� 0

k(� )

Z
(f 0)0(p)

(� + ikp)2
dp =

� 0
k(� )

� 0
k(� )

= 1: (V.24)

Remark V.2
This "functional" link between scalar product of an eigenvector with its adjoint

D
~ k ;  k

E
(� )

and the �rst derivative of the dispersion relation� 0
k(� ) is something apparently very generic,

similar relations were found for every linear problem treated in this manuscript and eventually
"proven" for very generic linear operator in a quite surprising way (see Chapter X). I am not
aware of similar results, such result can for example predict directly the right normalization
choice.

It can be proven that the eigenvalues associated withe	 satisfy the dispersion relation Eq. (V.11)
thus the point spectrum ofL y is the same thanL .

[Cas59, CH89, HC89]

4 L INEAR L ANDAU DAMPING

The Landau damping (sometime called resonant relaxation in the astrophysics community or
non-entropic relaxation) of stable equilibrium is a phenomenon directly linked with the phase
mixing seen previously, IV.2.2. The standard historical way to derive it is to study the linear
initial value problem, solve the problem with the Laplace transform in time and then get back
to the real problem with the inverse Laplace transform. At this point to evaluate the integral
one has to deform the integration contour and the damping is given by the roots of the analytics
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continuation of the dispersion relation, these are calledresonances. The term resonance here
has not the usual physical sense (of two components with the same frequency), here it really
just denotes a root of the analytical continuation of the dispersion relation.

There exists simpler and stronger ways to show Landau damping via Volterra equation, see
the well explained thesis of H. Dietert [Die16a], here we focus on the Landau approach to
highlight among other things the analytical continuation method for the dispersion relation that
will serve us in Section VII.2.3.

To observe the Landau damping as L.D. Landau found it, we solve the initial value problem
consideringF (x; v; 0) = f 0(v) + f (x; v; 0) = f 0(v) + f i (x; v). We set ourselves in the stable
case so�( � ) does not have any roots. The Laplace transform is de�ned by

f̂ (! ) =
Z 1

0
f (t)e� !t dt (V.25)

whereRe! > 0 for the integral to be well de�ned. The inverse Laplace transform is de�ned
through

f (t) =
1

2�i

Z + i 1 + � 0

� i 1 + � 0

f̂ (! )e!t d! (V.26)

where� 0 2 R is large enough to be at the right of every singularity off̂ (p).
Inserting the Laplace transform directly in

@t f k = L k f k (V.27)

gives fork = � 1

(! + ikp)f̂ = � ik� (f 0)0(p)
Z

f̂ k(p0; ! ) dp0+ ( f i )k(p) (V.28)

sinceRe! > 0 we can safely divide. We get eventually

2b� k [f ](! ) = �
Z

f̂ k dp0 =
� 1

�( ! )

Z
(f i )k

! + ikp
dp =

1
�( ! )

' i
k(! ) (V.29)

where again the division by�( ! ) is safe since we have assumed to be in the stable case. Now
we want to get back to the real time! ! t, taking the inverse Laplace transform gives

� k [f ](t) =
1

4�i

Z + i 1 + � 0

� i 1 + � 0

' i
k(! )

�( ! )
e!t d!: (V.30)

When ending up with such integral one wants to use complex analysis results to deform the
integration contour toward the left part of the complex plane (so thate� !t goes to zero with
Re! ! �1 ) and just look for the pole contribution. That was the strategy of Landau when
facing this integral. We assume that the initial conditionf i is regular enough to be analytically
continued in the left part of the plane then so is' i

k (with Plemej formula). Moreover, we assume
that the continuation off i has no pole in the left plane. Now what about�( ! )? We know it
is not continuous from the right plane to the left, but we can construct an analytic continuation
� (! ) analytic on the all complex plane as follow

� (� ) =

8
>>>><

>>>>:

�( � ); Re� > 0

1 + k� PV
Z 1

�1

(f 0)0(p)
p � i�

dp + i� 2(f 0)0(i� ); Re� = 0

1 + k�
Z 1

�1

(f 0)0(p)
p � i�

dp + 2i� 2(f 0)0(i� ); Re� < 0:

(V.31)
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This is continuous by construction see Eq. (V.13). Another method is to write

1
� + ip

=
Z 1

0
e� (� + ip ) ; Re� > 0

so, that

� (� ) = 1 + i�
Z 1

�1

Z 1

0
e� (� + ip )(f 0)0(p) dp; 8� 2 C: (V.32)

This new function can have roots! d on the left plane, they are calledresonances(but they do
not have the traditional physical sense of resonance, see Section V.6).

Figure V.2 – Deformation of the contour of integration� � 0 ! � � in the left plane avoiding the
resonances.! dm has is the resonances with the largest real part.

We know that deforming the integral contour does not change the result of the integral, so
we have

� k [f ](t) =
1

4�i

Z + i 1 + � 0

� i 1 + � 0

' i
k(! )

�( ! )
e!t d! = lim

� !�1

Z

� �

' i
k(! )

� (! )
e!t d! (V.33)

where� � 0 is the deformed contour as in Figure V.2, that avoid the poles of1=�(! ) produced by
the root of� (! ). According to the residue theorem we have

� k [f ](t) =
1

2�i

X

d

Rd(! )e! d t t !1
/ e�j Re ! dm jt ! 0 (V.34)

whereRd are the residues andRe! dm < 0 is the resonance with the largest real part that
will dominate for large times the damping. This is the Landau damping, the perturbation is
damped in time with no dissipation mechanism. Note that once again as in IV.2.2 the full
distributionf (q; p; t) will be highly oscillating and will only converge to zero in a weak sense.
In fact, we could have looked as in Section IV.2.2 at the velocity Fourier transform and get
similar result, with the advantage of keeping the information over velocity (here we just look
at the integrated density). That is the direction taken in [MV11] to prove nonlinear Landau
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damping, that we have no time to develop here. Another method would have been to decompose
a function over the basis formed by the generalized eigenvectors observe the linear Landau
damping, see [VK55, Cas59].

The classical physical picture for this damping is that the perturbing wave� k [f ]eikq + c:c:
which has a frequency! i = Im ! dm , loses energy to the resonant particlesp � ! i . On
my personal website3 one can �nd a Vlasov-HMF simulation of Landau damping, see "Lan-
dau_Damping.mp4". The �lamentation of the velocity space is clearly visible thanks to the
good resolution.

5 NONLINEAR EXPANSION

Now that we have reviewed the case where a homogeneous state is stable and small pertur-
bation are damped thanks to Landau damping, we will review the case treated by J.D. Craw-
ford [Cra94b, Cra95a] for unstable steady states. Close to the onset of the bifurcation we sup-
pose that only one eigenvalue� (or a pair of complex conjugate�; � � ) emerges in the right
complex plane from the continuous spectrum. That will be our unstable mode. As we have seen
also appears a negative eigenvalue� � .

— In the astrophysical context, instabilities can develop when a distribution of stars have a
kinetic energy too weak to support the pressure applied by the potential energy. In terms
of distribution for example,

f 0(p) =
p

�
e� �p 2=2

(2� )3=2
;

the system goes unstable when the parameter� (related to the inverse of the temperature)
is varied over a certain value� c. In astrophysics, this type of instability leads to a collapse
and it is known as the Jeans instability.

— In plasma physics as already mentioned, an unstable distribution could be for example as

f 0(p) =
e� p2=2

(2� )3=2
+ �

e� (p� p0 )2=2

(2� )3=2
;

leading to the bump-on tail-instability for a certain bump size� > � c and frequencyp0.
The idea is the same as in the example IV.1, we want to construct the unstable manifold

associated with the unstable eigenvalue� (or �; � � ) close to the bifurcationRe� ! 0. We
hope to get a dimensional reduction from in�nite to one or two, which would simplify a lot the
description of the bifurcation. But as we have seen in the example due the continuum of neutral
modes, the constructed manifold will a priori not be attractive and will not describe for example
oscillating behavior. Nevertheless, we hope to get precious qualitative information such as the
sub/super-critical nature of the bifurcation and in the latter case the scaling of saturation.

Remark V.3
In the Fourier space, the unstable modes will be associated withk = � 1, for more generic
potential, we should also consider other modes but in practice the modek = � 1 are always
the �rst to be unstable so otherk� modes are not associated with eigenvalues just continuous
spectrum.

From now on the subscriptk to 	 k ; � k , etc. will be dropped (as it isk = � 1 and there are
not ambiguities).

3. http://math.unice.fr/~metivier/video.html
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5.1 Symmetries

Before starting building the unstable manifold it is worth looking at the symmetries of the
system. Let's de�ne the rotationS� 2 SO(2) : (q; p) ! (q + �; p ) and re�exionSR 2 O (2) :
(q; p) ! (� q;� p) symmetries. Iff 0 is even (re�exion symmetry) then the eigenvalue� is real
Eq. (V.13) associated with a eigenspace of dimension two	 ; SR 	 = 	 � . Conversely iff 0 is
not even the re�exion symmetry is broken, there are two complex eigenvalues� = � r + i� i

and� � associated respectively with	 and	 � . Therefore, in both cases the unstable space is of
dimension two.

Remark V.4
An unstable space of dimension four is possible if re�exion symmetry still holds and eigen-
values�; � � are complex (as in the plasma case with the two-stream instability) associated
respectively with	 ; SR 	 and	 � ; SR 	 � . We will not study this case in this thesis.

Remark V.5
In [CH89, HC89] authors studied the spectral properties of the Vlasov linear operator. They
highlight another difference between the in�nite and �nite-dimension system that we will ex-
plain. Let consider an unstable plasma composed of two pair of complex conjugate eigenvalues
(one pair withRe� = � r > 0 the other one withRe� = � � r < 0). Their real part grows with
the instability parameter� � � c > 0.

— In �nite-dimensional system at criticality� = � c, both "negative"� r ! 0� and "posi-
tive" � r ! 0+ join on the real axis. Thus both� � c = 0 + i� i and� �

� c
= 0 � i� i are

associated with a eigenspace of dimension two [VDMvdM85, CMM90]. Therefore, we
shall have a2 � 2 dimensional description of the bifurcation with a two dimensional
center manifold for example; a one dimensional description would lead to singular coef-
�cient in the bifurcation expansion, as in the example Section IV.1. Note that in this case
the merging of "positive" and "negative" eigenvalues is translated by� 0(0 � i� i ) = 0 at
� = � c.

— In in�nite-dimension (for the Vlasov equation) J.D. Crawford and P.D. Hislop [CH89]
showed that at criticality these eigenvalues were simple. It is related to the fact that
the dispersion relation is not analytic4 and�(0 � � i� i ) 6= 0 in general. Therefore, the
description of the bifurcation should be only2 dimensional (for�; � � ).

For real eigenvalues, the discussion and conclusion are similar.

We can decompose the perturbation close tof 0 in the direction along the unstable eigenspace
(for � complex or not) and its orthogonal

f (q; p; t) = A(t)	( q; p) + A � (t)	 � (q; p) + S(q; p; t) (V.35)

for ( e	 ; f ) = A andS such that( e	 ; S) = 0 . A plays the role of the order parameter. It is
directly proportional to the magnetizationM (t) since

M (t) = ( eiq ; f ) = A (eiq ; 	)
| {z }

=2 �

+O
�
A2

�
:

We can write the time evolution of Eq. (V.35) by projecting the on( e	 ; f ) andI � (	 ; f )	

_A = �A +
�

e	 ; N [f ]
�

(V.36a)

@tS = L S + N S �
��

e	 ; N [f ]
�

	 + c :c:
�

: (V.36b)

4. Technically "negative" and "positive" eigenvalues are joining the real axis on different Riemann sheet.

101 Laboratoire Jean-Alexandre Dieudonné



CHAPTER V. VLASOV SYSTEMS AROUND HOMOGENEOUS EQUILIBRIUM

Note that this system is still exact and in�nite-dimensional, we have just brought out the unsta-
ble mode.

The key point is now to decompose our perturbation densityf not on the in�nite variety
induced byS but along the �nite-dimensional unstable manifoldW u. It means that we describe
now the evolution of functions belonging to the unstable manifoldf 2 W u where(A; A � ; S) =
(A; A � ; H (A; A � )) as schematically represented on Figure V.3. Note that because the unstable
manifold is the nonlinear generalization of the eigenvector we have by construction at least
H = O

�
(A; A � )2

�
.

Figure V.3 – Schematic representation of the unstable manifoldW u nearf = f 0 in the in�nite-
dimensional space.

One can check that the distributionf is invariant by rotation in the Vlasov equation Eq. (VI.15).
Since we want to construct the unstable manifold with a rotational invariance we impose for
f 2 W u Eq. (V.35),S� f 2 W u. It implies (because of the form of	 / eikq )

S� A = Ae� ik� :

Similarly, the Fourier coef�cientHk of H will be constrained asS� Hk = Hke� ikq , thus

H0 = jAj2h0(p; jAj2) (V.37a)

H1 = AjAj2h1(p; jAj2); (V.37b)

Hk = Akhk(p; jAj2); k � 2 (V.37c)

H � k = ( Hk)� ; (V.37d)

Now our goal is to construct the dominant order ofH in order to get a dynamical equation

_A = �A + c3(� )jAj2A + O
�
jAj4A

�
(V.38)

with potentially a divergingc3(� ) coef�cient as in the example IV.1. Note that the form of the
expansion Eq. (V.38) is constrained by the rotational symmetry furthermore terms asjAj2j have
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to be zero because of the rotational symmetryA $ � A. As we will see in the non homogeneous
case this symmetry is not preserved and the quadratic term is non zero.

To summarize the symmetries, constrain a lot the unstable variety and provide precious in-
formations, as that the 0th and 2nd Fourier mode will be the terms of lowest orderO (H0) =
O (H2) = O

�
(A; A � )2

�
.

5.2 Temporal equations

Now we drop the indexk = 1. The temporal evolution on the unstable manifold is

_A = �A +
�

~ ; N f
�

(V.39)

dH
dt

= L H + N [f ] �
h�

~ ; N f
�

 + c :c:
i

: (V.40)

We de�ne _A = A%(�; t ). The goal is to get the different order ofjAj2, by construction%0 = � .
Since by constructionH is a function, it can be expanded for smallA as

hk(p; � ) =
1X

j =0

hk;j (p)� j ; (V.41)

where� = jAj2. The task is to evaluate thehk;j at different order. To remove the temporal
evolution, we write on one hand

dHk

dt
= _A@A Hk + _A?@A ? Hk (V.42)

using Eq. (V.37a), Eq. (V.37b), Eq. (V.37c) gives

dH0

dt
= A? _A(h0;0 + O ( � )) + A _A?(h0;0 + O ( � )) = � (%+ %?)(h0;0 + O ( � )) : (V.43)

So, fork � 0,

dH0

dt
= 2� r �h 0;0 + O ( � ) (V.44a)

dH1

dt
� L 1 H1 = A� [(2� + � � ) � L 1]h1;0 (V.44b)

dHk

dt
� L k Hk = Ak [k� � L k ]hk;0: (V.44c)

On the other hand, from Eq. (V.40),

dH0

dt
= N 0[f ] (V.45a)

dH1

dt
� L 1 H1 = N 1[f ] �

�
e	 1; N [f ]

�
 (V.45b)

dHk

dt
� L k Hk = N k [f ]: (V.45c)

So, by equalizing Eq. (V.44) and Eq. (V.45), we eliminate the temporal dependence allowing us
to compute every order ofH .
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For the HMF potential

N k f k =2�i (A(t)@p � k� 1;1 + A(t)?@p ?� k� 1;� 1 + @pHk� 1) � 1 [A(t) + H1]

� 2�i (A(t)@p � k+1 ;1 + A(t)?@p ?� k+1 ;� 1 + @pHk+1 ) � � 1 [A?(t) ?
1 + H � 1] :

(V.46)

In particular

N 0[f ] = i�� (@p � � @p ) + O
�
� 2

�
(V.47a)

N 1[f ] = i�A� (@ph0;0 � @ph2;0) + O
�
A� 2

�
(V.47b)

N 2[f ] = i�A 2@p + O
�
A4

�
(V.47c)

where we used the normalization of� [ ] = 1=2.

5.3 Cubic order

Combining Eq. (V.45) and Eq. (V.47), gives

h0;0(p) = i�
(@p � � @p )

2� r
(V.48a)

h2;0(p) =
i�
2

@p 
� + ip

: (V.48b)

So, with
�

e	 1; N [f ]
�

=
D

~ 1; N 1[f ]
E

= A� i�
D

~ ; @p (h0;0 � h2;0)
E

| {z }
c3 (� )

+O
�
A� 2

�
; (V.49)

it just remains to compute two scalar products. Let's evaluate the term containingh2;0,

� i�
D

~ ; @ph2;0

E
=

� 2

2� 0(� )

Z
@p 

(� + ip)3
dp =

3i� 3

2� 0(� )

Z
(f 0)0(p)
(� + ip)5

dp

= �
3� 2

48
� (4) (� )
� 0(� )

:
(V.50)

Let's evaluate the term containingh0;0,

i�
D

~ ; @ph0;0

E
= �

� 2

2� r � 0(� )

� Z
@p �

(� + ip)2
dp �

Z
@p 

(� + ip)2
dp

�
=

= �
� 2

� r � 0(� )

� Z
 �

(� + ip)3
dp �

Z
 

(� + ip)3
dp

�

= �
i� 3

� r � 0(� )

� Z
(f 0)0(p)

(� � � ip)( � + ip)3
dp �

Z
(f 0)0(p)
(� + ip)4

dp
�

:

(V.51)

At this point of the computation, one can take the limit� r ! 0 and look at the scaling. A clever
way proposed by J.D. Crawford was to expand the integrand in simple fraction, it has both the

Université Côte d'Azur 104



5. NONLINEAR EXPANSION

advantages to highlight directly the� r dependence and the remaining integral has the form of
� (n)(� ) derivative. The simple fraction is

1
(� � � ip)( � + ip)3

=
1

8� 3
r (� + ip)

+
1

4� 2
r (� + ip)2 +

1

2� r (� + ip)3 +
1

8� 3
r (� � � ip)

(V.52)

which directly gives

c3 =
� � 2

� r � 0(� )

�
(�( � )) � � 1 � �( � ) + 1

8� 3
r

+
� 0(� )
4� 2

r
�

� 00(� )
4� r

�
� 000(� )

6
+

� (4) (� )
16

�
: (V.53)

Since the �rst(�( � )) � = �( � ) = 0 (� is an eigenvalue) we �nd the asymptotic coef�cient as
in [Cra94a]

c3 � �
� 2

4� 3
r

+ O
�

 � 2

�
: (V.54)

Note that this result is independent of the initial distribution function(f 0)0(p).
Therefore, sincec3 is always negative the bifurcation Eq. (V.38) towards a magnetized system

is always supercritical (meaning continuous or to use the equilibrium statistical mechanics term:
second order) and the scaling of the saturated statesAsat is as announced

jAsatj / � 2
r ;

it is thetrapping scaling.

5.4 A note on pinching singularities

To check that the� (n)(� ) do not bring any additional singularity, one can consider integral
of the type

lim
� ! 0

Z
f (p)

(p � im� )k(p + in� ) l
dp (V.55)

for a regular functionf (p). For l = 0 we have a function proportional to the derivative of
the dispersion relation. Once again there are different ways to see the potential divergences

— One could show that the simple fraction expansion leads to divergences in1=� only if
m = n.

— Use the Plemej formula. A graphical interpretation of the result can be seen in Figure V.4.
When two poles or more (whatever the orderk; l ) approach the real axis from both side
at a different velocityp one can always deform the integration path to make the limit
�nite. However, when two singularities approach the real axis at the same velocityp, the
contour cannot be deformed to avoid the singularity. This case is referred to a pinching
singularity.

In practice divergence, will come from scalar product containing terms as
D

~ ;  �
E

, while terms

like
D

~ ;  
E

will not diverge. This can be interpreted as singular projection over one unstable
mode.

Hence, from this calculation the divergence of the coef�cientc3 has its origin from this
pinching singularity, but what does it means physically? The divergence occurs forp ' � � i .
It can be physically translated as particles with velocity (frequency) around the frequency� � i

of the unstable mode have a "singular" behavior. Once again, these particles are called resonant
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(a) m 6= n (b) m = n

Figure V.4 – Integration path with poles approach the real axis.

particles. As we will see later these particles are in fact trapped with the unstable wave whose
amplitude isA. This singularity is what make the dynamical expansion of the Vlasov bifurcation
so "unique", it is not a mathematical artifact and any regularization would lead to a standard
Hopf scaling/

p
� , corresponding to remove the trapping mechanism.

Remark V.6
These pinching singularities do not appear only in the kinetic context, for example in Perturba-
tive Quantum Chromodynamics such singular integrals with pinching singularities occur. They
physically stand for a long-distance sensitivity in the perturbation theory [Ste96]...

5.5 Higher orders

For every expansion of the previous type a safety check consist to compute and estimate
higher order terms of Eq. (V.38). If they are negligible the dimensional reduction of the system
at the bifurcation from the in�nite Eq. (V.36) to one dimension Eq. (V.38) becomes exact.

Here we will not detail the computation of higher orders since a more generic treatment was
done by J.D. Crawford in [Cra94a]. It brings quite some technicalities and the main insight was
already provided by the cubic coef�cient. The Crawford result is as follows:

c2j +1 /
1

� 4j � 1
r

; j � 1: (V.56)

What is further more remarkable is that he computed exactlyc5 � 13=64� � 7
r which asc3,

does not depend on the distributionf 0. It is then natural to conjecture that at leading order the
unstable manifold is always the same for the Vlasov dynamics around homogeneous states (so
all c2j +1 coef�cient have a �xed value).

This result implies that around the saturated solutionAsat / � 2, the series expansion of the
one dimensional dynamics becomes singular since as in the example Eq. (IV.21),

O (� jAsatj) = O
�
c3jAsatj3

�
= O

�
c5jAsatj5

�
= O

�
c2n+1 jAsatj2n+1

�
= O

�
� 3

�
: (V.57)

This divergence means once again that the perturbative treatment fails at times larger than
O (1=� ). After this time particles are trapped with the created wave (whose amplitude isA)
and an oscillation behavior starts (which cannot be described by the one dimensional dynami-
cal equation), see Figure V.6 and V.5.
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6 RESONANCE PHENOMENON

As we have seen in the computation the damping or growing of stable/unstable perturbation
is dominated by the contribution of particles resonating with the wave created self consistently
by the perturbed distribution. These particles have a frequency (velocity) close to the frequency
of the perturbation.

— In the stable case we observe the Landau damping. The wave is damped according the
resonances of the dispersion relation (once again here resonance has the mathematical
meaning). Thus, this damping occurs thanks to the particles with a velocity close to
frequency of the wave. The Malmberg and Wharton experiment [MW64] showed indeed
that a plasma without those particles did not display damping.

— In the unstable case resonances come from pinched singularities of pole. For a perturba-
tion with zero frequency! = 0, M (t) sinq, resonant particles are found aroundv ' 0.
Particles with large velocityp are not much affected by the perturbation in their phase
space trajectories, (

_q = p

_p = � M (t) sinq
(V.58)

while resonant particles go from a straight line to a closed orbit in phase space Figure V.5.
The period of closed orbit is given by the nonlinear time� NL �

p
M

� 1
�

p
A

� 1
. Hence

there is a competition in between trapping time� NL and linear instability� � � � � 1.
Saturation occurs when both are comparable

� NL � � � ) Asat � � 2;

this yield the "trapping scaling".
Trapped particles are much more affected by the perturbation since their trajectories change
from a straight line to a close orbit. Because the crucial point of the expansion comes from
this nonlinear layer where particles are trapped, it was then natural for O'Neil et al. [OWM71]
followed by del-Castillo Negrete [dCN98a, dCN98b] to perform an exact asymptotic multiscale
expansion of the model considering these two different regions with a third region in between.
The region with cycling orbit is called the inner critical layer, it is where the scaling of the
expansion is not standard. In the Outer region, the time expansion is regular, then a match-
ing of those two layers is done. It leads to the Single Wave Model (SWM), nicely reviewed
in [BMT13]. A normal form is obtained and in fact it is shared with various Hamiltonian sys-
tems such as XY model and Euler 2D. The normal form is for our problem (simpli�ed normal
form from [BMT13])

@t f + p@qf + @q'@pf = 0; (V.59a)

' (q; t) = Aeiq + A � e� iq ; (V.59b)

i _A(t) =
Z

f 1(p; t) dp: (V.59c)

It does look as the Vlasov equation with the difference that the perturbing wave' is only along
the unstable Fourier modek = 1 and it does not depend directly on the distribution as the
previous mean �eld term� [f ] did. This description has the advantage to display universality.
The drawback of this reduction is that it is still of in�nite-dimension, thus the end behavior is not
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Figure V.5 – Density plot ofF (q; p; t) in the phase space(q; p) for different timest =
0; 30; 50; 60; 70; 90; 110; 130; 170. Fermi distribution de�ned in Eq. (VI.37a) withM 0 = 0,
� = 10, � = 0:277361, � = 10� 4, � = 0:0729. The associated video can be found by clicking
here homogeneous_unstable.mp4.

Figure V.6 – Magnetization associated with the Figure V.5. The circles represent the times of
the snapshots. Fermi distribution de�ned in Eq. (VI.37a) withM 0 = 0, � = 10, � = 0:277361,
� = 10� 4, � = 0:0729.
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direct. Moreover, in the construction of the model the trapping scaling giving the characteristic
size of the critical layer is set as an ansatz that turns out to work (where traditional Hopf scaling
would fail) whereas in Crawford method it is found as a result.

7 OPEN QUESTIONS

The partial success of the unstable manifold technique plagued by singularities raise many
questions:

— How general is this unstable manifold expansion?
— Can it be applied around non homogeneous systems?
— Are bifurcation around non homogeneous states similar to the homogeneous case

— Trapping scaling
— SWM normal form
— Universal coef�cientcn

— Singular series expansion at saturation or exact dimensional reduction?
— How with a small dissipation the critical layer is modi�ed to give an exact one dimen-

sional reduction with a
p

� scaling as one found in regular expansion.
In the Chapter VI we will perform a similar analysis for the non homogeneous case and

answer to some of the previous questions. In Chapter VII we will study the same homogeneous
system as here adding a small dissipation. Since for every newt Chapter we will use the same
methodology we will start each Chapter by highlighting the differences with respect to this
homogeneous Crawford model.
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CHAPTER VI

BIFURCATIONS AROUND NON

HOMOGENEOUS STATES

Now that we are familiar with the bifurcation problem around a homogeneous state, we
consider the same question around an already magnetized (non homogeneous) state and present
our original results. We will still consider the HMF model and highlight the differences with
generic potential in this Chapter. In [BMY16], we prove that results of the unstable manifold
approach remain with generic potentials; we also develop a self-consistent approach in addition
to the dynamical one with similar predictions about the �nal states.

The unstable manifold analysis is then performed for a non oscillating perturbation (the
unstable eigenvalue� is real). The main results and physics of this study reveal that

— The wave particles/resonance is weaker than in the homogeneous case for a non oscil-
lating perturbation since few particles resonate. Thus, the pinching singularities are also
weaker.

— Nevertheless a singularity still appears in the bifurcation expansion for another physical
reason.

— The bifurcation is now asymmetric with respect to the initial magnetization perturbation
(see Figure VI.1) measured byA / M 1 � M 0,

_A = �A + c2A2 + O
�
A3

�
with c2 /

1
�

:

(a) Homogeneous case: symmetric supercritical bifur-
cation

(b) Inhomogeneous case: asymmetric transcritical bifur-
cation

Figure VI.1 – Bifurcation diagram for homogeneous and inhomogeneous case
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

In bifurcation theory, this type of bifurcation is called transcritical (with here an unusual
scaling). In one case, we recover the trapping scalingAsat / � 2 while for the opposite
initial condition the perturbation grows to beAsat / O (1).

— In fact if a singularity arises, it is not as in the homogeneous case because no �nite-
dimensional reduction is possible (thanks to strong resonances). It is because with the
unstable manifold expansion we do not consider all the slow modes that contributes near
the critical point i.e.� � ! 0� and 0, as in the �nite-dimensional example (see Sec-
tion IV.1). Hence describing the problem with a three-dimensional1 manifold yields this
time to what seems to be an exact dimensional reduction. The reduction obtained is
known as the Triple Zero normal form. Preliminary predictions are compared directly
with numerics, providing for example almost exactly the amplitude and frequency of os-
cillation of the saturated states whereas the unstable manifold just provides "a qualitative"
scaling.

Technically the problem is more dif�cult since the angle-action variable change is necessary.
However due to a broken rotational symmetry the nonlinear computation stops at the quadratic
orderc2, which does not require any calculation of the unstable manifoldH .

In the �rst part, we will introduce the non homogeneous formalism de�ning the angle-action
variable more suited for the problem. Then we will quickly describe the known result for
Landau damping in the non homogeneous case.

1 STEADY STATE

The particles motion in the mean �eld limit is associated with the following Hamiltonian
(also called one particles Hamiltonian),

H [F ](q; p) =
p2

2
+ � [F ](q) + M c[F ] =

p2

2
+ M c[F ](1 � cosq) � M s[F ] sinq; (VI.1)

where we use the same de�nitions of the magnetizationM and mean �eld potential� [f ] that in
Eq. (V.5). We shifted the energy so that its minimum is zero. Hamilton's equations are

dq
dt

= @pH; (VI.2a)

dp
dt

= � @qH: (VI.2b)

Following the temporal evolution of the trajectories in the phase space gives the Vlasov
equation for the distribution of particles

dF
dt

= @tF + @pH@qF � @qH@pF = 0 = @tF + fH [f ]; F g; (VI.3)

where we used the Poison bracket

f u; vg = @pu@qv � @qu@pv: (VI.4)

For the homogeneous state �nding a time independent solution was direct, here thanks to
this Hamiltonian structure one can verify that any function of the one particle Hamiltonian

1. Originally we thought that a two dimensional reduction was enough but it led to inconsistencies.
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f 0(H (q; p)) is a solution of the Vlasov equation. This fact is related to the Jeans [BT11] theo-
rem that states that:
"Any steady-state solution of the Vlasov equation depends on the phase-space coordinates only
through integrals of motion in the given potential, and any function of the integrals yields a
steady-state solution of the Vlasov equation". To recover homogeneous stationary state one has
to setM c = M s = 0.

Here the energy is an obvious integral of motion, in higher dimensions other integral of
motion must be considered to describe steady states.

2 ANGLE -ACTION VARIABLE

If we want to proceed further in the unstable manifold analysis and solve the linear problem
we are quickly stopped since the linear operator is here

L f = � v@pf + @q� [f ](q)@pf 0(q; p) + @q� [f 0](q)@pf (q; p) (VI.5)

where the last term was previously zero. So, the spatial Fourier transform ofL f already
involves different Fourier modesf k ; f k� 1; f k+1 . In other terms the spatial modes are mixed at
the linear level, the problem is not diagonal which make it dif�cult to solve. We will thus have
to change basis to diagonalize the problem.

From now on we choose a symmetric initial distributionf 0(q; v) = f 0(� q; v) so(M 0)y[f 0] =
0. As we will explain later this choice should not affect any of our results, moreover we have
done some simulation with(M 0)y[f 0] 6= 0 without any of our conclusion affected. So, the
initial potential writes

� [f 0] = � (M 0)c cosq = � M 0 cosq; (VI.6)

where we choose in the following (without loss of generality due to the symmetry of the prob-
lem) (M 0)c = M 0 > 0.

2.1 Angle-action de�nition

The natural change of variable to diagonalize is to go from position-velocity(q; p) to the
angle-action(�; J ) variable. Their de�nition is

J =
1

2�

I
pdq (VI.7a)

and the angles variable are obtained through a generatorW(�; J ) of the canonical transforma-
tion (q; p) ! (�; J )

W(�; J ) =
Z

p(� 1; J ) d� 1 (VI.7b)

� = @J W(�; J ) (VI.7c)

In what follows it will be useful to de�ne the parameter� ,

� =

r
H

2M 0
; (VI.8)
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whereH = H(J ) is the energy of one trajectory of actionJ . We de�ne its complementary
� 0 =

p
1 � � 2. This parameter is useful since it separated the two different types of orbit. For

� < 1 particles have elliptic orbit (blue zone in VI.2). For� > 1 particles have librating orbit
(with p < 0 or p > 0). The separatrix is the limit orbit with� = 1. To avoid confusion between
the different variable we designatedf 0(q; p) = F 0(H ) = F 0(J ) = �f 0(k).

For HMF potential it is possible to obtain an explicit expression for these variables, the
starting point is to write

p = �
p

2 (H + M 0(cosq � 1)) = � 2
p

M 0

q
� 2 � sin2(q=2) (VI.9)

and to compute the integral Eq. (VI.7) in the three different cases� < 1; = 1; > 1. Therefore,
the de�nition of the angle-action variables is a priori different for three regions of space [BOY10]
as show in Figure VI.2.J = Jc is the action associated with particles on the separatrix. It is
easy to understand the different zones for angle-action variable with a pendulum:

— For small initial energy (J < J c) a pendulum oscillates. For very small oscillations it is
well known that the period is isochronous.

— At the separatrixJ = Jc, it takes an in�nite time to travel cycle.
— For large initial energy (J > J c) the pendulum describes a complete circle

Figure VI.2 – Angle-action variables(�; J ) representation in the phase space(q; p). Three
trajectories (arrows show the stream direction) are shown with associated angle variables. The
action variable is increased along the dotted lined. The blue zone is bounded by the separatrix
curve which separates close orbit from librating orbits.

These considerations lead naturally to the "analog" of the velocityp in angle-action variable
which is the frequency de�ned by


( J ) =
dH
dJ

: (VI.10)

As previously mentioned with the pendulum analogy we can already guess without any compu-
tations that

— 
( J ! 0) = 
 0 6= 0 (isochronicity)
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2. ANGLE-ACTION VARIABLE

— 
( J = Jc) = 0 (in�nite period)
— 
( J � Jc) / J (orbits no very different from straight lines so frequency is proportional

to the momentum).
One can �nd

J (� ) =
8
p

M 0

�

�
E(� ) � (� 0)2K (� )

�
; � < 1 (VI.11a)

J (� ) =
4
p

M 0�
�

E(1=� ); � > 1 (VI.11b)


( � ) =
�

p
M 0

2K (� )
; � < 1 (VI.11c)


( � ) =
�

p
M 0�

K (1=� )
; � > 1 (VI.11d)

whereK (� ) andE(� ) are respectively the complete elliptic integral of the �rst and second kind,
de�ned in the Appendix B.1. In particular,
 0 =

p
M 0 and around the separatrix
( J ! Jc) /

Figure VI.3 – Frequency's orbit
( J ).

j ln� 1(jJ � Jcj)j so the convergence towards zero is logarithmically slow, see Figure VI.3.

2.2 Fourier basis of the HMF potential in angle-action variable

Before moving on solving the linear problem we de�ne the Fourier transform according

to the angle variable of the potential basis(cos(q(�; J )) ; sin(q(�; J )))
T F ��! (cm (J ); sm (J )) .

Indeed, the cost of the diagonalization is that the potential will not have a simple form in the
angle Fourier space, in particular it will have component for every angle modem (while in
q� Fourier it had components only onk = � 1). The Fourier coef�cients are de�ned through

cm (k) =
1

2�

Z �

� �
cos(q(�; � ))e� im� (VI.12a)

sm (� ) =
1

2�

Z �

� �
sin(q(�; � ))e� im� : (VI.12b)
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

A convenient result of this thesis was to explicitly compute these coef�cients for everym. So
far only c0 was known and form 6= 0 they had to be computed numerically2. The details
are given in Appendix B.1, we had to use results of S. C. Milne3 [Mil02], where he derives
explicitly a lot of series expansion of Jacobi Elliptic Functions (and associated), in particular
the Fourier expansion ofsn2; sn� cn; sn� dn.

In [BM17b] authors used those explicit expressions to compare simulations to a semi analyt-
ical theory.

3 LANDAU DAMPING AND RESONANCES

3.1 Landau damping

The Landau damping around inhomogeneous states has been studied for generic and HMF
potential by my predecessor4, my advisor J. Barré and Y.Y Yamaguchi in [BOY10, BOY11].
The result of the study showed Landau damping with an algebraic damping for long times

�M c /

(
e�j ! dm jt ; for t � � � 1

e� 2i 
 0 t=t3; for t ! 1 :

Remark VI.1
The spectrum of the inhomogeneous linear operator is modi�ed with respect to the homoge-
neous case. Indeed, one can look at its expression in(q; p) variables Eq. (VI.5) and see that the
"perturbation" added to the advection operator are not compact since they are spanned by an
in�nite-dimensional operator5. So a priori the essential spectrum is modi�ed and it depends on
both the initial distributionf 0(q; p) and the interaction potentialV(q).

In the homogeneous case the spectrum did not depended on the initial distributionf 0(v) and
interaction potentialV(q). The result found by Crawford [Cra95a] on the nonlinear expansion
and by Balmforth et al. [BMT13] on the single wave model also exhibited some universality.
Despite that it might be unrelated, we might expect not to �nd universal coef�cientc3; c5 for the
bifurcation analysis as in the homogeneous case due to this new sensibility of the continuous
spectrum. Moreover, we will not expect a universal reduction as the single wave model.

2. With a great numerical cost around� ' 1.
3. In what seems to be a colossal work, we see that some number theory in the spirit of Ramanujan is used to

�nally serve our physical problem!
4. Alain Olivetti was the previous PhD student of Julien Barré.
5. It depends on a functionf 0(q; p) where previously it was a constant w.r.t. to the position variablef 0(v).
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3. LANDAU DAMPING AND RESONANCES

3.2 Resonances

3.2.a Non oscillating perturbationIm � = 0

Previously the number of resonant particlesR was given by the number of particles with a
velocity around the frequency of the perturbing wave. This is for a non oscillating wavep = 0,

RH =
Z �

� �

Z
f 0(p) dqdp � 4��f 0(v = 0)

for a homogeneous initial distribution regular in velocity. For inhomogeneous case, for non
oscillating perturbation, resonant particles will have a frequency
( J ) < � . For small� , the
frequency around the separatrix is


( J ) � �
�

p
M 0

2 ln(Jc � J )
< �; for J < J c:

So

RNH =
Z


( J )<�

Z
F 0(J ) d� dJ = 2�

 Z

J<J c

( J ) <�

+2
Z

J>J c

( J ) <�

!

F 0(J )dJ

where we supposed thatF 0 is regular inJ = Jc and we have separated the different region of
integration (the two outside the separatrix regions contribute the same). Going to the� variable
gives at leading order in� ,

RNH = 2�

 Z

�< 1

( � ) <�

+2
Z

�> 1

( � ) <�

!

�f 0(� )
dJ
d�

(� )d� / M 0
e� �

p
M 0=�

�
�f 0(� = 1) : (VI.13)

Therefore, there are a lot less particles resonating around the separatrix

RH / � and RNH /
e� �

p
M 0=�

�
� RH ;

thus we expect the resonant phenomena leading to pinching singularities to be a lot weaker.
Moreover, if that resonant trapping of particles in a critical layer was the cause to the impossi-
bility of a �nite-dimensional description of the bifurcation (see Single Wave Model [BMT13]),
maybe here we can achieve some reduction.

3.2.b Oscillating perturbationIm � 6= 0

If we seek the number of resonant particles for oscillating wave we �nd that for both homo-
geneous and inhomogeneous cases

RH / RNH / �;

because the frequency distribution
( J ) is regular in all regionJ 6= Jc.
This contrast leads us to conjecture that there for stable inhomogeneous distribution, the

damping always oscillates because there are no resonances with non oscillating modes. In
other words, if there is an analytic continuation to the dispersion relation�( � 2 R+ ) in for
� < 0 it has no root. An argument that goes with this reasoning is that for� 2 R, �( � )
is continuous (see later Eq. (VI.25) and Eq. (VI.43)) and in�nitely differentiable in� = 0 with
@2n

� � s(0) = @2n+1
� � c(0) = 0 . So, a conjecture could state that since there is no need for analytic

continuation in this case non oscillating damping will never happen.
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4 L INEAR PROBLEM

4.1 Dispersion relation

Since the variable change from(q; p) ! (�; J ) is canonical (in the three regions), the Vlasov
equation in these variables is straightforward

dF
dt

= @tF + f H [F ](J ); F (�; J )g = 0; (VI.14)

where the Poison bracket is written here for the angle-action variable.
Around the stationary solutionF 0(J ) = f 0(q; p) the linear operator is withF = F 0(J ) +

f (�; J ):

@t f = L f + N f (VI.15a)

L f = f f; H [F 0]g + f F 0; � [f ]g (VI.15b)

N f = f f; � [f ]g (VI.15c)

The eigenvalue problem for� =2 iR and	 is

� 	( �; J ) = L 	 = � 
( J )@� 	( �; J ) + @� � [	]( q(�; J ))@J F 0(J ) (VI.16)

going to angle Fourier transform gives

� m (J ) = � im 
( J ) m + im� m [	] @J F 0(J ): (VI.17)

we have

 m (J ) = im
� m [	] @J F 0

� + im 
( J )
;  0 = 0 (VI.18)

where
� m = � M c[	] cm � M s[	] sm : (VI.19)

The dispersion relation is less trivial to obtain than before where eigenvectors had only one non
zero Fourier component (the normalization was enough to deduce�( � )). Here to get a closure
we have to project the eigenvector Eq. (VI.18) alongcosq andsinq

M c[	]
2�

=
� cosq

2�
; 	

�
= � M c[	]

X

m

Z
im jcm j2@J F 0

� + im 
( J )
dJ � M s[	]

X

m

Z
imc�

msm@J F 0

� + im 
( J )
dJ

(VI.20a)

M s[	]
2�

=
�

sinq
2�

; 	
�

= � M c[	]
X

m

Z
ims�

mcm@J F 0

� + im 
( J )
dJ � M s[	]

X

m

Z
im jsm j2@J F 0

� + im 
( J )
dJ

(VI.20b)

were we used for the projection (scalar product) the Parseval theorem that allows to write the
angle integral as a Fourier sum. This last equality can be written in a matrix form as

�( � )
�

M c[	]
M s[	]

�
=

�
� c(� ) 0

0 � s(� )

� �
M c[	]
M s[	]

�
= 0 (VI.21)
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where we have eliminated the diagonal terms due to the symmetries (see Eq. (B.4) and Eq. (B.6))

c2m+1 (� < 1) = 0; (VI.22a)

s2m (� < 1) = 0; (VI.22b)

sm (� > 1; p < 0) = � sm (� > 1; p > 0); (VI.22c)

cm (� > 1; p < 0) = cm (� > 1; p > 0): (VI.22d)

These relations gives for any genericGm (J ) function that has the same de�nition on the two
outer regions (J > J c, p 7 0) a zero contribution when integrated,

Z
Gm (J )cms�

m (J ) dJ =
Z Jc

0
G<

m (J ) s�
mcm| {z }

=0 for m odd and even

(J ) dJ +
Z 1

Jc

G>
m (J )s�

mcm (J ) dJ

�
Z 1

Jc

G>
m (J )s�

mcm (J ) dJ = 0:

(VI.23)

The dispersion function�( � ) is given by the two dispersion relations

det �( � ) = 0 = � c(� )� s(� ) (VI.24)

with

� c(� ) = 1 + 2 �
X

m6=0

Z
im@J F 0(J )
� + im 
( J )

jcm j2(J ) dJ (VI.25a)

� s(� ) = 1 + 2 �
X

m6=0

Z
im@J F 0(J )
� + im 
( J )

jsm j2(J ) dJ: (VI.25b)

If � is a root of� c(� ) or � s(� ) is an eigenvalue of the whole system. Since the system is
diagonal these two type of eigenvalues are associate with different eigenspaces. One can prove
usingm ! � m in Eq. (VI.25), that if� is a complex eigenvalue�( � ) = �( � � ) = 0 . Moreover
if � is a complex eigenvalue�( � ) = �( � � ) = 0 . So as before if the system has a stable
eigenvalue it has automatically an unstable one, meaning that once again relaxation in stable
case will be due to the continuous spectrum (Landau damping).

Remark VI.2
— For generic potential e.g. for full 1D gravityV1D = jqj, the potential basis has an in�nite

number of non zero components. The dispersion matrix can be derived formally the same
way, but in general it is an in�nite matrix with no zero elements. So manipulating it, is
only formal and one cannot explicitly compute the roots� of its determinant. One has to
truncate at some largemM .

— For the homogeneous caseM 0 = 0, even for generic potential, the matrix�( � ) =
diag(� k) is diagonal since there are no spatial modes mixing. Thus, the dispersion rela-
tion can be explicitly computed in this case (since we are interested in the �rst Fourier
mode to go unstablek = 1).

— From Eq. (VI.21), we can �nd back Eq. (V.14) withM 0 ! 0. One can check that� �
p=(2M 0), 
( � ) M 0 ! 0�! v, etc., in particularcm = ( � m;1 + � m; � 1)=2.
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— In the homogeneous case we had an eigenvalue associated with an in�nite-dimensional
eigenspace. Here in Eq. (VI.17) this phenomenon still occurs. Indeed for� = 0 we can
�nd two types of eigenvectors

	 n =

0

@
 0(J )

� m [	 n ]F 0


( J )

1

A and 	 n =
�

 0(J )
0

�
: (VI.26)

It means that for any 0(J ), 	 n is an eigenvector associated with� = 0.

4.2 Self-consistent equation for the magnetization

To �nd a steady state solution a functionf 0(q; p) = F 0(J ) = F 0(H ) = �f 0(k) has to satisfy
the normalization condition and a self-consistent equation for the magnetization

1 =
ZZ

F 0

�
p2

2
� M 0(1 � cosq)

�
dqdp; (VI.27a)

M 0 =
ZZ

F 0

�
p2

2
� M 0(1 � cosq)

�
cosqdqdp: (VI.27b)

In practice, to �nd numericallyM 0 and the normalization, we use the transformationdqdp !
d� dJ and then integration over angle and the change of variableJ ! � giving

1 = 4�M 0

� Z 1

0
+2

Z 1

1

� �
�

�f 0(� )

( � )

�
d�; (VI.27c)

M 0 = 4�M 0

� Z 1

0
+2

Z 1

1

� �
�

�f 0(� )

( � )

c0(� )
�

d�: (VI.27d)

4.3 Eigenvector and eigenvalue

4.3.a Along thesin direction

The problem is spatially invariant, so that ifF (q; p; t) is a solution of the full non homoge-
neous Vlasov equation then so isF (q + q0; p; t). The generator of this spatial translation is@q,
so we expect to always have an eigenvector as

	 s(q; p) = @qf 0(q; p); (VI.28)

associated with an eigenvalue� s = � = 0 which corresponds to the Goldstone mode. Let's
check that assertion. In Eq. (VI.25b), with� = Re � ! 0 we obtain

� s(� = 0) = 1 + 2 �
Z

@J F 0(J )

( J )

X

m6=0

jsm j2(J ) dJ: (VI.29)

The Parseval identity here gives [Oga13],

2�
X

m6=0

s2
m =

Z
sin(q(�; J ))2 d� (VI.30)

where we useds0 = 0.
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Remark VI.3
Here we have replaced� = 0 in all integral at the limit. It might be very dangerous and bring
singularities. In fact, in homogeneous case this limit was obtained with the Plemej formula
because Z

(f 0)0(p)
p

dp (VI.31)

is not integrable in general. Here because the logarithmic divergence induced by the resonating
particles is integrable, the limit is well de�ned and we can replace� by 0.

However, if� is complex, this statement is no longer true since
Z

@J F 0

� i + m
( J )
dJ

is no longer integrable, indeed for everyJ (i )
m 6= Jc root of the denominator, we can expand

� i + m
( J ) = m(J � J (i )
m )
( J (i )

m ) that has the same divergence as Eq. (VI.31).

Using thatH = p2=2 + M 0(1 � cosq) anddH = pdp + M 0 sinqdq (sinceq andp are
independent variabledq=dp = 0) we have

@pf 0(v)
p

=
dF 0

dH
=

@J F 0(J )

( J )

=
@qf 0

M 0 sinq
: (VI.32)

We may write angle-action integral as a space velocity integral (remember the canonic transfor-
mation insured� dJ = d qdp) to have

� s(� s) =1 +
ZZ

1
p

@pf 0 sin2 qdqdp

= 1 +
ZZ

dF 0(H (q; p))
dH

sin2 qdqdp

= 1 +
1

M 0

ZZ
@qf 0 sinqdqdp = 1 �

1
M 0

ZZ
f 0 cosqdqdp

= 1 �
M 0

M 0
= 0

(VI.33)

where we have used the de�nition of the magnetization, integration by part and the different
expressions of the energy derivative.

From Eq. (VI.18) we get the eigenvector associated with the neutral mode� s = 0,

	 s =
X

m6=0

@J F 0


( J )
smeim� =

@J F 0


( J )
sinq = M 0@qf 0(q; p) (VI.34)

which correspond to what was expected from the symmetry of the problem.
Therefore, there is always a neutral mode along	 s, whatever the parameters and the function

f 0. Since it is associated with a translation we don't expect it to play any role in the instability
in the weakly nonlinear regime. However, we cannot exclude that it couples with the instability
for strongly nonlinear regimes (which is not the case studied here). Hence we always suppose
that M s[F ] = 0 (which is supported by numerics) moreover we always choose perturbation
along thecosdirection.
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4.3.b Along thecosdirection

From Eq. (VI.20), we �nd the eigenvector associated with the eigenvalue root of� c(� ),

	 c =
X

m6=0

im@J F 0

� + im 
( J )
cmeim� : (VI.35)

Eigenvectors are de�ned up to a multiplicative non zero constant, here we choose 1, so

M c[	 c] = (cos q;	 c) = � 1 (VI.36)

thanks to the relation dispersion Eq. (VI.25a). The reverse reasoning is possible, set a nor-
malization for the eigenvector and �nd the associated dispersion relation. Moreover, we have
M s[	 c] = 0 = M c[	 s].

4.4 Stability criteria

We introduce as before the parameter� that corresponds to a tunable parameter of the initial
distributionf 0 = f 0

� . For example, one can have

F 0
� (H ) = N � 1

F =[1 + e� (H� � ) ] (Fermi distribution); (VI.37a)

G0
� (H ) = N � 1

G H 2e� � H ; (VI.37b)

NF andNG are the normalization factors. The Eq. (VI.37a) is a Fermi distribution of energy
(looking like a step function), its stiffness is controlled by the� � parameter. It is a decreasing
function of energy. TheG� function Eq. (VI.37b) has an energy minimum inH = 0 and then
reach a maximum forH � = 2=� , thus it a non-monotonic function of energy.

We de�ne � c to be the value for which the system goes unstable i.e.(� c)� (� = 0) = 0 . For
example, for the functionF 0

� (E) we plot, in Figure VI.4, the phase diagram of the Fermi dis-
tribution (�; M 0). The line corresponds to a steady state solution satisfying the self-consistent
equation Eq. (VI.27c). The transition stable/unstable occurs at pointsa = ( � c = 0:669; 0:336)
andl = ( � c = 0:254; 0). In this thesis, we will numerically test the neighborhood of pointa,
where a solution becomes unstable. In principle, we could also test what happens for weakly in-
homogeneous and unstable solution, dashed black line aroundl. We can establish as in [Oga13],
the stability criteria. As mentioned earlier the	 s direction is always neutrally stable. For a
monotonic function of energy S. Ogawa showed that the eigenvalue associated with Eq. (VI.25a)
is always real. In this Section, we focus on non oscillating perturbation� 2 R. However, we
let the initial distribution be monotonic or not. In our numerical tests, we useF 0

� (H ) which is
monotonic andG0

� (H ) which is not Eq. (VI.37). As we motivated earlier in Section VI.3.2 and
remark VI.3, the choice� 2 R has important consequence on the number of resonant particles
and how the limit� ! 0 is computed. By replacing� by zero in Eq. (VI.25a), Ogawa shows
that the system is spectrally stable if and only if

I [F 0] = 1 + 2 �
Z

@J F 0


( J )
(g0(J ) � c0(J )2) dJ � 0 (VI.38)
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4. LINEAR PROBLEM

Figure VI.4 – Phase diagram of the Fermi distributionF 0
� with � = 40. Dotted lines correspond

to unstable stationary solutions and solid lines to stable ones. In the neighborhood of pointa,
a branch of stable inhomogeneousM 0 6= 0 stationary solutions becomes unstable. At pointl , a
branch of stable homogeneous stationary solutions (M 0 = 0, red solid line) becomes unstable;
the unstable homogeneous case was treated in Chapter V.

where we de�ned and computedg0
6 thanks again to [Mil02] and Eq. (B.2b),

g0(� ) =
1

2�

Z
cos2(q(�; J (� ))) d � =

8
>><

>>:

1
3

�
4 (1 � 2� 2) E(� )

K (� )
+ 4� 2 � 1

�
; � < 1

1
3

�
4 (1 � 2� 2) � 2E(1=� )

K (1=� )
+ 8� 4 � 8� 2 + 3

�
; � > 1

(VI.39)
The transition occurs atI [F 0] = 0.

4.5 Adjoint problem

The adjoint linear operator is obtained with respect to the scalar products Eq. (V.19) as,

L y ~	 c = 
( J )@�
~	 c � K y(q(�; J )) (VI.40)

where

K y(q(�; J )) =
Z Z �

@�
~	 c@J F 0

�
(q0; p0)VHMF (q0 � q) dq0dp0: (VI.41a)

K y
m (J ) = � M c[@�

~	 c@J F 0]cm (J ) � M s[@�
~	 c@J F 0]sm (J ): (VI.41b)

6. Thanks to the Parseval theorem, we were able to explicit compute aq� elliptic series
X

n> 0

n2csch2
�

n�
K (k0)
K (k)

�
=

8K (k)2

3 (2� 2)2

� �
k2 � 1

�
K (k)2 � 2

�
k2 � 2

�
K (k)E (k) � 3E(k)2

�
. It was un-

known (and surely not sought too) to my knowledge.
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The adjoint eigenvector of	 c is thus:

~	 c(�; J ) = �
1

(� 0(� ))?

X

m

cm (J )
� ? � im 
( J )

eim� (VI.42)

where we have set the normalization such that( ~	 c; 	 c) = 1 . So once again we �nd a re-
lation between this scalar product and the derivative of the dispersion relation. Keeping the
M c[@�

~	 c@J F 0] term would have led self consistently to a dispersion relation. Let's compute
� 0

c(� ) to check our normalizations choice. On one hand, we have

� 0
c(� ) = � 2�

X

m6=0

Z
im@J F 0(J )

(� + im 
( J ))2
jcm j2(J ) dJ

= � 8��
X

m> 0

Z
m2
( J )@J F 0(J )
(� 2 + ( m
( J ))2)2

jcm j2(J ) dJ
(VI.43)

on the other hand

( ~	 c; 	 c) = �
1

� 0
c(� )

X

m6=0

Z
im(f 0)0(J )

(� + im 
( J ))2
jcm j2(J ) dJ = 1: (VI.44)

For monotonic function of energy@J F 0(J ) � 0, it is clear that� 0
c(� 2 R) � 0.

Remark VI.4
We notice that because of the spatial mode mixing (m positive and negative)� c(� ) / � ! 0
with � ! 0. In fact, it is expected because the two roots�; � � merge in 0, and�( � ) is
differentiable in 0. However, that was not the case for the homogeneous case, where� 0(0+ )
was a non zero constant and�( � ) was in general not continuous in 0 (because of the singular
behavior of1=p).

In [BMY16], we give a proof that this normalization factor diverges as1=� for generic a
potential.

5 NONLINEAR EXPANSION

Now that the linear theory is clear we move on to what happens to a perturbation when
unstable. The basic idea is the same that for homogeneous case, decomposing the solution
along unstable vector and the unstable manifold. But as we will see due to symmetries the
computation will be in fact easier.

Regarding the symmetries of the problem theO(2) (rotation/re�exion) symmetry is broken,
so for a real eigenvalue the associated unstable manifold will be of dimension one (instead of
two for the homogeneous case).

We decompose thef function on the unstable direction	 c associated to the eigenvalue� > 0
and its orthogonal direction.

f (�; J; t ) = A(t)	 c(�; J ) + S(�; J; t ) (VI.45)

with A = ( ~	 c; f ) and( ~	 c; S) = 0 . S is assumed to be at least of orderA2 because it is associ-
ated with the nonlinear part. The order parameterA is related to the magnetization perturbation
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�M = M (t) � M 0, indeed by de�nition

( ~	 c; f ) = A+O
�
A2

�
and �M = M � M 0 = (cos q; f ) = A (cosq;	 c)| {z }

= � 1

+O
�
A2

�
(VI.46)

soA / �M for smallA (which is the weakly nonlinear regime we study).
Applying the projection( ~ ; : ) on Vlasov equation Eq. (VI.15), we get

_A = �A + ( ~	 c; N f ) = A %(�; A ) (VI.47)

So, the goal is now to get the �rst order inA of %(A; � ). While for homogeneous case the
SO(2)-symmetry insuredA ! � A ) c2 = 0, here we have to considerc2 6= 0. This yield

_A = �A +
�

~	 c; N
�
A	 + O

�
A2

�� �

= �A + c2A2 + A3c3 + O
�
A4

�
:

(VI.48)

From Eq. (VI.15c),
N f = A2f 	 c; � [	 c]g + O

�
A3

�
: (VI.49)

In the homogeneous case, this term was zero, so we had to jump to the cubic order and construct
the unstable manifoldH . Here the quadratic order is directly given by the eigenvector.

Let's de�ne c2 the coef�cient associated with the quadratic term inA,

c2(� ) =
�

~	 c; f 	 c; � [	 c]g
�

=
X

m

Z
( ~	 c)?

m f 	 c; � [	 c]gm dJ

=
� 2�
� 0

c(� )

Z X

m;n 2 Z

c�
m+ n ' m;n (J )

� + i (m + n)

dJ

(VI.50)

where we have re-indexed the sum to have

' m;n (J ) = m
�
n

@
@J

�
@J F 0cm

� + im 


�
cn � m

@J F 0cm

� + im 

c0

n

�
: (VI.51)

The �rst thing we want to extract fromc2 is its limit when� ! 0. Once again thanks to the
logarithmic divergence of the frequency
( J ), we can safely replace denominator of the form
� + im 
( J ) by im 
( J ) whenm 6= 0. It leaves us with

— the normalization factor1=� 0
c(� ) / 1=� ,

— m = 0 terms are canceled since' 0;n = 0,
— m = � n terms bring a supplementary divergence at �rst sight, but a careful calculation

shows that it is not the case. Indeed forn = � m, we have in theJ integral

c�
0

�

X

m

' m; � m (J ) = �
c�

0

�
@J

 

@J F 0

 
X

m

m2c2
m

� + im 


!!

= � 2c�
0@J

 

@J F 0

 
X

m> 0

m2c2
m

� 2 + ( m
) 2

!!

� ! 0! � 2c�
0@J

 
@J F 0


 2

X

m> 0

c2
m

!

= c�
0@J

�
@J F 0(J )

 2(J )

(c2
0 � g0)(J )

�

(VI.52)

where have exchanged sum and derivative thanks to the regularity of thecm function.
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Thus, the total divergence is exclusively given by the normalization factor and

c2(� ) / 1=�:

An exact estimation of thec2 coef�cient in particular its sign is probably out of reach but as we
will see now it does not matter. Hence the result yields

_A = �A + c2A2 + O
�
A3

�
with c2 /

1
�

: (VI.53)

which is a transcritical bifurcation whatever the sign ofc2. This behavior is illustrated and
compared with the homogeneous supercritical transition on Figure VI.1. If means for example
that if c2 > 0, we will have a subcritical (resp. supercritical) bifurcation forA(0) > 0 (resp.
A(0) < 0). In the supercritical caseAsat / � 2 which is the trapping scaling. The numerics
(discussed later) Figure VI.5 con�rm perfectly this result. Here this origin of this scaling is
very different from the homogeneous case since it comes from the normalization factor and not
from pinching singularities (associate with resonances). It could be a sign that no Single Wave
reduction is possible here.

Remark VI.5
— The symmetry of the inhomogeneous system holds for generic potential hence the bifur-

cation equation is always transcritical

_A = �A + c2A2 + O
�
A3

�
:

Similarly, even for a generic interaction potential, the divergence of the coef�cientc2 /
1=� will only come from the normalization factor. Other terms are regular if we assume
the frequency
 = d H=dJ associated with the generic potential either to not vanish at
�nite J or does so only logarithmically. This includes the cases where the stationary
potential� [f 0](q) has a single minimum and is in�nite forjqj in�nite (such as for 1D
gravity), and the generic situation with periodic boundary conditions; indeed, in the latter
situation, local minima of the stationary potential give rise to separatrices, on which the
action is constant. At these speci�c values of the action
 vanishes, but generically it
does so only logarithmically These arguments make this result very generic.

— Because� 0
c(� ) / � , we havej� � � cj / � 2 / Asat. In homogeneous case since

� 0(0) 6= 0 we hadj� � � cj2 / � 2 / Asat.

6 HIGHER ORDER TERMS

As before to validate or not the dimensional reduction it is essential to estimate the diver-
gence of higher order terms. The detailed computation does not bring any particular insight so
we will present it only in Appendix B.2. This time we cannot escape the computation of the
�rst order of the unstable manifoldH (A) 2 W u. We �nd for the higher order terms

c3 /
1
� 3

(VI.54)

which means that at saturationAsat / � 2, quadratic and cubic terms are of the same order. It
means that some mechanism occurs at the saturation level, this mechanism could be similar or
not to the trapping of the SWM.
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Note that numerics tends to con�rm the failure of this one dimensional reduction since we
can see oscillation on inset of Figure VI.1(b). Is this failure related to the nature of the unstable
manifold expansion where even for a two dimensional model (Section IV.1) it fails when for-
getting the neutral modes? In this case a two (or larger) dimensional reduction could works. Or
does it mean as it seems to be the case in the homogeneous model that no �nite-dimensional
reduction is possible?

Remark VI.6
As stated before, remark V.5, in �nite-dimensional systems with two eigenvalues�; � � it is
natural to obtain a singular behavior near the criticality if one forget about the� � mode. In the
homogeneous case, we have safely forgotten this mode since the criticality is of dimension 1
with (� (H ))0(O+ ) 6= 0. Here we have seen that� 0(0) = 0 . Hence in principle here we should
be able to derive a non singular two dimensional reduction of the bifurcation. In Section VI.9
we will pursue further this discussion...

7 NUMERICS

Our analytical description of the bifurcation can be accurately tested in the HMF case. The
time-evolved distribution function is obtained via a GPU parallel implementation of a semi-
Lagrangian scheme for the Vlasov HMF equation with periodic boundary conditions [RF13]. I
gratefully acknowledge Tarcisio Rocha Filho who provided the code in its original structure (I
just did some modi�cations in order to choose the initial conditions and to be able to do videos
of the density evolution). We use a2n � 2n grid in position momentum phase space truncated
at jpj = 2 with n up to12; the time step is usually10� 2. We use the two families of reference
stationary Eq. (VI.37). For both families, a real positive eigenvalue appears at a critical value of
� : for F 0

� , this is at pointa, see Figure VI.4. The initial perturbation is

�T (q; p) = � cos(q) exp(� � T p2=2): (VI.55)

Note that this is not proportional to the unstable eigenvector	 c: this allows us to test the robust-
ness of our unstable manifold analysis with respect to the initial condition. For all simulation
results presented in Figure VI.5, the size of the perturbation� was chosen small enough such
that the saturated solution reached for� > 0 does not depend on� . On the other hand, the
smaller� , the more accurate computations are required to avoid numerical errors. In particular,
we have observed that numerical errors may drive the system far away from the reference sta-
tionary solution, following a dynamics similar to the one with� < 0. In such cases, we have
used a �ner phase space grid: GPU computational power was crucial to reach very �ne grids.
For example the initial Fermi distributionF 0

� was very sensitive to numerical errors and to� :
we took� = 1:8 � 10� 6 with a 4096� 4096grid; for G0

� distribution, which is much smoother,
� = 10� 5 and a1024� 1024grid was enough (except for the point corresponding to� = 0:032
where more precision was needed, and we took� = 3 � 10� 6).

Typical evolutions for the order parameterM (t) are shown in Figure VI.5 (insets), for
positive and negative� . The asymmetry is clear: for one perturbation the change in�M =
M (t) � M 0 remains small, for the other it isO (1). In the case where�M remains small, we
compute its saturated value by averaging the small oscillations; the result is plotted as a function
of � on Figure VI.5: the�M / � 2 behavior is clear, for both families. The fact that numer-
ical simulations are able to reach this stationary state suggests that it is a genuine stationary
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state, indeed stable with respect to the whole dynamics, and not only on the unstable manifold.
However, longer simulations, or with smaller grid sizes (not shown), indicate it is also easily
destabilized by numerical noise. We conclude that theO

�
� 2

�
state is thus probably close to

the instability threshold. Notice that for the initial unstable reference statej� � (0)j = O
�
� 2

�

is very small; hence the very close nearby stationary state with�M / � 2 may have a different
stability, although (in)stability of non homogeneous stationary states is rather robust comparing
with the homogeneous case (see [BY15] for a discussion).

The precise computations of all the parameters and functions�; M 0; �; c(J ); 
( J ); ::: were
carefully done via the software Mathematica [Inc].

To better illustrate the phase space dynamics off (q; p) in time, one can check online simula-
tions on my personal website7. The colors represent the density of particles (blue: no particles;
red a lot of particles). The video "Fermi_eps_+.mp4" shows the time evolution of the distribu-
tion function in phase space with initial conditionF 0

� (H (q; p)) + �T (q; p), for � = +1 :8 � 10� 6,
� = � T = 40, (M 0 = 0:328; � = 0:658)(it corresponds to the dashed blue curve in the upper
inset of Figure VI.5) fromt = 0 to t = 600. For theG0

� initial distribution the perturbation
is similar, the critical parameters are(M 0 = 0:243; � = 9:59). Since the system reaches a
new stationary state close to the original one, we observe almost no change in the distribution
function. It is important to notice however that this picture is very different from that of the
saturation of an instability over a homogeneous background: in that case, resonances would
create small "cat's eyes" structures, which do not appear here. To better appreciate the dynam-
ics in this case, we also provide the video "Fermi_eps_+_diff.mp4", which is the same as the
previous one, except that the reference stateF 0

� has been subtracted; hence the evolution of the
perturbation is more clearly shown.

The video "Fermi_eps_-.mp4" shows the time evolution of the distribution function with
the same parameter values except that� = � 1:8 � 10� 6 (it corresponds to the green curve in
the upper inset of Figure VI.5). This time the distribution changes completely its shape and
seems to approach a periodic solution, far away from the original stationary distribution. In
all simulations, the relative error between the total energy of the system at a given time and
the total initial energy is at most of the order of10� 7. The video "Torr_G_eps_-.mp4" is also
provided corresponding to simulation with theG0

� function with� = � 10� 5 (magenta curve in
the lower inset of Figure VI.5.

Testing the predicted scalingA1 / � 2, requires computing� with a good accuracy. To
compute the eigenvalue� for each(M; � ) associated with an initial distributionF 0(H ), one
has to �nd a positive root of the dispersion function Eq. (VI.25a). The two main numerical
obstacles are to compute ef�ciently the functionscm (J ), and the in�nite sum in m. The �rst
obstacle is suppressed by our explicit expression Eq. (B.4). It follows from their expression that
the convergence ofcm (J ) toward 0 withm is very fast except forJ = Jc where it has a �nite
value (which will not contribute once integrated). Then we can choose a good truncation for the
sum and estimate the precision over� .

7. http://math.unice.fr/~metivier/video.html
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Figure VI.5 –h�M i (� ) for distributionsF 0
� Eq. (VI.37a) (circles) andG0

� Eq. (VI.37b) (crosses)
with associated quadratic �t;� = � T = 40. For each function we show two runs ofM c(t) =
M (t) (hereM s(t) = 0 ) with positive and negative� . h�M i in the main diagram is computed as
a long time average for� > 0. ForF 0

� , j� j = 1:8� 10� 6; for G0
� , j� j = 10� 5, except for� = 0:032

wherej� j = 3 � 10� 6. Note that the reference stationary statesF 0
� follow the curve from point

a towards pointl on Figure VI.4. Along this curve,� starts from0 at pointa, then grows and
reaches an upper limit, about0:15, before decreasing and reaching0 again at pointl . This is
why two values of� may correspond to the same value of� (but different values ofh�M i ), as
can be seen around� = 0:15.
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8 POSSIBLE APPLICATIONS

As detailed in [BMT13], the instability pattern around homogeneous state is shared in many
Hamiltonian systems, with applications from plasmas to �uids. Here we have seen that the sat-
uration process seems really different possibly preventing a single-wave-model like description
of the instability. So, a natural question is to what correspond that new type of bifurcation?
There are probably examples in plasmas physics but so far we didn't found them.

In the astrophysics community, however, we found what seems to be a striking example of
this asymmetric bifurcation.

8.1 Radial orbit instability: two possible end states

In [PPA90, Pal94] authors study the nonlinear evolution of the Radial Orbit Instability [BT11].
They start from a weakly unstable spherical state

— Close to this reference state, they �nd an axisymmetric weakly oblate stationary state
— At �nite distance from the reference state (outside the perturbative regime), they �nd a

stable prolate stationary state.
This �nding is studied in Section 11.1.1 of [Pal94]. Palmer starts from a weakly unstable 3D
spherical equilibrium and perturbs its self-consistent potential

� = � 0(r ) + �&(r )P2 (cos#) (VI.56)

whereP2 is a Legendre polynomial,&(r ) some function with a constant sign,# the standard
spherical polar angle and� = �M (0) is the initial amplitude of the order parameter�M of the
perturbation. He deduces that if

— � > 0 the perturbed system is prolate (rugby/American football ball shape),
— � < 0 the perturbed system is oblate (discus/�ying saucer).

Then after a 3D static treatment (with some approximation and hypothesis), Palmer ends up
in the perturbative regime with a self-consistent equation8 that has to be satis�ed by the order
parameter and the instability parameter� � � c � 0

A3�M 2
1 � 2�M 1 A2 � (� � � c) = 0 ; (VI.57)

whereA3 > 0, A2 > 0 and� � � c > 0 is small. Solutions of this equation are

(�M 1 )� =
A2 �

p
A2

2 + A3(� � � c)
A3

� �
� � � c

A2
= � O (� � � c) < 0 (VI.58a)

(�M 1 )+ =

p
A2

2 + A3(� � � c) + A2

A3
�

2A2

A3
= O (1) > 0: (VI.58b)

It means that if the initial perturbation� < 0 there is an oblate stationary solution close by of
orderO ((� � � c)) (which is the same scaling than for our 1D case). If� > 0, the solution
leaves the perturbative regime with a bar-like shape. It is fully consistent with the asymmetric
behavior we predict on the unstable manifold. That is one great motivation for application!
Indeed, such dynamical theory could be very useful to study galactic formation where bar-like
structure could have been formed from spherical structure that went unstable.

8. We rewrite the equation replacing hisA1 parameter by(� � � c) so that the system is unstable for� > � c.
Also, hisA2 < 0 is replaced by� A2 < 0.
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Remark VI.7
An open question regards the stability of the new weakly oblate stationary state: in our numer-
ical examples, it seems stable, but very close to threshold. In [PPA90] they claim it is unstable,
but since their numerical simulations are much less precise, this could be a numerical artifact.

8.2 Super Massive Black Hole

With this result in mind we were very excited to hear at the ICTP conference on long-range9,
astrophysicist talks.

Amongst other we hear Jihad Touma talking about galactic models of stars orbiting around
a super massive black hole (SMBH), which is today the standard picture for galaxy structure.
For example following elliptic orbit of stars have allowed [SOG+ 02, GSW+ 08] to deduced the
position and mass of the SMBH of the Milky-way. In [ST16], Sridhar and Touma derive a
reduced model from this complete system ending up with a Vlasov equation in 3D (or 2D or 1D
depending on the symmetry assumption) angle-action variables. Once again, we think that our
treatment can be applied without much changes10. Of course, stability result on such realistic
model would be very important for galactic formation. We contacted J. Touma successfully and
started to look at the model. However, since I have started my thesis manuscript, I cannot help
much my advisor and Y.Y. Yamaguchi on this problem.

9 TOWARDS AN EXACT DIMENSIONAL REDUCTION ?

9.1 Did we miss something?

This Section relates some later �ndings (June 2017 and after) that could lead to an exact
dimensional reduction of the bifurcation problem around steady states of the non homogeneous
Vlasov equation. In Remark V.5 we noted that due to the strong resonances of the homogeneous
case we had� 0(0 � i� i ) 6= 0 at criticality � = � c. It implied that the "positive" and "negative"
eigenvalues11 did not join on the real axis (they are on different Riemann sheets), hence a2� 2
description of the bifurcation with a center manifold technique was not possible [CH89] and we
had to use only a 2 dimensional unstable manifold leading to a singular expansion.

In the non homogeneous case with a real eigenvalue we followed the same unstable mani-
fold path describing the bifurcation with a one-dimensional unstable manifold (due to the lack
of rotational symmetry). This approach though qualitatively correct (predicting the transcritical
bifurcation observed in simulations with the correct trapping scaling) was plagued by singular-
ities at every order. Moreover, its one-dimensional form could not account (which was also the
case for the homogeneous Vlasov case) for the "trapping oscillations" observed numerically.

Now, what if we could describe this bifurcation with a �nite-dimensional center manifold,
as one should in a �nite-dimension analog of this problem? Here we indeed have� 0(0) = 0 ,
so that at criticality� � c = 0 the eigenvalues�; � � do collide. It only happens because this

9. ICTP conference program in Trieste on long-range interaction, July 2016.
10. That assertion is optimistic.
11. Either for four complex eigenvalues�; � � ; � �; � � � with each an associated dimension of one, or two real

eigenvalues�; � � with an associated dimension of two each (thanks to rotational symmetry).
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time there is no need for analytic continuation of the dispersion relation; physically because of
weaker resonances between particles at the separatrix and the perturbing wave. Furthermore,
here in addition to these two eigenvalues we might expect another 0 eigenvalue associated with
the stationary states. Now how to treat this center manifold problem12?

9.2 The Triple Zero bifurcation

In the following analysis, we are going to leave aside implicitly the continuous spectrum
(assuming that in some functional space it can be moved away from the imaginary axis) and
the neutral mode� s = 0 associated with thesin direction that we do not perturb. Hence, we
will consider the two colliding eigenvalues�; � � associated with thecosdirection plus a 0
eigenvalue (that is needed for the center to be feasible)13.

From here we leave the indexc of 	 c. Having a triple zero eigenvalue at� = � c means for a
3-dimensional problem that there is a Jordan block representation of the linear problem as

L J =

0

@
0 1 0
0 0 1
0 0 0

1

A : (VI.59)

This type of triple zero problem produces the so call Triple Zero (TZ) bifurcation [GFRL+ 99,
FGRLA02]. Here the dimension is in�nite but we can still use these ideas. The eigenvalue
problem is “unusual” since there is only one eigenvector for three eigenvalues. To form a basis
at criticality � = � � � c = 0, we have to use the notion of generalized eigenvectors (with not
the same sense that for van Kampen generalized eigenvectors of Section V.2.2)

L 0  (0) = 0 ; L 0  (1) =  (0) ; L 0  (2) =  (1) ; (VI.60)

where (1) and (2) are called generalized eigenvectors while (0) is a usual eigenvector asso-
ciated with� = 0.

The corresponding projections are given by the adjoint (generalized) eigenvectors, deter-
mined by

L y
0

~ (0) = 0 ; L y
0

~ (1) = ~ (0) ; L y
0

~ (2) = ~ (1) : (VI.61)

This yields (the �rst line is them = 0 Fourier coef�cient, the second line is for allm 6= 0):

 (0) =

 
0

�
F 0

0cm




!

 (1) =

 
0

F 0
0cm

im 
 2

!

 (2) =

0

B
@

� 00(0)
4�

R
c2

0
c0(J )

F 0
0cm

m2
 3

1

C
A : (VI.62)

The associated magnetizations are:

M [ (0) ] = 1 ; M [ (1) ] = 0 ; M [ (2) ] = 0:

There is some freedom in the choice of (2)
m=0 . It is chosen here so thatM [ (2) ] = 0; this �xes

only the scalar product withc0; in addition, it is chosen here proportional toc0. Note that there
is another in�nite family of eigenvectors with0 eigenvalues

 =
�

u(J )
0

�
;

12. In fact we had this idea at the early stage of the problem but somehow, we got lost and did not pursue further.
13. This is a modi�cation with respect to what was presented at the Ph.D. defense where we had not noticed the

inconsistency.

Université Côte d'Azur 132



9. TOWARDS AN EXACT DIMENSIONAL REDUCTION?

however, they are not associated with a Jordan block.
The generalized eigenprojections are

~ (0) =

0

@
2

� 00(0)
c0

0

1

A ~ (1) =

0

@
0

�
2

� 00(0)
cm

im 


1

A ~ (2) =

0

B
B
@

�
� (4) (0)
6� 002(0)

c0

2
� 00(0)

cm

m2
 2

1

C
C
A(VI.63)

Note that� 00(0) 6= 0 and� (4) (0) 6= 0. These vectors satisfy

h~ (i ) ;  (j ) i = � 2� i;j :

These last relations �x the prefactors in front of the eigenprojections, involving the derivatives
of � ; the prefactors are �nite. There is some freedom in the choice of~ (2)

m=0 ; it is chosen here
proportional toc0. Note that it is not possible to obtain such a structure with only one or two
vectors neither with more than three vectors. On the subspacespan( (0) ;  (1) ;  (2) ), the critical
linearized operatorL 0 is indeed a 3D Jordan block, with a0 diagonal.

We write f as a point on a 3D manifold tangent tospan( (0) ;  (1) ;  (2) ) at the origin. It
should be possible to construct locally such an invariant manifold:

f = A0 (0) + A1 (1) + A2 (2) + H [A0; A1; A2]:

At leading order (quadratic), we do not need to computeH . The dynamical equation for the
perturbationf is

@t f = L 0 f + �� L f + B (f; f ):

At quadratic order, there are a priori 27 terms to compute, theh~ (i ) ; B ( (j ) ;  (k))i , for any
i; j; k . The bilinear formB reads

B (g; h)m = M [h]
X

l6=0

il (glc0
m� l � g0

m� lcl ):

Hence the only non zero terms at quadratic order are

B ( (i ) ;  (0) ) ; i = 0; 1; 2:

Then many projections vanish because of symmetries. Finally, only 4 terms remain:

h~ (0) ; B ( (1) ;  (0) )i ; h~ (1) ; B ( (0) ;  (0) )i ; h~ (1) ; B ( (2) ;  (0) )i ; h~ (2) ; B ( (1) ;  (0) )i :

Close to criticality, we need to compute the contributions of�� L . We have (emphasizing
that all terms have leading order� ):

�� L g = � �� 
 @� g � M [g]��F 0
0@� cosq

We have a priori 9 terms to compute, theh~ (i ) ; �� L  (j ) i . The non zero ones are

h~ (1) ; �� L  (0) i ; h~ (2) ; �� L  (1) i ; h~ (1) ; �� L  (2) i :

The �nal reduced system is

_A0 = A1 + �bA 1 + � 01A0A1 (VI.64a)
_A1 =(1 + �c )A2 + �aA 0 + � 00A2

0 + � 02A0A2 (VI.64b)
_A2 = 
 01A0A1; (VI.64c)

where the coef�cients have to be computed numerically. It can be simpli�ed a bit further by
changes of variables. However, such a 3D dynamical system is not straightforward to analyze.
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9.2.a Quick analysis of the reduced equations

At linear order, _A2 = 0, soA2 is conserved at this order. Notice that (2) has a non vanishing
zero mode; hence it modi�es the Casimirs ofF� at linear order. It is thus normal that an initial
condition withA2 6= 0 cannot be dynamically connected to the reference stateA0 = A1 = A2 =
0. It is also a hint that there may be a nonlinear generalization of this conserved quantityA2

which would be the trace of the Casimir conservation. Let us tryG(A0; A1; A2) = A2 + g(A0),
with g(A0) = O

�
A2

0

�
. Taylor expandingg, computing order by order, and resumming the

series, one obtains the conserved quantity

G(A0; A2) = A2 �

 01

� 01
A0 +


 01(1 + �b)
� 2

01
ln

�
1 +

� 01

1 + �b
A0

�
: (VI.65)

Since the dynamics is at best accurate at quadratic order, this exactly conserved quantity should
be considered with care: it is probably relevant at quadratic order only. As a �rst consequence,
the dynamics is two-dimensional, and this is the reason why we do not observe chaotic trajec-
tories. We are interested in initial conditions very close to the weakly unstable stationary state,
actually in�nitely close: henceA i (t = 0) can be thought of as very small. Hence the value of
the conserved quantity is essentially0. The reduced dynamics, truncated at orderA2

0 (dropping
terms such asAk

0, k > 2, and�A 2
0) becomes

_A0 = (1 + �b)A1 + � 01A0A1

_A1 = G(� )(1 + � 02A0) + �aA 0 +
�

� 00 �
1
2


 01

�
A2

0

Where we used thatG is constant in time and very small such thatG(� ) = O ( A2(0)) =
O (� ) � � with G(� ! 0) = 0. This last system is similar (up to some variable change) to the
Bogdanov-Takens normal form [Tak74, Bog75, HK91, Kuz04, Kuz05]. This dynamical system
has two �xed points for� ! 0: the reference one(0; 0) and a new one(� �a=(� 00 � 
 01=2));
the new one is at distanceO (� ) of the �rst one, that isO

�
� 2

�
. There is a homoclinic orbit at

(0; 0), which encircles the new �xed point; this homoclinic orbit is a separatrix: any orbit inside
it is bounded, and oscillates around the new �xed point; any orbit outside eventually escapes
to in�nity. The "angular volume" occupied by the bounded orbits around(0; 0) is small (of
order� ), because the stable and unstable manifolds at(0; 0) are close one to another. Hence one
has to choose well the perturbation to observe a bounded dynamics. Nevertheless, any initial
condition withA1(t = 0) = 0 and a well chosen sign forA0 is in this "bounded region". All
this is strikingly consistent with the HMF numerical simulations, and suggest further possible
tests, since the coef�cients are computable.

9.2.b Numerical comparaison between reduced system and full Vlasov dynamics

Our quick analysis already showed that the TZ reduced system predicts a transcritical behav-
ior as the one observed in Vlasov simulations (see Section VI.7). Moreover the saturation scal-
ing O

�
� 2

�
predicted is also the one seen in these simulations. Nevertheless these two features

were already predicted with the unstable manifold approach despite its singularities. Hence can
the TZ model predic more than that? Like the oscillations around the saturated level? Or can
we compare TZ model quantitatively with simulations?

In order to answer these questions, we compute all the coef�cients�a; �b; �c at the initial
condition (M 0; � ) and the nonlinear coef�cients at criticality((M 0)� c ; � c), � 01; � 00; � 02; 
 01.
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Moreover we need the initial conditionsA1(0); A2(0); A3(0) to be the same in simulations and
TZ model. The perturbation is given by Eq. (VI.55) however we change the normalization so
that A0(0) = � . By symmetryA1(0) = 0 , but due to numerical grid errorA1(0) could be
nonzero (but very small).A2(0) has to be computed with its full de�nition. The criticality
around where the center manifold is computed, corresponds for the Fermi distribution VI.37a
to the pointa on Figure VI.4. Taking� = � � � c 6= 0 corresponds to move on the dashed line;
perturbation� of this initial state are perturbation away form this dashed line.

(a) � = 10 � 4 and� = 10 � 5 (b) � = � 10� 5

Figure VI.6 – Comparison of the TZ dynamics Eq. (VI.64) versus the full Vlasov-HMF dy-
namics. We plot the time evolution of the magnetizationM (t) � M 0 for a perturbed un-
stable non homogeneous states of the Fermi distribution Eq. (VI.37a) with� = 40 and
(M 0 = 0:3360; � = 0:6691) (which correspond to� = 8:62 � 10� 3). The criticality is
((M 0)� c = 0:3361; � c = 0:6693). We test different perturbations� with � T = 10. The pa-
rameter are (up to three signi�cant digits)�a = 7:44� 10� 5; �b = � 3:12� 10� 4; �c = �b; � 01 =
0:380; � 00 = � 0:181; � 02 = 0:572; 
 01 = � 0:602. In the simulations the grid is4096� 4096
andpmax = 3.

On Figure VI.6 we show the comparison of the TZ dynamics versus the full Vlasov-HMF
simulations by plottingM (t) � M 0. On Figure VI.6(a) we show the effect of two different
� on the amplitude and frequency of oscillations. The quantitative agreement between the full
simulations and the TZ model is very good: for both� = 10� 4 and10� 5 the predicted amplitude
match with a error around 10%. Moreover the frequency of oscillations also agrees very well.
However we can see on the full dynamics than a small damping occurs while the TZ model con-
serves the amplitude of orbits (in fact there is no dissipative term in TZ model). This damping
could be a manifestation of the weak resonances producing small Landau damping. On Figure
VI.6(b) we show that for� positive or negative we indeed have a transcritical behavior. The
O (1) curve predicted by TZ matches the simulations up to a time� 1=� , after it undergoes a
cycling dynamics but does not match the simulations anymore. It is normal considering that
the perturbative approach is no longer valid, nevertheless higher order terms might improve the
agreement.
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9.2.c Questions and puzzles

— Can we make further qualitative/quantitative predictions based on the 3D reduced dy-
namics? Many complicated things happen close to a triple zero bifurcation; here, varying
� , we more or less follow a 1D curve in the 3D parameter space close to the bifurcation.

— What happens for a general potential? Computations not shown here show that up to
some details the generic reduced system is identical to Eq. (VI.64).

— Pushing the computations to order 3 is likely to produce divergences because of the
separatrix. It is not clear how to handle these divergences. Note that models other than
HMF may not have any separatrix, and then should not show this type of singularities.

— The "Crawford singularities" have apparently disappeared at order 2, and this is physi-
cally not unreasonable, since the resonance with zero velocity particles is now very weak.
Does it mean that there is hope for a mathematical conjecture?

— Because of the weak resonances should we couple this TZ system with a kind of single
wave model to account for the small Landau damping? Or does it completely disappear
in the limit �; � ! 0 where the center manifold is mathematically de�ned?

— For a generic degenerate Hamiltonian system (with respect to the Poisson brackets) there
are Casimir invariant [MH13, HM13], they are associated with a 0 eigenvalue. In general
close to a bifurcation without resonances we expect the two eigenvalue�; � � to collide
in 0. Thus, is the TZ normal form generic for degenerate Hamiltonian systems (without
resonances)?
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CHAPTER VII

VLASOV-FOKKER -PLANCK SYSTEM

Vlasov equation does not possess any mechanism driving the dynamics towards thermal
equilibrium, as it neglects collisional effects as well as noise and friction. While the collision-
less dynamics can be (and for a given timescale) a very good approximation of the real evolu-
tion, small dissipative mechanisms are usually present and slowly drive the system to statistical
equilibrium. For plasmas [LLP81] and self-gravitating systems [BT11], discreteness -usually
called "collisional"- effects provide this relaxation mechanism; for cold atoms in a magneto-
optical trap, there is a rather strong friction and velocity diffusion (see Part One). How do
dissipative effects act on the dynamics? How are the are two iconic collisionless effects of the
Vlasov equation, namely Landau damping and trapping scaling, modi�ed?

In this Chapter, we add to the Vlasov equation a linear Fokker-Planck operator accounting
for a friction/diffusion1 in the system. It forces the equilibrium distribution to be Gaussian
in velocity. The �rst question that arose from our theoretical physicist mind when we started
the experimental collaboration (Part One) was "Can we observe Landau damping in a very
large Magneto-Optical-Trap?". Since the Vlasov-Fokker-Planck (VFP) equation describes the
VLMOT behavior (according to the standard description), it is natural to wonder how Lan-
dau damping survives with friction and diffusion. Moreover, the detuning controls the friction
and we should then be able to explore different regimes. However, quick estimations of the
friction terms showed us that the system was overdamped leaving a thin hope to observe any
Landau damping. Nevertheless, the theoretical questions remains, how Landau damping be-
haves in presence of friction and diffusion? As we will see the spectrum of the linear operator is
strongly modi�ed since the continuous spectrum completely disappear [SS02]. Hence we can
also wonder how these modi�cations affect the bifurcation toward instability. Can we construct
the unstable manifold for VFP? Do singularities arise? We know that in standard dissipative
systems the saturation of the order parameter follows the "Hopf scaling"Asat /

p
� , do we

recover this regime for large friction? Standard bifurcation methods should work (e.g. center
manifold, multiple time scale analysis) for a �nite dissipation level, however we know they fail

1. That we will often simply denote by friction alone.
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Figure VII.1 – Schematic representation of the main nonlinear results. On the horizontal axis:
the linear instability rate� ; on the vertical axis: the saturation amplitude (ie the amplitude
reached by the perturbation over timescales of order1=� ). The dissipation coef�cient
 is
�xed. This picture assumes that both
 and� are small. For� � 
 1=3, the trapping scaling
Asat / � 2, characteristic of Vlasov regime, appears. For� � 
 4=3, the normal dissipative
scalingAsat / � 1=2 is recovered. In between we predict a plateau with saturation amplitude
Asat / 
 2=3.

at zero dissipation (Vlasov limit), hence using the unstable manifold technique we should be
able to observe this "breakdown" when diminishing the dissipation.

In the linear analysis, Section VII.2, we show following [SS02] that the spectrum of the linear
operator is drastically modi�ed in presence of friction since the continuous spectrum is removed
and the resonances of the dispersion relation become true eigenvalues. Hence in the small fric-
tion limit we recover Landau damping because the eigenvalues of the perturbed system converge
toward the resonances pure Vlasov equation. However, for larger friction the Landau damping
progressively disappears in favor of pure dissipation. Physically the friction/dissipation pro-
vides a cut off to the velocity phase mixing. In the nonlinear part, Section VII.3, we manage
to perform the nonlinear expansion; the dominating contribution is still provided by the zeroth
harmonic of the unstable manifold. Nevertheless, the computations are more involved since
we have to express the problem in velocity Fourier space. Eventually we obtain the different
scaling of the cubic coef�cientc3 that yield the saturation scaling. We �nd not two but three
different regimes for the saturation amplitude with respect to the instability parameter and fric-
tion. We summarize these results on Figure VII.1. Furthermore, these regimes correspond to
the ones found for a similar problem on �uid mechanics systems [CS87, CS95]. We can put into
perspective this similitude with the fact that Single Wave Model reduction is for both Vlasov
and Euler 2D. The interpretation in terms of critical layer (linear, nonlinear, viscous) is done in
Section VII.3.3.

Note that we consider here only homogeneous equilibrium contrary at what have been done
in the previous Chapter VI. A Vlasov-Fokker-Planck analysis around non homogeneous states
is for now out of reach since the system is not Hamiltonian (no action variable could diagonalize
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the linear problem).
The method presented here is different from the one used in the article we wrote [BM17a]

on this topic. Indeed, in this article to prove rigorous mathematical theorems on the spectrum
of the Vlasov-Fokker-Planck operator we used the already existing framework and results of
J-M. Bismut and G. Lebeau2 [BL08] on the perturbed harmonic oscillator operator. We then
performed the unstable q calculation using the Bargman representation. Here in this manuscript
we show another way using Fourier velocity calculation as in [LB58, SS02, NBS99]. Of course,
the results are the same.

1 SETTINGS

Our starting point is the Vlasov-Newton-Fokker-Planck equation [Ris89], Eq. (I.31) and
Eq. (I.33a). To keep the following computations as simple as possible, we stick to one di-
mensional case with HMF interactions. The kinetic equation for the densityf (q; p; t) reads

@tF + p@qF � K@q� [F ]@pF = 
@p (pF + @pF ) ; (VII.1a)

� [F ] = � M [f ] cosq; (VII.1b)

where
 is the friction parameter, we have chosen our units so thatkB T = 1 and introduced
a coupling parameterK . Hence here we change the coupling parameterK in order to control
the (in)stability whereas in the frictionless case in Chapter V the instability coupling was set to
K = 1 and the temperature could vary. This change is obtained by rescaling. The distribution

f 0(p) =
e� p2=2

(2� )3=2

is the only velocity stationary solution of this equation. This Gaussian shape is expected since
at thermal equilibrium we expect a Gibbs distribution.

Remark VII.1
In [BM17a] we deal with the Coulomb/Newton case with the same results. The Gaussian equi-
librium is always stable for a repulsive interaction; since we are interested in the weakly unstable
case we focus on the attractive case.

Furthermore, if we wanted the system to relax towards another equilibrium distribution we
could use a more general Fokker-Planck operator


@p

�
f 0@p

�
f
f 0

��

for which f 0(p) is a stationary state.

We study the perturbed densityF (q; p; t) = f 0(p)+ f (q; p; t) and its evolution. The equation
for f reads:

@t f = L f + N f (VII.2a)

L f = � p@qf + K@q� [f ](f 0)0(p) + 
@p (pf + @pf ) (VII.2b)

N [f ] = K@q� [f ]@pf: (VII.2c)

Note that the nonlinear operator is the same as in the homogeneous case.

2. We are indebted to Gilles Lebeau for this idea.
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2 L INEAR PROBLEM

2.1 Velocity Fourier

In the homogeneous case the eigenvalue problem has been straightforward, in the non ho-
mogeneous one we had to change variable. Here at the spatial Fourier level we encounter new
terms with �rst and second order velocity derivatives

L k f k = � ikpf k + ikK� k [f ](f 0)0+ 
@p (pf k + @pf k) : (VII.3)

To simplify further we proceed to the velocity-Fourier transform (denoted by a hat)

f̂ (� ) = FT[ f (p)]( � ) = (2 � )� 1=2
Z

f (p)eip� dp:

In velocity Fourier,@p ! � i� andp ! � i@� . Moreover fork = � 1

� k [f ] = �
1
2

Z
f k dp = �

1
2

(2� )1=2 bf k(� = 0) : (VII.4)

We also havebf 0(� ) = (2 � )� 3=2e� � 2=2

The Fourier velocity transform of the linear operator yields

cL k f̂ k(� ) = � k@� f̂ k � �kK� k [f k ]( bf 0) � 
�@� f̂ k � 
� 2f̂ k : (VII.5)

Remark VII.2
Unlike the two previous conservative case (with no dissipation), the 0th spatial Fourier mode
L 0 f 6= 0. Which mean that� = 0 is no longer an eigenvalue associated with an in�nite
eigenspace. It is now associated with a one dimensional eigenspace spanned byf 0. That is to
say there is no more an in�nity of possible steady states but only one (the Gaussian).

2.2 Eigenvalue problem

We can now seek an eigenvector of the form	 k =  k(p)eikq for k = � 1.

L 	 k = � 	 k (VII.6)

which gives in Fourier velocity

@�
b k +

� + 
� 2

k + 
�
b k = � K� k [	]

� bf 0

k + 
�
= k

p
2� b k(� = 0)

K
2

� bf 0

k + 
�
: (VII.7)

We impose the normalization such thatb (� = 0) = 1 . From now on we drop the spatial Fourier
indexk = 1, e.g. 1 =  .

We de�ney = 1=
 , a = y2 + �y . The homogeneous solutions of Eq. (VII.7) are given by

b h(� ) = cst � e� � 2=2ey�

�
1 +

�
y

� � a

: (VII.8)
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Since there is an unphysical divergence at� = � 1=
 , this solution has to be removed (by setting
the arbitrary constant to 0).

Hence the complete eigenvector is given by a particular solution [SS02, NBS04],

b (� ) = b p(� ) = �
K
4�

e� � 2=2ey�

�
1 +

�
y

� � a Z �

� y
te� yt

�
1 +

t
y

� a� 1

dt

= �
K
4�

ye� � 2=2ey2+ y�
�
y2 + y�

� � a
Z y2+ y�

0
(x=y � y)e� xxa� 1dx

=
K
4�

e� � 2=2ey2+ y�
�
y2 + y�

� � a �
y2
 (a; y2 + y� ) � 
 (a + 1; y2 + y� )

�

=
K
4�

�
1 � �y d (a; y2 + y� )

�
e� � 2=2

(VII.9)

where we have usedb (� = � y) = yKe� y2=2=(4� (y � � )) to choose the lower integration
bound. We have introduced the lower incomplete Gamma function [ODL+ 14]


 (a; z) =
Z z

0
ta� 1e� t dt;

(not to be confuse with the friction parameter
 ) and used
 (a + 1; x) = a
 (a; x) � xae� x and
de�ned

d(a; x) = x � aex
Z x

0
e� t ta� 1 dt = x � aex 
 (a; x) =

Z 1

0
exs (1 � s)a� 1 ds: (VII.10)

Remark VII.3
In the limit 
 = 0, the divergence of the homogeneous solution is suppressedb h(� ) / e�� which
is indeed the Fourier transform of the generalized eigenvector/ � (� + iv ). So, with friction
these solutions are removed and there is no more continuous spectrum (see next Section).

2.3 Spectrum

In the previous computation, we did not have to be careful about whether� was on the
imaginary axis or not which is another indication that the continuous spectrum has somehow
changed. In terms of operator the Fokker-Planck "perturbation" is unbounded (because of the
velocity derivatives) and we expect that even a small perturbation can affect/break the continu-
ous spectrum structure. Indeed, in standard systems there is in general no such spectrum.

The normalization conditionb (0) = 1 gives us directly the dispersion relation

�( �; 
 ) = 1 �
K
4�

�
1 � �=
 d (1=
 2 + �=
; 1=
 2)

�
: (VII.11)

In [SS02] is performed the limit
 ! 0, (which can be done expanding in powers of1=
 in the
integral terms) yielding

lim

 ! 0

�( �; 
 ) = 1 �
K
4�

Z 1

0
e� s2=2� �s sds = � (0)

1 (� ) (VII.12)

where� (0)
1 (� ) was de�ned in Eq. (V.32) as the analytic continuation of the homogeneous dis-

persion relation denoted in this Chapter� (0) (� ). It means that indeed the dispersion relation
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tends to the dispersion relation without friction which is expected. The important implication
is that the roots of this analytic continuation (resonances) are even with a small friction
 6= 0,
true eigenvalues of�( �; 
 ) and thus of the system. So, when
 ! 0, the negative eigenvalues
approach the resonances of the frictionless Vlasov equation.

In [BM17a] we prove that indeed the continuous spectrum is empty for the Vlasov-Fokker-
Planck operator with the help of [BL08]. In mathematics, it is called "stochastic stability"
since eigenvalues of the system with a small stochastic perturbation (Fokker-Planck opera-
tor with a Gaussian noise) are close to the resonances. This stochastic stability for the reso-
nances of the linearized Vlasov operator is a phenomenon studied in other contexts: in �uid
dynamics [Bal99], for Pollicott-Ruelle resonances [Dro16, DZ15], or for a Schrödinger opera-
tor [Zwo15].

2.4 Landau damping

In the gravitational case, we know that the eigenvalues are real for a Gaussian distribution,
hence here we focus on a small real eigenvalue. The stability criterion is obtained for� = 0 as

The system is stable iif I K = 1 �
K
4�

� 0; (VII.13)

which does not depend on the friction. So here when the system is stable it has eigenvalues with
negative real part (that will damp perturbation instead of the continuous spectrum).

Now what does the stochastic stability implies for the relaxation? The Landau damping oc-
curs through the resonances of the dispersion relation. With friction, we have seen that since the
dispersion relation is analytic in the whole plane there are no resonance but only true eigenval-
ues Eq. (VII.12). In the limit
 ! 0 limit these eigenvalues converge to the resonances which
means that the damping is the same that the Landau damping one. In terms of mixing for a
�xed �; 
 the eigenvector̂ (� ) associated with a damped mode decrease ase� � 2=2+ y� to zero.
It means that its real velocity counterpart (v) is regular (Riemann-Lebesgue lemma). In the
frictionless limit, we havê (� ) / e�� which produces a n eigenfunction much less regular and
is therefore physically translated by a more important phase mixing.

Remark VII.4
What is the behavior of the eigenvalues for large friction? In [Cha13] is studied the repulsive
case where eigenvalues are a priori complex. A transition is predicted for large friction the
damping does not oscillate anymore (� 2 R < 0). We can see it by using that [Cha13]

1 � a d(a + x; x) x! 0�
x

a + a2
; for �xed a

which means that in the limit� � 
 for large
 , we have

� 1
1 (� ) = 1 +

K
4�

1
�
 + � 2

(VII.14)

with solution

� = �


2

�

r


 2 �
K
4�

(VII.15)

It means that upon a certain level of friction the stable eigenvalue is real and that the dissipation
occurs without oscillation. It corresponds in fact to the transition between an underdamped
oscillator and an overdamped oscillator. Since the Magneto Optical Trap is probably in the
overdamped regime all mixing (Landau damping) effects must have disappeared.
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2.5 Adjoint problem

The adjoint equation can be obtained as in previous Chapters,

L y g = p@qg � K� [(f 0)0@qf ] � 
 (p@pg � @2
pg) (VII.16a)

L y
k gk = ipkgk � ikK� k [(f 0)0@qf ] � 
 (p@pgk � @2

pgk) (VII.16b)

cL
y

kbgk = k@� bgk � ikK� k [(f 0)0@qf ]� (� ) + 
 (@� (� bgk) � � 2bgk) (VII.16c)

Let the adjoint eigenvector be~	 =
~ (p)eiq

2�

@�
b~ �

� � � 
 + 
� 2

1 + 
�
b~ = cst �

� (� )
1 + 
�

: (VII.17)

To get the solution we must separate the problem in several domains and seek a homogeneous
solution (fork = 1) :

b~ h(� ) = Ce� 2=2e� �=
 (1 + 
� )(�
 +1) =
 2 � 1 (VII.18)

we know thatb~ (� 1=
 ) = 0 also that forw < � =
 homogeneous solution does not admit real
solution so we put the function to zero in this domain. Then combining it with the particular
solution [NBS04]

b~ (� ) =
1

(� 0(� )) �
e� 2=2e� �=
 (1 + 
� )(�
 +1) =
 2 � 1 (�(1 =
 + � ) � �( � )) (VII.19)

where we de�ned�( � ) as the Heaviside function and used� 0(� ) = � (� ). The normalization
factor will be justi�ed in the next Section. It produces indeed a non zero solution for� 2
] � 1=
; 0[. The effect of friction is once again highlighted: it produces a cut-off to the velocity
modes.

2.6 Dispersion relation and normalization check

To normalize the projection
�

~̂ ; b 
�

= 1, we �rst express

� 0(� ) =
yK
4�

�
d(a; y2) + �y@ad(a; y2)

�
(VII.20)

with

@ad(a; x) = x � aex
Z x

0
ln

�
t
x

�
e� t ta� 1 dt = � x � aex

Z x

0


 (a; t)
t

dt: (VII.21)

On the other hand

( e	 ; 	) = 1 =
1

� 0(� )
K
4�

Z 0

� y
e� y� (1 + �=y )a� 1

�
1 � �y d (a; y2 + y� )

�
d�

=
1

� 0(� )
K
4�

�
y d(a; y2) � �y 3ey2

(y2)� a
Z 0

� y


 (a; y2 + y� )
y2 + y�

d�
�

=
1

� 0(� )
K
4�

 

y d(a; y2) � �y 2ey2
(y2)� a

Z y2

0


 (a; t)
t

dt

!

=
1

� 0(� )
� 0(� ) = 1 ;

(VII.22)
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which once again links the dispersion relation and the normalization factor in a nontrivial fash-
ion.

3 NONLINEAR EXPANSION

Here we perform the nonlinear analysis that will be very similar to the one in Chapter V.
The main differences and dif�culties are that the unstable manifold will be expressed in Fourier
velocity through �rst order differential equation. Furthermore, the asymptotic regimes in�; 

will require nontrivial integral estimations.

Since the symmetryO(2) holds for the Vlasov-Fokker-Planck equation with a Gaussian
initial distribution f 0(p) the unstable manifold is of dimension two with one real eigenvalue
and we can decomposef on the unstable manifoldW u as

f = A	 + c :c: + H (A; A � ):

The rotational symmetry insures that the form ofH is still constrained by Eq. (V.37), moreover
we can still expand the Fourier coef�cient ofH in series ofjAj2 and get

_A = �A + ( e	 ; Nf ) = �A + c3jAj2A + O
�
jAj5A

�
: (VII.23)

The nonlinear terms have formally the same expression as before

N 0[f ] = � K
X

l

il� [f ]� l@vf l = jAj2iK (� 1[	] @v � � � � 1[	 � ]@v ) + O(jAj4) (VII.24a)

N 1[f ] = K
X

l

i (1 � l )� [f ]1� l@vf l = AjAj2iK (� 1[	] @vh0;0 � � � 1[	 � ]@vh2;0) + O(AjAj4)

(VII.24b)

N 2[f ] = K
X

l

i (2 � l )� [f ]2� l@vf l = A2iK� 1[	] @v + O(A4): (VII.24c)

From Eq. (VII.24b) we deduce that the expression of the cubic coef�cient is formally the
same that in the frictionless case Eq. (V.49),

c3(�; 
 ) = � iK�
p

2�
D

~ ; @p (h0;0 � h2;0)
E

= c(h0 )
3 + c(h2 )

3 (VII.25)

where we separated the contribution from the zeroth and second harmonic.
We will derive the expressions ofh0;0 andh2;0 with the same method than in frictionless

case. Formally we still have (since� is real in the attractive case)

(2� � L 0)h0 = N 0[f ] (VII.26a)

(2� � L 2)h2 = N 2[f ]; (VII.26b)

but here the linear operatorL 0 6= 0 and we only know the Fourier velocity expression of 
which forces us to solve a differential problem

@�
bh0;0 +

2� + 
� 2


�
bh0;0 = � �

K
2

p
2� ( b � � b )=
; (VII.27a)

@�
bh2;0 +

2� + 
� 2

2 + 
�
bh2;0 = � �

K
2

p
2�

�
2 + 
�

b : (VII.27b)
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Remark VII.5
At �rst sight the perspective of Fourier velocity computation transform back in real velocity
space is not enjoyable at all, but thanks to the Parseval theorem claiming that the Fourier trans-
form is an isometry, the result of the projection (scalar product) will be the same expressed in
real or Fourier space,

h~g� (p); f (p)i =
Z

g� (p)f (p) dp = (2 � )� 1
Z � Z

bg(� )e� ip� d� 0

� � � Z
bf (� 0)e� ip� 0

d� 0

�
dp

=
ZZ

bg� (� ) bf (� 0)� (� � � 0) d� 0d� =
Z

bg� (� ) bf (� ) d�:

(VII.28)

It is really one of the big advantage of the unstable manifold expansion with its geometrical
interpretation, that allows to express the problem in the most convenient basis and still have
formally the same quantities to compute. For example, in [BM17a] we express the problem
in another basis, the Bargman one but the quantityc3 is exactly the same in both cases. The
Fourier velocity uses integrals while the Bargman representation uses series. In the way, we
automatically prove some integral/series equalities.

3.1 Cubic coef�cient

As in the frictionless case there are two terms to estimate one withh0;0 and one withh2;0.
We will compute the divergence induced by the �rst term and recover the Crawford one in the
frictionless limit. Theh2;0 term for 
 = 0 does not produce any divergence and as shown in
Appendix C.2.

Remark VII.6
With a more generic potential there would be a third term, easier to compute, that produces a
divergence like� � 1 for � � 
 1=3 and�
 � 2=3 for � � 
 1=3. As we will see this singularity is
always weaker that the one produced by the zeroth Fourier termh0;0.

We seek a particular solution of Eq. (VII.27a)

bh0;0(� ) = � �
K
2

p
2�ye � � 2=2� � 2�y

Z �

0
et2=2t2�y

�
b � (� t) � b (t)

�
dt

=
p

2�
K 2

8
�y 2e� � 2=2� � 2�y

Z �

0
t2�y

�
d(a; y2 � yt) � d(a; y2 + yt)

�
dt;

(VII.29)

so

c(h0 )
3 = � i�K

p
2� ( ~ ; @ph0;0) = � �

K
2

p
2�

Z
� b~ 

�
(� )bh0;0 d�

=
� 2K 3

4� 0(� )
�y 2

Z 0

� y
� 1� 2�y (1 + �=y )a� 1e� y�

Z �

0
t2�y

�
d(a� ; y2 � yt) � d(a; y2 + yt)

�
dt d�:

(VII.30)

The dif�culty lies in estimating the asymptotic behavior of this integral. In this Section, we
will not present further computations to only highlight the results and leave details for the
Appendix C.1. Theh0;0 term gives the main contribution to the cubic coef�cient. We get in the
limit of small instability� and friction
 , three different regimes,
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i) 
 1=3 � � ,
ii) 
 4=3 � � � 
 1=3,
iii) � � 
 4=3.

The asymptotic expansion gives for the cubic coef�cient

c3 � c(h0 )
3 �

8
><

>:

� � 2K 2=4 � � � 3; 
 1=3 � �

�j cstj � 
 � 4=3; 
 4=3 � � � 
 1=3

�j cstj � O (1) ; � � 
 4=3:

(VII.31)

In regime i) (Vlasov regime) we recover exactly Eq. (V.54) (withK = 1). This yields the
saturation scaling

Asat �

8
><

>:

� 2; 
 1=3 � �


 2=3; 
 4=3 � � � 
 1=3

� 1=2; � � 
 4=3:

(VII.32)

We indeed recover both trapping and Hopf scaling for small and large friction as well as an in-
termediate regime. This result is summarized on �gure VII.1. We discuss the different regimes
in the next Sections.

Remark VII.7
Once again in the unstable case, the friction acts as a cut-off for divergences: high velocity
modes� that were responsible for the pinching singularities are now suppressed at some level
1=
 .

3.2 Higher order terms

The natural step after estimating the cubic term is to check the scaling of higher order terms.
Unfortunately, the full consideration of all the different terms have not been done yet (it is quite
intricate). Preliminary computations tend to show that

i) O
�
c5jAsatj5

�
= O

�
c3jAsatj3

�
; 
 1=3 � � (VII.33a)

ii), iii) O
�
c5jAsatj5

�
� O

�
c3jAsatj3

�
; � � 
 1=3 (VII.33b)

Hence in regime i) where we had the trapping scaling the truncation is not possible while it
seems possible to do so in regimes ii) and iii). Therefore, we can conjecture is that in region
ii), iii) a local dimensional reduction of the bifurcation is possible and thus would describe
well the saturation. In particular, we should expect the characteristic trapping oscillations (see
Figure V.6) only in the regime i). A numerical simulation could check that there are no oscilla-
tions for � � 
 1=3. Unfortunately, I do not have a Vlasov-Fokker-Planck solver. A molecular
dynamics code could be used but would require a very precise integration scheme and a large
particles number.
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3.3 Critical layers

How to interpret the three different regimes of friction, i), ii), iii) in terms of critical layer?
So far, we have abusively use the term friction to talk about friction AND dissipation. Here

we distinguish the two. We denote� p the typical scale of the critical layer (CL) size in velocity
(in space it is of order2� ). The different time scales of the problem are

� dyn � � � 1 Dynamical time (VII.34a)

� 
 � 
 � 1 Viscous time (VII.34b)

� NL � A � 1=2
sat Nonlinear time (see Eq. (V.58)) (VII.34c)

� a � � p� 1 typical time for phase mixing inside the CL (VII.34d)

� diss � 
 � 1� p� 2 Dissipation time (VII.34e)

where� diss was estimated from the dissipation term
@2
pf . The friction time scale is always

lager than the dissipation timescale thus we shall leave it aside.
Comparing timescales with the advection terms yields the different possible CL

� pdyn � � ; � pdiss � 
 1=3; � pNL � A1=2 (VII.35)

— If � pdyn � � pdiss (� � 
 1=3) the dissipation is negligible. Then saturation with the
nonlinear term force� pdyn � � pNL . ThusAsat � � 2. So, we indeed expect Vlasov
regime for� � 
 1=3.

— If � pdyn � � pdiss the CL is viscous. Saturation with the nonlinear terms force� pdiss �
� pNL . ThusAsat � 
 2=3. However, this regime is relevant only ifAsat � � 1=2 (standard
scaling for dissipative systems). So, we recover that the intermediate regime yields for

 4=3 � � � 
 1=3.

— The dissipative (third regime) regime is thusAsat � � 1=2 for � � 
 4=3.
This simple reasoning has the advantage to simply predict all our unstable manifold results
(both scaling and regimes) with some qualitative picture on the different critical layers.

4 CONCLUSION AND CONJECTURES

We provide here some concluding remarks, and make some conjectures to go beyond the
results obtained.

1. In regime i), we recover not only the trapping scaling, but also the universal� � 2K 2
c =4

prefactor, obtained without dissipation in [Cra95a, Cra94b].

2. Notice that in regimes i) and ii), the dominant contribution toc3 is a diverging integral;
this means that large velocity modes� , corresponding to highly oscillating velocity pro-
�les, provide the dominant contribution. In regime ii), the dissipation
 plays a role in
the cut-off, contrary to regime i) where the cut-off is not strong enough. In regime iii),
there is no more divergence.

3. It is interesting to compare more precisely with the literature on weakly unstable 2D
shear �ows. In [CS95, CS87, CS96], the regimes i)c3 / � � 3 and ii) c3 / �
 � 4=3

also appear. However, the regime iii)c3 = O(1) is different, and the boundary between
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regimes ii) and iii) is different too. A possible explanation is that when the dissipative
time scale is shorter than the linear instability time scale (i.e.� � 
 ), it is necessary to
add an external force to maintain the background shear �ow. By contrast, maintaining
the Gaussian velocity distribution in the present Vlasov-Fokker-Planck setting does not
require any extra force, since it is stationary for the dissipation operator.

4. The� � 
 1=3 boundary already appeared in the literature on Vlasov or 2D Euler equa-
tions: in the derivation of the Single Wave Model, taking
 / � 3 is the right scal-
ing to ensure that dissipation enters in the equation at the same order as the "Vlasov
terms" [GH88, dCN98b, Bal99]. This is consistent with our �nding that for
 � � 3, the
dissipation has no effect at leading order, while for
 � � 3 it qualitatively modi�es the
problem.

5. In the pure Vlasov case, it is known that rescaling time and amplitude asA(t) = � 2� (�t ),
all terms in the expansion in powers ofA contribute at the same order to the equation for
� [Cra95a]; it is thus impossible to safely truncate the series to obtain a simple ordinary
differential equation, which is usually understood as a manifestation of the fact that the
effective dynamics close to the bifurcation is actually in�nite dimensional [BMT13].
Here in regards to the �rst estimation of Section VII.3.2, we may conjecture that as soon
as 
 � � 3 under a rescalingA(t) = 
 2=3� (�t ), the series can be safely truncated,
yielding an effective ordinary differential equation for the reduced dynamics.

6. It is worth noting that the bifurcation of the standard Kuramoto model [Kur75] (see Chap-
ter VIII), which shares some similarities with Vlasov equation, does not present the same
kind of divergences [Cra94a, Cra95b], and has been tackled at a rigorous mathematical
level [Chi13, Die16b, FGVG16]. One may then wonder if the regimes ii) and iii) of
Vlasov-Fokker-Planck equation may be also amenable to a mathematical treatment. All
these conjectures go well beyond the scope of this work.
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CHAPTER VIII

BIFURCATIONS IN COUPLED

OSCILLATORS SYSTEMS: THE

K URAMOTO MODEL

In the three previous Chapters, we have studied Hamiltonian systems with or without dissi-
pation, with long-range interactions and explored their out of equilibrium dynamics using the
unstable manifold method. In �nite systems, the out of equilibrium states (QSS) eventually
relax to some statistical equilibrium in times� c = O

�
N �

�
. Is the physics of purely out of

equilibrium systems different? When we started investigating the bifurcations for the Vlasov
equation we became aware at some point of a model displaying a lot of similarities with a non
Hamiltonian structure. It was the Kuramoto model. This model had also been studied by J.D.
Crawford and had no singularities in its bifurcation expansion. The �rst thing we wanted to
understand was what was the difference.

Hence in this Chapter we introduce the Kuramoto model for Coupled Oscillators that is
purely out of equilibrium (and non Hamiltonian). The model is by itself very interesting and
rich; it is uses in many different �elds to understand the synchronization phenomenon in a
large population of oscillators which result in a nonlinear cooperative effect. The model origi-
nally introduced by Y. Kuramoto to describe circadian rhythm [Kur15]. The model is relevant
for many of physical/biological/chemical/social/electrical systems such as crickets chirping in
synchrony1 [Wal69], crowd applause [NRV+ 00, XVS08], pedestrians on bridges [PTA+ 01,
OA08], electrochemical [KZH02] and electronic [TZT+ 12] oscillators, laser arrays [HKO+ 13],
metronomes [MTFH13], etc. The force of the Kuramoto model relies on its simplicity and yet
universality to describe the synchronization phenomenon

As we will see this model in theN ! 1 limit displays similarities with Vlasov dynamics,
like a continuous spectrum and Landau damping. However, it possesses some major differences

1. Characteristic of the South of France.
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in its standard form2 that make some "miracles" possible. In particular, an exact (i.e. non local,
for any magnitude of order parameter) dimensional reduction known as the Ott-Antonsen ansatz
exists while the unstable manifold expansion does not exhibit any singularities. However, this
reduction does not hold if the model is slightly modi�ed. In the �nal Chapter XI, we will gather
our thoughts on the "why" such dimensional reduction is possible or not.

This Chapter will be dedicated to review known results on the Kuramoto model and one
simple extension in the light of our previous experience with the Vlasov model. We will expose
different methods to solve the bifurcation toward synchronization problem, from Y. Kuramoto
early calculations to the most recent mathematical results of H. Dietert through Mirollo & Stro-
gatz, J.D. Crawford's unstable manifold computations, Ott-Antonsen ansatz and H. Chiba re-
duction. This Chapter also serves as an introduction for Chapter IX and X where we present
our original results concerning the bifurcation analysis of the Kuramoto modi�ed by inertia and
delayed interactions.

1 HISTORICAL REVIEW

In nature, many system displays some rhythm, like the spikes emitted by neurons or the
cricket's frequency of singing. In 1665 Dutch physicist C. Huygens (inventor of pendulum
clock) - ill in bed - noticed that no matter initial conditions, the two clocks on his wall even-
tually synchronize. He then led several experiments to understand this phenomenon, it was
the �rst scienti�c description of synchronization. What is surprising about this phenomenon
is that the weak coupling (through vibration on the wall [OM15] for this example) is suf�-
cient for full synchronization. Other examples Understanding synchronization in large popu-
lations of coupled oscillators is a question which arises in many different �elds, from physics
to neuroscience, chemistry, and biology, see for example the book [PRK01]. Since this syn-
chronization phenomena seems quite universal, there must be some minimal model describing
synchrony all those systems. The �rst idea to reach such paradigm was to describe the os-
cillators through their phases only and was proposed by A.T. Winfree [Win67] (see also his
extraordinary book [Win80]). Therefore, for one oscillator the dynamics is only given by one
equation on its phase, so the dynamics is automatically non Hamiltonian (since there is no evo-
lution equation for its velocity) and out of equilibrium. Then Y. Kuramoto proposed an even
simpler model where the interaction term that should in principle be model dependent was cho-
sen as asin function3. It means that it is then the �rst Fourier mode of a generic potential that
dictates the dynamics of synchronization. It is consistent with the Vlasov investigation where
the �rst mode is always the �rst one to be unstable. Such minimal model is then enough to
understand qualitatively dynamics of a large number of coupled oscillators.

2. What we will refer as the original/standard/�rst order Kuramoto model.
3. The precise mechanism behind the Huygens clocks was only elucidated recently [OM15].
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1. HISTORICAL REVIEW

1.1 The model

The Kuramoto model, which features a sinusoidal coupling and an all-to-all interaction be-
tween oscillators, has become a paradigmatic model for synchronization, and its very rich be-
havior prompted an enormous number of studies. The key ingredients are forN oscillators

— Evolution of the phase_� i = � � � uniquely.
— Each oscillator has its own natural frequency! i 2] � 1 ; 1 [.
— A weak all-to-all coupling asK=N

X

j

sin(� j � � i ).

Putting everything together leads to

_� i = ! i +
K
N

X

j

sin (� j � � i ) (VIII.1)

where the! i are the natural frequencies of oscillators drawn according to some distribution law
g(! ). Through a phase shift it is always possible to center the frequency distribution to zero.
The dynamics is made through1 � N coupled �rst order equations (where it is2 � N for a
Hamiltonian system). Kuramoto introduced an order parameter (now named after him) that
measures the synchrony of the system,

r (t) = jr jei' r (t ) =
1
N

NX

j =1

ei� j (t ) : (VIII.2)

In fact, r is the strict equivalent to the magnetization in the HMF system. Forr = 0 the system
is homogeneous$ asynchronous while forr 6= 0 some partial synchrony occurs to reach perfect
synchrony atr = 1.

1.2 Original result (Kuramoto 1975)

The Kuramoto model was proposed and "solved" by Y. Kuramoto at the same time [Kur84,
Kur75]. We retrace here quickly its early computations. Since

K
N

X

j

sin (� j � � i ) =
K
2

�
re� i� i � c:c:

�
= �

K
2

jr j sin(� i � ' r );

one can study only
_� = ! + K jr j sin� (VIII.3)

where the phase' r has been set to zero thanks to the rotational symmetry.
The great idea of Y. Kuramoto was to separate two populations of oscillators, one "locked"

containing synchronized cluster and the other one "drifting" composed of the oscillators drifting
around

r = r lock + rdrift :

He could predict the critical coupling parameterK = K c and the shape of the bifurcation for
r1 . In the locked region, we have for a stationary state_� = 0 and

! = Kr 1 sin� (VIII.4)
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which is only possible for! < Kr 1 . It de�nes the limit between drifting and locked oscillators.
Then he estimated the two contributions in the largeN ! 1 limit with a symmetric distribution
g(! ) = g(� ! ), self consistently as

r locked = Kr 1

Z �= 2

� �= 2
cos2 �g (Kr 1 sin� ) d�: (VIII.5)

The drifting part is more involved:

rdrift =
Z

j! j>Kr 1

g(! )
T(! )

Z �

� �

cos�
V! (� )

d�; (VIII.6)

where(�; V ! (� )) is the attractive periodic orbit for an oscillator with intrinsic frequency! , and
T(! ) is the period of this orbit. HereV! (� ) = ! � Kr 1 sin� , so due to the symmetry the
drifting part is zerordrift = 0.

Near the onset of synchrony, we haver1 � 1 so for regular function we can expand theg
distribution

r1 = r locked = Kr 1

 

g(0)
Z �= 2

� �= 2
cos2 � d� +

(Kr 1 )2

2
g00(0)

Z �= 2

� �= 2
sin2 � cos2 � d� + O

�
r 4

1

�
!

= Kr 1

�
�g (0)

2
+

� (Kr 1 )2

16
g00(0)

�
:

(VIII.7)

This only produce non zero solution forK > K c = 2=(�g (0)) wheng00(0) < 0 (unimodal
function). Moreover in this case, the transition is supercritical with

r1 �

s
16

�K 2
c g00(0)

�
1 �

K
K c

�
: (VIII.8)

In the event thatg00(0) > 0, higher order terms have to be considered and the transition is
subcritical (discontinuous).

An amazing feature of the Kuramoto model is that those simple calculations predict the exact
asymptotic results (with the right coef�cient and stability criteria)! In �gure VIII.1 we plot the
exact bifurcation diagram that is in agreement with previous computations. For a Lorentzian

distributiong00(0) < 0 we observe a square root bifurcation/
q

K � K (1)
c . For a bi-Lorentzian

distribution Eq. (VIII.28) withg00(0) > 0 the transition is indeed subcritical. We will explain
later in Section VIII.3, how this plot was made.

Remark VIII.1
If those calculations are powerful, there are self-consistent, meaning that we assume the exis-
tence of an asymptotic steady state and �nd it. It does not provide us with the dynamics of how
such state is reached. That will be given for example with the following bifurcations techniques.
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1.3 Large oscillator number limit (Mirollo & Strogatz, 1991)

Thanks to its resemblances with the HMF model, obtaining a kinetic equation of the Ku-
ramoto model in theN ! 1 limit is mathematically easier than in for Coulomb like systems.
In [SM91], S.H. Strogatz and R.E. Mirollo consider for the �rst time this coupled oscillators
problem with a kinetic equation, studying its linear stability. The evolution equation that we
call here the Kuramoto equation is for the one particle density distributionf (�; !; t ),

@tF + !@� F +
K
2i

@�
��

r1[F ]e� i� � r � 1[F ]ei�
�

F
�

= 0 (VIII.9a)

r k [F ] =
Z

F (�; !; t )eik� d! d�; (VIII.9b)
Z

F (�; !; t ) d� = g(! ); (VIII.9c)
Z

g(! ) d! = 1: (VIII.9d)

As before for the linear and nonlinear study we will need to decompose the equation around
the incoherent solutionf 0(! ) = g(! )=(2� ) asF (�; !; t ) = f 0(! ) + f (�; !; t ),

@t f = L f + N f (VIII.10a)

L f = � !@� f �
K
2i

g(! )
2�

@�
�
r1[f ]e� i� � r � 1[f ]ei�

�
; (VIII.10b)

N f = �
K
2i

@�
��

r1[f ]e� i� � r � 1[f ]ei�
�

f
�

: (VIII.10c)

Let's list the differences and similarities between the Vlasov homogeneous kinetic system and
the Kuramoto one, just looking at Eq. (VIII.9) and Eq. (VIII.10).

Similarities

— Same HMF interactions (thus same order parameter)
— The presence of an advection term that was previously responsible for the continuous

spectrum and Landau damping. Thus, one may expect Landau damping to also occur in
the Kuramoto model.

— The 0th Fourier mode of the linear operatorL 0 = 0. In Vlasov equation this was linked
directly with the in�nite number of possible stationary states. Here it also means that any
distributiong(! ) (regular enough) is steady state solution. Thus� = 0 is an eigenvalue
with an in�nite dimensional eigenspace associated. One could de�ne Casimir invariant
for this problem as

Cs[f ] =
ZZ

s[f ](�; !; t ) d�; (VIII.11)
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Differences

— The �rst order dynamics induces no derivatives terms@! , only @� .
— The 0th Fourier mode of the linear AND nonlinear operator are zeroN 0 = L 0 = 0.

It means that the spatial Fourier modef 0 is constant in time (and even zero by normal-
ization). An equivalent statement is given in Eq. (VIII.9c). A direct implication is that
the unstable manifold that will be constructed in Section VIII.2 has no zero spatial mode
H0 = 0. Remember that in the Vlasov case this 0th harmonic was responsible of the
strongest divergence in the dynamical expansion (its importance in terms of diverging
coef�cient is also known in �uid mechanics, see [CS87]). Therefore, if any divergence
occurs we expect them to be weaker.

Hence since the linear operator is similar (up to one velocity derivative) the linear problem
looks very much like the Vlasov-HMF case. The criteria derived in [SM91] holds for generic
g(! ) function. S.H. Strogatz and R.E. Mirollo also consider a Gaussian noise for the phase�
which has for effect to add as with Vlasov-Fokker-Planck equation aD@2

� f operator (whereD
is the diffusion coef�cient). In terms of spectrum this noise displaces the continuous spectrum
on the left plane on� c = f �= Re� = � Dg

Remark VIII.2
If the support ofg(! ) is �nite on [� a; a] so will be the continuous spectrum� c = f Im � 2
[� a; a] [ Re� = 0g. It is also true in the Vlasov case, but here we restrict to distribution with
in�nite support. The branch cuts in the continuous spectrum are responsible for other effects as
in the non homogeneous case.

2 CRAWFORD APPROACH (1993)

At this point the linear analysis had been done, it remained to deal with the nonlinear dynam-
ical analysis of the bifurcation with genericg distribution. Historically at the same time as his
paper on the homogeneous Vlasov equation J.D. Crawford performed his unstable calculation
for the Kuramoto equation. Its results con�rmed the �nding of Y. Kuramoto. On this subject a
very well written paper by S.H. Strogatz [Str00] (that could serve as a nice introduction to this
PhD thesis) highlights the crucial contribution of J.D. Crawford on the topics.

Since the method is very similar to the previous cases we will only gather the most important
steps here.

TheO(2) symmetry predicts as in homogeneous Vlasov, that ifg is even with each eigenval-
ues� associated with an eigenspace of dimension two. Ifg is not even, there is only theSO(2)
rotational symmetry and the eigenvalues have an associated eigenspace of dimension one.

	 1(�; ! ) =  1(! )ei� =
K
2

g(! )
� + i!

ei� (VIII.12a)

e	 1(�; ! ) = ~ 1(! )
ei�

2�
=

1
� 0

1(� )
1

� � � i!
ei�

2�
(VIII.12b)

� 1(� ) = 1 �
K
2

Z
g(! )

� + i!
d! (VIII.12c)
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with once again
�

e	 1; 	 1

�
= 1 and

Z
 1 d! = 1 For the nonlinear problem, we have

N 1[f ] = 0 (VIII.13a)

N 1[f ] = �j Aj2A
K
2

0

@r1[	 �
1]h2;0 � Ar � 1[	 1] H0|{z}

=0

+O
�
jAj2

�
1

A (VIII.13b)

N 2[f ] = K
�
A2r � 1[	 1] + O

�
jAj2

��
(VIII.13c)

so

_A = �A +
D

~ 1; N 1[f t ]
E

= �A � 2�
K
2

D
~ 1; h2;0

E

| {z }
c3

jAj2A + O
�
jAj4A

�
(VIII.14)

Since we can compute

h2;0(0) =
�K 2

2
g(! )

(� + i! )2
(VIII.15)

we are left with

c3 = �
� 2K 3

2
1

� 0(� )

Z
g(! )

(� + i! )3
d!

=
� 2K 2

2
� 00(� )
� 0(� )

:
(VIII.16)

Since we want to deal with an unstable manifold of dimension two let's either assume that
g is even and� real (which is not automatic, for example bi-Lorentzian distributions exhibit a
threshold upon which a real eigenvalue becomes complex.) or� complex andg not even.

Here let's assume that� is real, let's perform the� ! 0 limit in c3. Thanks to integration by
part and Plemej formula we obtain

c3(0) =
� 3K 2

c

4
g00(0)

� PV
R

(g0(! )=! ) d!
g= gL=

� 3K 2
c

4
g00(0): (VIII.17)

If we go back to ther variable withr � 2�A

_r = �r +
�K 2

c

16
g00(0)jr j2r + O

�
jr j4r

�
(VIII.18)

which gives

r1 �

s
� 16�

�K 2
c g00(0)

=

s
16

�K 2
c g00(0)

�
1 �

K
K c

�
; (VIII.19)

where we have used that for a Lorentzian distribution� = K=K c � 1. It is the original Y.
Kuramoto result.

Remark VIII.3
We notice that to be supercritical we should in principle prove that� 00(0+ + i� i )=� 0(0+ + i� i ) <
0 either with i)g even and� i = 0 or ii) g not even and� i 6= 0. To my knowledge nobody has
proved such thing or even considered this question. Indeed, in general authors are concerned
with even unimodal distribution (where the demonstration is immediate). In Appendix D.3, we
prove in the i) case that this is true for bimodal distribution (in particular it says that wheng is
even and bimodal, eigenvalues are real iff� 00(0) > 0). But the demonstration still resists for
more generic functions.
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So in this Kuramoto example despite the presence of a continuous spectrum, the cubic coef-
�cient is non singular! Giving rise to a standard "Hopf" scaling as in dissipative systems, while
the relaxation process in stable case is still pure Landau damping.

Do the higher orders terms possess some divergences? The answer is no for the standard
Kuramoto case, see a generic demonstration given in [Cra95a]. Hence if the higher orders
coef�cients are regular then, we have close to the bifurcation� r � 1 at saturation,

O (� jAj1 ) = O
�
c3jAj31

�
� O

�
c2n+1 jAj2n+1

1

�
: (VIII.20)

Therefore, we expect4 the one dimensional description Eq. (VIII.18) of the in�nite dimensional
original system to be accurate for the supercritical bifurcation.

At this point the natural question is "Why does it work here and not with Vlasov"? Is it
uniquely linked with the presence of diverging coef�cients? What makes a coef�cient to diverge
or not? Why in the unstable case the continuous spectrum does not seem to play a role? Is there
some kind of Single Wave Model associated with trapping of particles ? In [BS00] the authors
start a SWM approach for the Kuramoto model, but it seems that they do not pursue further.

3 OTT-ANTONSEN ANSATZ (2008)

In 2008 while the Kuramoto �eld was already quite big, with many extension and methods
to study them; the "game" was shaken by an astonishing discovery of E. Ott and T.M. Anton-
sen [OA08] which could be the dream of every theoretical physicist: the discovery of an explicit
class of solution to a full partial differential equation... This new solution lead to a large number
of papers5 using this Ott-Antonsen ansatz (OA ansatz). The force of their ansatz is to reduce
exactly the dimension of the bifurcation problem in a certain case globally. Here globally is
opposed to locally and means that the analysis holds for anyr . In this Section, we will discuss
this ansatz.

3.1 The ansatz

Let's decompose the real distribution function in its Fourier expansion

F (�; !; t ) =
g(! )
2�

 

1 +
X

k> 0

�
� k(!; t )eik� + c:c:

�
!

: (VIII.21)

We now restrict the dynamics to Fourier modes that satis�es the following ansatz

� k(!; t ) = � k(!; t ); (VIII.22)

wherej� j < 1 to ensure the convergence of the series. Inserting this in the Kuramoto equation
Eq. (VIII.9c) gives after a factorization by� k the same equation to satisfy for each Fourier
mode:

@t � + i!� +
K
2

�
� 2r � � r

�
= 0 (VIII.23a)

r � (t) =
Z

� (!; t )g(! ) d!: (VIII.23b)

4. Of course it is not a mathematical theorem saying that this unstable manifold is attractive, but a formal result.
5. 372 citations in less than ten years which is quite big for this �eld I guess.
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This equation is still in�nite dimensional but less "complex" since we only have to deal with one
Fourier coef�cient. For example, we have a simple expression for the total distribution function

F (�; !; t ) =
g(! )
2�

�
1 +

�
� k(!; t )eik�

1 � � k(!; t )eik�
+ c:c:

��
: (VIII.24)

One could �nd some similarities between this reduced model and the Single Wave Model
Eq. (V.59).

Another miracle occurs at this step since for a Lorentzian distribution the integrals can be
computed explicitly6 thanks to its poles ini; � i

gL =
�
�

1
� 2 + ! 2

: (VIII.25)

For simplicity we take� = 1. Thus, we have

r � (t) =
Z

� (!; t )gL (! ) d! = � (� i; t ): (VIII.26)

The price is of course to assume some analyticity of the� (!; t ) functions. So replacing with
! = � i in Eq. (VIII.23) gives exactly

_r =
K � K c

2
r �

K
2

jr j2r (VIII.27)

with K c = 2. Here there is no neglected higher order terms andr does not have to be small. It
means that there is an exact global dimensional reduction to the "standard" normal form. The
dimension went from in�nity to one (for this class a solution satisfying the ansatz Eq. (VIII.22))!

Despite that it is not the purpose to study in details all the possibilities of this ansatz let's
mention that it works (with a reduction not necessarily to dimension equal one) for a variety of
extensions [OA08]:

— All rational functions. For bi-Lorentzian distribution [MBS+ 09],

gbL =
�
2�

�
1

� 2 + ( ! � ! 0)2
+

1
� 2 + ( ! + ! 0)2

�
; (VIII.28)

one can reduce the system to a set of two coupled o.d.e. In particular, one can plot
the exact bifurcation diagram for a Lorentzian and bi Lorentzian, see Figure VIII.1 (the
equations of the red plot are not shown here the interested reader can refer to [MBS+ 09]).

— A forcing term
— Delayed coupling, we will come back to this in Chapter X
— Different species of oscillators with different coupling within each species.

6. Integrals of rational functions are particularly simple to compute with this trick.
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Figure VIII.1 – Bifurcation diagram for the Kuramoto order obtained via the OA ansatz. Dashed
line show unstable states while solid line are stable steady states. In black the supercritical
bifurcation corresponding to! 0 = 0 in Eq. (VIII.28) (associated distribution shown in the inset).
In red, the subcritical bifurcation of Eq. (VIII.28) for! 0 = 0:8 (associated distribution shown
in the inset). Associated OA ansatz for this latter case in [MBS+ 09].

3.2 Comparison between Ott-Antonsen ansatz and the Unstable mani-
fold

Now a lot of questions arise
— Why does it work? Some papers have addressed the generality of this reduction for some

extensions of the model [PR08, MMS09] as well as the analogy with the Watanabe-
Strogatz ansatz [WS93].

— Is this OA manifold representing well the full dynamics? In [OA09, OHA11] the at-
tractiveness of the ansatz for the full dynamics is shown "In particular, for distribution
g with non zero spreading7, all attractors of the full system lie on the reduced mani-
fold, and all attractors of the dynamics on the reduced manifold are attractors of the full
system". It says that for regular enough distributiong(! ) (with no zero width) a phase
mixing between the different oscillators occurs so the system eventually relaxes to the
OA manifold.

— The physical meaning of this reduction still for us remains unclear. How to interpret
that for a Lorentzian distribution we get an exact one dimensional reduction while for a
Gaussian distribution we still have an in�nite integro-differential problem (still simpler
than the full Kuramoto model). Is it just mathematics?

— Can it be applied to the Vlasov case (in which case most of the previous work would be
useless!)?

— In the bi-Lorentzian case we know that there must exist an exact two-dimensional re-
duction, how with the Crawford technique could we end up with this reduction (since it
matches in the supercritical case?). How the Crawford approach is local and exactly the
same that the global OA reduction? What for the subcritical case whereO (A1 = 1) ?

7. Which is always the case we study.

Université Côte d'Azur 158



3. OTT-ANTONSEN ANSATZ (2008)

Are higher order terms exactly zero like with the OA ansatz?
One of the obvious limitation of the OA ansatz is that it really fully works only for rational

function while techniques as Crawford's one are more generic. This point legitimates the use of
such technique. How does the unstable manifold look compared to the OA ansatz? To answer
this question let's write the distribution on the unstable manifold, for convenience we de�ne
before

 1(! ) =
g(! )
2�

� 1;0(! ) (VIII.29a)

h1;j (! ) =
g(! )
2�

� 1;j (! ) j � 1 (VIII.29b)

hk;j (! ) =
g(! )
2�

� k;j (! ) j � 0; k � 2 (VIII.29c)

h0;j = 0 8j � 0 (VIII.29d)

it gives

F (�; !; t ) =
g(! )
2�

 

1 +
X

k> 0

�
Ak � k;0(!; t )eik� + c:c:

�
+

X

j � 1

jAj2j
X

k> 0

�
Ak � k;1(!; t )eik� + c:c:

�
!

(VIII.30)
Is there a relation between the� k;j ? In fact, the� k;0 are for the standard Kuramoto model easy
to compute, combining Eq. (V.44c) and Eq. (V.45c), we get fork � 2,

Ak
�
k(� + i! )hk;0 + O

�
jAj2

��
= N k [f ] =

K
2

k
�
f k� 1r � 1[f ] � f k+1 r k+1 r1[f ]

�

= k
K
2

Ak

0

@hk� 1;0 r � 1[	 � ]
| {z }

2�

+O
�
jAj2

�
1

A
(VIII.31)

where we have used thatL k6=1 = � ik@� . For k = 2 see Eq. (VIII.15). Thus, by simple
recurrence we get

� k;0 = � k
1;0 (VIII.32a)

� 1;0 = 2�
K
2

1
� + i!

(VIII.32b)

which is the exact same structure that the OA ansatz! Therefore, the unstable manifold is at its
�rst order expansion belonging to the OA manifold for everyg distribution. What is remarkable
is that at this order time is decoupled from natural frequency

� 1(t) = A(t)� 1(! ): (VIII.33)

Preliminary calculations tend to show that if we consider higher orders, this structure does not
hold...
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4 MATHEMATICAL RESULTS

Results a la Crawford although very powerful do not prove that the built unstable manifold
is attractive, which means that we could miss with this technique a large panel of the dynamics.
The job of mathematician in the Kuramoto �eld was to prove rigorously several things. Here
are some results obtained

— The nonlinear Landau damping occurs which was proven in a similar spirit than for the
Vlasov equation [FGVG16, Die16b]. Due to the simpler structure of the potential and of
the equation there is no echo effect that was appearing in the nonlinear Vlasov Landau
damping [MV11, Vil10].

— The rigorous reduction and the associated bifurcation in the supercritical case was proven
with two different methods [Die16b, CN11].

The demonstration of H. Chiba [CN11] use larger functional spaces the so called "rigged
Hilbert spaces". It provides a good framework to deal with the continuous spectrum. The
proof of H. Dietert [Die16b] also uses a functional space where there is no continuous spectrum
combined with estimates in spatial and velocity Fourier modes. Note that those results deal
uniquely with regular8 monotonic functions, which do not include the subcritical case when
g00(0) < 0. It is to my knowledge the only mathematical theorems concerning bifurcations in a
system with a continuous spectrum.

5 EVERYTHING FALLS APART : THE K URAMOTO -DAIDO

CASE (1992)!

So far, we have only seen the standard Kuramoto case where everything worked out greatly.
A suggestion of Crawford in one of his �rst paper on unstable manifold [Cra94b] tackles the
difference in terms of singular/nonsingular coef�cientc3 and Hopf/trapping scaling between the
Vlasov and Kuramoto model:
"This difference in the nonlinear behavior seems noteworthy since the linear dynamics of the
model is qualitatively similar to Vlasov although apparently lacking a Hamiltonian structure"
So is the possibility of exact dimensional reduction/rigorous mathematical results/non singular
coef�cients/Hopf scaling lies uniquely in the non Hamiltonian nature of the Kuramoto model?

As we will see in this simple extension of the Kuramoto model introduced and discussed by
H. Daido [Dai92, Dai94, Dai96], the answer is clearly no. We will very quickly state the main
result of the unstable manifold approach for the Kuramoto-Daido model.

The model is de�ned as

_� i = ! i +
K
N

X

j

sin (� j � � i ) �
K
N

X

j

� sin 2 (� j � � i ) : (VIII.34)

It adds a second harmonic to the standard model, which of course can be relevant in the physics
of some systems. H. Daido through a self-consistent method predicted that in general at the
onset of synchronization the exponent of saturationA1 / � � was� = 1 and not� = 1=2.

8. In [Chi13] the distribution are either Gaussian or Lorentzian while in [Die16b] they belong to the Sobolev
spaceW (n; 1) with g00(0) > 0.
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5.1 Crawford result (1994)

Once again J.D. Crawford attacked the problem with the unstable manifold technique [Cra95b,
CD99] con�rming H. Daido's result. He computed the singularities in the coef�cients of the dy-
namical expansion and showed how the saturation scaling was modi�ed in general. He recovers
the Daido scaling� = 1 and also that the truncation of the dynamical expansion was impossible
since every order contributes the same at the saturation level.

The linear problem is the same as before since the most unstable mode is still associated
with the �rst Fourier mode (one can see it easily comparing the dispersion relation for the two
modes). At the nonlinear level, we have minimal differences

N 0[f ] = Eq. (VIII.13a); (VIII.35a)

N 1[f ] = � 2� jAj2A
K
2

�
h2;0 + � �

Z
h2;0 d!

�
; (VIII.35b)

N 2[f ] = Eq. (VIII.13c): (VIII.35c)

We can computeh2;0 using the resolvent Eq. (IV.23), to �nd

h2;0 = � � 
Z

h2;0 d! + �K
 

� + i!
and

Z
h2;0 d! = �K

� 0(� )
1 + �

: (VIII.36)

It eventually gives for the cubic coef�cient

c3 =
� 2K 2

2
� 00

1(� )
� 0

1(� )
� � (�K )2 � 0

1(� )
1 + �

D
~ ;  �

E
: (VIII.37)

As we have previously experienced this type of projection with
D

~ ;  �
E

displays pinching

singularities. Here a simple computation shows that we have a1=� singularity. Hence

c3 � � �
(�K )3

2�
g(0)
1 + �

: (VIII.38)

The sign of� does play an important role here: for� > 0, the contribution of the second
harmonic has an anti-ferromagnetic effect (repulsive), and the transition is always supercritical9

with a scaling
A1 / � (VIII.39)

which recover Daido prediction. So physically this second harmonic repulsion has an effect of
slowing down the synchronization growth. On the contrary if0 < � < 1 the second harmonic
has an attractive effect and the bifurcation is subcritical. For� � 1 the second harmonic
becomes the most unstable mode, so the unstable decomposition on the �rst harmonic has to
be modi�ed. A study of the population of oscillators (via self-consistent method and numerical
experiments) reveals that several clusters of oscillators can be formed in presence of a second
harmonic [KP13, LMLY14, KP14] and that several bifurcation branches with various stability
can exists in the subcritical case. It is not captured in the Crawford analysis where we only see
the onset of synchronization when varying the coupling parameter.

9. To be complete we would have to prove that� 0(� ) > 0 which is the same discussion as in VIII.3 and
Appendix D.3.

161 Laboratoire Jean-Alexandre Dieudonné



CHAPTER VIII. COUPLED OSCILLATORS SYSTEMS: THE KURAMOTO MODEL

5.2 Comparison with the Ott-Antonsen ansatz

When discovering this Kuramoto-Daido model which very much looks like both the Vlasov
case (in terms of singularities) and Kuramoto (in terms of structure), we immediately wondered
if the OA ansatz could apply or not. If it was it would open a door to dimensional reduction
of in�nite dimensional systems with a singular dynamical expansion like the Vlasov equation.
However, it does not work. When trying the ansatz on the Kuramoto-Daido case, we end up
with two equations producing inconsistencies, one for the �rst Fourier mode and one that can
be factorized for higher Fourier modes

@t � + i!� +
K
2

�
� 2r � � r

�
� �

K
2

�
� 3r �

2 � r2� �
�

= 0 k = 1 (VIII.40a)

@t � + i!� +
K
2

�
� 2r � � r

�
� �

K
2

�
� 3r �

2 � r2
1
�

�
= 0 k > 1 (VIII.40b)

r � (t) =
Z

� (!; t )g(! ) d! (VIII.40c)

r �
2(t) =

Z
� 2(!; t )g(! ) d!: (VIII.40d)

It impies
� � 1(!; t ) = � � (!; t ) = � � 1(!; t );

hence thatj� 1j(!; t ) = 1 . Which can be problem for the convergence of the series Eq. (VIII.21).
Note that the OA ansatz works partially when there is uniquely one non zero harmonick

(k = 1 being the standard case). It is partial in the sense that is predictive only for the Fourier
modesn � k. For example, with only non zerosin 3� , the evolution ofr3[f ]; r6[f ]; � � � is known
but notr1[f ]; r2[f ].

Remark VIII.4
The structure� k;0 = � k

1;0 Eq. (VIII.32) a la OA ansatz for the unstable manifold Fourier co-
ef�cients hk;0 that was holding in the standard Kuramoto case does not hold with a second
harmonic. It is thus tempting to link the OA ansatz failure to this lack of power structure in the
unstable manifold. An idea we had was to use the structure of the unstable manifold to guess
an ansatz on the full kinetics equation. But so far it has not worked.

5.3 The Chiba result (2011)

In [CN11] there is a tentative of a mathematical approach to the Kuramoto-Daido problem.
Unfortunately, despite rigorous result with the standard Kuramoto case, it seems that in the
Daido case the bifurcation analysis is not rigorous. He claims to obtain the dynamics for any
coupling function:
"The dynamics on the manifold is derived for any coupling functions. When the coupling func-
tion is sin� , a bifurcation diagram conjectured by Kuramoto is rigorously obtained. When it is
not sin� , a new type of bifurcation phenomenon is found due to the discontinuity of the projec-
tion operator to the center subspace."
Nevertheless, his result is interesting since he �nds for the bifurcation, also a "singular" (in
his case discontinuous) projection that does not produce a singularity of the type1=� , but a
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quadratic term that respects theSO(2) symmetry

_A = �A �
�

1 + �
CjAjA + O

�
jAj2A

�
; (VIII.41)

for someC > 0 coef�cient. This equation produces the same bifurcations than the Crawford
result with a super critical bifurcation with� = 1 when� > 0 and a subcritical one for� 1 <
� < 0. The difference is that a priori the higher orders terms will not diverge which may say
that locally the reduction is exact. If the claim concerning the rigorousness of this approach as
well as the method of derivation remain unclear the idea that a term likejAjA could remove
and contain the singularities at every order is appealing. For Vlasov to get the trapping scaling
would require a

p
jAjA term. But it would still not be enough to account for the trapping

oscillations.

5.4 What is the difference?

The fundamental difference between the standard Kuramoto model and the Kuramoto-Daido
model occurs at the nonlinear level forN 1[f ] = Eq. (VIII.35b). With only a �rst harmonic,
f k is nonlinearly coupled withf k� 1, f k+1 . However, sincef 0 = 0 nothing couples (at every
order) positive Fourier modesk > 0 to negative onesk < 0. Those modes have a free transport
evolutione� ikpt to the "left" fork > 0 and to the "right" fork < 0. With a second harmonic, the
unstable modef 1 is now coupled also withf 3 andf � 1. In the projection, a la Crawford or a la
Chiba it is this negative mode that causes the singularity/discontinuity. In terms of singularities
we understand that positive Fourier modes are associated with poles on (with convention of
Eq. (V.55)) the upper half plane while negative modes will have their poles on the lower half
plane, which eventually causes pinching singularities. For the Ott-Antonsen ansatz this negative
mode is also responsible of the failure Eq. (VIII.40). In fact, in the Vlasov case sincef 0 is non
zero it directly couples positive and negative Fourier modes independently of the presence of
a second harmonic. The "proximity" of this coupling seems to produce the most important
divergence. On this subject if one takes a Daido like model with a �rst and third harmonic
sin� � � sin 3� , f 1 is not directly coupled with its oppositef � 1 but to f � 2. The consequence
is that the cubic coef�cientc3 is nonsingular while the quintic onec5 / � � 2 is. It produces a
scaling with an exponent3=4 � � < 1.

In the result of H. Dietert [Die16b] this positive/negative coupling is also what would cause
the failure of the estimates used for the bifurcation analysis.

Hence the standard Kuramoto model with its exact or even rigorous local dimension reduc-
tion is an exception in the sea of examples with continuous spectrum and generic coupling
function.
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CHAPTER IX

K URAMOTO MODEL WITH INERTIA

We have seen that in the Vlasov-HMF model (Chapter V), singularities appear in the bifur-
cation expansion while in the standard Kuramoto model a regular exact dimensional reduction
is possible. The former model is purely Hamiltonian whereas the latter follows a �rst order dy-
namics. What would give a system interpolating the two models as two limiting cases? Would
such a model display singularities only in the Vlasov limit? Or on the contrary be regular only
for the standard Kuramoto limit? Or something in between? Such a model already exists and
it is called the second order Kuramoto model (or Kuramoto with inertia). It is a second or-
der model with friction
 and inertiam. We �nd that some singularities always appear in the
vicinity of the bifurcation. These singularities come from the coupling with the zeroth Fourier
harmonic term that unlike the original Kuramoto model is not constant in time. In the zero
inertia m = 0 limit we get back the standard Kuramoto case with no singularities, while in
the frictionless limit
 = 0, we recover the Vlasov Hamiltonian Mean Field model with its
characteristic trapping scaling (due to very strong nonlinear effects).

This model was not introduced to serve our questioning but for physical reasons. Inertia
was added to the original Kuramoto model to describe the synchronization of a certain �re-
�ies [Erm91], and proved later useful to model coupled Josephson junctions [WCS96, TSS05]
and power grids [FNP08, ONBT14, DCB13]. Recently, an inertial model on a complex network
was shown to display a new type of "explosive synchronization" [JPM+ 13]. It was quickly
recognized [TLO97a, AS98] that inertia could turn the continuous Kuramoto transition into a
discontinuous one with hysteresis. At �rst sight, a natural adaptation of the original clever self-
consistent mean-�eld approach by Kuramoto [Kur75] seems to explain satisfactorily this obser-
vation [TLO97a, TLO97b] a suf�ciently large inertia induces a bistable dynamical behavior of
some oscillators, that translates into a hysteretic dynamics at the collective level. However, Fig-
ure IX.1 makes it clear that even a small inertia is enough to trigger a discontinuous transition:
this cannot be accounted for by the bistability picture.

Many other generalizations of the standard Kuramoto model have been introduced to better
�t modeling needs. Citing just a few contributions: more general coupling than the solesin� -
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Figure IX.1 – Asymptotic order parameterr as a function ofK for differentm (� = 0). The
arrows indicate the direction of the jumps. Without inertia, the transition is continuous, while
a hysteresis appears already for smallm. Note the presence of a single branch withr 6= 0 for
m = 0:25; 0:5, while there are two form = 1. The dashed line is the partially synchronized
solution given by the self-consistent method (see Appendix D.2) form = 0:5. The frequency
distribution is Lorentzian:g� (! ) = ( �=� )=(� 2 + ! 2) with � = 1.

harmonic [Dai92] (as we have just seen in Section VIII.5), noise [Sak88], phase shifts bringing
frustration [SSK88] (that we will use here), delays [YS99, Izh98] (see the next Chapter), or a
more realistic interaction topology [SSK87, HCK02].

In the Kuramoto model with inertia the only predictive approach so far was the self-consistent
method a la Kuramoto (see the Chapter VIII.1.2 and Appendix D.2). This approach was studied
numerically or analytically in the large friction limit [TLO97a, ONBT14]. The Ott-Antonsen
ansatz fails immediately. However, in [JPRK14] a tentative is done with no true reduction a
la Ott-Antonsen but with some function with �tting parameters. Thus, an unstable manifold
approach was lacking to explain the "explosive" transition toward synchronization observed. It
will also serve as a bridge between the Vlasov HMF and standard Kuramoto model.

In this Chapter, we prove that any non zero inertia, however small, is able to change the
nature of the synchronization transition in Kuramoto-like models, either from continuous to
discontinuous,or from discontinuous to continuous(this latter case is new to the literature
to my knowledge). The bifurcation nature is given again by the sign and scaling of the cubic
coef�cient in the bifurcation expansion. This original result was published in [BM16]. It is
obtained again through an unstable manifold expansion.

We compare our predictions with large-scale numerical simulations (molecular dynamics):
using again a GPU (graphics processing unit) architecture allows us to reach a number of oscil-
lators signi�cantly larger than in most previous works; this is crucial to test with a reasonable
precision scaling laws in the vicinity of bifurcations.
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1. THE MODEL

1 THE MODEL

Our starting point is the model introduced by Tanaka et al. [TLO97a], which adds inertia
to the original Kuramoto model. It has been since then studied by many authors, often in
presence of noise, and we �rst discuss some of the theoretical results obtained so far. [TLO97a]
adapts the original self-consistent Kuramoto method to the presence of inertia, and predicts,
consistently with the numerics, that a large enough inertia makes the transition discontinuous.
The small inertia case was apparently not studied. In [AS98, ABS00], the authors perform a
bifurcation study of the incoherent state in presence of noise, and �nd a critical inertia beyond
which the transition should be discontinuous; their result suggests that a small inertiacan make
a qualitative difference, but the singular nature of the small-noise limit makes an extrapolation
to zero noise dif�cult. We note that a full "phase diagram" compatible with [AS98, ABS00] is
presented in [GCR14, SSK88] (see also [KP14]). In the following, we also add to the model
in [TLO97a] a "frustration" parameter� , as in [SSK88]; this will provide us with a further
parameter to make testable predictions. Our resulting model is then the same as [KP14], without
noise.

Each of theN oscillators in the system has a frequencyvi , with i 2 1; � � � ; N and a phase
� i 2 [0; 2� [; it also has a natural frequency! i , drawn from a frequency distributiong. We
assume thatg is even (g(� ! ) = g(! )). If there is no coupling between oscillators, the actual
frequencyvi tends to their natural frequency! i thanks to the friction. The dynamical equations
for positions and velocities are

_� i = vi (IX.1a)

m _vi = 
 (! i � vi ) +
K
N

NX

j =1

sin(� j � � i � � ): (IX.1b)

This is the second order Kuramoto model (also referred as Kuramoto with inertia). If the inertia
m tends to0, one recovers the usual Kuramoto model Eq. (VIII.1) (over damped dynamics). If

 = 0, there is no restoring force towards the natural frequency, and one obtains for� = 0 a
Hamiltonian model with an all-to-all coupling and a cosine interaction potential, it is the HMF
model Eq. (V.4). We use two rescaled parameters~m = m=
; ~K = K=
 as in [BM16] instead
of K; m; 
 . The Kuramoto limit corresponds to~m ! 0, and Vlasov limit to ~K; ~m ! 1
and ~K= ~m ! cst. Our parameters now coincide with those of [TLO97a]. Dropping the~for
convenience, In theN ! 1 limit, the system Eq. (IX.1) is described by a kinetic equation for
the phase space densityF (�; v; !; t ):

@tF + v@� F +
K

2im

�
r1[F ]e� i� e� i� � r � 1[F ]ei� ei�

�
@vF �

1
m

@v ((v � ! )F ) = 0 ; (IX.2)

where ther k coef�cients representing the different order parameters measuring synchrony are
de�ned as in the �rst order model Eq. (VIII.9b) with an integration over the extra velocity vari-
able.

The �rst step of the problem is as always to �nd the unsynchronized stationary solution
f 0(v; ! ). It is easy to check that

f 0(v; ! ) = g(! )� (v � ! )=(2� ) (IX.3)

is indeed a stationary solution of Eq. (IX.2). The �rst thing to observe is that the velocity
distribution inv lives in a less regular space than usual. Actually, in presence of a Gaussian
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noise the stationary solution is a Gaussian [ABS00] and its zero temperature limit coincide with
Eq. (IX.3). Increasing the coupling strengthK , f 0 changes from stable to unstable. Our goal
is again to study the dynamics of Eq. (IX.2) in the vicinity of this bifurcation. The linear and a
nonlinear decomposition, withF = f 0 + f gives

@t f = L f + N [f ]; (IX.4a)

L f = � v@� f �
K

2im

�
r1[f ]e� i� e� i� � r � 1[f ]ei� ei�

�
@vf 0 +

1
m

@v ((v � ! )f ) ; (IX.4b)

N [f ] = �
K

2im

�
r1[f ]e� i� e� i� � r � 1[f ]ei� ei�

�
@vf: (IX.4c)

In terms of spectrum the perturbation induced by the friction term (last term) is not bounded thus
some changes in the continuous spectrum with respect to Vlasov HFM or standard Kuramoto
model are possible.

2 L INEAR PART

2.1 Eigenvalue problem

Let us solveL 	 k = � 	 k with 	 k =  k(v; ! )ei� . This yields fork = 1 (we remove the
index 1 =  )

(� + iv ) =
1
m

@v ((v � ! ) ) +
K

2im
ei� g(! )� 0(v � ! )

Z
 dv d!;

where� 0(x) stands for the derivative in the distribution sense of the delta Dirac distribution.
The dif�cult part of the inertia bifurcation problem is �rst to solve the eigenvalue problem

which is neither like standard Kuramoto or Vlasov HMF (without friction) neither like Vlasov-
Fokker-Planck (with friction and dissipation). Indeed, in this latter case the functional space
was regular enough so Fourier or Bargman expansion in velocity worked well. Moreover, here
we have two "velocity variables" the natural frequency! and the velocityv. The idea (ansatz)
is to look for a solution of the form

 = U0(! )� (v � ! ) + U1(! )� 0(v � ! ): (IX.5)

Imposing the normalization
Z

 dv d! = 1, one �nds

U0 =
K
2m

ei� g(! )
(� + i! )( � + 1=m + i! )

(IX.6)

U1 =
K

2im
ei� g(! )

� + 1=m + i!
: (IX.7)

where we used the identityx� (n)(x) = � n� (n� 1)(x) for n > 1 andx� (x) = 0 . Expliciting the
normalization condition yields the dispersion relation fork = � 1:

� k(� ) = 1 �
K
2m

eik�
Z

g(! )
(� + ik! )( � + 1=m + ik! )

d! = 0: (IX.8)
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This dispersion relation can be recovered as the noiseless limit of the one in [ABS00], as it
should. One can also check that the limitm ! 1 ; K=m = cst yields the Vlasov dispersion
relation1 with a cosine potential andg(! ) as stationary velocity pro�lef 0(v); them ! 0 limit
yields the standard Kuramoto dispersion relation.

The effect of the friction operator modi�ed the continuous spectrum. Looking at the singular
points in the dispersion relation (or equivalently looking for generalized eigenvector), we do
not �nd one continuous spectrum but many! One is the usual situated on the imaginary axis
while the other are placed in the left plane. In fact, if we had chosen (v; ! ) = Un (! )� (n)(v �
! ), we would have found continuous spectrum on every axisRe� = � n=m. Hence� c =
f �= Re� = � n=m;8n � 0g. Therefore, the effect2 of friction (without noise) on the linear
operator Kuramoto operator is to split the continuous spectrum in an in�nite number of parts
situated in the left plane and thus associated with damped oscillations (excepted forn = 0). It
is interesting the look in [ABS00] at the effect of an additional noise measured byD (dispersion
in velocity as for Vlasov-Fokker-Planck). It has for effect to shift all these spectra further in
the left plane, in particular the spectrum inn = 0 is situated inRe� = � D. Hence stochastic
stability like in Vlasov-Fokker-Planck, Section VII.2.3, does not occur here since the continuous
spectrum still exists after the addition of friction and dissipation. Hence the additional natural
frequency variable must be responsible for this change.

2.2 Adjoint problem

The de�nition of the scalar product with two frequency variables is straight forward

(f 1; f 2) =
Z

hf 1; f 2i d� =
Z Z

f �
1 f 2 d! dv d�: (IX.9)

The adjoint is thus

L y q = v@� q �
1
m

(v � ! )@vq+
K

2im

�
ei� e� i� r1[q@vf 0] � e� i� ei� r � 1[q@vf 0]

�
: (IX.10)

L y is also diagonal when expressed in the Fourier basis with respect to� we thus concentrate
on

e	 k =
~ k(v; ! )

2�
eik� :

Then fork = 1

(� � � iv ) ~ +
1
m

(v � ! )@v
~ =

K
2im

e� i�
Z

g(! )@v
~ (!; ! ) d!: (IX.11)

It is not obvious how to compute~ from the above equation. Nevertheless, takingv = ! , one
easily extracts~ (!; ! ):

~ (!; ! ) =
K

2im
e� i� C

� � � i!

with C a constant to be determined by normalization: we impose
Z

~ �  dv d! = 1. Differ-

entiating repeatedly Eq. (IX.11) with respect tov, and then takingv = ! , one can compute

1. Thanks to an integration by parts.
2. Of course a rigorous spectral analysis is needed to really understand this result.
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~ (n)(! ) = @n
v [ ~ ](!; ! ) for anyn. From Eq. (IX.5), we see that we need to compute up ton = 1

in order to obtainC; the result is

C =
2im
K

ei� 1
� 0(� )�

(IX.12)

which once again links the scalar product
D

~	 ; 	
E

to the derivative of the dispersion relation. In
the following, we will need

~ (!; ! ) =
1

� 0(� )�

1
� � � i!

(IX.13a)

~ (1) (! ) =
i

� 0(� )�

1
(� � � i! )( � � � i! + 1=m)

(IX.13b)

~ (2) (! ) =
� 2

� 0(� )�
�

1
� 2

l=0 (� � � i! + l=m)
(IX.13c)

~ (3) (! ) =
� 6i

� 0(� )�
�

1
� 3

l=0 (� � � i! + l=m)
(IX.13d)

3 UNSTABLE MANIFOLD EXPANSION

In this Section, we are going to perform the unstable manifold expansion in a very similar
fashion than the homogeneous Vlasov case (with or without friction/dissipation).

The dynamics Eq. (IX.2) is symmetric with respect to rotationsSO(2), (�; v; ! ) = ( � +
'; v; ! ); if � = 0 andg(! ) even, it is in addition symmetric with respect to re�ections(�; v; ! ) =
� (�; v; ! ). To simplify a bit the calculation we choose here to takeg even, and we restrict to
the case of two unstable eigenvectors. This is generically the case when:

i) � 6= 0; in this case, there is a complex unstable eigenvalue� , and� ? is also an unstable
eigenvalue;

ii) � = 0, and� is real; in this case, it is twice degenerate, associated with two eigenvectors.
Hence in both cases we will build a two-dimensional unstable manifold. We leave for fu-
ture studies the cases� = 0, � complex, which leads to a four-dimensional unstable man-
ifold [Cra94a], as well as non eveng(! ) distributions. We decompose the solution on the
unstable manifold as before

f = A	 + A?	 ? + H [A; A ?](�; v; ! ): (IX.14)

with H = O((A; A ?)2). We expect once again by symmetry to get

_A = �A + c3jAj2A + O(A5) (IX.15)

H (A; A ?) = AA ?h0;0(v; ! ) + A2h2;0(v; ! )e2i� + c:c:+ : : :

where we have used theA $ � A and translation symmetries. From Eq. (IX.4c) we get for the
Fourier components ofN [f ]:

(N [f ])0 = i
2�Ke � i�

2m
�@v + c :c: + O

�
jAj4

�
(IX.16)

(N [f ])2 = � i
2�Ke i�

2m
A2@v + O

�
A2jAj2

�
: (IX.17)
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Thus, using the time equation as in Eq. (V.44) we have to solve

(2� r � L 0)h0;0 = i
2�Ke � i�

2m
@v + c :c: (IX.18)

(2� � L 2)h2;0 = � i
2�Ke i�

2m
@v : (IX.19)

whereL 0 6= 0 due to the friction term. TheN 1[f ] term gives

_A = �A + AjAj2
2�K
2im

�
ei� h~ ; @vh0;0i � e� i� h~ ; @vh2;0i

�
+ O

�
AjAj4

�
: (IX.20)

3.1 Computation ofh0;0

We start from Eq. (IX.18). We haveh0;0 = h + c:c:, whereh is the solution of

(2� r � L 0) � h = i
2�Ke � i�

2m
@v : (IX.21)

Eq. (IX.21) reads

2� r �
1
m

@v[(v � ! )h0;0] =
2�K 2

4im 2

�
g� 0(v � ! )

(� � � i! )( � � � i! + 1=m)
+ i

g� 00(v � ! )
(� � � i! + 1=m)

�
:

(IX.22)
We introduce the ansatz:

h = W0(! )� (v � ! ) + W1(! )� 0(v � ! ) + W2(! )� 00(v � ! ):

Using the identities

x� 0(x) = � � (x)

x� 00(x) = � 2� 0(x);

we obtain

W0(! ) = 0 (IX.23)

W1(! ) =
2i� (K=2m)2g(! )

(2� r + 1=m)(� + i! )( � + 1=m + i! )
(IX.24)

W2(! ) =
2� (K=2m)2g(! )

2(� r + 1=m)(� + 1=m + i! )
: (IX.25)

3.2 Computation ofh2;0

A similar computation starting from Eq. (IX.19) yieldsh2;0. We have to solve

(2� � L 2) � h2;0 = � i
2�Ke i�

2m
@v : (IX.26)

Using the ansatz
h2;0 = X 0� (v � ! ) + X 1� 0(v � ! ) + X 2� 00(v � ! );
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we obtain

X 0(! ) =
iX 1(! )

(� + i! )

X 1(! ) =
� i (2�Ke i� =2m)U0(! )

(2� + 2 i! + 1=m)
+

4iX 2(! )
(2� + 2 i! + 1=m)

X 2(! ) =
� i (2�Ke i� =2m)U1(! )

2(� + i! + 1=m)
:

3.3 Putting everything together

Inserting the expressions ofh0;0 andh2;0 into Eq. (IX.20), we obtain the �nal reduced equa-
tion we were looking for. Let us start with the �rst contribution, which comes fromh~ ; @vh0;0i :

h~ ; @vh0;0i =
ZZ

~ � (v; ! )
�
(W1(! ) + W �

1 (! )) � (2) (v � ! )

+ ( W2(! ) + W �
2 (! )) � (3) (v � ! )

�
dv d! (IX.27)

=
Z h

~ (2) � (! ) (W1(! ) + W �
1 (! )) � ~ (3) � (! ) (W2(! ) + W �

2 (! ))
i

d!:

We have to compute the above integrals in the limit� r ! 0+ . A pole which moves to the
real axis when� r ! 0+ does not create any divergence by itself (see Section V.5.4) although
the integral is not well de�ned a priori, it can be analytically continued. However, divergences
may appear through "pinching singularities", see Section V.5.4, that is when two poles approach
the real axis, each on one side. From Eq. (IX.13b), Eq. (IX.13c), Eq. (IX.13d) and Eq. (IX.24),

Eq. (IX.25) one sees that a pinching singularity appears only in
Z

~ (2) � W �
1 ; hence this provides

the leading term:

Z
~ (2) � W �

1 d! = i�
K 2

m2

1
(1=m)

1
� 0(i� i )

Z  
g(! )

(� 2
r + ( ! + � i )2)(( � r + 1=m)2 + ( ! + � i )2)

�

1
(� r + 2=m + i(! + � i ))

!

d!

� i�
K 2

m2

1
(1=m)4

1
� 0(i� i )

�
2

g(� � i )
� r

;

where we have used Z
' (x)

x2 + "2
�

" ! 0+
�

' (0)
"

: (IX.28)

Let us turn to the second contribution, coming fromh~ ; @vh2;0i :

h~ ; @vh2;0i =
ZZ

~ � (v; ! )
h
X 0(! )� 0(v � ! ) + X 1(! )� 00(v � ! ) + X 2(! )� (3) (v � ! )

i
dv d!

=
Z h

� ~ (1) � (! )X 0(! ) + ~ (2) � (! )X 1(! ) � ~ (3) � (! )X 2(! )
i

d!: (IX.29)

It is not dif�cult to see that no pinching singularity appears, so that the above term has a �nite
limit when � r ! 0.
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4. DISCUSSION

Figure IX.2 –r (computed in the asymptotic stationary state) as a function of the coupling
constantK for different parameter� , with m = 0:4 or m = 0. Arrows indicate the direction of
the jumps. The frequency distribution is a Lorentzian Eq. (VIII.25), with� = 1. The bifurcation
is clearly sub-critical for� = 1:5; m = 0, and supercritical for� = 1:5; m = 0:4; herer is
linear with K � K c as predicted by Eq. (IX.30). The inset showss(� ), which is positive for
� = 0 and0:524and negative for� = 1:5. The value corresponding to the bifurcation is shown
by a point of the same color as the graph.

We conclude that the leading behavior ofc3 for m > 0 is given by:

c3 �
� 3

2
mK 3 ei�

� 0(i� i )
g(� � i )

� r
: (IX.30)

In particular, the sign ofs(� ) = Re
�

ei�

� 0(i� i )

�
determines the type (sub- or super-critical) of

the bifurcation. Our hypothesis of a two-dimensional unstable manifold ensures that� 0(i� i ) 6=
0).

4 DISCUSSION

Using the reduced dynamics Eq. (IX.15) truncated at orderA3 provides essential qualitative
information: i) The bifurcation is subcritical if and only ifRe (c3) > 0 ii) In the supercritical
case, one obtains the asymptotic order parameterjAj1 �

p
� � r =Re (c3). From this, the

dramatic effect of the inertiam appears clearly: it introduces intoc3 a contribution diverging
like 1=� r , which is the dominant one: the sign ofs = Re (ei� =� 0(i� i )) controls the bifurcation
type, sub-(resp. super) critical fors > 0 (resp. s < 0). For m = 0, the next order term,
which does not diverge when� r ! 0, is needed; the bifurcation is then controlled bys0 =
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CHAPTER IX. KURAMOTO MODEL WITH INERTIA

Figure IX.3 – Asymptoticr as a function ofK for � = 0:8, with m = 0 or m = 0:5. The
frequency distribution is a superposition of two Lorentzian as in [OW12], �gure 3:g(! ) =
�g1 + (1 � � )g� , with � = 0:8, � = 0:075; note thatg is unimodal. The inset shows that
s0(� = 0:8) > 0 (hence discontinuous transition atm = 0), ands(� = 0:8) < 0 (hence
continuous transition as soon asm > 0).

Re(� 00(i� i )=� 0(i� i )) : sub-(resp. super) critical fors0 > 0 (resp. s0 < 0) (this generalizes to
� 6= 0 a result of [Cra95b], see Appendix D.1.1).

Hence, any smallm may either turn a supercritical bifurcation atm = 0 into a subcritical
one, orthe otherway around,turn a subcriticalbifurcationat m = 0 into a supercriticalone.
While the �rst direction, illustrated in Figure IX.1, was anticipated in [GCR14, KP14], the
second direction is unexpected. Figure IX.3 provides an example with a unimodalg(! ) and
� 6= 0. Furthermore, in the supercritical case, we predict the scaling law for the asymptotic
order parameterjAj1 / � r , and this is also observed.

If the distributiong is unimodal we note thats(� = 0) > 0, so the bifurcation is always
subcritical. It means that for the system without frustration parameter� = 0, we indeed proved
that with any inertiam the bifurcation is discontinuous (we should as in the standard Kuramoto
case prove that for generic symmetricg distribution� 0(0) > 0, which we are able to do only
for unimodal function). Finally, Eq. (VIII.16) makes clear that both the standard �rst order
Kuramoto (m = 0; � = 0) and Vlasov (m = 1 ; K=m = cst, see Appendix D.1.2) limits are
singular. In the �rst case, the divergent term vanishes, and the bifurcation is controlled by the
sign ofs0. One recovers the already known results: for a symmetric unimodalg, s0(� = 0) < 0
and the bifurcation is supercritical, with standard scalingjAj1 /

p
� r . In the second case,

Eq. (VIII.16) diverges whenm; K ! 1 . Redoing the computations in this limit indeed yields

(for � = 0) c3 / �
1
� 3

r
, as found in [Cra95a]. This leads to the trapping scalingjAj1 / � 2

r .
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4.1 Numerics

We present in this Section precise numerical simulations that fully support the above anal-
ysis. The Kuramoto codes (with and without inertia) were constructed by myself. The time-
evolved system is obtained via GPU parallel implementation of a Runge-Kunta 4 scheme for
the equations Eq. (IX.1) [GCR14]. The order parameter is computed by its standard discrete
de�nition [Kur75]. For every simulation, we takeN = 65536, and a time step� t = 10� 3.
The asymptotic order parameterr is the average ofjr1j(t) for t 2 [1500; 2000]. In order to
test our prediction on the type of bifurcation, we start from an unsynchronized state (drawing
positions� i uniformly on a unit circle). The! i are sampled according tog, the initial velocities
arevi = ! i . We let the system evolve untilt = 2000and measure the averaged order parameter.
Then we vary the coupling constantK ! K + � K with � K = 0:1 or 0:2 (or smaller close
to transitions) and reiterate the procedure; at some point the bifurcation towards synchroniza-
tion is observed. WhenK is large enough we apply the same procedure in the other direction,
K ! K � � K . Thus, we are able to distinguish clearly a subcritical bifurcation (with a charac-
teristic hysteresis cycle) from a supercritical bifurcation (with no hysteresis). In �gure IX.1, we
see how the hysteretic cycle depends on the inertiam. Form = 1, there are two branches with
r 6= 0: these correspond to the bistable behavior of the single oscillator dynamics in a range of
! , see [TLO97a]; form = 0:5 andm = 0:25, the single oscillator dynamics is not bistable in
the transition region, and, accordingly, there is only one branch withr 6= 0. The bifurcation
remains nevertheless clearly subcritical. Tests varying� are reported on �gure IX.2: we see that
the singular term Eq. (VIII.16) again correctly predicts the type of bifurcation (continuous vs
discontinuous), as well as the scaling of the saturated state in the continuous case. In �gure IX.3
and IX.2, inertia induces a supercritical transition; Eq. (VIII.16) also correctly predicts the lin-
ear scaling of the saturated state in this case. Finally, we note that in the subcritical regime, the
numerically observedK c is sometimes lower than the prediction Eq. (IX.2); this is presumably
related to strong �nite size effects [HCPT07], especially in presence of inertia [ONBT14].

In conclusion, we have once again successfully constructed an unstable manifold expansion
for models of synchronization with inertia and frustration, circumventing the problem of the
continuous spectrum on the imaginary axis. The singularities appearing in the expansion con-
trol the system's behavior in the vicinity of the bifurcation, and allow useful qualitative and
quantitative predictions. In particular, while synchronization models tend to present compli-
cated phase diagrams for which it is dif�cult to develop an intuition [OW12, KP14], we obtain
simple criteria determining the character of the transition. We were also thanks to the cubic
coef�cient able to predict a case where inertia turns a subcritical bifurcation into a supercritical
one, which is new to the literature.

However, to be complete we should look at the higher order terms to check that as previous
cases with singular coef�cients they produce same order terms when there is saturation (Rec3 <
0). A surprising result would be that they produce negligible terms at saturation which could be
a sign that rigorous dimensional reduction is possible. The bad case would be that those higher
order terms are of lower order, which would invalidate this result.

Regarding the guiding thread of this thesis, that is to say the singularities in the unstable
manifold expansion, we have also con�rmed some ideas. The presence of the zeroth harmonic
H0 = jAj2h0 is crucial to qualitative behavior of the bifurcation. As soon as it is non zero (for
m 6= 0) it produces a dominating contribution/ 1=� r in the bifurcation expansion. Never-
theless, here its effect is weaker than in the Vlasov case, which is probably due to the friction

 . Indeed, compared to the Vlasov-HMF case we have hereL 0 6= 0 and a split continuous
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CHAPTER IX. KURAMOTO MODEL WITH INERTIA

spectrum which might weaken the resonance phenomena. To get more insight on what is really
happening a development a la Single Wave Model [BS00, BMT13] for the Kuramoto would be
very useful. However even consideration in terms of critical layers are not simple in Kuramoto
like model since an extra variable! is present.
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CHAPTER X

K URAMOTO MODEL WITH DELAY

This Chapter is dedicated to the study of both �rst and second order Kuramoto model with
delayed interaction. The Kuramoto model with delayed interaction was introduced in [Izh98]
and studied �rst in [YS99] by M.K.S. Yeung and S.H. Strogatz (see [CKKH00] for a self-
consistent and numerical study). The physical motivation for this model is clear: interactions
such as two crickets hearing each other is not instantaneous and always slower than the speed
of light. Of course, such example might seem a bit irrelevant but delay could become non-
negligible in some electrical network like power grid systems [LC04] or coupled neuron sys-
tems [DJM+ 09, DJM+ 09, NUS13, ST15]. Hence what is the effect of delay on the bifurcation
in Kuramoto models? Another challenge is to recover the bifurcation diagram of [YS99] Figure
4 which predicts sub/super-critical bifurcation for a varying delay (in what seems to be a peri-
odic pattern). Providing a cubic coef�cient with such positive/negative oscillation would give
the �rst theoretical explanation/prediction for this phenomenon.

To answer this question, we will have to introduce quickly the essential features of delayed
equation framework. The two main changes are the addition of the delay variable for operators
and functions and the modi�cation of the scalar product. We will then apply this formalism to
the bifurcation problem in a very similar fashion than the two previous Chapters for Kuramoto
system with or without inertia, writing uniquely the crucial steps. In the standard Kuramoto case
as a security check we will also compare the unstable manifold result with the one predicted
by the OA ansatz (which does work in this case). Moreover, thanks to this broader formalism
of delay equations (also called Theory of Functional Differential Equations) we will be able to
prove a general result linking the normalization factor (of the projection on the unstable mode)
with the derivative of the dispersion relation.

The main result of this Chapter yields is the explicit expression of the cubic coef�cient of the
unstable manifold expansion for both Kuramoto models with or without inertia. In the former
case, the expression is compared with the one obtained with the OA ansatz.
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CHAPTER X. KURAMOTO MODEL WITH DELAY

1 THEORY OF DELAY DIFFERENTIAL EQUATION

In this Section, we summarize the formalism to study the linear and nonlinear dynamics of
delay equations. The main points to accept are

— The distribution studiedf (t) is now a function of the delayf t (' ) = f (t+ ' ) (for negative
' ).

— The linear and nonlinear operators have a different expression for zero and non-zero
delay Eq. (X.10)

— The adjoint operators are de�ned through a bilinear form acting as the usual inner prod-
uct.

— This new inner product depends on the delay dependence of the linear operator Eq. (X.11).
Its form is motivated by the so-called Lagrange identities [Hal63, BKNG09, Gao13].

1.1 Extended functional space and operator

In this Section, we motivate with a brief derivation the form of operators in the delay formal-
ism.

The nonlinear operatorM acts on functions in some functional spacef (�; !; t ) 2 B , we
want to study the evolution equation

@
@t

f = M [f ]: (X.1)

We can extend the functional space, for a given� � 0, B� = C 0([� �; 0]; B) denotes the Banach
space of continuous mappings from[� �; 0] intoB equipped with a normkuk = sup

� � � ' � 0
ku(' )kB

for functionu 2 B � . Now for t � 0, f t 2 B � is de�ned byf t (' ) = f (t + ' ) for ' 2 [� �; 0].
Hence the problem writes

@
@t

f (t) = M [f t ]: (X.2)

Operators with delay can be conveniently represented as integral over delay [HL93, GW13]

M [f t ] =
Z 0

� �
[d� (' )]f t (' ) (X.3)

where' acts as the delay variable and� is an operator with bounded variation depending on the
delay parameter. For example, for a discrete time delay� we have

� (' ) = �( ' + � )L (X.4)

that giveM [f t ] = L f t (� � ) = L f (t � � ).
Let f i (' ), for � � � ' � 0 de�ne the "initial condition" (which is a function of delay). The

solution is given by the nonlinear solution operatorT(t):

f t (' ) = ( T(t)F )( ' ); � � � ' � 0: (X.5)

The uniqueness is given by the fact thatT has properties of a semi-group

T(t + � ) = T(t)T(� ) t; � � 0; T(0) = I (X.6)
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Thus, we can rewrite

@
@t

f t (' ) = ( A f t )( ' ); � � � ' � 0 (X.7)

whereA is the in�nitesimal generator of the operatorT which correspond to

(A f t )( ' ) = lim
� ! 0

1
�

[(T(� )f t )( ' ) � f t (' )] : (X.8)

Thus, we deduce1 that

(A f t )( ' ) =

8
<

:

d
d'

f t (' ); � � � ' � 0;

M [f t ]; ' = 0:
(X.9)

We split linear and nonlinear part to write

(A f t )( ' ) = ( D f t + F [f t ])( ' ) =

8
<

:

d
d'

f t (' )

L f t (' )
+

(
0; � � � ' < 0

N [f t ]; ' = 0:
(X.10)

The expression of the operator for nonzero delay is the translation of the function to its previous
times. We will also need to decompose the linear operator in two partsL = L + R, one that
does not contain any delayL term and one with all delayed termsR.

1.2 Dual space

In the spaceB� there is no canonical inner product. However, in 1963 J.K. Hale [Hal63]
managed to de�ne a bilinear form acting as the inner product on this space. The method to
de�ne it is generic for functional space with no natural inner product (some further motivations
are given in Section 1.3 of [Gao13]). In our problem with a discrete delay the scalar product is

(gt ; f t )� = ( g�
t (0)f t (0)) +

Z 0

� �
(g�

t (� � � )Rf t (� )) d� (X.11)

where(g; f ) denotes the usual scalar product onB (position and velocity).
The additional terms contains the delay, this integral term often appears in the context of

boundary problems (here the boundary is the time). The adjoint operator is then

(D ygt )(#) =

8
<

:
�

d
d#

gt (#); 0 < # � �

L ygt (#); # = 0:
(X.12)

The minus sign represents the fact that in the adjoint space the variable delay evolves in the
positive sense0 ! � ("future").

1. (T(� )f t )( ' ) � f t (' ) = ( f t )( ' + � ) � f t (' )
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1.3 Eigenvalue problem

With this new formalism, it rather clear how to solve the eigenvalue problem, indeed we still
look for unstable eigenmodes as

D p(' ) = �p (' ) (X.13a)

D yq(#) = � � q(#): (X.13b)

For# and' 6= 0 the delay dependence is easily extracted to be as

p = p(0)e�' = 	 e�' (X.14a)

q = q(0)e� � � # = e	 e� � � # : (X.14b)

From the' = 0 equation we get

�
�I � L (e� �I )

�
	 =

�
�I �

Z 0

� �
d� (' )e�' I

�
	 = 0 (X.15)

whereI denotes the identity (we have the same type of equation for the adjoint). Calling

�( � ) = �I �
Z 0

� �
d� (' )e�' I (X.16)

we have the dispersion relation as�( � ) = det �( � ). We want as usual the normalization
(q; p)� = 1.

(q; p)� =
�

e	 ; 	
�

�
Z 0

� �

Z '

0
e� � (� � ' )+ ��

�
e	 ; d� (' )	

�
d� =

�
e	 ;

�
I �

Z 0

� �
'e �' d� (' )

�
	

�

=
�

e	 ; � 0(� )	
�

= 1:

(X.17)

The derivative of the dispersion relation appeared naturally during the computation. When
� is a diagonal operator of scalar equation the1=� 0(� ) is the appropriate normalization. It
should prove in a generic fashion, what we have so far always observed Eq. (V.24),Eq. (VI.44),
Eq. (VII.22), Eq. (VIII.12b), Eq. (IX.12), that is that the normalization factor of the adjoint
eigenvector is proportional to1=� 0(� ). In particular it shows that if� 0(i� i ) = 0 (like in non-
homogeneous Vlasov case with� i = 0) the projection on the adjoint space is singular. Note
that the validity of this formal result and its exact formulation is still a bit unclear.

2 OTT-ANTONSEN ANSATZ WITH DELAY

In this Section, we use the OA ansatz to �rst reduce the system to an ordinary differential
equation with delay. This o.d.e with delay has only one mode thus it is direct to use an unstable
manifold reduction with the previous formalism to describe the onset of synchronization.
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2.1 Settings

The delayed model introduced in [YS99] for the �rst order Kuramoto model (with a frustra-
tion parameter) is

_� i (t) = ! i +
K
N

NX

j =1

sin(� j (t � � ) � � i (t) � � ); (X.18)

where the delay� represents the time for one oscillatori to "see" the others. The associated
Kuramoto equation is for the evolution of the densityf (�; !; t ),

@tF (t) + !@� F (t) +
K
2i

@�
��

r1[F ](t � � )e� i� � i� � r � 1[F ](t � � )ei� + i�
�

F (t)
�

= 0: (X.19)

Remark X.1
Thanks to the very generic formalism Eq. (X.4) of delay theory, we could study more complex
delay terms. For example, a continuous delay as

lim
T !1

1
T

Z 0

� T
� j (t + ' ) d� (' )

for some measured� (� ).

2.2 Ott-Antonsen ansatz

As already observed in their original paper [OA08], the Ott-Antonsen ansatz works in the
delayed case. For a Lorentzian distribution

gL (! ) =
�
�

1
(! � ! 0)2 + � 2

(X.20)

centered in! 0: The OA ansatz gives for the order parameter

_r (t) =
K
2

e� i! 0 � + i� r (t � � ) � �r (t) �
K
2

ei! 0 � � i� r � (t � � )(r (t))2: (X.21)

The delay ordinary differential equation is simpler than the kinetic equation Eq. (X.19), but still
in�nite dimensional, because the "initial condition" is a function of delay (and not a �nite set
of values). The reduction Eq. (X.21) is global in the sense that is describe the system for any
r , however the possible bifurcations are not immediately deduced from the sign of the cubic
coef�cient because of the delay that may induce changes. Hence, we want to put Eq. (X.21) in a
"normal form"2, that is the "simplest" equivalent form of a dynamical equation close to a given
bifurcation point, see [Mur06, HI10]. Therefore, this will reduce the dimension of the system
close to the bifurcation (loosing information on the global system).

2. Strictly speaking the �nal equation will be the true normal form up to a rescaling.
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2.3 Unstable manifold calculation

2.3.a Linear part

We start with
_r = L r t + N [r t ] (X.22)

Following the steps of analysis previously stated we de�ne

(D r t )( ' ) =

8
<

:

d
d'

r t (' ) � � � ' < 0

L r t (' ) = Lr t (0) + Rr t (� � ) ' = 0
(X.23)

and

(F [r t ])( ' ) =

(
0 � � � ' < 0

N [r t ] ' = 0
(X.24)

and the adjoint linear operator

(D yst )(#) =

8
<

:
�

d
d#

st (#) 0 < # � �

L yst (' ) = L yst (0) + Ryst (� ) # = 0
(X.25)

with

Lr = � �r; (X.26a)

Rr =
K
2

ei ( � � ! 0 � )r; (X.26b)

N [r t ] = �
K
2

e� i (� � ! 0 � )r t (� � )� r t (0)2: (X.26c)

Let's now solve the eigenfunction equation

D p(' ) = �p (' ) (X.27)

for � � � ' < 0, the solution to Eq. (X.23) givesp = p(0)e�' , from the' = 0 term we get the
dispersion relation

�( � ) = � + � �
K
2

e� �� + i (� � ! 0 � ) : (X.28)

We can �x the initial condition normalizationp(0) = 1 . At criticality, we have

K c

2
cos(� � ! 0� � � i � ) = � (X.29a)

K c

2
sin(� � ! 0� � � i � ) = � i : (X.29b)

ForK > K c we could show that only one complex mode (and its conjugate) goes unstable. All
other mode will have a negative real part.

Remark X.2
This time the o.d.e. Eq. (X.21) is really simple compared to a kinetic equation. For example,
we can see from Eq. (X.28) that there is no continuous spectrum. Thus, we do not expect the
unstable manifold expansion to be plagued by singular effects coef�cients. Moreover, since
there is only one unstable mode (and its conjugate) for smallK � K c the unstable manifold will
be attractive [Mur06, GW13, HL93] (thus the local reduction rigorous).
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2.3.b Adjoint problem

From the adjoint problem we get of course the same dispersion relation and an eigenvector
associated with� � of the formq(#) = q(0)e� �# . The normalization forq is chosen such that
(q; p)� = 1, with the expression of the inner product we easily get that

q(0) =
1

� 0(� )
=

1
1 + � K

2 e� (� + i! 0 )+ i�
: (X.30)

2.3.c Nonlinear part

We now seek to expand the dynamic aroundr = 0 when the asynchronous state is unstable
K � K c > 0. The unstable manifold expansion is

r t (' ) = A(t)p(' ) + wt (' ) (X.31)

whereA(t) = ( q; rt )� and0 = ( q; wt )� . The time evolution is

_A = �A + ( q;F [r t ])� = �A + q(0) N [r t ]: (X.32)

Since we requirewt = O(A2), the nonlinear term is of order three, we don't even have to
compute the �rst order ofwt ,

N [Ap] = �
K
2

ei (! 0 � � � )p� (� � )p(0)2jAj2A

is enough. We get eventually the normal form of the delayed problem

_A = �A �
K
2

e(i! 0 � � � )� � i�

1 + � K
2 e� ( i! 0+ � )� + i�

jAj2A + O
�
jAj4A

�
: (X.33a)

The relevant parameter to study the bifurcation type is given by the sign of the cubic term in the
limit � r ! 0,

Rec3 = �
K c

2
Re

 
ei (! 0+ � i � � )�

1 + � K c
2 e� i (! 0+ � i � � )�

!

: (X.33b)

This result will be analyzed later Section X.3.5.b.

3 STANDARD K URAMOTO MODEL WITH DELAY

In this Section, the idea and method are exactly the same as before except that we work
directly on the delay kinetic system (and not on the OA ansatz). The result obtained for generic
g distribution will be compared in the LorentziangL case with the previous result Eq. (X.33).
Also, as in the Kuramoto case we will observe that the unstable manifold structure at �rst order
is the same as for the OA ansatz for generic distributiong.
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3.1 Setting

Let's g(! ) be a symmetric distribution centered in! 0. By a change of variable! ! ! � ! 0,
� ! � � ! 0� we now study a symmetric 0-centered distribution with phase lag! 0� (in addition
to the phase lag� ). For a perturbation of the incoherent initial state,F = g(! )=(2� ) + f

@t f = L f + N [f ]: (X.34)

Following the steps of the previous analysis

(D f t )( ' ) =

8
<

:

d
d'

f t (' ) � � � ' < 0

L f t (' ) = Lf t (0) + Rf t (� � ) ' = 0
(X.35)

and

(F [f t ])( ' ) =

(
0 � � � ' < 0

N [f t ] ' = 0
(X.36)

and the adjoint linear operator

(D ygt )(#) =

8
<

:
�

d
d#

gt (#) 0 < # � �

L ygt (' ) = L ygt (0) + Rygt (� ) # = 0
(X.37)

with

Lf = � !@� f; (X.38a)

Rf = �
K
2i

g(! )
2�

@�
�
r1[f ]e� i� � i ( � � ! 0 � ) � r � 1[f ]ei� + i (� � ! 0 � )

�
; (X.38b)

N [f t ] = �
K
2i

@�
��

r1[f t ](� � )e� i� � i ( � � ! 0 � ) � r � 1[f t ](� � )ei� + i (� � ! 0 � )
�

f t (0)
�

: (X.38c)

3.2 Eigenvalue problem

Let's now solve the eigenfunction equation

D p(' ) = �p (' ) (X.39)

for � � � ' < 0, the solution of Eq. (X.35) givesp = 	 e�' . The' = 0 equation gives

	( �; ! ) =  (! )ei� =
K
2

e� �� + i (� � ! 0 � ) g(! )
� + i!

ei� : (X.40)

We choose to normalize such thatr1[	] = 2 � , this yield the dispersion relation

�( � ) = 1 �
K
2

e� �� + i (� � ! 0 � )
Z

g(! )
� + i!

d!: (X.41)

Here we have computed the eigenvectorp and associated eigenvalue� associated with thek = 1
spatial mode, by the exact same procedure we can show thatp� is an eigenvector associated with
the eigenvalue� � . The eigenvalues�; � � are both associated with a eigenspace of dimension
one because the re�exion symmetryO(2) is broken thanks to the phase lag� � ! 0� .
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3.3 Adjoint problem

By adjoint computations we get

q(#) = e	( �; ! )e� � � # = ~ (! )
ei�

2�
e� � � # =

1
� 0(� )

1
� � � i!

ei�

2�
e� � � # (X.42)

where we have chosen the normalization factor so that(q; p)� = 1. As expected from the
general relation Eq. (X.17), the function� 0(� ) appears, even though the scalar product choice
was non-intuitive.

3.4 Unstable manifold calculation

We now decompose the perturbed solutionf t along the two unstable eigenvectors and the
unstable manifold

f t (' ) = A(t)p(' ) + A � (t)p� (' ) + wt (' ) (X.43)

with A(t) = ( q; f t )� , (q; p� )� = 0 and(q; wt )� = 0. The time evolution equation is hence
rewritten as

_Ap + c:c: + _wt = AD p + c:c: + D wt + F [f t ]: (X.44)

After projections, it reads:

_A = �A + ( q;F [f t ]) = �A + ( q(0); N [f t ]) = �A +
D

~ ; N 1[f t ]
E

(X.45a)

_wt = D wt + F [wt ] �
D

~ ; N 1[f t ]
E

p �
D

~ � ; N 1[f t ]
E

p� : (X.45b)

The 0th Fourier mode is zero as in the standard Kuramoto case, so only the second harmonic
term(wt )2 will contribute to the cubic coef�cient. The Fourier terms of the nonlinear operator
is

N 1[f t ] = � AjAj2
K
2

r1[p� ](� � )e� i ( � � ! 0 � )(wt )2;0(0) + O
�
AjAj4

�
(X.46a)

N 2[f t ] = A2Kr � 1[p](� � )ei ( � � ! 0 � )p(0) + O
�
A2jAj2

�
(X.46b)

where we can obtain at �rst order

(wt )2;0(' ) = h2;0e2�' (X.47a)

(ht )2;0 =
�K 2

2
g(! )

(� + i! )2
e2i (� � ! 0 � )e� 2�� : (X.47b)

In this computation with time derivative one should not get confused by the presence of a delay
variable that is considered separately. The delay dependence is obtained again through equation
Eq. (X.35) for nonzero delay.
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The cubic coef�cient is then obtained thanks to Eq. (X.45a) and Eq. (X.46a)

c3 = �
� 2K 3

2
e� 2�� � � � � + i (� � ! 0 � )

� 0(� )

Z
g(! )

(� + i! )3
d!

= � � 2K 2e� 2� r �

R g(! )
(� + i! )3

R g(! )
(� + i! )2

+ �
R g(! )

(� + i! )

c3 = � � 2K 2e� 2� r �

R g(! )
(� + i! )3

R g(! )
(� + i! )2

+ �
2
K

e�� � i ( � � ! 0 � )

(X.48)

where we have used that� is an eigenvalue of the dispersion relation to obtain the last line. This
yields the main result of this Section. The sign ofRec3 in the� r ! 0 limit gives the nature of
the bifurcation. The delay adds an oscillating term in the coef�cientc3, in addition to modifying
the eigenvalue. For a �xed! 0 and varying delay� one can plot the sign ofc3 computing at the
criticality K = K c(� ) and� = � (� ), see Figure X.1.

Remark X.3
As in the standard Kuramoto case no divergence appears within the unstable manifold approach
thus the one dimensional local reduction should be rigorous. Once again, we link this success
with the fact that we have despite the delay a constant zeroth harmonicf 0 (N 0 = L 0 = 0) and
no coupling between positivef k> 0 and negative modesf k< 0, see Section VIII.5.4. Moreover,
the unstable manifold lies at its �rst order on the OA manifold as in the standard Kuramoto case
(see Section VIII.5.2). Indeed, its coef�cients have the OA ansatz form:(wt )k;0 = � k

t for some
� t .

3.5 Application

3.5.a Centered distribution! 0 = 0

Can a delay affect the bifurcation of symmetric centered distributiong with no frustration
parameter? Letting� r ! 0 in Eq. (X.48) and Eq. (X.41) we get that with�; ! 0 = 0, � i = 0 and
K c = ( K c)Kuramoto

c3 =
� 3K 2

c

2
g00(0)

� PV
R

(g0(! )=! ) + 2 �=K c
: (X.49)

Therefore, for a unimodal function we see that the sign of the coef�cient is unchanged compared
to the standard Kuramoto case since both denominator terms are positive. Ifg(! ) is for example
bimodal with real eigenvalue the sign of the denominator is unchanged (see Appendix D.3).
Remember that the case of a symmetric distribution with complex eigenvalue is possible but
requires a four-dimensional unstable manifold that this result does not cover. In conclusion for
"standard" (at least unimodal and bimodal where we could prove the sign of the denominator)
distribution with real eigenvalue, delay does not affect the nature of the bifurcation nor the
critical coupling.
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3.5.b Lorentzian distribution

For a LorentziangL (! ) =
�
�

(! 2 + � 2)� 1 the integral in Eq. (X.48) are easy to compute with

Z
gL (! )

(� + i! )n
= ( � + � )� n

and so is the dispersion relation, that gives the same expression as in the OA case Eq. (X.28).
The cubic coef�cient is then

(cL )3 = � (2� )2 K
2

e� � � � e� i (� � ! 0 � )

1 + � K
2 e� �� + i (� � ! 0 � )

(X.50)

which is the exact same coef�cient (up to the changer � 2�A ) as with the OA ansatz Eq. (X.33a)
which con�rms both results.

A direct application is to recover the numerical observation of [YS99] Figure 4 which pre-
dicts for a Lorentzian (with� = 0:1 and! 0 = 3) the critical coupling constant line with respect
to delayK c(� ). Moreover, in this article simulations were performed for� = 1 and2 and show
respectively a subcritical and supercritical bifurcation. These observations agree fully with Fig-
ure X.1; our plot ofRec3 is indeed positive for� = 1 and negative for� = 2. Furthermore,
thanks to this theoretical expression Eq. (X.48) we can do simple predictions. As observed
in [YS99] for Lorentzian Eq. (X.20)

— K c is minimum for every! 0� = 2n� with associatedK c = 2� and� i = 0. Thus, in
these points

Rec3 = �
1

1 + ��
< 0:

— K c is a local maximum for! 0� = (2 n + 1) � .
It is possible to show3 with Eq. (X.41) that for� ! 1 , � i � ! � � andK c ! 2� . So above
some critical delay� c, we always haveRec3 < 0.

Hence we have given for the �rst time (to my knowledge) a theoretical support for the nu-
merical observations of [YS99]. Moreover, we could predict that for large delay the bifurcation
is always supercritical. Of course, this demonstration holds only for Lorentzian distribution
Eq. (X.20) but thanks to our generic results Eq. (X.41), Eq. (X.48) one could also study other
distributionsg(! ).

4 KURAMOTO MODEL WITH INERTIA AND DELAY

As we have motivated in the introduction, in some electric systems (like power grid or neural
systems) delay could play a non-negligible part. Some of those system requires a second order
description including an inertial dynamics. It is thus natural (now that we have all the tools) to
study the Kuramoto model with inertia. The method is very similar to the previous Section and
the Chapter IX on inertia so we will jump some identical steps.

3. Doing the demonstration for the local maximum! 0� = (2 n + 1) � .
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Figure X.1 – Stability region of the incoherent state for LorentziangL (! ) = Eq. (X.20) with� =
0:1and! 0 = 3. The solid line shows the critical lineK c(� ) (for K > K c the system is unstable).
The red dashed line shows the associated4 Rec3 at criticality (it has been multiplied by four to
be visible). Its sign determines the super/sub-critical nature of the bifurcation. Vertical dotted
lines� = 1 and 2 show where the bifurcation simulations were performed in Figure 4 of [YS99].

4.1 Settings

The microscopic model is

_� i (t) = vi (t) (X.51a)

m _vi (t) = ( ! i � vi (t)) +
K
N

NX

j =1

sin(� j (t � � ) � � i (t) � � ): (X.51b)

While the kinetic equation (in rescaled parameters) for the phase space densityF (�; v; !; t ) is

@tF (t) + v@� F (t) +
K

2im

�
r1[F ](t � � )e� i (� + � ) � r � 1[F ](t � � )ei ( � + � )

�
@vF (t)

�
1
m

@v ((v � ! )F (t)) = 0 ;
(X.52)

where we have only written the time dependence, the order parameter de�nition is unchanged
Eq. (VIII.9b). The incoherent stationary solution is stillF (�; v; !; t ) = f 0(v; ! ) = g(! )� (v �
! )=(2� ). We write Eq.Eq. (X.52) as a sum of a linear and a nonlinear part, withF = f 0 + f :

df t

@t
= D f t + F [f t ]; (X.53)
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with the delay operatorsD, F and the adjointD y de�ned as in Eq. (X.35) and Eq. (X.37) with

Lf = � v@� +
1
m

@v ((v � ! )f ) ; (X.54a)

Rf = �
K

2im

�
r1[f ]e� i� e� i (� � ! 0 � ) � r � 1[f ]ei� ei ( � � ! 0 � )

�
@vf 0; (X.54b)

N [f t ] = �
K

2im

�
r1[f t ](� � )e� i� e� i� � r � 1[f t ](� � )ei� ei�

�
@vf (0): (X.54c)

4.2 Eigenvalue problem

Similarly the eigenvalue problem
D p = �p (X.55)

is straightforward, withp(' ) = 	 e�' =  e i� e�' . For ' = 0, looking for a solution in the form

 = U0(! )� (v � ! ) + U1(! )� 0(v � ! ) (X.56)

and imposing the normalization
Z

 dv d! = 1, one �nds

U0 =
K
2m

ei ( � � ! 0 � )e� �� g(! )
(� + i! )( � + 1=m + i! )

(X.57)

U1 =
K

2im
ei ( � � ! 0 � )e� �� g(! )

� + 1=m + i!
: (X.58)

Expliciting the normalization condition yields the dispersion relation:

�( � ) = 1 �
K
2m

ei ( � � ! 0 � )e� ��
Z

g(! )
(� + i! )( � + 1=m + i! )

d! = 0: (X.59)

Hence, if� is an eigenvalue ofD1, � � is an eigenvalue ofD � 1, as expected from the rotation
symmetry.

We compute the adjoint eigenvector asq(#) = e	 e� � � # = ~ 
ei�

2�
e� � � # , through

(� � � iv ) ~ +
1
m

(v � ! )@v
~ =

K
2im

e� i (� � ! 0 � )e� � ? �
Z

g(! )@v
~ (!; ! ) d!: (X.60)

Again the normalization with1=� 0(� ) will play an important role. The expression of the
~ (n)(!; ! ) terms is formally the same as in Eq. (IX.13).

4.3 Unstable manifold

The decomposition on the center manifold is again

f t (' ) = A(t)p(' ) + A � (t)p� (' ) + H [A; A � ](' ) (X.61)

with A(t) = ( q; f t ), (q; p� ) = 0 and (q; H) = 0 with the same time evolution equations
Eq. (X.45). The dynamical expansion gives

_A = �A + AjAj2
2�K
2im

�
ei ( � � ! 0 � )e� �� h~ ; @vh0;0i � e� i (� � ! 0 � )e� � � � h~ ; @vh2;0i

�
+ O

�
AjAj4

�
:

(X.62)
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The Fourier component of the unstable manifold can be computed as before for' 6= 0
(wt )0;0(' ) = h0;0e2� r ' , (wt )2;0(' ) = h2;0e2�' and with the "boundary condition"' = 0

(2� r � L 0) � h0;0 = i
2�K
2m

e� i (� � ! 0 � )e� � � � @v + c :c: (X.63)

(2� � L 2) � h2;0 = � i
2�K
2m

ei ( � � ! 0 � )e� �� @v : (X.64)

4.3.a Computation ofh0;0

We start from Eq. (X.63). We haveh0;0 = h + c:c:, whereh is the solution of

(2� r � L 0) � h = i
2�K
2m

e� i (� � ! 0 � )e� � � � @v : (X.65)

Eq. (X.65) reads

2� r h0;0 �
1
m

@v[(v � ! )h0;0] =
2�K 2

4im 2
e� 2� r �

�
g� 0(v � ! )

(� � � i! )( � � � i! + 1=m)
+ i

g� 00(v � ! )
(� � � i! + 1=m)

�
:

(X.66)

We introduce the ansatz:

h = W0(! )� (v � ! ) + W1(! )� 0(v � ! ) + W2(! )� 00(v � ! ):

to get

W0(! ) = 0 (X.67)

W1(! ) =
2i� (K=2m)2e� 2� r � g(! )

(2� r + 1=m)(� + i! )( � + 1=m + i! )
(X.68)

W2(! ) =
2� (K=2m)2e� 2� r � g(! )

2(� r + 1=m)(� + 1=m + i! )
: (X.69)

4.3.b Computation ofh2;0

A similar computation starting from Eq. (X.64) yieldsh2;0. We have to solve

(2� � L 2) � h2;0 = � i
2�K
2m

ei ( � � ! 0 � )e� �� @v : (X.70)

Using the ansatz
h2;0 = X 0� (v � ! ) + X 1� 0(v � ! ) + X 2� 00(v � ! );

we obtain

X 0(! ) =
iX 1(! )

(� + i! )

X 1(! ) =
� i (2�Ke i ( � � ! 0 � )e� �� =2m)U0(! )

(2� + 2 i! + 1=m)
+

4iX 2(! )
(2� + 2 i! + 1=m)

X 2(! ) =
� i (2�Ke i ( � � ! 0 � )e� �� =2m)U1(! )

2(� + i! + 1=m)
:
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4.3.c Putting everything together

As in IX.3.3 one can insure that the only diverging term will comes from
Z

~ (2) � W �
1 ; thus

the leading term is
Z

~ (2) � W �
1 d! � i�

K 2

m2

e� 2� r �

(1=m)4

1
� 0(i� i )

�
2

g(� � i )
� r

; (X.71)

We conclude that the leading behavior ofc3 for m > 0 is given by:

c3 �
� 3

2
mK 3 ei ( � � (! 0+ � i )� )

� 0(i� i )
g(� � i )

� r
: (X.72)

In particular, the sign ofs(� ) = Re
�

ei ( � � (! 0+ � i )� )

� 0(i� i )

�
determines the type (sub- or super-critical)

of the bifurcation.

Remark X.4
As we have seen the second order Kuramoto model links the Vlasov-HMF model with the
standard Kuramoto model. Thus, here without really paying attention we have also studied the
delayed Vlasov-HMF model (one should take the frictionless limit as shown in D.1.2 for the
non-delay equation). In this limit, we also expect the delay to change periodically the super/sub-
critical nature of the bifurcation.

Figure X.2 – Stability region of the incoherent state for LorentziangL (! ) = Eq. (X.20) with
� = 0:1 and! 0 = 3. We show theK c(� ) andRec3(� ) for m = 0:1 and3. The signs ofRec3(� )
determines the super/sub-critical nature of the bifurcation.

191 Laboratoire Jean-Alexandre Dieudonné



CHAPTER X. KURAMOTO MODEL WITH DELAY

4.4 Application to a Lorentzian distribution

To get some insight of what is the effect of inertia in a delay system we once again do a
Lorentzian application. The dispersion relation gives Eq. (X.59) at criticality

K c

2
=

�
� + m� 2 � m� 2

i

�
csc((! 0 + � i )� ) (X.73a)

� i (1 + 2�m )
� + m� 2 � m� 2

i
= � tan(( ! 0 + � i )� ): (X.73b)

A full demonstration on the behavior ofK c(� ) and � i (� ) is more tedious than in the stan-
dard Kuramoto case but is in principle doable. The sign of the cubic coef�cient is given for a
Lorentzian by

s(� ) = Re
�

(� + i� i )2(1 + m(� + i� i ))2

m(1 + ( � + i� i )( � + m(i� i � + �� + 2)))

�
: (X.74)

We plot on Figure X.2K c andRec3 with respect to the delay for two different inertiam = 0:1
and 3 for the same Lorentzian distribution than in Figure X.1. As before we see that the inertia
makesRec3 positive when there is no delay� = 0. Moreover, as before the delay induces some
"oscillations" in the sign ofRec3. Therefore, we predict that systems with inertia and a delay
� � 1 display a supercritical bifurcation toward synchronization. Moreover at large� it seems
clear thatK c(� ) � !1�! K c(0) andRec3(� ) � !1�! Rec3(0) > 0.

Université Côte d'Azur 192



CHAPTER XI

REMARKS , CONJECTURES,
CONCLUSION & P ERSPECTIVES

To conclude Part Two, we dedicate this Chapter to a summary of the results obtained with
the various bifurcation analyses we performed.

We have studied multiple collisionless kinetics equations accounting for different physical
situations. Each time, the goal was to describe the dynamics of these equations (of in�nite
dimension) close to unstable steady state. We wanted to obtain a dimensional reduction of the
problem to get a simple description of the bifurcation. This dimensional reduction often yields
a one-dimensional (or two-dimensional if the order parameter is complex) regular differential
equation.

Each system had its own dif�culties inherent with its physical speci�cities. Nevertheless,
in each situation we managed to perform the Unstable Manifold expansion: we provided the
expression of the cubic coef�cient (or quadratic for the Vlasov non homogeneous case) and thus
the qualitative nature of the bifurcation. Every numerical test done was fully supporting of our
analytical �ndings (scaling, nature of the bifurcation, parameters dependence). Thus, despite
the singular nature of the unstable manifold reduction when neutral modes (or a continuum of
neutral modes) are present, it made every time right predictions. Its general formalism makes
it suitable for very generic problems (delay, dissipation/friction, ...). Our results should then
establish further the singular expansions a la Crawford as a method of choice to understand the
qualitative behavior of collisionless models.
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Dif�culties and Speci�cities

— Vlasov around non homogeneous state (VNH) with non oscillating perturbation� 2 R:
Technically We need the angle-action variables to deal with the linear problem. Com-

putation of the Fourier coef�cients of the HMF potential in angle-action variable.
Numerically The GPU semi-Lagrangian HMF-Vlasov solver was generously provided

by T. R. Filho [RF13]. Small modi�cations were necessary to handle the initial con-
ditions and the output data. Our study required careful choices of parameters (grid
size and maximum velocitypmax ) close to the bifurcations. The other numerical
work hidden in this manuscript is related to the precise evaluation of the theoretical
expressions e.g. roots of the dispersion relation for the eigenvalue� , determination of
the equilibrium parameters(M 0; � 0), angle-action functions (
( J ),cm (J ), ...), Triple
Zero coef�cients, ... This was whole done using the software Mathematica [Inc].

Physically Weaker resonances that allow a three-dimensional reduction of the bifurca-
tion, reproducing well the simulations. This reduction could be very generic.

— Vlasov-Fokker-Planck (VFP):
Technically Velocity Fourier description of the problem, asymptotic behavior of inte-

grals with special functions.
Physically Interplay between two small parameters leading to different types of critical

layer dominating in different regimes at the bifurcation.
— Kuramoto with inertia (KuI):

Technically Three variables (�; v; ! ); the eigenvalue problem is solved with distribu-
tions.

Numerically The GPU codes used for the numerical part were developed during the
thesis using standard schemes [GCR14]. We also evaluated via Mathematica [Inc],
all the wanted quantities e.g.K c; c3(� ), ...

Physically Singular contributions controlling the bifurcation nature even for small iner-
tia.

— Kuramoto with delay (KuD) with and without inertia:
Technically Functional differential equations.
Physically Delay does not bring any singularities but it changes the sub/super-critical

nature of the bifurcation periodically up to some critical delay.
We summarize further the main characteristic of each case treated in Table XI.1.
— The symbol• stands for cases treated originally by J.D. Crawford.
— H means Hamiltonian system.
— k 7 0 means presence of nonlinear mixing of positive and negative Fourier modes.
— CS means continuous spectrum.
— H.O.T. stands for the higher order terms.
— Reduction asks if a dimensional reduction was found. It is not de�nitive, it only speci�es

the current state of the art.
So far only four of these systems have (or are believed to have) exhibited a dimensional reduc-
tion. The �rst one is the standard Kuramoto model where a global reduction (valid for any order
parameter) of the dynamics is achievable thanks to the Ott-Antonsen (OA) ansatz. Moreover
for this systems strong mathematical results were obtained. The second system is the Kuramoto
with delay model where the OA ansatz yields an in�nite dimensional delayed ordinary differ-
ential equation. This latter equation can be studied locally via standard bifurcation techniques
(e.g. center manifold for delayed equations). The third system is the VNH model with� 2 R
(non oscillating perturbation) where a three-dimensional reduction through the Triple Zero nor-
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mal form was done. In this case we believe that weak resonance effect could allow a rigorous
regular reduction using the center manifold method. The fourth model where dimensional re-
duction is expected is the Vlasov-Fokker-Planck system with "large" friction (� � 
 1=3). This
is quite standard for dissipative systems. Numerical test would probably help to better under-
stand the interplay between the friction
 and instability rate� .

What makes these cases (Ku, KuD, VNH) so unique? Remember that at the linear level all
the eight cases display more or less the same characteristics with the Landau damping (through
phase mixing in velocity) while differences emerge at the nonlinear level. For the standard and
delay Kuramoto model it seems that the non mixing of Fourier modes is the biggest difference,
while for VNH the weak resonance of particles around the separatrix with the unstable wave
is the key ingredient. Could these two phenomena be somehow related? In the Kuramoto case
there seems to be strong resonances but since there is no real velocity variable ("overdamped
oscillators" with their own natural frequency), it is dif�cult to be de�nitive. In the VNH case
there is mixing between negative and positive Fourier modes, nevertheless terms that usually
produce pinching singularities due to this mixing are strongly attenuated.

How are the resonances linked with the mixing of Fourier modes?

H? k 7 0 CS � 0(0+ ) ck H.O.T. Reduction

• VH Yes Yes Yes 6= 0 c3 � � � 3 = No

VNH Yes Yes
Yes

depends on
Vint ;f 0

+weak
resonances

0 c2 / � � 1 = Yes?
TZ?

VFP No Yes No 6= 0 c3 /

8
><

>:

i) � � 3

ii) �
 � 4=3

iii) O (1)

8
><

>:

= ?

� ?

� ?

8
><

>:

No?

Yes?

Yes?

• Ku No No Yes 6= 0 c3 / O (1) �
Yes

O.A. ansatz
Math results

• Ku2nd No Yes Yes 6= 0 c3 / � � 1 = No

KuI No Yes Yes
split 6= 0 c3 / � � 1 = ? No

KuD No Yes Yes 6= 0 c3 / O (1) � Yes
O.A. ansatz

KuID No Yes Yes
split 6= 0 c3 / � � 1 = ? No

Table XI.1 – Comparison between the various kinetic models studied. VH: Vlasov homoge-
neous; VNH: Vlasov non homogeneous (with� 2 R); VFP: Vlasov-Fokker-Planck; Ku: Stan-
dard Kuramoto; Ku2nd: Kuramoto-Daido; KuI: Kuramoto with inertia; KuD: Kuramoto with
delay; KuID: Kuramoto with inertia and delay; TZ: Triple Zero.
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1 CONJECTURES

Since many directions have been evoked to understand the possibility of a dimensional re-
duction we listed ideas and conjectures on the topic.

Conjecture XI.1
If the unstable manifold approach can be performed without singular coef�cients, then the bi-
furcation description is exact close to the criticality.

A stronger version that could be applied to the VFP system.

Conjecture XI.2
When the bifurcation is supercritical and higher order terms of the unstable manifold are negli-
gible at the saturation level, then the reduction can be made exact close the criticality.

As we have seen we know that the opposite implication is false: indeed if the expansion has
the same order coef�cient it does not mean that there are no possibilities to obtain a dimen-
sional reduction. For example, in the �nite dimensional case Section IV.1, the one dimensional
unstable manifold was singular while a two-dimensional model (in this case the full model) was
not. Moreover, it seems that the same thing happens with VNH where the unstable manifold is
singular and a three-dimensional description is not.

Is there any case where the unstable manifold expansion fails? Why does it has always
provided (so far) the right scaling and bifurcation nature via thec3 sign, with the right param-
eters dependence (as tested for example in KuI and KuD by varying the frustration or delay
parameter)? Is there a way to show mathematically that this is true? We can risk the following
conjecture:

Conjecture XI.3
The unstable manifold always yields the right sub/super-critical behavior of the bifurcation. In
the supercritical case, it also provides the right saturation scaling.

Continuous Spectrum

The continuous spectrum (CS) and in general the in�nite dimensional structure of neutral
modes in these kinetic equations were being pointed as necessarily responsible of singularities
in the unstable manifold expansion. Additionally, dimensional reduction looked hopeless with
this structure, though we saw in the standard Kuramoto model and up to a certain extent in the
VNH model (with� real) that this was in general false.

However even if the CS does not necessary imply singular coef�cients with respect to� we
might conjecture that:

Conjecture XI.4
To get a singular unstable manifold expansion, one needs a slow manifold of dimension strictly
larger than the unstable manifold. This slow manifold is associated with eigenvalues� k (or a
continuum of neutral modes) that are of the same order (or smaller) than the unstable mode
0 � j Re� k j . Re� .
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Since the unstable manifold close to the criticality is always included in the slow manifold, it
follows that as soon as an additional slow mode is added the unstable manifold will be singular.

In the VNH unstable description we also have a non empty slow manifold: in addition to
unstable eigenvalue� ! 0+ there is the stable one approaching the imaginary axis from the left
� � ! 0� .

Resonances

Regarding the resonances, we have seen their crucial role in the VNH case: due to very
weak effects the system behaves like a �nite dimensional system with a Jordan block. This

phenomenon was translated by
�

e	 � ; 	 �

�
/ � 0(� ) � ! 0�! 0 (where we explicit the normalization

factor for this scalar product). With strong resonances, the same limit was non zero. In the VNH
case this zero limit required to extend the eigenbasis at criticality from one to three (and not two
because of the additional eigenvalue in 0). For VH the unstable manifold was of dimension two
(due to symmetry) but at criticality it did not turn to four as it is expected for �nite dimensional
systems. We can thus try the following conjecture

Conjecture XI.5
If at criticality � 0(0+ � � i ) = 0 then center manifold expansion can be done thanks to general-
ized eigenvectors and will provide a non singular dimensional reduction of the bifurcation.

This means that such systems could behave as �nite dimensional ones, thus implying that
along all the in�nite dimensional effects of a Vlasov/Kuramoto like equation, one of the most
essential could be the resonance effect (and removing it would change greatly the bifurcation
dimension).

Nevertheless, does it mean that models with� 0(0+ � � i ) 6= 0 cannot be reduced? No, because
in the standard Kuramoto exact reduction exists (Section VIII.3 and VIII.4 or [OA08, CN11,
Die16b]) although� 0(0+ � � i ) 6= 0. Hence there must be another (related?) mechanism.

Nonlinear spatial Fourier mixing

Conjecture XI.6
In an unstable manifold expansion with neutral modes (or continuum of neutral modes), the
zeroth harmonic always gives the most singular (or equally singular) contribution (except if it
is zero) to the bifurcation equation.

In the Kuramoto standard case there is a constant zeroth harmonic while in Vlasov systems
(and probably in generic Hamiltonian systems) this is not the case.
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Single Wave Model

The Single Wave Model (SWM) [dCN98a, dCN98b, BMT13] is an in�nite dimensional
normal form of the VH model. This normal form is shared with many Hamiltonian systems like
Euler 2D and the XY model. The Kuramoto model and its relatives (Ku2nd, KuI, KuD, KuID,
...) are non Hamiltonian, hence this speci�c SWM will not apply in these cases. Nevertheless,
it is fair, looking at the similarities of these systems, to expect normal forms a la SWM for
Kuramoto like models. A �rst attempt was made in the standard Kuramoto case in [BS00].

For the KuI model this normal form would, in the Kuramoto limit, reduce to the �nite Ott-
Antonsen reduction while in the Vlasov limit it should reduce to the SWM. Similarly, is it
possible to obtain a normal form for the �rst order Kuramoto model with generic coupling
[Dai92, CD99] (that would also reduce to the OA reduction with one harmonic)?

Another direction concerning this topic: since inviscid �uids and pure Vlasov model share
the same SWM normal form, is it possible that they also share a more general normal form with
dissipation and friction? Indeed, we have seen that the different regimes and scaling predicted
in this work were similar1 to the ones found for viscous �uid [CS87, CS95, CS96].

2 FURTHER WORK TO DO

As we just saw, while we answered many questions we also raised many others (and set aside
some technical proof). Answering them all would certainly take quite some time. Thus, for now
we will just list the most directly related questions that we hope to answer:

— The Triple Zero reduction of the VNH problem will be explored and tested. We hope
that it will be able to predict the different behaviors observed in Figure VI.5 insets. A
decisive step would be to compute the different coef�cients of the normal form for the
G0

� = Eq. (VI.37b) andF 0
� = Eq. (VI.37a). Then by plugging them into the normal

form we could check if the behavior is consistent with the numerics. It would certainly
establish further the validity of this reduction.

— What happens when the unstable eigenvalues of the VNH model are complex? We expect
that the resonance phenomenon is important in this case as for VH. Hence what produces
an unstable manifold calculation? Is the center manifold reduction to a normal form
possible? Or will the Single Wave Model be the in�nite dimensional normal form of this
bifurcation (like in VH)? Or neither?

— We plan to do some numerical simulation for the Vlasov-Fokker-Planck system to check
the various predicted regimes. We also plan to estimate the higher order terms.

— Does the Kuramoto model with inertia and dissipation displays such interplay between
dissipation and instability?

— For the delayed Kuramoto models I will soon start a collaboration with S. Gupta to
explore further these results (and probably other directions). Moreover, numerics are still
lacking to support fully the preliminary predictions. In the inertialess case we managed
to avoid numerical simulations since we used the ones of [YS99]. However, we predicted
that there exists some critical delay� c for which the bifurcation is always supercritical
(for a Lorentzian). Results on generic distribution should be obtained.

1. The intermediate regime was slightly different but it could be due to the forcing added in the �uid system.
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— Another interesting related problem would be to study the bifurcation in Kuramoto mod-
els around partially synchronized states where the stable case was recently treated in
[DFGV16].
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APPENDIX A

M AGNETO -OPTICAL -TRAP

COLLABORATION

1 STRUCTURE FACTOR AND DIFFRACTED INTENSITY

Dipole equations

In this section, we link the structure factor with an experimental observable, the diffracted
intensityI . Probing the cloud with a laser of wavenumberkL excites atoms so that they emit a
�eld that we can measure. In linear regime and one dimension [BPK12, RSB+ 14] (neglecting
the Doppler effect terms), atoms are considered as dipoles. The coupled equations for their
amplitudes� i are

_� i =
�
�

� d

2
+ i�

�
� i �

idp

h
E in (~ri ) +

i � d

2

X

j 6= i

Vij � j (A.1)

whereVij (t) = c
e� ik L j~r i � ~r j j

! atom j~ri � ~rj j
, E in is the shape of the monochromatic incident beam (typically

plane or Gaussian wave) of pulsation! L in direction~ez, dp is electric dipole matrix element and
� d is the natural width of the transition. At equilibrium, one get

~� = �
idp

}
M � 1 ~E in (A.2)
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with

M =

0

B
B
B
B
B
B
B
B
B
B
@

i� �
� d

2
...

i � d

2
Vij

...
i � d

2
Vij

...

i� �
� d

2

1

C
C
C
C
C
C
C
C
C
C
A

: (A.3)

Off diagonal terms correspond to multiple scattering. The order of magnitude of these effects
are measured by the optical thicknessb. In experimentsb(� ) � 1 so it is not clear whether the
effects of multiple scattering will be strong or not. In the simulations presented in Chapter II
and III, we are forced to get a very smallb � 4 � 10� 2 to achieve a cloud with a step like
pro�le and with small correlations (like the expected experimental regime). Thus, no multiple
scattering effects can be seen. A largerb would require a larger number of particles in the
simulation.

In next Section, we will test on an example with largerb(but a Gaussian like density pro�le)
the effect of multiple scattering in the diffraction pro�le.

Scattered intensity

Figure A.1 – MD simulations of the structure factorS(k), T = 4, ! 0 = 10, C = 0:001,
b0 = 0:769.

.

The incident Laser intensityI is scattered in direction~kf = kL (cos' k sin� k ; sin' k sin� k ; cos� k),
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see Figure II.6. For elastic scatteringj~kf j = j~ki j = kL j~ezj), thus we have

I (� k ; ' k) =

�
�
�
�
�

�
exp

�
� i~kf � ~r1

�
; � � � ; exp

�
� i~kf � ~ri

�
; � � � ; exp

�
� i~kf � ~rN

� �
~�

�
�
�
�
�

2

; (A.4)

in spherical coordinate.
In Figure A.1 we show two structure factors for the same cloud, one is obtained uniquely via

simple scattering (corresponding to�=� d = 1 ), and one obtained via multiple scattering (we
choose to be at resonance� = 0 where multiple scattering effects are the strongest). The optical
thickness at resonance is about the one used in experiment at working regimeb = 0:769 �
bexp � 1. The difference between the two structure factor is very thin. Thus, since the effects
we seek are much bigger we can only look at the single scattering effects for a �rst exploration.

2 THEORETICAL DENSITY PROFILE

Figure A.2 – Longitudinal density� (z) with � = 300 � m (blue), � = 1 mm (orange) and
L = 7:36mm (as in the experiments)

In Section III.2.3.b we have studied an over simpli�ed step function density pro�le sec-
tion III.2.3.b to get a simple view of the two diffraction regimes Raman-Nath/Bragg. Here we
explicit a more realistic shape (with smooth borders). We used this "realistic" density to obtain
the theoretical curve in Figure III.6 that is consistent with the experimental data.

We choose on the longitudinal direction a symmetrized Fermi function Eq. (A.5). It is a
step pro�le with a parameter� controlling the smoothness of the step (�=L going to 0 gives
a Heaviside pro�le). In the perpendicular direction, we simply use a Gaussian shape with
waistw. Indeed, in the experiment the probing Laser has a Gaussian shape with a width much
smaller than the cloud (w � L? ), thus border effects of the real density should be small in this
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perpendicular plane. The mathematical expression of the symmetrized Fermi function is

� (z; r? ; L; �; w ) =
�
L

sinh
�

L
�

�

cosh
�

L
�

�
+ cosh

�
z
�

� exp
�

�
2r 2

?

w2

�
=

�
�w 2

�
(A.5)

Its 3D Fourier transform can be done separately for the Gaussian and the longitudinal parts.
The Fourier transform of the symmetrized Fermi function is provided in [SM97]. The result is

� (kz; k? ) = �
e� w 2

8 k2
? � sin(kzL)

2L sinh(��k z)
: (A.6)

As an illustration, we plot, Figure A.2, the longitudinal density pro�les for experimental
parametersw = 2:2mm, L = 7:51mm (L is the radius of the distribution, so the FHWM is a
bit larger than that, here it is around 1 cm like in the experiment). We compare two different
parameter� that measure the stiffness of the step.
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VLASOV NON HOMOGENEOUS

1 ANGLE ACTION VARIABLES

In this Section, we derive the explicit expression for the Fourier coef�cients of the potential
(cosq;sinq). The Fourier coef�cients are de�ned through

cm (k) =
1

2�

Z �

� �
cos(q(�; � ))e� im� ; (B.1a)

sm (� ) =
1

2�

Z �

� �
sin(q(�; � ))e� im� : (B.1b)

We can writecosq andsinq explicitly in angle action variables [Oga13]:

cos(q(�; � )) =

8
>><

>>:

1 � 2� 2sn2

�
2K (� )

�
�; �

�
; � < 1

1 � 2 sn2

�
K (1=� )

�
�;

1
�

�
; � > 1:

(B.2a)

sin(q(�; � )) =

8
>>>>>>>><

>>>>>>>>:

2� sn
�

2K (� )
�

�; �
�

dn
�

2K (� )
�

�; �
�

; � < 1

2 sn
�

K (1=� )
�

�;
1
�

�
cn

�
K (1=� )

�
�;

1
�

�
; � > 1; p > 0

� 2 sn
�

K (1=� )
�

�;
1
�

�
cn

�
K (1=� )

�
�;

1
�

�
; � > 1; p < 0;

(B.2b)

where de�nition of the complete elliptic integral of the �rstK (� ) and second kindE(� ) and
the Jacobi elliptic functionssnare given through the incomplete elliptic integral of the �rst and
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second kind [WW96]

F (�; � ) =
Z �

0

dt
p

1 � � 2 sin2 t
(B.3a)

K (� ) = F (�= 2; � ) (B.3b)

sn (F (�; � )) = sin � (B.3c)

E(�; � ) =
Z �

0

p
1 � � 2 sin2 tdt (B.3d)

E(� ) = E(�= 2; � ); (B.3e)

(B.3f)

with K (0) = E(0) = 1 and K (1� ) diverges. Injecting Eq. (B.2b) in Eq. (B.1b) and using
reference [Mil02] for the Fourier expansion ofsn2; sn� cn; sn� dn gives the coef�cients. We
�nd

c0(� ) =

8
>><

>>:

2E(� )
K (� )

� 1; � < 1

2� 2E(1=� )
K (1=� )

+ 1 � 2� 2; � > 1
(B.4a)

c2m (� ) =
2� 2

K (� )2

mq(� )m

1 � q(� )2m
� < 1 (B.4b)

c2m+1 (� ) = 0 � < 1 (B.4c)

cm (� ) =
2� 2� 2

K (1=� )2

mq(1=� )m

1 � q(1=� )2m
� > 1 (B.4d)

and

s0(� ) = 0 (B.5a)

s2m (� ) = 0 � < 1 (B.5b)

s2m� 1(� ) = � i sign(m)
� 2

K (� )2

(2m � 1)q(� )m� 1=2

1 + q(� )2m� 1
� < 1 (B.5c)

sm (� ) = � i sign(m)
2� 2� 2

K (1=� )2

mq(1=� )m

1 + q(1=� )2m
� > 1; p > 0 (B.5d)

sm (� ) = i sign(m)
2� 2� 2

K (1=� )2

mq(1=� )m

1 + q(1=� )2m
� > 1; p < 0 (B.5e)

where theq� function is de�ned as

q(� ) = exp
�

� �K (
p

1 � � 2)=K (� )
�

:

These explicit expressions are essential to manipulate the dispersion relation (for its roots or
resonances). For example, thanks to the fast convergence although of the(cm ; sm ) coef�cients,
one can for numerical applications truncate safely and even estimate error. We provide the
expression of�( � ) used to compute� in Figure VI.5,

�( � ) = 1 + 4 �

 
nMX

n=1

Z 1

0

4n2[c2n 
 @�
�f 0](� )

� 2 + 4n2
( � )2
+ 2

2nMX

m=1

Z 1

1

m2[cm 
 @�
�f 0](� )

� 2 + m2
( � )2

!

; (B.6a)

where typicallynM = 9 (nM = 7) for F 0
� the Fermi distribution Eq. (VI.37a) (G0

� Eq. (VI.37b))
is enough to compute� with six-digit accuracy.
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2 COMPUTATIONS AT HIGHER ORDERS

Since the effect of resonant particles was weaker than for homogeneous case (and Landau
damping algebraic for long time), we expected nonlinearities to also be weaker. Are they weak
enough forc3A3

sat = o( c2A2
sat)? We explain here how to compute the higher order terms. While

the structure is standard, the effective computations are intricate. The �rst paragraph is valid for
a general potential, but in order to explicitly work out the order of magnitude ofc3, we restrict
to the cosine potential. We then show thatc3 � C=� 3, as� ! 0+ .

2.1 Structure of the computation for a general potential

Let us parameterize the unstable manifold off 0 as

g =
X

k� 1

HkAk ; H1 = 	 c: (B.7)

Since the nonlinear partN [g] of the Vlasov equation,@tg = L g + N [g], is bilinear, we write
it as

N [g] = B(g; g) ; with B(g; h) = @J g@� � [g] � @� g@J � [g]:

Recalling that the reduced dynamics on the unstable manifold is

_A =
X

k� 1

ckAk ; c1 = �; (B.8)

our goal is to provide a formal expression forck . This requires computing at the same time the
Hk 's. We write the time evolution equation forg in two ways:

@tg =
X

k� 1

X

l � 1

Ak+ l � 1kclHk

=
X

k� 1

Ak L Hk +
X

k� 1

X

l � 1

Ak+ lB(Hk ; H l );
(B.9)

where we have used Eq. (B.8). Picking up the terms order by order, we have for anyk

(kc1 � L )Hk =
k� 1X

l=1

[B (Hk� l ; H l ) � (k � l )cl+1 Hk� l ] : (B.10)

This equation fork = 1 is simplyL 	 c = � 	 c, and we focus onk � 2.
We now project these equations ontospanf 	 cg andspanf 	 cg? ; we note the corresponding

projection operators� and� ? = I � � , whereI is the identity. The projection operators work
as

(� � L )	 c = � 	 c; (� ? � L )	 c = 0;

(� � L )Hk = 0; (� ? � L )Hk = L Hk ; k � 2:
(B.11)

The projection operator� induces

ck 	 c =
k� 1X

l=1

� � B (Hk� l ; H l ); (B.12)
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and� ? yields

(k� � L)Hk =
k� 1X

l=1

� ? � B (Hk� l ; H l ) �
k� 2X

l=1

(k � l )cl+1 Hk� l : (B.13)

Equation Eq. (B.12) determinesck fromH l , and Eq. (B.13)Hk fromH l andcl with l 2 f 1; � � � ; k�
1g.

2.2 Cosine potential - Order of magnitude ofc3

We now specialize to the cosine potential and focus on the third order coef�cientc3.
CallingGk the r.h.s. of Eq.Eq. (B.13), we have

Hk = R(k� ) Gk ; (B.14)

whereR(z) = ( z � L )� 1 is the resolvent ofL. Our �rst task is to determine the� dependence
of R(k� ) Gk . Let us then consider the equation

(z � L )X = G ;

and solve forX (�; J ). Denoting them-th Fourier component ofX in � asX m , we �nd after
some computations, for allm 2 Z:

X m =
Gm

z + im 
( J )
� C(z)

imcm@J F 0(J )
z + im 
( J )

(B.15)

where

C(z) =
2�

P
l

R G l c�
l

z+ il 
( J 0) dJ0

�( z)
: (B.16)

Takingz = 2� in Eq. (B.15), we see that�(2 � )� 1 introduces a1=� 2 divergence, and that the
m = 0 term in the sum yields an extra1=� divergence, unlessGm=0 = 0. Thus, theC factor
Eq. (B.16) gives the leading singularity.

Now, recalling Eq. (B.13), we have to apply the resolvent toG = � ? B(	 c; 	 c). Using the
de�nition of c2, we have

H2 = R(2� ) B (	 c; 	 c) � c2R(2� ) 	 c: (B.17)

We �rst note thatB(	 c; 	 c)m=0 = 0 (B contains two terms, each containing a derivative with
respect to� ; hence the zeroth Fourier mode vanishes) and that	 �;m =0 = 0. Hence the possible
divergence related tom = 0 in Eq. (B.15) does not exist, and the resolvent introduces only a
1=� 2 divergence. We conclude that in the r.h.s. of Eq. (B.17), the �rst term isO

�
� � 2

�
. The

second is a prioriO
�
� � 3

�
, sincec2 / 1=� , but we show now it is actually alsoO

�
� � 2

�
. The
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C factor Eq. (B.16) for(R(2� )	 c)m is

C =
2�

P
m

R 	 m c �
m

2� + im 
( J ) dJ

�(2 � )

=
2�

�(2 � )

X

m

Z
im

@J F 0(J )jcm j2

(� + im 
)(2 � + im 
( J ))
dJ

=
2�

�(2 � )
6�

X

m> 0

Z
m2 @J F 0(J )jcm j2

j� + im 
 j2j2� + im 
 j2
dJ

�
3
2

� 0(� )
�(2 � )

= O (1 =� )

where the last line is for� ! 0+ . Hence, the second term in the r.h.s. of Eq. (B.17) isO
�
� � 2

�
,

and so isH2. From Eq. (B.12)

c3	 c = � � [B (H2; 	 c) + B(	 c; H2)] ; (B.18)

where the r.h.s. is� applied to aO
�
� � 2

�
. Now, the projection� contains a diverging1=�

factor, coming from the normalization factor1=� 0(� ), needed in~	 c to ensure thath~	 c; 	 ci = 1.
Hence, except for a restricted set of functions' such thath~	 c; ' i = O (1) , we have (for'

independent of� ): � ' /
1
�

. The exceptional' such that the projection� does not introduce

a diverging1=� factor lie close to the kernels of� and� ? (the latter is just Span(	 c)). With
this in mind, it is not dif�cult to conclude thatc3 / 1=� 3. This is the same divergence strength
as the one which appears in the homogeneous case [Cra94a], although the mechanism inducing
the divergence is different.
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APPENDIX C

VLASOV-FOKKER -PLANCK

In this Appendix, we compute in details the dependence on the friction
 and instability
parameter� , of the cubic coef�cientc3. Since the calculations are done for a small friction, the
limit 
 = 1=y ! 0 will always be considered. In fact, as it is possible to check directly, in the
case where
 is a nonzero �nite constant no divergence appears.

We still use the notation
 = 1=yanda = y2 + �y in all this appendix, as well as
= 2 = 1=y2

anda2 = 4y2 + 2�y .
The strategy of all estimation is to express the integrals in exponential form

ZZZ
ey2p(x;u;s ) dsdudx:

For a standard integral one would use Laplace method determining the maximum (independent
of y) and expanding around it and then makey ! 1 . We apply a similar procedure here but
our maximum depends ony and in general goes toward one integration bound withy. So, we
estimate the maximump �rst according tos, then expand around this maximums� and compute
the integral. Then we repeat the procedure for each integral. We can check then that neglected
terms are indeed negligible around those maximum, for example ifx � � y� 1, we can safely
neglect(�y + 1) x in front of x2y2 in the exponential. It results in having a(1 + O

�
�; y � 1

�
)

term for the whole integral.
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1 ZEROTH HARMONIC CONTRIBUTION

As it can be expected from the frictionless case and for example [CS87], the divergence will
come uniquely from the zeroth harmonic term. We had from Eq. (VII.30),

c(h0 )
3 =

� 2K 3

4� 0(� )
�y 2

Z 0

� y
� 1� 2�y (1 + �=y )a� 1e� y�

Z �

0
t2�y

�
d(a� ; y2 � yt) � d(a; y2 + yt)

�
dt d�:

(C.1)

After changing variables in both integralsx = � �=y andu = � t=(xy)

c(h0 )
3 = �

� 2K 3

4� 0(� )
�y 5

Z 1

0
x2(1 � x)a� 1ey2x

Z 1

0
u2�y

�
d(a; y2(1 + ux)) � d(a; y2(1 � ux))

�
du dx:

(C.2)

1.1 Diverging term

We will use the expression ofd(a; x) as an integral over[0; 1] Eq. (VII.10). We �rst look at
the left term that will diverge:

B (1) = �
� 2K 3

4� 0(� )
�y 5

Z 1

0

Z 1

0

Z 1

0
x2ey2p(x;u;s ) dsdudx; (C.3)

were

p(x; u; s) = x + (1 + ux)s + ln(1 � x) + ln(1 � s) +
�
y

(2 ln u + ln(1 � x) + ln(1 � s))

�
1
y2

(ln(1 � x) + ln(1 � s)) :

(C.4)

The goal of this formulation in the spirit of the Laplace approach, �nd the maximum and expand
around it. For� � y� 1=3 we will prove self consistently thatx � � (�y )� 1 and for� � y� 1=3,
x � � y� 2=3.

Here we develop the expression �rst for smalls, assuming1 � u small, which will be self
constitently proved.

ps(x; u; s) =
�

ux �
�
y

+
1
y2

�
s �

s2

2
+ O

�
�
y

s2;
1
y2

s2

�
= uxs �

s2

2
+ O

�
�
y

s;
1
y2

s
�

(C.5)

where the last maximum was obtained using the scaling ofx � (terms likex1 y will always go
to in�nity). So, it gives for the integral overs,

B (1) = � 2

r
�
2

� 2K 3

4� 0(� )
�y 4

Z 1

0

Z 1

0
x2 exp

�
y2pu(x; u)

�
�

1 + O
�

�
y

;
1
y2

��
dsdudx; (C.6)
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with

pu(x; u) =
x2u2

2
+ 2

�
y

ln u + x + ln(1 � x) +
�
y

ln(1 � x) +
1
y2

ln(1 � x): (C.7)

As stated before the maximum inu is situated nearu = 1 so we can expand as�u = 1 � u � 1,

pu(x; u) = �
�

x2 + 2
�
y

�
�u +

x2

2
+O

�
�u 2

�
+ x+ln(1 � x)+

�
y

ln(1� x)+
1
y2

ln(1� x): (C.8)

So, we can integrate

B (1) = � 2

r
�
2

� 2K 3

4� 0(� )
�y 4

Z 1

0

exp (y2px (x))
y2x2 + 2�y

�
1 + O

�
�
y

;
1
y2

�
)
�

dsdudx; (C.9)

where

px (x) =
x2

2
+ x + ln(1 � x) +

�
y

ln(1 � x) +
1
y2

ln(1 � x) + 2 ln x: (C.10)

Again, expanding for smallx where the maximum is situated, we have

px (x) = �
�

�
y

+
1
y2

�
x �

x3

3
+ 2 ln x: (C.11)

This gives

B (1) = � 2

r
�
2

� 2K 3

4� 0(� )
�y 4

Z 1

0
x2

exp
�

� (2�y � 1)x � y2 x3

3

�

y2x2 + 2�y

�
1 + O

�
�
y

;
1
y2

��
dx:

(C.12)
The maximumx � depends on which of the two terms(x � )2y2, �y dominate. We �nd as already
formulated thatx � � (�y )� 1 and for� � y� 1=3, x � � y� 2=3. So(x � )2y2 � �y for � � y� 1=3

and(x � )2y2 � �y for � � y� 1=3.
— It gives for� � y� 1=3,

B (1) � � 2

r
�
2

� 2K 3

4� 0(� )
1

4� 3
= � � 2K 2 1

4� 3
: (C.13)

It is exactly as in V.54.
— For � � y� 1=3,

B (1) � � 2

r
�
2

� 2K 3

4� 0(� )
�y 4=3�

�
1
3

�

32=3
; (C.14)

so, when� � 
 4=3 B (1) does not diverge and is a priori of order 1.
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1.2 Non diverging term

The second term is non divergent as we will quickly see

B (2) =
� 2K 3

4� 0(� )
�y 5

Z 1

0

Z 1

0

Z 1

0
x2ey2p(x;u;s ) dsdudx; (C.15)

were

p(x; u; s) = x + (1 � ux)s + ln(1 � x) + ln(1 � s) +
�
y

(2 ln u + ln(1 � x) + ln(1 � s))

�
1
y2

(ln(1 � x) + ln(1 � s)) :

(C.16)

The maximum is still close to zero so we expand

ps(x; u; s) =
�

� ux �
�
y

+
1
y2

�
s�

s2

2
+O

�
�
y

s2;
1
y2

s2

�
= uxs�

s2

2
+O

�
�
y

s;
1
y2

s
�

: (C.17)

The difference here is the minus sign in front ofux which makes the maximum negatives� < 0.
It means that the maximum on thiss 2 [0; 1] interval is reached ats = 0 for largey assuming

u� x � �
�
y

;
1
y2

(which we will check thereafter). The implication is that we can use the Laplace

formula for a maximum situated at a boundary [Avr00] (which says that instead of integrating
p00(sast)s2=2 we integratep0(s� )s. In our formalism, we consideruxs � s2.

B (2) =
� 2K 3

4� 0(� )
�y 3

Z 1

0

Z 1

0

Z 1

0

x
u

u2�y ey2px (x) dudx; (C.18)

with

px (x) = x + ln(1 � x) +
�
y

ln(1 � x) +
1
y2

ln(1 � x): (C.19)

The integration overu is in fact immediate and produce a(�y )� 1 factor, thus

B (2) =
� 2K 3

4� 0(� )
y2

Z 1

0

Z 1

0

Z 1

0
xey2px (x) dx; (C.20)

px (x) + ln x = y� 2 ln x �
x2

2
�

�
�
y

+
1
y2

�
x + O

�
x3;

�
y

x2;
1
y2

x2

�
(C.21)

the quadratic term always dominates, the maximum isx � � 1=y. The remaining integral is

/
Z

xe
y 2x 2

2 dx:

It cancels the lasty2 prefactor thus the wholeB (2) coef�cient is �nite. It is easy to check self
consistently that neglected terms are indeed small.
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2 SECOND HARMONIC CONTRIBUTION

We use the notation
= 2 = 1=y2 anda2 = 4y2 + 2�y . Soy2 = 2y. We have

bh2;0(� ) = �
K 2

8

p
2�e � � 2=2 e�y 2

2

�
1 +

�
y2

� � a2Z �

� y2

te� y2 t (1 + t=y2)a2 � 1 �
1 � �yd (a; y2 + yt)

�
dt:

(C.22)

The associated cubic coef�cient is

c(h2 )
3 =

� 2K 3

8� 0(� )

Z 0

� y
�e � �y

�
1 +

�
y

� a� 1

e�y 2

�
1 +

�
y2

� � a2

�
Z �

� y2

te� y2 t (1 + t=y2)a2 � 1 �
1 � �yd (a; y2 + yt)

�
dtd�:

(C.23)

Here� 2y � t � 0 So the term

�yd (a; y2 + yt) = �y
Z 1

0
e(y2+ yt )s(1 � s)a� 1 ds � �y

Z 1

0
ey2s(1 � s)a� 1 ds

= �ye y2
y� 2a
 (a; y2) � �

r
�
2

! 0

(C.24)

where we used known equivalent of the lower incomplete Gamma function [Par02] for the
situationRe(y2 � a) � 0 andRe(y2 � a)=y ! 0.

So

jc(h2 )
3 j �

�
�
�
�
�

� 2K 3

8� 0(� )

Z 0

� y

e�y 2

2

�
1 +

�
y2

� � a2Z �

� y2

te� y2 t (1 + t=y2)a2 � 1 dtd�

�
�
�
�
�
: (C.25)

The integral overt can be re-expressed with thed(a; x) function as

jc(h2 )
3 j �

�
�
�
�
�

� 2K 3

8� 0(� )

Z 0

� y
�e � �y

�
1 +

�
y

� a� 1
 

1 � �y 2d(a2; y2
2 + y2� )

!

d�

�
�
�
�
�
: (C.26)

Once again, the terms

2�yd (a2; y2
2 + y2� ) � �ye 4y2

(2y)� 2a2 
 (a2; 4y2) � �

r
�
2

;

so we can bound further the coef�cient

jc(h2 )
3 j �

�
�
�
�
�

� 2K 3

8� 0(� )

Z 0

� y
�e � �y

�
1 +

�
y

� a� 1

d�

�
�
�
�
�
: (C.27)

The integrand can be written as an exponentialey2p(x) ,

Z 0

� y
�e � �y

�
1 +

�
y

� a� 1

d� = � y2
Z 1

0
ey2 (x+ln(1 � x))+ln x+( �y � 1) ln(1 � x) dx (C.28)
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which give a maximumx � � y� 1 so the exponent can be safely expanded for smallx. So

� y2
Z 1

0
ey2 (x+ln(1 � x))+ln x+( �y � 1) ln(1 � x) dx = � y2

Z 1

0
xey2 x 2

2
�
1 + O

�
�; y � 1

��
dx

= � 1 � O
�
�; y � 1

�
:

(C.29)

Which conclude thatc(h2 )
3 does not display any divergences. It is also easy to observe with

Eq. (C.23) thatc(h2 )
3 < 0.
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APPENDIX D

THE K URAMOTO MODELS

1 KURAMOTO WITH INERTIA

In this Section with show how to recover Vlasov and standard Kuramoto limit from the
Kuramoto with inertia model.

1.1 Standard Kuramoto limit, m ! 0

We have to take �rst the limitm ! 0, before� R ! 0. Counting the powers ofm in
Eq. (IX.28) shows that the whole contribution ofh0;0 vanishes in this limit, even taking into
account the overall1=m factor in front of theO(A3) term, see Eq. (IX.20). Similarly, theX 1

andX 2 terms in Eq. (IX.29) give a vanishing contribution in them ! 0 limit. Let us estimate
theX 0 term:

Z
� ~ (1) � (! )X 0(! ) d! �

m! 0+

im e2i�

� 0(� )
�K 2

2

Z
g(! )

(� + i! )3
d!:

One may then take the� R ! 0+ limit, and this yields the following result

lim
� R ! 0+

c3 =
� 2K 2

2
� 00(i� I )
� 0(i� I )

; (D.1)

where we have used the expression for� in the limit m ! 0:

�( � ) = 1 �
K
2

ei�
Z

g(! )
� + i!

d!:
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This recovers the expression for the standard Kuramoto model, see Eq.(139) in [Cra94a]. In

particular, the sign ofs0(� ) = Re
�

� 00(i� I )
� 0(i� I )

�
determines the type of the bifurcation:s0 > 0

(resp.s0 < 0) corresponds to a subcritical (resp. supercritical) bifurcation.

1.2 Hamiltonian (Vlasov) limit, � = 0, m ! 1 , K ! 1 , K=m = cst

The Vlasov limit consists in takingm ! 1 , K ! 1 while keepingK=m = cst (this
cancels the friction and the natural frequency driving), and� = 0 (no shift between oscillator).
As in the general case theh2;0 term does not give any pinching singularity. Here as in [Cra95a]
we use a fraction decomposition to get

Z �
~ (2) � (W �

1 + W1) � ~ (3) � (W �
2 + W2)

�
d! =

� 2i�
� R � 0(� )

�
K
2m

� 2 Z
g(! ) (3� ? � � � 4i! )
(� + i! )4(� ? � i! )2

d! + O
�
� � 1

R

�

=
2i�

� 0(� )

�
K
2m

� 2 Z  
� 1

8� 4
R(� + i! )2

+
1

8� 4
R(� ? � i! )2

�
1

2� 3
R(� + i! )3

!

g(! )d! + O(� � 2
R )

=
i�

� 0(� )
K
2m

�
�( � ) � 1 � �( � � ) + 1

4� 4
R

�
� 0(� )
2� 3

R

�
+ O

�
� � 2

R

�

= �
i�

4� 3
R

K
m

+ O
�
� � 2

R

�
;

(D.2)

where we have used�( � ) = �( � � ) = 0 . Finally, in the limit� R ! 0+

c3 � �
� 2K 2

4m2

1
� 3

R
: (D.3)

It is the exact same result (withK = 1) than Eq. (V.54). As noted by Crawford this result
does not depend on the initial velocity distribution. The1=� 3

R divergence yields the well know
trapping scaling for the instability's saturation amplitudejAj1 / � 2

R .

2 THE SELF-CONSISTENT MEAN -FIELD METHOD , AND BISTABLE

BEHAVIOR

The self-consistent method (introduced in the original Kuramoto article [Kur75], and later
adapted to the case with inertia [TLO97a, TLO97b]) is a standard tool to understand qualita-
tively Kuramoto-like models. We show here that:
i) The bistability of single oscillators pointed out in [TLO97a, TLO97b] as the origin of the hys-
teretic behavior at large inertia cannot explain the results at small mass presented in �gure IX.1
of the main article.
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ii) Nevertheless, the self-consistent method does predict a discontinuous transition for the pa-
rameters of �gure 1, although it is dif�cult to make a general statement.

The basis of the method is to assume a constant value for the order parameterr . Then,
considering the dynamics of the single oscillators with thisr , one may evaluate the contribution
of each oscillator to the order parameter, and write a self-consistent equation.

2.1 Bistable behavior

We assume thatr is �xed, and take its phase to be0 without loss of generality. The dynamics
for a single oscillator with intrinsic frequency! is (in rescaled parameters)

m•� + _� = ! � Kr sin�: (D.4)

Through the change of variablet = Ts with T = 1=Kr , the dynamics reduces to (keeping the
notation� )

M
d2�
ds2

+
d�
ds

= 
 � sin�; (D.5)

with M = mKr and
 = !=Kr . WhenM = 0, Eq. (D.5) has a single attractive �xed point for
small 
 (corresponding to phase locked oscillators); this �xed point collides with an unstable
one for
 = 1 , and the dynamics becomes periodic (drifting oscillators). This behavior persists
for small enoughM . However, a qualitative change occurs forM = M crit ' 0:83. Beyond this
point, there is a range of values for
 where the stable �xed point coexists with an attractive
periodic orbit: the dynamics Eq. (D.5) is bistable.

Notice that the curves presented on Figure IX.1 form = 0:25 andm = 0:5 feature in the
transition regionK < 3 andr < 0:5; thus, the reduced massM < M crit , and bistability of the
single oscillator dynamics cannot explain the discontinuous transition.

Nevertheless, it is possible that the self-consistent mean-�eld method predict a discontinuous
transition, even without bistability of the single oscillator dynamics.

2.2 Self-consistent equation

We compute now the self-consistent equation "à la Kuramoto" for the parameters of �gure 1,
m = 0:5; the starting point is Eq. (D.4). We have seen that there is no bistability for individual
oscillators (at least in the transition region). Thus, the self-consistent equation simply reads as
the sum of the contributions of locked and drifting oscillators:

r = r locked + rdrift : (D.6)

The locked part is [TLO97a]

r locked = Kr
Z �= 2

� �= 2
cos2 �g (Kr sin� ) d�: (D.7)

The drifting part is more involved:

rdrift = 2
Z

!>Kr

g(! )
T(! )

Z �

� �

cos�
V! (� )

d�; (D.8)
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where(�; V ! (� )) is the attractive periodic orbit for an oscillator with intrinsic frequency! , and
T(! ) is the period of this orbit. The factor2 in front comes from the! ! � ! symmetry.
Eq. (D.8) is usually computed in the largem regime (or rather largeM ), which is of no interest
to us. It would be possible to perform a smallM expansion. The results presented on Fig-
ure IX.1 rely instead on a direct numerical estimation of Eq. (D.7) and Eq. (VIII.6). For small
K , Eq. (D.6) has a single solution,r = 0. IncreasingK , two new solutions appearr< andr> , at
�nite distance from0. On �gure , we have plotted ther> solution as soon as it appears, although
the r = 0 solution may still be stable. We see that this self-consistent method i) does predict
a discontinuous transition for these parameters, and is in fair quantitative agreement with the
numerical data ii) does not easily provide general statements about the transition, for different
values of the parameters, and different frequency distributions.

3 SIGN OF DISPERSION RELATION DERIVATIVE

3.1 Standard Kuramoto model

The standard Kuramoto model has anO(2) symmetry (re�ection and rotation invariance)
when the distribution of natural frequenciesg is symmetric. In this situation whenK > K c the
system becomes linearly unstable and unstable eigenvalue(s) are

i) One real eigenvalue� with an associated eigenspace of dimension 2. Thus, the unstable
manifold is also of dimension two.g is even.

ii) Two complex conjugate eigenvalues�; � � with where each are associated to an eigenspace
of dimension 2. This yields an unstable manifold of dimension 4.g is even.

If the O(2) symmetry is broken, situation iii), eigenvalues are always complex conjugate with
an associated eigenspace of dimension 1. This yields an unstable manifold of dimension 2.

In this Ph.D. thesis, we focused on unstable manifold of dimension 1 or 2 to avoid more
intricate computation. For an example treated by J.D. Crawford see [Cra94a]. Hence, we want
to avoid case ii).

In case i) the �nal result of the unstable manifold was

c3 =
� 2K 2

2
� 00(� )
� 0(� )

� ! 0�!
� 3K 2

c

4
g00(0)

� PV
R

(g0(! )=! ) d!
(D.9)

where we used

� 0(0) = �
K c

2
PV

Z
g0(! )

!
d! (D.10a)

� 00(0) =
K c

2
�g 00(0)

2
: (D.10b)

The conclusion was that the sub/super-critical behavior of the transition was given by the sign
g00(0). But what if � 0(0) was negative? Can this happen for some well-chosen distribution?

In this Section, we conjecture that in case i)� 0(0) > 0. In fact, we also conjecture that the
transition between case i) and ii) is given by� 00(0) = 0 .

We are able to demonstrate this claim only for unimodal and bimodal distribution (and bi-
modal like distribution).
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Unimodal distribution

Unimodal functions are functions withg0(! ) � 0 for ! > 0. In this case the demonstration
is direct since we always have� 0(0) > 0.

Bimodal distribution

Bimodal functions are function one local maximum for! > 0 and g00(0) > 0. At the
criticality K = K c the dispersion relation Eq. (VIII.12c) satis�es in case i) and ii) (complex or
real eigenvalue) 8

><

>:

PV
Z

g(! � � i )
!

d! = 0

2
K c(� i )

= �g (� i ):
(D.11)

The �rst equation gives the admissible values for� i , while the second give the associatedK c.
We de�ne

8
>><

>>:

d(� ) = PV
Z

g(! � � )
!

d! =
Z 1

0

g(! � � ) � g(! + � )
!

d!

d0(� ) = �
Z 1

0

g0(! � � ) + g0(! + � )
!

d!:
(D.12)

Note thatd(0) = 0 for every (symmetric)g. Hence, we want to show:
d0(0) < 0 ) 9 � i > 0 such thatd(� i ) = 0 and g(� i ) > g (0) (which directly implies that
K c(� i ) < K c(0)).

It says that if� 0(0) < 0 is negative then, there exists a pair of complex eigenvalue, and these
complex eigenvalues go unstable �rst and thus drive the instability, this is case ii).

To prove the �rst implication, we just need to proved(� ) � !1�! 0+ . Indeed sinced(0) = 0
and we assumedd0(0) < 0, d is negative for small� and if it has a positive limit by continuity,
there must exist at least one root� i . If we call the integrand ofd

s(! ) =
g(! � � ) � g(! + � )

!
(D.13)

we haves(0) = � 2g0(� ) ands0(0) = � 2g00(� ), s(1 ) = 0 + because we choseg to decrease
monotonically at in�nity.

To prove the second part the idea is to prove that� i 2]0; � max ] where� max is the position
of the maximum. In this caseg(� i ) > g(0) We proceed with a proof by contradiction Suppose
� i 2 [� max ; + 1 [. Thens� i (! ) � 0 (since in this interval of a binomial function we have
g0(! ) � 0. Henced(� i ) > 0 and� i is not a root ofd. Absurd!

Thus if � i exists� i 2 [0; lambdamax [ with K c(� i ) < K c(0).
This reasoning can be applied to slightly more generic bimodal-like distributions but no

general results has been found so far. One can check explicitly that for a bi-Lorentzian distri-
bution Eq. (VIII.28) the criteria from case i) to case ii) (partial synchronized state to standing
wave [Cra94a, MBS+ 09]) corresponds to� 0(0) = 0 .
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3.2 Kuramoto with inertia

In the case with inertia the relations given by the dispersion relation Eq. (IX.8) at criticality
are more dif�cult to analyze and looking atg(0) andg(� i ) is not enough.

Université Côte d'Azur 224



BIBLIOGRAPHY

[ABS00] J. A. Acebrón, L. L. Bonilla, and R. Spigler. Synchronization in popula-
tions of globally coupled oscillators with inertial effects.PhysicalReviewE,
62(3):3437–3454, September 2000. - Cited 3 times: pages 167, 168 and 169 -

[AEM+ 95] Mike H Anderson, Jason R Ensher, Michael R Matthews, Carl E Wieman, and
Eric A Cornell. Observation of Bose-Einstein condensation in a dilute atomic
vapor.science, 269(5221):198, 1995. - Cited 1 time: page 27 -

[AR95] Mickael Antoni and Stefano Ruffo. Clustering and relaxation in Hamiltonian
long-range dynamics.PhysicalReviewE, 52(3):2361–2374, September 1995.

- Cited 1 time: page 91 -

[AS98] J. A. Acebrón and R. Spigler. Adaptive Frequency Model for Phase-Frequency
Synchronization in Large Populations of Globally Coupled Nonlinear Os-
cillators. Physical Review Letters, 81(11):2229–2232, September 1998.

- Cited 2 times: pages 165 and 167 -

[Avr00] Ivan Avramidi. Lecture notes on asymptotic expansion.University lectures,
2000. - Cited 1 time: page 216 -

[Bal99] NJ Balmforth. Shear instability in shallow water.J.Fluid Mech., 387:99–127,
1999. - Cited 2 times: pages 142 and 148 -

[BBDR05] Julien Barré, Freddy Bouchet, Thierry Dauxois, and Stefano Ruffo. Large De-
viation Techniques Applied to Systems with Long-Range Interactions.Journal
of StatisticalPhysics, 119(3-4):677–713, May 2005. - Cited 1 time: page 18 -

[BGK57] Ira B. Bernstein, John M. Greene, and Martin D. Kruskal. Exact Nonlin-
ear Plasma Oscillations.PhysicalReview, 108(3):546–550, November 1957.

- Cited 1 time: page 77 -

[BH77] W. Braun and K. Hepp. The Vlasov dynamics and its �uctuations in the
1/N limit of interacting classical particles.Communicationsin Mathematical
Physics, 56(2):101–113, June 1977. - Cited 1 time: page 20 -

225



BIBLIOGRAPHY

[BH80] Marc Baus and Jean-Pierre Hansen. Statistical mechanics of simple coulomb
systems.PhysicsReports, 59(1):1–94, March 1980. - Cited 1 time: page 48 -

[BH07] A. J. Brizard and T. S. Hahm. Foundations of nonlinear gyrokinetic theory.
Reviewsof ModernPhysics, 79(2):421–468, April 2007. - Cited 1 time: page 21 -

[BKNG09] Balakumar Balachandran, Tamás Kalmár-Nagy, and David E. Gilsinn.Delay
DifferentialEquations:RecentAdvancesandNewDirections. Springer Science
& Business Media, April 2009. - Cited 1 time: page 178 -

[BL08] Jean-Michel Bismut and Gilles Lebeau.The Hypoelliptic Laplacian and
Ray-SingerMetrics. (AM-167). Princeton University Press, August 2008.

- Cited 2 times: pages 139 and 142 -

[BM16] J. Barré and D. Métivier. Bifurcations and Singularities for Coupled Oscilla-
tors with Inertia and Frustration.PhysicalReview Letters, 117(21):214102,
November 2016. - Cited 2 times: pages 166 and 167 -

[BM17a] Julien Barré and David Métivier. Unstable manifold expansion for Vlasov-
Fokker-Planck equation. arXiv:1703.01668[cond-mat, physics:math-ph],
March 2017. arXiv: 1703.01668. - Cited 3 times: pages 139, 142 and 145 -

[BM17b] F. P. C. Benetti and B. Marcos. Collisional relaxation in the inhomogeneous
Hamiltonian mean-�eld model: Diffusion coef�cients.PhysicalReview E,
95(2):022111, February 2017. - Cited 1 time: page 116 -

[BMT13] N. J. Balmforth, P. J. Morrison, and J.-L. Thiffeault. Pattern formation in Hamil-
tonian systems with continuous spectra; a normal-form single-wave model.
arXiv:1303.0065[cond-mat,physics:math-ph,physics:nlin], February 2013.
arXiv: 1303.0065. - Cited 10 times: pages 85, 89, 95, 107, 116, 117, 130, 148, 176 and 198 -

[BMW14] J. Barré, B. Marcos, and D. Wilkowski. Nonequilibrium Phase Transition with
Gravitational-like Interaction in a Cloud of Cold Atoms.PhysicalReview
Letters, 112(13):133001, March 2014. - Cited 1 time: page 36 -

[BMWZ85] C. Burnap, M. Miklavcic, B. L. Willis, and P. F. Zweifel. Single-mode sat-
uration of a linearly unstable plasma.The Physicsof Fluids, 28(1):110–115,
January 1985. - Cited 1 time: page 88 -

[BMY16] J. Barré, D. Métivier, and Y. Y. Yamaguchi. Trapping scaling for bifurca-
tions in the Vlasov systems.PhysicalReview E, 93(4):042207, April 2016.

- Cited 4 times: pages 89, 92, 111 and 124 -

[Bog75] R. I. Bogdanov. Versal deformations of a singular point of a vector �eld on the
plane in the case of zero eigenvalues.FunctionalAnalysisandIts Applications,
9(2):144–145, April 1975. - Cited 1 time: page 134 -

[BOY10] Julien Barré, Alain Olivetti, and Yoshiyuki Y. Yamaguchi. Dynamics of per-
turbations around inhomogeneous backgrounds in the HMF model.Journal
of StatisticalMechanics: Theory and Experiment, 2010(08):P08002, 2010.

- Cited 2 times: pages 114 and 116 -

Université Côte d'Azur 226



BIBLIOGRAPHY

[BOY11] Julien Barré, Alain Olivetti, and Yoshiyuki Y. Yamaguchi. Algebraic damping
in the one-dimensional Vlasov equation.Journalof PhysicsA: Mathematical
andTheoretical, 44(40):405502, 2011. - Cited 1 time: page 116 -

[BPK12] Tom Bienaimé, Nicola Piovella, and Robin Kaiser. Controlled Dicke Subra-
diance from a Large Cloud of Two-Level Systems.PhysicalReviewLetters,
108(12):123602, March 2012. - Cited 1 time: page 203 -

[Bra98] Marco Brambilla. Kinetic theory of plasmawaves: homogeneousplasmas.
Oxford University Press, 1998. - Cited 1 time: page 95 -

[BS00] Neil J Balmforth and Roberto Sassi. A shocking display of syn-
chrony. PhysicaD: NonlinearPhenomena, 143(1):21–55, September 2000.

- Cited 3 times: pages 156, 176 and 198 -

[BT11] James Binney and Scott Tremaine.Galactic Dynamics: (SecondEdition).
Princeton University Press, October 2011.- Cited 5 times: pages 60, 77, 113, 130 and 137 -

[BY15] Julien Barré and Yoshiyuki Y Yamaguchi. On the neighborhood of an inhomo-
geneous stable stationary solution of the Vlasov equation—Case of an attrac-
tive cosine potential.Journalof MathematicalPhysics, 56(8):081502, 2015.

- Cited 1 time: page 128 -

[Cas59] K. M Case. Plasma oscillations.Annalsof Physics, 7(3):349–364, July 1959.
- Cited 3 times: pages 95, 97 and 100 -

[CD99] John D. Crawford and K. T. R. Davies. Synchronization of globally coupled
phase oscillators: singularities and scaling for general couplings.PhysicaD:
NonlinearPhenomena, 125(1):1–46, January 1999.- Cited 2 times: pages 161 and 198 -

[CDR09] Alessandro Campa, Thierry Dauxois, and Stefano Ruffo. Statistical mechanics
and dynamics of solvable models with long-range interactions.PhysicsReports,
480(3–6):57–159, September 2009. - Cited 1 time: page 18 -

[CGM14] John Cheng, Max Grossman, and Ty McKercher.ProfessionalCUDA C
Programming. John Wiley & Sons, September 2014. Google-Books-ID:
q3DvBQAAQBAJ. - Cited 1 time: page 49 -

[CGML08] Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos
Labini. Dynamics and Thermodynamics of systems with long range interac-
tions: theory and experiments. InDynamicsandThermodynamicsof Systems
with Long RangeInteractions:Theory and Experiments, volume 970, 2008.

- Cited 1 time: page 18 -

[CH89] John David Crawford and Peter D Hislop. Application of the method of spectral
deformation to the Vlasov-poisson system.Annalsof Physics, 189(2):265–317,
February 1989. - Cited 7 times: pages 22, 87, 89, 95, 97, 101 and 131 -

[Cha13] Pierre-Henri Chavanis. Initial value problem for the linearized mean �eld
Kramers equation with long-range interactions.TheEuropeanPhysicalJournal
Plus, 128(9):106, September 2013. - Cited 1 time: page 142 -

227 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[CHB+ 14] R. Chang, A. L. Hoendervanger, Q. Bouton, Y. Fang, T. Klafka, K. Audo,
A. Aspect, C. I. Westbrook, and D. Clément. Three-dimensional laser cool-
ing at the Doppler limit.PhysicalReviewA, 90(6):063407, December 2014.

- Cited 2 times: pages 34 and 37 -

[Chi13] Hayato Chiba. A proof of the Kuramoto conjecture for a bifurcation structure
of the in�nite-dimensional Kuramoto model.ErgodicTheoryandDynamical
Systems, 35(03):762–834, 2013. - Cited 3 times: pages 87, 148 and 160 -

[CK76] C. Z Cheng and Georg Knorr. The integration of the vlasov equation in con-
�guration space.Journalof ComputationalPhysics, 22(3):330–351, November
1976. - Cited 1 time: page 88 -

[CKKH00] M. Y. Choi, H. J. Kim, D. Kim, and H. Hong. Synchronization in a system of
globally coupled oscillators with time delay.PhysicalReviewE, 61(1):371–
381, January 2000. - Cited 1 time: page 177 -

[CKL14] A. Camara, R. Kaiser, and G. Labeyrie. Scaling behavior of a very large
magneto-optical trap. PhysicalReview A, 90(6):063404, December 2014.

- Cited 7 times: pages 27, 28, 36, 38, 41, 48 and 72 -

[CMM90] Alexandre Joel Chorin, Jerrold E Marsden, and Jerrold E Marsden.A
mathematicalintroduction to �uid mechanics, volume 3. Springer, 1990.

- Cited 1 time: page 101 -

[CN11] Hayato Chiba and Isao Nishikawa. Center manifold reduction for
large populations of globally coupled phase oscillators.Chaos: An
InterdisciplinaryJournalof NonlinearScience, 21(4):043103, October 2011.

- Cited 4 times: pages 87, 160, 162 and 197 -

[CP70] R. P. H. Chang and M. Porkolab. Experimental Observation of Nonlinear Lan-
dau Damping of Plasma Waves in a Magnetic Field.PhysicalReviewLetters,
25(18):1262–1266, November 1970. - Cited 1 time: page 88 -

[Cra91a] John David Crawford. Amplitude Equations on Unstable Manifolds: sin-
gular behavior from neutral modes. In Prof William Greenberg and
Dr Jacek Polewczak, editors,Modern MathematicalMethods in Transport
Theory, number 51 in Operator Theory: Advances and Applications, pages
97–108. Birkhäuser Basel, 1991. DOI: 10.1007/978-3-0348-5675-1_9.

- Cited 1 time: page 78 -

[Cra91b] John David Crawford. Introduction to bifurcation theory.Reviewsof Modern
Physics, 63(4):991–1037, October 1991. - Cited 2 times: pages 78 and 79 -

[Cra94a] John David Crawford. Amplitude expansions for instabilities in populations of
globally-coupled oscillators.Journalof StatisticalPhysics, 74(5-6):1047–1084,
March 1994. - Cited 11 times: pages 22, 89, 92, 105, 106, 148, 170, 211, 220, 222 and 223 -

[Cra94b] John David Crawford. Universal Trapping Scaling on the Unstable Manifold
for a Collisionless Electrostatic Mode.PhysicalReviewLetters, 73(5):656–659,
August 1994. - Cited 4 times: pages 22, 100, 147 and 160 -

Université Côte d'Azur 228



BIBLIOGRAPHY

[Cra95a] John David Crawford. Amplitude equations for electrostatic waves: universal
singular behavior in the limit of weak instability.Physicsof Plasmas, 2(1):97–
128, 1995. - Cited 9 times: pages 22, 92, 100, 116, 147, 148, 156, 174 and 220 -

[Cra95b] John David Crawford. Scaling and Singularities in the Entrainment of Globally
Coupled Oscillators.PhysicalReviewLetters, 74(21):4341–4344, May 1995.

- Cited 4 times: pages 22, 148, 161 and 174 -

[CS87] S. M. Churilov and I. G. Shukhman. Note on weakly nonlinear stability theory
of a free mixing layer.Proceedingsof theRoyalSocietyof LondonSeriesA,
409:351–367, February 1987. - Cited 5 times: pages 138, 147, 154, 198 and 214 -

[CS95] S. M. Churilov and I. G. Shukhman. Critical layer and nonlinear evolution
of disturbances in weakly supercritical shear �ows.OceanographicLiterature
Review, 31(4):185, 1995. - Cited 3 times: pages 138, 147 and 198 -

[CS96] S.M. Churilov and I.G. Shukhman. The nonlinear critical layer resulting from
the spatial or temporal evolution of weakly unstable disturbances in shear �ows.
Journalof Fluid Mechanics, 318:189–221, 1996. - Cited 2 times: pages 147 and 198 -

[CT98] Claude N. Cohen-Tannoudji. Nobel Lecture: Manipulating atoms with photons.
Reviewsof ModernPhysics, 70(3):707–719, July 1998. - Cited 1 time: page 28 -

[DAC+ 00] Y Dancheva, G Alzetta, S Cartaleva, M Taslakov, and Ch Andreeva. Coherent
effects on the Zeeman sublevels of hyper�ne states in optical pumping of Rb
by monomode diode laser.OpticsCommunications, 178(1–3):103–110, May
2000. - Cited 1 time: page 37 -

[Dai92] Hiroaki Daido. Order Function and Macroscopic Mutual Entrainment in Uni-
formly Coupled Limit-Cycle Oscillators. Progressof TheoreticalPhysics,
88(6):1213–1218, December 1992. - Cited 3 times: pages 160, 166 and 198 -

[Dai94] Hiroaki Daido. Generic scaling at the onset of macroscopic mutual entrain-
ment in limit-cycle oscillators with uniform all-to-all coupling.PhysicalReview
Letters, 73(5):760–763, August 1994. - Cited 1 time: page 160 -

[Dai96] Hiroaki Daido. Onset of cooperative entrainment in limit-cycle oscillators with
uniform all-to-all interactions: bifurcation of the order function.PhysicaD:
NonlinearPhenomena, 91(1):24–66, March 1996. - Cited 1 time: page 160 -

[Dal88] J. Dalibard. Laser cooling of an optically thick gas: The simplest radia-
tion pressure trap? Optics Communications, 68(3):203–208, October 1988.

- Cited 2 times: pages 28 and 35 -

[Dal14] Jean Dalibard. Une brève histoire des atomes froids, 2014.
- Cited 4 times: pages 28, 31, 33 and 34 -

[DCB13] Florian Dör�er, Michael Chertkov, and Francesco Bullo. Synchronization in
complex oscillator networks and smart grids.Proceedingsof the National
Academyof Sciences, 110(6):2005–2010, February 2013.- Cited 1 time: page 165 -

229 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[dCN98a] D. del Castillo-Negrete. Nonlinear evolution of perturbations in
marginally stable plasmas.PhysicsLetters A, 241(1):99–104, April 1998.

- Cited 3 times: pages 89, 107 and 198 -

[dCN98b] D. del Castillo-Negrete. Weakly nonlinear dynamics of electrostatic pertur-
bations in marginally stable plasmas.Physicsof Plasmas, 5(11):3886–3900,
October 1998. - Cited 4 times: pages 89, 107, 148 and 198 -

[DCT89] J. Dalibard and C. Cohen-Tannoudji. Laser cooling below the Doppler limit by
polarization gradients: simple theoretical models.JOSAB, 6(11):2023–2045,
November 1989. - Cited 1 time: page 37 -

[Deg86] Pierre Degond. Spectral Theory of the Linearized Vlasov-Poisson Equation.
Transactionsof the AmericanMathematicalSociety, 294(2):435–453, 1986.

- Cited 1 time: page 93 -

[Den85] J. Denavit. Simulations of the single-mode, bump-on-tail instability.The
Physicsof �uids, 28(9):2773–2777, 1985. - Cited 1 time: page 88 -

[Dew73] R. L. Dewar. Saturation of kinetic plasma instabilities by particle trapping.The
Physicsof Fluids, 16(3):431–435, March 1973. - Cited 1 time: page 88 -

[DFGV16] Helge Dietert, Bastien Fernandez, and David Gérard-Varet. Landau damping
to partially locked states in the Kuramoto model.arXiv:1606.04470[math-ph,
physics:nlin], June 2016. arXiv: 1606.04470. - Cited 1 time: page 199 -

[Die16a] Helge Dietert.Contributionsto mixing andhypocoercivityin kinetic models.
Thesis, Cambridge Centre for Analysis (CCA), Centre for Mathematical Sci-
ences, University of Cambridge, July 2016. DOI: 10.17863/CAM.7765.

- Cited 1 time: page 98 -

[Die16b] Helge Dietert. Stability and bifurcation for the Kuramoto model.
Journal de MathématiquesPures et Appliquées, 105(4):451–489, 2016.

- Cited 5 times: pages 87, 148, 160, 163 and 197 -

[DJM+ 09] Gustavo Deco, Viktor Jirsa, A. R. McIntosh, Olaf Sporns, and Rolf Köt-
ter. Key role of coupling, delay, and noise in resting brain �uctuations.
Proceedingsof theNationalAcademyof Sciences, 106(25):10302–10307, June
2009. - Cited 1 time: page 177 -

[DLN+ 94] M. Drewsen, Ph Laurent, A. Nadir, G. Santarelli, A. Clairon, Y. Castin, D. Gri-
son, and C. Salomon. Investigation of sub-Doppler cooling effects in a cesium
magneto-optical trap.Applied PhysicsB, 59(3):283–298, September 1994.

- Cited 1 time: page 37 -

[DMF88] C. F. Driscoll, J. H. Malmberg, and K. S. Fine. Observation of transport
to thermal equilibrium in pure electron plasmas.PhysicalReview Letters,
60(13):1290–1293, March 1988. - Cited 1 time: page 39 -

[DO99] Daniel H. E. Dubin and T. M. O'Neil. Trapped nonneutral plasmas, liquids, and
crystals (the thermal equilibrium states).Reviewsof ModernPhysics, 71(1):87–
172, January 1999. - Cited 1 time: page 39 -

Université Côte d'Azur 230



BIBLIOGRAPHY

[Dob79] R. L. Dobrushin. Vlasov equations.FunctionalAnalysisandIts Applications,
13(2):115–123, April 1979. - Cited 1 time: page 20 -

[DRAW02] Thierry Dauxois, Stefano Ruffo, Ennio Arimondo, and Martin Wilkens.
Dynamicsand Thermodynamicsof Systemswith Long RangeInteractions.
Springer Science & Business Media, December 2002. - Cited 1 time: page 18 -

[Dro16] Alexis Drouot. Pollicott-Ruelle resonances via kinetic Brownian motion.
arXiv:1607.03841[math], July 2016. arXiv: 1607.03841. - Cited 1 time: page 142 -

[DZ15] Semyon Dyatlov and Maciej Zworski. Stochastic stability of Pollicott–Ruelle
resonances.Nonlinearity, 28(10):3511, 2015. - Cited 1 time: page 142 -

[EE02] Y. Elskens and D. F. Escande.MicroscopicDynamicsof PlasmasandChaos.
CRC Press, October 2002. - Cited 1 time: page 18 -

[Erm91] B. Ermentrout. An adaptive model for synchrony in the �re�y Pteroptyx
malaccae. Journal of MathematicalBiology, 29(6):571–585, June 1991.

- Cited 1 time: page 165 -

[FGRLA02] E. Freire, E. Gamero, A. J. Rodríguez-Luis, and A. Algaba. A note on the triple-
zero linear degeneracy: normal forms, dynamical and bifurcation behaviors of
an unfolding. InternationalJournalof Bifurcation and Chaos, 12(12):2799–
2820, December 2002. - Cited 1 time: page 132 -

[FGVG16] Bastien Fernandez, David Gérard-Varet, and Giambattista Giacomin. Landau
Damping in the Kuramoto Model.AnnalesHenri Poincaré, 17(7):1793–1823,
July 2016. - Cited 2 times: pages 148 and 160 -

[FNP08] G. Filatrella, A. H. Nielsen, and N. F. Pedersen. Analysis of a power grid
using a Kuramoto-like model.The EuropeanPhysicalJournalB, 61(4):485–
491, February 2008. - Cited 1 time: page 165 -

[GA80] J. P. Gordon and A. Ashkin. Motion of atoms in a radiation trap.Physical
ReviewA, 21(5):1606–1617, May 1980. - Cited 1 time: page 34 -

[Gao13] David Yang Gao. Duality Principles in Nonconvex Systems: Theory,
MethodsandApplications. Springer Science & Business Media, March 2013.

- Cited 2 times: pages 178 and 179 -

[Gat08] Giovanni Luca Gattobigio.Manipulationof aLargeMagneto-OpticalTrap:<br
/>applicationto Four-WaveMixing. phdthesis, Università degli studi di Ferrara
; Université Nice Sophia Antipolis, February 2008. - Cited 1 time: page 38 -

[GCR14] Shamik Gupta, Alessandro Campa, and Stefano Ruffo. Nonequilib-
rium �rst-order phase transition in coupled oscillator systems with in-
ertia and noise. Physical Review E, 89(2):022123, February 2014.

- Cited 4 times: pages 167, 174, 175 and 194 -

[GFRL+ 99] E. Gamero, E. Freire, A. J. Rodríguez-Luis, E. Ponce, and A. Algaba. Hyper-
normal form calculation for triple-zero degeneracies.Bulletin of the Belgian
MathematicalSociety- SimonStevin, 6(3):357–368, 1999.- Cited 1 time: page 132 -

231 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[GH88] M. E. Goldstein and Lennart S. Hultgren. Nonlinear spatial evolution of an
externally excited instability wave in a free shear layer.Journalof Fluid
Mechanics, 197:295–330, December 1988. - Cited 1 time: page 148 -

[GH13] John Guckenheimer and P. J. Holmes.Nonlinear Oscillations, Dynamical
Systems,andBifurcationsof VectorFields. Springer Science & Business Me-
dia, November 2013. - Cited 1 time: page 79 -

[GPLK10] G. L. Gattobigio, T. Pohl, G. Labeyrie, and R. Kaiser. Scaling laws
for large magneto-optical traps. Physica Scripta, 81(2):025301, 2010.

- Cited 3 times: pages 28, 36 and 38 -

[GSW+ 08] A. M. Ghez, S. Salim, N. N. Weinberg, J. R. Lu, T. Do, J. K. Dunn,
K. Matthews, M. R. Morris, S. Yelda, E. E. Becklin, T. Kremenek, M. Milosavl-
jevic, and J. Naiman. Measuring Distance and Properties of the Milky Way's
Central Supermassive Black Hole with Stellar Orbits.The Astrophysical
Journal, 689(2):1044, 2008. - Cited 1 time: page 131 -

[GW13] Shangjiang Guo and Jianhong Wu.Bifurcation Theory of Functional
Differential Equations. Springer Science & Business Media, July 2013.

- Cited 2 times: pages 178 and 182 -

[Hal63] J. K. Hale. Linear functional-differential equations with constant coef�cients.
NASA; UnitedStates, January 1963. - Cited 2 times: pages 178 and 179 -

[HC89] P. D. Hislop and J. D. Crawford. Application of spectral deformation to the
Vlasov-Poisson system. II. Mathematical results.Journalof mathematical
physics, 30(12):2819–2837, 1989. - Cited 3 times: pages 22, 97 and 101 -

[HCK02] H. Hong, M. Y. Choi, and Beom Jun Kim. Synchronization on small-world
networks.PhysicalReviewE, 65(2):026139, January 2002.- Cited 1 time: page 166 -

[HCPT07] Hyunsuk Hong, Hugues Chaté, Hyunggyu Park, and Lei-Han Tang. Entrain-
ment Transition in Populations of Random Frequency Oscillators.Physical
ReviewLetters, 99(18):184101, October 2007. - Cited 1 time: page 175 -

[HD23] E Hückel and P Debye. The theory of electrolytes: I. lowering of freezing point
and related phenomena.Phys.Z, 24:185–206, 1923. - Cited 1 time: page 42 -

[HI10] Mariana Haragus and Gérard Iooss.LocalBifurcations,CenterManifolds,and
NormalFormsin In�nite-DimensionalDynamicalSystems. Springer Science
& Business Media, November 2010. - Cited 2 times: pages 80 and 181 -

[HK91] Jack K. Hale and Hüseyin Kocak.DynamicsandBifurcations. Springer Science
& Business Media, 1991. - Cited 1 time: page 134 -

[HKO+ 13] Kenichi Hirosawa, Seiichi Kittaka, Yu Oishi, Fumihiko Kannari, and Takayuki
Yanagisawa. Phase locking in a Nd:YVO4 waveguide laser array using Talbot
cavity.OpticsExpress, 21(21):24952–24961, October 2013.- Cited 1 time: page 149 -

[HL93] Jack K. Hale and Sjoerd M. Verduyn Lunel.Introduction to Functional
Differential Equations. Springer Science & Business Media, 1993.

- Cited 2 times: pages 178 and 182 -

Université Côte d'Azur 232



BIBLIOGRAPHY

[HM06] Jean-Pierre Hansen and Ian R McDonald.Theory of simple liquids (Third
Edition). Elsevier, 2006. - Cited 1 time: page 52 -

[HM13] G. I. Hagstrom and P. J. Morrison. Continuum Hamiltonian Hopf Bifurcation II.
arXiv:1308.6161[math-ph,physics:physics], August 2013. arXiv: 1308.6161.

- Cited 3 times: pages 22, 89 and 136 -

[HS75] T. W. Hänsch and A. L. Schawlow. Cooling of gases by laser radiation.Optics
Communications, 13(1):68–69, January 1975. - Cited 1 time: page 30 -

[Ich82] Setsuo Ichimaru. Strongly coupled plasmas: high-density classical plasmas and
degenerate electron liquids.Reviewsof Modern Physics, 54(4):1017–1059,
October 1982. - Cited 1 time: page 39 -

[ICT16] ICTP. Conference on Long-Range-Interacting Many Body Systems: from
Atomic to Astrophysical Scales, 2016. - Cited 1 time: page 18 -

[Inc] Wolfram Research, Inc. Mathematica, Version 11.2. Champaign, IL, 2017.
- Cited 2 times: pages 128 and 194 -

[ISP10] J. A. Izaguirre, C. R. Sweet, and V. S. Pande. Multiscale Dynamics of
Macromolecules Using Normal Mode Langevin.Paci�c Symposiumon
Biocomputing.Paci�c Symposiumon Biocomputing, pages 240–251, 2010.

- Cited 1 time: page 49 -

[Izh98] Eugene M. Izhikevich. Phase models with explicit time delays.PhysicalReview
E, 58(1):905–908, July 1998. - Cited 2 times: pages 166 and 177 -

[Jea02] James H Jeans. The stability of a spherical nebula.PhilosophicalTransactions
of theRoyalSocietyof London.SeriesA, ContainingPapersof aMathematical
or PhysicalCharacter, 199:1–53, 1902. - Cited 1 time: page 60 -

[JH11] Pierre-Emmanuel Jabin and Maxime Hauray. Particles approximations of
Vlasov equations with singular forces : Propagation of chaos.arXiv:1107.3821
[math], July 2011. arXiv: 1107.3821. - Cited 1 time: page 20 -

[JPM+ 13] Peng Ji, Thomas K. DM. Peron, Peter J. Menck, Francisco A. Rodrigues,
and Jürgen Kurths. Cluster Explosive Synchronization in Complex Networks.
PhysicalReviewLetters, 110(21):218701, May 2013. - Cited 1 time: page 165 -

[JPRK14] Peng Ji, Thomas K. D. M. Peron, Francisco A. Rodrigues, and Jürgen Kurths.
Low-dimensional behavior of Kuramoto model with inertia in complex net-
works. Scienti�c Reports, 4:srep04783, May 2014. - Cited 1 time: page 166 -

[JR81] Peter A. E. M. Janssen and J. Juul Rasmussen. Limit cycle behavior of
the bump-on-tail instability. The Physicsof Fluids, 24(2):268–273, 1981.

- Cited 1 time: page 88 -

[Kan98] Henry E. Kandrup. Violent Relaxation, Phase Mixing, and Gravitational Lan-
dau Damping.TheAstrophysicalJournal, 500(1):120, 1998.- Cited 1 time: page 88 -

[Kat95] Tosio Kato. Perturbationtheory for linear operators, volume 132. Springer
Science & Business Media, 1995. - Cited 1 time: page 93 -

233 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[KC67] W. R. Klein and B. D. Cook. Uni�ed Approach to Ultrasonic Light Diffrac-
tion. IEEE Transactionson SonicsandUltrasonics, 14(3):123–134, July 1967.

- Cited 1 time: page 65 -

[KHS+ 16] Ole Kock, Wei He, Dariusz Swierad, Lyndsie Smith, Joshua Hughes, Kai
Bongs, and Yeshpal Singh. Laser controlled atom source for optical clocks.
Scienti�c Reports, 6:srep37321, November 2016. - Cited 1 time: page 27 -

[KP13] Maxim Komarov and Arkady Pikovsky. Multiplicity of Singular Synchronous
States in the Kuramoto Model of Coupled Oscillators.PhysicalReviewLetters,
111(20):204101, November 2013. - Cited 1 time: page 161 -

[KP14] M. Komarov and A. Pikovsky. The Kuramoto model of coupled oscillators with
a bi-harmonic coupling function.PhysicaD: NonlinearPhenomena, 289:18–
31, December 2014. - Cited 4 times: pages 161, 167, 174 and 175 -

[Kub66] R. Kubo. The �uctuation-dissipation theorem.Reportson Progressin Physics,
29(1):255, 1966. - Cited 1 time: page 18 -

[Kur75] Yoshiki Kuramoto. Self-entrainment of a population of coupled non-linear
oscillators. In International Symposium on Mathematical Problems in
TheoreticalPhysics, pages 420–422. Springer, Berlin, Heidelberg, 1975. DOI:
10.1007/BFb0013365. - Cited 5 times: pages 148, 151, 165, 175 and 220 -

[Kur84] Yoshiki Kuramoto. Cooperative Dynamics of Oscillator CommunityA Study
Based on Lattice of Rings. Progressof TheoreticalPhysicsSupplement,
79:223–240, February 1984. - Cited 1 time: page 151 -

[Kur15] Y. Kuramoto. Kuramoto talks about the Kuramoto model
https://www.youtube.com/watch?v=lac4txwybog, 2015. - Cited 1 time: page 149 -

[Kuz04] Yuri A. Kuznetsov.Elementsof AppliedBifurcationTheory. Springer Science
& Business Media, April 2004. - Cited 1 time: page 134 -

[Kuz05] Yu. A. Kuznetsov. Practical computation of normal forms on center manifolds at
degenerate bogdanov–takens bifurcations.InternationalJournalof Bifurcation
andChaos, 15(11):3535–3546, November 2005. - Cited 1 time: page 134 -

[KZH02] István Z. Kiss, Yumei Zhai, and John L. Hudson. Emerging Coherence in a Pop-
ulation of Chemical Oscillators.Science, 296(5573):1676–1678, May 2002.

- Cited 1 time: page 149 -

[Lan46] L Landau. On the vibrations of the electronic plasma.Akad. Nauk SSSR.
ZhurnalEksper.Teoret.Fiz., 16:574–586, 1946. - Cited 2 times: pages 20 and 88 -

[LB58] A. Lenard and Ira B. Bernstein. Plasma Oscillations with Diffusion in
Velocity Space. Physical Review, 112(5):1456–1459, December 1958.

- Cited 1 time: page 139 -

[LB99] D. Lynden-Bell. Negative speci�c heat in astronomy, physics and chemistry.
PhysicaA: StatisticalMechanicsandits Applications, 263(1):293–304, Febru-
ary 1999. - Cited 1 time: page 18 -

Université Côte d'Azur 234



BIBLIOGRAPHY

[LC04] Chunguang Li and Guanrong Chen. Synchronization in general complex dy-
namical networks with coupling delays.PhysicaA: StatisticalMechanicsand
its Applications, 343:263–278, November 2004. - Cited 1 time: page 177 -

[LLP81] Lev Davidovich Landau, EM Lifshitz, and LP Pitaevskij.Courseof theoretical
physics.vol. 10: Physicalkinetics. Oxford, 1981. - Cited 1 time: page 137 -

[LMK06] G. Labeyrie, F. Michaud, and R. Kaiser. Self-Sustained Oscillations in a Large
Magneto-Optical Trap.PhysicalReviewLetters, 96(2):023003, January 2006.

- Cited 1 time: page 38 -

[LMLY14] Keren Li, Shen Ma, Haihong Li, and Junzhong Yang. Transition to synchro-
nization in a Kuramoto model with the �rst- and second-order interaction terms.
PhysicalReviewE, 89(3):032917, March 2014. - Cited 1 time: page 161 -

[LPR+ 89] P. D. Lett, W. D. Phillips, S. L. Rolston, C. E. Tanner, R. N. Watts, and C. I.
Westbrook. Optical molasses.JOSAB, 6(11):2084–2107, November 1989.

- Cited 1 time: page 37 -

[Man97] Giovanni Manfredi. Long-Time Behavior of Nonlinear Landau Damping.
PhysicalReviewLetters, 79(15):2815–2818, October 1997.- Cited 1 time: page 88 -

[MBS+ 09] E. A. Martens, E. Barreto, S. H. Strogatz, E. Ott, P. So, and T. M. Antonsen.
Exact results for the Kuramoto model with a bimodal frequency distribution.
PhysicalReviewE, 79(2):026204, February 2009.- Cited 3 times: pages 157, 158 and 223 -

[MDB+ 88] JH Malmberg, CF Driscoll, B Beck, DL Eggleston, J Fajans, K Fine, X-P
Huang, AW Hyatt, CW Roberson, and C Fred Driscoll. Experiments with pure
electron plasmas. InAIP ConferenceProceedings, volume 175, pages 28–74.
AIP, 1988. - Cited 1 time: page 39 -

[MH13] Philip J. Morrison and George I. Hagstrom. Continuum Hamiltonian Hopf Bi-
furcation I. arXiv:1308.3807[math-ph,physics:nlin,physics:physics], August
2013. arXiv: 1308.3807. - Cited 3 times: pages 22, 89 and 136 -

[Mie92] Alexander Mielke. On nonlinear problems of mixed type: A qualitative the-
ory using in�nite-dimensional center manifolds.Journalof Dynamicsand
DifferentialEquations, 4(3):419–443, July 1992. - Cited 1 time: page 85 -

[Mil90] Jonathan Miller. Statistical mechanics of Euler equations in two dimensions.
PhysicalReviewLetters, 65(17):2137–2140, October 1990.- Cited 1 time: page 18 -

[Mil02] Stephen C. Milne. In�nite Families of Exact Sums of Squares Formulas, Jacobi
Elliptic Functions, Continued Fractions, and Schur Functions.TheRamanujan
Journal, 6(1):7–149, March 2002. - Cited 3 times: pages 116, 123 and 208 -

[MMS09] Seth A. Marvel, Renato E. Mirollo, and Steven H. Strogatz. Identical phase
oscillators with global sinusoidal coupling evolve by Möbius group action.
Chaos:An InterdisciplinaryJournalof NonlinearScience, 19(4):043104, Oc-
tober 2009. - Cited 1 time: page 158 -

235 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[Mol69] B. R. Mollow. Power Spectrum of Light Scattered by Two-Level Systems.
PhysicalReview, 188(5):1969–1975, December 1969.- Cited 2 times: pages 37 and 72 -

[Mon16] Pierre Monmarché. Ergodicity and propagation of chaos for mean �eld ki-
netic particles. arXiv:1603.03179[math], March 2016. arXiv: 1603.03179.

- Cited 1 time: page 21 -

[Mor00] Philip J. Morrison. Hamiltonian description of Vlasov dynamics: Action-angle
variables for the continuous spectrum.TransportTheoryandStatisticalPhysics,
29(3-5):397–414, April 2000. - Cited 1 time: page 20 -

[MS79] VG Minogin and OT Serimaa. Resonant light pressure forces in a
strong standing laser wave.Optics Communications, 30(3):373–379, 1979.

- Cited 1 time: page 37 -

[MTFH13] Erik Andreas Martens, Shashi Thutupalli, Antoine Fourrière, and Oskar Hal-
latschek. Chimera states in mechanical oscillator networks.Proceedings
of the National Academy of Sciences, 110(26):10563–10567, June 2013.

- Cited 1 time: page 149 -

[Mur06] James Murdock.NormalFormsandUnfoldingsfor LocalDynamicalSystems.
Springer Science & Business Media, April 2006. - Cited 2 times: pages 181 and 182 -

[MV11] Clément Mouhot and Cédric Villani. On Landau damping.Acta Mathematica,
207(1):29–201, September 2011. - Cited 4 times: pages 20, 88, 99 and 160 -

[MW64] J. H. Malmberg and C. B. Wharton. Collisionless Damping of Electro-
static Plasma Waves.PhysicalReviewLetters, 13(6):184–186, August 1964.

- Cited 2 times: pages 88 and 107 -

[MWGO68] J. H. Malmberg, C. B. Wharton, R. W. Gould, and T. M. O'Neil. Plasma
Wave Echo Experiment.PhysicalReviewLetters, 20(3):95–97, January 1968.

- Cited 1 time: page 77 -

[MYMB10] J. J. McFerran, L. Yi, S. Mejri, and S. Bize. Sub-Doppler cooling of fermionic
Hg isotopes in a magneto-optical trap.Optics Letters, 35(18):3078–3080,
September 2010. - Cited 3 times: pages 34, 37 and 38 -

[NBS99] C. S. Ng, A. Bhattacharjee, and F. Skiff. Kinetic Eigenmodes and Discrete
Spectrum of Plasma Oscillations in a Weakly Collisional Plasma.Physical
ReviewLetters, 83(10):1974–1977, September 1999. - Cited 1 time: page 139 -

[NBS04] C. S. Ng, A. Bhattacharjee, and F. Skiff. Complete Spectrum of Kinetic Eigen-
modes for Plasma Oscillations in a Weakly Collisional Plasma.PhysicalReview
Letters, 92(6):065002, February 2004. - Cited 2 times: pages 141 and 143 -

[NRV+ 00] Z. Néda, E. Ravasz, T. Vicsek, Y. Brechet, and A. L. Barabási. Physics
of the rhythmic applause.PhysicalReviewE, 61(6):6987–6992, June 2000.

- Cited 1 time: page 149 -

[NUS13] Anders Nordenfelt, Javier Used, and Miguel A. F. Sanjuán. Bursting frequency
versus phase synchronization in time-delayed neuron networks.Physical
ReviewE, 87(5):052903, May 2013. - Cited 1 time: page 177 -

Université Côte d'Azur 236



BIBLIOGRAPHY

[NW80] H Neunzert and J Wick. The convergence of simulation methods in plasma
physics. Mathematicalmethodsof plasmaphysics(Oberwolfach, 1979),
20:271–286, 1980. - Cited 1 time: page 20 -

[OA08] Edward Ott and Thomas M. Antonsen. Low dimensional behav-
ior of large systems of globally coupled oscillators. Chaos: An
InterdisciplinaryJournalof NonlinearScience, 18(3):037113, September 2008.

- Cited 5 times: pages 149, 156, 157, 181 and 197 -

[OA09] Edward Ott and Thomas M. Antonsen. Long time evolution of phase os-
cillator systems. Chaos: An InterdisciplinaryJournalof NonlinearScience,
19(2):023117, May 2009. - Cited 1 time: page 158 -

[ODL+ 14] F.W. Olver, Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W.
Clark, B.R. Miller, and B.V. Saunders. NIST Digital Library of Mathematical
Functions http://dlmf.nist.gov/8.2#E1, January 2014. - Cited 1 time: page 141 -

[Oga13] Shun Ogawa. Spectral and formal stability criteria of spatially inho-
mogeneous stationary solutions to the Vlasov equation for the Hamilto-
nian mean-�eld model. Physical Review E, 87(6):062107, June 2013.

- Cited 4 times: pages 94, 120, 122 and 207 -

[OHA11] Edward Ott, Brian R. Hunt, and Thomas M. Antonsen. Comment on “Long
time evolution of phase oscillator systems” [Chaos 19, 023117 (2009)].Chaos:
An InterdisciplinaryJournalof NonlinearScience, 21(2):025112, June 2011.

- Cited 1 time: page 158 -

[OM15] Henrique M. Oliveira and Luís V. Melo. Huygens synchronization of two
clocks.Scienti�c Reports, 5:11548, July 2015. - Cited 1 time: page 150 -

[ONBT14] Simona Olmi, Adrian Navas, Stefano Boccaletti, and Alessandro Torcini. Hys-
teretic transitions in the Kuramoto model with inertia.PhysicalReview E,
90(4):042905, October 2014. - Cited 3 times: pages 165, 166 and 175 -

[OW12] Oleh E. Omel'chenko and Matthias Wolfrum. Nonuniversal Transitions to
Synchrony in the Sakaguchi-Kuramoto Model.Physical Review Letters,
109(16):164101, October 2012. - Cited 2 times: pages 174 and 175 -

[OWM71] T. M. O'Neil, J. H. Winfrey, and J. H. Malmberg. Nonlinear Interaction of a
Small Cold Beam and a Plasma.ThePhysicsof Fluids, 14(6):1204–1212, June
1971. - Cited 2 times: pages 88 and 107 -

[Pal94] P. L. Palmer. Stability of CollisionlessStellar Systems: Mechanismsfor
the DynamicalStructureof Galaxies, volume 185 ofAstrophysicsandSpace
ScienceLibrary. Springer Science & Business Media, 1994.- Cited 1 time: page 130 -

[Par02] R. B. Paris. A uniform asymptotic expansion for the incomplete gamma func-
tion. Journalof Computationaland Applied Mathematics, 148(2):323–339,
November 2002. - Cited 1 time: page 217 -

[PCMM15] Francesco Pegoraro, Francesco Califano, Giovanni Manfredi, and Philip J. Mor-
rison. Theory and applications of the Vlasov equation.TheEuropeanPhysical
JournalD, 69(3):68, March 2015. - Cited 1 time: page 88 -

237 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[Per06] Jérôme Perez. Gravity, dimension, equilibrium, and thermodynamics.Comptes
RendusPhysique, 7(3):406–413, April 2006. - Cited 1 time: page 18 -

[PPA90] P. L. Palmer, J. Papaloizou, and A. J. Allen. Neighbouring equilibria to radially
anisotropic spheres: possible end-states for violently relaxed stellar systems.
Monthly Noticesof the Royal AstronomicalSociety, 246(3):415–432, 1990.

- Cited 2 times: pages 130 and 131 -

[PQ02] R. L. Pego and J. R. Quintero. A Host of Traveling Waves in a Model of Three-
Dimensional Water-Wave Dynamics.Journalof NonlinearScience, 12(1):59–
83, April 2002. - Cited 1 time: page 85 -

[PR08] Arkady Pikovsky and Michael Rosenblum. Partially Integrable Dynamics of
Hierarchical Populations of Coupled Oscillators.PhysicalReview Letters,
101(26):264103, December 2008. - Cited 1 time: page 158 -

[PRK01] Arkady Pikovsky, Michael Rosenblum, and Jürgen Kurths.Synchronization:A
UniversalConceptin NonlinearSciences. Cambridge University Press, 2001.

- Cited 1 time: page 150 -

[Pru12] Laurence Pruvost. Coulomb-like force induced by radiation trapping in a cold
atom cloud. InAIP ConferenceProceedings, volume 1421, pages 80–92. AIP,
2012. - Cited 1 time: page 38 -

[PSDJ00] Laurence Pruvost, Isabelle Serre, Hong Tuan Duong, and Joshua Jortner. Ex-
pansion and cooling of a bright rubidium three-dimensional optical molasses.
PhysicalReviewA, 61(5):053408, 2000. - Cited 1 time: page 38 -

[PTA+ 01] Pat Dallard, Tony Fitzpatrick, Anthony Flint, Angus Low, Roger Ridsdill
Smith, Michael Willford, and Mark Roche. London Millennium Bridge:
Pedestrian-Induced Lateral Vibration.Journalof BridgeEngineering, 6(6):412–
417, December 2001. - Cited 1 time: page 149 -

[RF13] Tarcísio M. Rocha Filho. Solving the Vlasov equation for one-dimensional
models with long range interactions on a GPU. Computer Physics
Communications, 184(1):34–39, January 2013. - Cited 2 times: pages 127 and 194 -

[RHV11] R. Romain, D. Hennequin, and P. Verkerk. Phase-space description of the
magneto-optical trap.The EuropeanPhysicalJournalD, 61(1):171–180, Jan-
uary 2011. - Cited 2 times: pages 37 and 40 -

[Ris89] Hannes Risken. The Fokker-Planck equation.SpringerSeriesin Synergetics,
18, 1989. - Cited 1 time: page 139 -

[RPC+ 87] E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping
of Neutral Sodium Atoms with Radiation Pressure.PhysicalReviewLetters,
59(23):2631–2634, December 1987. - Cited 4 times: pages 31, 38, 44 and 73 -

[RS80] Michael Reed and Barry Simon.Methodsof modernmathematicalphysics.vol.
1. Functionalanalysis. Academic, 1980. - Cited 1 time: page 85 -

Université Côte d'Azur 238



BIBLIOGRAPHY

[RS91] R. Robert and J. Sommeria. Statistical equilibrium states for two-
dimensional �ows. Journalof Fluid Mechanics, 229:291–310, August 1991.

- Cited 1 time: page 18 -

[RSB+ 14] Mohamed-Taha Rouabah, Marina Samoylova, Romain Bachelard, Philippe W.
Courteille, Robin Kaiser, and Nicola Piovella. Coherence effects in scattering
order expansion of light by atomic clouds.JOSAA, 31(5):1031–1039, May
2014. - Cited 1 time: page 203 -

[RTBPL14] Ana C. Ribeiro-Teixeira, Fernanda P. C. Benetti, Renato Pakter, and Yan Levin.
Ergodicity breaking and quasistationary states in systems with long-range inter-
actions.PhysicalReviewE, 89(2):022130, February 2014. - Cited 1 time: page 18 -

[Sak88] Hidetsugu Sakaguchi. Cooperative Phenomena in Coupled Oscillator Systems
under External Fields.Progressof TheoreticalPhysics, 79(1):39–46, January
1988. - Cited 1 time: page 166 -

[SCF92] A. M. Steane, M. Chowdhury, and C. J. Foot. Radiation force in the magneto-
optical trap.JOSAB, 9(12):2142–2158, December 1992. - Cited 1 time: page 37 -

[SF91] A. M. Steane and C. J. Foot. Laser Cooling below the Doppler Limit
in a Magneto-Optical Trap. EPL (EurophysicsLetters), 14(3):231, 1991.

- Cited 1 time: page 38 -

[SJM15] Stefan Schütz, Simon B. Jäger, and Giovanna Morigi. Thermodynamics and
dynamics of atomic self-organization in an optical cavity.PhysicalReviewA,
92(6):063808, December 2015. - Cited 2 times: pages 18 and 92 -

[SM91] Steven H. Strogatz and Renato E. Mirollo. Stability of incoherence in a pop-
ulation of coupled oscillators.Journalof StatisticalPhysics, 63(3-4):613–635,
May 1991. - Cited 2 times: pages 153 and 154 -

[SM97] D. W. L. Sprung and J. Martorell. The symmetrized Fermi function and its
transforms. Journalof PhysicsA: Mathematicaland General, 30(18):6525,
1997. - Cited 1 time: page 206 -

[SOG+ 02] R. Schödel, T. Ott, R. Genzel, R. Hofmann, M. Lehnert, A. Eckart,
N. Mouawad, T. Alexander, M. J. Reid, R. Lenzen, M. Hartung, F. Lacombe,
D. Rouan, E. Gendron, G. Rousset, A.-M. Lagrange, W. Brandner, N. Ageorges,
C. Lidman, A. F. M. Moorwood, J. Spyromilio, N. Hubin, and K. M. Menten.
A star in a 15.2-year orbit around the supermassive black hole at the centre of
the Milky Way. Nature, 419(6908):694–696, October 2002.- Cited 1 time: page 131 -

[Spr05] Volker Springel. The cosmological simulation code gadget-2.Monthly
Notices of the Royal Astronomical Society, 364(4):1105–1134, December
2005. - Cited 1 time: page 49 -

[SR76] Albert Simon and Marshall N. Rosenbluth. Single-mode saturation of the
bump-on-tail instability: Immobile ions.ThePhysicsof Fluids, 19(10):1567–
1580, October 1976. - Cited 1 time: page 88 -

239 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[SR00] L. Saint-Raymond. The gyrokinetic approximation for the vlasov–poisson sys-
tem. MathematicalModelsandMethodsin Applied Sciences, 10(09):1305–
1332, December 2000. - Cited 1 time: page 21 -

[SRS88] Albert Simon, Shelden Radin, and Robert W. Short. Long-time simulation of
the single-mode bump-on-tail instability.ThePhysicsof Fluids, 31(12):3649–
3659, December 1988. - Cited 1 time: page 88 -

[SS02] R. W. Short and A. Simon. Damping of perturbations in weakly
collisional plasmas. Physics of Plasmas, 9(8):3245–3253, July 2002.

- Cited 4 times: pages 137, 138, 139 and 141 -

[SSK87] Hidetsugu Sakaguchi, Shigeru Shinomoto, and Yoshiki Kuramoto. Local
and Grobal Self-Entrainments in Oscillator Lattices.Progressof Theoretical
Physics, 77(5):1005–1010, May 1987. - Cited 1 time: page 166 -

[SSK88] Hidetsugu Sakaguchi, Shigeru Shinomoto, and Yoshiki Kuramoto. Mutual En-
trainment in Oscillator Lattices with Nonvariational Type Interaction.Progress
of TheoreticalPhysics, 79(5):1069–1079, May 1988.- Cited 2 times: pages 166 and 167 -

[ST15] Maximilian Sadilek and Stefan Thurner. Physiologically motivated multi-
plex Kuramoto model describes phase diagram of cortical activity.Scienti�c
Reports, 5:srep10015, May 2015. - Cited 1 time: page 177 -

[ST16] S. Sridhar and Jihad R. Touma. Stellar Dynamics around a Massive Black Hole
I: Secular Collisionless Theory.Monthly Noticesof the Royal Astronomical
Society, 458(4):4129–4142, June 2016. arXiv: 1509.02397.- Cited 1 time: page 131 -

[Ste96] George Sterman. Partons, Factorization and Resummation, TASI95.
arXiv:hep-ph/9606312, June 1996. arXiv: hep-ph/9606312.- Cited 1 time: page 106 -

[Ste01] Daniel A Steck. Rubidium 87 D line data, 2001.- Cited 4 times: pages 28, 34, 37 and 45 -

[Str00] Steven H. Strogatz. From Kuramoto to Crawford: exploring the onset of
synchronization in populations of coupled oscillators.PhysicaD: Nonlinear
Phenomena, 143(1):1–20, September 2000. - Cited 1 time: page 154 -

[SVH+ 04] Bernard Smith, John Vasut, T Hyde, L Matthews, Jerry Reay, Mike Cook, and
Jimmy Schmoke. Dusty plasma correlation function experiment.Advancesin
SpaceResearch, 34(11):2379–2383, 2004. - Cited 1 time: page 48 -

[SW51] R. S Spencer and R. M Wiley. The mixing of very viscous liquids.Journalof
Colloid Science, 6(2):133–145, April 1951. - Cited 1 time: page 85 -

[Szn91] Alain-Sol Sznitman. Topics in propagation of chaos. InEcole d'Eté de
ProbabilitésdeSaint-FlourXIX — 1989, pages 165–251. Springer, Berlin, Hei-
delberg, 1991. DOI: 10.1007/BFb0085169. - Cited 1 time: page 21 -

[Tak74] Floris Takens. Singularities of vector �elds.PublicationsMathématiquesde
l'IHÉS, 43:47–100, 1974. - Cited 1 time: page 134 -

Université Côte d'Azur 240



BIBLIOGRAPHY

[TDM87] S. I. Tsunoda, F. Doveil, and J. H. Malmberg. Nonlinear Interaction be-
tween a Warm Electron Beam and a Single Wave.PhysicalReviewLetters,
59(24):2752–2755, December 1987. - Cited 1 time: page 88 -

[TLB99] M. N. Tamashiro, Yan Levin, and Marcia C. Barbosa. The one-component
plasma: a conceptual approach.PhysicaA: StatisticalMechanicsand its
Applications, 268(1–2):24–49, June 1999. - Cited 1 time: page 39 -

[TLO97a] Hisa-Aki Tanaka, Allan J. Lichtenberg, and Shin'ichi Oishi. First Or-
der Phase Transition Resulting from Finite Inertia in Coupled Oscilla-
tor Systems. Physical Review Letters, 78(11):2104–2107, March 1997.

- Cited 6 times: pages 165, 166, 167, 175, 220 and 221 -

[TLO97b] Hisa-Aki Tanaka, Allan J. Lichtenberg, and Shin'ichi Oishi. Self-
synchronization of coupled oscillators with hysteretic responses.
Physica D: Nonlinear Phenomena, 100(3):279–300, February 1997.

- Cited 2 times: pages 165 and 220 -

[TMK10] H. Terças, J. T. Mendonça, and R. Kaiser. Driven collective instabilities
in magneto-optical traps: A �uid-dynamical approach.EPL (Europhysics
Letters), 89(5):53001, 2010. - Cited 1 time: page 38 -

[Tro86] M. Trocheris. On the derivation of the one dimensional Vlasov equa-
tion. TransportTheoryandStatisticalPhysics, 15(5):597–628, August 1986.

- Cited 1 time: page 20 -

[TSS05] B. R. Trees, V. Saranathan, and D. Stroud. Synchronization in disordered
Josephson junction arrays: Small-world connections and the Kuramoto model.
PhysicalReviewE, 71(1):016215, January 2005. - Cited 1 time: page 165 -

[TZT+ 12] Amirkhan A. Temirbayev, Zeinulla Zh. Zhanabaev, Stanislav B. Tarasov,
Vladimir I. Ponomarenko, and Michael Rosenblum. Experiments on oscillator
ensembles with global nonlinear coupling.PhysicalReviewE, 85(1):015204,
January 2012. - Cited 1 time: page 149 -

[Van89] A. Vanderbauwhede. Centre Manifolds, Normal Forms and Elementary
Bifurcations. In Dynamics Reported, Dynamics Reported, pages 89–169.
Vieweg+Teubner Verlag, Wiesbaden, 1989. DOI: 10.1007/978-3-322-96657-
5_4. - Cited 1 time: page 87 -

[VDMvdM85] Jan-Cees Van Der Meer and Jan-Cees van der Meer.The hamiltonianHopf
bifurcation. Springer, 1985. - Cited 1 time: page 101 -

[VI92] A. Vanderbauwhede and G. Iooss. Center Manifold Theory in In�nite Di-
mensions. InDynamics Reported, Dynamics Reported, pages 125–163.
Springer, Berlin, Heidelberg, 1992. DOI: 10.1007/978-3-642-61243-5_4.

- Cited 1 time: page 87 -

[Vil10] C. Villani. Landau damping, Notes for a course given in Cotonou, Benin, and
in CIRM, Luminy, 2010. - Cited 3 times: pages 85, 88 and 160 -

241 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

[VK55] N. G. Van Kampen. On the theory of stationary waves in plasmas.Physica,
21(6):949–963, January 1955. - Cited 2 times: pages 95 and 100 -

[Vla68] A. A. Vlasov. The Vibrational Propreties of an Electron Gas.SovietPhysics
Uspekhi, 10(6):721, 1968. - Cited 1 time: page 88 -

[Wal69] T J Walker. Acoustic synchrony: two mechanisms in the snowy tree cricket.
Science, 166(3907):891–894, 1969. - Cited 1 time: page 149 -

[WCS96] Kurt Wiesenfeld, Pere Colet, and Steven H. Strogatz. Synchronization Tran-
sitions in a Disordered Josephson Series Array.PhysicalReview Letters,
76(3):404–407, January 1996. - Cited 1 time: page 165 -

[WD75] D Wineland and Hans Dehmelt. Proposed 10^{14}\Delta \nu<\nu laser �uores-
cence spectroscopy on TI^+ mono-ion oscillator III. InBulletinof theAmerican
PhysicalSociety, volume 20, pages 637–637. Amer Inst Physics Circulation
Ful�llment, 1975. - Cited 1 time: page 30 -

[Win67] Arthur T. Winfree. Biological rhythms and the behavior of populations of
coupled oscillators.Journalof TheoreticalBiology, 16(1):15–42, July 1967.

- Cited 1 time: page 150 -

[Win80] Arthur T. Winfree. The Geometryof Biological Time. Springer, New York,
1980. - Cited 1 time: page 150 -

[WS93] Shinya Watanabe and Steven H. Strogatz. Integrability of a globally cou-
pled oscillator array.PhysicalReviewLetters, 70(16):2391–2394, April 1993.

- Cited 1 time: page 158 -

[WSW90] Thad Walker, David Sesko, and Carl Wieman. Collective behavior of optically
trapped neutral atoms.PhysicalReviewLetters, 64(4):408–411, January 1990.

- Cited 4 times: pages 28, 36, 57 and 59 -

[WW96] E. T. Whittaker and G. N. Watson.A Courseof ModernAnalysis. Cambridge
University Press, September 1996. Google-Books-ID: ULVdGZmi9VcC.

- Cited 1 time: page 208 -

[XVF+ 15] G. Xu, D. Vocke, D. Faccio, J. Garnier, T. Roger, S. Trillo, and A. Picozzi.
From coherent shocklets to giant collective incoherent shock waves in nonlocal
turbulent �ows. NatureCommunications, 6:ncomms9131, September 2015.

- Cited 1 time: page 18 -

[XVS08] D. Xenides, D. S. Vlachos, and T. E. Simos. Synchronization in com-
plex systems following a decision based queuing process: rhythmic applause
as a test case.Journalof StatisticalMechanics: Theory and Experiment,
2008(07):P07017, 2008. - Cited 1 time: page 149 -

[YS99] M. K. Stephen Yeung and Steven H. Strogatz. Time Delay in the Kuramoto
Model of Coupled Oscillators.PhysicalReviewLetters, 82(3):648–651, Jan-
uary 1999. - Cited 6 times: pages 166, 177, 181, 187, 188 and 198 -

Université Côte d'Azur 242



BIBLIOGRAPHY

[ZGS01] Tie Zhou, Yan Guo, and Chi-Wang Shu. Numerical study on Landau damp-
ing. Physica D: Nonlinear Phenomena, 157(4):322–333, October 2001.

- Cited 1 time: page 88 -

[Zwo15] Maciej Zworski. Scattering resonances as viscosity limits.arXiv:1505.00721
[math-ph], May 2015. arXiv: 1505.00721. - Cited 1 time: page 142 -

243 Laboratoire Jean-Alexandre Dieudonné



BIBLIOGRAPHY

Université Côte d'Azur 244



RÉSUMÉ

Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dyna-
miques particulières. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivant
leur densité dans l'espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La première
traite de notre collaboration avec une équipe expérimentale sur un Piège Magnéto-Optique. Ce dispositif à
grand nombre d'atomes présente des interactions coulombiennes effectives provenant de la rediffusion des
photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l'analogue d'une longueur
de Debye, et son in�uence sur la réponse du système. Les expériences réalisées ne permettent pour l'instant
pas de conclure de façon dé�nitive. Dans la deuxième partie, nous avons analysé les modèles cinétiques
de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension in�nie, nous avons examiné les bi-
furcations autour des états stationnaires instables, l'objectif étant d'obtenir des équations réduites décrivant
la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cinq systèmes
différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifur-
cation, que nous avons testée numériquement. Nous avons conjecturé une réduction exacte (obtenue via la
forme normale Triple Zero) autour des états inhomogènes de l'équation de Vlasov. Ces résultats génériques
pourraient être pertinents dans un contexte astrophysique. Les autres résultats s'appliquent aux phénomènes
de synchronisation du modèle de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées.

Mots-clés :Dynamique, Réduction Dimensionelle, Non Linéaire, Hors d'Équilibre, Interactions à Longue
Portée, Équation Cinétique Sans Collisions, Vlasov, Fokker-Planck, Triple Zero, Oscillateurs Couplés, Syn-
chronisation, Kuramoto, Piège Magnéto-Optique, Atomes Froids, Longueur de Debye

ABSTRACT

Long-range interacting systems are known to display particular statistical and dynamical properties. To
describe their dynamical evolution, we can use kinetic equations describing their density in the phase space.
This PhD thesis is divided into two distinct parts. The �rst part concerns our collaboration with an exper-
imental team on a Magneto-Optical Trap. The physics of this widely-used device, operating with a large
number of atoms, is supposed to display effective Coulomb interactions coming from photon rescattering.
We have proposed experimental tests to highlight the analog of a Debye length, and its in�uence on the
system response. The experimental realizations do not allow yet a de�nitive conclusion. In the second part,
we analyzed the Vlasov and Kuramoto kinetic models. To study their in�nite dimensional dynamics, we
looked at bifurcations around unstable steady states. The goal was to obtain reduced equations describing
the dynamical evolution. We performed unstable manifold expansions on �ve different kinetic systems.
These reductions are in general not exact and plagued by singularities, yet they predict correctly the nature
and scaling of the bifurcation, which we tested numerically. We conjectured an exact dimensional reduction
(obtained using the Triple Zero normal form) around the inhomogeneous states of the Vlasov equation.
These results are expected to be very generic and could be relevant in an astrophysical context. Other re-
sults apply to synchronization phenomena through the Kuramoto model for oscillators with inertia and/or
delayed interactions.

Keywords: Dynamics, Dimensional Reduction, Nonlinear, Out-of-Equilibrium, Long-Range Interactions,
Collisionless Kinetics Equations, Vlasov, Fokker-Planck, Triple Zero, Coupled Oscillators, Synchroniza-
tion, Kuramoto, Magneto-Optical Trap, Cold Atoms, Debye Length
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