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FOREWORD

What is this Ph.D. thesis about? At a basic level the answer is: understanding the formation
of structures in a particular class of system with a large number of components. This special
class concerns systems formed with particles interacting with each other via long-range interac-
tions. The most obvious examples are self-gravitating systems and plasmas but many more sys-
tems are concerned. These interactions are opposed to the short-range interactions (e.g. shocks
with O-range or nearest neighbor interactions) and can drive a system out-of-equilibrium. The
dynamics of these long-range systems is the primary interest of this Ph.D. thesis. It will be
studied through kinetics equations. The dif culty lies in the richness of these equations. The
goal of my work is to depict the dynamics around stationary states with simpler equations, this
is called dimensional reduction.

The manuscript is composed of two independent parts: one concerning an experimental
collaboration on a cold atom system with supposedly long-range interactions and another one
which can be considered as the main part on bifurcations in collisionless kinetic systems.

Main results of this Ph.D. thesis

In the experimental collaboration part, the main result is the proposition of two experiments
that could con rm or not the analogy between Large Magneto Optical Traps and a Non-Neutral
Plasma. Preliminary experimental results are discussed with a relatively good matching with
theory and simulations. However de nitive conclusions remain uncertain.

In the second part, the main achievements are the bifurcation analysis for ve different ki-
netic systems. Numerical simulations were done in some of these systems fully supporting the
theoretical claims. These results elucidate partially the dynamics around steady states of out-
of-equilibrium systems with long-range interactions and in at least one case predicts a behavior
that might be relevant in galactic systems. Our results could prove to be very generic thanks
to the universal character of bifurcation analysis. For example, bifurcation regimes found for
Vlasov systems with a small dissipation are like the one obtained for two dimensional uids; we
also conjecture a Triple Zero bifurcations around non homogeneous Vlasov states. Moreover,
along this Part we raise many questions and observations on the unstable manifold technique
used after J.D. Crawford and the possibility of exact dimensional reductions.
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INTRODUCTION

The Newton's law of universal gravitation describes one of the most fundamental forces,
thus since we all experience it directly we will use it as a guiding thread of this introduction.
Newton was able to derive planets motions around the sun associating this force with equations
of motion he postulated. In other words, he solved a one body problem (since the Sun is
considered xed because of its large mass), meaning he could predict the motion of planets
(position and velocity) in time. The natural sequel for this problem is the two-body problem,
that we also know exactly how to solve. However, upon increasing the number of bbélies
two to three the problem incredibly more dif cult: no general solutions are known and chaos
emerges. A chaotic system can behave very differently for two very close initial conditions,
making its analytical description dif cult. For even larger systems with a large numbef
self-gravitating bodies, knowing the exact evolution is therefore hopeless.

What can we say about the evolutions dfla body systems with gravitational like
interactions?

The statistical physics eld was actually developed to understand many body systems, not
by describing the exact evolution for all bodies but rather by nding the most probable one.
The construction of various statistical ensembles such as the Microcanonical/Canonical/Grand
Canonical ensemble with quantities such as entropies lead for example to thermodynamics as
we teach it nowadays. Laws are essentially known for the non-interacting gas (perfect gas)
or for short-range interactions, which is enough to solve a lot of various problems from heat
engine to social dynamics. In these problems, a natural assumption is to consider ensemble
additivity meaning that if a system is composed of two subsystems 1 and 2, the total energy is
approximatively the sum of the individual energies of the subsystenis E, = Eq4,. This
turns out to be true for short-range interactions in the lafgamit.

But is this Bachelor statistical physics useful for our self-gravitating problem where long-
range interactions are at stake? First let's set our de nitiohlong-range interactions. We will
say two bodies are interacting with long-range interactions if their potential of intera¢{ion

1. Depending on the eld one can nd different de nitions. For example, one can nd that interaction with
in nite range are "long-range". That is not our de nition.
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Introduction

and more generally their force of interactidhg ) satis es

cst cst
V(r)r!l r_ or F(r)r!l r_+l;

with D = spatial dimension (2)
For example, a Coulomb/Newton interaction is long-range since#d <D = 3. From this
mathematical de nition, we immediately see why this boundary exiats = D. Consider-
ing the total interaction energy of one particle centered at0 in a constant distribution of
particles’ , we get

ya
) cst if >D

Vie= o V(@)d®r lm oLP = ! 2)
r2RP L1 1 if D:

This phenomenon leads to the non extensivity of long-range sydtermsE, 6 E.,. Long-

range systems display other intriguing particularities such as nonequivalence of the different
statistical ensembles and negative heat capacity. For review of those systems see [CDRO09,
DRAWO02, CGMLO08] or the introductory and very understandable talks of J. Barré and H.
Touchette [ICT16] at the ICTP of Trieste at the Conference on Long-Range-Interacting Many
Body Systems: from Atomic to Astrophysical Scales.

To have a rather broad overview of the different systems displaying long-range forces, one
can refer to the program of the ICTP conference prodramTrieste, where a lot of differ-
ent elds were represented. The most obvious example are self-gravitating systems with many
astrophysical examples and plasma systems [EE02] with Coulomb forces between electron or
lons. Another example that will be presented in this thesis is the large Magneto-Optical Trap
(MQT). One also nds examples in hydrodynamics [Mil90, RS91], atomic physics, nuclear
physics and for Rydberg gases [DRAW02, CGMLO08] or spin systems [SIJM15]. Character-
istic behaviors of long-range systems have been observed in some nonlinear optics experi-
ments [XVF 15].

One can argue that we know the fate of any Hamiltonian system (including self-gravitating
one) because they should at some point reach Boltzmann-Gibbs statistical equilibrium. Never-
theless, another particularity of long-range systems is that they possess what we call a Quasi Sta-
tionary State (QSS) that has a very long relaxation time. Thus, we will need out-of-equilibrium
tools. For example, the Large deviation theory [BBDRO05] or uctuation dissipation theo-
rems [Kub66] are precious to give statistical information. Entropy methods with applications
closer to our concern are also possible [RTBPL14, LB99, Per06]. Note that non Hamiltonian
systems are by nature out-of-equilibrium e.g. system with non-conservative forces and coupled
oscillator systems. In this thesis, we are interested in the temporal evolution of out equilibrium
system around their stationary states (or QSS). To do so we will use the kinetic description of
the system. The kinetic description is often said to be at the mesoscopic scale since it is an
intermediate description in between the microscopic scale and macroscopic scale. The micro-
scopic scale describes the evolution of every particle via the different equations of motion. The
macroscopic scale describes the evolution of macroscopic observable such as the mean velocity,
temperature, pressure, etc. see Figures 1 and 2.

2. In Part Two, in order to simplify the manuscript we will use only a simple all-to-all coupling 0 <D ),
but the main physicals phenomena remain. More generic potentials are considered in our publications.

3. In all the manuscript the term particles will refer to the components of the system studied, be it atoms, stars,
electrons, oscillators, crickets, etc.

4. http://indico.ictp.it/event/7612/other-view?view=ictptimetable

Université Céte d'Azur 18



Introduction

THE VLASOV EQUATION

The Vlasov equation is one of the fundamental kinetic equations. It will be the main evolu-
tion equation of this thesis (all other equations will be related to it in some way). Here we show
formally how the Vlasov equation emerges from the microscopic description of long-range sys-
tems. Then, once velocity is integrated, one can obtain macroscopic equations (for observables
such as velocity, pressure, etc.). All the reasoning is summarized in Figure 2.

The evolution of &N bodies Hamiltonian system is governed2ly D rstorder equations
of the form

LT (3a)
m¥ = F({ f) (3b)
i6]

As mentioned earlier, solving this problem analytically is utopian, so a statistical approach of
the problem must be developed. The exact position and velocity of each particles is no longer
considered but rather the densftyof particles in the phase spa¢e v) is. This forms the
mesoscopic approach. Thus, we keep track of both spatial distribution and speed distribution
of particles in time. A macroscopic approach would erase the velocity information ; therefore,
the kinetic approach can solve more subtle phenomena such as phase mixing and emergence of
instabilities due to velocity resonances as we will see later.

There are several ways to construct the Vlasov equation from Eq. (3), here we postulate its
form and show that it is the relevant equation to study. The empirical density function is de ned
as

X
fe(rv,t) = (r wu() (v w(L); (4a)
i=1
with 7z
fe(rv;t)d3d>v = N: (4b)

This singular distribution still contains all information on the particles. It is possible to Show
thatf ¢ is a weak solution of the Vlasov equation,

Fur[f]

@ +v r,f+ ~,f =0; (5a)
zz M
FIf Jve (1) = F(r  f (£540 1) >, (5b)
27
f(£;v;)d3rd®v = N: (5¢)

For a distribution f (¥; ¥; t)d*+d3v gives the number of particles in the phase space volume
(r+d+v+dv) at a timet. In this evolution equation, the distribution evolves through an
advection term and a nonlinear term with a self-consistent mean eld RByedf ]().

5. The Vlasov equation can be found writing the density conservation along trajectiyiedt = 0.
6. Weak means that is must be integrated with some test function to make sense.
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We just constructed the Vlasov equation from the singular empirical distribution, but is it
possible to construct in the largé limit a smooth distribution describing accurately the par-
ticles evolution? How close are the exact dynamic$gofo a smoothed version of ft? If
the two start "closely”, how will they evolve through Vlasov dynamics? To measure this, one
de nes a suitable distance between two distributid(fs;; f,) and look at its time evolution
d(f (t);fg(t)). Itis possible to show [BH77, Dob79, NW80] that this distance is at most expo-
nential:

d(f (t);fe(®)  d(f (0);fe(0)e™ ; (6)

where is a constant independent of the initial condition &hd So, over a time scal® ( )
the two distributions will stay close by. Moreover, the empirical distribution converges toward

the smoothed distribution aff (0);f=(0)) =O 1= N . So,if does notdepend dy, we

expect the continuous description to be valid over a time sga#eO (In N). This estimate can

be made sharper for Vlasov steady statesasO N , > 0. We nameviolent relaxation

the time , during which a particles system evolves according to the Vlasov dynamics, after
which thecollisional relaxation dominates. These different time steps are summarized on
Figure 1. The demonstratidrrelies heavily on the long-range nature of the interactions to

Figure 1 — Schematic representation of the different time scales in a long-range system.

construct the mean eld force. This means that the Vlasov equation is not well suited for
systems with short-range interactions. In thed 1 limit, particles only feel the mean force
Fue [f ] created by the whole distribution of particles, thus correlations vanish. Therefore, the
exact interactions between two particles do not matter anymore.

The Vlasov equation has many interesting properties, amongst them, it possesses an in nite
number of preserved quantities called the Casimir invariants [Mor00]

ZZ
G[f]= S[f 1(¥; v; t) d3d>v; (7)

wheref is a Vlasov solution, meaning th&[f ] = O (where the dot denota$=dt) for any
generic functiors. Thus, in addition to the energy, entropy, momentum, angular momentum,
etc. which are conserved in standard Hamiltonian systems, there are an in nite number of in-
tegrals of motion. This gives to the Vlasov equation an in nite number of stationary states.
Another very surprising feature associated with the Vlasov ow is that it can relax to its initial
state after a perturbation with constant entropy. More precisely, the phase space distribution

f (+;+; 1) oscillates more and more in the velocity variable while the integrated densitg®y

does relax (see Section V.4). This phenomenon is the Landau damping (or non-entropic re-
laxation) and was discovered in the linear case by L.D. Landau [Lan46], a proof for the full
nonlinear Vlasov equation has been given recently by C. Mouhot and C. Villani [MV11].

7. To be fair, rigorous mathematical derivation are not yet obtained for Coulomb/Newton potential. Demon-
strations without cut off are limited t6(r) r  with < 1[JH11]. However, in 1D, interaction potential are
much more regular and rigorous results exist [Tro86].
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Remark .1

— The word collision has different meaning here depending on the context. For short-range
systems, collision refers to real collision between two particles and in this context, they
would be essential, while long-range systems are dominated by mean eld. A kinetic de-
scription of short-range system leads to the Boltzmann equation. For long-range systems
collisions or collisional effects mean nitdl effects, in fact correlations. In the astro-
physical community, the Vlasov equation is called the collisionless Boltzmann equation.

— So far, we have used a deterministic approach, meaning that for a given initial distribution
fe the Vlasov equation gives the deterministic evolution of particles. Another approach
is the probabilistic one, considering for example the mean eld evolution of particles
over different initial conditions distributed along a givenr; distribution. It uses the
propagation of chaos theory [Szn91, Mon16]. Its use led to a recent proof of the mean
eld limit of the Vlasov equation for Coulomb/Newton potential with a very small cut-off
scaling likeN =3 |

Figure 2 — Schematic representation of the different possible scales of description. On the arrow
are the different functions linking two different scales.

With distributiop functions, it is easy to construct magroscopic observables such as the mean
2

velocityhvi () =  «f d®v and the temperaturg(¥) = mva d3v. To obtain the associ-

ated evolution equation one must do some approximation valid within some regime; for example
uid equations such as gyro uid equations can be derived [BHO7, SR00] from the Vlasov equa-
tion. In this thesis, we do not study this macroscopic behavior. In out-of-equilibrium systems
the velocity distribution is in general not simply a Gaussian and leads to counter-intuitive effect
like Landau damping (damping without dissipation) that could not be predicted by macroscopic
equations.

GOALS AND OUTLINE OF THE THESIS

The goal of this thesis is to study the behavior of out-of-equilibrium many body systems with
long-range interactions. Itis divided in two very different parts. In the rst Part, we study a real
experimental set-up and give theoretical and numerical predictions. In the second Part we focus
on the bifurcation technique developed by J.D. Crawford for kinetic equations.

Part One is devoted to the study of an experimental Magneto-Optical Trap (MOT). We col-
laborated with Guillaume Labeyrie and Robin Kaiser of the Non Linear Institute of Nice (INLN)
and Bruno Marcos of the Laboratory J.A. Dieudonné. The standard modeling for large MOT
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composed of neutral atoms predicts effective Coulomb like interactions between particles (via
photon rescattering). Therefore a kinetic description through the Vlasov-Fokker-Planck equa-
tion (Vlasov equation with friction and diffusion) is expected to be accurate. The goal of the
collaboration is to test experimentally the long-range nature of those effective forces, since the
literature still lacks an irrefutable experiment. The main idea was to observe plasma physics
effects such as the Debye length as an experimental proof. In Chapter | we present the stan-
dard modeling through atomic physics leading to a plasma like description of a large MOT.
We introduce then the basics of plasma physics through the Non Neutral Plasma (NNP) model.
Chapter Il is dedicated to the introduction of the different observables and tools used to analysis
and probe a cold atom cloud. In Chapter Ill we present and discuss different realistic measure-
ments (theoretically and numerically) that could highlight plasma phenomena, and compare
them to the preliminary experiments realized by G. Labeyrie.

Part Two is devoted to bifurcations around steady states of kinetic equations. Kinetic equa-
tion such as the Vlasov one are nonlinear self-consistent partial differential equations, they have
a very rich dynamics such as an in nite number of stationary states, lamentation of the phase
spacé , strong wave/particles resonances, non-entropic relaxation, etc., thus their mathematical
and physical understanding is far from being complete. The bifurcation study is a natural strat-
egy to simplify the dynamics in speci c cases (e.g. neighboring of stationary states close to an
instability threshold). One hope is that these bifurcations might structure the whole dynamics;
another motivation is to obtain a classi cation of these bifurcations (by studying various kinetic
equations) as there is for standard (dissipative) systems (saddle-node, pitchfork, Hopf, etc.).
However, due to the previously mentioned dif culties standard bifurcation techniques such as
multiple-timescale analysis or center manifold fail [CH89, HC89, MH13, HM13].

In Chapter IV we present the unstable manifold technique introduced by J.D. Crawford in the
context of kinetic equations [Cra94a, Cra94b, Cra95a, Cra95b] which overcomes some of the
dif culties met by standard expansions. The price to pay is that this approach is not well sup-
ported mathematically and that the description of the bifurcation is incomplete but qualitatively
correct providing precious informations on the bifurcation nature. We shall use this technique
for the rest of the manuscript. Chapter V review quickly the standard results for the bifurca-
tion around homogeneous steady states of the Vlasov equation. In Chapter VI we present our
results on the bifurcation around inhomogeneous states obtained in collaboration with Y.Y. Ya-
maguchi. In this case, we also obtain with a center manifold approach a nite three-dimensional
reduction agreeing well with the numerical simulations. In Chapter VI, we perform a similar
analysis for homogeneous Vlasov-Fokker-Planck states, in particular we show how interplay
between a weak instability and weak dissipation gives rise to several regimes.

In Chapter VIII we introduce another kinetic equation based on the Kuramoto model de-
scribing coupled oscillator systems. It shares many similarities with the Vlasov equation and
was also studied by J.D Crawford. We then once again use in Chapter IX the unstable manifold
technique for the Kuramoto model with inertia and in Chapter X with delayed interactions (with
and without inertia).

As one can already tell from this outline the work of J.D. Crawford is very important in this
thesis since he has laid the foundation of the bifurcation study for both Vlasov and Kuramoto
equation. Therefore, the overall procedure will be similar every time but we will see that each
speci ¢ case has its own physical and technical issues. We will summarize in Chapter Xl
our results, classi cations and conjectures for the bifurcation analysis of the various kinetic

8. The lamentation refers to the highly oscillating behavior of the distribution fundtignv; t) with respect
to the velocity variable.
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equations studied.
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PART ONE

EXPERIMENTAL COLLABORATION
DEBYE LENGTH IN
MAGNETO-OPTICAL -TRAPS?
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CHAPTER |

FROM MAGNETO-OPTICAL -TRAPS TO
PLASMA

A large part of low energy physics is concerned with set-up at cold temperaturenk,
where lasers are used to manipulate atoms for their useful and interesting classical or quantum
properties. To reach weak temperature experiments the radiation pressure exercised by lasers is
used. It is the force felt by an atom when it absorbs a photon, possibly decreasing its velocity
via momentum transfer. That mechanism is at the origin of the "cold atom™" eld. A widely
used set-up because of its relative simplicity is the Magneto Optical Trap (MOT); its essential
components are

— Neutral atoms (such as Rubidium, Strontium)

— Two magnet coils set in anti-Helmholtz con guration (producing a magnetic eld gradi-

ent),

— Six lasers (one pair for each spatial dimension),

— A vacuum chamber.

At low atom numbeN . 10%, the physics is relatively well understood. Thanks to radiation
pressure of the six lasers the trapping and cooling of atoms is achieved. Moreover, in this
regime no interactions between atoms are considered and the particles dynamics is essentially
a Brownian motion. In metrology with atomic clocks [KH$6], the low atoms speed is used

for high precisions measurements.

However, wherN & 10, the physics sees several qualitative changes, some effective inter-
actions between atoms appear... Indeed, for MOTs with a large number of particles it has been
observed that the cloud sikeincreases with the number of atoids whereas foN < 10%, the
sizeL was independent di . So, there must be a repulsive process developing. Because of this
repulsion, the atom cloud cannot be compressed inde nitely, preventing for example Bose Ein-
stein condensation, that are since its rst realization in the 90s [AES] a very active topic.

With the advent of more powerful laser sources, it is now possible to prepare very large MOTs
(VLMOT) with 10" atoms [CKL14], where collective effects are enhanced.
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The description of this collective behavior is far from being well understood. Neutral atoms
interact with the trap composed of lasers and a magnetic eld and with each other through ab-
sorption and emission of photons with rules given by the energy levels of atoms of the trap (an
exact description should then depend on the atom species and it hyper ne structure). In 1988
Dalibard [Dal88] showed that absorption of the laser light in the cloud results in an effective
attracting force between atoms like one dimensional gravity: the so-call Shadow Effect. Dal-
ibard was the rst to describe effective interactions between particles and formally his model
for VLMOT bears similarities with a galactic model of self-gravitating stars. However, this
description didn't explain why in experiments whienis increased, the cloud also increases,
in fact it predicts the opposite.

The current "standard model" to describe VLMOTSs was then proposed in [WSW90] by T.
Walker, D. Sesko and C. Wieman (2001 Nobel prize winner), it includes an effective Coulombian-
like force between two level atoms, due to multiple scattering of photons. According to this pic-
ture, VLMOTs thus share similarities with a Non Neutral Plasma (NNP). In this plasma physics
model electrons are all interacting through Coulomb interactions in a neutralizing background
(as large positive ions).

The main question in this part is then can we observe plasma physics phenomenon in VL-
MOT? Is there any chance to observe Landau damping in a VLMOT? We will quickly answer
negatively to this question in the second part Bifurcations of this thesis making a bridge between
the two parts. Indeed, the friction range for the experimental MOT is too large to observe Lan-
dau damping. So, what else could we seek? Debye length? Instabilities and bifurcations? In
this thesis, we will search for the analog of Debye length which is characteristic of plasmas and
Coulomb interactions. More generally the goal is to search for evidence of long-range interac-
tions between atoms via direct correlation and response to an external potential measurement.

In this chapter, | will rst retrace the standard modeling of VLMOTs. Then | will present
the Non Neutral Plasma model, introducing the different characteristic parameters in the MOT
units.

1 STANDARD MODEL FOR MOT

All the numerical values given here for the MOT are taken from [CKL14, GPLK10, Ste01].
For the French readers, | recommend the College de France lecture by J. Dalibard [Dal14],
to get a clear introductory picture of the cold atom eld. Also, one can read the review of
Cohen-Tannoudji for his 1998 Nobel prize [CT98] on manipulation of atoms with photons.

1.1 The trapping

The idea behind Magneto-Optical-Trap is to trap atoms in the velocity and position space
thanks to one pair of magnet coils and six lasers in all of the six directions of space, as repre-
sented in Figure 1.1.

For a two energy level atongi ground state angkei excited state trapping occurs via ab-
sorption and emission of photons from the Laser (see Figure 1.2). Basically, absorbing a photon
coming from the left will push the atom to the right (see Section I.1.1.c).

The detuning = ! ! 40m IS the quantity that measures the energy difference between
a photon with frequency, and the excitation enerdy.,om Of the atoms. In practice, it can
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1. STANDARD MODEL FOR MOT

Figure 1.1 — Schematic representation of a Magneto-Optical-Trap (MOT) with six Lasers and
two magnet coils creating a linear gradient of magnetic eld.

Figure 1.2 — Schematic representation of the transifjgpn j el for an absorbed photon of
momentum and frequendgyK_ ;! | ) with an atomic transition of natural frequentym . The
detuning of the lasers=! | ! 50m IS Negative here.
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be tuned very well, in a typical rang® 4. jj 8 4 Where 4 10MHz is the natural
width of the transition. For the Rubidium atoms used in experimegts 2 6:06MHz. In

short Doppler and Zeeman effects modify detuning to favor absorption of photon as a function
of speed and position for cooling and trapping atoms (see Section I.1.1.a and I.1.1.b).

1.1.a Doppler effect

The idea to cool neutral atoms with lasers was rst proposed in 1975 by T. Hansch and
A. Schawlow[HS75] (and independently by Wineland and Dehmelt [WD75] for ions). Due
to Doppler effect an atom with speed > 0 sees photons coming from the left (in the same
direction) with a shifted frequendy,x = !,  k_Vv; and from the right (opposite direction)
lignt = ! L + kpvi. The effective detuning with photon of opposite direction is thgposite =

+ k_jvij. To favor absorption of photons with opposite direction (to reduce the atom velocity
after absorption) the detuningmust be negative (redshifted Laser).

1.1.b Zeeman effect

Zeeman effectis the energy split of an exited level due to the coupling of an external magnetic
eld B with the total magnetic dipole moment of electrons= ~ + ~s (J = L + Sis the
total angular momentuni, is the angular momentum ar®lis the spin angular momentum).
Let's take the example of @ = 0 ! J%= 1 transition. Ground statggy;J = 0i with no
magnetic moment is not affected while exited state y&tjJ = 1i sees an energy shift (for
weak magnetic eld)
Ezeeman = QamMy gB(¥);

wherem; = 0; 1is the quantum magnetic number agdis the Landé factor for the atom
considered andg the Bohr magneton, a universal constant describing the magnetic moment of
an electron. Setting two counter propagating lasers with opposite circular polarizatiand

, Figure 1.3, will then select the transition with the, = +1 orme = 1respectively.

The magnetic eld created by the two anti-Helmholtz magnetic coils is

. 1
Bxy:iz)=1] (B] x&+ 5(yg+28) (1.1)

wherej Bj' 10G cm listhe value of the constant gradientimposed. In the end the effective
detuning depend on positioh= m;Q; 8] rBjri=—,wecall =9, g Bj=—.

1. The lasers wavelength can be slightly modi ed with an acoustic-optic modulator.

Université Céte d'Azur 30



1. STANDARD MODEL FOR MOT

Figure 1.3 — Representation of the Zeeman effect in a MOT set up. The energy level 1 is de-
generate in three levelae = +1 ;0; 1 (dotted lines) due to the magnetic eld. The constant
magnetic gradient insures a linear spatial dependency upon the energynevelstl ; 1.

Two counter propagating lasers (red lines) with opposite polarizatioand , to select ab-
sorption of photons with leveis = +1 andm, = 1 respectively.

1.1.c Radiation pressure

The rst MOT was reported in [RPC87] for Sodium atoms using the radiation pressure of
photons on atoms. We describe here the basic mechanisms for two level atoms.

— Absorption: atoms gairk,

— There are two different mechanism for an atom to relax toward equilibrium
Stimulated emission. Emission of the photon in the same direction, so the total mo-
mentum gain for the atom is zero, Figure 1.4.
Spontaneous emission Figure 1.4. The atom is reemitted with a random direction.
In particular, the probability to be reemitted in directioR? is the samg)that the

probability to be reemitted in ~k?, so the momentum gain is on averagek? =
0. In general, this probability is assumed to be isotepic. So, on average the total
process absorption+emission gives a gairkf + ~ K> = ~K.
So, the total force in average is
Frag = ~RiTe (1.2)

where
re= dPe (1.3)

is the rate of spontaneous emission [Dal14], waththe probability to be in the excited state.

This population number is given by optical Bloch equations mixing a coherent process of in-
teraction atom-laser and incoherent process of spontaneous emission. It gives, if the laser is
not too powerful (i.e. that the Rabi frequency of one atom should be very small compared

to the optical frequency, ' 384 10" Hz, which can be checked after the fact). The Rabi
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Figure 1.4 — Schematic representation of the two different scattering processes stimu-
lated/spontaneous emission. The red color stands for the energy.

frequency is the oscillation frequency between exited and fundamental state due to the laser
forcing r
d.E I

r=——= d

— 2 (1.4)

whereE is the electric eld of amplituded, the transition dipole moment for the transition
1! 2. In experiments, we use the intensity of the lakend the saturation intensityy
(de ne thought Eq. (1.4)). For our experimental regimes ¢4 (see Section 1.3.2 for typical
experimental values), hence we have indegd 10" Hz I'L. Whenl=l¢ = 1 sponta-
neous and stimulated emission are equally probable.

The saturation parameter

_ 1=l sat
ST 1va=2 (9

is related to 1 s
P.= = : 1.6
e= 57+ s (1.6)

Hence, the radiation pressure is

1 S
Fraa = =~KL d

5 T+ S: (1.7)

Note that this approach, i.e. consider a mean force for all the photon absorptions/emission cy-
cles, is valid for a xed saturation rate. Hence the spatial and velocity dependencysof
(through Zeeman and Doppler effect) must be smooth in order that after a phots(nr it

v+ )t s(++). The recoil speed after one hit for an atom is

~k
V= WL R° 5:98 mmis (1.8)

2. Here we are just interested in the modulus of the Rabi frequency, a complex description includes a phase
term with the Laser.
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The condition is then 2
=k :WL d (1.9)
which is known as théhick band condition. For Rubidium atoms this condition is satis ed
with!, =4:82 10* Hzand 4=3:80 10’ Hz.
We will note the lasers propagating in the same direction as thé axad the opposite one
| .
In the weak saturation reginsg = s(+=0;¥=0) 1,

1
Frag t §~kLs(+; v):

Therefore, in one dimensidrin a weakly saturated reginsg 1 adding the Doppler/Zeeman
detuning yields the radiation force

0 1

"left laser'=1 + "right laser= |
_ lo~ke d%7 3}1 L7 ?I {E: (1.10)

-e__
ls 2 144 K Vi il 2 144 +kevi+ o 2
d d

F rad

Expanding the denominator for small Doppler/Zeeman shifts gives a linearized force with a
friction and harmonic trapping term,

ki vi il
Fad €' mv; m2 for — 1, L 1 (1.11)
where we de ne the coef cients below.
— The effective friction parameter
_ | 0 8~kE ( = d

ls m (1+4 2= 2)*

Rough estimation gives 9:6 10°s lfors, O:1
— The effective pulsation of the trap

|_08~kL ( )=y _

12 = — .
s mo (1+4 2222 ki

In this con guration, the cloud is supposed to have cylindrical symmetry because
2 y =2 ,, but experimentally this asymmetry is compensated via different intensities,
so in the following we will consider a spherical symmetry wittm , = | = , =
& s8] (Bj=~ Sincegy 1, =838 10m !slsoly 3 10 Hz.
From this force modeling one can de ne a quality fadpre= ! o= as for damped oscillators.

1 . : .
HereQt 0:3lower than- meaning that atoms act like over damped oscillators.

From the small velocity expansion one can see that in this limit the lasers act as "optical mo-
lasses" inducing friction for atoms. Similarly, the magnetic eld will act as harmonic trapping
on atoms.

3. In principle interference terms should be added when summing the effect of the six lasers. A rigorous
treatment [Dall4] shows that feg 1 they can be neglected.
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Another important parameter of the model is the on resonant cross section

~l L
= : 1.12
T g (12)

it is related to the probability of an incident photon to be absorbed by an atom. For nonzero

detuning the cross section is
_ 0

LT 4 2= 2y
(1+4 2= 13

For circular polarization , [Ste01] gives o' 2:9 10 °%cn?.

1.2 Diffusion

The previous Doppler effect would in principle cool atoms to zero temperature. But there
are of course uctuations setting a lower bound to the minimal temperature. The origin of those
uctuations is the random speed due to the large number of absorption/emission cycle giving to
the atoms a random recoil force. It is natural to assume that atoms undergo a Brownian motion,
allowing us to de ne a diffusion coef cienD, [GA80, Dal14],

Dy = ~?k? 4So (1.13)

so, at equilibrium, after a short time of equilibratibn 1= (remembeR < 1) the temperature
is given by
Dp  ~ 2+ 3=4
keT= —P=_— 9" .14
T = P (1.14)
The temperature diverges at very small detuning, which of course is nonphysical since in this
regime the linear assumption of Eq. (1.10) is not valid.

The minimal possible temperature (in the Doppler lifiig), is for = 4=2,
KeTmin = —=o (1.15)
2
For Rubidium atomsT,, ' 145 which gives an order of magnitude for the real MOT
temperature and for the speggd = kgT=m ' 119 cm/s with this speed we can check

self consistently the Brownian motion assumption and the development made in Eq. (1.10).
Due to more complex structure than two energy levels, there exists systems with sub-Doppler
temperatures [MYMB10, CHB14].

m 1 . . .
4. 1= = 37 7en & 100 s forsy = 0:1 (which we can consider to be the largest acceptable saturation
~k2 25,
parameter in the smadh limit).
. . vV, p—— L .
5. The speed recoil is small in front of the mean spe\?d =2 li=y 1 validating the Brownian
0
kv p—— . o .
approach: L0 - !'r= 4 1sothe linearization is valid.
d
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1.3 Shadow effect: an effective attractive force between atoms

In 1988 Dalibard proposed the rst model to describe effective interaction between atoms [Dal88]
Indeed, for atoms trapped in a harmonic potential. He considers the fact that the laser is ab-
sorbed as it crosses the cloud, so its entrance intehsiyill be reduced at the cloud exit.

This position dependence of the laser intensity for a laser propagating @ thexis (other
direction lead to similar expressions) can be written as:

l.(xy;z+dz |+ (Xx;v;z) = absorption
(xyz+dz) 1.(xvi2) p .

Z
= % L[F1Xy; 2) (Z;VF (x%y% 2%V (x xY (y V9 dvf(’dv;’dv2§ dz
|2 {z }

portion of absorbed photons

(1.16)

withl,(1 )= loand the absorption section (depending on the detuning and thus on position
and velocity via the Doppler/Zeeman effect)

V) = 0 : .17
(Z V) e kLVZ 5 2 ( )
d
So d 7
—(2)= I [f1(2) (z;V9f (z; W) dvy (1.18)
dz R
and 0 1
_ ke 4 LI 1r)=1s | [FI(r)=1s §
I.:rad ﬁ - 2 %14-4 k|_Vi iri 2 1+4 + kLVi N iri 2 . (|19)
d d

with the formal solutions of Eq. (I.18),Z

1.[f1(2) = loexp + (28O (2% VD) dv2dz® (1.20a)

| [f1(z) = loexp (2% VOf (2% v2) dvodz? : (1.20b)
z R
To quantify absorption in the cloud we use an experimentally rather accessible quantity: the
optical density (or optical thickneshk) ) de ned as
zZ,Z
e P=exp + (28O (2% v9) dvidzZ® (1.21)
1 R
For the VLMOT used at INLN its value it typicallgl =0) ' 100
If we suppose the absorption to be small for working regime 4
exponential term$to get a total radiation force of the form

4, we can expand the

Fag = MY  ml 26+ FJf](#) +0 Kevi il (1.22)

6. Note that in fact even for = 4 4, b 1 which is not small, so the expansion might not be valid. But
since there is no better theory available in this regime we keep the expansion.
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where
1o ki 4 ) Z X Z +1
Flfl(H) = — == — %YS2) (v ¥ (z 2)dxUydz’ =
1+4(= g) 1 x
z, 7.,
(x%y%2% (x x% (z Z9dx%Wydz’ g
z 7., #
x%5y52) (x xH (y y)dxydz’ « :
1 z
(1.23)
The corresponding two body force is
2
(Fin (G y;2) & = lo-sign() (y) (2); (1.24)
wheresign(x < 0) = 1 andsign(x > 0) = +1 . Note that numerically one must introduce

some spatial extent to the Dirac functions as in [BMW14]. Writing the divergence of this new

force gives,
2

F Fs= 6I0?L (X;y:2): (1.25)

The computation of the divergence of a Newtonian force would give the same result! Explaining
the analogy between gravitational systems and MOT. Nevertheless, this force is different from
Newton force because it does not derive from a potential, indeed it is rotationdfs 6 0, and

Fs 6 7V, for aVs(¥). ThereforeFs= 7~ Ag+ Vs for some coupléAs; Vs). Physically the
system is driven out-of-equilibrium by the six laser, this non-potential force is the mathematical
translation of this fact, it induces particle ux in the system [BMW14] and complicates the
mathematical analysis (a Hamiltonian is not de ned for these cases).

Remark 1.1

Note that@jx] = sign(x) / (Fs)int (X) which shows that in one dimension the shadow ef-
fect is a conservative force (it is exactly one-dimensional gravity). It is the additional spatial
dimensions that make the force non conservative.

1.4 Multiple scattering: an effective Coulomb force between atoms

The shadow effect is a rst step for an effective interaction model between atoms, neverthe-
less this attractive force does not explain satisfactorily experimental observations that shows in-
compressibility of the MOT that results in a growing cloud dizgCKL14, GPLK10, WSW90].

This naturally leads one to think that in a VLMOT there is non-negligible repulsive interac-
tions between atoms. Two years after Dalibard's paper, Walker et al. proposed the hypothesis
in [WSW90] that this repulsion comes from a multiple scattering effect; indeed, so far, we have
not considered what happened to a rescattered photon. There are two different possibilities for
a reemitted photon

— Stimulated emission. This process is forgotten since it does not contribute to the total

momentum change of atoms.

— Spontaneous emission. The atom is reemitted with a random direction. So, its probabil-

ity to encounter an atom at distancés proportional tol=(4 r ?) which is the inverse
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surface of a radius sphere. The bumped atom is then pushed by this incident pho-
ton. Considering the large number of spontaneous emission cycles between two atoms,
one can justify an effective repulsive force between atoms tdpe 1=r>. So, if we
assumasotropic spontaneous emissionremembering the absorption rateEq. (1.3)
(emission rate should be equal), the average fBrdeetween atoms is

“‘k|_ dlo S hRi‘F's_]_ LhRi‘F_

F = = _ -
V= 2511352 17~ 20 1o

(1.26)

whereh Ri is the average cross-section of rescattered photon. It is expectéd ghat

L since some reemitted photons are very close to resonance, so their probability of ab-
sorption is increased. In fact, the reemission spectrum is quite involved to determine and
several photon frequencies are possible [Mol69]. Photons divide in to two contributions:
elastic scattering with a reemitted frequency centerégkis ! | and inelastic scattering
with r=1_ R, With g a frequency shift that can be computed in some regimes.
The photons with | + g have a detuning closer to zeros and a high absorption probabil-
ity resulting in a high  that is the dominant contribution. The ratio of elastic scattering

_ 1
over the total scattering is [Mol69, SCF9%]+—S:

1.5 Other guantum effects

Rubidium atoms or other atoms used in MOT are in general more complex than a two energy
level description, with hyper ne level leading to other cooling/trapping mechanism such as the
Sisyphus effect [DLN 94, DCT89]. Nevertheless, in general these effects are forgotten because
in regimes studied they are small (in general for small saturation parasgeter

For Rubidium [DAC 00, Ste01] due to the coupling of total angular momentum of the elec-
tron J and nuclear magnetic momentumwhich is much smaller, another energy splitting
occurs with a new quantum numbieér= J + |, describing the hyper ne structure of atoms.
The magnetic eldB splits eaclF level into2F + 1 levels which has a linear dependence for
smallB (more precisely if the shift induced Wy is small in front of the hyper ne splitting). So,
the actual Landé factor for Rbshould satisfyg= 6 g;. For example, the two-level transition
used for trapping with Rubidiumigg =2 ! F¢ = 3.

In parallel to the hyper ne structure effects, there is the "dressed atom" approach that com-
putes the rescattering cross sectiopi [RHV11] and deals with the physics at large saturation
So [MS79, LPR 89]. For example, in [MYMB10] and [CHB14] the effect ofl y=Is5 (smalll
or not) is clearly measured and compared with the Doppler prediction, leading to sub-Doppler
measurements.

7. A similar argument for writing the radiation pressure Eq. (1.7) should be used, verifying that the thick band
approximation is enough to write an average force between two atoms.
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2 SUM UP AND QUESTIONS

2.1 Sum-Up of the model

The standard model describing a MOT is then
— Radiation pressure of lasér Doppler effect favors cooling of atoms friction force

Fr= mv
— Magnet coils! splitting of energy level$ favor absorption of con ning photonis
position trapping (Zeeman effett) F, = m! 3¢

— The effective repulsive interaction between atoms (due to multiple scattering) is given by
a potential satisfying a Poisson equatfyv h gi +=r®
— Due to attenuation of the lasers in the cloud, there is an effective attractivafoig/
2
c.
One expects for VLMOTh ri > |, so the Coulomb like force is the dominant interaction
force. This mean that the Walker et al. model does indeed predict a cloud size growing with
the number of particles since the repulsion dominated. It means that up to some modi cation
(trapping, friction diffusion, shadow force) a VLMOT behave like a plasma of charged patrticles.
Of course, this conclusion is appealing as plasma physics is very rich and well investigated. But
due to the relative complexity of the various effects considered for the model it is also legitimate
to question this "to good to be true" vision of VLMOT. In the next Section, we review some
experiments linked with those questions.

2.2 Experimental con rmation?

The Doppler/Zeeman cooling and trapping have been observed since the beginning of MOTs
with for example temperature measurements and cloud size (e.g." fRRPSF91, MYMB10]).
The shadow effect has also been observed in 1D or 2D MOTs (meaning the magnetic eld is
very strong in two or one dimension leading to consider only the other(s) remaining dimension)
with respectively cigar or disc shapes. Indeed, in those asymmetric setting multiple scattering
is expected to be much weaker, the reason being that most of the rescattered photons escape the
trap in another dimension of the MOT.

A list of the experimental clues in favor of this form of long-range Coulomb force is the

following

— Scaling experiments [CKL14, GPLK10, Gat08] whére N 3. A skeptic would say
as a disclaimer that other types of non long-range interactions can give the same scaling
e.g. imagine a set of tennis balls (hard spheres) bound together alsb had&!=.

— Coulomb explosion. [PSDJ0O0, Prul?] tested the expansion speed of a cloud when the
Zeeman trapping is turned off The result shows a good agreement with what is predicted
for a similar Coulomb gas.

— MOT instabilities. In the works [TMK10, LMKO6], the authors tested some instability
threshold for the MOT due to the non linearity in the radiation pressure. If the instability
criterion is found using the Coulomb force for the multiple scattering, it is also not a
direct test of the force.

To the author's knowledge these are the only experimental evidences agreeing quantitatively
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with the Coulomb nature of the repulsion. Of course, nding the Debye length in a MOT would
incontestably highlight the plasma like nature of VLMOT. That is what we will seek.

3 NON NEUTRAL PLASMA

We have seen in previous Section that if one forgets about the shadow effect, the VLMOT
description in term of forces is equivalent to a plasma formed by electrons pushing each other
via Coulomb force and trapped by a harmonic trap. This model is known as the Non Neutral
Plasma (NNP) model. NNP experiments are done with a Penning trap [DMF88, [g&)Ehat
traps one charged species (e.g. electrons) with a magnetic and electric eld. Another similar
model, that we will also refer to is the One Component Plasma (OCP). It is a plasma com-
posed with electrons embedded in a uniform neutralizing background of large positive ions
(see [DO99, Ich82, TLB99] for reviews on the subject).

The primary goal of the collaboration and this work is to highlight the similitudes between
VLMOT "standard model" and NNP with observables unilaterally characteristic of Coulomb
interactions (more selective than the scaling law N). At this point we had two ideas,
one was to look directly at the correlations in the system and compare them with those of the
NNP model. The other idea was to force the system with an external sinusoidal potential and
look at the response of the cloud, a dependence on the force nature (attractive/repulsive and
short/long-range) is then expected depending on the sinusoidal modulation.

After de ning precisely NNP model and giving its essential parameters and features such
as the Debye length we will do a recap of the different expected experimental values for the
VLMOT comparing it with some true plasma in Table I.1.

Then we will present different relevant observables of an NNP adapted to a VLMOT.

3.1 Presentation of NNP model

3.1.a Standard NNP model

The NNP model is formed with a single charged species, in general electrons, trapped with
a harmonic force. ThBl electrons interact through long-range Coulomb force

C
Fe= 5t (1.27)

h o
LD R4 10 %N 2 For electronCeec = F=(4 o) ' 2 10 2N m?
(qthe electron charge ang the vacuum permittivity). So, there is an ordé€f difference and
the effective repulsion between MOT's atoms coupling is very weak.

The Poisson equation satis ed by the associated potewial

where hereC = 1|

V.= 4C (¥): (1.28)

TheN evolution equations for the standard NNP systems are
=M, X (1.29a)
M ¥ = Fyap (1) + Fe(f; ) (1.29b)

i6]
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whereFyqp () = m! (2)1°. WhenN !'1 |, as we have seen in the Introduction we can write in
the mean eld approximation the Vlasov equation

I:c[f]-i' I:trap
G+ .+ _ ~.f =0 (1.30)

3.1.b NNP model for the MOT

When adding the other forces presentin a MOT to the NNP model, such as friction, diffusion
and shadow effect we get

=N X (1.31a)
me= v mir+  F(y #®)+ (1) (1.31b)
i8]

whereFi, = Fc+ Fs, is a stochastic Gaussian variable accounting for the random%oise
h(t)i=0 (1.32a)
Then again in the largl limit one gets the Vlasov-Fokker-Planck equation
lftrap + I‘:c[f ] + Fs keT _

+ o f o+ Ff= v+ f .33
@ +v - vi+ —f (1.33a)

and the associated Poisson equations

F R = c=4C; (1.33b)

F Fo= 6d: (1.33¢)

The friction and diffusion model possess a return toward thermal equilibrium that the original
Vlasov equation does not have. In [RHV11] is considered the Fokker-Planck equation without
expanding the radiation pressure force, leading to a position and velocity dependent diffusion
coef cient and drift term. In our regime of low saturation and thick band, their model reduces
to our equation Eq. (1.33a).

After a fast time’ 1=, the velocity distribution relaxes to a Gaussian equilibrium leading for
the spatial density evolution to a Fokker-Planck equation (also called nonlinear Smoluchowski
equation)

@ ®H=r 12¢ + %(FC+ FI[] + kBWTr* : (1.34)

From now on we will formally forget about the Shadow effect.Indeed since it has the same
divergence as the Coulomb force (with an opposite sign) it suf ces to rescale the Coulomb
parametel to include its effect. The non potential part effects of the Shadow force will be then
neglected. Actually, simulations with the full Shadow effect were performed and in the regimes
relevant for the experiment, it did not add signi cant changes, justifying our assumption for a
rst exploration of the long-range effects.

8. A Gaussian noise is motivated by the discussion Section 1.1.2.

. . . - . 1
9. Indeed in standard experiments the quality faGier ! o= is in the over-damped regin@ < >
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Density pro le for zero temperature

The most natural observable is the density pro le of the cloud. Without correlation at zero
temperature, the density solution of Eq. (1.34) is expected to have "rigid" boundéres
of® ( L r)whereL is the cloud radiu&’.
From Eq. (1.34) al = 0 K one possible solution satis es for6 0

m! ¥+ Fe[ ]=0:

Applying the divergence operatdr gives a constant density pro le for< L ,

_3m!;
(¥) = X (L 1) (1.35a)
with the inside density
3m! 2
0= 9. l.
X (1.35b)
The cloud radius. can be computed from the normalization condition
z Z, 3
(B =4 2 (rydr = 250 = N; (1.36)
R3 0 3
thus,
NC P
L= ? (1.37)

SoL / N* for the NNP model. This was more or less observed in [CKL14].

Density pro le for non-interacting cloud

The in this case analytically tractable limit of the model is when particles do not interact with
each other; they just feel the trapping due to the Zeeman/Doppler effect and the thermal motion.
From Eq. (1.34), one possible solution satis es for each direction

m! 2r; + keT@ =0;
giving (with the normalization condition)

=2
N m2°3 m! 2 2

!
252 kT P gT2

T(H) = (1.38)

which does not display any  scaling size. We can de ne the characteristic length (sometime
called Gaussian length or one particle length) for this system as

S

kgT

lg= —
9 2
m! §

10. For non-zero temperature, this rigid boundary is softened and one exfgcts Oforr !'1
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3.1.c Debye length

In the OCP model, the classic computation made by Debye and Hiickel [HD23] shows the
existence of a typical correlation length between particles. This is the famous Debye length. In
the context of a plasma with electron and large positive ions, there is a simple interpretation.
The positive ions screen the long-range interactions between electrons for long distance, see
Figure 1.5, so the effective sphere of in uence for one electron is given by the Debye radius.

Figure 1.5 — Schematic representation of a neutral plasma (OCP model) exhibiting a Debye
length of effective interaction.

In the VLMOT model, the neutralizing background of positive ions (OCP model) is replaced
by the trapping potential (NNP model). Formally a Debye length is also expected. We will only
show the Debye-Hulickel computation for this case.

Imagine the system is at statistical equilibrium with a constant density pr8 é&nd you add
a small perturbation, one particle at= 0. The perturbed pro le is given by the Boltzmann
factor

()= % w®keT) (1.39)

and the associated Poisson equation for the total potential is

wl Al= @+ «®= 4C (» mig 4C (#: (1.40)

When the temperature is large with respect to the potential created (typ&e‘&tiuy 1), it
B
is legitimated to expand

4c
ot = 4C o+ T © o +3ml3 4C (¥: (1.41)
De ning the Debye length! as S
ke T
D ami 2’ (1.42)
we get a total potential of the form
1
T = 4C (P; (1.43)
D

11. Note thaty = Y3 b
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and solution is known as the Yukawa potential

e’=o

o (r)=C (1.44)

So, the typical potential created by a particle is screened (strongly attenuated) for distance larger
than the Debye length. Fop ! 1, this potential is again the Coulomb potential as expected.

3.1.d Plasma parameter

The experimental set up is believed to be in a 'gas like phase' quanti ed by the plasma
parameter which is the ratio of the typical potential energy between two particles to the
typical kinetic energy of a particle

Cza_ C m2 ™ &

= 1.45
keT kgT C 2 (145)
wherea is the mean distance between particles
L C 1=3
a= N = mi 2 : (1.46)

Note that in 1 regime we justify the derivation made for the Debye length in Eq. (1.43),
which means that for other regime> 1 the Debye length is not physically relevant any more.
It becomes smaller than the inter-particles distance Eq. (1.45).

This is the unique parameter determining the system state for the NNP model (when the
system size is in nite or with periodic boundary conditions), it measures the correlation in the
system. For the standard OCP model, there is one phase transition from liquid phase to solid
phase (see the Los Alamos National Laboratory Plasma group w&fsitanice illustrations),

Fluid Solid
Gas-likej Liquid-like
1j 1 100 > 175

For the nite sized MOT, we also consider
h=lg=L (1.47)

which quanti es in a way the nite size and temperature effects.
To have a gas like phase and a quasi-step function density pro le we need

a2

=5 1 (1.48)
g

hzltg 1 (1.49)

this regime is believed to be the one of the VLMOT of INLN.

12. http:/imwww.lanl.gov/projects/dense-plasma-theory/research/one-component-plasma.php
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A last characteristic plasma parameter is the plasma frequency (also called Langmuir fre-

guency) de ned for a MOT as
r

4 °C p-
= o l.
- 3y (1.50)

It characterizes the fast oscillation of the atoms when small perturbations move aside a plasma
from a homogeneous distribution. In fact, those oscillations can be related to the Landau damp-
ing mechanism that we will study in details in Section V.4.

3.2 Some numerical values for experimental MOT

In our MOT, the plasma parameter is weak 10 “, which means that the interactions are
weak in comparison with kinetic energy. Thus, one does not expect a liquid or crystal structure
in the atomic cloud but rather a gas like medium. This is the weak correlations regime.

Small MOTs size has been measured (e.g. [R®A) to be of the order 000 m. In
these MOTs we expect no Coulomb interactions betweenl@t_oms. Hence the particles follow a
Gaussian distribution Eq. (1.38) wilj 100 m. Sincelg = 3 p, we have an expectation
value for the Debye length, that in principle should remain true for very large MOTS with
repulsive interactions.

In Table 1.1 we present some typical value for known weakly coupled (1) plasma and
compare them with the VLMOT. Despite that the INLN MOT is far from known a regime of
plasma it shares some parameters with magnetic fusion plasma.

TK) °(m? L (cm) h a(cm) p(cm) !, (rad/s)
Magnetic Fusion 10° 10t 100 10’ 10% 10° 10 2 6 10t
Solar Wind 10° 10 6 100 108% 10° 01 2 10 7 1¢°
Galactic center 10’ 107 10 10 10 o008 310 6 10
VLMOT 10 * 10t 1 104 001 104 10?2 10°

Table 1.1 — Some typical parameters for weakly coupled plasma.

So far we have gathered a number of parameters to characterize the system. Here we try to
give an overview of them with some typical experimental values.

The number of atoms can be varied over several orders of magnitudeslfroh0°® to 10
for the INLN MOT. ForN 10" one hasL ' 1cm with a density ,  10™ atoms/cr.
The on resonance optical thickness is computed with the measured maximal density (which is
assumed constant along the cloud) and the cloudLsizg. (1.21),

hh=2L o, ° 100

It might seem large and completely invalidate the srbdilypothesis needed to express the
shadow effect but it decreases quickly with the detuning since

b

b( )=

insuring that experimental working detunib@ j) 1.
Here is a list of several other values
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2 .
— k. = —nm ?is the wavenumber of the laser

780
— M= Mg = 1:443 10 kg is the atom mass (Whil®eecon = 9:1 10 31 kg)
— Two energy level rubidium atomsE = ~! 4o, ' 1:589eV, with the corresponding

wavelength 4om = 780:241nm (in vacuum)
— Temperature 150 K
— lot L:2mW/cm 2 lasers intensity
— ls=1:67mW/cm ? [Ste01].
— 4 =2 6:06 MHz natural width of the atomic transition for Rubidium atoms at
resonance dtziom
— o' 29 10 %n?
h Rri .
— C= g+ CR t 2 10 3N m2 (while Ceecron =2 10 2N m?)
Also, to be useful the probing of the Debye length by a laser must sa@sty, 1
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CHAPTER |l

THEORETICAL AND EXPERIMENTAL
OBSERVABLES

The analogy between the MOT and NNP model is now established. The aim of this Chapter
is to de ne the characteristic observable of the NNP model (and in general long-range systems)
that could be use in a real experiment. We will also introduce our numerical simulations to
illustrate those observable. In next Chapter, all those tools will serve the experimental proposal
to see long-range effects.

1 DENSITY

The most obvious observable is the one point density funct{ed that depends directly
on the interactions. Due to the supposed isotropy of the system one can in general consider
only (¥) = (r). However experimentally, one canraiccess this 3D pro le and only an
integrated pro le 4(x),

z L VA L p
«(X) = ( x2+ y@+ z@)dy%dz® (11.1)

It corresponds to what is seen when the cloud is observed with uorescence on a skce
y=0<

The uorescence technique consists in changing brutally the detuning of the con ning lasers
from the working experimental value to the largest detuning posgipke 8 4 and observing
the photon emitted. The switch and measurement are fast enough so that the atom positions
do not change much. If single scattering events are diminished," #' at large detuning,

1. In principle a tomography, which givegr), is doable but experimentally somehow painful to set up.
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scattering followed by rescattering on another atom | g " is furthermore diminished.
Therefore, photons on the CCD camera mainly come from single scattering events and so are
linked with the position of atoms. The resulting pro le is more accurate than directly looking

at the emitted light from the cloud at smaller detuning [CKL14] where both types of scattering
are mixed.

So experimentally we will compare two things with the Coulomb model

— The shape of «(r)

— The scaling of the cloud radius with various quantities. Practically it is easy to change
The detuning with the disadvantage that it changes both interactions and tempera-
ture.

The number of particleN , that should be a well-controlled and predicted quantity.
The cloud size is experimentally measured as the Full Width at Half Maximum (FWHM) of the
uorescence pro le. Per the standard model Eq. (1.35),

x(X) / pL2 x2(L )

andL N3, [CKL14] gives
— approximatively the gootll scaling
— adensity pro le 4(x) which is not very well tted by the theory.

2 PAIR DISTRIBUTION FUNCTION

The pair distribution functiog'® is a direct measure of correlation in the system, it is de ned
through the one and two point density function,

@ (f2;#1) = 9P (F2511) (1) (F2); (11.2)

where @ (+,: ;) measures the probability of two atoms being.ands,. If g? = 1, it means
there are no correlations, thus a particleqatill see a homogeneous density around it with no
particular exclusion zone. For a weakly correlated plasma 1 the pair correlation function
can be found by the Debye-Hickel theory (similar calculation to that of Section 1.3.1.c) as

g9t ®)) ' g@@r)' 1 aTe =o' exp aTe = o (11.3)

where we assumed the isotropy:; the last equality an interpolation betfféen= 0) = 0 and

the Debye-Huckel theory, its validity is discussed in [BH80]. For small p itis very close

to zero, meaning two particles cannot collide (because of the interaction), then it goes quickly

to 1, meaning for >  one particle "sees" a homogeneous repartition of particles.
Theoretically and numerically this quantity is very interesting and accessible, but experimen-

tally it is not directly accessible. It would require position tracking for particles. Note that for

some "dusty" plasma experiment with heavy ions it is feasible [SV4].
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3 NUMERICAL EXAMPLES

The major issue with the simulation of a VLMOT is the number of particles. Due to the
machine limitations, the simulated particle number cannot be higher thanbout®. Thus,
obtaining both lowh of Eq. (1.47) and of Eq. (1.45) is dif cult. The only way to decrease one
without increasing the other is to have a laNeln fact, to geh  10% and 10 *asinthe
experiment we would need abait  10° particles...!

Nevertheless, we expect the main features we seek to remain. Thus, in Part One we will
perform molecular dynamics simulations with= 163842,

The inter-particles distan@eof Eq. (1.46) is relatively well known in experiments since both
the number of particles and the size of the cloud are controlled. It is thus natural éotase
de ne dimensionless distances.

3.1 Numerical details

AllMOT numerical simulations are performed via a 3D molecular dynamics (MD) code with
a parallel implementation on a Graphical Processing Units (GPU). | gratefully acknowledge
Bruno Marcos who provided the code in its original structure (for pure self-gravitating systems).
| added to the code friction, diffusionand trapping. For some tests | also coded the Shadow
Force. The code performs a time integration forkh@articles evolving through Eg. (1.31).
— The interaction force is coded in parallel: thanks to the block structure of GPUs the
force F; felt by an atomi can be computed simultaneously for maigsy Compared
with a standard Central Processing Unit (CPU) computation the number of operations is
still proportional toN (N 1) but with a coef cient greatly diminished. The speed-up
depends on the number of particles, the problem and the GPU used, but here it is at least
100 times.
— The whole Langevin dynamics (with friction and diffusion) is coded according to a sec-
ond order Leapfrog algorithm [ISP10].
The advantage of this code is that it computes exactly all force terms. Indeed, other codes such
as GADGET [Spr05], make approximations using the long-range nature of the force to gain in
computation time. It is also a disadvantage because GADGET codes are much faster. In our
simulations we nd a compromise between a large particle number and a reasonable simulation
time withN = 16384

2. This number was chosen because it is a power of two and it is optimal for GPU computing.
3. The cuRAND library [CGM14] allows fast random Gaussian number generation on GPU.
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3.2 Numerics

For one snapshot the density is computed as

_ X r(j'r‘lj r).
(r)= RO (11.4)

whereVy =4 (r® (r r)®)=3 is the volume of a 3D ring betweanandr +dr Then it
Is averaged over at least 50 snapshots. Simulations are shown in Figure 1l.1(a), for different

(a) Density pro le (r). We noted the theoretical length (b) Pair correlation functiog®® (r).
L given by Eq. (1.37).

Figure 1.1 — Density and pair correlation functions from MD simulations for three different
temperatures (see Table Il.1 for parameters value).

dimensionless temperaturés For h 1 the pro le is a step function while foh 1it
has a Gaussian shape. The length of the clouddicated on the Figure is well recovered in
simulation as well as the density = 298. The pair correlation functiog® is computed as
follows:

g@(r) = ix @ (r; +1) _ X X (2 F1] 1) (I1.5)
N2 ri< (ra) r1<z £26 1 Vi (1) (ra)
where (
R B
(% )= Lo fs (11.6)

0; elsewhere

Here is a parameter that should be smaller than the cloud radius but large enough to sample
many particles. Just a note, the largémit of g® is supposed to b&, but obviously for a
nite system it will go to 0. It does not matter since the correlation effects we seek are found

for smallr.
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Figure 1.2 -1 g®@(r) for three different temperatures in a simulation with standard Coulom-
bian interaction. Also, plotted is the analytical expressiog®{r) with the computed values
of p,aand (see Table II.1 for parameter values)

Numerical test

To see these correlation effects (i.e. wigh(r) 6 g (r) = 1) we look atl  g®@(r)
in Figure 11.2. We compare the simulations with the theory of Eq. (11.3) with the theoretical
parameters (hence it is not a t). The effect of temperature is clear: on one hand for high cor-
relations (low temperature) the theory is less accurate. On the other hand for high temperature,
uctuations are higher which may also damage the precision.

T=1 T=4 T=20

o 00577 0115 0.258
h 00245 0.0490 0.110
0.862 0.215 0.0431

Table II.1 — Parameters used in the MD simulations for different temperatures. We also have
temperature independent parameters: 100, mC = 0:08 N = 16384,! o = 10 soL = 2:36,
a=0:093 ° =298 for the three different temperatures.
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4 STRUCTURE FACTOR

If the pair correlation function was clear to interpret and density independent, it could not
be directly observed in experimeéntHowever, the static structure facts(k) has the advan-
tage that it can be directly linked to the experimental diffraction pro le (see Appendix A.1).
Following [HMO6], we de ne the structure factor as

*
ot

S(R) = 1 R ( RK) = 1 X e ®n (1.7)
N N
where the bracket stands for an ensemble average and we have used the empirical density Eq. (4a)
to obtain the last expression
z AR W
(R) = (e ®rdr= (r ®)e ®fde= e ®f: (11.8)
i=1 i=1
The ensemble average is crucial to see correlations, removing it carelessly would erase them.
Another f(zrmulation of the strugture factor highlights their role

* +
1 X _ LR XX
SK)= = g iKfi - = e IRt 1) =14+ — e iRK(f )
N* i L N, j=1 N+ i=1 j6i
LR X |
=1+ = e 'R ) (£ ) (r #)dHde
771 isi
1 .
=1+ 5 e K 2) @) (g 4,) df 0t
(1.9)

where we used the de nition of the empirical two point density function. So, neglecting correla-
tions would correspond to considering = (+1) (). For an isotropic in nite homogeneous

media(N !'1 ), one can write
N Z) Z Z

SI=1+ o e™dr+ o (@7 De™dr=1+ oVa (K) 4 o e e Frdr

4a 2

_ 0o _ D

"N e TN O e
k2

"N 0O ey

(11.10)

where the 3D Fourier transform was directly obtained from the modi ed Poisson equation Eq. (1.43)
that is satis ed by the Yukawa potential. The Dirac function corresponds to the unscattered ra-
diation. Without interactiong®™ = 1, so one would expect

Sure = N (k)+1

In our problem, the structure factor will be modi ed for large wavelength due to the nite
size effect, resulting in a spread peak re ecting the Fourier transform of the density pro le, not
just a Dirac peak.

4. However if the media is in nite, homogeneous, and isotropic it can be computed via the structure factor.
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Numerical test

ComputingS(jkj = k) for a MD simulation of a trapped Coulomb cloud gives Figure 11.3,

— The main peak irs(k = 0) = N correspond to the unscattered radiation.

— Forsmallk 1=L, a large peak with many bump, re ecting the step function pro le of
the cloud

— For largek, the structure factor goes to 1. This contribution is always present and stands
for a background noise.

— For intermediat&k 1= p, a small gap is formed and is deeper when the temperature is
smaller (thus it depends on, ). This is characteristic of the Coulomb correlations.

Figure 11.3 — Structure factd8(k) from MD simulations averaged in &l directions at a xed

jRj = k for three different temperatures. We indicated the position of the peak corresponding to
the cloud siz& a=L . For other parameters see Table Il.1.

We compare these simulations with the exact overcritical expression Eq. (11.10) fot=L in
Figure 11.4. Once again, the simulation/theory agreement is very good.

5 COMPARISON WITHOUT CORRELATIONS

We have a clear prediction for an experimental measurement of correlations: a "dip" in the
structure factor characteristic of Coulomb interactions with a functional dependence that leads
directly to the Debye length. Nevertheless, to be sure that this "dip" corresponds to correlations
we can compare it with the structure factor of a cloud with no correlations (see Figure 111.1).
We propose two different ways to achieve this, one that will be useful for numerics and one that
shall be used in experiments.
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Figure 11.4 — Structure factd8(k) from MD simulations averaged in &l directions at a xed

JKj = kfor three different temperatures. We plot the non tted theoretical expression Eq. (11.10).
We indicated the position of the different Debye length. Theoretical values used are given in
Table II.1.

5.1 Random arrangement

Numerically we know the density pro le, it is then easy to draw random particle positions
according to this pro le. With this procedure, we have a cloud with the exact same density
pro le but without any correlation between particles, in particular we exggttr) = 1. This
method is also very useful for the structure factor since the density pro le plays an important
role, so keeping it constant allows us to distinguish the correlation effects without assuming an
ideal pro le. This will be very useful when we study different interaction models (with a priori
different density shapes). However, we cannot apply this procedure in experiments.

5.2 Turning off the trap and interactions

In the experiment one cannot turn off interaction without turning off the lasers and thus the
whole trap. When it is done, particles evolve freely with constant speed and direction. After a
timetp = p=hpji (typical time to "escape” the Debye radius), we expect correlations to have
diminished greatly. Plotting the new structure fact¢Figure 11.5) gives as expected a "closing

5. From now on we normalize the structure factor3(9).
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6. DIFFRACTION AND STRUCTURE FACTOR: LINK WITH EXPERIMENTS

of the dip". Note thatp is estimated as
r

ke T
D 3m! (2)
tpb = —— = ¥ = t 1 ms
° 7 hyii Bk T 241 2
m

Figure 1.5 — Structure factog(k) from MD simulations with the trap ON (interaction force

+ friction/diffusion + harmonic force) and after turning OFF the trap (evolution at constant
velocity v). We wait respectivelyp, 2tp, 3tp and plot the associate structure factor to observe
the correlations disappearing.

Experimentally this method is well controlled. The escape timekasnall enough so the
density pro le doesn't change too much (and so the structure factor). However, an issue of this
method is that it cannot be simply transposed for the modulations experiment we will propose
Section 111.2.

6 DIFFRACTION AND STRUCTURE FACTOR: LINK WITH
EXPERIMENTS

As explained in Appendix A.1, there is a simple link between the structure f&&rand
the experimental diffracted intensity. However, the real diffracted intensity contains multiple
scattering (which is not contained B(k)) events that can screen the effect we seek. These
events are typically measured by the optical thickn#s$ Eq. (1.51). For largeb, multiple
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scattering is very important, while for very smhlihe diffraction is mainly composed of single
scattering. We show in Figure A.1thatfor 1these effects are small and thus can be forgotten
for this rst exploration. A laser emits awa®, / €<t Zg,. The wave is diffracted in direction

Figure 11.6 — Sketch of an incident bedndiffracted on an atom with an angle

Ki = kp(cos' ¢sin g;sin' ¢ sin g;cos ), see Figure 11.6. In our regimes, it is natural to
consider elastic scattering;j = jKj = k_j&]). The difference vectok = K; K appears
naturally (see Eg. (A.4)) in computation of the diffracted light, thus we will st&gl) =

S( k' k)
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L OOKING FOR DEBYE LENGTH AND
OTHER PLASMA PHYSICS EFFECTS

The goal of the experimental collaboration is to highlight the repulsive long-range nature
of the effective forces between atoms as it was predicted by [WSW90]. As we have seen no
experimental measurement has yet con rmed with no ambiguities these forces.

In this Chapter, we come to what is the result of Part One: experimental proposals to measure
the Debye length or at least stress the long-range nature of the forces. We rst brie y review
the direct diffraction response method with a more realistic Laser shape. However, in real
experiment this method might give a signal way too weak to be observed. The other experiment
idea is to force the MOT with an external potential and look at its response. This latter should
be characteristic of the nature of the effective interaction forces. The numerics and theoretical
prediction are compared to the preliminary experiment done by the INLN t€hatheoretical
and experimental data are consistent nevertheless it remains dif cult to draw conclusion
on the presence or not of long-range forceslndeed, the effect sought might be cover by
density effects due to the existence of two diffraction regimes that crossover about where the
experiment probed.

1 DIRECT PROBING

1.1 With a Gaussian probing beam

_In real experiments the probing Laser (in théirection) is not an ideal plane waves; /
€L? put has a Gaussian envelope. Thus, we consider following expression for the probing
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Laser

A x24+y2

ELaser/ eIkLze ZTyr;
wherew is the Laser waist If the Laser waistv is smaller than the cloud's size (typically in
experimentd ' 8mm andw ' 2mm) it has the advantage to soften borders. Figure I1l.1
clearly shows how in the diffraction response border effects are suppressed with a Gaussian
beam. We also compare this pro le with an another one without correlations. This uncorrelated
cloud was obtained via the procedure explained in Section I1.5.1 (we randomly drawn particles
along the density of the correlated cloud). Clearly the small dip disappears with correlations.

Figure Ill.1 — Structure factor with a Gaussian probing b&ytk) and with a plane wavg(k).

The "random" curve is obtained for a random drawing of particles as suggested in Section 11.5.1.
We plot the non tted theoretical expression Eg. (11.10) of the Structure factor. Theoretical
values used are given in Table II.1, hdre= 4.

1.2 Comparison with experiments

The correlations of the Coulomb forces are characterized by a small dip in the diffracted
intensity as explained in Section 11.5. We expect the background intensity to be of the order
1=Ng4, whereNy is the number of diffracting atoms. If the probing beam is larger than the
cloud all atoms diffract stNg = N andS(k ! 1 )=S(0) = 1=N 10 % Such contrast
leaves no hope to observe any dip nkax 1= p (even with a Gaussian beam whe\g is
smaller the contrast would be too large). The best experimental resolution is about ve orders
of magnitudes...

A mask was used to hide the central peak in order diminish the contrast but preliminary
experiments where pessimistic. Thus, this experiment was abandoned.

1. There is in principle also a dependence of the waist dependence on the longitudinal diséz)idaut for
the Laser used, this effect is very small sizce zr = 41 m, wherezg, is the Rayleigh length.
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2. RESPONSE TO AN EXTERNAL POTENTIAL

2 RESPONSE TO AN EXTERNAL POTENTIAL

Since the dip characterizing the Debye correlation is very hard to detect in experiments, we
must change strategy. Going from a static measurement, to a response to an external forcing
measurement, increasing the signal to measure. Note that not only the measurement principle
is different but also the effect sought. In previous experiments, we wanted to analyze the posi-
tion of particles to nd some special arrangement between them: correlations, characteristic of
Coulomb interactions. Here we no longer look directly for correlations between patrticles, but
rather for a response characteristic of Coulomb forces (or more generally long-range interac-
tions).

2.1 Experiment principle

We apply a modulation in one directiag of the cloud and measure the response depending
on the modulation length. The modulating potential is made experimentally by focusing two
interfering laser beam on the cloud. It shape is

ext = A Sln(kex)

where the angle between the two modulating Lasers determines the wavedgagthA is the
modulation amplitude. The Fokker-Planck equation predicts the density response in stationary
regime h i

 (Fe+FJ]) kgTF M oex =0; (1.1)

so around the constant pro l§¥) = o+ (¥), the linear response i is (neglecting border
effects of the cloud)

A .
5= kB—Tkiosln(kex); (Ill.2a)
o)
k2
(x;y;2) = € - sin(kex) (111.2b)

0
keT K2+ 32

with p = 1= p, where we used thd&.[ ] + F;y = 0. Hence the modulated pro le has a
clear amplitude dependence on the modulation nurkpand it is characteristic of Coulomb
interactions (another force would have given a different result). Hence if we measure this shape
it will prove the experimentally the Coulomb-like model of VLMOT [WSW90]. In next Section,

we will discuss this dependence in terms of long-range interactions.

Remark 1.1

Here we have done a 3D computations assuming an in nite homogeneous unmodulated density.
Of course, the border effects (as nite size and temperature) might modify slightly the pro le
and response, but it seems quite safe to assume that at rst order dnd fdr=L they can be
neglected
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2.2 Fluorescence-like density pro le

2.2.a The Response function

A direct observation of the modulation effects consists in looking directly at the density
prole (x) via the uorescence technique. In the Fourier spectrum, we expect a peak at
ks = ke with height proportional to the response function

k2

B0 = (7

(I1.3)

there are also some density effectskor 1=L since ° is not a perfect in nite constant den-
sity pro le. Without interactions between patrticles (thus with no Debye length), the response
function isB (ke) = 1. For other type of interaction forces this response function changes. The
interpretation here can be put this way
— For large scalé&k < , moving atoms on large distance will cost much (so the response
will diminish) since particles interact via long-range forces, moving on large scale will
imply moving a lot of particles and modiffN 1) terms in their potential energy.
— On the contrary for largk > p (small modulations), it will cost less to move on small
scale involving less.
For short range repulsion, the response has an opposite Bghke ! 0) =cst (a particle
sees only its neighbors, hence for modulation larger than a given scale the response is constant)
while B (ke) will decrease for largée.
For attractive long-range forces, we also expe@argeke) ! cst, but for large scale pertur-
bation, we expect an instability to develop at a certain dcalevherek; is the Jeans wavenum-
ber. This is the Jeans instability [Jea02, BT11] well known for galactic systems: when a self-
gravitating system is too large its kinetic pressure cannot compensate the gravitational force and
the system collapses.

2.2.b  Numerical Simulations

In Figure 1.2 we plot a simulation of the modulated density pro |€x) (for a xed temper-
ature) for two different modulations. As expected the amplitude growskyitin Figure 111.3
we plot the response to modulation (peak of the Fourier transforkn=atk,) for severalke
and different temperatures and compare the result with the response fua¢kign The ratio
between the amplitude response for different temperatures agrees with the(kadtpr® in
Eq. (I11.2b). For small temperature, the simulations do not match perfectly the theory, this is
because is the regin=T > 1 the linear theory is expected to fail. Nevertheless, we see that
the essential features &f(ke) remain, just the effectivd= p seems shifted to the left, thus
there is a larger effectivep outside linear regime. Effective ). and f seems to about the
same.
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Figure 111.2 — Integrated density pro le,(x) with and without an external potential with ampli-
tudeA = 8 and wavenumbeke. Whenk, increases the response also increases. Here&0
and other theoretical values used are given in Table II.1.

Figure I11.3 — Amplitude of the Fourier transforRT | «j(ke). We plot the theoretical expression
of the respons® (ke) = EQq. (Il.3) for the theoretical parameters given in Table 1l.1. The
external amplitude i& = 8. The linear theory works better fé&=T small.
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2.2.c Experiments

This method requires experimentally to be able to see the modulations in the uorescence
pro le and then deduce its Fourier spectrum. This set up can be seen more generally as testing
the long-range character of the interaction; an increasing responsk.withuld be a signature
of a long-range repulsion.

Unfortunately, it seems that uorescence techniques are not accurate enough, IeE3%han
changes are in the noise of the density pro le. Our small modulations are thus not observed at
all. Also, larger modulation intensity seems not possible without completely destabilizing the
MOT.

2.3 Diffraction

Since the uorescence technique is not accurate enough, an alternative way to measure the
density modulation is diffraction. It is very accurate, but interpreting the results is not straight-
forward, as we will now explain.

As explained in Sections 1.4 and 1ll.1, to predict the diffraction pro le we must study the
perturbed structure factor

1 1

S(k) = S°(R) + (K) °C k) + Ni ( k) °(k) + Ny ® CK (4

whereS? is the unmodulated structure factor (without external potential0).

In this modulation experiment it is legitimate to neglect the correlations because here they
are very small as we have already painfully experimented, Section Ill.1. So, we can write for a
symmetric density pro le

2

S®) = S'®+ = (R) *R)+ (R)*+O(correlation): (111.5)

The perturbed density Fourier transform can be easily related to the unperturbed Fourier trans-

form thanks to the shift il induced by thesin function

FT[ (x)sin(kex)] (kx) = %( (kx  ke) (kx + ke)) ;

whereFT[ ](k«) stands for the Fourier Transform of the density

2.3.a Expression of thek vector

The goal of this subsection is to introduce some effects that may not be intuitive for reader
concerning 1D and 3D diffraction calculus. For exampte, K.j & jk kg in 3D while it is
true in 1D. The diffracted wavenumber vector is (see Figure 11.6)

R = (ks Ky;kz) =( cos isin ; sin gsin ;1 cos y);

and its norm is
k = 2k, sin( (=2); (111.6)
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so = 2arcsin(k=(2k._)). A simple calculus shows that

O s__ s____ 1
2 2 2

k k k
- @ - TR A - .
K k 1 2K cos' ; k 1 k. sin' i; oK. (1.7)
In experiments, we obsen®( «; x). Two modulated density produces two diffraction

peaks in' ,k = 0 and . The angle  is directly linked withjKj. Due to the modulation, we

expect a peak i5(K) aroundk  ke. The perturbed wave vector expression after the shift due
to the modulation is

)
2

q
R Rj= K2+ ke+ki+kZ 2kke= ' k2+k2 2Kkke 1 % cos «: (III.8)
L

o<

The minimum of this norm is reached aroukd& k. with =0 or (those will correspond

experimentally to the two-diffraction discs observed).

We expect the Debye length to be arodr®d m sok 10°m !, withk_ = c}_—%m 1 so

ke=k. 1. Hence, we can safely expand the square root in Eq. (I11.8), to geflyith k. and
k = 0 (for example)

ke keaj= X sk, o K 2
e e T o T 2k, (111.9)
" k, 60:

This computation shows that due to the 3D nature of the system, one must not a priori forget
about the longitudinal directio®, in the diffraction. It will be the origin of two regimes of
diffraction.

Therefore, the perturbed Fourier transform is at the peakk,

2

k
(k)" °(ke)+%8(ke) s Sk (I11.10)

Here remember that(lk = 0) = N and also that the Fourier transform of the pro le decrease
very quickly to 0 withk increasing (the more regulafr) is the faster its Fourier transform tends
to 0). The dominant term in the structure factés for NA=(kgT) 1 (for 10% modulation
andN 10 the approximation is safe) and & 1=L (for smallerk. the unperturbed term
becomes of the same order),

1 A L

' - 2
Stke) " 1§ gt Bk T o5

(I1.11)

where have neglected terms with large argumentk). Due to its fast variation around
1=L it is dangerous to replace the last term Byk = 0) = N. In next Section, we give a
simple illustration of this fact.

2. We keep the +1 background term which for lakge dominant.

63 Laboratoire Jean-Alexandre Dieudonné



CHAPTER Ill. LOOKING FOR DEBYE LENGTH AND OTHER PLASMA PHYSICS EFFECTS

2.3.b A simple example: existence of two diffraction regimes Raman-Nath/Bragg

In this Section, | will give a simple example where two different regimes are easily observer
in the diffraction response.

Let's take a 3D cube of atom&(x;y;z) = °(L x)(L y)(L z), modulated
suchthat = A °sin(kex) were we set a constaAt = AB (ke) (for example with a trapped
non interacting cloud). It means that here we do not seek interaction effects just the regimes
of diffraction. The diffractionS(k) response is maximum (forgetting of course the undiffracted
peakink =0)fork' ke. Standard calculation gives

sin(keLz) sin(kyLy)  sin((e  ke)ly)  sin((ke + ke)L)

(R)=4 °A K % TS K+ k) (111.12)
so, with Eq. (111.11) we have
! 2 . . . 2
S(K) SOK)" 1 4°K sin(k,L,) sin(kyLy) sin((kx  ke)Lx) (11.13)

N 2ksT K, Ky (ky ko)

where we have neglected correlation terms and cross termed terms in Eq. (111.5) which are neg-
ligible for k > 1=L.
— If k,L, 1 (thin media) then the diffraction is independent of the density along the
longitudinal directiong,. The max of this function is reached fky = ke andk, = 0.
So, the peak response is constant Witkand its amplitude is constant

1, 2
S(ke) N AL LyLy

— Now if k,L, 1, the peaks of diffraction are still situated around ke. We can still

setky, = 0, but this time we must also consider the additional dependendég én0.

2

The peak response is now, remembekng ——=

2k,
0 4 oAL,L,sin XL Lz
SIn &
Sk ~@ T BT A
N k2=(2k,)

So, in this simple example we have seen the existence of two diffraction regimes:
— k,L, 1, response is constant with the modulatiQn
No density effects: Raman-Nath regime of diffraction
— k,L, & 1, response haslg * dependence with the modulation
Strong longitudinal density effects: Bragg regime of diffraction
It shows clearly that the diffraction response to modulation displays a slope change due only to
density effects without any link with the response functi®fk.). Of course, it is problematic,
because it will interfere with the slope change effect expected from the long-range interactions!
The criteria for these two regimes is in terms of a critical wavelengfth(or wavenumber
k() of modulation

r

2k
© =2 o L, . or ki9= .

(I1.14)
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So, for a cloud of radius t 6mm and a laser, = 780nm, the regime change is expected
at 9t 120 m... which is the worst case scenario since the Debye length is also expected
around100 m!

Thus in the following, we will need to distinguish/separate the "density effects” from the
"long-range effects". To do so theoretically, we will often s&(ke) = 1, which corresponds
to a response without interaction, to compare with a case with interactions.

Remark I11.2
One physical picture for those regimes is: considers at the cloud entrance a series of Gaussian
beams with a waist given by the size of diffracted object, which is here the density modulation
of size ¢ =2 =k,. That beam will propagate and spread in perpendicular plane, Raman-Nath
regime corresponds to the situation where two adjacent beams do not superpose which is to say
the Rayleigh length ,
R = £

L
is smaller than the longitudinal size of the clougd Whenzz > L , beams overlap: it is the
Bragg regime. In the context of ultrasonic light diffraction this criteria Eq. (111.14) between
Raman-Nath/Bragg is also known [KC67].

2.3.c Diffraction discs

In the previous Section, we have seen on a simple example that we expect for a homogeneous
distribution of particles with no interactions a diffraction pro le with

— e Os(el

— e sl Q.
Here we will show how measuring the total intensity of diffraction diccg (and not only its
maximum) affects the scaling in adding a linear contributign

- e (ec)1 R( e)/ 2’

e éc), R( e)/ é-
Indeed, in experiments is measured the total intensity of diffraction discs (to which we remove
the unmodulated pro le). Itis de ned as follow

zZz . Z. .

R( e) = (S S et %'et N)d? (111.15)
where . is the associated angle of the modulation Eq. (I1l.7) &nd - ) are chosen large
enough to enclose the diffraction disc.

A simple calculation of the integral §8 S°)(K.+dK) in two extreme cases (step function
and Gaussian) can give an idea of the effect on the response scaling of this computation.
— For the step function density pro le Eq. (111.13), we expand around the pedk at

et ;' =0+ "), which gives aterm like

*siné(ke ' ):

. : . . . 1
This term integrated give something proportlonatto e
— For a peak with Gaussian shape, one expects °

2; 12— 2(R2 4 K2 -g K>, K 22 2 2 K=
e WK, Ke® =8 — e w? (K5 +kg 2ks ke cos )=8 / e e wekg —4e we k=8 (”|16)

this term integrated gives something proportionalts. / .
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In conclusion, it seems rather generic thatkepk k |, the total surface intensity of the diffrac-
tion peakR has an extra linear dependency withwhen compared to the peak maxim@n

2.3.d Comparison theory simulations

Simulations

The various components of this experiment and associated predictions are now theoretically
established with simple examples.

We show on Figure [l1.4 the result of the diffraction on simulated clouds for three differ-
ent temperatures. We duwot plot the surface of the diffraction discs as suggested in Sec-
tion 111.2.3.c, but rather the maximum of this diffraction disc (corresponding te k. and

=0 or ). We do so just to get a rst illustration of the Bragg/Raman-Nath regimes versus
long-range effects without additional "surface effects". Furthermore, we chose an in nite waist
(corresponding to a plane wave) to avoid other additional effects. In Section 111.2.3.e we will
consider both effects.

The Figure 111.4 shows indeed a regime change where it is expectedmat (). Moreover,
the effects of the long-range interactions are clear o0& p: the response decreases. In
between the two crossover the response is almost constant which is expected. A cloud with no
long-range effects would have a constant response for large modulation p (instead of a
decreasing one); but for small modulation {9 the response will be (as with interactions)
dominated by "density effects” (Bragg regime).

Figure 111.4 — Maximum response of the diffraction di€i&) for simulated cloud with different
temperatures (Table 11.1). The waist is in nite here &ad= 1800. The amplitude perturbation

isA = 8. We show the two diffraction regimes Bragg and Raman-Nath predicted by theory and
well observed here.
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Removing density effects

Here we have chosen this example so the crossover for diffraction does not occur where
long-range effects happen. But in the experimental set up both might happen at the same place
obscuring the result.

Thus, how could we see without ambiguities the long-range effects without any of these
density effects, keeping just the response funcBdke).

In equation Eq. (I11.11) we can rewrite the density term to get

AB (ko) 2 <0 k2
kg T 2k,

S(ke) S°(ke) 1 : (11.17)
Hence the response is linked with the unmodulated structure factor at small kw2l ).

So, in principle measuring theses small angles for the unmodulated structureSactbthe
same cloud would give the density contribution. Then dividing by this same term

S(ke) S%ke) , AB(ke) .

S(eek) 1 ZKeT (Il.18)

just leaves the response functiBike) 3.

To test this prediction, for the same simulations than in Figure I11.4, we plotin Figure 111.5 the
height of the diffracted pea®( ) * by a probing beam larger than the cloud (so not a Gaussian
beam) divided by the corresponding diffraction response at smaII aﬁglés( L)). Finally,

we plot (with no t) the remaining term predicted theoretlcallyz— B?( ¢)forA =8 and

T = 20 (where the linear regime is valid), with the simulation parameters, and it ts very well
the simulations! For other regimes where the response is nonliAe&g T > 1), our method

still work to highlight long-range effects but the theoretical amplitude (not shown) is different
from simulations. The interest to perform such simulations is to check that even with an intense
laser the effects sough remain. For very small modulations the denominator of Eq. (111.18) is
very close to zero explaining the points out of range.

Once again if there were no long-range interactiBiise) = 1, the response on Figure 111.5
would be constant.

It is an excellent means to test our predictions with simulations. Experimentally one may
think that measuring the structure factor for small angles would be easy since one expect a large
response for small angles. The problem is that the signal might be too strong and varying too
much to be well captured. Also, measuring small angles requires to change the experimental set
up so that it might be hard to measure both small angles and large angles with one experimental
con guration.

3. All the +1 terms can be forgotten for the region of interest.
4. Soin principle it is not exactly the disc area experimentally measured.
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Figure 111.5 — Amplitude of diffracted peaks with respect tp without the "density effects”
measured as in Eq. (111.18) whe& andS where obtained from simulations far = 1; 4; 20.
We compare with the theoretical expression of the r.h.s. of Eq. (I11.18] fer 20. It is the
same data that in Figure 111.4.

2.3.e Comparison theory/experiments

Comparison

In order to compare theory and experiments we have to choose a density pro le. We chose
a simple one that can be tracked analytically in Fourier space. In the perpendicular direction
of the probing we know that border effects will be "cut" by the Gaussian beam, while in the
direction we expect a step like structure. Hence, we ch¢se= Eq. (A.5) and compute its
Fourier transform.
In Figure I11.6 is plotted the result of one experiment for two different detuniag 4 4; 3 4.
We compare these results with the theoretical diffraction respons8(vig  S°( ) of the
pro le Eq. (A.5). The parametets; w; N are chosen to be the same that in the experiment. In-
deed, the waist and atom number is well controlled and the length can be easily extracted from
a density pro le. The only adjusted parameter here is the vertical amplitude of the theoretical
response (in arbitrary units), that we set so it coincides with the experimental curves. On the
three theoretical curves, we change the value of the Debye leggth observe its effect.
The conclusions of this comparison are
— Experimental crossover coincides with the one predicted Eq. (111.14)
— In the Bragg regime the theoretical prediction has a smaller response. The difference
could be explained by the fact that the density pro le chosen differs certainly with the
real one, and in this region. Exact form of the density might play a role. For example, a
sharper density pro le decreases slower in this region.
— Theoretically we observe oscillations in Bragg regime (it is to be expected for a step
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function). The experimental pro le also displays such oscillation (to a lesser extent)
around =70 m. We will discuss this next paragraph.

— In the Raman-Nath regime the slopes of experiment and theory are both about 1 as ex-
plained in Section 111.2.3.c (the response is not constant as in Figure lll.4, because this
time we consider the whole disc of diffraction). For larger modulation we expect the
long-range effects to take place, which we see clearly for= 100 m. Unfortu-
nately, the theory agrees well with the experiment only for the non interacting case with
B( ¢) =1 and to some extend with they = 300 m case. Hence at this point it is not
possible to be conclusive on the presence of long-range interactions.

For a Debye length, larger th&®0 m (blue dashed line), the long-range effects are rather
hard to see in the measurement range. Thus, differentiate between the case without interaction
(dashed doted black line) for large Debye length is dif cult! One could be tempted to extent
the measurement range to conclude but nite size effects of the Wwaistl=w will become
dominant.

Figure 111.6 — Power of the diffracted discs with a Gaussian beam in G. Labeyrie's experiments
(crosses) and in theory (lines). The detuningsisq = 3and 4, N 109 L = 7:41mm,

w = 2:2mm. We compare the theoretical model with the same paramietersat various
Debye length =100; 300 m. The "rigidity" of the step function Eq. (A.5) is chosen arbitrary

atl =100 m (it does not change much the results). We indicate the theoretical Bragg/Raman-
Nath regime change by the tick® ' 135 m. We also show the theoretical extreme case with
no interaction8 ( ) = 1. The vertical dotted line shows the separation of the two diffraction
regimes. The vertical dashed lines show at whigltthe diffracted discs plotted Figure 1.7

and 111.8 were taken.
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Split bump

In the experiment, some split diffraction discs have been observed, Figure I11.7(b), corre-
sponding to the small oscillation in the experimental response near 70 m. Can we
explain this observation? To explain simply their origin, one has to remember that the response
has a dependence with the longitudinal pro le Eqg. (111.10), so around a keakk. + k, the
response is
k2 +2ke k

2k,

If this small angle happens to correspond to a "hole" in the Fourier pro le (as in Figure 11.3 for
ka < 1), then the diffracted discs can be split in two parts. We illustrate that with our theoretical
model with parameters provided by the experiments (thus with no adjustment to t). We can
see in Figure 111.6, (dashed lines) that a split bump is also expected arqund6:5 m. We

show this disc Figure 111.8(b). It very close in term aof to the experimental observation!

In Figure 111.7(a) we show an experimental diffraction disc at= 64:2 m (see the left
vertical dashed line of Figure I11.6) where no split is expected. There is indeed no particular
asymmetry and the disc is circular. The corresponding theoretical expectation is also, Fig-
ure 111.8(a), not split. It is quite reassuring to have a theory able to explain and describe with

S(k)/ S°

@ ¢=64:2 m (b) ¢=75:7 m

Figure 1.7 — Experimental diffraction discs fog = 75:68 m in the experiment

rather good precision this non trivial/intuitive experimental observations.

3 CONCLUSIONS

We suggested different experiments to "see" and measure the Debye length in VLMOT.

Université Céte d'Azur 70



3. CONCLUSIONS

@ =642 m (b) ¢e=76:5 m

Figure 111.8 — Theoretical diffractions dis&; ),L =7:51mm.

Static diffraction experiment

The rst experiment (see Section II1.1) is a direct diffraction measure on a static MOT. It has
the upside of directly measuring the correlations in the system. The downside is that the effect
sought is very small and hard to observe. However, with a Gaussian beam, it is possible to "in-
crease" the effect by reducing the contrast between the background and the non-diffracted beam
(see Figure 111.1). A well-disposed mask should help to reduce the central peak contribution
and its tail but so far has not yielded anything.

Modulation experiments

Modulation experiments (section 111.2) have the advantage that the effects foreseen are much
bigger than correlations. They do not try to directly measure the correlations of the particles but
rather the in uence of long-range interaction in the cloud's response.

Density response via uorescence

The uorescence experiment (section I11.2.2) is well controlled theoretically and numeri-
cally. Furthermore, the expected effect is clear: we want to observe a response in the amplitude
of the modulated density &( ¢) = Eq. (I11.3). With a precise signal, we could even extract
the Debye length value.

A less demanding result would be to simply observe a decreasing response ygrews.

This would be enough to conclude on the presence of long-range forces.

However, since the amplitude modulation of the density is small and the uorescence imag-
ing is mysteriously (of what | have heard) not really accurate, the hope to see any modulation is
thin.
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Diffraction response

The diffraction experiment (Section I11.2.3) is more sensitive since experimental signals have
been seen and measured. However, the result interpretation is less direct. The measurement is
plagued by two regimes of diffraction that cross over near the supposed Debye length. Nev-
ertheless, after simple estimations we believe that we discovered the essential features of this
measurement; it seems that the experimental pro les measured are quite well understood.

The remaining problem is that no long-range effects are seen unequivocally since experi-
ments and theoretical predictions fos =300 mand 5 !'1 matchupto ' 800 m
where the size of the waist could modify the response. Hence several possibilities occur:

There are no repulsive long-range effects (or they are very weak and not the dominant
contribution) thus there is no Debye length in VLMOT. The repulsion mechanism is
provided by a non long-range force. An extreme case would be that there are only contact
interactions. Note that in this case the scaling N observed in [CKL14] would
still be valid. Another possibility could be a Yukawa interaction between particles due
for example to a very fast reabsorption of rescattered photons. This could be the case of
the photon emitted at resonance in the Mollow triplet [Mol69]. Numerical tests of these
cases have been started.
The Debye length is too large for our experimental window (meaning our estimation
o 100 mis wrong). We can either enlarge this window, or reduce the Debye length
by increasing for example the trap pulsatiofor reducing the temperature.
There are attractive long-range effect dominant for large modulation screening the effect
of the repulsive force, which might be of shorter range than expected.
Another pessimistic possibility is that we did not interpret correctly the theory and thus
experimental data, or that we neglected a serious phenomenon (like multiple scattering).
Thus, our inconclusive interpretation is wrong.
So far, we did not consider the full Shadow effect (Section 1.1.3). In the case where the Coulomb
description is false and the true repulsion is of shorter range, the attractive Shadow force could
dominate at long-range. Either way (Coulomb forces or not), the rst order derivatain
small optical thicknes® 1 Eq.(1.21) and Eq. (1.22)) of this effect could be wrong in the
experimental regime wherde 1, bringing additional attractive effects that could possibly
explain the data.

So, to conclude this Part, a serious theoretical proposal has been made with consistent ex-
perimental data. Nevertheless, strong long-range effects as expected with the standard model
for MOT do not seem to appear. More experiments should be made with different parameters
as well as simulations with various type of interactions. If some more accurate uorescence
technique is developed to observe the modulated density pro les, one could directly measure
the amplitude response and compare it with the response furigfias).

5. Even the numerical simulations of this force are considering only the rst order expression.
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ADDENDUM

Additional comparisons between the experimental data and the Coulomb simulations were
done and presented for my Ph.D. defense. | summarize here these results.

We studied experimental static (without modulations) density pro les measured by uores-
cence (see Section 11.1) for different detuning. The more the detuning is large the more we ex-
pect repulsive interactions between atoms to be weak. Hence, for large detuning the cloud size
should be smaller and its shape should be Gaussian. We superposed these data w(i) the
obtained by Coulomb simulations (see Eq. (11.1)) for well-chosen parameters on Figure III.9.
The rst thing to notice is that the ts work quite well for the various detuning, meaning the

Figure 111.9 — Experimental density, (x) obtained by uorescence for = 4 =4;6 compared
with MD simulation (lines) of a tapped Coulomb gas. The inset shows the extrapolated Debye
length p and the cloud radiuk. (The density plots for = 4 =5;8are not shown here).

trapped Coulomb gas model is coherent with experiments. Knowing the simulation parameters
allow us to extrapolate the experimental parameters, in particular the Debye length (which is
linked to the size of the distribution tails). However, for the ts to work we have set the Debye
length around. mm which is much larger than o0 m expectatiofi. This "measurement”

of a very large Debye length is consistent with the modulation results (see Section I11.2) where
we did not observe long-range effects arod@ m. Instead the experimental response pro-
les were matching the theory uniquely for very large Debye (see Figure 111.6).

. . . P
6. Remember that this number is related with the kjze = 3 p of small MOTs. For example see [RP87]
for cloud measurements.
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Therefore, these results offer a more conclusive statement than before: the Coulomb model
with a Debye of the order o mm are consistent with experiments. We look at the Debye
length expression Eq. (1.42) to understand the difference between the "measurements” and the
expectation. Either the temperatufeis 100 times larger which is unlikely or either the trap
pulsation! g is ten times weaker. This latter possibility sounds fair since the trapping effect is
being attenuated by the cloud thickness. This will be the object of new investigations.
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CHAPTER IV

INTRODUCTION TO BIFURCATION

As we have seen in the Introduction the Vlasov equation describes the violent relaxation,
I.e. the evolution over timescaleg c =0 N (see Figure 1) of particle systems inter-
acting with long-range interactions before the collisional relaxation takes over and drives the
system toward statistical equilibrium. Thus, this "out-of-equilibrium" process can be arbitrar-
ily long (e.g. galaxies havdl t 10" so collisional effects can be ignored over lifetime of

10' years [BT11]) and their study is relevant by the Vlasov equation. Also for purely out-
of-equilibrium systems, such as coupled oscillators, where each oscillator is driven at its own
rhythm, there is no de ned Boltzmann equilibrium so only the kinetic description can give in-
formation on the system state. The dynamics of kinetic equations like the Vlasov is very rich
due to advection, nonlinearity and self-consistent mean- eld force. It leads to numerous effects
such as lamentation of the phase space, strong resonance phenomena, in nite number of sta-
tionary states, BGK modes [BGK57], echo plasma effect [MWGOG68], etc. We are not going to
focus on a speci c physical system. Rather we will try to advance the general understanding of
bifurcation in the Vlasov equation and other related models, with the hope it may be useful for
various situations: tokamaks, galaxies, synchronization, etc.

To study dynamical evolution of those systems a natural starting point is to consider the
linear evolution of = f°+ garound a reference staité,

@=L g+ N [d] (IV.1)

whereL andN are respectively a linear and nonlinear operators acting on a function space
for in nite-dimensional systems dR" for nite-dimensional systems.

The stability of the reference state depends on the spectrum of the linear operator. Eigen-
values are de ned with their associated eigenspace of eigenvectorghrough the equation

L = (IV.2)

1. The subscript will be dropped in most of the manuscript.
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From Eq. (IV.1) the linear evolution of a solutign= A(t) parallel to an eigenvector will be
determined by the sign &e (where is has the largest real part, which we suppose is simple)

A=A ) g/ e (IV.3)

— Re < O0the system is said to be (spectrally) stable, because small perturbations of the
reference states are damped to zero. However even if the system is linearly stable for
large initial perturbations nonlinear effects could take over.

— Re > 0 the system is said to be (spectrally) unstable, after an exponential growth
regime, nonlinear effects can

Saturate the perturbation. Typically, we have a negative cubic term of the form

A= A j GjAjPA+0 jAj*A (IV.4)

is expected for symmetric systerfs! A.
Amplify the perturbation which typically yields

A= A +jcjjAj’A+0 jAJA (IV.5)

In physical systems, the perturbation eventually saturates with higher order terms at
some level (1).

— Re =0 the system is said to be neutrally stable. The perturbation is purely oscillating

and will neither grow or damp. We say it is a neutral mode.

When the system depends on a parametevhich could be temperature, coupling, initial
velocity distribution width, etc., it can undergo a bifurcation going from a stable state to an
unstable state iecRe . _ < OtoRe . _ > 0. For a good introduction, quite complete
and suitable, to bifurcation theory see [Cra91b]. The goal of bifurcation theory is to describe a
gualitative change in a system structure occurring when some parameter is varied. It can be how
a homogeneous plasma (with a zero-total electric eld) can go unstable, meaning the electron
distribution will develop some structure producing an electric eld. Biological systems also
display bifurcation, e.g. an asynchronous crowd of clapping people synchronizing. As we shall
see later to quantify this structure change we will de ne the concept of order parameter.

A particularity of the kinetic equations we study is that they possesgarite number
of neutral modes"? called a continuous spectrum This in nite structure is directly linked
with the dimensionality (and dif culty) of the problem. In the simplest bifurcation analysis
with one positive mode 1 and other negative modes: 0, one can easily separate the two
timescales: during timg j * !, the system goes quickly on the unstable manifold, so a
description of the instability will only require one to describe the unstable direction associated
with > 0and the problem dimension will be reduced from two to one. Here with one neutral
mode (or a continuum) one could be tempted to do the same, but removing such modes which
are never damped could be very risky. In fact, as we will see, these modes are responsible for
stronger nonlinear effects.

We provide a detailed example of such neutral mode effects on a simple tractable example
of nite dimension, following [Cra91a]. We will introduce the unstable manifold reduction
technique used later and which already exhibits its limitations, and compare it with the more
standard central manifold technigqughe goal of the center/unstable manifold technique is
always to reduce the dimension of the problem to get a simpler expression of the dynamics
close to the bifurcation. Thus one obtains the nonlinear generalization of the eigenvector

2. Strictly speaking this denomination is abusive.
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associated with neutral/unstable eigenvalueOf course, in nite dimension we know how
to deal with neutral modes and their effect is known; it suf ces to include them in the center
manifold (which for many neutral mode might be not satisfactory), but their effect on the un-
stable manifold is less known. In the following nite-dimensional example, we aim to show the
features of such unstable expansion with one neutral mode. Because bifurcations are in general
classi ed in "universal categories" (e.g. saddle-node, transcritical, pitchfork, Hopf bifurcation),
it makes sense to study a simpler case hoping to gather a general understanding.

Then we introduce the formalism for the in nite-dimensional case, present a rigorous de -
nition for the spectral problem and provide a tractable example where the continuous spectrum
leads to damping.

1 A BIFURCATION EXAMPLE IN FINITE -DIMENSION

This example is taken from [GH13, Cra91b]. Let's consider a system that can be reduced to
a two-dimensional system of 0.d.e.

= r 4+ azr+ ar’ (IvV.6a)
= 7z + br?+ hz? (IV.6b)

N

with an eigenvalue 2 R associated with the amplitud€t) and 2 R associated with the
modez(t). O will be xed while will be crossing O to become unstable.

1.1 Exact solution

We want to study the behavior of the system when O and 0. One question is, what is
the dependence of the bifurcated solutions arquipdzg) = (0 ; 0) on the instability parameter
? A set of stationary solutions close to the origin can be found to be

8
3,2 (21 b2 aglazb”am(; )k
Lo (IV.7)
3, - ‘el
. 4 a .

— First we see that to exist the solution nebgs; < Oorif =0 byb, < 0 ("saturating
conditions"). In practice, we want botha; < 0 andb,b, < 0to study(r; ;z; ) with
xed parameters and varying.

— The solution scaling is

r2 —: when ! Oand < O V.8
1 blal ( )
— The solution scaling is
r2 2 . when | Oand =0 (IV.9)
1 bla.% ’

This latter scalin%is different from the usual "pitchfork scaling” (also called here Hopf
scaling)r, 60
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The modi cation provoked by the presence of a neutral mode on the imaginary axis is clear- it
changes the nal scaling of the solution. The solution with neutral mode is much smaller than
without one. Therefore, when neutral modes couple with unstable modes one expect nonlinear-
ities to be much stronger (saturating the perturbation at much weaker amplitudes).

1.2 Center manifold approach

Now imagine that we cannot guess directly solutions, what can we say about the evolution of
the systems and the scaling of its steady states near the origin? The center manifold approach is
a dynamical expansion around a stationary point of the full model Eq. (IV.7). For this example,
we have(rg; zp) = (0;0). We separate the contributions of fast and slow modes. The fast
manifold will regroup the contribution of eigenvalues with a nite negative real part. These
modes will be quickly damped and thus will not contribute to the "slow" dynamics. On the slow
manifold, we consider modes around the imaginary axis (Wegh t 0). For example, here

< Ois on the fast manifold and thet 0is on the slow manifold. The center manifold treats
the mode as a perturbation of a neutral mode. It is described by writing Eq. (IV.6) as

r 00 r r + agzr + ars
L _ : IV.10)
z 0 z bir? + bz? (
| —{z—} | {z }
Lo N

— If < 0, the dynamics will go quickly (as 15 j) close to the center manifoMV/ ¢, so
it is legitimate for small to parametrize this center manifold as

(;z) 2 Wethen (r;z) =(r;h (r)); (IvV.11)

with h (r) a regular function for close tory. Actually, rigorous mathematical re-
sults [HI10] exist to justify that indeed for any initial condition suf ciently close to

(ro; o), the dynamics will be well described by thisdependent manifold. The cen-

ter manifold is the nonlinear extension of the eigenspace associated with neutral modes.
The expansion dii (r) in a series of , gives then an expression of the dynanics

at every order. The saturation scaling also gives

2

r{ I Oand < O

bay ’
as in the exact asymptotic solution. So, we have successfully reduced the dimensionality
from 2 to 1.

— If =0, Eq.(IV.11) is no longer the center manifold and thus has no reason to describe
well the dynamics. Actually, in this case, the center manifold is of dimension 2 at criti-
cality. So, no further reduction is possible now! The system dimension is still 2 and the
scaling is not clear.
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1.3 Unstable manifold approach

The unstable manifold is based on the idea that only unstable niRmles 0 are important.
It does not consider eventual slow modes (e.g.0 or modes close to the imaginary axis). Of
course these slow modes can be important to describe the full dynamics, hence leaving them
aside could lead to an incomplete or wrong reduction. In our example the linear operator has a
positive eigenvalue and the mode,

r 0 r a;zr + aprs
— = + : (IV.12)
z 0 z bir? + bz?

|—L{Z—} | ,{\IZ }

In the unstable manifold picture modes different fronquickly relax and thus the remaining
"slow" dynamics is one-dimensional. The unstable manifldin Eq. (IV.6) appears then as a
one-dimensional manifold tangent to thdirection neafr; z) = (0; 0):

(r;z) 2 WY then (r;z) = (r;h(r)) (IV.13)

with h(0) = h%0) = 0 (deduced by symmetry ! r). We can build as previously the
unstable manifold for 6 0 and then takes ! 0. Inthe < 0 case similar mathematical
results as for the center manifold hold, while for= 0 there is no result insuring that this
manifold is attractive and thus that it describes well the dynamics close to it.

Let's construct it! Fronz = h{r)r_and Eq. (IV.6b) we get

hqr) r + ah(r)r+ axr® = h(r)+ br?+ bh(r)% (IV.14)

The following expansion holds for regular m&psvhich is assumed to be true near the origin)

X0 .
ha(r) = ird; (IV.15)
j 1
with 8
2 -
P .

s 20 1) .1t LB Zay) | . , (IV.16)
. n— on n .

The one-dimensional equation is then

— 3 5 7 .
r=r +(|a1 +a2?r +|{z§ r~+0 r’ : (IV.17)

C3 Cs
So, at leading order

( 2)
rs ab+ Ay ) (IV.18)

2

r{ I Owith < O (IV.19)

biay

which is the same scaling as the exact asymptotic solution.

3. The even symmetry can be demonstrate usingthhe r transformation or by computing every odd
coef cients ofh(r) and nding zero.
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(@) = 0:35. The double arrows show that the dyp) = 0:01 = . The unstable manifold is no
namics is quickly attracted on the unstable manifoldldbger attractive and does not describe completely the
follows a slow one-dimensional dynamics on this mafu dynamics.

fold.

(c) = 0. The unstable manifold is no longer attractive and
does not describe completely the full dynamics.

Figure IV.1 — Phase spa¢e z), for =00, a =1,a = 1, b =0:1, b =0:1with
(r(0);z(0)) = (10 ®:10 ®). The full line is the exact trajectory computed through the full
dynamics Eq. (3). Dashed lines are the unstable manifg{d) computed at order® r?" .
The points represent the equilibrium.

— For = 0, the unstable manifold still exists and we can look at the limlt 0O as it
should tend toward the previous two-dimensional center manifold. It gives

2 2 2.
r{ — 5
hay
which is different from the exact asymptotic solution, but still possesses the same scaling

and sign. A rst observation is that higher orders are not negligible. Indeed wked,
at the saturation level i, / , furthermore ,/ 1= 2" ! so

I Owith =0 (IV.20)

O(ri1)=0 cr} =0 or} =0 cpur?™ =0 2?2 (1IV.21)

which prevents in principle any truncation!
A crucial remark is that this unstable manifold expansion with neutral modes induces diverg-
ing coef cients. Which does not appear in classical dynamical equations (here witl0).
Nevertheless, the rst nonlinear coef cient is enough to obtain the right scaling. To appreciate
those assertions, we plot on Figure V.1 the phase space trajectory for one initial condition and
compare it with the result given by the unstable manifold. We compute the unstable manifold
h,(r) at various order® r?" to see its convergence towards the full dynamics.
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— Forj = 035 = 0:01, we are in a regime where the unstable manifold should
describe well the dynamics. Indeed, in Figure 1V.1(a), we clearly see that the end points
are almost the same even at the quadratic ordk(rin We can verify numerically that
other initial condition close to the origifr; zy) are also attracted by the manifdidr).

— Forj = 0.0} = 0:01Figure IV.1(b) and = 0 Figure IV.1(c), the timescales
associated with the andz direction are not dissociable anymore and we don't expect
the unstable manifold to be attractive. We see that the effects of the neutral mode are
to fold the dynamics and to saturate the end pointat a lower level (thus nonlinear
effects are stronger). This folding behavior can't be captured by the unstable manifold
expansion Eq. (IV.15) which is a function (thus can't have two images). Furthermore, a
one-dimensional dynamics can't fold and oscillate. However it is interesting to see that
the unstable manifoldh,(r) converges witm "as closely as possible" to the "branch
point singularities”. This phenomenon is the translation of the in nite series Eq. (IV.21).

1.4 Conclusion

This simple example highlighted the effect of a neutral mode coupled with an unstable mode
on the bifurcation analysis resulting in

— Nonlinear effects are much stronger with a neutral mode.

— The center manifold expansion works wher 0 but for = 0 the dimensional re-
duction is limited by the number of neutral modes. Hence it is legitimate to think that in
general with a continuous spectrum it will not be of any help.

— The unstable manifold expansion predicts the correct scaling but does not describe the
effective dynamics e.g. a spiral behavior. Furthermore, no mathematical theorem insures
us that it is attractive with respect the dynamics close to the origin.

— The unstable manifold expansion is plagued with a diverging coef cient. At the satura-
tion level, every orde© Con+1 12"t contributes the same.

— It reduces the dimension of the problem.

For a system with a continuous neutral spectrum one expect those effects to be stronger!
We will see that it is the case for Vlasov systems but that for the standard Kuramoto system
despite the continuous spectrum the nonlinear saturation expansion behaves "normally" and the
unstable manifold describes well the dynamics... However, when adding for example a second
harmonic coupling, diverging coef cients,.; appear. So, there is more to understand and say
than the "continuous spectrum induces singular behatior"

This example should motivate using unstable manifold expansions for more complex prob-
lem where there is not only one neutral mode but an in nity and where exact solutions are
hopeless (and thus dimensional reduction more than needed). So, using that expansion will
possibly provide us with the right scaling for the bifurcation but one does not expect to get a
true dimensional reduction in the sense of going from an in nite-dimensional system to a 1D or
2D unstable manifold. That is to say the expansion won't capture the full dynamic but will tell
us if the bifurcation is discontinuous or continuous with its saturation scaling, which is a big
gualitative argument.

4. This will be the running mystery of my Ph.D.
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2 INFINITE -DIMENSIONAL SYSTEMS

2.1 Spectral problem

In this Section, we brie y review some functional analysis result about spectral analysis of
in nite-dimensional operators that are different from the nite-dimensional case.

The mathematical framework to study the spectrum of linear operator for partial differential
equation is more involved than the one used to study ordinary differential equation. The rst
difference is the dimension of the problem which is respectively in nite and nite. To get
an easy vision of nite/in nite dimension one can look at the initial conditions for those two
problems

— For a system oh ordinary differential equation (o.d.e.), the initial condition is a vector

belonging toR"

— For a partial differential equation, the initial condition is a function, for example we can

choose initial distribution§® such thaf °(q;p 2 L2 ; [ R)I\CY*( : [ R).
In this work we choosgto use only this following functional spad = L% ; [ R)\
Cl( : [ R). Itcorresponds to continuous quadratically integrable functions with regular
derivatives. The patrtial differential equations will be decomposed in a lineand nonlinear
N operator. These operators will act on the function space e.qg.

L :B!B : (IvV.22)
An operatoi. is bounded (continuous) if
8u2B;kL uk Mu;

for some norm orL? andM > 0. In our context, we study the spectrum of an unbounded
operator. actingon & 2 B. The choice of the function spa&eis important and can change
the spectrum.

The resolvent set of an operator is

(L)Y=f 2C;(L 1 )isbijectiveandL | ) 'isboundeg;

where denotd the identity operator. For every 2 (L ) we can de ne the resolvent
operator as
R(L)=(L 1)%h (1IV.23)

The complementary sef(L ) = C= (L ) is called the spectrum af . It is not just the set
of its eigenvalues as in nite dimension, it is also composed of two other types of spectrum: the
continuous and the residual spectrum that are regrouped in essential spectrum denomination.
— The point spectrumis composed of eigenvalues de ned as

p(L)=f 2C;(L I )isnotinjectivey;
meaning that there is a non zero vectode ned onB such that
L = : (IvV.24)

Its physical interpretation as characterizing the modes of a system still holds.

5. Some of our results may extend to broader functional spaces.
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— The continuous spectrumconsists of
c(L)=f 2C;(L 1)isinjective and with a dense image but not surjecfive

One can show that the densely de ned inverse operéitor | ) ! is not bounded
(sometime this latter assertion is chosen as the de nition L )). As we will see
later when highlighting its physical role this spectrum is a key ingredient in the Vlasov
dynamics.

— The residual spectrumconsists of

r(L)=f 2C;(L I )isinjective but has nota dense image

Its physical interpretation is not clear at&lln all of the manuscript, we will forget this
type of spectrum.

2.2 Free transport example

The continuous spectrum has mixing properties. In the Vlasov context the mixing occurs
in the velocity space with oscillations at scale thinner and thinner in time. It is something
referred as lamentation of the phase space. Here following [Vil10, BMT13] we show how
the continuous spectrum of the advection operator is responsible for this phase mixing and a
damping while there is no dissipation mechanism (such as friction), it is sometime referred as
non-entropic relaxation. There are other informative examples with continuous spectra like the
Baker's transformation [RS80]. Other cases of continuous spectrum and mixing are known in
the context of uid mechanics [SW51, Mie92, PQO02].

The advection equation is

@ (q;p; ) + p@f (q;p;9) =0; (IV.25a)
L f= p@F (IV.25b)
L «fu=ikpfy; (IV.25c)

where we have rewritten its advection term as a linear operator Eqg. (IV.25b) and its spatial
Fourier transform Eq. (IV.25c). It is one of the simplest partial differential equation one can
think of, for example, we know its solutions. Thus this makes a good example to study the effect
of a continuous spectrum, indeed the advection operator spectrum is composed exclusively of a
continuous part with no "true" eigenvalue.

Trying to solve the eigenvalue problem gives for an eigenvectoyi(q:p = ()« (p)e*d

( +ikp)( )(p) =0:

ForRe 6 O, this equation has no solutions except the null vector,gd ) is empty over
C=iR. What abouRe = 07 Since the operator

a(p)
+ ikp

Lk 1) 'op=

6. One reason could be that in quantum mechanics where spectral theory of in nite-dimensional operative
appeared rstin physics, operators are often self-adjoint and one can show that this type of operator has an empty
residual spectrum.
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is clearly unbounded for 2 iR, by de nition is in the continuous spectrum,2 (L ).
To every on the imaginary axis is associated a generalized eigenvectors

( k@p= ( +ikp)e:

We talk about generalized eigenvectors because they are not de ned in the space of 8lution
but can be de ned in a larger functional space that includes distributions like the Dirac Delta
function. The conclusion is thus that there is a continuous spectrum on the whole imaginary
axis for the advection operatar

In addition, the exact solution of the equation is known as

X I
f(apd=fila ptp=  (F)(pe ek (IV.26)
k

wheref (q;p;0) = fi(g;p. To highlight the role of the continuous spectrum generalized
eigenspace we can write
Z Z

fi = (F(PE P = (f1)(p) ( +ikp)* td =(fk)  ( (a;pe' d;

Re =0 Re =0
(Iv.27)
where we used the Fourier representation of the exponential.
Another way to treat this problem and see the damping due to phase mixing is go to the
Fourier transform in both spacg k and velocityp! . It gives

FT@nlf1(k; 1) = FT @plfil(k; + kt);

where we used the de nition of the Fourier transform and indexes change to get this expression.
The Riemann-Lebesgue lemma says that the more a function is regular the more its Fourier
transform decays quickly. For analytic functiongithe decay is exponential in so

8
2 cst fork =0; xed

FT@aplfilk; +kt)=0 € "0 = _ 0 e 9 fork60; xed (IV.28)
" cst for = kt

wherec is a constant. It means the zeroth spatial modes is unchanged. Allkoéh8rmodes
are damped exponentially fast. The answer to the question where dges the initial energy go

or why is entropy conservédgiven the last term of Eq. (IV.28): the energyp?f dp is trans-

ported in time to higher and higher velocity modes kt (cascade from low to high velocity
modes). This is the mixing ( lamentation) phenomena: at some point the phase space distribu-
tion seems completely homogeneous and the high frequency oscillations in the velocity space
become "invisible®. Mathematically,

Z
faip;) Y (= fi(a;pda; (IV.29)

th

7. Ifthe velocity variable was con ned on a subseRfthe spectrum df ¢ would not Il the whole imaginary
axis.

8. Itis preserved since it is just advection.

9. In practice even a very small dissipation process (physical or numerical) provides a cut off for those high
velocity modes as we will see later in the Vlasov-Fokker-Planck Chapter VII.
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meaning the initial distribution will relax to a spatially homogeneous distributiofp). Here

the weak convergence (as opposite to strong convergence) means that to make sense the dis-
tribution has to be integrated against some test function. The physical meaning becomes clear
with this example, the function converges in time for ever§ 0 and , but not for = kt.

So, the mixing phenomena only can produce damping/relaxation, therefore even though the
equation is reversible, the observables (integrated quantities over the velocity) act as if there
were dissipation. For example, the space density

FTgplfil(k;kt)=  fi(q ptp)dp
converges strongly to its end state. Since= O there are no oscillations in velocity space

anymore, just the damping, so this velocity integration produces a loss of information over the
localization of energy.

2.3 Nonlinear analysis for bifurcation

The analysis of linear in nite-dimensional systems relied mainly on their spectrum. We talk
about bifurcation when a system goes from spectrally stable (or neutrally stable) to spectrally
unstable. In this case, we need to consider the effects of nonlinear terms. To study the nonlin-
ear problem there exists several different methods, like the center manifold [Van89, VI92], the
Lyapunov-Schmidt reduction, multiple scale analysis... In nite-dimensional cases or in some
in nite-dimensional cases these techniques work ne and provide an accurate reduced descrip-
tion of the full dynamics close to the bifurcation. However in presence of a continuous spectrum
these methods are not trivially transposable since the slow manifold (part of the spectrum close
to or on the imaginary axis) is of in nite-dimension. In these cases, to the author knowledge
there are not many examples where a rigorous bifurcation analysis was performed. For the stan-
dard Kuramoto model (that we will examine in Chapter VIII) the rst rigorous mathematical
treatment was made by H. Chiba [Chil13, CN11]in a quite technical paper. One of his key idea
is to use larger function space where the continuous spectrum is no longer on the imaginary
axis. Another demonstration more generic and closer to the work of C. Mouhot and V. Villani
also using larger function space was provided by H. Dietert [Diel6b]. We will come back on
those results in Section VIII.4.

However, this standard Kuramoto case may be very unique (because of its nonlinear struc-
ture) so that for other systems (e.g. the Vlasov equation) this idea of larger function space might
not be enough to deal with the bifurcation analysis. Moreover, in addition to the continuous
spectrum dif culty, a wave/particles resonance occurs for Vlasov systems making for example
the multiple time scale analysis fails (see discussion in [CH89]).

Hence we will not try to generalize the previously cited, well-established methods to our
cases but we will rather sticR to one ef cient but incomplete method: the unstable manifold
technique. It has the advantage to be formally doable even with a continuous spectrum and
resonances (that appear as singularities). This method has so far always proven to give qualita-
tively correct informations (scaling and bifurcation nature). However, as in the nite example
case with a neutral mode = 0 (see Figure 1V.1(c)) it will not a priori provide the complete
dynamics (like oscillations of the order parameter).

In next Chapters we will use the same procedure to deal with the each different case i.e. treat
the linear analysis and construct the unstable manifold. However note that each case has its

10. With one exception where the center manifold is doable (see Section VI.9).
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own dif culties and solving the eigenvalue/eigenvector problem as well as building the unstable
manifold will require different techniques almost every time.

3 PHYSICAL MOTIVATIONS

At the beginning of the 20century the Boltzmann equation was the standard equation used
to describe the evolution of particle systems in position-velocity phase space. In 1938 A. Vlasov
showed" that the Boltzmann equation was not suited to describe plasma and that due to the
presence of long-range forces the collisions term should be removed and replaced by a self-
consistent term acting as a mean eld potential for every particle. The resulting kinetic equa-
tion was then studied by Landau [Lan46]. He showed by formal calculus that plasma excitations
should be damped (if some stability criterion was satis ed) even though there are no dissipation
terms in the equation (energy and entropy are conserved in time). The Landau damping is non
intuitive since it is based on the previously seen phase mixing and Landau's demonstration used
mathematical tools such as the analytic continuation, obscuring the physical result. Realness
of Landau damping has since then been established numerically [CK76, Man97, ZGS01] (I up-
loaded an example on my website and experimentally [CP70, MW64]. Quite recently his
result was completed by C. Villani and C. Mouhot [MV11], they showed that Landau damping
can also occur when keeping nonlinear terms of the equation, with some mathematical maxi-
mum bound for the perturbation. | recommend the lecture notes of C. Villani [Vil10] on this
topic compiling a lot of mathematical and physical knowledge on the Vlasov equation. For a
discussion on the Landau damping in the Vlasov-gravity case see [Kan98].

Plasma stability was therefore understood, but it has been observed that some cold homo-
geneous plasma with a bump in their velocity distribution could become unstable and form
some small non homogeneous structures resulting in a non zero electri , éhds is called
the bump-on-tail instability. Various plasma instabilities were discovered such as two stream
instabilities. The initial instability is caused by the resonant interaction between uctuation
(perturbation) of the initial zero electric eld and particles with the same phase velocity. Then
at the nonlinear level particles are trapped by the wave created by the now nonzero electric eld.
Mathematically to understand this process, we consider rst the linear instability and the asso-
ciated exponential growth and then the nonlinear saturating effects. This analysis could provide
the nal electric eld amplitudeE; after a perturbation with respect to some small instability

parametef o). At this point two contradictory results emerged in the literature: one predi-
catinge,; / | o) (called Hopf scaling) [SR76, JR81, BMWZ85, Den85] while the other
nding a much smaller amplitud&, /| ¢ (called trapping scaling) [OWM71, Dew73].

In the Hopf scaling group for example, Simon and Rosenbluth [SR76] lead a multiple scale ex-
pansion producing some singular terms that were regularized with ad hoc prescriptions. In the
other group the trapping scaling was found with some adiabatic approximation or introduced as
an ansatz. Careful numerical simulations [Den85, SRS88] and even experiments [TDM87] con-

11. Although he was not the rst one to write it, he correctly recognized that for long-range interaction as
mentioned in [PCMM15] the Boltzmann interaction term was inadequate [VIaB& System of charged particles
the kinetic equation method which considers only binary interactions — interactions through collisions — is an
approximation which is strictly speaking inadequate, so that in the theory of such systems an essential role must
be played by the interaction forces, particularly at large distances and, hence, a system of charged particles is, in
essence, not a gas but a distinctive system coupled by long-range 'forces.

12. http://math.unice.fr/~metivier/video.html
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rmed that the correct scaling was the "trapping scaling”. J.D. Crawford tried a heavy approach
without any approximation on the characteristic time of the nonlineagjty he developed a
theory considering all the eigenvalues and continuous spectrum [CH89], deriving an in nite
system of coupled o.d.e. for the amplitude evolution of each mode. Nevertheless, this heavy
computation was useless to predict anything. In 1994 he published a paper [Cra94a] where
he only considered the unstable mode and the unstable manifold reducing drastically the di-
mension of the problem. Despite the singularities present in his analysis (like in IV.1) he was
able to predict a bifurcation with a scaling consistent with numerics and experiments. His re-
sult is very powerful because the method is very generic (as we shall use it for the rest of the
manuscript). More recent works by D. del-Castillo-Negrete [dCN98b, dCN98a] later general-
ized in [BMT13], also con rmed this result by this time nding an in nite dimensional normal
form*3 for this bifurcation (in the spirit of T.M. O'Neil, J.H. Malmberg and J.H. Winfrey) called

the Single-Wave-Model (SWM). Actually, this SWM proved to describe a lot more systems than
bifurcation around homogeneous Vlasov states since it also accounts for bifurcation of a large
class of Hamiltonian systems such as Shear ow and the XY model.

In Chapter IV we review in detail the classic results on Landau damping and on the unstable
manifold used by J.D. Crawford. Since all other Chapters will be based on this method we will
explain the computation in full details.

A natural sequel to this well-known case is to consider bifurcation around steady non ho-
mogeneous states withy 6 0. To illustrate this we will switch from plasma to astrophysical
systems (the formalism is the same) where these non homogeneous situations are more frequent.
Consider the self-gravitating system evoked in the introduction with a steady radial distribution
of stars, how will it bifurcate? Does Landau damping still exist? Is an unstable manifold expan-
sion or SWM still possible? How does the resonance phenomena survive? In Chapter VI we
brie y review the formalism and results used for non homogeneous Landau damping obtained
by J. Barré, A. Olivetti and Y.Y. Yamaguchi. Then we present our study of the unstable manifold
for the bifurcation around inhomogeneous states obtained in collaboration with J. Barré and Y.Y.
Yamaguchi. This work was published in [BMY16] and holds for generic potentials. A poten-
tial astrophysical application will be considered. As we will show the effect of wave/particles
resonances is weaker, nevertheless we can still talk about Landau damping (with certain mod-
i cations) and trapping scalinge;,  Eg /] ¢j>. However, this time it is not because
of a "resonant trapping” thus a SWM is not expected... Moreover we present recent results
(not published yet) where a three-dimensional reduction of the bifurcation is achieved without
any singularities in the coef cients (contrary to the unstable manifold) as well as a convincing
agreement with simulations. This reduced systems known as the Triple Zero bifurcation could
be very generic for degenerafeHamiltonian systems (with weak resonances).

In Part One we used the Vlasov-Fokker-Planck equation to describe atom evolution in an
optical molasses with Coulomb like interaction. From a theoretical point of view, how the
in nite-dimensional properties (continuous spectrum, Landau damping, Casimir invariant, etc.)
of the Vlasov equation are modi ed in the presence of small friction? In Chapter VII we answer
these questions and give the different regimes of bifurcation with respect to friction. For small
friction, the solution will behave as the pure Vlasov equation with trapping scaling while for
large friction we will get a more standard Hopf scaling. This question is very important since in
a sense it allows the linking of the different approaches mentioned above (predicting different
scaling) and the understanding the role of friction in the nonlinear terms.

13. A normal form can be seen as the simplest way to describe a given bifurcation highlighting its essential
features.
14. Degenerate in the sense of the Poisson brackets [MH13, HM13]
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CHAPTER V

VLASOV SYSTEMS AROUND
HOMOGENEOUS EQUILIBRIUM

In this Chapter, we retrace known results obtained mainly by L.D. Landau and J.D. Craw-
ford on the bifurcation around homogeneous states of the Vlasov equation. Historically in the
early 20" century the Vlasov equation was used to describe the physics of plasmas where the
interaction potential is the Coulomb oNeyyiomp () = Csz3rj or astrophysical systems using
Newton interactions. In this Part, we restrict to the one dimensional Vlasov equation referred
with the abbreviation 1D (one spatial dimension + one velocity dimension). A lot of essential
features survive in 2D or 3D systems such as Landau damping while 1D has the advantage of
keeping the analysis rather simple. Despite this, in in 3D new types of bifurcation might appear
but the essential physical mechanism of the 1D case should remain.

A way to generalize the Coulomb/Newton potential in other dimensions is to use the Poisson
equation it satis es as a de nition, for attractive systems this gives

Vap(r) = Gsgrj; (V.1a)
Van(G; ) = G log(icg + ofj); (V.1b)
Vip(Q) = Gijq: (V.1c)

To avoid heavy generic computations, we will restrict in this manuscript to a particular interac-
tion potential between patrticles, the so-called Hamiltonian Mean Field potential [AR95]. Itis
de ned through the rst mode of the Fourier series of the 1D potential

. X cos
Vip(Q) = Gijgj = 2G; kg(q); (V.2)
k=1
S0
Vimre () = cosq: (V.3)
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In fact, it is also the potential term of a pendulum and because of its simplicity we will carry out
a lot of explicit computations. Here this choice is only motivated by simplifying the formalism.
Moreover, this choice allows direct comparison with numerics (we only use a Vlasov-HMF
solver) and an easy physical picture. Another motivation is that this potential is also used in
the Kuramoto model studied later in Chapters VIII, 1X, X so the comparison between the two
models will be easier. Lastly, although it was originally used to study toy models some physical
systems display HMF interactions [SJM15]. Nevertheless, the following bifurcation problems
were also solved for more generic potential with the same results, see [Cra95a, BMY16].
Throughout this Section, we will keep track of what is generic and what is not.

In order to apply the unstable manifold techniques for kinetic equations with a continuous
spectrum (after the nite dimensional example of Section IV.1) in different cases, it will be
useful to redo Crawford's original calculations [Cra94a, Cra95a] for what will be considered as
the "standard-case" of this thesis.

1 [INITIAL PROBLEM

For the HMF interaction potential the microscopic equations for particles on a 1B, ring
(9;Pp2] ; ] Rareforthet particles

4= p; (V.4a)
1 X
P = N sin(q g); (V.4b)

i8]

where we set the particles masg, = 1. The associated Vlasov-HMF equation giving the
evolution of the density (q; p; 9 is

L@+ p@F @ FIGF =0 ] (v52)
1 1
[F1(a) = . Viwve (@ d)F (o p% 1) dgtip®= Ve 2 . F dp (V.5b)
Z
' Fdgdp=1 (V.5¢)

1

where?, is the convolution in space (this formulation makes easy the Fourier transform).
From now on we will omit the integration bounds. For the HMF potential the mean eld poten-
tial [F] becomes

[FI(@ = M[F](t)cosq I\%Fl(t)sinw j Mjcos@ " wm) (V.5d)
M[F]= MJF]+ iM[F] = F e dodp; (V.5€e)

whereM is in general referred as the magnetization of the systen gnthe phase of the
potential (de ned as the phase of the magnetization). Eq. (V.5a) describes the time evolution of
the densityF (q; p; §) in the phase spade; p; Eq. (V.5b) de nes the self-consistent mean eld
potential [F](q) (for real systems it is a relevant macroscopic observable like the electric eld

1. Since the potential is periodic it is a natural choice to have periodic boundary conditions.
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of a plasma); Eq. (V.5e) de nes the HMF order parameter called magnetization and Eq. (V.5c)
is the normalization condition, true for all tinte ForM = 0 the system is unmagnetized
(spatially homogeneous), fpk j = 1 the particles distribution is a delta Dirac function (fully
magnetized). Without loss of generality we choose in the followipg= 0 so that the energy
minimum is situated i = 0. In this Section the initial magnetizatiovi (t =0) = My =0 is
zero which means that the system is spatially homogeneous (unmagnetized).

The basic question we ask here is what is the fate of a perturbation around a homoge-
neous stationary state Ve decompose the solution as

F(a;p;9=fO®)+ f(a;p;0;

where we have the following normalization conditions
7 ZZ
fOdgdp=1; f dgdp=0:

To perform the unstable manifold analysis we rewrite the problem in terms of a lineamnd
nonlinearN operator

@ =L f+N[f] (V.6a)
L f= p@& +@ If1(f)Yp (V.6b)
N f =@ [f]@f: (V.6¢)

2 SPECTRUM OF THE HOMOGENEOUS VLASOV OPERATOR

The latter term of Eq. (V.6b) is a compact perturbation of the advection operator Eq. (1V.25b)
(because it is of rank two) so it doesn't change the essential spectrum [Kat95] that is the con-
tinuous spectrum. Therefore, the mixing phenomenon studied in Section 1V.2.2 is expected to
remain, the difference is that now there might be some eigenvalues where for the advection the
spectrum was only composed of the continuous one. A complete analysis of the spectrum of
Eq. (V.6b) is given in [Deg86].

2.1 Eigenvalue problem

Let's look at the spectral problem for an eigenvaluassociated with an eigenvectok.
From the linear Vlasov operator Eq. (V.6b) we get in the Fourier space
Z
L wf= ikpfx+2 ik (Vawe )k fdv  (F2)%p) (V.7)

where(Vuwe )k = (1x+  1x)=2.
Fork = O it is direct to see that ¢ = 0 so = 0 is an eigenvalue and any function
n = (p) 6 0 is an associated eigenvector. So, there is always an 0 mode with an eigenspace
of in nite-dimension. It is related to the in nite number of possible stationary states. Without
spatial structure the mean eld force is zero. As we shall see later, adding dissipation breaks
this structure.
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Fork 6 0 wetake « = (p)e*9, we nd

Z
( +ikp) k= ik )+ 1) «dp (V.8)
It gives forRe 60
= 0, (V)
where have chosen the normalization
’ kdp=1: (V.10)

The normalization condition gives us the dispersion relationg ) whose roots are the eigen-
values Z

(f °)Xp)
+ ikp

k()=1+ ik dp; (V.11)
fork = 1. For generic potential, ea¢h6 O has its dispersion relation but it just changes the
prefactor in front of the integral. It is easy to observe by taking the complex conjugate))
thatif is an eigenvalue for, sois for . Similarly, if is an eigenvalue for y so is

for . Italready gives precious information which is that if there is one stable eigenvalue
there is also one unstable. Therefore, a marginally stable equilibrium requires that there are no
solutions to Eq. (V.11), which says that only the continuous spectrum relaxes the system with
no additional damping of a negative eigenvalue. The stability criterion is obtained by taking the

limit , =Re ! 0", one has to be careful performing this limit and use the Plemej formula
z
im pg(—pi)dp= PV L;’)dm ig (0): (V.12)

This formula is counter intuitive since it gives a nite imaginary part to the limit while one could
have expected that it should go to zero. In fact, this formula can be obtained by deforming the
integration path in the complex plane as in Figure V.4(a) to avoid the singularitie$ a$®.

Thus, we get the following stability criteria

£ (%)

0] — oy =
=@ +ip=1+ PV

dp+i (FOY =k : (V.13)

Forl [f°] > 0, f°is spectrally stable [Ogal3] meaning that there is no eigenvalues (neither
positive nor negative). At criticality, botRe(V.13) = Im( V.13) = 0 which implies that
(f9Y i=k) = 0. Hence for an initial Gaussian distribution = 0 and the eigenvalue is

real. For a Coulomb repulsive potential one can obtain a similar criterion, the difference being
that due to the change of sign in front of the integral Gaussian distribution are always stable.
Unstable distributions have bump(s) on their tail(s) and are associated with a complex pair of
eigenvalues.

Remark V.1
Unless speci ed we will always assume that the eigenvalués pfire simple 2( ) 6 0 in all
the manuscript. However there might be some confusion here indeed the full dispersion relation

2. This denomination is abusive since the dispersion relation is strictly de ned by the relatjoh= 0.
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of L isgivenby( )= 41() 1( ), soareal eigenvalue will be of multiplicity two for the
full operatorL ,
= 0 + 0 =0
1= 20 I—i%—? |_§%_g ()

but simple with respect tb  and the dispersion relatior{( ) 6 0. However, in [CH89] with
spectral deformation technique is shown that at criticalit iR is simple.

2.2 Continuous spectrum

Now that we know the eigenvalues we want to characterize the continuous spectrum over
the imaginary axis, see Figure V.1, nding its associated generalized eigenvectors. Looking for
W(a:p = «(p)e*¥ associated with 2 iR gives
Z

( +ikp) k= ik O+ ) «dp (V.14)
Dividing by (  + ikp) gives a singular contribution (in the distribution sense) [VK55, Cas59],

(f)p)
+ ikp

k(p)= ik PV + ( +ikp)A(); (V.15)
for some functiorAx( ) andk = 1 where we have imposed
z
K dp =1

These are the van Kampen modes are all excited during phase mixing [Bra98, BMT13]. The
normalization condition gives

£ (19%p)
+ ikp

A( 2iR)=1+ ik PV dv: (V.16)

3 ADJOINT PROBLEM

In linear algebra, the notion of scalar product with projection and basis is crucial. It al-
lows for example to decompose a vector in the basis formed by eigenfunctions. What about
in nite-dimensional systems with a continuous spectrum? Does such decomposition still hold?
In [Cas59], K.M. Case shows the completeness of the basis formed by the eigenvector and gen-
eralized eigenvector. We rst need to de ne a scalar product and what is called a dual (adjoint)
space of functions upon which to project (as the bra and ket in quantum mechanics or line and
column vector in nite-dimensional systems).
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Figure V.1 — Spectrum of the linear homogeneous Vlasov operator with one continuous spec-
trum on the imaginary axis. Here we show an unstable case with two eigenvalueseal (in
a stable case these two would disappear but not the continuous spectrum).

3.1 Adjoint operator construction

We denoteB the dual functional space of our spagdwhich is different in general). We
de ne the "scalar product” over the two spaceffo2 B andg2 B as

Z
(g;f)= hg;fi dg (V.17a)

where 7
hg;fi= gf dp: (V.17b)

The dual (adjoint) operatdr ¥ is then de ned by the relation
(g;L f)= L Yg;f : (V.18)

Similarly, to what has been done previously, we can look for the eigenvalues and eigenvectors
for this operator. Let's make explicit the derivationlof’,

7 7 7

(giL )= g p@F dodp g (a; Pf °(p) @cos@  )f (o p) dgtip® dadp
77

p@ + [g ()Y fdogdp= L Vg;f
(V.19)

where we have use integration by part in the rst member and integral exchange in the second
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one to write the second line. So

LYg=p@+ [@uf°)] (V.20a)
L o = ikpge + [@g(f*)%: (V.20D)

3.2 Eigenvalue problem

We denote by a tilde the adjoint eigenvectors (not to be mistaken withftrehe complex
conjugate). We have to solve
LY ek = ek (V21)

which gives for€, = “(p)e*9=(2 ) andRe 60

1 1
“k(p) = — (V.22)
“ (20 ikv
where we have chosen the normalization factor so that
D E
€ x = T ok =1 (V.23)

Indeed, the derivative with respect taf the relation dispersion?( ) appears naturally in the
normalization, one can check that

P_E_ ik f @ 20 o

; = . dp=

TR0 (ke )
Remark V.2 D E
This "functional” link between scalar product of an eigenvector with its adjoinit ¢ ( )

and the rst derivative of the dispersion relatiof§( ) is something apparently very generic,
similar relations were found for every linear problem treated in this manuscript and eventually
"proven” for very generic linear operator in a quite surprising way (see Chapter X). | am not
aware of similar results, such result can for example predict directly the right normalization
choice.

It can be proven that the eigenvalues associated®vihtisfy the dispersion relation Eq. (V.11)
thus the point spectrum &f ¥ is the same thah .
[Cas59, CH89, HC89]

4 LINEAR LANDAU DAMPING

The Landau damping (sometime called resonant relaxation in the astrophysics community or
non-entropic relaxation) of stable equilibrium is a phenomenon directly linked with the phase
mixing seen previously, 1V.2.2. The standard historical way to derive it is to study the linear
initial value problem, solve the problem with the Laplace transform in time and then get back
to the real problem with the inverse Laplace transform. At this point to evaluate the integral
one has to deform the integration contour and the damping is given by the roots of the analytics
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continuation of the dispersion relation, these are calstdnances The term resonance here
has not the usual physical sense (of two components with the same frequency), here it really
just denotes a root of the analytical continuation of the dispersion relation.

There exists simpler and stronger ways to show Landau damping via Volterra equation, see
the well explained thesis of H. Dietert [Diel6a], here we focus on the Landau approach to
highlight among other things the analytical continuation method for the dispersion relation that
will serve us in Section VI11.2.3.

To observe the Landau damping as L.D. Landau found it, we solve the initial value problem
consideringF (x;v; 0) = fo(v) + f (x;v:0) = f°(v) + f'(x;v). We set ourselves in the stable
case so( ) does not have any roots. The Laplace transform is de ned by

1
1) = f(t)e ' dt (V.25)
0
whereRe! > O for the integral to be well de ned. The inverse Laplace transform is de ned
through 7

1 +il + ¢
f(t)= — (1 )et dl (V.26)
21 il+ o
where ( 2 Ris large enough to be at the right of every singularity ¢f).
Inserting the Laplace transform directly in

@=L «fx (V.27)
givesfork = 1
Z

(! +ikp)f'= ik (FO)Ap)  fk(p%!)dp’+ (f)(p) (V.28)

sinceRe! > 0we can safely divide. We get eventually

Z Z :
_ _ 1 (") _

D)= d’= 5 g o (,) L) (V.29)

where again the division by ! ) is safe since we have assumed to be in the stable case. Now
we want to get back to the real timhe! t, taking the inverse Laplace transform gives

Z+l1+ o
o=, e

When ending up with such integral one wants to use complex analysis results to deform the
integration contour toward the left part of the complex plane (soeh#t goes to zero with

Re! I 1 ) and just look for the pole contribution. That was the strategy of Landau when

facing this integral. We assume that the initial conditipms regular enough to be analytically

continued in the left part of the plane then sb j(with Plemej formula). Moreover, we assume

that the continuation of' has no pole in the left plane. Now what aboft )? We know it

Is not continuous from the right plane to the left, but we can construct an analytic continuation
(! ) analytic on the all complex plane as follow

(V.30)

() Re > 0
Z1 (fo)o(p) . _
()= §1+k P\i O dp+i 2(f9%i ); Re =0 (V.31)
“1+k (:) )O(p) dp+2i 2(f9%i ); Re < O
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This is continuous by construction see Eq. (V.13). Another method is to write
YA 1
1 e (*P: Re > 0
+1p 0 ,
so, that zZ,2,
()=1+ e (*P(EYp)dp; 8 2C: (V.32)
1 0

This new function can have rootg on the left plane, they are calledsonancegqbut they do
not have the traditional physical sense of resonance, see Section V.6).

Figure V.2 — Deformation of the contour of integration, ! in the left plane avoiding the
resonanced. 4, has is the resonances with the largest real part.

We know that deforming the integral contour does not change the result of the integral, so
we have 7 .. . ,
[f1(t) = O ( )e!t d' = lim ik )e!t d! (V.33)
B T O LD I ¢ |
where | is the deformed contour as in Figure V.2, that avoid the poldsdf ) produced by
the root of (! ). According to the residue theorem we have

X . |
k[f](t)z% Rg(! )e et 't el Retamity g (V.34)

d

whereRy are the residues ande! 4, < 0 is the resonance with the largest real part that

will dominate for large times the damping. This is the Landau damping, the perturbation is
damped in time with no dissipation mechanism. Note that once again as in IV.2.2 the full
distributionf (q; p; ) will be highly oscillating and will only converge to zero in a weak sense.

In fact, we could have looked as in Section IV.2.2 at the velocity Fourier transform and get
similar result, with the advantage of keeping the information over velocity (here we just look
at the integrated density). That is the direction taken in [MV11] to prove nonlinear Landau
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damping, that we have no time to develop here. Another method would have been to decompose
a function over the basis formed by the generalized eigenvectors observe the linear Landau
damping, see [VK55, Cas59].

The classical physical picture for this damping is that the perturbing walfde*? + c:c:
which has a frequency; = Im !4, , loses energy to the resonant partickes !;. On
my personal websiteone can nd a Vlasov-HMF simulation of Landau damping, see "Lan-
dau_Damping.mp4". The lamentation of the velocity space is clearly visible thanks to the
good resolution.

S5 NONLINEAR EXPANSION

Now that we have reviewed the case where a homogeneous state is stable and small pertur-
bation are damped thanks to Landau damping, we will review the case treated by J.D. Craw-
ford [Cra94b, Cra95a] for unstable steady states. Close to the onset of the bifurcation we sup-
pose that only one eigenvalue(or a pair of complex conjugate ) emerges in the right
complex plane from the continuous spectrum. That will be our unstable mode. As we have seen
also appears a negative eigenvalue

— In the astrophysical context, instabilities can develop when a distribution of stars have a

kinetic energy too weak to support the pressure applied by the potential energy. In terms
of distribution for example,

the system goes unstable when the paramefezlated to the inverse of the temperature)
is varied over a certain valug. In astrophysics, this type of instability leads to a collapse
and it is known as the Jeans instability.

— In plasma physics as already mentioned, an unstable distribution could be for example as

e p?=2 e (p po)2=2

t%p) = (2 )32 + (2 )32’

leading to the bump-on tail-instability for a certain bump size . and frequency.

The idea is the same as in the example 1V.1, we want to construct the unstable manifold
associated with the unstable eigenvaluéor ; ) close to the bifurcatioirre ! 0. We
hope to get a dimensional reduction from in nite to one or two, which would simplify a lot the
description of the bifurcation. But as we have seen in the example due the continuum of neutral
modes, the constructed manifold will a priori not be attractive and will not describe for example
oscillating behavior. Nevertheless, we hope to get precious qualitative information such as the
sub/super-critical nature of the bifurcation and in the latter case the scaling of saturation.

Remark V.3

In the Fourier space, the unstable modes will be associatedkwith 1, for more generic
potential, we should also consider other modes but in practice the knede 1 are always

the rst to be unstable so othér modes are not associated with eigenvalues just continuous
spectrum.

From now on the subscritto ; &, etc. will be dropped (as itik = 1 and there are
not ambiguities).

3. http://math.unice.fr/~metivier/video.html
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5.1 Symmetries

Before starting building the unstable manifold it is worth looking at the symmetries of the
system. Let's de ne the rotatioB8 2 SO(2): (g;p! (g+ ;p)andreexionSg 2 O(2) :
(;p! ( q; p) symmetries. If % is even (re exion symmetry) then the eigenvalués real
Eq. (V.13) associated with a eigenspace of dimension tw8g = . Conversely iff ° is
not even the re exion symmetry is broken, there are two complex eigenvaluwes  + i
and associated respectively withand . Therefore, in both cases the unstable space is of
dimension two.

Remark V.4

An unstable space of dimension four is possible if re exion symmetry still holds and eigen-
values ; are complex (as in the plasma case with the two-stream instability) associated
respectively with ;Sg  and ;Sg . We will not study this case in this thesis.

Remark V.5

In [CH89, HC89] authors studied the spectral properties of the Vlasov linear operator. They
highlight another difference between the in nite and nite-dimension system that we will ex-
plain. Let consider an unstable plasma composed of two pair of complex conjugate eigenvalues
(one pair withRe = | > Othe other one witliRe = r < 0). Their real part grows with

the instability parameter > 0.

— In nite-dimensional system at criticality = ., both "negative” ;, ! 0 and "posi-
tive" ! 0" join on the real axis. Thus both, =0+ i ; and ., =0 i ;are
associated with a eigenspace of dimension two [VDMvdM85, CMM90]. Therefore, we
shall have & 2 dimensional description of the bifurcation with a two dimensional
center manifold for example; a one dimensional description would lead to singular coef-
cient in the bifurcation expansion, as in the example Section IV.1. Note that in this case
the merging of "positive” and "negative" eigenvalues is translated®y i ;) =0 at

= ..

— In in nite-dimension (for the Vlasov equation) J.D. Crawford and P.D. Hislop [CH89]
showed that at criticality these eigenvalues were simple. It is related to the fact that
the dispersion relation is not analytiand (0 i i) 6 0 in general. Therefore, the
description of the bifurcation should be orfyimensional (for; ).

For real eigenvalues, the discussion and conclusion are similar.

We can decompose the perturbation closie’tim the direction along the unstable eigenspace
(for complex or not) and its orthogonal

f(apmd=AM(Cap+ At (gp+ S(;p:) (V.35)

for (€;f) = A andS such that(€;S) = 0. A plays the role of the order parameter. It is
directly proportional to the magnetizatidm (t) since

M(@t)=(€9:f)= A(9;). +O A? :
(0 =(e%f)= A(el),
=2
We can write the time evolution of Eq. (V.35) by projecting the(6nf) andl  ( ;f)
A= A+ €N [f] (v.36a)
@=L S+N S &N J[f] +c ¢ : (V.36b)

4. Technically "negative" and "positive" eigenvalues are joining the real axis on different Riemann sheet.
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Note that this system is still exact and in nite-dimensional, we have just brought out the unsta-
ble mode.

The key point is now to decompose our perturbation derfsityt on the in nite variety
induced byS but along the nite-dimensional unstable manif®d". It means that we describe
now the evolution of functions belonging to the unstable manifoRdW" where(A; A ;S) =
(A;A ;H(A;A)) as schematically represented on Figure V.3. Note that because the unstable
manifold is the nonlinear generalization of the eigenvector we have by construction at least
H=0 (A;A)?.

Figure V.3 — Schematic representation of the unstable manifdisearf = f © in the in nite-
dimensional space.

One can check that the distributibns invariant by rotation in the Vlasov equation Eg. (VI.15).
Since we want to construct the unstable manifold with a rotational invariance we impose for
f 2 WY Eq.(V.35),S f 2 WY. It implies (because of the form of / &%)

SA=Ae ¥:

Similarly, the Fourier coef cient, of H will be constrained a$ H, = Hye 9, thus

Ho = jAj?ho(p;iAj?) (V.37a)
Hi = AjAJ?ha(p;jAj); (V.37h)
He = Ahe(pijAjD); k2 (V.37¢)
H «=(Hy) ; (V.37d)

Now our goal is to construct the dominant ordetbin order to get a dynamical equation
A= A + c()jAjPA+0 jAJ*A (V.38)

with potentially a divergings( ) coef cient as in the example IV.1. Note that the form of the
expansion Eq. (V.38) is constrained by the rotational symmetry furthermore tej@mgasave
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to be zero because of the rotational symmétiy  A. As we will see in the non homogeneous
case this symmetry is not preserved and the quadratic term is non zero.

To summarize the symmetries, constrain a lot the unstable variety and provide precious in-
formations, as that thef0and 29 Fourier mode will be the terms of lowest ord®r(Hg) =
O(H,) =0 (AA)?.

5.2 Temporal equations

Now we drop the indek = 1. The temporal evolution on the unstable manifold is

A= A+ TN f (V:39)
h [
%_T: L H+ N [f] TN f +c.c (V.40)

We de neA-= A% ;t). The goal is to get the different order j@j2, by constructiortg =
Since by constructiofl is a function, it can be expanded for smalhs

X :
he(p; )= hei(P) ' (V.41)
j=0
where = jAj®. The task is to evaluate tig; at different order. To remove the temporal
evolution, we write on one hand
%= A@H, + A’@-Hy (V.42)
using Eq. (V.37a), Eq. (V.37b), Eq. (V.37c) gives
o = AAlhgo +O( )+ AA”(Moo+O( )= (% %B)(hoo+O( ) (V43)
So, fork 0,
%:2 rhO;O+O( ) (V44a)
dt
% L 1H1 = A [(2 + ) L l]hl;O (V44b)
% L «He = Ak L Jhgo: (V.44c)
On the other hand, from Eq. (V.40),
% = N off ] (V.45a)
dH,
gt L aHi=Nff] €N [f] (V.45b)
H
% L xHy¢=N k[f ]: (V4SC)

So, by equalizing Eqg. (V.44) and Eq. (V.45), we eliminate the temporal dependence allowing us
to compute every order ¢ .
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For the HMF potential

N fe=2i A0@ « 11+ AMN)’@ "« 1. 1+ @Hx 1) 1[A(t) + H4]
2i (AD@ w11t AM)’@ 7 ker; 1+ @Hier)  1[AT() T+ H 4]:

(V.46)
In particular
Nofl=i (@ @)+0 °? (V.47a)
Nf]=iA (@hoo @hzo)+O A ? (V.47Db)
N ff]=iA2@ +0 A* (V.47¢)
where we used the normalization df ] = 1=2.
5.3 Cubic order
Combining Eq. (V.45) and Eq. (V.47), gives
oo = i (2@ (V.482)
_ @ |
h20(p) = >+ i’ (V.48Db)
So, with
D E D E
el;N [f] = ~1;N 1[f] = A T@p(hO;O hz;o) +0O A 2 ; (V49)
| {z }

cs( )

it just remains to compute two scalar products. Let's evaluate the term containg

D E , L .3 £ 0
L _ @ _ 3 (f9)4p)
LG Ty T2y (e
32 @) (V.50)
T8 Q)
Let's evaluate the term containirg,o,
D E 2 Z Z
P _ @ @ _
hoo = ——d ———dp =
| ,@p 0;0 2 ] 20( ) . ( + Ip)z p . ( + Ip)z p
T 0 L, g ® (V51
e 9) ( ip)( +ip)? ( +ip)*

At this point of the computation, one can take the limitt 0 and look at the scaling. A clever
way proposed by J.D. Crawford was to expand the integrand in simple fraction, it has both the
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advantages to highlight directly the dependence and the remaining integral has the form of
(M( ) derivative. The simple fraction is

BT N T AT A G
which directly gives
— 2 (C ) 1 ()+1 0( ) 0% ) 00() ) (4)( )
“T ) 8 3 Y22 a1, T (V.53)

Sincethe rst(( )) = ( ) =0 ( isan eigenvalue) we nd the asymptotic coef cient as

in [Cra94a] ,
Cs F+o 2 (V.54)
r

Note that this result is independent of the initial distribution functio®Yp).

Therefore, sinces is always negative the bifurcation Eq. (V.38) towards a magnetized system
Is always supercritical (meaning continuous or to use the equilibrium statistical mechanics term:
second order) and the scaling of the saturated sfaig$s as announced

jAsatj / r2;

it is thetrapping scaling.

5.4 A note on pinching singularities

To check that the (™ ( ) do not bring any additional singularity, one can consider integral
of the type 7
i f(p)

m . .
o (p im )(p+in )
for a regular functiorf (p). Forl = O we have a function proportional to the derivative of
the dispersion relation. Once again there are different ways to see the potential divergences
— One could show that the simple fraction expansion leads to divergendes only if
m = n.
— Use the Plemej formula. A graphical interpretation of the result can be seen in Figure V.4.
When two poles or more (whatever the orétel) approach the real axis from both side
at a different velocityp one can always deform the integration path to make the limit
nite. However, when two singularities approach the real axis at the same vep¢itg
contour cannot be deformed to avoid the singularity. This case is referred to a pinching
singularity. D E
In prlgctic%divergence, will come from scalar product containing terms;as , while terms

dp (V.55)

like 7 will not diverge. This can be interpreted as singular projection over one unstable

mode.
Hence, from this calculation the divergence of the coef cienthas its origin from this
pinching singularity, but what does it means physically? The divergence occyss for ;.
It can be physically translated as particles with velocity (frequency) around the frequency
of the unstable mode have a "singular" behavior. Once again, these particles are called resonant
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(@mén (b)m=n

Figure V.4 — Integration path with poles approach the real axis.

particles. As we will see later these patrticles are in fact trapped with the unstable wave whose
amplitude isA. This singularity is what make the dynamical expansion of the Vlasov bifurcation
SO "unique”, it |b'5 _not a mathematical artifact and any regularization would lead to a standard
Hopf scaling/ , corresponding to remove the trapping mechanism.

Remark V.6

These pinching singularities do not appear only in the kinetic context, for example in Perturba-
tive Quantum Chromodynamics such singular integrals with pinching singularities occur. They
physically stand for a long-distance sensitivity in the perturbation theory [Ste96]...

5.5 Higher orders

For every expansion of the previous type a safety check consist to compute and estimate
higher order terms of Eq. (V.38). If they are negligible the dimensional reduction of the system
at the bifurcation from the in nite Eq. (V.36) to one dimension Eq. (V.38) becomes exact.

Here we will not detail the computation of higher orders since a more generic treatment was
done by J.D. Crawford in [Cra94a]. It brings quite some technicalities and the main insight was
already provided by the cubic coef cient. The Crawford result is as follows:

1 .
Czj+1/ ﬂ, J 1 (V56)
r

What is further more remarkable is that he computed exagtly 13=64 .’ which ascs,
does not depend on the distributibf. It is then natural to conjecture that at leading order the
unstable manifold is always the same for the Vlasov dynamics around homogeneous states (so
all ¢y +1 coef cient have a xed value).

This result implies that around the saturated solufign / 2, the series expansion of the
one dimensional dynamics becomes singular since as in the example Eq. (1V.21),

O( JAsaj) =0 C3jAsatj3 =0 C5jAsatj5 =0 CZn+1j'A\satj2n+l =0 3: (V.57)

This divergence means once again that the perturbative treatment fails at times larger than
O (1= ). After this time particles are trapped with the created wave (whose amplituile is

and an oscillation behavior starts (which cannot be described by the one dimensional dynami-
cal equation), see Figure V.6 and V.5.
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6 RESONANCE PHENOMENON

As we have seen in the computation the damping or growing of stable/unstable perturbation
Is dominated by the contribution of particles resonating with the wave created self consistently
by the perturbed distribution. These particles have a frequency (velocity) close to the frequency
of the perturbation.

— In the stable case we observe the Landau damping. The wave is damped according the
resonances of the dispersion relation (once again here resonance has the mathematical
meaning). Thus, this damping occurs thanks to the particles with a velocity close to
frequency of the wave. The Malmberg and Wharton experiment [M\W64] showed indeed
that a plasma without those particles did not display damping.

— In the unstable case resonances come from pinched singularities of pole. For a perturba-
tion with zero frequency = 0, M (t) sing, resonant particles are found around 0.
Particles with large velocity are not much affected by the perturbation in their phase

space trajectories, (

=P _ (V.58)

p= M(t)sinq
while resonant particles go from a straight line to a closed orbit in phase space Figure V.5.
The period of closed orbit is given by the nonlinear time M A ' Hence

there is a competition in between trapping timg and linear instability L

Saturation occurs when both are comparable

NL ) Asat 2;

this yield the "trapping scaling".
Trapped particles are much more affected by the perturbation since their trajectories change
from a straight line to a close orbit. Because the crucial point of the expansion comes from
this nonlinear layer where particles are trapped, it was then natural for O'Neil et al. [OWM71]
followed by del-Castillo Negrete [dACN98a, dCN98b] to perform an exact asymptotic multiscale
expansion of the model considering these two different regions with a third region in between.
The region with cycling orbit is called the inner critical layer, it is where the scaling of the
expansion is not standard. In the Outer region, the time expansion is regular, then a match-
ing of those two layers is done. It leads to the Single Wave Model (SWM), nicely reviewed
in [BMT13]. A normal form is obtained and in fact it is shared with various Hamiltonian sys-
tems such as XY model and Euler 2D. The normal form is for our problem (simpli ed normal
form from [BMT13])

@ + p@ + @@,f =0; (V.59a)
'(g;t) = éeiq +Aeld (V.59b)
iA()=  fy(p;t)dp: (V.59¢)

It does look as the Vlasov equation with the difference that the perturbing'wevenly along

the unstable Fourier mode = 1 and it does not depend directly on the distribution as the
previous mean eld term [f ] did. This description has the advantage to display universality.
The drawback of this reduction is that it is still of in nite-dimension, thus the end behavior is not
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CHAPTER V. VLASOV SYSTEMS AROUND HOMOGENEOUS EQUILIBRIUM

Figure V.5 — Density plot ofF (g; p;? in the phase spacfy;p for different timest =
0;30,50,60; 70,90, 110 130 170 Fermi distribution de ned in Eq. (VI.37a) wittMy = O,

=10, =0:277361 =10 4 =0:0729 The associated video can be found by clicking
here homogeneous_unstable.mp4.

Figure V.6 — Magnetization associated with the Figure V.5. The circles represent the times of
the snapshots. Fermi distribution de ned in Eq. (V1.37a) with =0, =10, =0:277361
=10 4, =0:0729
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direct. Moreover, in the construction of the model the trapping scaling giving the characteristic
size of the critical layer is set as an ansatz that turns out to work (where traditional Hopf scaling
would fail) whereas in Crawford method it is found as a result.

7 OPEN QUESTIONS

The partial success of the unstable manifold technique plagued by singularities raise many
guestions:

— How general is this unstable manifold expansion?

— Can it be applied around non homogeneous systems?

— Are bifurcation around non homogeneous states similar to the homogeneous case

— Trapping scaling

— SWM normal form

— Universal coef cientc,

— Singular series expansion at saturation or exact dimensional reduction?

— How with a small disgipation the critical layer is modi ed to give an exact one dimen-

sional reduction with a  scaling as one found in regular expansion.

In the Chapter VI we will perform a similar analysis for the non homogeneous case and
answer to some of the previous questions. In Chapter VIl we will study the same homogeneous
system as here adding a small dissipation. Since for every newt Chapter we will use the same
methodology we will start each Chapter by highlighting the differences with respect to this
homogeneous Crawford model.
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CHAPTER VI

BIFURCATIONS AROUND NON
HOMOGENEOUS STATES

Now that we are familiar with the bifurcation problem around a homogeneous state, we
consider the same question around an already magnetized (non homogeneous) state and present
our original results. We will still consider the HMF model and highlight the differences with
generic potential in this Chapter. In [BMY16], we prove that results of the unstable manifold
approach remain with generic potentials; we also develop a self-consistent approach in addition
to the dynamical one with similar predictions about the nal states.

The unstable manifold analysis is then performed for a non oscillating perturbation (the
unstable eigenvalueis real). The main results and physics of this study reveal that

— The wave particles/resonance is weaker than in the homogeneous case for a non oscil-

lating perturbation since few particles resonate. Thus, the pinching singularities are also
weaker.

— Nevertheless a singularity still appears in the bifurcation expansion for another physical

reason.

— The bifurcation is now asymmetric with respect to the initial magnetization perturbation

(see Figure VI.1) measured By/ M; My,

. 1
A= A +cA%2+0 A®  with ¢/ =:

(&) Homogeneous case: symmetric supercritical bifloy-lnhomogeneous case: asymmetric transcritical bifur-
cation cation

Figure V1.1 — Bifurcation diagram for homogeneous and inhomogeneous case
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

In bifurcation theory, this type of bifurcation is called transcritical (with here an unusual
scaling). In one case, we recover the trapping scagg/ 2 while for the opposite
initial condition the perturbation grows to e, / O (1).

— In fact if a singularity arises, it is not as in the homogeneous case because no nite-
dimensional reduction is possible (thanks to strong resonances). It is because with the
unstable manifold expansion we do not consider all the slow modes that contributes near
the critical pointi.e. ! 0 and 0, as in the nite-dimensional example (see Sec-
tion IV.1). Hence describing the problem with a three-dimensibnanifold yields this
time to what seems to be an exact dimensional reduction. The reduction obtained is
known as the Triple Zero normal form. Preliminary predictions are compared directly
with numerics, providing for example almost exactly the amplitude and frequency of os-
cillation of the saturated states whereas the unstable manifold just provides "a qualitative”
scaling.

Technically the problem is more dif cult since the angle-action variable change is necessary.
However due to a broken rotational symmetry the nonlinear computation stops at the quadratic
orderc,, which does not require any calculation of the unstable mankfald

In the rst part, we will introduce the non homogeneous formalism de ning the angle-action

variable more suited for the problem. Then we will quickly describe the known result for
Landau damping in the non homogeneous case.

1 STEADY STATE

The particles motion in the mean eld limit is associated with the following Hamiltonian
(also called one particles Hamiltonian),

2 2
HIFI@:R= 2+ [FI@+ MJF1= ©+ MJFIQ cosq) MJ[Flsing;  (VI.1)
where we use the same de nitions of the magnetizaliband mean eld potential [f ] that in
Eq. (V.5). We shifted the energy so that its minimum is zero. Hamilton's equations are

dqg _ .

5 = @H; (VI.2a)
dp _ _

pre @H: (VI1.2b)

Following the temporal evolution of the trajectories in the phase space gives the Vlasov
equation for the distribution of particles

%_T:@F+@H@F @H@F =0= @F + H[f];Fg; (V1.3)

where we used the Poison bracket

fuivg= Qu@v @Qu@v: (V1.4)

For the homogeneous state nding a time independent solution was direct, here thanks to
this Hamiltonian structure one can verify that any function of the one particle Hamiltonian

1. Originally we thought that a two dimensional reduction was enough but it led to inconsistencies.
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f °(H (g; p) is a solution of the Vlasov equation. This fact is related to the Jeans [BT11] theo-
rem that states that:
"Any steady-state solution of the Vlasov equation depends on the phase-space coordinates only
through integrals of motion in the given potential, and any function of the integrals yields a
steady-state solution of the Vlasov equatiofo recover homogeneous stationary state one has
tosetM. = M5 =0.

Here the energy is an obvious integral of motion, in higher dimensions other integral of
motion must be considered to describe steady states.

2 ANGLE-ACTION VARIABLE

If we want to proceed further in the unstable manifold analysis and solve the linear problem
we are quickly stopped since the linear operator is here

Lf= v@ +@ [FI@f °(a;p+ @ [f°I()@f (a;P (V1.5)

where the last term was previously zero. So, the spatial Fourier transfotmfofalready
involves different Fourier modes; fx 1;fk+1. In other terms the spatial modes are mixed at
the linear level, the problem is not diagonal which make it dif cult to solve. We will thus have
to change basis to diagonalize the problem.

From now on we choose a symmetric initial distributfdifg; v) = f°( q;v) so(Mg)y[f °1 =
0. As we will explain later this choice should not affect any of our results, moreover we have
done some simulation witM),[f °] 6 0 without any of our conclusion affected. So, the
initial potential writes

[f°7= (Mo)ccosq= Mgcosq; (V1.6)

where we choose in the following (without loss of generality due to the symmetry of the prob-
|em)(M0)C = My> 0.

2.1 Angle-action de nition

The natural change of variable to diagonalize is to go from position-vel@gitg to the
angle-action( ;J ) variable. Their de nition is

I
J= Zi pdq (VI.7a)

and the angles variable are obtained through a genenafgr] ) of the canonical transforma-

tion(a;p! (;J)
z

W(;3)= p(1J)d (V1.7b)
=@W(;J) (VL.7¢)

In what follows it will be useful to de ne the parameter

= (V1.8)
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CHAPTER VI. BIFURCATIONS AROUND NON HOMOGENEOUS STATES

wherSH = H(J) is the energy of one trajectory of actidn We de ne its complementary
0= "1 2 This parameter is useful since it separated the two different types of orbit. For
< 1 particles have elliptic orbit (blue zone in VI.2). For 1 particles have librating orbit
(with p < Oorp > 0). The separatrix is the limit orbit with = 1. To avoid confusion between
the different variable we designatéf(q;p = F°(H) = F°J) = f °(k).
For HMF potential it is possible to obtain an explicit expression for these variables, the
starting point is to write

49—
p= P 2(H + Mg(cosq 1)) = 2ID Mo 2 sin(g=) (V1.9)

and to compute the integral Eq. (V1.7) in the three different casesl;= 1;> 1. Therefore,
the de nition of the angle-action variables is a priori different for three regions of space [BOY10]
as show in Figure VI.2J = J. is the action associated with particles on the separatrix. It is
easy to understand the different zones for angle-action variable with a pendulum:

— For small initial energyJd < J ) a pendulum oscillates. For very small oscillations it is

well known that the period is isochronous.
— At the separatrixl = J, it takes an in nite time to travel cycle.
— For large initial energyJ > J ;) the pendulum describes a complete circle

Figure VI.2 — Angle-action variable§;J ) representation in the phase spdgep. Three
trajectories (arrows show the stream direction) are shown with associated angle variables. The
action variable is increased along the dotted lined. The blue zone is bounded by the separatrix
curve which separates close orbit from librating orbits.

These considerations lead naturally to the "analog" of the velpadityangle-action variable
which is the frequency de ned by
n= .
()= 35
As previously mentioned with the pendulum analogy we can already guess without any compu-
tations that
— (J! 0)= (60 (isochronicity)

(V1.10)
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— (J = J¢) =0 (in nite period)
— (J Jo) ! J (orbits no very different from straight lines so frequency is proportional
to the momentum).

One can nd o
30= 2 By (9%() <1 (Vi.11a)
p___
J()= 4 Mo E(l=); > 1 (VI.11b)
P
_ Mo,
( )= K( ) <1 (VI.11c)
P Mq
()= xa=y > 1 (VI.11d)
whereK () andE( ) are respectively the comfplet_eellipticintegral of the rstand second kind,
de ned in the Appendix B.1. In particular, = Mg and around the separatrixJ ! J.) /

Figure V1.3 — Frequency's orbi{ J).

jln 1(GJ  J)j so the convergence towards zero is logarithmically slow, see Figure VI.3.

2.2 Fourier basis of the HMF potential in angle-action variable

Before moving on solving the linear problem we de ne the Fourier transform according
to the angle variable of the potential bagt®s(g( ;J ));sin(q( ;J))) M (cm(3);sm(J)).
Indeed, the cost of the diagonalization is that the potential will not have a simple form in the
angle Fourier space, in particular it will have component for every angle modehile in

g Fourier it had components only &= 1). The Fourier coef cients are de ned through

cos@(; )e ™ (V1.12a)

sin(q(; )e ™ : (V1.12b)
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A convenient result of this thesis was to explicitly compute these coef cients for ewer§o
far only c, was known and fom 6 0 they had to be computed numerically The details
are given in Appendix B.1, we had to use results of S. C. Milfidil02], where he derives
explicitly a lot of series expansion of Jacobi Elliptic Functions (and associated), in particular
the Fourier expansion afi?;sn  cn;sn  dn.

In [BM17b] authors used those explicit expressions to compare simulations to a semi analyt-
ical theory.

3 LANDAU DAMPING AND RESONANCES

3.1 Landau damping

The Landau damping around inhomogeneous states has been studied for generic and HMF

potential by my predecessyrmy advisor J. Barré and Y.Y Yamaguchi in [BOY10, BOY11].
The result of the study showed Landau damping with an algebraic damping for long times

i Vg it- 1
M/ ezi ot_’s.for t
e =t>; for t!1l
Remark VI.1
The spectrum of the inhomogeneous linear operator is modi ed with respect to the homoge-
neous case. Indeed, one can look at its expressifa jp variables Eq. (VI.5) and see that the
"perturbation” added to the advection operator are not compact since they are spanned by an
in nite-dimensional operatot. So a priori the essential spectrum is modi ed and it depends on
both the initial distributiorf °(q; p and the interaction potenti®(q).

In the homogeneous case the spectrum did not depended on the initial distrfdiftipand
interaction potential/ (g). The result found by Crawford [Cra95a] on the nonlinear expansion
and by Balmforth et al. [BMT13] on the single wave model also exhibited some universality.
Despite that it might be unrelated, we might expect notto nd universal coef agr; for the
bifurcation analysis as in the homogeneous case due to this new sensibility of the continuous
spectrum. Moreover, we will not expect a universal reduction as the single wave model.

2. With a great numerical cost around 1.

3. In what seems to be a colossal work, we see that some number theory in the spirit of Ramanujan is used to
nally serve our physical problem!

4. Alain Olivetti was the previous PhD student of Julien Barré.

5. It depends on a functid’(q; p where previously it was a constant w.r.t. to the position variéB(e).
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3. LANDAU DAMPING AND RESONANCES

3.2 Resonances

3.2.a Non oscillating perturbationim =0

Previously the number of resonant particRsvas given by the number of particles with a
velocity around the frequency of the perturbing wave. This is for a non oscillating pvave,
Z Z

Ry = fO(p)dadp 4 f °(v=0)

for a homogeneous initial distribution regular in velocity. For inhomogeneous case, for non
oscillating perturbation, resonant particles will have a frequefd)) < . For small , the
frequency around the separatrix is

P&
0
Mo . ¢ <3
(D Zha, S0 for Isd
So z  z z z !
Ry = F°J)d dJ =2 +2 F°(J)dJ

J<J J>J
(J)< (1< (1)<

where we supposed thBf is regular inJ = J. and we have separated the different region of
integration (the two outside the separatrix regions contribute the same). Going tedhable
gives at leading order in, '
Z Z : P
o, ydJ e M7, :
Rnu =2 +2 fo( )d—( da / Mg—F°( =1): (VI.13)

>
()< ¢ )<

Therefore, there are a lot less particles resonating around the separatrix

| J—
e Mo=

RH/ and RNH/ I RH!

thus we expect the resonant phenomena leading to pinching singularities to be a lot weaker.
Moreover, if that resonant trapping of particles in a critical layer was the cause to the impossi-
bility of a nite-dimensional description of the bifurcation (see Single Wave Model [BMT13]),
maybe here we can achieve some reduction.

3.2.b Oscillating perturbationim 60

If we seek the number of resonant particles for oscillating wave we nd that for both homo-
geneous and inhomogeneous cases

RH/ RNH/ ;

because the frequency distributignd) is regular in all region 6 J..

This contrast leads us to conjecture that there for stable inhomogeneous distribution, the
damping always oscillates because there are no resonances with non oscillating modes. In
other words, if there is an analytic continuation to the dispersion relation2 R™) in for

< 0t has no root. An argument that goes with this reasoning is that f@ R, ( )
is continuous (see later Eq. (VI.25) and Eq. (V1.43)) and in nitely differentiable i\ 0 with
@ <(0)= @' (0)=0. So, aconjecture could state that since there is no need for analytic
continuation in this case non oscillating damping will never happen.
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4 LINEAR PROBLEM

4.1 Dispersion relation

Since the variable change frof@;p ! (;J) is canonical (in the three regions), the Vlasov
equation in these variables is straightforward
dF
o = @ +THIFIG)F(:J)g=0; (VI.14)
where the Poison bracket is written here for the angle-action variable.
Around the stationary solutioR°(J) = f°(q; p the linear operator is witk = F°(J) +
f(;J):

@ =L f+Nf (VI.15a)
L f=ffH[Fg+fF% [flg (V1.15b)
N f =ff; [flg (VI.15¢)

The eigenvalue problem for2 iR and is

(:3)=L = (d@( ;3)+ @[ o;I)@F°Q) (V1.16)
going to angle Fourier transform gives
m(d)= im(J) m+im n[] @F°Q): (VI.17)
we have £o
m(d) = im%; 0=0 (VI1.18)
where
m= McJ]cm Mg[] Sm: (VI.19)

The dispersion relation is less trivial to obtain than before where eigenvectors had only one non
zero Fourier component (the normalization was enough to deucg. Here to get a closure
we have to project the eigenvector Eq. (VI.18) al@mogg andsing

) ) 5 (V1.20a)
M;[] _ SIan; = MY X |mimi::nm(@JF)° a3 My X |mis?qnj]2(@\|]:)° .
) ) (V1.20b)

were we used for the projection (scalar product) the Parseval theorem that allows to write the
angle integral as a Fourier sum. This last equality can be written in a matrix form as

MIl o) 0 Md]
SRRV IR IS B X Vi.21)
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where we have eliminated the diagonal terms due to the symmetries (see Eg. (B.4) and Eq. (B.6))

Com+1( < 1) =0; (VI.22a)
Som( < 1)=0; (VI.22b)

Sm( > Lp<0)= sn(> Lp>0); (VI.22c)
Cm( > Lp<0)=cn(> Lp>0): (VI.22d)

These relations gives for any gene@g, (J) function that has the same de nition on the two
outer regionsJ > J ., p 7 0) a zero contribution when integrated,

z Z, Z,
Gm(J)Cms,(J)dJ = G () f‘f{g"ﬁ (J)dJ + G, (J)spCm(J)dJ
0 =0 for m odd and even 7 X (V|.23)
G, (J)spCm(J)dJ =0:

Je

The dispersion functior{ ) is given by the two dispersion relations

det ( )=0= () s() (VI.24)
with
_142 “ im@Fow) 2(3)dJ VI.25
o( )= . T(J)Jcml( ) (VI.25a)
x 4 im@F°J). .
s()=1+2 . T(J)Jst?(J)olJ. (VI1.25Db)

If isarootof () or () isan eigenvalue of the whole system. Since the system is
diagonal these two type of eigenvalues are associate with different eigenspaces. One can prove
usingm ! m in Eq. (VI.25), that if is a complex eigenvalu¢ )= ( ) =0. Moreover

if is a complex eigenvalug ) = ( ) = 0. So as before if the system has a stable
eigenvalue it has automatically an unstable one, meaning that once again relaxation in stable
case will be due to the continuous spectrum (Landau damping).

Remark VI.2

— For generic potential e.g. for full 1D gravitip = jqj, the potential basis has an in nite
number of non zero components. The dispersion matrix can be derived formally the same
way, but in general it is an in nite matrix with no zero elements. So manipulating it, is
only formal and one cannot explicitly compute the rootsf its determinant. One has to
truncate at some largay, .

— For the homogeneous cab&, = 0, even for generic potential, the matrik ) =
diag( «) is diagonal since there are no spatial modes mixing. Thus, the dispersion rela-
tion can be explicitly computed in this case (since we are interested in the rst Fourier
mode to go unstablie = 1).

— From Eq. (VI.21), we can nd back Eq. (V.14) withl, ! 0. One can check that

p=2Mo), ( )M ®v, etc., in particulaty, = ( m1+ m 1)=2.
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— In the homogeneous case we had an eigenvalue associated with an in nite-dimensional
eigenspace. Here in Eq. (VI.17) this phenomenon still occurs. Indeed$dd we can

nd two types of eigenvectors
0

=@ [ JJF°A and = 00 : (V1.26)
(J)

It means that for anyo(J), . is an eigenvector associated with= 0.

4.2  Self-consistent equation for the magnetization

To nd a steady state solution a functidd(q;p = F°(J) = F°(H) = f °(k) has to satisfy
the normalization condition and a self-consistent equation for the magnetization
YAV 5
1= FO° % Mo(1 cosq) dadp: (VI.27a)
ZZ 0

Mg = F° > Mo(1 cosq) cosqdodp: (V1.27b)
In practice, to nd numericallyMy and the normalization, we use the transformatigdp !
d dJ and then integration over angle and the change of variable giving

Z Z
1=4M, 1+2 l f(o()) d; (V1.27¢)
Mo=4 M ZOl+2le F )c() d: (VI.27d)
(0 0 0 . .
0 1 ()

4.3 Eigenvector and eigenvalue

4.3.a Along thesindirection

The problem is spatially invariant, so thatdf{q; p; 1) is a solution of the full non homoge-
neous Vlasov equation then soFgq+ o; p;t). The generator of this spatial translatior@s
SO we expect to always have an eigenvector as

s(a;p = @ °(a:p; (V1.28)
associated with an eigenvalug = = 0 which corresponds to the Goldstone mode. Let's
check that assertion. In Eq. (VI.25b), withe Re | Owe obtain

Z o X
s( =0)=1+2 GF () iSmj?(3)dJ: (V1.29)
( J) mé0
The Parseval identity here gives [Ogal3],
Z
X
2 s2 = sin(q(;J))%d (V1.30)
mé0

where we usedy = 0.
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Remark VI.3
Here we have replaced= 0 in all integral at the limit. It might be very dangerous and bring
singularities. In fact, in homogeneous case this limit was obtained with the Plemej formula

because 7 (o
() 4,

p

is not integrable in general. Here because the logarithmic divergence induced by the resonating
particles is integrable, the limit is well de ned and we can repladsy O.
However, if is complex, this statement is no longer true since

Z  gFo
itm(J)

(V1.31)

dJ

is no longer integrable, indeed for evely) 6 J. root of the denominator, we can expand
i+m(Jd)=m@ JIN)( IV that has the same divergence as Eq. (VI.31).

Using thatH = p?=2 + Mo(1 cosg) anddH = pdp + Mgsinqdg (sinceq andp are
independent variablég=dp = 0) we have

@ °v) _dF°_ @F°Q) _ @f° .
p dH  (J)  Mgsing

(V1.32)

We may write angle-action integral as a space velocity integral (remember the canonic transfor-
mation insured dJ = dgdp) to have
YAV

s( &)=1+ }@f %sin® gdodp
Z
dF °(H(q; P)

=1+ aH sin? qdgdp
, 22 | 22 (V1.33)
=1+ —  @f°%sinqdgdp=1 ——  f%cosqdgdp
MO I\/IO
_ Mo _
=1 =0

where we have used the de nition of the magnetization, integration by part and the different
expressions of the energy derivative.
From Eq. (VI.18) we get the eigenvector associated with the neutral mod®,

X @F° . _ @F°
s = ——Sm€" =
)N (3)

sing= Mo@f °(q; p (V1.34)

which correspond to what was expected from the symmetry of the problem.

Therefore, there is always a neutral mode aloggwhatever the parameters and the function
f 9. Since it is associated with a translation we don't expect it to play any role in the instability
in the weakly nonlinear regime. However, we cannot exclude that it couples with the instability
for strongly nonlinear regimes (which is not the case studied here). Hence we always suppose
thatMs[F] = O (which is supported by numerics) moreover we always choose perturbation
along thecosdirection.
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4.3.b Along thecosdirection
From Eq. (V1.20), we nd the eigenvector associated with the eigenvalue roag(of),

X i 0 ‘
- m@F" (V1.35)

C_mgo +im(J) "

Eigenvectors are de ned up to a multiplicative non zero constant, here we choose 1, so
Mc[ cJ=(cosq; )= 1 (V1.36)
thanks to the relation dispersion Eq. (VI.25a). The reverse reasoning is possible, set a nor-

malization for the eigenvector and nd the associated dispersion relation. Moreover, we have
Ms[ ]=0= M sl

4.4  Stability criteria

We introduce as before the parameteahat corresponds to a tunable parameter of the initial
distributionf © = f °. For example, one can have

FOH)= N 'H1+e ™ )] (Fermi distribution) (V1.37a)
G’(H) = Ng'H?% (V1.37b)

Ng andNg are the normalization factors. The Eqg. (VI.37a) is a Fermi distribution of energy
(looking like a step function), its stiffness is controlled by theparameter. It is a decreasing
function of energy. Th& function Eq. (VI.37b) has an energy minimumkh= 0 and then
reach a maximum fad = 2=, thus it a non-monotonic function of energy.

We de ne . to be the value for which the system goes unstabl€i.g. ( =0)=0. For
example, for the functiof °(E) we plot, in Figure V1.4, the phase diagram of the Fermi dis-
tribution ( ;M o). The line corresponds to a steady state solution satisfying the self-consistent
equation Eqg. (VI1.27c¢). The transition stable/unstable occurs at ppmté . = 0:669 0:336)
andl = ( . =0:2540). In this thesis, we will numerically test the neighborhood of paint
where a solution becomes unstable. In principle, we could also test what happens for weakly in-
homogeneous and unstable solution, dashed black line aloWelcan establish as in [Ogal3],
the stability criteria. As mentioned earlier the direction is always neutrally stable. For a
monotonic function of energy S. Ogawa showed that the eigenvalue associated with Eqg. (V1.25a)
is always real. In this Section, we focus on non oscillating perturbati@nR. However, we
let the initial distribution be monotonic or not. In our numerical tests, weFf§#l) which is
monotonic and3’(H) which is not Eq. (V1.37). As we motivated earlier in Section VI.3.2 and
remark VI.3, the choice 2 R has important consequence on the number of resonant particles
and how the limit ! 0is computed. By replacing by zero in Eq. (VI.25a), Ogawa shows
that the system is spectrally stable if and only if

Z gFo
(J)
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Figure V1.4 — Phase diagram of the Fermi distributiofwith = 40. Dotted lines correspond

to unstable stationary solutions and solid lines to stable ones. In the neighborhood &, point
a branch of stable inhomogeneddsg 6 O stationary solutions becomes unstable. At pbiat
branch of stable homogeneous stationary solutiths £ 0, red solid line) becomes unstable;
the unstable homogeneous case was treated in Chapter V.

where we de ned and computeg ° thanks again to [Mil02] and Eqg. (B.2b),

8
31 41 2)E()

z +4 2 1 <1
_ 1 . _ 3 K() ’
B( )= =— cos(q(;I())d = A 21—
2 31 41 22) 2E(1=) _
"3 K(1=) t8 % 8%+3 ; > 1

(VI.39)
The transition occurs at [F°] = 0.

4.5 Adjoint problem

The adjoint linear operator is obtained with respect to the scalar products Eq. (V.19) as,

LY c=(J)@ c KYa(;J)) (V1.40)
where
Z Z

K¥(q(;3)) = @~ c@F° (o P)Viwr (o 0) dofdp® (V1.41a)
KY)= M@ @F°lcn(d) M@ . @Flsn(J): (V1.41b)
6. Thanks to the Parseval theorem, we were able to explicit computey alliptic series
ncscif n KK . 8K(K)? k2 1 K®K? 2k® 2 K(KE(K) 3E(K)? . Itwas un-

> 0 K (k) 3(2 2)°

known (and surely not sought too) to my knowledge.
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The adjoint eigenvector of . is thus:

1 X cu@d)
CqN” 7 im(J)

e(3J) = em (V1.42)

where we have set the normalization such t{iag; o) = 1. So once again we nd a re-

lation between this scalar product and the derivative of the dispersion relation. Keeping the

M [@~.@F °] term would have led self consistently to a dispersion relation. Let's compute
9( ) to check our normalizations choice. On one hand, we have

x ¢ im@F°(J)

A)= 2 : jCmj?
C( ) 60 ( + im ( J))ZJCmJ (J)dJ
x Z o (V1.43)
. (ZE(m(2pm2m
on the other hand
Z
N m(f9M) . o g
(Te o= ) (+im( 3yyzicml (J)dJ =1: (V1.44)
For monotonic function of energ®F°(J) 0, itisclearthat 2 R) 0.
Remark VI.4
We notice that because of the spatial mode miximgppsitive and negative) ( ) / 0
with ! 0. In fact, it is expected because the two rogts merge in 0, and( ) is

differentiable in 0. However, that was not the case for the homogeneous case, Widéne
was a non zero constant ar{d ) was in general not continuous in O (because of the singular
behavior ofl=p).

In [BMY16], we give a proof that this normalization factor divergeslas for generic a
potential.

5 NONLINEAR EXPANSION

Now that the linear theory is clear we move on to what happens to a perturbation when
unstable. The basic idea is the same that for homogeneous case, decomposing the solution
along unstable vector and the unstable manifold. But as we will see due to symmetries the
computation will be in fact easier.

Regarding the symmetries of the problem @) (rotation/re exion) symmetry is broken,
so for a real eigenvalue the associated unstable manifold will be of dimension one (instead of
two for the homogeneous case).

We decompose thefunction on the unstable direction. associated to the eigenvalue 0
and its orthogonal direction.

f(;at)=A() (:3)+ S(;3t) (V1.45)

with A = ( ~¢;f) and(~¢;S) = 0. S is assumed to be at least of order because it is associ-
ated with the nonlinear part. The order paramétés related to the magnetization perturbation
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M = M(t) My, indeed by de nition
(Tf)= A+O A2 and M =M Mg=(cosq;f)= Afcos{g; L\J)+O A% (VI1.46)
=1

soA/ M for smallA (which is the weakly nonlinear regime we study).
Applying the projectior{ 7: ) on Vlasov equation Eq. (VI.15), we get
A= A +("gN f)= A% ;A) (VI.47)
So, the goal is now to get the rst order & of %%A; ). While for homogeneous case the
SO(2)-symmetry insuredd! A ) ¢, =0, here we have to consides 6 0. This yield
A=A+ N A+0 A?
(V1.48)
= A + A%+ A+ 0O A*

From Eq. (VI.15c¢),
N f=A% [ Jg+O A3 : (V1.49)

In the homogeneous case, this term was zero, so we had to jump to the cubic order and construct
the unstable manifoldi . Here the quadratic order is directly given by the eigenvector.
Let's de ne ¢, the coef cient associated with the quadratic ternAin

x Z
()= "of o[ cg = (~C);})1f e [ cl9mdd
R4 , VI1.50
— 2 X Cm+n m;n(J) ( )
") Fimen O
¢ m;n2Zz
where we have re-indexed the sum to have
: _ @ @F°ny @F°Cm o .
mn(J)=m n@J i Cn mwcn X (VI.51)
The rst thing we want to extract frong; is its limit when ! 0. Once again thanks to the

logarithmic divergence of the frequendyJ), we can safely replace denominator of the form
+1im ( J) byim ( J) whenm 6 0. It leaves us with
— the normalization factot= 2( )/ 1=,
— m =0 terms are canceled sintg,, =0,

— m = nterms bring a supplementary divergence at rst sight, but a careful calculation
shows that it is not the case. Indeedifior m, we have in the integral
I
X X 202
Co . _ G 0 m<c;,
m; m(J) - @ @F —+ im
m m ”
m2c2
= 2c,@ @F° -0
m> 0 2 T ( m ) ?
10 @F° X @F°@J)
! 2c,@ 5 Con = Co@ T(CS %)(J)
m> 0

(V1.52)

where have exchanged sum and derivative thanks to the regularity of, thenction.
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Thus, the total divergence is exclusively given by the normalization factor and
() 1=:

An exact estimation of the, coef cient in particular its sign is probably out of reach but as we
will see now it does not matter. Hence the result yields

. 1
A= A +cA%2+0 A% with ¢/ =: (V1.53)

which is a transcritical bifurcation whatever the signoef This behavior is illustrated and
compared with the homogeneous supercritical transition on Figure VI.1. If means for example
that if ¢, > 0, we will have a subcritical (resp. supercritical) bifurcation A(0) > 0 (resp.

A(0) < 0). In the supercritical cas@sy / 2 which is the trapping scaling. The numerics
(discussed later) Figure V1.5 con rm perfectly this result. Here this origin of this scaling is
very different from the homogeneous case since it comes from the normalization factor and not
from pinching singularities (associate with resonances). It could be a sign that no Single Wave
reduction is possible here.

Remark VI.5
— The symmetry of the inhomogeneous system holds for generic potential hence the bifur-
cation equation is always transcritical

A= A +cA%2+0 A3 :

Similarly, even for a generic interaction potential, the divergence of the coef cieht
1= will only come from the normalization factor. Other terms are regular if we assume
the frequency = d H=dJ associated with the generic potential either to not vanish at
nite J or does so only logarithmically. This includes the cases where the stationary
potential [f °J(g) has a single minimum and is in nite fgqj in nite (such as for 1D
gravity), and the generic situation with periodic boundary conditions; indeed, in the latter
situation, local minima of the stationary potential give rise to separatrices, on which the
action is constant. At these speci c values of the actiomanishes, but generically it
does so only logarithmically These arguments make this result very generic.

— Because () / , we havej d ! 2?1 A Inhomogeneous case since

%0) 6 0 we hadj d?l %1 A

6 HIGHER ORDER TERMS

As before to validate or not the dimensional reduction it is essential to estimate the diver-
gence of higher order terms. The detailed computation does not bring any particular insight so
we will present it only in Appendix B.2. This time we cannot escape the computation of the
rst order of the unstable manifoldi (A) 2 W". We nd for the higher order terms

Cs/ 1 (V1.54)

3
which means that at saturatidn,; / 2, quadratic and cubic terms are of the same order. It
means that some mechanism occurs at the saturation level, this mechanism could be similar or
not to the trapping of the SWM.

Université Céte d'Azur 126



7. NUMERICS

Note that numerics tends to con rm the failure of this one dimensional reduction since we
can see oscillation on inset of Figure VI.1(b). Is this failure related to the nature of the unstable
manifold expansion where even for a two dimensional model (Section IV.1) it fails when for-
getting the neutral modes? In this case a two (or larger) dimensional reduction could works. Or
does it mean as it seems to be the case in the homogeneous model that no nite-dimensional
reduction is possible?

Remark VI.6

As stated before, remark V.5, in nite-dimensional systems with two eigenvajues it is

natural to obtain a singular behavior near the criticality if one forget about themode. In the
homogeneous case, we have safely forgotten this mode since the criticality is of dimension 1
with ( ")Y0O*) 6 0. Here we have seen that(0) = 0. Hence in principle here we should

be able to derive a non singular two dimensional reduction of the bifurcation. In Section VI.9
we will pursue further this discussion...

7 NUMERICS

Our analytical description of the bifurcation can be accurately tested in the HMF case. The
time-evolved distribution function is obtained via a GPU parallel implementation of a semi-
Lagrangian scheme for the Vlasov HMF equation with periodic boundary conditions [RF13]. |
gratefully acknowledge Tarcisio Rocha Filho who provided the code in its original structure (I
just did some modi cations in order to choose the initial conditions and to be able to do videos
of the density evolution). We use2d 2" grid in position momentum phase space truncated
atjpj = 2 with n up to12 the time step is usuall§0 2. We use the two families of reference
stationary Eq. (VI1.37). For both families, a real positive eigenvalue appears at a critical value of

. for F°, this is at pointa, see Figure VI.4. The initial perturbation is

T(q;p= cos@exp( t1p°=2): (VI1.55)

Note that this is not proportional to the unstable eigenvectothis allows us to test the robust-
ness of our unstable manifold analysis with respect to the initial condition. For all simulation
results presented in Figure VI.5, the size of the perturbatimas chosen small enough such
that the saturated solution reached for 0 does not depend on On the other hand, the
smaller , the more accurate computations are required to avoid numerical errors. In particular,
we have observed that numerical errors may drive the system far away from the reference sta-
tionary solution, following a dynamics similar to the one witk 0. In such cases, we have
used a ner phase space grid: GPU computational power was crucial to reach very ne grids.
For example the initial Fermi distributioR® was very sensitive to numerical errors and to
we took =1:8 10 ® with a4096 4096grid; for G° distribution, which is much smoother,

=10 ®andal024 1024grid was enough (except for the point corresponding 00:032
where more precision was needed, and we toel3 10 °).

Typical evolutions for the order paramet®t(t) are shown in Figure V1.5 (insets), for

positive and negative. The asymmetry is clear: for one perturbation the chang®in=
M (t) My remains small, for the other it © (1). In the case wherel remains small, we
compute its saturated value by averaging the small oscillations; the result is plotted as a function
of on Figure VI.5: theM / 2 behavior is clear, for both families. The fact that numer-
ical simulations are able to reach this stationary state suggests that it is a genuine stationary
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state, indeed stable with respect to the whole dynamics, and not only on the unstable manifold.
However, longer simulations, or with smaller grid sizes (not shown), indicate it is also easily
destabilized by numerical noise. We conclude that@he ? state is thus probably close to

the instability threshold. Notice that for the initial unstable reference gtat@®)j = O 2

is very small; hence the very close nearby stationary state it 2 may have a different
stability, although (in)stability of non homogeneous stationary states is rather robust comparing
with the homogeneous case (see [BY15] for a discussion).

The precise computations of all the parameters and functidhs; ; c(J); ( J);::: were
carefully done via the software Mathematica [Inc].

To better illustrate the phase space dynamidg(gf p) in time, one can check online simula-
tions on my personal websiteThe colors represent the density of particles (blue: no particles;
red a lot of particles). The video "Fermi_eps_+.mp4" shows the time evolution of the distribu-
tion function in phase space with initial conditie?(H (q; p) + T(qg;p,for =+1:8 10 °,

= 1 =40,(Mg=0:328 = 0:658)(it corresponds to the dashed blue curve in the upper
inset of Figure V1.5) fromt = 0 tot = 600. For theG? initial distribution the perturbation
Is similar, the critical parameters af®ly = 0:243 = 9:59). Since the system reaches a
new stationary state close to the original one, we observe almost no change in the distribution
function. It is important to notice however that this picture is very different from that of the
saturation of an instability over a homogeneous background: in that case, resonances would
create small "cat's eyes" structures, which do not appear here. To better appreciate the dynam-
ics in this case, we also provide the video "Fermi_eps_+_diff.mp4", which is the same as the
previous one, except that the reference stdtdas been subtracted; hence the evolution of the
perturbation is more clearly shown.

The video "Fermi_eps_-.mp4" shows the time evolution of the distribution function with
the same parameter values except that 1:8 10 ° (it corresponds to the green curve in
the upper inset of Figure VI.5). This time the distribution changes completely its shape and
seems to approach a periodic solution, far away from the original stationary distribution. In
all simulations, the relative error between the total energy of the system at a given time and
the total initial energy is at most of the orderd@ ’. The video "Torr_G_eps_-.mp4" is also
provided corresponding to simulation with t8& function with = 10 ° (magenta curve in
the lower inset of Figure VI.5.

Testing the predicted scalinfy; / 2, requires computing with a good accuracy. To
compute the eigenvalue for each(M; ) associated with an initial distributiof °(H), one
has to nd a positive root of the dispersion function Eq. (VI.25a). The two main numerical
obstacles are to compute ef ciently the functionys(J), and the in nite sum in m. The rst
obstacle is suppressed by our explicit expression Eq. (B.4). It follows from their expression that
the convergence af,,(J) toward O withm is very fast except fod = J. where it has a nite
value (which will not contribute once integrated). Then we can choose a good truncation for the
sum and estimate the precision over

7. http://math.unice.fr/~metivier/video.html
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Figure VI.5-hM i () for distributionsF ° Eq. (VI.37a) (circles) an@® Eq. (V1.37b) (crosses)

with associated quadratic t; = 1 = 40. For each function we show two runs Mif.(t) =
M (1) (hereM¢(t) = 0) with positive and negative hM i in the main diagram is computed as
along time average for> 0. ForF°j j=1:8 10 % forG%,j j =10 ° exceptfor =0:032

wherej j =3 10 °. Note that the reference stationary sta&ésfollow the curve from point
a towards point on Figure VI.4. Along this curve, starts from0O at pointa, then grows and
reaches an upper limit, abo0tl5, before decreasing and reachidggain at point. This is

why two values of may correspond to the same value ofbut different values ohM i), as

can be seen around= 0:15.
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8 POSSIBLE APPLICATIONS

As detailed in [BMT13], the instability pattern around homogeneous state is shared in many
Hamiltonian systems, with applications from plasmas to uids. Here we have seen that the sat-
uration process seems really different possibly preventing a single-wave-model like description
of the instability. So, a natural question is to what correspond that new type of bifurcation?
There are probably examples in plasmas physics but so far we didn't found them.

In the astrophysics community, however, we found what seems to be a striking example of
this asymmetric bifurcation.

8.1 Radial orbit instability: two possible end states

In [PPA90, Pal94] authors study the nonlinear evolution of the Radial Orbit Instability [BT11].
They start from a weakly unstable spherical state
— Close to this reference state, they nd an axisymmetric weakly oblate stationary state
— At nite distance from the reference state (outside the perturbative regime), they nd a
stable prolate stationary state.
This nding is studied in Section 11.1.1 of [Pal94]. Palmer starts from a weakly unstable 3D
spherical equilibrium and perturbs its self-consistent potential

= of(r)+ &(r)P;,(cos#) (VI1.56)

whereP, is a Legendre polynomiag(r) some function with a constant sig,the standard
spherical polar angle and= M (0) is the initial amplitude of the order parametdt of the
perturbation. He deduces that if

— > 0the perturbed system is prolate (rugby/American football ball shape),

— < Othe perturbed system is oblate (discus/ ying saucer).
Then after a 3D static treatment (with some approximation and hypothesis), Palmer ends up
in the perturbative regime with a self-consistent equatithvat has to be satis ed by the order
parameter and the instability parameter . 0

Az;MZ 2M. A, ( o) =0; (VI.57)
whereA; > 0, A, > Oand ¢ > 0Ois small. Solutions of this equation are
Y
A As+ A
(My) =22 2+ Aa c) = Of ) <0 (V1.58a)
p A3 A2
AZ+ A + A 2A
(M), = ——2 3( o)t Az 2=0(@) > O (V1.58b)
Az Aj
It means that if the initial perturbation< O there is an oblate stationary solution close by of
orderO (( ¢)) (which is the same scaling than for our 1D case). ¥ 0, the solution

leaves the perturbative regime with a bar-like shape. It is fully consistent with the asymmetric
behavior we predict on the unstable manifold. That is one great motivation for application!
Indeed, such dynamical theory could be very useful to study galactic formation where bar-like
structure could have been formed from spherical structure that went unstable.

8. We rewrite the equation replacing s parameter by ¢) So that the system is unstable for ..
Also, hisA; < Ois replaced by A, < O.
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Remark VI.7

An open question regards the stability of the new weakly oblate stationary state: in our numer-
ical examples, it seems stable, but very close to threshold. In [PPA90] they claim it is unstable,
but since their numerical simulations are much less precise, this could be a numerical artifact.

8.2 Super Massive Black Hole

With this result in mind we were very excited to hear at the ICTP conference on longZange
astrophysicist talks.

Amongst other we hear Jihad Touma talking about galactic models of stars orbiting around
a super massive black hole (SMBH), which is today the standard picture for galaxy structure.
For example following elliptic orbit of stars have allowed [SO#2, GSW 08] to deduced the
position and mass of the SMBH of the Milky-way. In [ST16], Sridhar and Touma derive a
reduced model from this complete system ending up with a Vlasov equation in 3D (or 2D or 1D
depending on the symmetry assumption) angle-action variables. Once again, we think that our
treatment can be applied without much charie©f course, stability result on such realistic
model would be very important for galactic formation. We contacted J. Touma successfully and
started to look at the model. However, since | have started my thesis manuscript, | cannot help
much my advisor and Y.Y. Yamaguchi on this problem.

9 TOWARDS AN EXACT DIMENSIONAL REDUCTION ?

9.1 Did we miss something?

This Section relates some later ndings (June 2017 and after) that could lead to an exact
dimensional reduction of the bifurcation problem around steady states of the non homogeneous
Vlasov equation. In Remark V.5 we noted that due to the strong resonances of the homogeneous
case we had {0 i ;) 6 0 atcriticality = .. Itimplied that the "positive" and "negative"
eigenvalues$ did not join on the real axis (they are on different Riemann sheets), hehcea
description of the bifurcation with a center manifold technique was not possible [CH89] and we
had to use only a 2 dimensional unstable manifold leading to a singular expansion.

In the non homogeneous case with a real eigenvalue we followed the same unstable mani-
fold path describing the bifurcation with a one-dimensional unstable manifold (due to the lack
of rotational symmetry). This approach though qualitatively correct (predicting the transcritical
bifurcation observed in simulations with the correct trapping scaling) was plagued by singular-
ities at every order. Moreover, its one-dimensional form could not account (which was also the
case for the homogeneous Vlasov case) for the "trapping oscillations" observed numerically.

Now, what if we could describe this bifurcation with a nite-dimensional center manifold,
as one should in a nite-dimension analog of this problem? Here we indeed Héd)e= 0,
so that at criticality . = O the eigenvalues do collide. It only happens because this

c

9. ICTP conference program in Trieste on long-range interaction, July 2016.
10. That assertion is optimistic.
11. Either for four complex eigenvalues ; ; with each an associated dimension of one, or two real
eigenvalues, with an associated dimension of two each (thanks to rotational symmetry).
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time there is no need for analytic continuation of the dispersion relation; physically because of
weaker resonances between particles at the separatrix and the perturbing wave. Furthermore,
here in addition to these two eigenvalues we might expect another 0 eigenvalue associated with
the stationary states. Now how to treat this center manifold probiem

9.2 The Triple Zero bifurcation

In the following analysis, we are going to leave aside implicitly the continuous spectrum
(assuming that in some functional space it can be moved away from the imaginary axis) and
the neutral modes = 0 associated with thsin direction that we do not perturb. Hence, we
will consider the two colliding eigenvalues associated with theosdirection plus a 0
eigenvalue (that is needed for the center to be feasible)

From here we leave the indexf .. Having a triple zero eigenvalue at= . means for a

3-dimensional problem that there is a Jordan block representation of the linear problem as
0 1
010

L;=@ 0 1A: (V1.59)
000

This type of triple zero problem produces the so call Triple Zero (TZ) bifurcation [GFERL
FGRLAO2]. Here the dimension is in nite but we can still use these ideas. The eigenvalue
problem is “unusual” since there is only one eigenvector for three eigenvalues. To form a basis

at criticality = < = 0, we have to use the notion of generalized eigenvectors (with not
the same sense that for van Kampen generalized eigenvectors of Section V.2.2)
L o (0):0;|_0 1) = (0);|_0 @ = (1); (V1.60)

where @ and @ are called generalized eigenvectors whif® is a usual eigenvector asso-
ciated with =0.

The corresponding projections are given by the adjoint (generalized) eigenvectors, deter-
mined by

LYy ©@=0;L)®=-0.y4=-~D: (VI.61)
This yields (the rstline is then = 0 Fourier coef cient, the second line is for ati 6 0):
| | 0 o ) 1
0 0 5Co(J)
© = F&m W= Flkn @ =4 F%g X (v1.62)
o m > >
m

The associated magnetizations are:
M[ @1=1; M[ ®]=0; M[ @]=0:

There is some freedom in the choice df), . It is chosen here so that[ @] = 0; this xes
only the scalar product witby; in addition, it is chosen here proportionaldg Note that there
is another in nite family of eigenvectors with eigenvalues

u@) .
o

12. Infact we had this idea at the early stage of the problem but somehow, we got lost and did not pursue further.
13. This is a modi cation with respect to what was presented at the Ph.D. defense where we had not noticed the
inconsistency.
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however, they are not associated with a Jordan block.
The generalized eigenprojections are
0

0 ) 1 0 1 ) (0)
SR —— b - 0 »_B 6 %20
=@ o0y °A D=-@ 2 ¢cyn A @@= > e (V1.63)
m

0 0g0) im oy m? 2

Note that °¢0) 6 0 and “(0) 6 0. These vectors satisfy

h~0; Of = , o

These last relations x the prefactors in front of the eigenprojections, involving the derivatives
of ; the prefactors are nite. There is some freedom in the choicéﬁg; it is chosen here
proportional tocy. Note that it is not possible to obtain such a structure with only one or two
vectors neither with more than three vectors. On the subsigmog @: @; @) the critical
linearized operatar ¢ is indeed a 3D Jordan block, withGediagonal.

We writef as a point on a 3D manifold tangentspan( ©@; @: @) at the origin. It
should be possible to construct locally such an invariant manifold:

f=Ag O+A; W+A, @+ H[AGALA,

At leading order (quadratic), we do not need to comptiteThe dynamical equation for the
perturbatiorf is
@ =Lf+ L f+B(ff):

At quadratic order, there are a priori 27 terms to computehtde:; B ( 0): )i, for any
I;j; k . The bilinear formB reads

X
B(g;:hm =M[h] il(gcy | dn (C):
160
Hence the only non zero terms at quadratic order are
B(®, Oy:i=0;1;2
Then many projections vanish because of symmetries. Finally, only 4 terms remain:
h“(o);B( (1); (0))i : h“(l);B( (0); (0))i : h“(l);B( (2); (0))i : h“(z);B( (1); (0))i:
Close to criticality, we need to compute the contributions oEL . We have (emphasizing
that all terms have leading ordey:

L g= @g Mg F j@cosq
We have a priori 9 terms to compute, th&”: L )i, The non zero ones are

The nal reduced system is

Ag=A,+ bAl +  01A0A1 (V|64a)
A;=(1+ C)Az+ aAg+ A2+ 02AA; (VI1.64b)
AQ = 01AOA1; (V|64C)

where the coef cients have to be computed numerically. It can be simpli ed a bit further by
changes of variables. However, such a 3D dynamical system is not straightforward to analyze.
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9.2.a Quick analysis of the reduced equations

At linear orderA, = 0, SOA is conserved at this order. Notice thdf has a non vanishing
zero mode; hence it modi es the Casimirsfof at linear order. It is thus normal that an initial
condition withA, & 0 cannot be dynamically connected to the reference dtate A; = A, =
0. Itis also a hint that there may be a nonlinear generalization of this conserved quantity
which would be the trace of the Casimir conservation. Let uSi{i#o; A1; Az) = Az + g(Ao),
with g(Ag) = O A3 . Taylor expandingy, computing order by order, and resumming the
series, one obtains the conserved quantity

1+ b
G(AgA2) = Ay —Ag+ Mln 1+ —2 A : (V1.65)
01 01 1+ b

Since the dynamics is at best accurate at quadratic order, this exactly conserved quantity should
be considered with care: it is probably relevant at quadratic order only. As a rst consequence,
the dynamics is two-dimensional, and this is the reason why we do not observe chaotic trajec-
tories. We are interested in initial conditions very close to the weakly unstable stationary state,
actually in nitely close: hencé\;(t = 0) can be thought of as very small. Hence the value of

the conserved quantity is essentiadlyThe reduced dynamics, truncated at ordlgi(dropping

terms such ad§, k > 2, and A 3) becomes

Ao
Ag

1+ b)A1+ 01AA;

G()A+ oA0)*+ aAo+ oo %— o1 A§

Where we used thab is constant in time and very small such tif@af ) = O(A,(0)) =

O() with G( ! 0) = 0. This last system is similar (up to some variable change) to the
Bogdanov-Takens normal form [Tak74, Bog75, HK91, Kuz04, Kuz05]. This dynamical system
has two xed points for ! 0: the reference onf;0) and a new on¢ a=( g0  01=2));

the new one is at distan€®( ) of the rst one, thatisO 2 . There is a homoclinic orbit at

(0; 0), which encircles the new xed point; this homoclinic orbit is a separatrix: any orbit inside

it is bounded, and oscillates around the new xed point; any orbit outside eventually escapes
to in nity. The "angular volume" occupied by the bounded orbits aro(®d) is small (of

order ), because the stable and unstable manifol@8;&) are close one to another. Hence one
has to choose well the perturbation to observe a bounded dynamics. Nevertheless, any initial
condition withA,(t = 0) = 0 and a well chosen sign fdg is in this "bounded region". All

this is strikingly consistent with the HMF numerical simulations, and suggest further possible
tests, since the coef cients are computable.

9.2.b Numerical comparaison between reduced system and full Vlasov dynamics

Our quick analysis already showed that the TZ reduced system predicts a transcritical behav-
lor as the one observed in Vlasov simulations (see Section VI.7). Moreover the saturation scal-
ingO 2 predicted is also the one seen in these simulations. Nevertheless these two features
were already predicted with the unstable manifold approach despite its singularities. Hence can
the TZ model predic more than that? Like the oscillations around the saturated level? Or can
we compare TZ model quantitatively with simulations?

In order to answer these questions, we compute all the coef cianty; ¢ at the initial
condition(My; ) and the nonlinear coef cients at criticalif{Mo) .; ¢), o1, o00; o025 o1-
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Moreover we need the initial conditiors, (0); A,(0); A3(0) to be the same in simulations and

TZ model. The perturbation is given by Eq. (VI.55) however we change the normalization so
that Ag(0) = . By symmetryA;(0) = 0, but due to numerical grid errdk,(0) could be
nonzero (but very small)A,(0) has to be computed with its full de nition. The criticality
around where the center manifold is computed, corresponds for the Fermi distribution VI.37a
to the pointa on Figure V1.4, Taking = < 6 0 corresponds to move on the dashed line;
perturbation of this initial state are perturbation away form this dashed line.

(@ =10 “and =10 ° (b)y = 10°

Figure VI.6 — Comparison of the TZ dynamics Eg. (VI1.64) versus the full Vlasov-HMF dy-
namics. We plot the time evolution of the magnetizatMdr(t) M, for a perturbed un-
stable non homogeneous states of the Fermi distribution Eq.(VI.37a) with 40 and
(Mg = 0:336Q = 0:6691) (which correspond to = 8:62 10 °). The criticality is
((Mg) . = 0:336% . = 0:6693) We test different perturbationswith 1 = 10. The pa-
rameter are (up to three signi cant digitg) =7:44 10°% b= 312 10*% c= b, o =
0:380 oo = 0:18L o, =0:572 o, = 0:602 In the simulations the grid i4096 4096
andpmax = 3.

On Figure VI.6 we show the comparison of the TZ dynamics versus the full Vlasov-HMF

simulations by plottingVl (t) Mg. On Figure VI.6(a) we show the effect of two different

on the amplitude and frequency of oscillations. The quantitative agreement between the full
simulations and the TZ model is very good: for both 10 *and10 ° the predicted amplitude
match with a error around 10%. Moreover the frequency of oscillations also agrees very well.
However we can see on the full dynamics than a small damping occurs while the TZ model con-
serves the amplitude of orbits (in fact there is no dissipative term in TZ model). This damping
could be a manifestation of the weak resonances producing small Landau damping. On Figure
VI.6(b) we show that for positive or negative we indeed have a transcritical behavior. The
O (1) curve predicted by TZ matches the simulations up to a timk= , after it undergoes a
cycling dynamics but does not match the simulations anymore. It is normal considering that
the perturbative approach is no longer valid, nevertheless higher order terms might improve the
agreement.
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9.2.c Questions and puzzles

— Can we make further qualitative/quantitative predictions based on the 3D reduced dy-

namics? Many complicated things happen close to a triple zero bifurcation; here, varying
, we more or less follow a 1D curve in the 3D parameter space close to the bifurcation.

— What happens for a general potential? Computations not shown here show that up to
some details the generic reduced system is identical to Eq. (VI1.64).

— Pushing the computations to order 3 is likely to produce divergences because of the
separatrix. It is not clear how to handle these divergences. Note that models other than
HMF may not have any separatrix, and then should not show this type of singularities.

— The "Crawford singularities" have apparently disappeared at order 2, and this is physi-
cally not unreasonable, since the resonance with zero velocity particles is now very weak.
Does it mean that there is hope for a mathematical conjecture?

— Because of the weak resonances should we couple this TZ system with a kind of single
wave model to account for the small Landau damping? Or does it completely disappear
inthe limit ; ! Owhere the center manifold is mathematically de ned?

— For a generic degenerate Hamiltonian system (with respect to the Poisson brackets) there
are Casimir invariant [MH13, HM13], they are associated with a O eigenvalue. In general
close to a bifurcation without resonances we expect the two eigenvalue to collide
in 0. Thus, is the TZ normal form generic for degenerate Hamiltonian systems (without
resonances)?
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CHAPTER VII

VLASOV-FOKKER -PLANCK SYSTEM

Vlasov equation does not possess any mechanism driving the dynamics towards thermal
equilibrium, as it neglects collisional effects as well as noise and friction. While the collision-
less dynamics can be (and for a given timescale) a very good approximation of the real evolu-
tion, small dissipative mechanisms are usually present and slowly drive the system to statistical
equilibrium. For plasmas [LLP81] and self-gravitating systems [BT11], discreteness -usually
called "collisional’- effects provide this relaxation mechanism; for cold atoms in a magneto-
optical trap, there is a rather strong friction and velocity diffusion (see Part One). How do
dissipative effects act on the dynamics? How are the are two iconic collisionless effects of the
Vlasov equation, namely Landau damping and trapping scaling, modi ed?

In this Chapter, we add to the Vlasov equation a linear Fokker-Planck operator accounting
for a friction/diffusion® in the system. It forces the equilibrium distribution to be Gaussian
in velocity. The rst question that arose from our theoretical physicist mind when we started
the experimental collaboration (Part One) was "Can we observe Landau damping in a very
large Magneto-Optical-Trap?". Since the Vlasov-Fokker-Planck (VFP) equation describes the
VLMOT behavior (according to the standard description), it is natural to wonder how Lan-
dau damping survives with friction and diffusion. Moreover, the detuning controls the friction
and we should then be able to explore different regimes. However, quick estimations of the
friction terms showed us that the system was overdamped leaving a thin hope to observe any
Landau damping. Nevertheless, the theoretical questions remains, how Landau damping be-
haves in presence of friction and diffusion? As we will see the spectrum of the linear operator is
strongly modi ed since the continuous spectrum completely disappear [SS02]. Hence we can
also wonder how these modi cations affect the bifurcation toward instability. Can we construct
the unstable manifold for VFP? Do singularities arise? We know that in stagdard dissipative
systems the saturation of the order parameter follows the "Hopf scaligg"/ , do we
recover this regime for large friction? Standard bifurcation methods should work (e.g. center
manifold, multiple time scale analysis) for a nite dissipation level, however we know they fail

1. That we will often simply denote by friction alone.
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CHAPTER VII. VLASOV-FOKKER-PLANCK SYSTEM

Figure VII.1 — Schematic representation of the main nonlinear results. On the horizontal axis:
the linear instability rate ; on the vertical axis: the saturation amplitude (ie the amplitude
reached by the perturbation over timescales of odder). The dissipation coef cient is

xed. This picture assumes that bothand are small. For 123 the trapping scaling

Asai | 2, characteristic of Vlasov regime, appears. For 42, the normal dissipative
scalingA;S%t I 2 is recovered. In between we predict a plateau with saturation amplitude
Asat / —.

at zero dissipation (Vlasov limit), hence using the unstable manifold technique we should be
able to observe this "breakdown" when diminishing the dissipation.

In the linear analysis, Section VII.2, we show following [SS02] that the spectrum of the linear
operator is drastically modi ed in presence of friction since the continuous spectrum is removed
and the resonances of the dispersion relation become true eigenvalues. Hence in the small fric-
tion limit we recover Landau damping because the eigenvalues of the perturbed system converge
toward the resonances pure Vlasov equation. However, for larger friction the Landau damping
progressively disappears in favor of pure dissipation. Physically the friction/dissipation pro-
vides a cut off to the velocity phase mixing. In the nonlinear part, Section VII.3, we manage
to perform the nonlinear expansion; the dominating contribution is still provided by the zeroth
harmonic of the unstable manifold. Nevertheless, the computations are more involved since
we have to express the problem in velocity Fourier space. Eventually we obtain the different
scaling of the cubic coef cient; that yield the saturation scaling. We nd not two but three
different regimes for the saturation amplitude with respect to the instability parameter and fric-
tion. We summarize these results on Figure VII.1. Furthermore, these regimes correspond to
the ones found for a similar problem on uid mechanics systems [CS87, CS95]. We can put into
perspective this similitude with the fact that Single Wave Model reduction is for both Vlasov
and Euler 2D. The interpretation in terms of critical layer (linear, nonlinear, viscous) is done in
Section VII.3.3.

Note that we consider here only homogeneous equilibrium contrary at what have been done
in the previous Chapter VI. A Vlasov-Fokker-Planck analysis around non homogeneous states
is for now out of reach since the system is not Hamiltonian (no action variable could diagonalize
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1. SETTINGS

the linear problem).

The method presented here is different from the one used in the article we wrote [BM17a]
on this topic. Indeed, in this article to prove rigorous mathematical theorems on the spectrum
of the Vlasov-Fokker-Planck operator we used the already existing framework and results of
J-M. Bismut and G. Lebeau[BL08] on the perturbed harmonic oscillator operator. We then
performed the unstable g calculation using the Bargman representation. Here in this manuscript
we show another way using Fourier velocity calculation as in [LB58, SS02, NBS99]. Of course,
the results are the same.

1 SETTINGS

Our starting point is the Vlasov-Newton-Fokker-Planck equation [Ris89], Eq.(l.31) and
Eqg. (1.33a). To keep the following computations as simple as possible, we stick to one di-
mensional case with HMF interactions. The kinetic equation for the dehégyp;t) reads

@F + p@F K@ [FIQF = @, (pF + @F); (VIl.1a)
[F1= M]f]cosq; (VII.1b)

where is the friction parameter, we have chosen our units sokpdt = 1 and introduced
a coupling parametdf . Hence here we change the coupling paramiéten order to control
the (in)stability whereas in the frictionless case in Chapter V the instability coupling was set to
K =1 and the temperature could vary. This change is obtained by rescaling. The distribution
e P*=2
fo -

is the only velocity stationary solution of this equation. This Gaussian shape is expected since
at thermal equilibrium we expect a Gibbs distribution.

Remark VII.1
In [BM17a] we deal with the Coulomb/Newton case with the same results. The Gaussian equi-
librium is always stable for a repulsive interaction; since we are interested in the weakly unstable
case we focus on the attractive case.

Furthermore, if we wanted the system to relax towards another equilibrium distribution we
could use a more general Fokker-Planck operator

f
@ f°@
for whichf °(p) is a stationary state.

We study the perturbed densky(q; p; 1) = fo(p)+ f (q; p;?) and its evolution. The equation
forf reads:

@ =L f+N f (VIl.2a)
L f= p@ +K@ [FIfp)+ @ (pf + @f) (VII.2b)
N [f]= K@ [f]@f: (VI1.2¢)

Note that the nonlinear operator is the same as in the homogeneous case.

2. We are indebted to Gilles Lebeau for this idea.
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CHAPTER VII. VLASOV-FOKKER-PLANCK SYSTEM

2 LINEAR PROBLEM

2.1 \elocity Fourier

In the homogeneous case the eigenvalue problem has been straightforward, in the non ho-
mogeneous one we had to change variable. Here at the spatial Fourier level we encounter new
terms with rst and second order velocity derivatives

L «fu= ikpfi+ KK ([ 1(F0)°+ @ (pf + @fy): (VI1.3)

To simplify further we proceed to the velocity-Fourier transform (denoted by a hat)
Z

fO)=FTIE@EI()=@2 ) ¥ f(p)e’ dp:

In velocity Fourier@ ! i andp! i@. Moreover fork = 1
1Z 1
df1= 5 fudp= 5@ )R =0): (VII.4)

We also havd®( )= (2 ) 32 =2
The Fourier velocity transform of the linear operator yields

Efi( )= k@fk kK ([fJ®) @ fi e (VIL5)

Remark VII.2

Unlike the two previous conservative case (with no dissipation), thep@tial Fourier mode

L of 6 0. Which mean that = 0 is no longer an eigenvalue associated with an in nite
eigenspace. It is now associated with a one dimensional eigenspace sparifed bgt is to
say there is no more an in nity of possible steady states but only one (the Gaussian).

2.2 Eigenvalue problem

We can now seek an eigenvector of the form= (p)e*d fork = 1.
L kK = Kk (V||6)
which gives in Fourier velocity

2 JR—
L s TORL

@b, + > (VIL7)

We impose the normalization such tﬁé(t =0) = 1. From now on we drop the spatial Fourier
indexk=1,e.9. 1= .
Wedeney=1= ,a= y?>+ y . The homogeneous solutions of Eq. (VII.7) are given by

a

By()=cst e "2 1+g (VI.8)
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Since there is an unphysical divergence at 1=, this solution has to be removed (by setting
the arbitrary constant to 0).
Hence the complete eigenvector is given by a particular solution [SS02, NBS04],

b b K 2 aZ t al
()=DB()= —e ¢ 1+- te ' 1+ - dt
P 4 y y y
K 229 24 2 Yy Xya 1
= 4_ye " y+y (x=y y)e *x% “dx
0
- 4£e Y Yy Ty (ayPty)  (@rliyiy)
(VI11.9)
where we have useQ( = vy) = yKe y2=2:(4 (y )) to choose the lower integration
bound. We have introduced the lower incomplete Gamma function [Q2]
Z z
(a;2)=  t* e 'dt

0

(not to be confuse with the friction parametgrand used (a+ 1;x) = a (a;x) x%¢ * and
de ned
Z X YA 1
d(a;x)= x 2 e 't* 'dt=x % (a;x)= €°(1 s)? lds: (VI1.10)
0 0

Remark VII.3
Inthe limit = 0, the divergence of the homogeneous solution is suppré%,s{eﬁi/ e which
is indeed the Fourier transform of the generalized eigenvéctof + iv). So, with friction

these solutions are removed and there is no more continuous spectrum (see next Section).

2.3 Spectrum

In the previous computation, we did not have to be careful about whetheas on the
imaginary axis or not which is another indication that the continuous spectrum has somehow
changed. In terms of operator the Fokker-Planck "perturbation™ is unbounded (because of the
velocity derivatives) and we expect that even a small perturbation can affect/break the continu-
ous spectrum structure. Indeed, in standard systems there is in general no such spectrum.

The normalization conditior‘?(O) =1 gives us directly the dispersion relation

oL K
(:)=1 4,

In [SS02] is performed the limit ! 0, (which can be done expanding in powerslef in the
integral terms) yielding

1 =d@=2+ =; 1= 2 : (VI11.11)

Z
. K~ 1 _

im (; )=1 — e¥2ssds= () (VII.12)
1o 4

where (10)( ) was de ned in Eq. (V.32) as the analytic continuation of the homogeneous dis-
persion relation denoted in this Chaptdf’( ). It means that indeed the dispersion relation
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tends to the dispersion relation without friction which is expected. The important implication
is that the roots of this analytic continuation (resonances) are even with a small friosidh

true eigenvalues of ; ) and thus of the system. So, wherl 0, the negative eigenvalues
approach the resonances of the frictionless Vlasov equation.

In [BM17a] we prove that indeed the continuous spectrum is empty for the Vlasov-Fokker-
Planck operator with the help of [BLO8]. In mathematics, it is called "stochastic stability"
since eigenvalues of the system with a small stochastic perturbation (Fokker-Planck opera-
tor with a Gaussian noise) are close to the resonances. This stochastic stability for the reso-
nances of the linearized Vlasov operator is a phenomenon studied in other contexts: in uid
dynamics [Bal99], for Pollicott-Ruelle resonances [Drol6, DZ15], or for a Schrédinger opera-
tor [Zwo15].

2.4 Landau damping

In the gravitational case, we know that the eigenvalues are real for a Gaussian distribution,
hence here we focus on a small real eigenvalue. The stability criterion is obtained foras

The system is stableiifIx =1 4£ 0; (VI.13)

which does not depend on the friction. So here when the system is stable it has eigenvalues with
negative real part (that will damp perturbation instead of the continuous spectrum).

Now what does the stochastic stability implies for the relaxation? The Landau damping oc-
curs through the resonances of the dispersion relation. With friction, we have seen that since the
dispersion relation is analytic in the whole plane there are no resonance but only true eigenval-
ues Eq. (VII.12). In the limit ! 0O limit these eigenvalues converge to the resonances which
means that the damping is the same that the Landau damping one. In terms of mixing for a
xed ; the eigenvector'( ) associated with a damped mode decrease as®*y to zero.

It means that its real velocity counterpartv) is regular (Riemann-Lebesgue lemma). In the
frictionless limit, we have () / e which produces a n eigenfunction much less regular and
is therefore physically translated by a more important phase mixing.

Remark VIl.4

What is the behavior of the eigenvalues for large friction? In [Chal3] is studied the repulsive
case where eigenvalues are a priori complex. A transition is predicted for large friction the
damping does not oscillate anymoreZ R < 0). We can see it by using that [Chal3]

1 ad@+ x;x) ™ OLZ; for xed a
at+ a
which means that in the limit for large , we have
K 1
1 —
1 ()=1+ (VI1.14)
with solution r
K

It means that upon a certain level of friction the stable eigenvalue is real and that the dissipation
occurs without oscillation. It corresponds in fact to the transition between an underdamped
oscillator and an overdamped oscillator. Since the Magneto Optical Trap is probably in the
overdamped regime all mixing (Landau damping) effects must have disappeared.
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2.5 Adjoint problem

The adjoint equation can be obtained as in previous Chapters,

LYg=p@ K [(f)%Qf] (r@y @9 (VIl.16a)
L Yo =ipkgk KK [(fO)%@f]  (PQxk @) (VIl.16b)
E b= k@b KK ([(fO%@F] ()+ (@ b) 2 (VIl.16¢)
Let the adjoint eigenvector be= ~(§)e|q
@> 1+—+2h=05t 1£) : (VI1.17)

To get the solution we must separate the problem in several domains and seek a homogeneous
solution (fork = 1):

B y=ce®™e = @1+ ) W=?1 (VII.18)
we know thatb( 1= ) = 0 also that fow < = homogeneous solution does not admit real

solution so we put the function to zero in this domain. Then combining it with the particular
solution [NBS04]

1 — = + =
bL():( 0())ez'ze'(1+ )R @@=+ ) () (VI1.19)
where we de ned( ) as the Heaviside function and used ) = ( ). The normalization
factor will be justi ed in the next Section. It produces indeed a non zero solution far
] 1= O[. The effect of friction is once again highlighted: it produces a cut-off to the velocity
modes.

2.6 Dispersion relation and normalization check

N
To normalize the projection T b =1,we rst express

K
V)= 4 day)+ y@day) (V11.20)
with z. t z, -
@d(a;x) = x % In < e 't* ldt= x 2¢ t' dt: (VI.21)
0 0
On the other hand 7
e.-\—1 — 1 K ° y —y)a 1 2
(%;)=1= 94 e’ (1+ =y) 1 yd(ay+y)d
y
ZO 2
= e yday) yleyy) o XYy
)4 v Y (VI1.22)
- X ya@yy oy
Q)4 ’ o
1
= :11
) )
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which once again links the dispersion relation and the normalization factor in a nontrivial fash-
ion.

3 NONLINEAR EXPANSION

Here we perform the nonlinear analysis that will be very similar to the one in Chapter V.
The main differences and dif culties are that the unstable manifold will be expressed in Fourier
velocity through rst order differential equation. Furthermore, the asymptotic regimes in
will require nontrivial integral estimations.

Since the symmetr¥(2) holds for the Vlasov-Fokker-Planck equation with a Gaussian
initial distribution f °(p) the unstable manifold is of dimension two with one real eigenvalue
and we can decompo$eon the unstable manifold/" as

f=A+c c+ HAA):

The rotational symmetry insures that the forntbis still constrained by Eq. (V.37), moreover
we can still expand the Fourier coef cient bf in series ofAj? and get

A= A +(&;Nf)= A + cgjAPA+0 jAJ°A (VI11.23)

The nonlinear terms have formally the same expression as before
X

Noff]= K il [f] 1@f =]JAj5K (4[] @ [ 1@ )+ O(AJ")  (VII.24a)
X |

N yff]=K i(L 1) [l 1@f = AJAJK (4[] @hoyo [ 1@hz) + O(AjA}*)
XI (VI1.24b)

No[fl=K i@ 1) [fl, @f =A%K ] @ + OAY: (VI1.24c)

|
From Eq. (VIl.24b) we deduce that the expression of the cubic coef cient is formally the
same that in the frictionless case Eq. (V.49),
D E
N
a(; )= K 2 T@(heo hzo) = 5+ (VI1.25)

where we separated the contribution from the zeroth and second harmonic.
We will derive the expressions @i.o and h,.o with the same method than in frictionless
case. Formally we still have (sinceis real in the attractive case)

(2 L ohg=N off] (VIl.26a)
(2 L 2hy=Noff[; (VI1.26b)

but here the linear operatar , 6 0 and we only know the Fourier velocity expression of
which forces us to solve a differential problem

2 _
Qoo+ 2" hoo=  SPa(b b= (VII.27a)
2 + 2 KP_—
T R,= oS b
@R, + o B, > 25" (VI1.27b)
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Remark VII.5
At rst sight the perspective of Fourier velocity computation transform back in real velocity
space is not enjoyable at all, but thanks to the Parseval theorem claiming that the Fourier trans-
form is an isometry, the result of the projection (scalar product) will be the same expressed in
real or Fourier space,

Z Z Z Z

g (Mf(Pdp=(2 )* b()e® d° o 9e * °d © dp
Z

7
b)Y ( 9dU = b)) )d:

he (p); f (p)i

(VI1.28)

It is really one of the big advantage of the unstable manifold expansion with its geometrical
interpretation, that allows to express the problem in the most convenient basis and still have
formally the same quantities to compute. For example, in [BM17a] we express the problem
in another basis, the Bargman one but the quawctitis exactly the same in both cases. The
Fourier velocity uses integrals while the Bargman representation uses series. In the way, we
automatically prove some integral/series equalities.

3.1 Cubic coef cient

As in the frictionless case there are two terms to estimate onehygtand one withhy.o.
We will compute the divergence induced by the rst term and recover the Crawford one in the
frictionless limit. Theh,,, term for = 0 does not produce any divergence and as shown in
Appendix C.2.

Remark VII.6
With a more generic potential there would be a third term, easier to compute, that produces a
divergence like ! for =and Bfor 123 As we will see this singularity is

always weaker that the one produced by the zeroth Fourierhiggm

We seek a particular solution of Eq. (VII.27a)

K P z
Roo( )= 5 2ye 2 2 & by by
P 70 (VI1.29)
=2 gyl B day’ vy dayi+yn dt,
0
SO
p KP—% 1
CghO) = iK 2 (T@phO;O) = E 2 ( )ho;od
2K 3 Z 0 z
- y? UL+ =y)rteY ¥ d(asy’ yt) d(ay’+yt) dtd:
4 9Q) y 0

(VI1.30)

The dif culty lies in estimating the asymptotic behavior of this integral. In this Section, we
will not present further computations to only highlight the results and leave details for the
Appendix C.1. Thé,. term gives the main contribution to the cubic coef cient. We get in the
limit of small instability and friction , three different regimes,
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i 1=3 ’
"; 4=3 1=3
i) 43,
The asymptotic expansion gives for the cubic coef cient
8
2 2K 2:4 3; 1=3
¢ & _josf % = 1= (VI1.31)
j csi O(1); =
In regime i) (Vlasov regime) we recover exactly Eq. (V.54) (Wikh = 1). This yields the
saturation scaling 3
E 2. 1=3
Asat 28, 4= 1= (VI1.32)

>
T 1=, 4=3.
We indeed recover both trapping and Hopf scaling for small and large friction as well as an in-
termediate regime. This result is summarized on gure VII.1. We discuss the different regimes
in the next Sections.

Remark VII.7

Once again in the unstable case, the friction acts as a cut-off for divergences: high velocity
modes that were responsible for the pinching singularities are now suppressed at some level
1= .

3.2 Higher order terms

The natural step after estimating the cubic term is to check the scaling of higher order terms.
Unfortunately, the full consideration of all the different terms have not been done yet (it is quite
intricate). Preliminary computations tend to show that

) O GjAsai® =0 CjAsai® ; 1= (VI1.33a)
i), i) O GjAsai® O CjAsai’ ; 18 (VI1.33b)

Hence in regime i) where we had the trapping scaling the truncation is not possible while it
seems possible to do so in regimes ii) and iii). Therefore, we can conjecture is that in region
ii), iii) a local dimensional reduction of the bifurcation is possible and thus would describe
well the saturation. In particular, we should expect the characteristic trapping oscillations (see
Figure V.6) only in the regime i). A numerical simulation could check that there are no oscilla-
tions for 123 Unfortunately, | do not have a Vlasov-Fokker-Planck solver. A molecular
dynamics code could be used but would require a very precise integration scheme and a large
particles number.
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3.3 Ciritical layers

How to interpret the three different regimes of friction, i), ii), iii) in terms of critical layer?

So far, we have abusively use the term friction to talk about friction AND dissipation. Here
we distinguish the two. We denotep the typical scale of the critical layer (CL) size in velocity
(in space itis of orde? ). The different time scales of the problem are

dyn ! Dynamical time (VIl.34a)
1 Viscous time (VI1.34b)
NL Asalfz Nonlinear time (see Eq. (V.58)) (VI1.34c¢)
a p? typical time for phase mixing inside the CL (VI1.34d)
diss L p? Dissipation time (VIl.34e)

where 4ss Was estimated from the dissipation ter@éf . The friction time scale is always
lager than the dissipation timescale thus we shall leave it aside.
Comparing timescales with the advection terms yields the different possible CL

Poyn  : Pass T pw AP (VI1.35)

— If  payn Daiss ( 1%3) the dissipation is negligible. Then saturation with the
nonlinear term force pPgyn Pae - ThusAga 2. So, we indeed expect Vlasov
regime for 1=,

— If  Payn Paiss the CL is viscous. Saturation with the nonlinear terms forggiss

P . ThusAge 2. However, this regime is relevant onlyAf,, 2 (standard
scaling for dissipative systems). So, we recover that the intermediate regime yields for
4=3 1=3
— The dissipative (third regime) regime is thiig,y 2 for 43,
This simple reasoning has the advantage to simply predict all our unstable manifold results
(both scaling and regimes) with some qualitative picture on the different critical layers.

4  CONCLUSION AND CONJECTURES

We provide here some concluding remarks, and make some conjectures to go beyond the
results obtained.

1. In regime i), we recover not only the trapping scaling, but also the univers# =4
prefactor, obtained without dissipation in [Cra95a, Cra94b].

2. Notice that in regimes i) and ii), the dominant contributiortdas a diverging integral;
this means that large velocity modescorresponding to highly oscillating velocity pro-
les, provide the dominant contribution. In regime ii), the dissipatioplays a role in
the cut-off, contrary to regime i) where the cut-off is not strong enough. In regime iii),
there is no more divergence.

3. It is interesting to compare more precisely with the literature on weakly unstable 2D
shear ows. In [CS95, CS87, CS96], the regimes4d)/ 2 and ii) ¢ / 43
also appear. However, the regime @y = O(1) is different, and the boundary between
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CHAPTER VII. VLASOV-FOKKER-PLANCK SYSTEM

regimes ii) and iii) is different too. A possible explanation is that when the dissipative
time scale is shorter than the linear instability time scale (i.e. ), it is necessary to

add an external force to maintain the background shear ow. By contrast, maintaining
the Gaussian velocity distribution in the present Vlasov-Fokker-Planck setting does not
require any extra force, since it is stationary for the dissipation operator.

4. The 123 boundary already appeared in the literature on Vlasov or 2D Euler equa-
tions: in the derivation of the Single Wave Model, taking/ 3 is the right scal-
ing to ensure that dissipation enters in the equation at the same order as the "Vlasov
terms" [GH88, dCN98b, Bal99]. This is consistent with our nding that for 3, the
dissipation has no effect at leading order, while for 3 it qualitatively modi es the
problem.

5. Inthe pure Vlasov case, it is known that rescaling time and amplituléths 2 (t),

all terms in the expansion in powersAfcontribute at the same order to the equation for
[Cra95a]; it is thus impossible to safely truncate the series to obtain a simple ordinary

differential equation, which is usually understood as a manifestation of the fact that the

effective dynamics close to the bifurcation is actually in nite dimensional [BMT13].

Here in regards to the rst estimation of Section VI11.3.2, we may conjecture that as soon

as 3 under a rescalind\(t) = 22 (t), the series can be safely truncated,

yielding an effective ordinary differential equation for the reduced dynamics.

6. Itis worth noting that the bifurcation of the standard Kuramoto model [Kur75] (see Chap-
ter VIII), which shares some similarities with Vlasov equation, does not present the same
kind of divergences [Cra94a, Cra95b], and has been tackled at a rigorous mathematical
level [Chil3, Diel6b, FGVG16]. One may then wonder if the regimes ii) and iii) of
Vlasov-Fokker-Planck equation may be also amenable to a mathematical treatment. All
these conjectures go well beyond the scope of this work.
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CHAPTER VIII

BIFURCATIONS IN COUPLED
OSCILLATORS SYSTEMS: THE
K URAMOTO MODEL

In the three previous Chapters, we have studied Hamiltonian systems with or without dissi-
pation, with long-range interactions and explored their out of equilibrium dynamics using the
unstable manifold method. In nite systems, the out of equilibrium states (QSS) eventually
relax to some statistical equilibrium in times = O N . Is the physics of purely out of
equilibrium systems different? When we started investigating the bifurcations for the Vlasov
equation we became aware at some point of a model displaying a lot of similarities with a non
Hamiltonian structure. It was the Kuramoto model. This model had also been studied by J.D.
Crawford and had no singularities in its bifurcation expansion. The rst thing we wanted to
understand was what was the difference.

Hence in this Chapter we introduce the Kuramoto model for Coupled Oscillators that is
purely out of equilibrium (and non Hamiltonian). The model is by itself very interesting and
rich; it is uses in many different elds to understand the synchronization phenomenon in a
large population of oscillators which result in a nonlinear cooperative effect. The model origi-
nally introduced by Y. Kuramoto to describe circadian rhythm [Kurl5]. The model is relevant
for many of physical/biological/chemical/social/electrical systems such as crickets chirping in
synchrony' [Wal69], crowd applause [NRVO, XVS08], pedestrians on bridges [PTR,
OA08], electrochemical [KZH02] and electronic [TZT2] oscillators, laser arrays [HKTL3],
metronomes [MTFH13], etc. The force of the Kuramoto model relies on its simplicity and yet
universality to describe the synchronization phenomenon

As we will see this model inthdl ! 1 limit displays similarities with Vlasov dynamics,
like a continuous spectrum and Landau damping. However, it possesses some major differences

1. Characteristic of the South of France.
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CHAPTER VIIl. COUPLED OSCILLATORS SYSTEMS: THE KURAMOTO MODEL

in its standard form that make some "miracles" possible. In particular, an exact (i.e. non local,
for any magnitude of order parameter) dimensional reduction known as the Ott-Antonsen ansatz
exists while the unstable manifold expansion does not exhibit any singularities. However, this
reduction does not hold if the model is slightly modi ed. In the nal Chapter XI, we will gather

our thoughts on the "why" such dimensional reduction is possible or not.

This Chapter will be dedicated to review known results on the Kuramoto model and one
simple extension in the light of our previous experience with the Vlasov model. We will expose
different methods to solve the bifurcation toward synchronization problem, from Y. Kuramoto
early calculations to the most recent mathematical results of H. Dietert through Mirollo & Stro-
gatz, J.D. Crawford's unstable manifold computations, Ott-Antonsen ansatz and H. Chiba re-
duction. This Chapter also serves as an introduction for Chapter IX and X where we present
our original results concerning the bifurcation analysis of the Kuramoto modi ed by inertia and
delayed interactions.

1 HISTORICAL REVIEW

In nature, many system displays some rhythm, like the spikes emitted by neurons or the
cricket's frequency of singing. In 1665 Dutch physicist C. Huygens (inventor of pendulum
clock) - ill in bed - noticed that no matter initial conditions, the two clocks on his wall even-
tually synchronize. He then led several experiments to understand this phenomenon, it was
the rst scienti ¢ description of synchronization. What is surprising about this phenomenon
is that the weak coupling (through vibration on the wall [OM15] for this example) is suf -
cient for full synchronization. Other examples Understanding synchronization in large popu-
lations of coupled oscillators is a question which arises in many different elds, from physics
to neuroscience, chemistry, and biology, see for example the book [PRKO1]. Since this syn-
chronization phenomena seems quite universal, there must be some minimal model describing
synchrony all those systems. The rst idea to reach such paradigm was to describe the os-
cillators through their phases only and was proposed by A.T. Winfree [Win67] (see also his
extraordinary book [Win80]). Therefore, for one oscillator the dynamics is only given by one
equation on its phase, so the dynamics is automatically non Hamiltonian (since there is no evo-
lution equation for its velocity) and out of equilibrium. Then Y. Kuramoto proposed an even
simpler model where the interaction term that should in principle be model dependent was cho-
sen as ain function®. It means that it is then the rst Fourier mode of a generic potential that
dictates the dynamics of synchronization. It is consistent with the Vlasov investigation where
the rst mode is always the rst one to be unstable. Such minimal model is then enough to
understand qualitatively dynamics of a large number of coupled oscillators.

2. What we will refer as the original/standard/ rst order Kuramoto model.
3. The precise mechanism behind the Huygens clocks was only elucidated recently [OM15].
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1.1 The model

The Kuramoto model, which features a sinusoidal coupling and an all-to-all interaction be-
tween oscillators, has become a paradigmatic model for synchronization, and its very rich be-
havior prompted an enormous number of studies. The key ingredients &tedsxillators

— Evolution of the phase. = uniquely.
— Each oscillator has its own naturgl frequengy2] 1 ;1 [.
— A weak all-to-all coupling a&=N sin( ; i)

Putting everything together leads to

KX |
=it | sin(; 1) (VII.1)

where thd ; are the natural frequencies of oscillators drawn according to some distribution law
g(! ). Through a phase shift it is always possible to center the frequency distribution to zero.
The dynamics is made through N coupled rst order equations (where it N for a
Hamiltonian system). Kuramoto introduced an order parameter (now named after him) that
measures the synchrony of the system,

X
ei: (VII1.2)
j=1

) 1
= iri rt) = =
r(t) = jrje N

In fact, r is the strict equivalent to the magnetization in the HMF systemr Fob the system
is homogeneows asynchronous while far 6 0 some partial synchrony occurs to reach perfect
synchrony at = 1.

1.2 Original result (Kuramoto 1975)

The Kuramoto model was proposed and "solved" by Y. Kuramoto at the same time [Kur84,
Kur75]. We retrace here quickly its early computations. Since

KX K K. .
N | sin(j )= - e 'toce = EjerIn(i ")
one can study only
—= ! + Kjrjsin (VI1.3)

where the phase, has been set to zero thanks to the rotational symmetry.

The great idea of Y. Kuramoto was to separate two populations of oscillators, one "locked"
containing synchronized cluster and the other one "drifting" composed of the oscillators drifting
around

I'= Tiock * Tarift -

He could predict the critical coupling parameker= K. and the shape of the bifurcation for
r, . In the locked region, we have for a stationary state0 and

I = Kr sin (VII.4)
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CHAPTER VIIl. COUPLED OSCILLATORS SYSTEMS: THE KURAMOTO MODEL

which is only possible fo¥ < Kr ; . It de nes the limit between drifting and locked oscillators.
Then he estimated the two contributions in the lddgel  limit with a symmetric distribution
g(!)=g( !), self consistently as

Z—Z

Mocked = K1 cog g(Kri sin )d: (VIII.5)
2

The drifting part is more involved:

z a(!) z cos

e T O

where( ;V, ()) is the attractive periodic orbit for an oscillator with intrinsic frequehgyand
T(!) is the period of this orbit. Her¥®, () = ! Kr, sin , so due to the symmetry the
drifting part is zera g = 0.

Near the onset of synchrony, we haye 1 so for regular function we can expand tipe
distribution

Marift =

(VII1.6)

YA =2 (Kr )2 YA =2
M = focked = Kra  g(0) cog d + 21 g*{0) siP co¢ d +0O r}
=2 =2
2

2 16
(VII.7)

This only produce non zero solution f&r > K . = 2=( g (0)) wheng®{0) < 0 (unimodal
function). Moreover in this case, the transition is supercritical with

S

16 K
In the event thag®0) > 0O, higher order terms have to be considered and the transition is
subcritical (discontinuous).
An amazing feature of the Kuramoto model is that those simple calculations predict the exact
asymptotic results (with the right coef cient and stability criteria)! In gure VIII.1 we plot the
exact bifurcation diagram that is in agreement with prev&ous computations. For a Lorentzian

distributiong®0) < 0we observe a square root bifurcation K K. For a bi-Lorentzian
distribution Eq. (V111.28) withg®{0) > 0 the transition is indeed subcritical. We will explain
later in Section VII1.3, how this plot was made.

Remark VIII.1

If those calculations are powerful, there are self-consistent, meaning that we assume the exis-
tence of an asymptotic steady state and nd it. It does not provide us with the dynamics of how
such state is reached. That will be given for example with the following bifurcations techniques.
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1. HISTORICAL REVIEW

1.3 Large oscillator number limit (Mirollo & Strogatz, 1991)

Thanks to its resemblances with the HMF model, obtaining a kinetic equation of the Ku-
ramoto model inth&l ! 1 limit is mathematically easier than in for Coulomb like systems.
In [SM91], S.H. Strogatz and R.E. Mirollo consider for the rst time this coupled oscillators
problem with a kinetic equation, studying its linear stability. The evolution equation that we
call here the Kuramoto equation is for the one particle density distrib@ijom; t ),

@ +!@F+ %@ riFle’  r 4Fl¢ F =0 (VIll.9a)
rnF1=  F(;Lt)ek dd; (VII1.9b)

Z
F(;:t)d =g(!); (VI11.9¢)

Z
g(! )d! =1: (VI11.9d)

As before for the linear and nonlinear study we will need to decompose the equation around
the incoherent solutioh®(! ) = g(! )=(2 )asF(;!;t )= o)+ f(;!;t),

@ =L f+Nf (VII1.10a)
Lf= 1@f %%@ rifle’  r ff1e (VI11.10b)
N f = %@ rifle’  r (f]e f : (V111.10c)

Let's list the differences and similarities between the Vlasov homogeneous kinetic system and
the Kuramoto one, just looking at Eq. (VII1.9) and Eq. (VIII.10).

Similarities

— Same HMF interactions (thus same order parameter)

— The presence of an advection term that was previously responsible for the continuous
spectrum and Landau damping. Thus, one may expect Landau damping to also occur in
the Kuramoto model.

— The 0" Fourier mode of the linear operatbry = 0. In Vlasov equation this was linked
directly with the in nite number of possible stationary states. Here it also means that any
distributiong(! ) (regular enough) is steady state solution. Thus 0 is an eigenvalue
with an in nite dimensional eigenspace associated. One could de ne Casimir invariant
for this problem as 77

GIf1=  SIf1(;5t)d; (VIII.11)
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Differences

— The rst order dynamics induces no derivatives ter@sonly @.

— The 0" Fourier mode of the linear AND nonlinear operator are 2drg = L o = 0.

It means that the spatial Fourier mofdgis constant in time (and even zero by normal-
ization). An equivalent statement is given in Eq. (VIII.9c). A direct implication is that
the unstable manifold that will be constructed in Section VIII.2 has no zero spatial mode
Ho = 0. Remember that in the Vlasov case thisarmonic was responsible of the
strongest divergence in the dynamical expansion (its importance in terms of diverging
coef cient is also known in uid mechanics, see [CS87]). Therefore, if any divergence
occurs we expect them to be weaker.

Hence since the linear operator is similar (up to one velocity derivative) the linear problem
looks very much like the Vlasov-HMF case. The criteria derived in [SM91] holds for generic
g(!) function. S.H. Strogatz and R.E. Mirollo also consider a Gaussian noise for the phase
which has for effect to add as with Vlasov-Fokker-Planck equatibr@ operator (wher®
Is the diffusion coef cient). In terms of spectrum this noise displaces the continuous spectrum
ontheleftplaneon,=f = Re = Dg

Remark VIII.2

If the support ofg(! ) is nite on [ a;a] so will be the continuous spectrum = flm 2

[ a;al[ Re =0g. Itis also true in the Vlasov case, but here we restrict to distribution with

in nite support. The branch cuts in the continuous spectrum are responsible for other effects as
in the non homogeneous case.

2 CRAWFORD APPROACH (1993)

At this point the linear analysis had been done, it remained to deal with the nonlinear dynam-
ical analysis of the bifurcation with genemgdistribution. Historically at the same time as his
paper on the homogeneous Vlasov equation J.D. Crawford performed his unstable calculation
for the Kuramoto equation. Its results con rmed the nding of Y. Kuramoto. On this subject a
very well written paper by S.H. Strogatz [StrO0] (that could serve as a nice introduction to this
PhD thesis) highlights the crucial contribution of J.D. Crawford on the topics.

Since the method is very similar to the previous cases we will only gather the most important
steps here.

TheO(2) symmetry predicts as in homogeneous Vlasov, thgitsfeven with each eigenval-
ues associated with an eigenspace of dimension twg.igfnot even, there is only tHeO(2)
rotational symmetry and the eigenvalues have an associated eigenspace of dimension one.

11 )= 1(1)e = % gf i)! e (VIll.12a)

€.(;1 )= (! )é— = %;ﬂg— (VII1.12b)
_ K o)

1()=1 > T d! (VIIl.12c)
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Z
with once again €,; ; =1 and 1d! =1 For the nonlinear problem, we have

N 4[f]=0 0 L (VIIl.13a)
P .
N qff]=] AJZAE @ry[ jlhze  Ar of 4] |E? +0 jAj? A (VI1.13b)
=0
N ,[f]= K A%r [ 1] +0 jAj? (VII1.13c)
SO
D E k D E
A= A+ TN4f] = A 2 > “1;hao JAJPA+0 JAJA (VII.14)
Z
I {c3 }
Since we can compute
_ K2 ogo)
h,.0(0) = C+ i) (VIII.15)
we are left with .
_ K1 g')
T 2y (Y
K2 o) (VIII.16)
2 Q)

Since we want to deal with an unstable manifold of dimension two let's either assume that
gis even and real (which is not automatic, for example bi-Lorentzian distributions exhibit a
threshold upon which a real eigenvalue becomes complex.complex andy not even.

Here let's assume thatis real, let's performthe ! Olimitin cz. Thanks to integration by
part and Plemej formula we obtain

K ¢ 9°t0) o=a °K¢Z

— 0 .
c3(0) 2 PV )= d 79 {0): (VII.17)
If we go back to the variable withr 2 A
2
r=r + %go‘(O)jrjzr +0 jrj*r (VII1.18)
which gives S S
16 16 K

where we have used that for a Lorentzian distributiorr K=K . 1. It is the original Y.
Kuramoto result.

Remark VIII.3

We notice that to be supercritical we should in principle prove tR8* +i ;)= 40" +i ;) <

0 either with i)g even and ; = O or ii) g not even and; 6 0. To my knowledge nobody has
proved such thing or even considered this question. Indeed, in general authors are concerned
with even unimodal distribution (where the demonstration is immediate). In Appendix D.3, we
prove in the i) case that this is true for bimodal distribution (in particular it says that gigen

even and bimodal, eigenvalues are real iff0) > 0). But the demonstration still resists for

more generic functions.
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So in this Kuramoto example despite the presence of a continuous spectrum, the cubic coef-
cient is non singular! Giving rise to a standard "Hopf" scaling as in dissipative systems, while
the relaxation process in stable case is still pure Landau damping.

Do the higher orders terms possess some divergences? The answer is no for the standard
Kuramoto case, see a generic demonstration given in [Cra95a]. Hence if the higher orders
coef cients are regular then, we have close to the bifurcation 1 at saturation,

O(jAj1)=0 oA} O CuujA™ : (VII1.20)

Therefore, we expettthe one dimensional description Eq. (VI11.18) of the in nite dimensional
original system to be accurate for the supercritical bifurcation.

At this point the natural question is "Why does it work here and not with Vlasov"? Is it
uniquely linked with the presence of diverging coef cients? What makes a coef cient to diverge
or not? Why in the unstable case the continuous spectrum does not seem to play a role? Is there
some kind of Single Wave Model associated with trapping of particles ? In [BS00] the authors
start a SWM approach for the Kuramoto model, but it seems that they do not pursue further.

3 OTT-ANTONSEN ANSATZ (2008)

In 2008 while the Kuramoto eld was already quite big, with many extension and methods
to study them; the "game" was shaken by an astonishing discovery of E. Ott and T.M. Anton-
sen [OA08] which could be the dream of every theoretical physicist: the discovery of an explicit
class of solution to a full partial differential equation... This new solution lead to a large number
of papers using this Ott-Antonsen ansatz (OA ansatz). The force of their ansatz is to reduce
exactly the dimension of the bifurcation problem in a certain case globally. Here globally is
opposed to locally and means that the analysis holds for ahythis Section, we will discuss
this ansatz.

3.1 The ansatz

Let's decompose the real distribution function in its Fourier explansion
ey 9() X + Yok o~
F(;ht)= > 1+ k(hit)e +cic (VIII.21)
k>0

We now restrict the dynamics to Fourier modes that satis es the following ansatz
()= K, (VIIl.22)

wherej j < 1to ensure the convergence of the series. Inserting this in the Kuramoto equation
Eq. (VI11.9¢) gives after a factorization by* the same equation to satisfy for each Fourier
mode:

K

+il o+ 2
@ Z >
r(t)= (h;t)g(t )d: (VI1.23b)

rr =0 (VIIl.23a)

4. Of course itis not a mathematical theorem saying that this unstable manifold is attractive, but a formal result.
5. 372 citations in less than ten years which is quite big for this eld | guess.
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3. OTT-ANTONSEN ANSATZ (2008)

This equation is still in nite dimensional but less "complex” since we only have to deal with one
Fourier coef cient. For example, we have a simple expression for the total distribution function

a(') k(5 1)ek
F(;ht)=—— 1+ — + C.C ) VIIl.24
(ht)=3 1 (e ¢ ( )
One could nd some similarities between this reduced model and the Single Wave Model
Eq. (V.59).
Another miracle occurs at this step since for a Lorentzian distribution the integrals can be
computed explicitly thanks to its poles if i

1
a = PR (VI1.25)
For simplicity we take = 1. Thus, we have
Z
r(t)= t)a(t)d = (i) (VII1.26)

The price is of course to assume some analyticity of tflet ) functions. So replacing with
' = iinEqg.(VII.23) gives exactly

_ K K¢ K. .,
r= > r EJF]I’ (VI.27)

with K. = 2. Here there is no neglected higher order termsraddes not have to be small. It
means that there is an exact global dimensional reduction to the "standard” normal form. The
dimension went from in nity to one (for this class a solution satisfying the ansatz Eq. (VII1.22))!
Despite that it is not the purpose to study in details all the possibilities of this ansatz let's
mention that it works (with a reduction not necessarily to dimension equal one) for a variety of
extensions [OAO08]:
— All rational functions. For bi-Lorentzian distribution [MB®9],

— 1 + 1 .
2 ZH(1 12 2Z4(l +1g2 7

Ot (VII1.28)

one can reduce the system to a set of two coupled o.d.e. In particular, one can plot
the exact bifurcation diagram for a Lorentzian and bi Lorentzian, see Figure VIII.1 (the
equations of the red plot are not shown here the interested reader can refer toq®BS

— Aforcing term

— Delayed coupling, we will come back to this in Chapter X

— Different species of oscillators with different coupling within each species.

6. Integrals of rational functions are particularly simple to compute with this trick.
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Figure VIII.1 — Bifurcation diagram for the Kuramoto order obtained via the OA ansatz. Dashed
line show unstable states while solid line are stable steady states. In black the supercritical
bifurcation corresponding toy = 0 in Eq. (V111.28) (associated distribution shown in the inset).

In red, the subcritical bifurcation of Eq. (VII11.28) fdr, = 0:8 (associated distribution shown

in the inset). Associated OA ansatz for this latter case in [M&3.

3.2 Comparison between Ott-Antonsen ansatz and the Unstable mani-
fold

Now a lot of questions arise

— Why does it work? Some papers have addressed the generality of this reduction for some
extensions of the model [PR08, MMS09] as well as the analogy with the Watanabe-
Strogatz ansatz [WS93].

— Is this OA manifold representing well the full dynamics? In [OA09, OHA11] the at-
tractiveness of the ansatz for the full dynamics is sholmrparticular, for distribution
g with non zero spreading all attractors of the full system lie on the reduced mani-
fold, and all attractors of the dynamics on the reduced manifold are attractors of the full
systerfi It says that for regular enough distributig(! ) (with no zero width) a phase
mixing between the different oscillators occurs so the system eventually relaxes to the
OA manifold.

— The physical meaning of this reduction still for us remains unclear. How to interpret
that for a Lorentzian distribution we get an exact one dimensional reduction while for a
Gaussian distribution we still have an in nite integro-differential problem (still simpler
than the full Kuramoto model). Is it just mathematics?

— Can it be applied to the Vlasov case (in which case most of the previous work would be
useless!)?

— In the bi-Lorentzian case we know that there must exist an exact two-dimensional re-
duction, how with the Crawford technique could we end up with this reduction (since it
matches in the supercritical case?). How the Crawford approach is local and exactly the
same that the global OA reduction? What for the subcritical case Wwbéfg =1)?

7. Which is always the case we study.
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Are higher order terms exactly zero like with the OA ansatz?

One of the obvious limitation of the OA ansatz is that it really fully works only for rational
function while techniques as Crawford's one are more generic. This point legitimates the use of
such technique. How does the unstable manifold look compared to the OA ansatz? To answer
this question let's write the distribution on the unstable manifold, for convenience we de ne
before

a(!)

(1) = 57 20t (VIII.29a)
|

hy; (1) = % () b1 (VI11.29b)

= 9D 0y
ki ()= 5 k() J Ok 2 (VI1.29c)
hoj =0 8 O (V111.29d)

it gives
!
F('t )_ w 1+X Ak It eik +cc +X AZjX Ak -t eik +coc
ht)=5 ko(l;t) c:c JA] ka(lit) c:C:
k>0 j 1 k>0

(VI11.30)

Is there a relation between the; ? In fact, the ., are for the standard Kuramoto model easy
to compute, combining Eq. (V.44c) and Eg. (V.45c), we gekfor 2,

K

A¥ k( + i Yheo+O JjAj? N [f]= Ek fkolr 1[f ] fusarisearaff]

K (VII1.31)
= kA" @ny vo[_y,_J*O jAjZ A
2

where we have used thét g1
recurrence we get

k@. Fork = 2 see Eq.(VII.15). Thus, by simple

k0= 1o (VII1.32a)
K 1

10=2 5

(VI1.32b)

which is the exact same structure that the OA ansatz! Therefore, the unstable manifold is at its
rst order expansion belonging to the OA manifold for everglistribution. What is remarkable
is that at this order time is decoupled from natural frequency

() = A(t) 1(1): (VII1.33)

Preliminary calculations tend to show that if we consider higher orders, this structure does not
hold...
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4 MATHEMATICAL RESULTS

Results a la Crawford although very powerful do not prove that the built unstable manifold
Is attractive, which means that we could miss with this technique a large panel of the dynamics.
The job of mathematician in the Kuramoto eld was to prove rigorously several things. Here
are some results obtained

— The nonlinear Landau damping occurs which was proven in a similar spirit than for the

Vlasov equation [FGVG16, Diel6b]. Due to the simpler structure of the potential and of
the equation there is no echo effect that was appearing in the nonlinear Vlasov Landau
damping [MV11, Vil10].

— The rigorous reduction and the associated bifurcation in the supercritical case was proven

with two different methods [Diel6b, CN11].

The demonstration of H. Chiba [CN11] use larger functional spaces the so called "rigged
Hilbert spaces”. It provides a good framework to deal with the continuous spectrum. The
proof of H. Dietert [Die16b] also uses a functional space where there is no continuous spectrum
combined with estimates in spatial and velocity Fourier modes. Note that those results deal
uniquely with regulaf monotonic functions, which do not include the subcritical case when
g°{0) < 0. Itis to my knowledge the only mathematical theorems concerning bifurcations in a
system with a continuous spectrum.

5 EVERYTHING FALLS APART : THE KURAMOTO -DAIDO
CASE (1992)!

So far, we have only seen the standard Kuramoto case where everything worked out greatly.
A suggestion of Crawford in one of his rst paper on unstable manifold [Cra94b] tackles the
difference in terms of singular/nonsingular coef ciegtand Hopf/trapping scaling between the
Vlasov and Kuramoto model:
"This difference in the nonlinear behavior seems noteworthy since the linear dynamics of the
model is qualitatively similar to Vlasov although apparently lacking a Hamiltonian strutture
So is the possibility of exact dimensional reduction/rigorous mathematical results/non singular
coef cients/Hopf scaling lies uniquely in the non Hamiltonian nature of the Kuramoto model?

As we will see in this simple extension of the Kuramoto model introduced and discussed by
H. Daido [Dai92, Dai94, Dai96], the answer is clearly no. We will very quickly state the main
result of the unstable manifold approach for the Kuramoto-Daido model.

The model is de ned as

X X

sin ( j i) % sin2(j i): (VIII.34)
j i

-1+ K
=+ = -1 N
It adds a second harmonic to the standard model, which of course can be relevant in the physics

of some systems. H. Daido through a self-consistent method predicted that in general at the
onset of synchronization the exponent of saturafion/ was =1 andnot =1=2.

8. In [Chil3] the distribution are either Gaussian or Lorentzian while in [Diel6b] they belong to the Sobolev
spacew (™1 with g°(0) > 0.
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5.1 Crawford result (1994)

Once again J.D. Crawford attacked the problem with the unstable manifold technique [Cra95b,
CD99] con rming H. Daido's result. He computed the singularities in the coef cients of the dy-
namical expansion and showed how the saturation scaling was modi ed in general. He recovers
the Daido scaling = 1 and also that the truncation of the dynamical expansion was impossible
since every order contributes the same at the saturation level.

The linear problem is the same as before since the most unstable mode is still associated
with the rst Fourier mode (one can see it easily comparing the dispersion relation for the two
modes). At the nonlinear level, we have minimal differences

N o[f ] = Eq. (VIIl.13a) . (VIIl.35a)
N q[f]= 2 jAjZAKE ho.o + hpod! (VI11.35b)
N ,[f]= Eq. (VIIl.13c): (V111.35¢)
We can computé,.o using the resolvent Eq. (IV.23), to nd
Z Z 9 )
0 = ad! ad!l = :
hz,o hz,o d + K il and h2,0 d! K 1+ (V”|36)
It eventually gives for the cubic coef cient
K2 R ) , 0P, F
= T : VIIIL.37
a= 55y (KV@— 0 (VIl.37)
D E
As we have previously experienced this type of projection with displays pinching
singularities. Here a simple computation shows that we hdwe aingularity. Hence
(K ) g) .
3 1+ (VI11.38)

The sign of does play an important role here: for 0, the contribution of the second
harmonic has an anti-ferromagnetic effect (repulsive), and the transition is always supefcritical
with a scaling

A/ (VI11.39)

which recover Daido prediction. So physically this second harmonic repulsion has an effect of
slowing down the synchronization growth. On the contraly & < 1 the second harmonic

has an attractive effect and the bifurcation is subcritical. For 1 the second harmonic
becomes the most unstable mode, so the unstable decomposition on the rst harmonic has to
be modi ed. A study of the population of oscillators (via self-consistent method and numerical
experiments) reveals that several clusters of oscillators can be formed in presence of a second
harmonic [KP13, LMLY14, KP14] and that several bifurcation branches with various stability
can exists in the subcritical case. It is not captured in the Crawford analysis where we only see
the onset of synchronization when varying the coupling parameter.

9. To be complete we would have to prove thd( ) > 0 which is the same discussion as in VIII.3 and
Appendix D.3.

161 Laboratoire Jean-Alexandre Dieudonné



CHAPTER VIIl. COUPLED OSCILLATORS SYSTEMS: THE KURAMOTO MODEL

5.2 Comparison with the Ott-Antonsen ansatz

When discovering this Kuramoto-Daido model which very much looks like both the Vlasov
case (in terms of singularities) and Kuramoto (in terms of structure), we immediately wondered
if the OA ansatz could apply or not. If it was it would open a door to dimensional reduction
of in nite dimensional systems with a singular dynamical expansion like the Vlasov equation.
However, it does not work. When trying the ansatz on the Kuramoto-Daido case, we end up
with two equations producing inconsistencies, one for the rst Fourier mode and one that can
be factorized for higher Fourier modes

@ +i' + % L KE %, 1, =0 k=1 (VI11.40a)

@ +i + % 2k KE 3, rzE =0 k> 1 (V111.40b)
z

r(t) = (";t)g(!)d! (VI11.40c)
z

r(t) = 2(1:t)g(! ) d!: (VI11.40d)

It impies
((ht)y= ()= Yt

hence that 1j(!;t ) = 1. Which can be problem for the convergence of the series Eq. (VIII.21).
Note that the OA ansatz works partially when there is uniquely one non zero harkonic
(k = 1 being the standard case). It is partial in the sense that is predictive only for the Fourier
modesn k. For example, with only non zesin 3 , the evolution of 5[f ];rg[f ];  is known

but notr[f ]; ro[f ].

Remark VIIl.4

The structure .o = '1‘;0 Eq. (VII.32) a la OA ansatz for the unstable manifold Fourier co-

ef cients hy.o that was holding in the standard Kuramoto case does not hold with a second
harmonic. It is thus tempting to link the OA ansatz failure to this lack of power structure in the
unstable manifold. An idea we had was to use the structure of the unstable manifold to guess
an ansatz on the full kinetics equation. But so far it has not worked.

5.3 The Chibaresult (2011)

In [CN11] there is a tentative of a mathematical approach to the Kuramoto-Daido problem.
Unfortunately, despite rigorous result with the standard Kuramoto case, it seems that in the
Daido case the bifurcation analysis is not rigorous. He claims to obtain the dynamics for any
coupling function:

"The dynamics on the manifold is derived for any coupling functions. When the coupling func-
tion issin , a bifurcation diagram conjectured by Kuramoto is rigorously obtained. When it is
notsin , a new type of bifurcation phenomenon is found due to the discontinuity of the projec-
tion operator to the center subspace.”

Nevertheless, his result is interesting since he nds for the bifurcation, also a "singular” (in
his case discontinuous) projection that does not produce a singularity of thdtypéut a
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guadratic term that respects t8©(2) symmetry
A= A 1TCjAjA+O iAPA (VI1.41)

for someC > 0 coef cient. This equation produces the same bifurcations than the Crawford
result with a super critical bifurcation with= 1 when > 0 and a subcritical one for 1 <

< 0. The difference is that a priori the higher orders terms will not diverge which may say
that locally the reduction is exact. If the claim concerning the rigorousness of this approach as
well as the method of derivation remain unclear the idea that a termAije could remove
and contain the I§irngarities at every order is appealing. For Vlasov to get the trapping scaling
would require a jJAjA term. But it would still not be enough to account for the trapping
oscillations.

5.4 What is the difference?

The fundamental difference between the standard Kuramoto model and the Kuramoto-Daido
model occurs at the nonlinear level fdr 1[f ] = Eq. (VIII.35b). With only a rst harmonic,
f is nonlinearly coupled withli, 1, fx+1. However, sincd, = 0 nothing couples (at every
order) positive Fourier modds> 0 to negative onek < 0. Those modes have a free transport
evolutione P! to the "left" fork > 0and to the "right" folk < 0. With a second harmonic, the
unstable modé; is now coupled also witli; andf ;. In the projection, a la Crawford or a la
Chiba it is this negative mode that causes the singularity/discontinuity. In terms of singularities
we understand that positive Fourier modes are associated with poles on (with convention of
Eqg. (V.55)) the upper half plane while negative modes will have their poles on the lower half
plane, which eventually causes pinching singularities. For the Ott-Antonsen ansatz this negative
mode is also responsible of the failure Eq. (VI11.40). In fact, in the Vlasov case Egisanon
zero it directly couples positive and negative Fourier modes independently of the presence of
a second harmonic. The "proximity" of this coupling seems to produce the most important
divergence. On this subject if one takes a Daido like model with a rst and third harmonic
sin sin3 , f1 is not directly coupled with its opposife ; but tof ,. The consequence
is that the cubic coef cient; is nonsingular while the quintic ong / 2 is. It produces a
scaling with an exponeld4 < 1.

In the result of H. Dietert [Die16b] this positive/negative coupling is also what would cause
the failure of the estimates used for the bifurcation analysis.

Hence the standard Kuramoto model with its exact or even rigorous local dimension reduc-
tion is an exception in the sea of examples with continuous spectrum and generic coupling
function.
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CHAPTER IX

KURAMOTO MODEL WITH INERTIA

We have seen that in the Vlasov-HMF model (Chapter V), singularities appear in the bifur-
cation expansion while in the standard Kuramoto model a regular exact dimensional reduction
is possible. The former model is purely Hamiltonian whereas the latter follows a rst order dy-
namics. What would give a system interpolating the two models as two limiting cases? Would
such a model display singularities only in the Vlasov limit? Or on the contrary be regular only
for the standard Kuramoto limit? Or something in between? Such a model already exists and
it is called the second order Kuramoto model (or Kuramoto with inertia). It is a second or-
der model with friction and inertiam. We nd that some singularities always appear in the
vicinity of the bifurcation. These singularities come from the coupling with the zeroth Fourier
harmonic term that unlike the original Kuramoto model is not constant in time. In the zero
inertiam = O limit we get back the standard Kuramoto case with no singularities, while in
the frictionless limit = 0, we recover the Vlasov Hamiltonian Mean Field model with its
characteristic trapping scaling (due to very strong nonlinear effects).

This model was not introduced to serve our questioning but for physical reasons. Inertia
was added to the original Kuramoto model to describe the synchronization of a certain re-
ies [Erm91], and proved later useful to model coupled Josephson junctions [WCS96, TSS05]
and power grids [FNP08, ONBT14, DCB13]. Recently, an inertial model on a complex network
was shown to display a new type of "explosive synchronization" [JPB]. It was quickly
recognized [TLO97a, AS98] that inertia could turn the continuous Kuramoto transition into a
discontinuous one with hysteresis. At rst sight, a natural adaptation of the original clever self-
consistent mean- eld approach by Kuramoto [Kur75] seems to explain satisfactorily this obser-
vation [TLO97a, TLO97b] a suf ciently large inertia induces a bistable dynamical behavior of
some oscillators, that translates into a hysteretic dynamics at the collective level. However, Fig-
ure IX.1 makes it clear that even a small inertia is enough to trigger a discontinuous transition:
this cannot be accounted for by the bistability picture.

Many other generalizations of the standard Kuramoto model have been introduced to better
t modeling needs. Citing just a few contributions: more general coupling than thessole
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Figure IX.1 — Asymptotic order parameteias a function oK for differentm ( = 0). The
arrows indicate the direction of the jumps. Without inertia, the transition is continuous, while
a hysteresis appears already for small Note the presence of a single branch wité O for

m = 0:25, 0:5, while there are two fom = 1. The dashed line is the partially synchronized
solution given by the self-consistent method (see Appendix D.2nfer 0:5. The frequency
distribution is Lorentziang (! ) =( = )=( >+ ! ?) with =1.

harmonic [Dai92] (as we have just seen in Section VII1.5), noise [Sak88], phase shifts bringing
frustration [SSK88] (that we will use here), delays [YS99, 1zh98] (see the next Chapter), or a
more realistic interaction topology [SSK87, HCKO02].

In the Kuramoto model with inertia the only predictive approach so far was the self-consistent
method a la Kuramoto (see the Chapter VIII.1.2 and Appendix D.2). This approach was studied
numerically or analytically in the large friction limit [TLO97a, ONBT14]. The Ott-Antonsen
ansatz fails immediately. However, in [JPRK14] a tentative is done with no true reduction a
la Ott-Antonsen but with some function with tting parameters. Thus, an unstable manifold
approach was lacking to explain the "explosive" transition toward synchronization observed. It
will also serve as a bridge between the Vlasov HMF and standard Kuramoto model.

In this Chapter, we prove that any non zero inertia, however small, is able to change the
nature of the synchronization transition in Kuramoto-like models, either from continuous to
discontinuouspr from discontinuous to continuous (this latter case is new to the literature
to my knowledge). The bifurcation nature is given again by the sign and scaling of the cubic
coef cient in the bifurcation expansion. This original result was published in [BM16]. It is
obtained again through an unstable manifold expansion.

We compare our predictions with large-scale numerical simulations (molecular dynamics):
using again a GPU (graphics processing unit) architecture allows us to reach a number of oscil-
lators signi cantly larger than in most previous works; this is crucial to test with a reasonable
precision scaling laws in the vicinity of bifurcations.
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1. THE MODEL

1 THE MODEL

Our starting point is the model introduced by Tanaka et al. [TLO97a], which adds inertia
to the original Kuramoto model. It has been since then studied by many authors, often in
presence of noise, and we rst discuss some of the theoretical results obtained so far. [TLO973a]
adapts the original self-consistent Kuramoto method to the presence of inertia, and predicts,
consistently with the numerics, that a large enough inertia makes the transition discontinuous.
The small inertia case was apparently not studied. In [AS98, ABS00], the authors perform a
bifurcation study of the incoherent state in presence of noise, and nd a critical inertia beyond
which the transition should be discontinuous; their result suggests that a small caertizake
a qualitative difference, but the singular nature of the small-noise limit makes an extrapolation
to zero noise dif cult. We note that a full "phase diagram” compatible with [AS98, ABS00] is
presented in [GCR14, SSK88] (see also [KP14]). In the following, we also add to the model
in [TLO97a] a "frustration" parameter, as in [SSK88]; this will provide us with a further
parameter to make testable predictions. Our resulting model is then the same as [KP14], without
noise.

Each of theN oscillators in the system has a frequengywithi 2 1; ;N and a phase

i 2 [0;2 [; it also has a natural frequenty, drawn from a frequency distributiop We
assume thagiseven ¢( !) = g(!)). If there is no coupling between oscillators, the actual
frequencyy; tends to their natural frequenty thanks to the friction. The dynamical equations
for positions and velocities are

+=V (IXla)

myvg (I i Vi) + % Sin( j i ): (leb)

This is the second order Kuramoto model (also referred as Kuramoto with inertia). If the inertia

m tends to0, one recovers the usual Kuramoto model Eq. (VIIl.1) (over damped dynamics). If
= 0, there is no restoring force towards the natural frequency, and one obtains=f@r a

Hamiltonian model with an all-to-all coupling and a cosine interaction potential, it is the HMF

model Eqg. (V.4). We use two rescaled parameters m=; K = K= asin [BM16] instead

of K;m; . The Kuramoto limit corresponds t& ! 0, and Vlasov limit toK; m ! 1

andK=m ! cst. Our parameters now coincide with those of [TLO97a]. Dropping-tbe

convenience, Inth&l ' 1 limit, the system Eq. (IX.1) is described by a kinetic equation for

the phase space denskiy ;v;!;t ):

@F + v@F + % rifFle'e' r yFled € @F %@((v 1)F)=0; (X.2)

where ther coef cients representing the different order parameters measuring synchrony are
de ned as in the rst order model Eqg. (V111.9b) with an integration over the extra velocity vari-
able.

The rst step of the problem is as always to nd the unsynchronized stationary solution
fO(v;1). Itis easy to check that

fovit)=g') (v 1)=2) (1X.3)

Is indeed a stationary solution of Eqg. (1X.2). The rst thing to observe is that the velocity
distribution inv lives in a less regular space than usual. Actually, in presence of a Gaussian
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noise the stationary solution is a Gaussian [ABS00] and its zero temperature limit coincide with
Eq. (IX.3). Increasing the coupling strength f © changes from stable to unstable. Our goal

is again to study the dynamics of Eq. (1X.2) in the vicinity of this bifurcation. The linear and a
nonlinear decomposition, with = f % + f gives

@ =L f+NI[f] (IX.4a)
L f= ver % nifleie’ rfld e @°+ %@((v 1)f):  (IX.4b)
N [f]= % riflele’ r4fle € @f: (1X.4c)

In terms of spectrum the perturbation induced by the friction term (last term) is not bounded thus
some changes in the continuous spectrum with respect to Vlasov HFM or standard Kuramoto
model are possible.

2 LINEAR PART

2.1 Eigenvalue problem

Letus solveL = «with = (v;!)€ . This yields fork = 1 (we remove the
index ;= )
1 K z
' = = I —d q I I-
(+iv) =_—@(v !))+ 2imé g') v 1) dvdk;

where {x) stands for the derivative in the distribution sense of the delta Dirac distribution.

The dif cult part of the inertia bifurcation problem is rst to solve the eigenvalue problem
which is neither like standard Kuramoto or Vlasov HMF (without friction) neither like Vlasov-
Fokker-Planck (with friction and dissipation). Indeed, in this latter case the functional space
was regular enough so Fourier or Bargman expansion in velocity worked well. Moreover, here
we have two "velocity variables" the natural frequehcgnd the velocityw. The idea (ansatz)

IS to look for a solution of the form

=U(!) (v 1)+ U(t) Qv !): (I1X.5)
Z

Imposing the normalization dvd! =1, one nds

_ K g(')
Yo = om® ity +1=m+il) (1X.6)
_ K o) .

i = o € = 1=m+il (1X.7)
where we used the identity ™ (x) = n ™ Y(x) forn > 1landx (x) = 0. Expliciting the
normalization condition yields the dispersion relationkor  1:

VA
- K i a(!) | =0-
K= on® (v +immr k) O O (1X.8)
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This dispersion relation can be recovered as the noiseless limit of the one in [ABS00], as it
should. One can also check that the limit! 1  ; K=m = cst yields the Vlasov dispersion
relation® with a cosine potential ang(! ) as stationary velocity pro Ié °(v); them ! 0 limit

yields the standard Kuramoto dispersion relation.

The effect of the friction operator modi ed the continuous spectrum. Looking at the singular
points in the dispersion relation (or equivalently looking for generalized eigenvector), we do
not nd one continuous spectrum but many! One is the usual situated on the imaginary axis
while the other are placed in the left plane. In fact, if we had chogen! ) = U, (1) ™M(v
'), we would have found continuous spectrum on every &8s = n=m. Hence . =
f=Re = n=m;8n 0g. Therefore, the effeétof friction (without noise) on the linear
operator Kuramoto operator is to split the continuous spectrum in an in nite number of parts
situated in the left plane and thus associated with damped oscillations (excepted ). It
is interesting the look in [ABS00] at the effect of an additional noise measur&d(byspersion
in velocity as for Vlasov-Fokker-Planck). It has for effect to shift all these spectra further in
the left plane, in particular the spectrumnn= O is situated irRe = D. Hence stochastic
stability like in Vlasov-Fokker-Planck, Section VII.2.3, does not occur here since the continuous
spectrum still exists after the addition of friction and dissipation. Hence the additional natural
frequency variable must be responsible for this change.

2.2 Adjoint problem

The de nition of the scalar product with two frequency variables is straight forward
z Z Z

(fy;f2)= Ky fdd = f,fod! dvd: (1X.9)
The adjoint is thus
— 1 K i i 0 i Al 01 .
L Yq=v@q (v hHaeg+ 5 € e'rn[qg@’ e'€r fq@"] : (IX.10)

L Y is also diagonal when expressed in the Fourier basis with respeatiéathus concentrate
on
e — ~k(V;! )e|k .
—5 €
Then fork =1
Z

1 K ;
iv) "+ — I ~= _ g | ~(1:1 I- ]
( iv) m(v @ 2ime gY@ (;! )d! (1X.11)
It is not obvious how to computé& from the above equation. Nevertheless, taking ! , one
easily extractsT(!;! ):
C

i!

K .
! )= =—e'
2im
Z
with C a constant to be determined by normalization: we imposé dvd! = 1. Differ-

entiating repeatedly Eq. (IX.11) with respectupand then takingy = !, one can compute

1. Thanks to an integration by parts.
2. Of course a rigorous spectral analysis is needed to really understand this result.
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sMay= @[71(;! ) foranyn. From Eq. (IX.5), we see that we need to compute up o1
in order to obtairC; the result is
2im 1
C=z —¢ —
K 1)
D E
which once again links the scalar product;  to the derivative of the dispersion relation. In

the following, we will need

(1X.12)

a(ADE 0(1) 1” (IX.13a)
i 1

)= Q) ( il )( il +1=m) (1X.13b)
2 1

@0y = ) n - (1X.13c)

©0y= O 1 (1X.13d)

q) 3o i1+ |=m)

3 UNSTABLE MANIFOLD EXPANSION

In this Section, we are going to perform the unstable manifold expansion in a very similar
fashion than the homogeneous Vlasov case (with or without friction/dissipation).

The dynamics Eq. (IX.2) is symmetric with respect to rotati®®(2), (;v;! ) = ( +
vl );if =0 andg(! ) even, itis in addition symmetric with respectto re ectidnsv;! ) =

(;v;!). To simplify a bit the calculation we choose here to tgkeven, and we restrict to
the case of two unstable eigenvectors. This is generically the case when:

i) 6 0;inthis case, there is a complex unstable eigenvajuend ? is also an unstable

eigenvalue;

i) =0,and isreal;inthis case, itis twice degenerate, associated with two eigenvectors.
Hence in both cases we will build a two-dimensional unstable manifold. We leave for fu-
ture studies the cases = 0, complex, which leads to a four-dimensional unstable man-
ifold [Cra94a], as well as non eveg(! ) distributions. We decompose the solution on the
unstable manifold as before

f=A+ A? 2+ H[A AT V! ): (IX.14)
with H = O((A; A?)?). We expect once again by symmetry to get

A = A + GjAJ°A + O(A®) (I1X.15)
H(A;A?) = AA’hgo(v;!)+ Ahyo(v;!)e? + cici+ it

where we have used tie$ A and translation symmetries. From Eg. (IX.4c) we get for the
Fourier components df [f ]:

i2Ke i

(N[f]), = o @ +cic+0 jAj* (1X.16)
(NIFD), = izzri' A2@ +0 AZAj : (1X.17)
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Thus, using the time equation as in Eq. (V.44) we have to solve

2Ke |

2+ Lohoo = iT@ +c:c (1X.18)
2Ke'!
(2 L ohy = i o @ : (IX.19)

whereL o 6 0 due to the friction term. Thil [f ] term gives

A= A +AjAj2% € hT@hooi €' hT@hyoi +0O AjAJ* : (1X.20)

3.1 Computation ofhgg

We start from Eq. (1X.18). We hav&., = h + c:c:, whereh is the solution of

_.2Ke '
2+ Lo h= IT@' (IX.21)
Eqg. (IX.21) reads
1 2K ? g !) . g% 1)
2 ROV Dheo= Zom 0w vi=m) (@ +1=m)
(IX.22)
We introduce the ansatz:
h=Wo(') (v 1)+ Wi(l) Qv 1)+ Wy(t) Rv 1)
Using the identities
x Ix) = ()
x %x) = 29x);
we obtain
Wo(!) = O (IX.23)
_ 2i (K=2m)?g(!)
Will) = G I=m) # ) +1=me i) (1X.24)
_ 2 (K=2m)’g(!)
Wyo(l) = 2 +1=m)( +1l=m+ i)’ (IX.25)
3.2 Computation ofhyq
A similar computation starting from Eq. (1X.19) yieldls.o. We have to solve
2 L, hy= iz};‘; @: (IX.26)

Using the ansatz
hoo=Xo (V ')+ X1 Qv 1)+ X, Qv 1);
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we obtain
_ o iXa(!)
Xo(t) = ( _: )
X,(1) = (2 Ke i. =2m)Up(! ) N 4i)§ (1)
(2 +2it +1=m) = (2 +2i! +1=m)
X,(1) = i(2Ke ! =2m)U,(! ):

2( + 1! +1=m)

3.3 Putting everything together

Inserting the expressions bf.o andh,., into Eg. (IX.20), we obtain the nal reduced equa-
tion we were looking for. Let us start with the rst contribution, which comes filofi@, ho.oi :
ZZ

T W)+ Wi (1) @v T
3 (Wa(t) + W, (1) @ 1) dvd - (IX.27)

|
)W)+ W () T ) (Wa(t )+ Wo(!) d:

h7 @ ho.ol

We have to compute the above integrals in the limit! 0". A pole which moves to the

real axis when ; | 0" does not create any divergence by itself (see Section V.5.4) although
the integral is not well de ned a priori, it can be analytically continued. However, divergences
may appear through "pinching singularities”, see Section V.5.4, that is when two poles approach
the real axis, each on one side. From Eq. (IX.13b), Eq. (I1X213c), Eq. (1X.13d) and Eq. (IX.24),

Eq. (IX.25) one sees that a pinching singularity appears only iff® W, ; hence this provides
the leading term:
Z Z
@ w,a =i L 1 o)
: m2(l=m) 4 0)  (FH(F OB+ IEmZA(l )P
. !
(r+2=m+i(l + 1)
m2(1=m)* Qi )2 , °

d!

where we have used Z ,
) 0.

X2 + np "o n (|X.28)

Let us turn to the second contribution, coming fram@, h.oi :
7 h i
Tv) Xo(t) Av )+ Xa(h) v D)+ X(1) O(v 1) dvd
Z h i
W M)X(1)+ @ ()X (1) O ()X, (1) d: (1X.29)

h7@,hz.ol

It is not dif cult to see that no pinching singularity appears, so that the above term has a nite
limitwhen ! 0.
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Figure IX.2 —r (computed in the asymptotic stationary state) as a function of the coupling
constanK for different parameter, with m = 0:4 orm = 0. Arrows indicate the direction of
the jumps. The frequency distribution is a Lorentzian Eq. (VI11.25), with 1. The bifurcation
is clearly sub-critical for = 1:5;m = 0, and supercritical for = 1:5;m = 0:4; herer is
linear withK K. as predicted by Eq. (IX.30). The inset shog(s ), which is positive for

= 0 and0:524and negative for = 1:5. The value corresponding to the bifurcation is shown
by a point of the same color as the graph.

We conclude that the leading behaviorogffor m > 0is given by:

3 g :
o 3 g( |) .
Cs > mK D) — (IX.30)
In particular, the sign o§( ) = Re % determines the type (sub- or super-critical) of
i

the bifurcation. Our hypothesis of a two-dimensional unstable manifold ensurestha) 6
0).

4 DISCUSSION

Using the reduced dynamics Eq. (IX.15) truncated at offeprovides essential qualitative
information: i) The bifurcation is subcritical if and only Re (c3) > 0ii) In the supercritical
case, one obtains the asymptotic order paranjétgr r=Re(c3). From this, the
dramatic effect of the inertien appears clearly: it introduces intg a contribution diverging
like 1= ,, which is the dominant one: the sign®& Re (¢ = i ;)) controls the bifurcation
type, sub-(resp. super) critical far> 0 (resp. s < 0). Form = 0, the next order term,
which does not diverge when ! 0, is needed; the bifurcation is then controlled stﬁ’y:
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CHAPTER IX. KURAMOTO MODEL WITH INERTIA

Figure 1X.3 — Asymptotia as a function oK for = 0:8, withm =0 orm = 0:5. The
frequency distribution is a superposition of two Lorentzian as in [OW12], gurg@:) =

g +(1 )g, with = 0:8, = 0:075 note thatg is unimodal. The inset shows that
s°( = 0:8) > 0 (hence discontinuous transition @t = 0), ands( = 0:8) < 0 (hence
continuous transition as soonm@s> 0).

Re( i )= i 1)): sub-(resp. super) critical fax, > 0 (resp.sp < 0) (this generalizes to

6 0 aresult of [Cra95b], see Appendix D.1.1).

Hence, any smalin may either turn a supercritical bifurcationrat = 0 into a subcritical
one, orthe otherway around,turn a subcriticalbifurcationat m = 0 into a supercriticalone.
While the rst direction, illustrated in Figure IX.1, was anticipated in [GCR14, KP14], the
second direction is unexpected. Figure 1X.3 provides an example with a unimg@daand

6 0. Furthermore, in the supercritical case, we predict the scaling law for the asymptotic
order parametgAj, / |, and thisis also observed.

If the distributiong is unimodal we note that( = 0) > 0, so the bifurcation is always
subcritical. It means that for the system without frustration paramete®, we indeed proved
that with any inertian the bifurcation is discontinuous (we should as in the standard Kuramoto
case prove that for generic symmetgdistribution 90) > 0, which we are able to do only
for unimodal function). Finally, Eq. (VIII.16) makes clear that both the standard rst order
Kuramoto (n = 0; =0)and Vlasovin = 1 ;K=m = cst, see Appendix D.1.2) limits are
singular. In the rst case, the divergent term vanishes, and the bifurcation is controlled by the
sign ofs’. One recovers the already known results: for a symm%}ric uninped =0) < 0
and the bifurcation is supercritical, with standard scajg / . In the second case,
Eq. (VIII.16) diverges whem; K ! 1 . Redoing the computations in this limit indeed yields

2
r-

1 . . . .
(for =0)c3/ —, asfoundin[Cra95a]. This leads to the trapping scalg /

r
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4. DISCUSSION

4.1 Numerics

We present in this Section precise numerical simulations that fully support the above anal-
ysis. The Kuramoto codes (with and without inertia) were constructed by myself. The time-
evolved system is obtained via GPU parallel implementation of a Runge-Kunta 4 scheme for
the equations Eq. (IX.1) [GCR14]. The order parameter is computed by its standard discrete
de nition [Kur75]. For every simulation, we taksl = 65536, and a time step t = 10 3.

The asymptotic order parametelis the average ojfr;j(t) for t 2 [150Q2000] In order to

test our prediction on the type of bifurcation, we start from an unsynchronized state (drawing
positions ; uniformly on a unit circle). Thé; are sampled according tp the initial velocities

arev; = ! ;. We let the system evolve untiE= 2000 and measure the averaged order parameter.
Then we vary the coupling constalit! K + K with K = 0:1 or 0:2 (or smaller close

to transitions) and reiterate the procedure; at some point the bifurcation towards synchroniza-
tion is observed. WheK is large enough we apply the same procedure in the other direction,
K! K K. Thus, we are able to distinguish clearly a subcritical bifurcation (with a charac-
teristic hysteresis cycle) from a supercritical bifurcation (with no hysteresis). In gure 1X.1, we
see how the hysteretic cycle depends on the inerti&orm = 1, there are two branches with

r 6 0: these correspond to the bistable behavior of the single oscillator dynamics in a range of
I, see [TLO97a]; fom = 0:5andm = 0:25, the single oscillator dynamics is not bistable in

the transition region, and, accordingly, there is only one branchwBh0. The bifurcation
remains nevertheless clearly subcritical. Tests varyiage reported on gure 1X.2: we see that

the singular term Eq. (VIII.16) again correctly predicts the type of bifurcation (continuous vs
discontinuous), as well as the scaling of the saturated state in the continuous case. In gure 1X.3
and 1X.2, inertia induces a supercritical transition; Eq. (VI11.16) also correctly predicts the lin-
ear scaling of the saturated state in this case. Finally, we note that in the subcritical regime, the
numerically observed . is sometimes lower than the prediction Eq. (1X.2); this is presumably
related to strong nite size effects [HCPTO7], especially in presence of inertia [ONBT14].

In conclusion, we have once again successfully constructed an unstable manifold expansion
for models of synchronization with inertia and frustration, circumventing the problem of the
continuous spectrum on the imaginary axis. The singularities appearing in the expansion con-
trol the system's behavior in the vicinity of the bifurcation, and allow useful qualitative and
guantitative predictions. In particular, while synchronization models tend to present compli-
cated phase diagrams for which it is dif cult to develop an intuition [OW12, KP14], we obtain
simple criteria determining the character of the transition. We were also thanks to the cubic
coef cient able to predict a case where inertia turns a subcritical bifurcation into a supercritical
one, which is new to the literature.

However, to be complete we should look at the higher order terms to check that as previous
cases with singular coef cients they produce same order terms when there is satiRatgr:
0). A surprising result would be that they produce negligible terms at saturation which could be
a sign that rigorous dimensional reduction is possible. The bad case would be that those higher
order terms are of lower order, which would invalidate this result.

Regarding the guiding thread of this thesis, that is to say the singularities in the unstable
manifold expansion, we have also con rmed some ideas. The presence of the zeroth harmonic
Ho = jAj?hg is crucial to qualitative behavior of the bifurcation. As soon as it is non zero (for
m 6 0) it produces a dominating contributidn 1= , in the bifurcation expansion. Never-
theless, here its effect is weaker than in the Vlasov case, which is probably due to the friction

. Indeed, compared to the Vlasov-HMF case we have hege6 0 and a split continuous
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CHAPTER IX. KURAMOTO MODEL WITH INERTIA

spectrum which might weaken the resonance phenomena. To get more insight on what is really
happening a development a la Single Wave Model [BS00, BMT13] for the Kuramoto would be
very useful. However even consideration in terms of critical layers are not simple in Kuramoto
like model since an extra variableis present.
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CHAPTER X

KURAMOTO MODEL WITH DELAY

This Chapter is dedicated to the study of both rst and second order Kuramoto model with
delayed interaction. The Kuramoto model with delayed interaction was introduced in [1zh98]
and studied rst in [YS99] by M.K.S. Yeung and S.H. Strogatz (see [CKKHO0O] for a self-
consistent and numerical study). The physical motivation for this model is clear: interactions
such as two crickets hearing each other is not instantaneous and always slower than the speed
of light. Of course, such example might seem a bit irrelevant but delay could become non-
negligible in some electrical network like power grid systems [LC04] or coupled neuron sys-
tems [DJM 09, DIM" 09, NUS13, ST15]. Hence what is the effect of delay on the bifurcation
in Kuramoto models? Another challenge is to recover the bifurcation diagram of [YS99] Figure
4 which predicts sub/super-critical bifurcation for a varying delay (in what seems to be a peri-
odic pattern). Providing a cubic coef cient with such positive/negative oscillation would give
the rst theoretical explanation/prediction for this phenomenon.

To answer this question, we will have to introduce quickly the essential features of delayed
equation framework. The two main changes are the addition of the delay variable for operators
and functions and the modi cation of the scalar product. We will then apply this formalism to
the bifurcation problem in a very similar fashion than the two previous Chapters for Kuramoto
system with or without inertia, writing uniquely the crucial steps. In the standard Kuramoto case
as a security check we will also compare the unstable manifold result with the one predicted
by the OA ansatz (which does work in this case). Moreover, thanks to this broader formalism
of delay equations (also called Theory of Functional Differential Equations) we will be able to
prove a general result linking the normalization factor (of the projection on the unstable mode)
with the derivative of the dispersion relation.

The main result of this Chapter yields is the explicit expression of the cubic coef cient of the
unstable manifold expansion for both Kuramoto models with or without inertia. In the former
case, the expression is compared with the one obtained with the OA ansatz.
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CHAPTER X. KURAMOTO MODEL WITH DELAY

1 THEORY OF DELAY DIFFERENTIAL EQUATION

In this Section, we summarize the formalism to study the linear and nonlinear dynamics of
delay equations. The main points to accept are

— The distribution studie@i(t) is now a function of the delaly (" ) = f (t+"' ) (for negative
1 ).

— The linear and nonlinear operators have a different expression for zero and non-zero
delay Eq. (X.10)

— The adjoint operators are de ned through a bilinear form acting as the usual inner prod-
uct.

— This new inner product depends on the delay dependence of the linear operator Eq. (X.11).
Its form is motivated by the so-called Lagrange identities [Hal63, BKNG09, Gaol3].

1.1 Extended functional space and operator

In this Section, we motivate with a brief derivation the form of operators in the delay formal-
ism.

The nonlinear operatdyl acts on functions in some functional spdde;!;t ) 2 B, we
want to study the evolution equation

@ _ :
@1; =MI[f]: (X.1)
We can extend the functional space, for agiven 0,B = C°[ ; 0]; B) denotes the Banach
space of continuous mappings fr¢m ; O]into B equipped with a norrkuk = sup ku(' )kg
0

for functionu 2 B . Now fort 0,f, 2B isdenedbyf,(')=f(t+"')for" 2[ ;O]
Hence the problem writes

@ .\ _ .
@{ (1) = M[f]: (X.2)
Operators with delay can be conveniently represented as integral over delay [HL93, GW13]
Z 0
MIfdd= [d ()If() (X.3)

where' acts as the delay variable ands an operator with bounded variation depending on the
delay parameter. For example, for a discrete time deblag have

()=("+ )L (X.4)
thatgiveM [f;]=L f{( )=L f(t ).
Letf;(" ), for " 0de ne the "initial condition” (which is a function of delay). The
solution is given by the nonlinear solution operafdt):
f(")=(TOF)C); B (X.5)

The uniqueness is given by the fact thabhas properties of a semi-group

T+ )=TWHT() ¢t 0, T()=1I (X.6)
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1. THEORY OF DELAY DIFFERENTIAL EQUATION

Thus, we can rewrite

SHO=AC): o (x.7)
whereA s the in nitesimal generator of the operatbrwhich correspond to
1
(AT)C ) =1lim =[(TOFIC) (I (X.8)
Thus, we deduckthat
8 d
< ) Lo
Atyc)= . a ) (X.9)
" MIfd; =0:

We split linear and nonlinear part to write
8

(Af)('):(Df+F[f])('>:<di'ft(') +(°; <% (x10
t t t L) N [fJ; ' =o0: '

The expression of the operator for nonzero delay is the translation of the function to its previous
times. We will also need to decompose the linear operator in two parts L + R, one that
does not contain any delayterm and one with all delayed terri®s

1.2 Dual space

In the spaceB there is no canonical inner product. However, in 1963 J.K. Hale [Hal63]
managed to de ne a bilinear form acting as the inner product on this space. The method to
de ne itis generic for functional space with no natural inner product (some further motivations
are given in Section 1.3 of [Gao13]). In our problem with a discrete delay the scalar product is

Z
(&:f) =(qOF0)+  (a( IRF())d (X.11)

where(g; f) denotes the usual scalar product®(position and velocity).
The additional terms contains the delay, this integral term often appears in the context of
boundary problems (here the boundary is the time). The adjoint operator is then

8
< d _

DYg) = gad®i  0<# (X.12)
" L7a#); #=0:

The minus sign represents the fact that in the adjoint space the variable delay evolves in the
positive sens@ ! ("future").

L@OfC) fC)=0faC + ) ()
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CHAPTER X. KURAMOTO MODEL WITH DELAY

1.3 Eigenvalue problem

With this new formalism, it rather clear how to solve the eigenvalue problem, indeed we still
look for unstable eigenmodes as

Dp(")= p() (X.13a)
DYg#) = q#): (X.13b)

For# and' 6 O the delay dependence is easily extracted to be as

p=p0e = e (X.14a)
q= g0 *=¢€e * (X.14b)
From the’ =0 equation we get
z 0
Il Lel) = | d()el =0 (X.15)

wherel denotes the identity (we have the same type of equation for the adjoint). Calling
YA 0
( )=1 d()e | (X.16)

we have the dispersion relation s ) = det ( ). We want as usual the normalization
(;p =1.
Z,Z. Z,
(9;:P : e O &d() d= €| e d (")
0

1
(0]

(X.17)

The derivative of the dispersion relation appeared naturally during the computation. When

is a diagonal operator of scalar equation flve { ) is the appropriate normalization. It
should prove in a generic fashion, what we have so far always observed Eg. (V.24),Eq. (VI.44),
Eq. (VI.22), Eq. (VIII.12b), Eq.(I1X.12), that is that the normalization factor of the adjoint
eigenvector is proportional tb= { ). In particular it shows that if {i ;) = 0 (like in non-
homogeneous Vlasov case with = Q) the projection on the adjoint space is singular. Note
that the validity of this formal result and its exact formulation is still a bit unclear.

2 OTT-ANTONSEN ANSATZ WITH DELAY

In this Section, we use the OA ansatz to rst reduce the system to an ordinary differential
equation with delay. This o.d.e with delay has only one mode thus it is direct to use an unstable
manifold reduction with the previous formalism to describe the onset of synchronization.
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2. OTT-ANTONSEN ANSATZ WITH DELAY

2.1 Settings

The delayed model introduced in [YS99] for the rst order Kuramoto model (with a frustra-
tion parameter) is
Kk X
HO=tiv g osin(it ) @M ) (X.18)

i=1
where the delay represents the time for one oscillaioto "see" the others. The associated
Kuramoto equation is for the evolution of the dengity; !;t ),

@:(t)+!@F(t)+;@ rafFIt e’ ' r q[FI(t )€ F(t) =0: (X.19)

Remark X.1
Thanks to the very generic formalism Eq. (X.4) of delay theory, we could study more complex
delay terms. For example, a continuous delay as

li ! “o t+')d ('

im g Ernd O

for some measuré ( ).

2.2 Ott-Antonsen ansatz

As already observed in their original paper [OA08], the Ott-Antonsen ansatz works in the
delayed case. For a Lorentzian distribution

1

g (! =—(! PR (X.20)

centered il o: The OA ansatz gives for the order parameter

r(t) = KEe ottt ) r(t) KEe” o Tt )(r(t)* (X.21)
The delay ordinary differential equation is simpler than the kinetic equation Eq. (X.19), but still
in nite dimensional, because the "initial condition" is a function of delay (and not a nite set
of values). The reduction Eq. (X.21) is global in the sense that is describe the system for any
r, however the possible bifurcations are not immediately deduced from the sign of the cubic
coef cient because of the delay that may induce changes. Hence, we want to put Eq. (X.21) in a
"normal form"?, that is the "simplest" equivalent form of a dynamical equation close to a given
bifurcation point, see [Mur06, HI10]. Therefore, this will reduce the dimension of the system
close to the bifurcation (loosing information on the global system).

2. Strictly speaking the nal equation will be the true normal form up to a rescaling.
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2.3 Unstable manifold calculation

2.3.a Linear part

We start with
r=>L re+ N [r (X.22)
Following the steps of analysis previously stated we de ne
8
< d
—r¢(’ '< 0
(Dry()= . d (") (X.23)
"Lrn()=LO)+Rre( ) " =0
and (
0 '< 0
FIr ') = X.24
FEDO= (o g (x.24)
and the adjoint linear oper%tor
< d
— g (# <#
CICEN A ° (X.25)
" LVs()=LU's(0)+ Risi( ) #=0
with
Lr = (X.26a)
Rr = K?ei( to . (X.26Db)
K .
N [r = e C o todr () r(0)% (X.26¢)
Let's now solve the eigenfunction equation
Dp(")= p() (X.27)
for '< 0, the solution to Eq. (X.23) givas= p(0)e , from the' =0 term we get the
dispersion relation
()= + KEe HC o), (X.28)
We can x the initial condition normalizatiop(0) = 1. At criticality, we have
K
7°cos( Lo BE (X.29a)
%sin( o )= (X.29b)

ForK > K . we could show that only one complex mode (and its conjugate) goes unstable. All
other mode will have a negative real part.

Remark X.2

This time the o.d.e. Eq. (X.21) is really simple compared to a kinetic equation. For example,
we can see from Eq. (X.28) that there is no continuous spectrum. Thus, we do not expect the
unstable manifold expansion to be plagued by singular effects coef cients. Moreover, since
there is only one unstable mode (and its conjugate) for dfallK . the unstable manifold will

be attractive [Mur06, GW13, HL93] (thus the local reduction rigorous).
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3. STANDARD KURAMOTO MODEL WITH DELAY

2.3.b Adjoint problem

From the adjoint problem we get of course the same dispersion relation and an eigenvector
associated with of the formq(#) = q(0)e *. The normalization fog is chosen such that
(g;p =1, with the expression of the inner product we easily get that

1

q0) = 0?): 1+ Ke (+itoyi : (X.30)

2.3.c Nonlinear part

We now seek to expand the dynamic arourd O when the asynchronous state is unstable
K K¢ > 0. The unstable manifold expansion is

re(" )= AMpC )+ w( ) (X.31)
whereA(t) =(q;rr) and0 =(q;w) . The time evolution is
A= A +(qiF[r) = A +gO)N [r]: (X.32)

Since we requirav; = O(A?), the nonlinear term is of order three, we don't even have to
compute the rst order oiv,

K ., .
N [Ap] = Eé“ 'p ( )PO)3AjPA

is enough. We get eventually the normal form of the delayed problem

K e(i!o ) i
El+ KEe (' o+ ) +i

A= A JAPA + 0O jAJ*A (X.33a)

The relevant parameter to study the bifurcation type is given by the sign of the cubic term in the
limit ! O, !
glot i )

K
Rec; = —Re

2 1+ %e ot 1 ) (X.33b)

This result will be analyzed later Section X.3.5.b.

3 STANDARD KURAMOTO MODEL WITH DELAY

In this Section, the idea and method are exactly the same as before except that we work
directly on the delay kinetic system (and not on the OA ansatz). The result obtained for generic
g distribution will be compared in the Lorentzign case with the previous result Eq. (X.33).
Also, as in the Kuramoto case we will observe that the unstable manifold structure at rst order
is the same as for the OA ansatz for generic distribugion
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3.1 Setting

Let's g(! ) be a symmetric distribution centered!ip. By a change of variable ! | I,
! ' o we now study a symmetric O-centered distribution with phasé agin addition
to the phase lag). For a perturbation of the incoherent initial statex g(! )=(2 )+ f

@ =L f+NIJf] (X.34)
Following the steps of the previous analysis
8
<0 <0
(D))=, (X.35)
' L fo()=LE O+ Rf( ) " =0
and (
0 '< 0
FIfd(C)= X.36
(F [fD(C) N ] =0 (X.36)
and the adjoint linear operator
8
< d
gy = @t o< (X.37)
" L7%g()=La0+ Ra() #=0
with
Lf = 1@f; (X.38a)
Rf = I;g( )@r[f]e G to) o g[f e 0 o) (X.38b)
N [f] = E@ rffd( et O ) p gIf ] )e IO te) £(0) ¢ (X.38c)
3.2 Eigenvalue problem
Let's now solve the eigenfunction equation
Dp(")= p(") (X.39)
for '< 0, the solution of Eq. (X.35) givegs= e . The' =0 equation gives
(;1)= (1)e :KEe wi 1o 9C I)| ; (X.40)
We choose to normalize such thigf] =2 , this yield the dispersion relation
_ K +i( lo) g(!)
()=1 e 0 el (X.41)

Here we have computed the eigenvegtand associated eigenvalu@associated with thie = 1
spatial mode, by the exact same procedure we can show tisedin eigenvector associated with
the eigenvalue . The eigenvalues are both associated with a eigenspace of dimension
one because the re exion symmetdy(2) is broken thanks to the phaselag ! .
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3.3 Adjoint problem

By adjoint computations we get

M.

a#= ¢ 1)e f=)5e #:% Lt (X.42)

where we have chosen the normalization factor so thap) = 1. As expected from the
general relation Eq. (X.17), the functior( ) appears, even though the scalar product choice
was non-intuitive.

3.4 Unstable manifold calculation

We now decompose the perturbed solutigralong the two unstable eigenvectors and the
unstable manifold

fe( )= AMPC )+ A @Op () + w() (X.43)

with A(t) = (g;f;) , (q;p) = 0 and(q;w) = 0. The time evolution equation is hence
rewritten as

Ap+c:cc+w; = ADp+c:c.+ Dw; + F [f]: (X.44)

After projections, it reads:

D E
A= A +(qF )= A +(q0);N [fi)= A+ TN 4ff] (X.452)
D E D E

w; = Dw + F [w] TN 4[fs] p TON 4ff¢] p: (X.45b)

The 0" Fourier mode is zero as in the standard Kuramoto case, so only the second harmonic
term(w; ), will contribute to the cubic coef cient. The Fourier terms of the nonlinear operator
IS

Nl = AARSHRIC e T W)z(0)+0 AJAT? (x.462)
N alfd = AKr Bl e 1 0p0)+ O ATAP (x.46b)

where we can obtain at rst order

(Wi)20(" ) = hgo€® (X.47a)
2
(he)20 = K2 ( %(!”))zez“ tode 2 (X.47b)

In this computation with time derivative one should not get confused by the presence of a delay
variable that is considered separately. The delay dependence is obtained again through equation
Eq. (X.35) for nonzero delay.
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The cubic coef cient is then obtained thanks to Eq. (X.45a) and Eq. (X.46a)

2K 3@ 2 +i( !o)Z g(!)

5T 2 ) iy
R g()
_ 2K 20 2 ¢ ( +il)3
R g() R g(!)
C+i)2 . (+i) (X.48)
R g()
i 3
= K% 2 . ( +i)
a(! ) T
ezt wk®

where we have used thais an eigenvalue of the dispersion relation to obtain the last line. This
yields the main result of this Section. The signR¥c; inthe ! 0 limit gives the nature of
the bifurcation. The delay adds an oscillating term in the coef cegnin addition to modifying

the eigenvalue. For a xetl; and varying delay one can plot the sign ak computing at the
criticality K = K¢( )and = (), see Figure X.1.

Remark X.3

As in the standard Kuramoto case no divergence appears within the unstable manifold approach
thus the one dimensional local reduction should be rigorous. Once again, we link this success
with the fact that we have despite the delay a constant zeroth harfyoiNco = L o = 0) and

no coupling between positiie. o and negative modes< o, see Section VIII.5.4. Moreover,

the unstable manifold lies at its rst order on the OA manifold as in the standard Kuramoto case
(see Section VII1.5.2). Indeed, its coef cients have the OA ansatz f¢my).o = [ for some

t-

3.5 Application

3.5.a Centered distributiont o =0

Can a delay affect the bifurcation of symmetric centered distribugianth no frustration
parameter? Letting, ! 0in Eq. (X.48) and Eq. (X.41) we getthatwith =0, ; =0 and
Kc = ( KC)Kuramoto
K o 9%0) .
2 PV (gq')=!)+2 =K

Therefore, for a unimodal function we see that the sign of the coef cient is unchanged compared
to the standard Kuramoto case since both denominator terms are posigle) i§ for example
bimodal with real eigenvalue the sign of the denominator is unchanged (see Appendix D.3).
Remember that the case of a symmetric distribution with complex eigenvalue is possible but
requires a four-dimensional unstable manifold that this result does not cover. In conclusion for
"standard" (at least unimodal and bimodal where we could prove the sign of the denominator)
distribution with real eigenvalue, delay does not affect the nature of the bifurcation nor the
critical coupling.

C3 =

(X.49)

Université Céte d'Azur 186



4. KURAMOTO MODEL WITH INERTIA AND DELAY

3.5.b Lorentzian distribution

For a Lorentziam, (! ) = —(! 2+ 2) !theintegral in Eq. (X.48) are easy to compute with
Z

a() _ n
(ii!)”_( t)

and so is the dispersion relation, that gives the same expression as in the OA case Eq. (X.28).
The cubic coef cient is then

e il 'o)

K e
(c)s= (2 )25“ (X.50)

K?e +i( lo)

which is the exact same coef cient (up to the change 2 A ) as with the OA ansatz Eq. (X.33a)
which con rms both results.

A direct application is to recover the numerical observation of [YS99] Figure 4 which pre-
dicts for a Lorentzian (with = 0:1and! , = 3) the critical coupling constant line with respect
to delayK¢( ). Moreover, in this article simulations were performed for 1 and2 and show
respectively a subcritical and supercritical bifurcation. These observations agree fully with Fig-
ure X.1; our plot ofRec; is indeed positive for = 1 and negative for = 2. Furthermore,
thanks to this theoretical expression Eg. (X.48) we can do simple predictions. As observed
in [YS99] for Lorentzian Eg. (X.20)

— K¢ is minimum for everyl ¢ = 2n with associate/K. =2 and ; = 0. Thus, in

these points

1
Rec; = 1+ <0
— Kcisalocal maximumfot g =(2n+1) .
It is possible to showwith Eq. (X.41) thatfor 11 , ; | andK.! 2 . So above

some critical delay., we always hav®ec; < 0.

Hence we have given for the rst time (to my knowledge) a theoretical support for the nu-
merical observations of [YS99]. Moreover, we could predict that for large delay the bifurcation
Is always supercritical. Of course, this demonstration holds only for Lorentzian distribution
Eqg. (X.20) but thanks to our generic results Eq. (X.41), Eq. (X.48) one could also study other
distributionsg(! ).

4 KURAMOTO MODEL WITH INERTIA AND DELAY

As we have motivated in the introduction, in some electric systems (like power grid or neural
systems) delay could play a non-negligible part. Some of those system requires a second order
description including an inertial dynamics. It is thus natural (now that we have all the tools) to
study the Kuramoto model with inertia. The method is very similar to the previous Section and
the Chapter IX on inertia so we will jump some identical steps.

3. Doing the demonstration for the local maximug = (2n+1) .
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Figure X.1 — Stability region of the incoherent state for Lorentgjaih ) = Eq. (X.20) with =
0O:1and! 5 = 3. The solid line shows the critical line.( ) (for K > K . the system is unstable).
The red dashed line shows the associdt&c; at criticality (it has been multiplied by four to

be visible). Its sign determines the super/sub-critical nature of the bifurcation. Vertical dotted
lines =1 and 2 show where the bifurcation simulations were performed in Figure 4 of [YS99].

4.1 Settings

The microscopic model is

+{t) = vi(t) (X.51a)

Kk X
my()=C v+ & osinGe )M ) (X.51b)
=1

While the kinetic equation (in rescaled parameters) for the phase space density!;t ) is

@M+ V@M + 5 nlFlt Je ') raFlt ) @F(

1 (X.52)
—@(v DFM)=0;

where we have only written the time dependence, the order parameter de nition is unchanged
Eq. (VII1.9b). The incoherent stationary solution is sEI[ ;v;!;t ) = fo(v;!) = g(!) (v
1)=(2 ). We write Eq.Eq. (X.52) as a sum of a linear and a nonlinear part,Rvithf © + f :

f
%§:Dn+me (X.53)
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4. KURAMOTO MODEL WITH INERTIA AND DELAY

with the delay operator®, F and the adjoinD? de ned as in Eq. (X.35) and Eq. (X.37) with

Lf = v@+ %@((v 1)) (X.54a)
Rf = o rfle e '€ to) o ogf]e €0 o) @fY; (X.54b)
N[d= ol Jetel ralfd( e e @f ) (X.54¢)

4.2 Eigenvalue problem

Similarly the eigenvalue problem

Dp=p (X.55)
is straightforward, wittp(' ) = e = e' e .For' =0, looking for a solution in the form
=Ug(!) (v D)+ U(!) v 1) (X.56)

Z

and imposing the normalization dvd! =1, one nds

K 5 g9(!)
et I( -0 )
Yo = om® © T+ +1=m+1i) (X.57)
Koy (')
— ( 'o)
Ys 2im ¢ © +1=m+il ° (X.58)
Expliciting the normalization condition yields the dispersion relation:
()=1 _Zme e (+) +1=me ) " =0: (X.59)

Hence, if is an eigenvalue oD,, is an eigenvalue oD ;, as expected from the rotation
symmetry.

We compute the adjoint eigenvectorgf{g) = €e * = ”S—e # through
Z
oy ~p L ~= K i g ~1- -
( V)T Z(v D@T= et e g(' Y@ ~(!;! )d!: (X.60)

Again the normalization witll= % ) will play an important role. The expression of the
~M(1:1 ) terms is formally the same as in Eq. (1X.13).

4.3 Unstable manifold

The decomposition on the center manifold is again
fi()=AMPC )+ A®Op( )+ HIAALC) (X.61)
with A(t) = (q;ft), (g;p) = 0 and(g;H) = O with the same time evolution equations
Eqg. (X.45). The dynamical expansion gives
A= A + AjAjZZZiLm el ‘e hT@hooi €'l 'le  hT@hyoi +0O AjAJ* :
(X.62)
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CHAPTER X. KURAMOTO MODEL WITH DELAY

The Fourier component of the unstable manifold can be computed as befdre 00
(W) oo(' ) = hoof® ", (We)20(' ) = hao€®  and with the "boundary condition" =

(2, Lo hgo = izz—ﬁe i 'ode @ +cic (X.63)
2K
(2 L 2) hz;o = I%el( "o )e @: (X64)

4.3.a Computation ofhg

We start from Eq. (X.63). We have,, = h + c:c:, whereh is the solution of
2Ky

(2, Ly hzlﬁe tide @ (X.65)
Eq. (X.65) reads
1 _2K?% . gqv ) . g%v 1)
2 thoo @IV Dhool = s * T e 1=y T T W v 1=m)
(X.66)

We introduce the ansatz:

h=Wo(') (v. 1)+ Wi(1) qv 1)+ Wy(1) Rv 1)

to get
Wo(!') = O (X.67)
Wilt) = (. +ii:r(n};(=2-r:])i!2e)(2 r+£§]L(!=r)n+ ir) (X.68)
W) = o e My (x69
4.3.b Computation ofh,.q
A similar computation starting from Eq. (X.64) yieltds.,. We have to solve
(2 Ly hyo= i%e‘( tide @: (X.70)

Using the ansatz
hoo=Xo (Vv ')+ X1 Qv 1)+ X, Qv 1);

we obtain
_ iXy()
Xol) =
X,(1) = i(2 Ke !0. Je  =2m)Uy(!) N 4i)§ 2(1)
(2 +2i' +1=m) (2 +2i' +1=m)
i@ Kell tode  =2m)Uy(!)
Xo(') = ;

2( +i' +1=m)
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4. KURAMOTO MODEL WITH INERTIA AND DELAY

4.3.c Putting everything together
Z
As in 1X.3.3 one can insure that the only diverging term will comes fronT*® W, ; thus

the leading term is

Z
. K2e?r 1 al )
~2 ! — - s X.71
W, dl TR e (X.71)
We conclude that the leading behaviorogffor m > 0is given by:
3 gl (ot 1) )g( 0
o 3 i),
Cs > mK T ) — (X.72)
_ ) gl (tot 1)) ] o
In particular, the sign od( ) = Re T determines the type (sub- or super-critical)
i

of the bifurcation.

Remark X.4
As we have seen the second order Kuramoto model links the Vlasov-HMF model with the

standard Kuramoto model. Thus, here without really paying attention we have also studied the
delayed Vlasov-HMF model (one should take the frictionless limit as shown in D.1.2 for the
non-delay equation). In this limit, we also expect the delay to change periodically the super/sub-
critical nature of the bifurcation.

Figure X.2 — Stability region of the incoherent state for Lorentgafl ) = EQq. (X.20) with
=0:1and! o = 3. We show th&K ( ) andRec;( ) form = 0:1and3. The signs oRecs( )
determines the super/sub-critical nature of the bifurcation.
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4.4  Application to a Lorentzian distribution

To get some insight of what is the effect of inertia in a delay system we once again do a
Lorentzian application. The dispersion relation gives Eq. (X.59) at criticality

K
—C = +m?2 m?
2

= t@an((!o+ 1)) (X.73b)

csc(t ot i) ) (X.73a)

A full demonstration on the behavior &f.( ) and ;( ) is more tedious than in the stan-
dard Kuramoto case but is in principle doable. The sign of the cubic coef cient is given for a
Lorentzian by

(+i )?A+m( +i)?
m@a+(C +i)( +m@i; + +2)
We plot on Figure X.X . andRec; with respect to the delay for two different inertia= 0:1
and 3 for the same Lorentzian distribution than in Figure X.1. As before we see that the inertia
makesRec; positive when there is no delay= 0. Moreover, as before the delay induces some
"oscillations" in the sign oRec;. Therefore, we predict that systems with inertia and a delay

1 display a supercritical bifurcation toward synchronization. Moreover at laigseems
clear that ¢( ) I K¢(0) andRecs( ) I Recz(0) > 0.

s( )=Re

(X.74)
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CHAPTER XI

REMARKS, CONJECTURES,
CONCLUSION & PERSPECTIVES

To conclude Part Two, we dedicate this Chapter to a summary of the results obtained with
the various bifurcation analyses we performed.

We have studied multiple collisionless kinetics equations accounting for different physical
situations. Each time, the goal was to describe the dynamics of these equations (of in nite
dimension) close to unstable steady state. We wanted to obtain a dimensional reduction of the
problem to get a simple description of the bifurcation. This dimensional reduction often yields
a one-dimensional (or two-dimensional if the order parameter is complex) regular differential
equation.

Each system had its own dif culties inherent with its physical speci cities. Nevertheless,
in each situation we managed to perform the Unstable Manifold expansion: we provided the
expression of the cubic coef cient (or quadratic for the Vlasov non homogeneous case) and thus
the qualitative nature of the bifurcation. Every numerical test done was fully supporting of our
analytical ndings (scaling, nature of the bifurcation, parameters dependence). Thus, despite
the singular nature of the unstable manifold reduction when neutral modes (or a continuum of
neutral modes) are present, it made every time right predictions. Its general formalism makes
it suitable for very generic problems (delay, dissipation/friction, ...). Our results should then
establish further the singular expansions a la Crawford as a method of choice to understand the
gualitative behavior of collisionless models.
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Dif culties and Speci cities

— Vlasov around non homogeneous state (VNH) with non oscillating perturbat®oR:

Technically We need the angle-action variables to deal with the linear problem. Com-
putation of the Fourier coef cients of the HMF potential in angle-action variable.

Numerically The GPU semi-Lagrangian HMF-Vlasov solver was generously provided
by T. R. Filho [RF13]. Small modi cations were necessary to handle the initial con-
ditions and the output data. Our study required careful choices of parameters (grid
size and maximum velocitpnax) close to the bifurcations. The other numerical
work hidden in this manuscript is related to the precise evaluation of the theoretical
expressions e.g. roots of the dispersion relation for the eigenvatietermination of
the equilibrium parametef{dl,; o), angle-action functions(( J),cm(J), ...), Triple
Zero coef cients, ... This was whole done using the software Mathematica [Inc].

Physically Weaker resonances that allow a three-dimensional reduction of the bifurca-
tion, reproducing well the simulations. This reduction could be very generic.

— Vlasov-Fokker-Planck (VFP):

Technically Velocity Fourier description of the problem, asymptotic behavior of inte-
grals with special functions.

Physically Interplay between two small parameters leading to different types of critical
layer dominating in different regimes at the bifurcation.

— Kuramoto with inertia (Kul):

Technically Three variables {v;! ); the eigenvalue problem is solved with distribu-
tions.

Numerically The GPU codes used for the numerical part were developed during the
thesis using standard schemes [GCR14]. We also evaluated via Mathematica [Inc],
all the wanted quantities e.§.c; cs( ), ...

Physically Singular contributions controlling the bifurcation nature even for small iner-
tia.

— Kuramoto with delay (KuD) with and without inertia:

Technically Functional differential equations.

Physically Delay does not bring any singularities but it changes the sub/super-critical
nature of the bifurcation periodically up to some critical delay.

We summarize further the main characteristic of each case treated in Table XI.1.

— The symbok stands for cases treated originally by J.D. Crawford.

— H means Hamiltonian system.

— k 7 0means presence of nonlinear mixing of positive and negative Fourier modes.

— CS means continuous spectrum.

— H.O.T. stands for the higher order terms.

— Reduction asks if a dimensional reduction was found. It is not de nitive, it only speci es

the current state of the art.

So far only four of these systems have (or are believed to have) exhibited a dimensional reduc-
tion. The rst one is the standard Kuramoto model where a global reduction (valid for any order
parameter) of the dynamics is achievable thanks to the Ott-Antonsen (OA) ansatz. Moreover
for this systems strong mathematical results were obtained. The second system is the Kuramoto
with delay model where the OA ansatz yields an in nite dimensional delayed ordinary differ-
ential equation. This latter equation can be studied locally via standard bifurcation techniques
(e.g. center manifold for delayed equations). The third system is the VNH model vt
(non oscillating perturbation) where a three-dimensional reduction through the Triple Zero nor-
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mal form was done. In this case we believe that weak resonance effect could allow a rigorous
regular reduction using the center manifold method. The fourth model where dimensional re-
duction is expected is the Vlasov-Fokker-Planck system with "large" friction ( =3). This

Is quite standard for dissipative systems. Numerical test would probably help to better under-
stand the interplay between the frictiorand instability rate .

What makes these cases (Ku, KuD, VNH) so unique? Remember that at the linear level all
the eight cases display more or less the same characteristics with the Landau damping (through
phase mixing in velocity) while differences emerge at the nonlinear level. For the standard and
delay Kuramoto model it seems that the non mixing of Fourier modes is the biggest difference,
while for VNH the weak resonance of particles around the separatrix with the unstable wave
is the key ingredient. Could these two phenomena be somehow related? In the Kuramoto case
there seems to be strong resonances but since there is no real velocity variable ("overdamped
oscillators" with their own natural frequency), it is dif cult to be de nitive. In the VNH case
there is mixing between negative and positive Fourier modes, nevertheless terms that usually
produce pinching singularities due to this mixing are strongly attenuated.

How are the resonances linked with the mixing of Fourier modes?

H? k70 CS 90%) G H.O.T.  Reduction
« VH Yes VYes Yes 60 Cs 3 = No
de E%(Sjs on
VNH  Yes Yes * o 0 o/ ! - Yes?
reggvrﬁagrl](ces 8 8 8
2i) ° 2=7 > No?
VFP No Yes No 60 ¢/ _ii) 43 S ? , Yes?
“iijo@w T 0?2 7 Yew
«Ku No No  Yes 60 &/ O(1) 0.A Shsatz
Math results
e Kuzd No Yes Yes 60 s/ = No
Kul No VYes Yes 60 il ! =7 No
Yes
KuD No Yes Yes 60 c/ O(1) OA ansatz
KulD No Yes Yes 60 s/ ! =7 No

Table XI.1 — Comparison between the various kinetic models studied. VH: Vlasov homoge-
neous; VNH: Vlasov non homogeneous (witl2 R); VFP: Vlasov-Fokker-Planck; Ku: Stan-
dard Kuramoto; Kért Kuramoto-Daido; Kul: Kuramoto with inertia; KuD: Kuramoto with
delay; KulD: Kuramoto with inertia and delay; TZ: Triple Zero.
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1 CONJECTURES

Since many directions have been evoked to understand the possibility of a dimensional re-
duction we listed ideas and conjectures on the topic.

Conjecture XI.1
If the unstable manifold approach can be performed without singular coef cients, then the bi-
furcation description is exact close to the criticality.

A stronger version that could be applied to the VFP system.

Conjecture XI.2
When the bifurcation is supercritical and higher order terms of the unstable manifold are negli-
gible at the saturation level, then the reduction can be made exact close the criticality.

As we have seen we know that the opposite implication is false: indeed if the expansion has
the same order coef cient it does not mean that there are no possibilities to obtain a dimen-
sional reduction. For example, in the nite dimensional case Section V.1, the one dimensional
unstable manifold was singular while a two-dimensional model (in this case the full model) was
not. Moreover, it seems that the same thing happens with VNH where the unstable manifold is
singular and a three-dimensional description is not.

Is there any case where the unstable manifold expansion fails? Why does it has always
provided (so far) the right scaling and bifurcation nature viaghsign, with the right param-
eters dependence (as tested for example in Kul and KuD by varying the frustration or delay
parameter)? Is there a way to show mathematically that this is true? We can risk the following
conjecture:

Conjecture XI.3
The unstable manifold always yields the right sub/super-critical behavior of the bifurcation. In
the supercritical case, it also provides the right saturation scaling.

Continuous Spectrum

The continuous spectrum (CS) and in general the in nite dimensional structure of neutral
modes in these kinetic equations were being pointed as necessarily responsible of singularities
in the unstable manifold expansion. Additionally, dimensional reduction looked hopeless with
this structure, though we saw in the standard Kuramoto model and up to a certain extent in the
VNH model (with real) that this was in general false.

However even if the CS does not necessary imply singular coef cients with respeaté¢o
might conjecture that:

Conjecture XI1.4

To get a singular unstable manifold expansion, one needs a slow manifold of dimension strictly
larger than the unstable manifold. This slow manifold is associated with eigenvalesa
continuum of neutral modes) that are of the same order (or smaller) than the unstable mode
0 j Rey . Re .
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Since the unstable manifold close to the criticality is always included in the slow manifold, it
follows that as soon as an additional slow mode is added the unstable manifold will be singular.
In the VNH unstable description we also have a hon empty slow manifold: in addition to
unstable eigenvalue! 0 there is the stable one approaching the imaginary axis from the left
0.

Resonances

Regarding the resonances, we have seen their crucial role in the VNH case: due to very
weak effects the system behaves like a nite dimensional system with a Jordan block. This

phenomenon was translated b§ ; I 9) ' %0 (where we explicit the normalization

factor for this scalar product). With strong resonances, the same limit was non zero. In the VNH
case this zero limit required to extend the eigenbasis at criticality from one to three (and not two
because of the additional eigenvalue in 0). For VH the unstable manifold was of dimension two
(due to symmetry) but at criticality it did not turn to four as it is expected for nite dimensional
systems. We can thus try the following conjecture

Conjecture X1.5
If at criticality 0" i) = 0 then center manifold expansion can be done thanks to general-
ized eigenvectors and will provide a non singular dimensional reduction of the bifurcation.

This means that such systems could behave as nite dimensional ones, thus implying that
along all the in nite dimensional effects of a Vlasov/Kuramoto like equation, one of the most
essential could be the resonance effect (and removing it would change greatly the bifurcation
dimension).

Nevertheless, does it mean that models wif0* ;) 6 0 cannot be reduced? No, because
in the standard Kuramoto exact reduction exists (Section VIII.3 and VIII.4 or [OA08, CN11,
Die16b]) although 90" i) 6 0. Hence there must be another (related?) mechanism.

Nonlinear spatial Fourier mixing

Conjecture XI.6

In an unstable manifold expansion with neutral modes (or continuum of neutral modes), the
zeroth harmonic always gives the most singular (or equally singular) contribution (except if it
is zero) to the bifurcation equation.

In the Kuramoto standard case there is a constant zeroth harmonic while in Vlasov systems
(and probably in generic Hamiltonian systems) this is not the case.

197 Laboratoire Jean-Alexandre Dieudonné



CHAPTER XI. REMARKS, CONJECTURES, CONCLUSION & PERSPECTIVES

Single Wave Model

The Single Wave Model (SWM) [dCN98a, dCN98b, BMT13] is an in nite dimensional
normal form of the VH model. This normal form is shared with many Hamiltonian systems like
Euler 2D and the XY model. The Kuramoto model and its relativeg& Kul, KuD, KulD,

...) are non Hamiltonian, hence this speci c SWM will not apply in these cases. Nevertheless,
it is fair, looking at the similarities of these systems, to expect normal forms a la SWM for
Kuramoto like models. A rst attempt was made in the standard Kuramoto case in [BS00].

For the Kul model this normal form would, in the Kuramoto limit, reduce to the nite Ott-
Antonsen reduction while in the Vlasov limit it should reduce to the SWM. Similarly, is it
possible to obtain a normal form for the rst order Kuramoto model with generic coupling
[Dai92, CD99] (that would also reduce to the OA reduction with one harmonic)?

Another direction concerning this topic: since inviscid uids and pure Vlasov model share
the same SWM normal form, is it possible that they also share a more general normal form with
dissipation and friction? Indeed, we have seen that the different regimes and scaling predicted
in this work were similat to the ones found for viscous uid [CS87, CS95, CS96].

2 FURTHER WORK TO DO

As we just saw, while we answered many questions we also raised many others (and set aside
some technical proof). Answering them all would certainly take quite some time. Thus, for now
we will just list the most directly related questions that we hope to answer:

— The Triple Zero reduction of the VNH problem will be explored and tested. We hope
that it will be able to predict the different behaviors observed in Figure VI.5 insets. A
decisive step would be to compute the different coef cients of the normal form for the
G° = Eq.(VL.37b) andF°® = Eq.(VI1.37a). Then by plugging them into the normal
form we could check if the behavior is consistent with the numerics. It would certainly
establish further the validity of this reduction.

— What happens when the unstable eigenvalues of the VNH model are complex? We expect
that the resonance phenomenon is important in this case as for VH. Hence what produces
an unstable manifold calculation? Is the center manifold reduction to a normal form
possible? Or will the Single Wave Model be the in nite dimensional normal form of this
bifurcation (like in VH)? Or neither?

— We plan to do some numerical simulation for the Vlasov-Fokker-Planck system to check
the various predicted regimes. We also plan to estimate the higher order terms.

— Does the Kuramoto model with inertia and dissipation displays such interplay between
dissipation and instability?

— For the delayed Kuramoto models | will soon start a collaboration with S. Gupta to
explore further these results (and probably other directions). Moreover, numerics are still
lacking to support fully the preliminary predictions. In the inertialess case we managed
to avoid numerical simulations since we used the ones of [YS99]. However, we predicted
that there exists some critical delayfor which the bifurcation is always supercritical
(for a Lorentzian). Results on generic distribution should be obtained.

1. The intermediate regime was slightly different but it could be due to the forcing added in the uid system.
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2. FURTHER WORK TO DO

— Another interesting related problem would be to study the bifurcation in Kuramoto mod-
els around patrtially synchronized states where the stable case was recently treated in
[DFGV16].
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APPENDIX A

MAGNETO-OPTICAL -TRAP
COLLABORATION

1 STRUCTURE FACTOR AND DIFFRACTED INTENSITY

Dipole equations

In this section, we link the structure factor with an experimental observable, the diffracted
intensityl . Probing the cloud with a laser of wavenumbierexcites atoms so that they emit a
eld that we can measure. In linear regime and one dimension [BPK12,"R&Hneglecting
the Doppler effect terms), atoms are considered as dipoles. The coupled equations for their
amplitudes ; are

. id i 4 X
i TpEin(ﬁ)"‘?d Vi (A1)

d
L= — +
-+

2 .
j6i

e kum #l . o .
whereV; (t) = ¢ . -, Ein is the shape of the monochromatic incident beam (typically
) l atomJ'F’l
plane or Gaussian wave) of pulsation in direction,, d, is electric dipole matrix element and

4 Is the natural width of the transition. At equilibrium, one get
- id
= }_pM "B, (A.2)
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with 0 1

M = : (A.3)

d

2

Off diagonal terms correspond to multiple scattering. The order of magnitude of these effects
are measured by the optical thickndsdn experiments( ) 1soitis not clear whether the
effects of multiple scattering will be strong or not. In the simulations presented in Chapter Il
and lll, we are forced to get a very sméll 4 10 2 to achieve a cloud with a step like
pro le and with small correlations (like the expected experimental regime). Thus, no multiple
scattering effects can be seen. A larparvould require a larger number of particles in the
simulation.

In next Section, we will test on an example with largp€but a Gaussian like density pro le)
the effect of multiple scattering in the diffraction pro le.

Scattered intensity

Figure A.1 — MD simulations of the structure facts(k), T = 4, !, = 10, C = 0:001,
by =0:769

The incident Laser intensityis scattered in directioks = ki (cos' , Sin ;sin' ¢ sin ; cos ),
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2. THEORETICAL DENSITY PROFILE

see Figure 11.6. For elastic scatterifigyj = jKij = k_j&]), thus we have

I(i;" )= exp ik # ; exp ik ; exp Kk & ~; (A4

in spherical coordinate.

In Figure A.1 we show two structure factors for the same cloud, one is obtained uniquely via
simple scattering (corresponding to 4 = 1 ), and one obtained via multiple scattering (we
choose to be at resonance 0 where multiple scattering effects are the strongest). The optical
thickness at resonance is about the one used in experiment at working teginde769
ey 1. The difference between the two structure factor is very thin. Thus, since the effects
we seek are much bigger we can only look at the single scattering effects for a rst exploration.

2 THEORETICAL DENSITY PROFILE

Figure A.2 — Longitudinal density(z) with = 300 m (blue), = 1 mm (orange) and
L = 7:36mm (as in the experiments)

In Section 111.2.3.b we have studied an over simpli ed step function density pro le sec-
tion 111.2.3.b to get a simple view of the two diffraction regimes Raman-Nath/Bragg. Here we
explicit a more realistic shape (with smooth borders). We used this "realistic” density to obtain
the theoretical curve in Figure 111.6 that is consistent with the experimental data.

We choose on the longitudinal direction a symmetrized Fermi function Eq. (A.5). Itis a
step pro le with a parameter controlling the smoothness of the stepl( going to O gives
a Heaviside pro le). In the perpendicular direction, we simply use a Gaussian shape with
waistw. Indeed, in the experiment the probing Laser has a Gaussian shape with a width much
smaller than the cloudy( L-»), thus border effects of the real density should be small in this
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perpendicular plane. The mathematical expression of the symmetrized Fermi function is

sinh L 2r3
exp '

(z;ro;L 5w )= —

= w? A5
L cosh & +cosh 2 (A-5)

w2

Its 3D Fourier transform can be done separately for the Gaussian and the longitudinal parts.
The Fourier transform of the symmetrized Fermi function is provided in [SM97]. The result is

e 5% sin(k,L)

(eik?) = = sinh(k )

(A.6)

As an illustration, we plot, Figure A.2, the longitudinal density pro les for experimental
parametersv = 2:2mm,L = 7:51mm (L is the radius of the distribution, so the FHWM is a
bit larger than that, here it is around 1 cm like in the experiment). We compare two different
parameter that measure the stiffness of the step.
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APPENDIX B

VLASOV NON HOMOGENEOQUS

1 ANGLE ACTION VARIABLES

In this Section, we derive the explicit expression for the Fourier coef cients of the potential
(cosq;sing). The Fourier coef cients are de ned through

cm(K) = cos@(; e ™ ; (B.1a)
sin(q(; )e ™ : (B.1b)

We can writecosg andsinq explicitly in angle action variables [Oga13]:

31 22 XU <1
cos@(; )= _ (B.2a)
S1 2srf K(1_);} : > 1
% 2K() an X0 <1
.1 K@=).1 | .
sin(g(: ) = o o 2 el o
% 2sn );E cn K(l:);} ;> 1 p<Q;

where de nition of the complete elliptic integral of the r$¢ ( ) and second kindE( ) and
the Jacobi elliptic functionsn are given through the incomplete elliptic integral of the rst and
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second kind [WW96]

Z
FG )= p— (B.3a)
o 1 Zsin°t
K()=F(=2) (B.3b)
sn(F(; ))=sin (B.3c)
Zp_
E(; )= 1 2sin’tdt (B.3d)
0
E()=E(=2 ), (B.3e)

(B.3)

with K(0) = E(0) = 1 andK (1 ) diverges. Injecting Eq. (B.2b) in Eq. (B.1b) and using
reference [Mil02] for the Fourier expansionsf?;sn cn;sn dn gives the coef cients. We
nd

8

5 ZKET)) 1 < 1
CO( )— 3 2 2E(1= ) 41 o2 - (B.4a)

T OK@1=) ’
22 mq( )"
Com( ) = K( )21 qcf( ))2m <1 (B.4b)
Com+1( )=0 <1 (B.4c)
_ 2727 mg@l=)"
Cm( )= Ka=)21 o= )2 > 1 (B.4d)
and

So( )=0 (B.5a)
Sam( )=0 <1 (B.3b)
Som ()= i sign(m) . @M Da()" = <1 (B5c)

K()> 1+q()m™?

222 mg(l=)"
K(1= )21+ q1= )"
222 mq(l=)"
K(1= )21+ q1= )"
where theg function is de ned as

> 1; p>0 (B.5d)

Sm( )= isign(m)

> 1 p<0 (B.5e)

Sm( ) = isign(m)

P
o )=exp K (1 ?)=K()
These explicit expressions are essential to manipulate the dispersion relation (for its roots or
resonances). For example, thanks to the fast convergence although{@f tlsg ) coef cients,
one can for numerical applications truncate safely and even estimate error. We provide the
expression of( ) used to compute in Figure VI.5,
[
z Z :
R =1 g2 fO &1 e fO
o Z+4n?i() , o 2+m2( )
where typicallyny =9 (ny = 7) for F° the Fermi distribution Eq. (VI.37a)3° Eq. (V1.37b))
is enough to compute with six-digit accuracy.

m=1
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2 COMPUTATIONS AT HIGHER ORDERS

Since the effect of resonant particles was weaker than for homogeneous case (and Landau
damping algebraic for long time), we expected nonlinearities to also be weaker. Are they weak
enough forcsA2, = o(c,A2,,)? We explain here how to compute the higher order terms. While
the structure is standard, the effective computations are intricate. The rst paragraph is valid for
a general potential, but in order to explicitly work out the order of magnituds,afie restrict

to the cosine potential. We then show tbat C= 3 as ! 0.

2.1 Structure of the computation for a general potential

Let us parameterize the unstable manifold bfis

X
g=  HAS Hi= ¢ (B.7)
k 1

Since the nonlinear paN [g] of the Vlasov equation@g = L g+ N][g], is bilinear, we write
it as
N[g]l = B(g;9 ; withB(g;h) = @9@ [0] @9@ [g]:

Recalling that the reduced dynamics on the unstable manifold is
X

A= oA o= (B.8)
k 1
our goal is to provide a formal expression fr This requires computing at the same time the

H's. We write the time evolution equation fgrin two ways:
X X
@‘J - Ak+ | 1kC| H K

thd X X (B.9)
= AKL Hy+ A B (Hi; Hi);
k 1 k 11 1

where we have used Eq. (B.8). Picking up the terms order by order, we have feor any

)’( 1
(ke; L )Hg = [B(Hk ;H)) (k Dcg+Hg ]: (B.10)
=1
This equation fok = 1 is simplyL .= ., and we focus ok 2.

We now project these equations ostmarf .gandsparf g’ ; we note the corresponding
projection operators and ? = | , Wherel is the identity. The projection operators work
as

L = 7L =0;
(L)e= )« ©11)
( L)Hk:O, ( ’ L)Hk:L Hk, k 2:
The projection operator induces
X 1
Ck ¢= B(Hk 11 H)); (B.12)
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and 7 yields

K1 X 2
(k  L)H¢= ? B(Hk 1;H)) (kDo Hg 1 (B.13)

=1 1=1

Equation Eq. (B.12) determinesfromH,, and Eq. (B.13H\ fromH, andg with|1 2f 1; ;k
1g.

2.2 Cosine potential - Order of magnitude ofcs

We now specialize to the cosine potential and focus on the third order coef@ient
Calling G the r.h.s. of Eq.Eq. (B.13), we have

whereR(z) = (z L ) listhe resolventof. Our rsttask is to determine the dependence
of R(k ) Gg. Let us then consider the equation

(z L)X =G;

and solve forX ( ;J ). Denoting them-th Fourier component ok in asX,,, we nd after
some computations, for ath 2 Z:

Gm imcm @F°(J)

" rmy P Zem9) (B:15)
where P R
_2 0 o™
C(z) = D (B.16)

Takingz = 2 in Eq. (B.15), we see thaf2 ) !introduces a= 2 divergence, and that the
m = 0 term in the sum yields an extdx divergence, unles&,,-o = 0. Thus, theC factor
Eq. (B.16) gives the leading singularity.

Now, recalling Eq. (B.13), we have to apply the resolvenBte ?B( . .). Using the
de nition of ¢,, we have

H,=R2 )B( ¢ ¢ ©R2) (B.17)

We rstnote thatB( .; <)m=0 = 0 (B contains two terms, each containing a derivative with
respect to ; hence the zeroth Fourier mode vanishes) and thgt-, = 0. Hence the possible
divergence related tm = 0 in Eq. (B.15) does not exist, and the resolvent introduces only a
1= 2 divergence. We conclude that in the r.h.s. of Eq.(B.17), the rstter@is 2 . The
second is a priorD 3  sincec, / 1=, but we show now it is actually alsD 2 The
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C factor Eq. (B.16) foR(2 ) ¢)m IS
P

C = m #Cr(n.l)d‘]
@,)

_ 2 XA @R,
@), MCrme +m(3)

_ 2 X7, @FDjen
@) o TP 2 +im 2
3
S =oa=)

where the last lineis for |  0*. Hence, the second term in the r.h.s. of Eq. (B.1Dis 2
and so iH,. From Eq. (B.12)

G ¢c= [B(H2; o)+ B( c;H2)I; (B.18)

where the r.h.s. is appliedto aO 2 . Now, the projection contains a diverging=

factor, coming from the normalization factbx Y ), needed i to ensure that™¢; i = 1.
Hence, except for a restricted set of functionsuch thath™¢;' i = O (1), we have (for

: 1 . o :
independent of ): ' / —. The exceptional such that the projection does not introduce

a divergingl= factor lie close to the kernels of and ? (the latter is just Spdn ¢)). With

this in mind, it is not dif cult to conclude that; / 1= 3. This is the same divergence strength

as the one which appears in the homogeneous case [Cra94a], although the mechanism inducing
the divergence is different.
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APPENDIX C

VLASOV-FOKKER -PLANCK

In this Appendix, we compute in details the dependence on the frictiand instability
parameter , of the cubic coef cientc;. Since the calculations are done for a small friction, the
limit =1=y! Owill always be considered. In fact, as it is possible to check directly, in the
case where is a nonzero nite constant no divergence appears.

We still use the notation = 1=yanda = y?+ y in all this appendix, as well as 2 = 1=y,
anda, =4y*+2vy .

The strategy of all estimation is to express the integrals in exponential form

2727

g/’Pxuis) gsdudx:

For a standard integral one would use Laplace method determining the maximum (independent
of y) and expanding around it and then maké1l . We apply a similar procedure here but

our maximum depends onand in general goes toward one integration bound wit&o, we
estimate the maximum rst according tos, then expand around this maximwsmand compute

the integral. Then we repeat the procedure for each integral. We can check then that neglected
terms are indeed negligible around those maximum, for example if y !, we can safely
neglect(y + 1)x in front of x2y? in the exponential. It results in having(a+ O ;y 1)

term for the whole integral.
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1 ZEROTH HARMONIC CONTRIBUTION

As it can be expected from the frictionless case and for example [CS87], the divergence will
come uniquely from the zeroth harmonic term. We had from Eg. (VI11.30),

ZK 3 YA 0 VA
& = y2 1@+ =y ley Y d@;y? yt) d@y?+yt) did:
4 O( ) y 0
(C.1)
After changing variables in both integradlss =y andu = t=(xy)
h ZK 3 Z 1 ) Z 1
o) = i)Y > x*(1 x)* e u¥ d(ayA(1+ ux)) d(a;y*(1 ux)) dudx:
0 0
(C.2)

1.1 Diverging term

We will use the expression @K a; x) as an integral ove; 1] Eq. (V11.10). We rst look at
the left term that will diverge:

2K3
5

BD =
4(())/ 0 0 ©

1
X2/ PUs) dsdudx; (C.3)
were
p(x;u;s) = x+(1+ ux)s+In(l x)+In(1 s)+ §(2Inu+ln(1 x)+In(1 )

%(In(l X)+In(1 9)):

(C.4)
The goal of this formulation in the spirit of the Laplace approach, nd the maximum and expand
around it. For y 3 we will prove self consistently that  (y) *and for y =8,
2=3
x oy >

Here we develop the expression rst for smallassumingl  u small, which will be self
constitently proved.

1 s? 1 s? 1

;u;S) = —+ = —+0 -8 = ~—+0 -s;=s (C5

ps(X; u; s) ux VARY: S > ys yZS uxs > ys yZS (C.5)

where the last maximum was obtained using the scaling ¢ferms likex* y will always go
to in nity). So, it gives for the integral oves,

r _ Z .7
2K3 4 1 1

1
— x2exp yp,(x;u) 1+0 — =
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1. ZEROTH HARMONIC CONTRIBUTION

with
2112

X“Uu
pu(X;u) =

+2§Inu+x+ln(1 X) + yln(l x)+%ln(1 X): (C.7)

As stated before the maximumuns situated neam =1 sowe canexpandas =1 u 1,

2
Pu(X;u) = X2+2§ u+X?+O u? +x+In(1 x)+yln(1 x)+>%ln(1 X): (C.8)

So, we can integrate

r_ z
K2 4 texpPpk(x)

1
@ = _ 4 .
B 2 32 q )y D yxEr2y 1+0 y' ) dsdudx; (C.9)
where
X2 1
()= 5+ x+In(l x)+ y|n(1 X) + Fln(l X) +2In x: (C.10)
Again, expanding for smak where the maximum is situated, we have
1 x3
px(X) = §+ )7 X §+2In X: (C.11)
This gives
X
" r— 2 3 421 zeXp 2y 1) yg 1
BYW= 2 Emy 0x VXET 2y 1+0 V' dx:
(C.12)

The maximumx depends on which of the two terrfls )?y?, y dominate. We nd as already
formulated thak  (y ) *and for y B x y Z.So(x)%? vy for y 3
and(x )%y?> y for y =,

— It gives for y =,

K% 1 1
B® 2 = = K? 1
24 Q)43 43 (C.13)
It is exactly as in V.54.
— For y =, "
W _ 2K3 y4=3 %
B 2 — ; C.14
24 ) 3 (19
so, when 4= B does not diverge and is a priori of order 1.
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1.2 Nondiverging term

The second term is non divergent as we will quickly see
zZ .2 .,Z
2K 3 5 1 1 1

B®@ =
40())/ 0 0 0

x2e/°PUs) dsdudx; (C.15)

were
p(x;u;s)= x+(1 ux)s+In(l x)+In(1 s)+ y(ZInu+In(1 X)+In(1 )

%(In(l x)+In(1l 9)):
(C.16)

The maximum is still close to zero so we expand
1 s? 1 s? 1
ps(;u;s) = ux —+ = s —+0 —s 58" =uxs —+0O —s;=s : (C.17)
y 'y 2 y 'y 2 y'y
The difference here is the minus sign in fronusfwhich makes the maximum negatise< O.
It means that the maximum on th8s2 [O; 1] interval is reached & = O for largey assuming
1 . . e
u X —; — (which we will check thereafter). The implication is that we can use the Laplace

formula for a maximum situated at a boundary [Avr00] (which says that instead of integrating
p°{s?st)s?=2 we integrateps )s. In our formalism, we considarxs  s°.

2K 3 YA lZ lz 1 X )
B®@ = y 3 Zu?Y @) dudx: (C.18)
4 9) o o o U
with 1
pc(X) = x+In(1 x)+ yln(l X) + ?In(l X): (C.19)
The integration oveu is in fact immediate and produce g ) ! factor, thus
@ 2K3 Zzlzlzl 2. (X)
B = y xe¥ ) dx; (C.20)
4 0( ) 0O ©O 0
(X)+In x=y ?Inx X L Xx+0 x3%—x% ix2 (C.21)
2y y 'y y?
the quadratic term always dominates, the maximum is 1=y. The remaining integral is
Z

y2x2
/ xe z dx:

It cancels the lasy? prefactor thus the wholB® coef cient is nite. It is easy to check self
consistently that neglected terms are indeed small.
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2 SECOND HARMONIC CONTRIBUTION

We use the notatior=2 = 1=y, anda, = 4y*+2 y . Soy, = 2y. We have

sz— 2— ey2 aZ 1
Boo( )= — 2e 2 1+ — te Y2'(1+t=y,)® 1 1 yd(a;y?+ yt) dt:
8 2 Y2 va
(C.22)
The associated cubic coef cient is
(h2) 2K3 YA 0 al az
C = e Y 1+- e’? 1+ —
8) vy y y2 (C.23)
te Y21+ t=y)® ' 1 yd(a;y?+ yt) dtd:
y2
Here 2y t 0Sotheterm
Z 1 Z 1
yd(a;y2+yt)= y VWS g2 lds y 51 s)? lds
0 ro_ 0 (C.24)
= yely ® (@y) 5! 0

where we used known equivalent of the lower incomplete Gamma function [Par02] for the
situationRe(y> a) OandRe(y? a)=y! O.
So
2K3 Z 0 ey2 aZ

- (h2): t —y a2 1 )
1+ — te ' (1+ t= dtd C.25

The integral ovet can be re-expressed with tbéa; x) function as

|
Z o a1

2K 3
ic"?j K e Vv 1+§ 1 y.d(agys+y, ) d (C.26)

1G] 8 q)

y

Once again, the terms

2yd (azy2+y, ) ye™'(2y) 2 (ax4y?)

so we can bound further the coef cient
jcij izo e V 1+-— ’ 1d : (C.27)
89) y
The integrand can be written as an exponemiZ®,
z 0 al vA 1
y e V 1+)_/ d = y2 O ey2(x+|n(1 x)+Hn x+(y 1In@d x) dx (C.28)
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which give amaximunx  y * so the exponent can be safely expanded for sraho
Z, Z,

y2 @i o Xy DA X gy = y2 Xey2§ 1+0 :y ' dx
0

0 (C.29)
= 1 O :y t:

Which conclude thatéh” does not display any divergences. It is also easy to observe with
Eq. (C.23) that)® < 0.
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THE KURAMOTO MODELS

1 KURAMOTO WITH INERTIA

In this Section with show how to recover Vlasov and standard Kuramoto limit from the
Kuramoto with inertia model.

1.1 Standard Kuramoto limit, m! O

We have to take rst the limitm ! O, before g ! 0. Counting the powers afn in
Eq. (1X.28) shows that the whole contribution lof,o vanishes in this limit, even taking into
account the overall=m factor in front of theO(A%) term, see Eq. (1X.20). Similarly, th¥,
andX, terms in Eq. (IX.29) give a vanishing contribution in the! O limit. Let us estimate
the X term:

z ime? KZZ a') .

ror Q) 2 ( +ir)s

=W (1) X(1) d!

One may then take thes ! 0" limit, and this yields the following result

. _ K2 %Ry,
Rll!m0+ C3 = > ql |)’

where we have used the expression fan the limitm ! 0:

z
_ K ') .
()=1 Se L

(D.1)
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This recovers the expression for thg(standard Kuramoto model, see Eq.(139) in [Cra94a]. In
i 1)
qi 1)

(resp.s® < 0) corresponds to a subcritical (resp. supercritical) bifurcation.

particular, the sign o§°( ) = Re determines the type of the bifurcatios > 0

1.2 Hamiltonian (Vlasov) limit, =0,m!1 K !1 , K=m =cst

The Vlasov limit consists intakingh ' 1 , K ' 1 while keepingk=m = cst (this
cancels the friction and the natural frequency driving), and0 (no shift between oscillator).
As in the general case tlig.o term does not give any pinching singularity. Here as in [Cra95a]
we use a fraction decomposition to get

Z
(W Wy T (W, W) dE =
. ,Z , .
HI S TR ' PRV
rR L) 2m (+i)H 7 )2 R
2i K 27 1 1
= — — —— + :
Q) 2m 8 &( +il)2 8R( 7 i)
! (D.2)
1 2
23( 40 ) g(! )d! + O( )
K ()1 ()1 ) )
~ () 2m 44 23 TO w
I K
T agmtO R
where we have used )= () =0. Finally, inthe limit g ! 0"
K2 1
C —_— (D.3)
¥ 4m? 3

It is the exact same result (with = 1) than Eq. (V.54). As noted by Crawford this result

does not depend on the initial velocity distribution. The 3 divergence yields the well know

trapping scaling for the instability's saturation amplitidg, / 3.

2 THE SELF-CONSISTENT MEAN -FIELD METHOD , AND BISTABLE
BEHAVIOR

The self-consistent method (introduced in the original Kuramoto article [Kur75], and later
adapted to the case with inertia [TLO97a, TLO97b]) is a standard tool to understand qualita-
tively Kuramoto-like models. We show here that:

i) The bistability of single oscillators pointed out in [TLO97a, TLO97b] as the origin of the hys-
teretic behavior at large inertia cannot explain the results at small mass presented in gure IX.1
of the main article.
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i) Nevertheless, the self-consistent method does predict a discontinuous transition for the pa-
rameters of gure 1, although it is dif cult to make a general statement.

The basis of the method is to assume a constant value for the order paramdteen,
considering the dynamics of the single oscillators with thishe may evaluate the contribution
of each oscillator to the order parameter, and write a self-consistent equation.

2.1 Bistable behavior

We assume thatis xed, and take its phase to l8ewithout loss of generality. The dynamics
for a single oscillator with intrinsic frequendyis (in rescaled parameters)

m*+ =1 Kr sin: (D.4)

Through the change of variable= Tswith T = 1=Kr, the dynamics reduces to (keeping the
notation )

d? d :
4+ — = : .
M R sin ; (D.5)
withM = mKr and = !=Kr . WhenM =0, Eq. (D.5) has a single attractive xed point for

small (corresponding to phase locked oscillators); this xed point collides with an unstable
one for =1 , and the dynamics becomes periodic (drifting oscillators). This behavior persists
for small enougiM . However, a qualitative change occurs kbr= M ' 0:83. Beyond this
point, there is a range of values forwhere the stable xed point coexists with an attractive
periodic orbit: the dynamics Eq. (D.5) is bistable.

Notice that the curves presented on Figure IX.1rfor= 0:25andm = 0:5 feature in the
transition regiorKk < 3 andr < 0:5; thus, the reduced madé < M ., and bistability of the
single oscillator dynamics cannot explain the discontinuous transition.

Nevertheless, it is possible that the self-consistent mean- eld method predict a discontinuous
transition, even without bistability of the single oscillator dynamics.

2.2 Self-consistent equation

We compute now the self-consistent equation "a la Kuramoto" for the parameters of gure 1,
m = 0:5; the starting point is Eq. (D.4). We have seen that there is no bistability for individual
oscillators (at least in the transition region). Thus, the self-consistent equation simply reads as
the sum of the contributions of locked and drifting oscillators:

I'= Tocked + Farift - (D.6)
The locked part is [TLO973]
Z -,
Mocked = K cog g(Kr sin )d: (D.7)
=2
The drifting part is more involved:
Z
a(!) cos

Farft = 2 (D.8)

e T V)Y
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where( ;V, ( )) is the attractive periodic orbit for an oscillator with intrinsic frequehg¢yand

T(!) is the period of this orbit. The factd in front comes from the ! I symmetry.

Eq. (D.8) is usually computed in the largeregime (or rather largh! ), which is of no interest

to us. It would be possible to perform a smill expansion. The results presented on Fig-
ure 1X.1 rely instead on a direct numerical estimation of Eq. (D.7) and Eq. (VIIl.6). For small
K, Eg. (D.6) has a single solution= 0. Increasing , two new solutions appeat andr , at

nite distance from0. On gure , we have plotted the. solution as soon as it appears, although
ther = 0 solution may still be stable. We see that this self-consistent method i) does predict
a discontinuous transition for these parameters, and is in fair quantitative agreement with the
numerical data ii) does not easily provide general statements about the transition, for different
values of the parameters, and different frequency distributions.

3 SIGN OF DISPERSION RELATION DERIVATIVE

3.1 Standard Kuramoto model

The standard Kuramoto model has @2) symmetry (re ection and rotation invariance)
when the distribution of natural frequencigs symmetric. In this situation whel > K . the
system becomes linearly unstable and unstable eigenvalue(s) are

i) One real eigenvalue with an associated eigenspace of dimension 2. Thus, the unstable
manifold is also of dimension twa@ is even.

i) Two complex conjugate eigenvalues with where each are associated to an eigenspace

of dimension 2. This yields an unstable manifold of dimensiog i¥.even.
If the O(2) symmetry is broken, situation iii), eigenvalues are always complex conjugate with
an associated eigenspace of dimension 1. This yields an unstable manifold of dimension 2.

In this Ph.D. thesis, we focused on unstable manifold of dimension 1 or 2 to avoid more
intricate computation. For an example treated by J.D. Crawford see [Cra94a]. Hence, we want
to avoid case ii).

In case i) the nal result of the unstable manifold was

2K 2 09 1o 3K 2 DQOQO)

STy T4 PV (QU)=hH)d (D-9)
where we used
Z
%0) = %PV @d! (D.10a)
%0) = % 902?0): (D.10b)

The conclusion was that the sub/super-critical behavior of the transition was given by the sign
g°{0). But what if %0) was negative? Can this happen for some well-chosen distribution?

In this Section, we conjecture that in case §0) > 0. In fact, we also conjecture that the
transition between case i) and ii) is given b{0) = 0.

We are able to demonstrate this claim only for unimodal and bimodal distribution (and bi-
modal like distribution).
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Unimodal distribution

Unimodal functions are functions wigf(! )  Ofor! > 0. In this case the demonstration
is direct since we always have(0) > 0.

Bimodal distribution

Bimodal functions are function one local maximum for 0 andg®{0) > 0. At the
criticality K = K the dispersion relation Eq. (V1ll.12c) satis es in case i) and ii) (complex or

real eigenvalue) 8 7
2py XDy -g
.2 ! | (D.11)
. Kc( i) -9 ( i).

The rst equation gives the admissible values forwhile the second give the associatéd
We de ne
8 z z
Sqy=py W g o Tte ) e+,
Z 1 I 0 I
3 _ o' )+gl+ ) ..
>d( )= ! dr:

0

(D.12)

Note thatd(0) = O for every (symmetricy). Hence, we want to show:
d¥0) < 0)9 ; > Osuchthatd( ;) = 0 andg( ;) > g(0) (which directly implies that
Ke( i) <K c(0)).
It says that if 90) < 0is negative then, there exists a pair of complex eigenvalue, and these
complex eigenvalues go unstable rst and thus drive the instability, this is case ii).

To prove the rst implication, we just need to prod¢ ) " 0". Indeed sincel(0) = 0
and we assumed{(0) < 0, d is negative for small and if it has a positive limit by continuity,
there must exist at least one rogt If we call the integrand ofl

¢ ) 9ott+ )

st)=9 (D.13)
we haves(0) = 29Y ) ands¥0) = 2¢°{ ), s(1 ) = 0" because we chosgto decrease
monotonically at in nity.

To prove the second part the idea is to prove tha2]0; nax] where nax iS the position
of the maximum. In this casg( i) > g(0) We proceed with a proof by contradiction Suppose

i 2 [ ma;+1 [ Thens (1) 0 (since in this interval of a binomial function we have
gY!) 0.Henced( ;) > 0and ; is not a root ofd. Absurd!

Thus if ; exists ; 2 [0; lambdana[ with K¢( i) < K ¢(0).

This reasoning can be applied to slightly more generic bimodal-like distributions but no
general results has been found so far. One can check explicitly that for a bi-Lorentzian distri-
bution Eq. (VIII.28) the criteria from case i) to case ii) (partial synchronized state to standing
wave [Cra94a, MB509]) corresponds to {0) = 0.
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3.2 Kuramoto with inertia

In the case with inertia the relations given by the dispersion relation Eqg. (IX.8) at criticality
are more dif cult to analyze and looking gf0) andg( ;) is not enough.
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RESUME

Les systémes en interaction a longue portée sont connus pour avoir des propriétés statistiques et dyn
miques particulieres. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivan
leur densité dans I'espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La premi
traite de notre collaboration avec une équipe expérimentale sur un Piege Magnéto-Optique. Ce dispositif
grand nombre d'atomes présente des interactions coulombiennes effectives provenant de la rediffusion dt
photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l'analogue d'une longue
de Debye, et son in uence sur la réponse du systéme. Les expériences réalisées ne permettent pour l'instz
pas de conclure de facon dé nitive. Dans la deuxieme partie, nous avons analysé les modeéles cinétique
de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension in nie, nous avons examiné les bi-
furcations autour des états stationnaires instables, I'objectif étant d'obtenir des équations réduites décrivair
la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cing systen
différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifi
cation, gue nous avons testée numériguement. Nous avons conjecturé une réduction exacte (obtenue vie
forme normale Triple Zero) autour des états inhomogénes de I'équation de Vlasov. Ces résultats générique
pourraient étre pertinents dans un contexte astrophysique. Les autres résultats s'appliquent aux phénomert
de synchronisation du modele de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées.

Mots-clés : Dynamique, Réduction Dimensionelle, Non Linéaire, Hors d'Equilibre, Interactions a Longue

Portée, Equation Cinétique Sans Collisions, Vlasov, Fokker-Planck, Triple Zero, Oscillateurs Couplés, Syn
chronisation, Kuramoto, Piege Magnéto-Optique, Atomes Froids, Longueur de Debye

ABSTRACT

Long-range interacting systems are known to display particular statistical and dynamical properties. Tc
describe their dynamical evolution, we can use kinetic equations describing their density in the phase spac
This PhD thesis is divided into two distinct parts. The rst part concerns our collaboration with an exper-
imental team on a Magneto-Optical Trap. The physics of this widely-used device, operating with a large
number of atoms, is supposed to display effective Coulomb interactions coming from photon rescattering
We have proposed experimental tests to highlight the analog of a Debye length, and its in uence on the
system response. The experimental realizations do not allow yet a de nitive conclusion. In the second part
we analyzed the Vlasov and Kuramoto kinetic models. To study their in nite dimensional dynamics, we
looked at bifurcations around unstable steady states. The goal was to obtain reduced equations describil
the dynamical evolution. We performed unstable manifold expansions on ve different kinetic systems.
These reductions are in general not exact and plagued by singularities, yet they predict correctly the natur
and scaling of the bifurcation, which we tested numerically. We conjectured an exact dimensional reductior
(obtained using the Triple Zero normal form) around the inhomogeneous states of the Vlasov equation
These results are expected to be very generic and could be relevant in an astrophysical context. Other r
sults apply to synchronization phenomena through the Kuramoto model for oscillators with inertia and/or
delayed interactions.

Keywords: Dynamics, Dimensional Reduction, Nonlinear, Out-of-Equilibrium, Long-Range Interactions,
Collisionless Kinetics Equations, Vlasov, Fokker-Planck, Triple Zero, Coupled Oscillators, Synchroniza-
tion, Kuramoto, Magneto-Optical Trap, Cold Atoms, Debye Length
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