A. O. Aboyade, J. F. Gorgens, M. Carrier, E. L. Meyer, and J. H. Knoetze, Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues, Fuel Processing Technology, vol.106, pp.310-320, 2013.
DOI : 10.1016/j.fuproc.2012.08.014

T. Agarwal, Development of diagnostics for the experimental studies of ignition in sprays, p.29, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00969174

F. Aguerre, Etude expérimentale et numerique des flammes laminaires étirées stationnaires et instationnaires, p.82, 1996.

D. Alviso, Experimental and numerical characterization of the biodiesel combustion in a counterflow burner, pp.58-107, 2013.

D. Alviso, J. Rolon, P. Scouflaire, and N. Darabiha, Experimental and numerical studies of biodiesel combustion mechanisms using a laminar counterflow spray premixed flame, Fuel, vol.153, issue.137, pp.154-165, 2015.
DOI : 10.1016/j.fuel.2015.02.079

K. Andersson, R. Johansson, S. Hjartstam, F. Johnsson, and B. Leckner, Radiation intensity of lignite-fired oxy-fuel flames, Experimental Thermal and Fluid Science, vol.33, issue.1, pp.67-76, 2008.
DOI : 10.1016/j.expthermflusci.2008.07.010

K. Andersson and F. Johnsson, Flame and radiation characteristics of gas-fired O2/CO2 combustion, Fuel, vol.86, issue.5-6, pp.656-668, 2007.
DOI : 10.1016/j.fuel.2006.08.013

D. Anthony, J. Howard, H. Hottel, and H. Meissner, Rapid devolatilization of pulverized coal, Symposium (International) on Combustion, vol.15, issue.1, pp.1303-1317, 1975.
DOI : 10.1016/S0082-0784(75)80392-4

O. Authier, E. Thunin, P. Plion, and L. Porcheron, Global Kinetic Modeling of Coal Devolatilization in a Thermogravimetric Balance and Drop-Tube Furnace, Energy & Fuels, vol.29, issue.3, pp.1461-1468, 2015.
DOI : 10.1021/ef502600t

R. Backreedy, L. Fletcher, L. Ma, M. Pourkashanian, and A. Williams, MODELLING PULVERISED COAL COMBUSTION USING A DETAILED COAL COMBUSTION MODEL, Combustion Science and Technology, vol.19, issue.4, pp.763-787, 2006.
DOI : 10.1016/S0016-2361(01)00158-2

R. Backreedy, R. Habib, J. Jones, M. Pourkashanian, and A. Williams, An extended coal combustion model, Fuel, vol.78, issue.14, pp.1745-1754, 1999.
DOI : 10.1016/S0016-2361(99)00123-4

R. I. Backreedy, L. M. Fletcher, L. Ma, M. Pourkashanian, and A. Williams, MODELLING PULVERISED COAL COMBUSTION USING A DETAILED COAL COMBUSTION MODEL, Combustion Science and Technology, vol.19, issue.4, pp.763-787, 2006.
DOI : 10.1016/S0016-2361(01)00158-2

S. Badzioch and P. G. Hawksley, Kinetics of Thermal Decomposition of Pulverized Coal Particles, Industrial & Engineering Chemistry Process Design and Development, vol.9, issue.4, pp.521-530, 1970.
DOI : 10.1021/i260036a005

X. Bai, G. Lu, T. Bennet, A. Sarroza, C. Eastwick et al., Combustion behavior profiling of single pulverized coal particles in a drop tube furnace through high-speed imaging and image analysis, Experimental Thermal and Fluid Science, vol.85, pp.322-330, 2017.
DOI : 10.1016/j.expthermflusci.2017.03.018

Y. Bai, K. Luo, K. Qiu, and J. Fan, Numerical investigation of two-phase flame structures in a simplified coal jet flame, Fuel, vol.182, issue.15, pp.944-957, 2016.
DOI : 10.1016/j.fuel.2016.05.086

S. Balusamy, M. M. Kamal, S. M. Lowe, B. Tian, Y. Gao et al., Laser diagnostics of pulverized coal combustion in O2/N2 and O2/CO2 conditions: velocity and scalar field measurements, Experiments in Fluids, vol.89, issue.10, pp.108-133, 2015.
DOI : 10.1016/j.fuel.2010.04.020

S. Balusamy, A. Schmidt, and S. Hochgreb, Flow field measurements of pulverized coal combustion using optical diagnostic techniques, Experiments in Fluids, vol.31, issue.1, pp.1534-1559, 2013.
DOI : 10.1016/j.proci.2006.08.123

M. Baum and P. Street, Predicting the Combustion Behaviour of Coal Particles, Combustion Science and Technology, vol.48, issue.5, pp.231-243, 1971.
DOI : 10.1021/ie50365a031

P. A. Bejarano and Y. A. Levendis, Single-coal-particle combustion in O2/N2 and O2/CO2 environments, Combustion and Flame, vol.153, issue.1-2, pp.270-287, 2008.
DOI : 10.1016/j.combustflame.2007.10.022

A. Bermudez, J. Ferrin, A. Linan, and L. Saavedra, Numerical simulation of group combustion of pulverized coal, Combustion and Flame, vol.158, issue.9, pp.1852-1865, 2011.
DOI : 10.1016/j.combustflame.2011.02.002

E. Betbeder-rey, Vers la prédiction des hydrocarbures imbrulés pour la combustion diesel: étude expérimentale et numérique de flammes de diffusion à contre-courant, p.82, 2008.

D. Bradley, M. Lawes, H. Park, and N. Usta, Modeling of laminar pulverized coal flames with speciated devolatilization and comparisons with experiments, Combustion and Flame, vol.144, issue.1-2, pp.190-204, 2006.
DOI : 10.1016/j.combustflame.2005.07.007

D. Bradley, M. Lawes, M. Scott, and N. Usta, The structure of coal-air-ch4 laminar flames in a low-pressure burner: cars measurements and modeling studies, Combustion and Flame, vol.124, issue.1-2, pp.82-105, 2001.
DOI : 10.1016/S0010-2180(00)00186-3

T. Brosh and N. Chakraborty, Effects of Equivalence Ratio and Turbulent Velocity Fluctuation on Early Stages of Pulverized Coal Combustion Following Localized Ignition: A Direct Numerical Simulation Analysis, Energy & Fuels, vol.28, issue.9, pp.6077-6088, 2014.
DOI : 10.1021/ef501171n

T. Brosh, D. Patel, D. Wacks, and N. Chakraborty, Numerical investigation of localised forced ignition of pulverised coal particle-laden mixtures: A Direct Numerical Simulation (DNS) analysis, Fuel, vol.145, pp.50-62, 2015.
DOI : 10.1016/j.fuel.2014.12.006

M. E. Brown, Introduction to Thermal Analysis: Techniques and Applications, p.31, 2001.

B. Butler, M. Denison, and B. Webb, Radiation heat transfer in a laboratory-scale, pulverized coal-fired reactor, Experimental Thermal and Fluid Science, vol.9, issue.1, pp.69-79, 1994.
DOI : 10.1016/0894-1777(94)90010-8

L. Chen, S. Z. Yong, and A. F. Ghoniem, Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling, Progress in Energy and Combustion Science, vol.38, issue.2, pp.156-214, 2012.
DOI : 10.1016/j.pecs.2011.09.003

A. G. Clements, S. Black, J. Szuhanszki, K. Stechly, A. Pranzitelli et al., LES and RANS of air and oxy-coal combustion in a pilot-scale facility: Predictions of radiative heat transfer, The 10th European Conference on Coal Research and its Applications, pp.146-155, 2015.
DOI : 10.1016/j.fuel.2015.01.089

. Climatetechwiki, Pulverised coal combustion with higher efficiency. http://www.climatetechwiki.org/technology/sup_crit_coal. Accessed, pp.2017-2023, 2010.

P. Cordoba, Status of Flue Gas Desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, vol.144, pp.274-286, 2015.
DOI : 10.1016/j.fuel.2014.12.065

M. Costa and J. L. Azevedo, EXPERIMENTAL CHARACTERIZATION OF AN INDUSTRIAL PULVERIZED COAL-FIRED FURNACE UNDER DEEP STAGING CONDITIONS, Combustion Science and Technology, vol.179, issue.9, pp.1923-1935, 2007.
DOI : 10.1016/0016-2361(95)00100-J

M. Costa, P. Silva, and J. L. Azevedo, Measurements of gas species, temperature, and char burnout in a low-no x pulverized-coal-fired utility boiler, Combustion Science and Technology, vol.175, issue.2, pp.271-289, 2003.
DOI : 10.1080/00102200302404

T. Croonenbroek, Diagnostics optiques appliqués aux milieux réactifs: Application aux flammes laminaires étirées à contre-courant, p.82, 1996.

T. Daguse, Effets du rayonnement thermique sur la structure de flammes laminaires de diffusion ou de prémelange, pp.82-145, 1996.

T. Daguse, T. Croonenbroek, J. Rolon, N. Darabiha, and A. Soufiani, Study of radiative effects on laminar counterflow H2/O2N2 diffusion flames, Combustion and Flame, vol.106, issue.3, pp.271-287, 1996.
DOI : 10.1016/0010-2180(95)00251-0

URL : https://hal.archives-ouvertes.fr/hal-00274318

D. , N. , and S. Candel, The influence of the temperature on extinction and ignition limits of strained hydrogen-air diffusion flames, Combustion Science and Technology, vol.86, issue.1-6, pp.67-85, 1992.

N. Darabiha, F. Lacas, J. Rolon, and S. Candel, Laminar counterflow spray diffusion flames: A comparison between experimental results and complex chemistry calculations, Combustion and Flame, vol.95, issue.3, pp.261-275, 1993.
DOI : 10.1016/0010-2180(93)90131-L

W. De-jong, Combustion of solid fuels, Course on Combustion, Burgers Centrum, p.25, 2005.

A. Demirbas and M. Balat, Coal Desulfurization via Different Methods, Energy Sources, vol.26, issue.6, pp.541-550, 2004.
DOI : 10.1080/00908310490429669

W. Demtröder, Laser Spectroscopy Basic Principles, p.27, 2008.

N. Docquier, S. Belhalfaoui, F. Lacas, N. Darabiha, and C. Rolon, Experimental and numerical study of chemiluminescence in methane/air high-pressure flames for active control applications, Proceedings of the Combustion Institute, pp.1765-1774, 2000.
DOI : 10.1016/S0082-0784(00)80578-0

URL : https://hal.archives-ouvertes.fr/hal-00270531

C. J. Donahue and E. A. Rais, Proximate Analysis of Coal, Journal of Chemical Education, vol.86, issue.2, pp.222-68, 2009.
DOI : 10.1021/ed086p222

P. Edge, M. Gharebaghi, R. Irons, R. Porter, R. Porter et al., Combustion modelling opportunities and challenges for oxy-coal carbon capture technology, Chemical Engineering Research and Design, vol.89, issue.9, pp.1470-1493, 2011.
DOI : 10.1016/j.cherd.2010.11.010

P. Edge, S. Gubba, L. Ma, R. Porter, M. Pourkashanian et al., LES modelling of air and oxy-fuel pulverised coal combustionimpact on flame properties, Proceedings of the Combustion Institute, pp.2709-2716, 2011.

B. Franzelli, B. Fiorina, and N. Darabiha, A tabulated chemistry method for spray combustion, Proceedings of the Combustion Institute, vol.34, issue.1, pp.1659-1666, 2013.
DOI : 10.1016/j.proci.2012.06.013

URL : https://hal.archives-ouvertes.fr/hal-01272971

A. Gaydon, The Spectroscopy of Flames, pp.27-47, 1957.
DOI : 10.1007/978-94-009-5720-6

M. Gharebaghi, R. Irons, L. Ma, M. Pourkashanian, and A. Pranzitelli, Large eddy simulation of oxy-coal combustion in an industrial combustion test facility, S100 ? S110. Oxyfuel Combustion Technology - Working Toward Demonstration and Commercialisation, p.13, 2011.
DOI : 10.1016/j.ijggc.2011.05.030

V. Giovangigli, Structure et extinction de flammes laminaires premelangées, p.82, 1988.

A. Godridge, Pulverized coal furnaces. DOI:10.1615/AtoZ.p. pulverized_coal_furnaces. Accessed, pp.2017-2023, 2010.
DOI : 10.1615/atoz.p.pulverized_coal_furnaces

D. M. Grant, R. J. Pugmire, T. H. Fletcher, and A. R. Kerstein, Chemical model of coal devolatilization using percolation lattice statistics, Energy & Fuels, vol.3, issue.2, pp.175-186, 1989.
DOI : 10.1021/ef00014a011

D. Graves and J. Wendt, Flammability characteristics and structure of a pulverized coal, laminar opposed jet diffusion flame, Symposium (International) on Combustion, vol.19, issue.1, pp.1189-1196, 1982.
DOI : 10.1016/S0082-0784(82)80295-6

S. Gubba, D. Ingham, K. Larsen, L. Ma, M. Pourkashanian et al., Numerical modelling of the co-firing of pulverised coal and straw in a 300MWe tangentially fired boiler, Fuel Processing Technology, vol.104, pp.181-188, 2012.
DOI : 10.1016/j.fuproc.2012.05.011

R. D. Hancock, K. W. Boyack, and P. O. Hedman, Coherent Anti-Stokes Raman Spectroscopy (CARS) in Pulverized Coal Flames, p.26, 1992.
DOI : 10.1007/978-1-4899-3671-4_15

T. Hara, M. Muto, T. Kitano, R. Kurose, and S. Komori, Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism, Combustion and Flame, vol.162, issue.12, pp.4391-4407, 2015.
DOI : 10.1016/j.combustflame.2015.07.027

N. Hashimoto, J. Hayashi, N. Nakatsuka, K. Tainaka, S. Umemoto et al., Primary soot particle distributions in a combustion field of 4 kW pulverized coal jet burner measured by time resolved laser induced incandescence (TiRe-LII), Journal of Thermal Science and Technology, vol.11, issue.3, pp.49-0049, 2016.
DOI : 10.1299/jtst.2016jtst0049

N. Hashimoto, R. Kurose, S. Hwang, H. Tsuji, and H. Shirai, A numerical simulation of pulverized coal combustion employing a tabulated-devolatilization-process model (TDP model), Combustion and Flame, vol.159, issue.1, pp.353-366, 2012.
DOI : 10.1016/j.combustflame.2011.05.024

N. Hashimoto, R. Kurose, and H. Shirai, Numerical simulation of pulverized coal jet flame employing the TDP model, Fuel, vol.97, issue.12, pp.277-287, 2012.
DOI : 10.1016/j.fuel.2012.03.005

J. Hayashi, N. Hashimoto, N. Nakatsuka, H. Tsuji, H. Watanabe et al., Soot formation characteristics in a lab-scale turbulent pulverized coal flame with simultaneous planar measurements of laser induced incandescence of soot and Mie scattering of pulverized coal, Proceedings of the Combustion Institute, pp.2435-2443, 2013.
DOI : 10.1016/j.proci.2012.10.002

J. Hees, D. Zabrodiec, A. Massmeyer, S. Pielsticker, B. Govert et al., Detailed analyzes of pulverized coal swirl flames in oxy-fuel atmospheres, Combustion and Flame, vol.172, issue.12, pp.289-301, 2016.
DOI : 10.1016/j.combustflame.2016.07.028

P. Heil, D. Toporov, H. Stadler, S. Tschunko, M. Forster et al., Development of an oxycoal swirl burner operating at low O2 concentrations, Selected Papers from the 2007 World of Coal Ash Conference, pp.1269-1274, 2009.
DOI : 10.1016/j.fuel.2008.12.025

S. Hjartstam, K. Andersson, F. Johnsson, and B. Leckner, Combustion characteristics of lignite-fired oxy-fuel flames, Fuel, vol.88, issue.11, pp.2216-2224, 2009.
DOI : 10.1016/j.fuel.2009.05.011

R. Hurt, J. Sun, and M. Lunden, A Kinetic Model of Carbon Burnout in Pulverized Coal Combustion, Combustion and Flame, vol.113, issue.1-2, 1998.
DOI : 10.1016/S0010-2180(97)00240-X

R. H. Hurt and J. M. Calo, Semi-global intrinsic kinetics for char combustion modeling??????Entry 2 has also been referred to as ???Langmuir kinetics.??? The present paper adopts common chemical engineering usage, in which the designation ???Langmuir??? is applied to the equilibrium adsorption isotherm, and when the isotherm is applied within the derivation of a kinetic law for a heterogeneous reaction the result is referred to as a Langmuir???Hinshelwood (LH) kinetic law, or Langmuir???Hinshelwood???Hougen???Watson (LHHW) kinetic law. There are many LH kinetic forms???entry 2 is valid for the special case of no surface reaction between adsorbed species., Combustion and Flame, vol.125, issue.3, pp.1138-1149, 2001.
DOI : 10.1016/S0010-2180(01)00234-6

R. H. Hurt and J. R. Gibbins, Residual carbon from pulverized coal fired boilers: 1. Size distribution and combustion reactivity, Fuel, vol.74, issue.4, pp.471-480, 1995.
DOI : 10.1016/0016-2361(95)98348-I

S. M. Hwang, R. Kurose, F. Akamatsu, H. Tsuji, H. Makino et al., Application of Optical Diagnostics Techniques to a Laboratory-Scale Turbulent Pulverized Coal Flame, Energy & Fuels, vol.19, issue.2, pp.382-392, 2005.
DOI : 10.1021/ef049867z

O. Iea, Technology roadmap: High-efficiency, low-emissions coal-fired power generation, International Energy Agency International Energy Agency, vol.6, issue.9 2, pp.2017-2023, 2012.

R. Jovanovic, B. Rasuo, P. Stefanovic, D. Cvetinovic, and B. Swiatkowski, Numerical investigation of pulverized coal jet flame characteristics under different oxy-fuel conditions, International Journal of Heat and Mass Transfer, vol.58, issue.1-2, pp.654-662, 2013.
DOI : 10.1016/j.ijheatmasstransfer.2012.11.070

T. Kathrotia, U. Riedel, A. Seipel, K. Moshammer, and A. Brockhinke, Experimental and numerical study of chemiluminescent species in low-pressure flames, Applied Physics B, vol.111, issue.3, pp.571-584, 2012.
DOI : 10.1016/S0010-2180(97)00091-6

R. J. Kee, G. Dixon-lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, A fortran computer code package for the evaluation of gas-phase, multicomponent transport properties, pp.86-8246, 1986.

R. Khatami, C. Stivers, K. Joshi, Y. A. Levendis, and A. F. Sarofim, Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres, Combustion and Flame, vol.159, issue.3, pp.1253-1271, 2012.
DOI : 10.1016/j.combustflame.2011.09.009

H. Kobayashi, J. Howard, and A. Sarofim, Coal devolatilization at high temperatures, Symposium (International) on Combustion, vol.16, issue.1, pp.411-425, 1977.
DOI : 10.1016/S0082-0784(77)80341-X

J. Kojima, Y. Ikeda, and T. Nakajima, Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane???air premixed flames, Combustion and Flame, vol.140, issue.1-2, pp.34-45, 2005.
DOI : 10.1016/j.combustflame.2004.10.002

E. Korytnyi, R. Saveliev, M. Perelman, B. Chudnovsky, and E. Bar-ziv, Computational fluid dynamic simulations of coal-fired utility boilers: An engineering tool, Fuel, vol.88, issue.1, pp.9-18, 2009.
DOI : 10.1016/j.fuel.2008.08.010

J. Köser, L. G. Becker, N. Vorobiev, M. Schiemann, V. Scherer et al., Characterization of single coal particle combustion within oxygen-enriched environments using high-speed OH-PLIF, Applied Physics B, vol.23, issue.1, pp.459-464, 2015.
DOI : 10.1016/S0082-0784(06)80382-6

K. Kuo, Principles of combustion, p.30, 2005.

R. Kurose and H. Makino, Large eddy simulation of a solid-fuel jet flame, Combustion and Flame, vol.135, issue.1-2, pp.1-16, 2003.
DOI : 10.1016/S0010-2180(03)00141-X

R. Kurose, H. Makino, and A. Suzuki, Numerical analysis of pulverized coal combustion characteristics using advanced low-NOx burner, Fuel, vol.83, issue.6, pp.693-703, 2004.
DOI : 10.1016/j.fuel.2003.07.003

R. Kurose, H. Tsuji, and H. Makino, Effects of moisture in coal on pulverized coal combustion characteristics, Fuel, vol.80, issue.10, pp.1457-1465, 2001.
DOI : 10.1016/S0016-2361(01)00019-9

R. Kurose, H. Watanabe, and H. Makino, Numerical Simulations of Pulverized Coal Combustion, KONA Powder and Particle Journal, vol.27, issue.0, pp.144-156, 2009.
DOI : 10.14356/kona.2009014

F. Lacas, N. Darabiha, P. Versaevel, J. Rolon, and S. Candel, Influence of droplet number density on the structure of strained laminar spray flames, Symposium (International) on Combustion, vol.24, issue.1, pp.1523-1529, 1992.
DOI : 10.1016/S0082-0784(06)80177-3

F. Lacas, B. Leroux, and N. Darabiha, Experimental study of air dilution in oxy-liquid fuel flames, Proceedings of the Combustion Institute, pp.2037-2045, 2005.
DOI : 10.1016/j.proci.2004.08.084

URL : https://hal.archives-ouvertes.fr/hal-00116328

L. Manquais, K. , C. Snape, I. Mcrobbie, J. Barker et al., Comparison of the Combustion Reactivity of TGA and Drop Tube Furnace Chars from a Bituminous Coal, Energy & Fuels, vol.23, issue.9, pp.4269-4277, 2009.
DOI : 10.1021/ef900205d

R. Lemaire, D. Menage, S. Menanteau, and J. Harion, Experimental study and kinetic modeling of pulverized coal devolatilization under air and oxycombustion conditions at a high heating rate, Fuel Processing Technology, vol.128, issue.26, pp.183-190, 2014.
DOI : 10.1016/j.fuproc.2014.07.020

R. Lemaire and S. Menanteau, Development and numerical/experimental characterization of a lab-scale flat flame reactor allowing the analysis of pulverized solid fuel devolatilization and oxidation at high heating rates, Review of Scientific Instruments, vol.48, issue.1, pp.15104-15139, 2016.
DOI : 10.1016/j.combustflame.2012.02.013

M. D. Leo, A. Saveliev, L. A. Kennedy, and S. A. Zelepouga, OH and CH luminescence in opposed flow methane oxy-flames, Combustion and Flame, vol.149, issue.4, pp.435-447, 2007.

B. Li, G. Chen, H. Zhang, and C. Sheng, Development of non-isothermal TGA???DSC for kinetics analysis of low temperature coal oxidation prior to ignition, Fuel, vol.118, pp.385-391, 2014.
DOI : 10.1016/j.fuel.2013.11.011

H. Li, L. Elliott, H. Rogers, P. Austin, Y. Jin et al., Reactivity Study of Two Coal Chars Produced in a Drop-Tube Furnace and a Pulverized Coal Injection Rig, Energy & Fuels, vol.26, issue.8, pp.4690-4695, 2012.
DOI : 10.1021/ef201779q

Z. Li, J. Jing, Z. Chen, F. Ren, B. Xu et al., Wall-Fired Pulverized-Coal Utility Boiler, Combustion Science and Technology, vol.8, issue.7, pp.1370-1394, 2008.
DOI : 10.1021/ef0600107

G. Liu and S. Niksa, Coal conversion submodels for design applications at elevated pressures. Part II. Char gasification, Progress in Energy and Combustion Science, vol.30, issue.6, pp.679-717, 2004.
DOI : 10.1016/j.pecs.2004.08.001

Y. Liu, M. Geier, A. Molina, and C. R. Shaddix, Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions, International Journal of Greenhouse Gas Control, vol.5, pp.36-46, 2011.
DOI : 10.1016/j.ijggc.2011.05.028

Y. Liu, X. Guo, H. Lu, and X. Gong, An Investigation of the Effect of Particle Size on the Flow Behavior of Pulverized Coal, Procedia Engineering, vol.102, pp.698-713, 2015.
DOI : 10.1016/j.proeng.2015.01.170

Y. Liu, G. Vourliotakis, Y. Hardalupas, and A. M. Taylor, Experimental and Numerical Study of Chemiluminescence Characteristics in Premixed Counterflow Flames of Methane based Fuel blends, 55th AIAA Aerospace Sciences Meeting, pp.2017-0153, 2017.
DOI : 10.1016/j.proci.2008.05.050

F. Lockwood and A. Salooja, The prediction of some pulverized bituminous coal flames in a furnace, Combustion and Flame, vol.54, issue.1-3, pp.23-32, 1983.
DOI : 10.1016/0010-2180(83)90019-6

F. Lockwood, A. Salooja, and S. Syed, A prediction method for coal-fired furnaces, Combustion and Flame, vol.38, pp.1-15, 1980.
DOI : 10.1016/0010-2180(80)90033-4

J. Lu and X. Ren, Analysis and discussion on formation and control of primary particulate matter generated from coal-fired power plants, Journal of the Air & Waste Management Association, vol.13, issue.1, pp.1342-1351, 2014.
DOI : 10.1016/j.fuel.2006.01.009

K. Luo, H. Wang, J. Fan, and F. Yi, Direct Numerical Simulation of Pulverized Coal Combustion in a Hot Vitiated Co-flow, Energy & Fuels, vol.26, issue.10, pp.6128-6136, 2012.
DOI : 10.1021/ef301253y

L. Ma, M. Gharebaghi, R. Porter, M. Pourkashanian, J. Jones et al., Modelling methods for co-fired pulverised fuel furnaces, 7th European Conference on Coal Research and Its Applications, pp.2448-2454, 2009.
DOI : 10.1016/j.fuel.2009.02.030

K. Makino, Clean Coal Technology???For the Future Utilization, pp.3-9, 2016.
DOI : 10.1007/978-981-10-2023-0_1

J. P. Mathews, S. Eser, P. G. Hatcher, and A. W. Scaroni, The Shape of Pulverized Bituminous Vitrinite Coal Particles, KONA Powder and Particle Journal, vol.25, issue.0, pp.145-152, 2007.
DOI : 10.14356/kona.2007013

L. Merotto, M. Sirignano, M. Commodo, A. D-'anna, R. Donde et al., Experimental Characterization and Modeling for Equivalence Ratio Sensing in Non-premixed Flames Using Chemiluminescence and Laser-Induced Breakdown Spectroscopy Techniques, Energy & Fuels, vol.31, issue.3, pp.3227-3233, 2017.
DOI : 10.1021/acs.energyfuels.6b03094

D. Merrick, Mathematical models of the thermal decomposition of coal2. Specific heats and heats of reaction, Fuel, vol.62, issue.5, pp.540-546, 1983.
DOI : 10.1016/0016-2361(83)90223-5

D. Messig, M. Vascellari, and C. Hasse, Flame structure analysis and flamelet progress variable modelling of strained coal flames, Combustion Theory and Modelling, vol.21, issue.4, pp.700-721, 2017.
DOI : 10.1016/j.combustflame.2012.05.012

D. Midou and C. , Large-Eddy Simulation of Pulverised-Coal Combustion, p.14, 2017.

A. Minchener, Coal and Clean Coal Technology: Challenges and Opportunities, pp.3-10, 2013.
DOI : 10.1007/978-3-642-30445-3_1

M. Modest, Radiative Heat Transfer, p.144, 2013.

A. Molina and C. R. Shaddix, Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion, Proceedings of the Combustion Institute, pp.1905-1912, 2007.
DOI : 10.1016/j.proci.2006.08.102

I. A. Mulla, A. Dowlut, T. Hussain, Z. M. Nikolaou, S. R. Chakravarthy et al., Heat release rate estimation in laminar premixed flames using laser-induced fluorescence of CH2O and H-atom, Combustion and Flame, vol.165, pp.373-383, 2016.
DOI : 10.1016/j.combustflame.2015.12.023

M. Muto, K. Tanno, and R. Kurose, A DNS study on effect of coal particle swelling due to devolatilization on pulverized coal jet flame, Fuel, vol.184, pp.749-752, 2016.
DOI : 10.1016/j.fuel.2016.07.070

M. Muto, H. Watanabe, R. Kurose, S. Komori, S. Balusamy et al., Large-eddy simulation of pulverized coal jet flame ??? Effect of oxygen concentration on NOx formation, Fuel, vol.142, pp.152-163, 2015.
DOI : 10.1016/j.fuel.2014.10.069

M. Muto, K. Yuasa, and R. Kurose, Numerical simulation of ignition in pulverized coal combustion with detailed chemical reaction mechanism, Fuel, vol.190, pp.136-144, 2017.
DOI : 10.1016/j.fuel.2016.11.029

H. Nalbandian, Performance and risks of advanced pulverizedcoal plants, Energeia (Lexington), vol.20, issue.1, p.7, 2009.

Z. M. Nikolaou and N. Swaminathan, Heat release rate markers for premixed combustion, Combustion and Flame, vol.161, issue.12, pp.3073-3084, 2014.
DOI : 10.1016/j.combustflame.2014.05.019

URL : https://doi.org/10.1016/j.combustflame.2014.05.019

S. Niksa and A. R. Kerstein, FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation, Energy & Fuels, vol.5, issue.5, pp.647-665, 1991.
DOI : 10.1021/ef00029a006

G. Olenik, O. Stein, and A. Kronenburg, LES of swirl-stabilised pulverised coal combustion in IFRF furnace No. 1, Proceedings of the Combustion Institute, pp.2819-2828, 2015.
DOI : 10.1016/j.proci.2014.06.149

C. Panoutsos, Y. Hardalupas, and A. Taylor, Numerical evaluation of equivalence ratio measurement using OH??? and CH??? chemiluminescence in premixed and non-premixed methane???air flames, Combustion and Flame, vol.156, issue.2, pp.273-291, 2009.
DOI : 10.1016/j.combustflame.2008.11.008

T. Parameswaran, R. Hughes, P. Gogolek, and P. Hughes, Gasification temperature measurement with flame emission spectroscopy, Fuel, vol.134, pp.579-587, 2014.
DOI : 10.1016/j.fuel.2014.06.016

P. Sharma, Supercritical coal-fired power plant. https: //saferenvironment.wordpress.com, pp.2017-2023, 2008.

A. A. Peters and R. Weber, Mathematical Modeling of a 2.4 MW Swirling Pulverized Coal Flame, Combustion Science and Technology, vol.17, issue.1-6, pp.131-182, 1997.
DOI : 10.1080/00102207108952472

N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Progress in Energy and Combustion Science, vol.10, issue.3, pp.319-339, 1984.
DOI : 10.1016/0360-1285(84)90114-X

N. Peters, Turbulent Combustion, p.18, 2000.

M. Rabacal, B. Franchetti, F. C. Marincola, F. Proch, M. Costa et al., Large eddy simulation of coal combustion in a largescale laboratory furnace, Proceedings of the Combustion Institute, pp.3609-3617, 2015.

V. Ranade and D. Gupta, Computational Modeling of Pulverized Coal Fired Boilers, p.95, 2014.

C. Reverte, J. Dirion, and M. Cabassud, Kinetic model identification and parameters estimation from TGA experiments, Journal of Analytical and Applied Pyrolysis, vol.79, issue.1-2, pp.297-305, 2007.
DOI : 10.1016/j.jaap.2006.12.021

J. Riaza, R. Khatami, Y. A. Levendis, L. Alvarez, M. V. Gil et al., Single particle ignition and combustion of anthracite, semi-anthracite and bituminous coals in air and simulated oxy-fuel conditions, Combustion and Flame, vol.161, issue.4, pp.1096-1108, 2014.
DOI : 10.1016/j.combustflame.2013.10.004

A. Ribeirete and M. Costa, Detailed measurements in a pulverized-coal-fired large-scale laboratory furnace with air staging, Fuel, vol.88, issue.1, pp.40-45, 2009.
DOI : 10.1016/j.fuel.2008.07.033

M. Rieth, A. Clements, M. Rabacal, F. Proch, O. Stein et al., Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD, Proceedings of the Combustion Institute, pp.2181-2189, 2017.
DOI : 10.1016/j.proci.2016.06.077

M. Rieth, F. Proch, M. Rabacal, B. Franchetti, F. C. Marincola et al., Flamelet LES of a semi-industrial pulverized coal furnace, Combustion and Flame, vol.173, issue.14, pp.39-56, 2016.
DOI : 10.1016/j.combustflame.2016.07.013

P. Riviere and A. Soufiani, Updated band model parameters for H2O, CO2, CH4 and CO radiation at high temperature, International Journal of Heat and Mass Transfer, vol.55, issue.13-14, pp.13-14, 2012.
DOI : 10.1016/j.ijheatmasstransfer.2012.03.019

J. Rolon, Etude théorique et expérimentale de la flamme de diffusion à contre-courant, p.82, 1988.

M. Schiemann, S. Haarmann, and N. Vorobiev, Char burning kinetics from imaging pyrometry: Particle shape effects, Fuel, vol.134, issue.69, pp.53-62, 2014.
DOI : 10.1016/j.fuel.2014.05.049

M. Schiemann, V. Scherer, and S. Wirtz, Optical Coal Particle Temperature Measurement under Oxy-Fuel Conditions: Measurement Methodology and Initial Results, Chemical Engineering & Technology, vol.5, issue.12, pp.26-34, 2000.
DOI : 10.1002/ceat.200900354

D. K. Seo, S. S. Park, Y. T. Kim, J. Hwang, and T. Yu, Study of coal pyrolysis by thermo-gravimetric analysis (TGA) and concentration measurements of the evolved species, Journal of Analytical and Applied Pyrolysis, vol.92, issue.1, pp.209-216, 2011.
DOI : 10.1016/j.jaap.2011.05.012

C. R. Shaddix and A. Molina, Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion, Proceedings of the Combustion Institute, pp.2091-2098, 2009.
DOI : 10.1016/j.proci.2008.06.157

S. Shanthakumar, D. Singh, and R. Phadke, Flue gas conditioning for reducing suspended particulate matter from thermal power stations, Progress in Energy and Combustion Science, vol.34, issue.6, pp.685-695, 2008.
DOI : 10.1016/j.pecs.2008.04.001

L. Shi, Q. Liu, X. Guo, W. Wu, and Z. Liu, Pyrolysis behavior and bonding information of coal ??? A TGA study, Fuel Processing Technology, vol.108, pp.125-132, 2013.
DOI : 10.1016/j.fuproc.2012.06.023

J. Smart, K. Knill, B. Visser, and R. Weber, Reduction of NOx emissions in a swirled coal flame by particle injection into the internal recirculation zone, Symposium (International) on Combustion, vol.22, issue.1, pp.1117-1125, 1989.
DOI : 10.1016/S0082-0784(89)80122-5

G. P. Smith, J. Luque, C. Park, J. B. Jeffries, and D. R. Crosley, Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence, Combustion and Flame, vol.131, issue.1-2, pp.59-69, 2002.
DOI : 10.1016/S0010-2180(02)00399-1

G. P. Smith, C. Park, and J. Luque, A note on chemiluminescence in low-pressure hydrogen and methane???nitrous oxide flames, Combustion and Flame, vol.140, issue.4, pp.385-389, 2005.
DOI : 10.1016/j.combustflame.2004.11.011

G. P. Smith, C. Park, J. Schneiderman, and J. Luque, C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames, Combustion and Flame, vol.141, issue.1-2, pp.66-77, 2005.
DOI : 10.1016/j.combustflame.2004.12.010

I. Smith, The combustion rates of coal chars: A review, Symposium (International) on Combustion, vol.19, issue.1, pp.1045-1065, 1982.
DOI : 10.1016/S0082-0784(82)80281-6

I. W. Smith, The intrinsic reactivity of carbons to oxygen, Fuel, vol.57, issue.7, pp.409-414, 1978.
DOI : 10.1016/0016-2361(78)90055-8

A. Smolarz, A. Kotyra, W. Wojcik, and J. Ballester, Advanced diagnostics of industrial pulverized coal burner using optical methods and artificial intelligence, Seventh Mediterranean Combustion Symposium, pp.82-89, 2012.
DOI : 10.1016/j.expthermflusci.2012.04.001

J. Speight, Handbook of Coal Analysis Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, pp.68-69, 2005.

O. Stein, G. Olenik, A. Kronenburg, F. Cavallo-marincola, B. Franchetti et al., Towards Comprehensive Coal Combustion Modelling for LES, Flow, Turbulence and Combustion, vol.33, issue.6, pp.859-884, 2013.
DOI : 10.1016/j.proci.2010.05.113

J. Taine, F. Enguehard, and E. Iacona, Transferts thermiques: Introduction aux transferts d'énergie : cours et exercices d'application. Sciences sup. Dunod, p.142, 2014.

L. Tognotti, A. Malotti, L. Petarca, and S. Zanelli, Measurement of Ignition Temperature of Coal Particles Using a Thermogravimetric Technique, Combustion Science and Technology, vol.12, issue.1-2, pp.15-28, 1985.
DOI : 10.1016/0010-2180(68)90047-3

D. Toporov, P. Bocian, P. Heil, A. Kellermann, H. Stadler et al., Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere, Combustion and Flame, vol.155, issue.4, pp.605-618, 2008.
DOI : 10.1016/j.combustflame.2008.05.008

J. Truelove, Prediction of the near-burner flow and combustion in swirling pulverized-coal flames, Symposium (International) on Combustion, vol.21, issue.1, pp.275-284, 1988.
DOI : 10.1016/S0082-0784(88)80255-8

J. Truelove and R. Williams, Coal combustion models for flame scaling, Symposium (International) on Combustion, vol.22, issue.1, pp.155-164, 1989.
DOI : 10.1016/S0082-0784(89)80021-9

G. Tufano, O. Stein, A. Kronenburg, A. Frassoldati, T. Faravelli et al., Resolved flow simulation of pulverized coal particle devolatilization and ignition in air- and O 2 /CO 2 -atmospheres, Fuel, vol.186, pp.285-292, 2016.
DOI : 10.1016/j.fuel.2016.08.073

S. K. Ubhayakar, D. B. Stickler, C. W. Rosenberg, and R. E. Gannon, Rapid devolatilization of pulverized coal in hot combustion gases, Symposium (International) on Combustion, vol.16, issue.1, pp.427-436, 1977.
DOI : 10.1016/S0082-0784(77)80342-1

C. Vagelopoulos, F. Egolfopoulos, and C. Law, Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique, Twenty-Fifth Symposium (International) on Combustion, pp.1341-1347, 1994.
DOI : 10.1016/S0082-0784(06)80776-9

C. M. Vagelopoulos and F. N. Egolfopoulos, Direct experimental determination of laminar flame speeds, Twenty-Seventh Sysposium (International) on Combustion Volume One, pp.513-519, 1998.
DOI : 10.1016/S0082-0784(98)80441-4

M. Vascellari, R. Arora, and C. Hasse, Simulation of entrained flow gasification with advanced coal conversion submodels. Part 2: Char conversion, Fuel, vol.118, pp.369-384, 2014.
DOI : 10.1016/j.fuel.2013.11.004

M. Vascellari, R. Arora, M. Pollack, and C. Hasse, Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis, Fuel, vol.113, issue.77, pp.654-669, 2013.
DOI : 10.1016/j.fuel.2013.06.014

M. Vascellari, H. Xu, and C. Hasse, Flamelet modeling of coal particle ignition, Proceedings of the Combustion Institute, pp.2445-2452, 2013.
DOI : 10.1016/j.proci.2012.06.152

P. Versaevel, Combustion laminaire diphasique: Etude théorique et expérimentale, p.82, 1996.

K. Wan, J. Xia, Z. Wang, L. C. Wrobel, and K. Cen, Online-CPD-Coupled Large-Eddy Simulation of Pulverized-Coal Pyrolysis in a Hot Turbulent Nitrogen Jet, Combustion Science and Technology, vol.48, issue.3, pp.103-131, 2017.
DOI : 10.1016/j.combustflame.2013.12.024

G. Wang, R. Silva, J. Azevedo, S. Martins-dias, and M. Costa, Evaluation of the combustion behaviour and ash characteristics of biomass waste derived fuels, pine and coal in a drop tube furnace, Fuel, vol.117, pp.809-824, 2014.
DOI : 10.1016/j.fuel.2013.09.080

G. Wang, R. Zander, and M. Costa, Oxy-fuel combustion characteristics of pulverized-coal in a drop tube furnace, Fuel, vol.115, pp.452-460, 2014.
DOI : 10.1016/j.fuel.2013.07.063

H. Wang, X. You, A. V. Joshi, S. G. Davis, A. Laskin et al., USC Mech Version II. High-Temperature Combustion Reaction Model of H2, C1-C4 Compounds, pp.2017-2023, 2007.

P. Warzecha and A. Boguslawski, LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies, Energy, vol.66, pp.732-743, 2014.
DOI : 10.1016/j.energy.2013.12.015

J. Watanabe, T. Okazaki, K. Yamamoto, K. Kuramashi, and A. Baba, Large-eddy simulation of pulverized coal combustion using flamelet model, Proceedings of the Combustion Institute, pp.2155-2163, 2017.
DOI : 10.1016/j.proci.2016.06.031

J. Watanabe and K. Yamamoto, Flamelet model for pulverized coal combustion, Proceedings of the Combustion Institute, pp.2315-2322, 2015.
DOI : 10.1016/j.proci.2014.07.065

R. Weber, J. Dugue, A. Sayre, and B. Visser, Quarl zone flow field and chemistry of swirling pulverized coal flames: Measurements and computation, Symposium (International) on Combustion, vol.24, issue.1, pp.1373-1380, 1992.
DOI : 10.1016/S0082-0784(06)80160-8

J. Wendt, B. Kram, M. Masteller, and B. Mccaslin, Coal pyrolysis in flat, laminar, opposed jet combustion configurations, Symposium (International) on Combustion, vol.21, issue.1, pp.419-426, 1988.
DOI : 10.1016/S0082-0784(88)80269-8

M. Xia, D. Zabrodiec, P. Scouflaire, B. Fiorina, and N. Darabiha, Experimental and numerical studies of pulverized coal devolatilization and oxidation in strained methane/air flames, Proceedings of the Combustion Institute, pp.2123-2130, 2017.
DOI : 10.1016/j.proci.2016.07.080

URL : https://hal.archives-ouvertes.fr/hal-01542060

W. Xu and A. Tomita, Effect of coal type on the flash pyrolysis of various coals, Fuel, vol.66, issue.5, pp.627-631, 1987.
DOI : 10.1016/0016-2361(87)90270-5

W. Xu and A. Tomita, Effect of temperature on the flash pyrolysis of various coals, Fuel, vol.66, issue.5, pp.632-636, 1987.
DOI : 10.1016/0016-2361(87)90271-7

K. Yamamoto, T. Murota, T. Okazaki, and M. Taniguchi, Large eddy simulation of a pulverized coal jet flame ignited by a preheated gas flow, Proceedings of the Combustion Institute, pp.1771-1778, 2011.
DOI : 10.1016/j.proci.2010.05.113

W. Yan, Y. Ya, F. Du, H. Shao, and P. Zhao, Spectrometer-Based Line-of-Sight Temperature Measurements during Alkali-Pulverized Coal Combustion in a Power Station Boiler, Energies, vol.81, issue.9, pp.1375-1401, 2017.
DOI : 10.1016/S0360-1285(00)00003-4

D. Zabrodiec, J. Hees, A. Massmeyer, F. Vom-lehn, M. Habermehl et al., Experimental investigation of pulverized coal flames in CO 2 /O 2 - and N 2 /O 2 -atmospheres: Comparison of solid particle radiative characteristics, 1st International Workshop on Oxy-Fuel Combustion, pp.136-147, 2017.
DOI : 10.1016/j.fuel.2016.11.097

D. Zhang, Ultra-supercritical coal power plants : materials, technologies and optimisation, p.7, 2013.
DOI : 10.1533/9780857097514

L. Zhang, E. Binner, Y. Qiao, and C. Li, In situ diagnostics of Victorian brown coal combustion in O2/N2 and O2/CO2 mixtures in drop-tube furnace, Fuel, vol.89, issue.10, pp.2703-2712, 2010.
DOI : 10.1016/j.fuel.2010.04.020

X. Zhao and D. C. Haworth, Transported PDF modeling of pulverized coal jet flames, Combustion and Flame, vol.161, issue.7, pp.1866-1882, 2014.
DOI : 10.1016/j.combustflame.2013.12.024

Z. Zhou, L. Chen, L. Guo, B. Qian, Z. Wang et al., Computational modeling of oxy-coal combustion with intrinsic heterogeneous char reaction models, Fuel Processing Technology, vol.161, pp.169-181, 2017.
DOI : 10.1016/j.fuproc.2017.03.009

A. Zolin, A. Jensen, L. S. Pedersen, K. Dam-johansen, and P. Tã¸rslev, A Comparison of Coal Char Reactivity Determined from Thermogravimetric and Laminar Flow Reactor Experiments, Energy & Fuels, vol.12, issue.2, pp.268-276, 1998.
DOI : 10.1021/ef970095z