C. Bachoc, T. Bellitto, P. Moustrou, A. [. Pêcher, ]. H. Bayer-fluckigerbli35 et al., On the density of sets avoiding parallelohedron distance 1. ArXiv e-prints Upper bounds for euclidean minima of algebraic number fields The minimum values of positive quadratic forms in six, seven and eight variables Some randomized code constructions from group actions On a generalization of the Hadwiger- Nelson problem The density of sets avoiding distance 1 in Euclidean space Viazovska. The sphere packing problem in dimension 24, Preliminaries 1. Preliminaries Philippe Moustrou Bibliography [Aut16] P. Autissier. Variétés abéliennes et théorème de Minkowski-Hlawka. Manuscripta MathematicaCK09] H. Cohn and A. Kumar. Optimality and uniqueness of the Leech lattice among latticesCro67] H. T. Croft. Incidence incidents. Eureka (Cambridge) Sphere-packings, Lattices, and Groups Conway and N. J. A. Sloane. Low-dimensional lattices. VI. Vorono? ? reduction of three-dimensional lattices. Proc. Roy. Soc. London Ser. A Sur la partition régulière de l'espace à 4 dimensions. I, II. Bull. Acad. Sci. URSS, pp.275-281217, 1896.
URL : https://hal.archives-ouvertes.fr/hal-01567118

E. Decorte, K. Golubev-oliveira-filho, F. Vallentindr47-]-h, C. A. Davenport, and . Rogers, ArXiv e-prints Fourier analysis, linear programming , and densities of distance avoiding sets in R n Hlawka's theorem in the geometry of numbers, Ebe13] W. Ebeling. Lattices and codes. Advanced Lectures in Mathematics 2013. A course partially based on lectures by Friedrich Hirzebruch. [ELZ05] U. Erez, S. Litsyn, and R. Zamir. Lattices which are good for (almost) everythingErd99] R. M. Erdahl. Zonotopes, dicings, and Voronoi's conjecture on parallelohedra, pp.1417-1428367, 1947.

J. European, . J. Combinfal81-]-k, . S. Falconerfed53-]-e, . [. Fedorov, ]. P. Fejes-tóthgru07 et al., Na?ala u?eniya o figurah Some packing and covering theoremsLeopoldo Fejér et Frederico Riesz LXX annos natis dedicatus, Pars A) Convex and discrete geometry On the construction of dense lattices with a given automorphisms group A formal proof of the Kepler conjecture Note on a Theorem of Mertens The dodecahedral conjecture, The realization of distances in measurable subsets covering rn. Journal of Combinatorial Theory, Series A of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical SciencesHPS11] G. Hanrot, X. Pujol, and D. Stehlé. Algorithms for the shortest and closest lattice vector problems. In In Yeow Meng Chee Huaxiong Wang, and Chaoping Xing IWCC, volume 6639 of Lecture Notes in Computer Science, pp.527-549184, 1927.

E. Kowalski and H. Iwaniec, Analytic number theory, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00180743

T. Keleti, M. Matolcsi, F. M. De-oliveira-filho, I. Z. Ruzsa, G. Korkine et al., Better bounds for planar sets avoiding unit distances. Discrete & Computational Geometry, Math. Ann, vol.55, issue.11, pp.642-661366, 1873.

A. Bibliographylan94, ]. S. Lang, H. A. Loeligerlr72-]-d, C. A. Larman, ]. Rogersmar03 et al., Algebraic number theory The realization of distances within sets in Euclidean space Perfect Lattices in Euclidean Spaces Convex bodies which tile space by translation On the density of cyclotomic lattices constructed from codes Translated from the 1992 German original and with a note by Norbert Schappacher Existence theorems in the geometry of numbers Introduction to Coding Theory Probability of error for optimal codes in a Gaussian channel A mean value theorem in geometry of numbers The mathematical coloring book: Mathematics of coloring and the colorful life of its creators, Min97] H. Minkowski. Allgemeine lehrsätze über die convexen polyeder. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch- Physikalische KlasseMou17] P. MoustrouSzé02] L. A. Székely. Erd?s on unit distances and the Szemerédi-Trotter theorems. In Paul Erd?s and his mathematics, II (BudapestThu92] A. Thue. Om nogle geometrisk taltheoretiske theoremer. Forandlingern-eved de Skandinaviske Naturforskeres. [Val03] F. Vallentin. Sphere Covering, Lattices, and Tilings, pp.1767-17731, 1897.

]. S. Dissertationvan11, . A. Vanceven54-]-b, and . Venkov, Improved sphere packing lower bounds from Hurwitz lattices On a class of Euclidean polyhedra. Vestnik Leningrad [Ven13] A. Venkatesh. A note on sphere packings in high dimension Viazovska. The sphere packing problem in dimension 8, Adv. Math. Univ. Ser. Mat. Fiz. Him. Int. Math. Res. Not. IMRN Ann. of Math, vol.227, issue.134, pp.2144-215611, 1908.

L. C. Washington, Introduction to cyclotomic fields, volume 83 of Graduate Texts in Mathematics, Zam14] R. Zamir. Lattice Coding for Signals and Networks, 1997.