H. Segers, M. Van-den-heuvel-eibrink, K. Pritchard-jones, M. Coppes, M. Aitchison et al., Management of adults with Wilms??? tumor: recommendations based on international consensus, Expert Review of Anticancer Therapy, vol.178, issue.7, pp.1105-1118, 2011.
DOI : 10.1016/j.juro.2007.03.038

E. Perlman and L. Boccon-gibod, Tumeurs du rein de l???enfant, Annales de Pathologie, vol.24, issue.6, pp.516-551, 2004.
DOI : 10.1016/S0242-6498(04)94016-3

J. Beckwith and N. Palmer, Histopathology and prognosis of Wilms tumorResults from the first national wilms' tumor study, Cancer, vol.36, issue.5, pp.1937-1985, 1978.
DOI : 10.1002/1097-0142(197805)41:5<1937::AID-CNCR2820410538>3.0.CO;2-U

D. Angio, G. Evans, A. Breslow, N. Beckwith, B. Bishop et al., The treatment of Wilms' tumor. Results of the national Wilms' tumor study, Cancer, vol.86, issue.2, pp.633-679, 1976.
DOI : 10.1148/79.4.560

D. Green, N. Breslow, I. Evans, J. Moksness, D. Angio et al., Treatment of children with stage IV favorable histology Wilms tumor: A report from the National Wilms Tumor Study Group, Medical and Pediatric Oncology, vol.9, issue.3, pp.147-52, 1996.
DOI : 10.1002/(SICI)1096-911X(199603)26:3<147::AID-MPO1>3.0.CO;2-K

F. Spreafico, P. Jones, K. Malogolowkin, M. Bergeron, C. Hale et al., Treatment of relapsed Wilms tumors: lessons learned, Expert Review of Anticancer Therapy, vol.23, issue.12, pp.1807-1822, 2009.
DOI : 10.1200/JCO.2005.01.2799

J. Dome, C. Cotton, E. Perlman, N. Breslow, J. Kalapurakal et al., A report from the National Wilms Tumor Study Group. Pediatr Blood Cancer Treatment of anaplastic histology Wilms' tumor: results from the fifth National Wilms' Tumor Study, Treatment of Wilms tumor relapsing after initial treatment with vincristine, pp.236-412352, 2006.

J. Dome, E. Perlman, N. Graf, J. Beckwith, N. Kiviat et al., Risk stratification for wilms tumor: current approach and future directions Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms' tumor, Oncol Rep. Am Soc Clin Oncol Educ Book. Pediatr Pathol, vol.2010, issue.1312, pp.463-7215, 1990.

J. Kreidberg, H. Sariola, J. Loring, M. Maeda, J. Pelletier et al., WT-1 is required for early kidney development, Cell, vol.74, issue.4, pp.510-515, 1993.
DOI : 10.1016/0092-8674(93)90515-R

V. Scharnhorst, A. Van-der-eb, A. Jochemsen, T. Glaser, C. Ito et al., WT1 proteins: functions in growth and differentiation Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus, Gene. Call KM Cell, vol.27360, issue.173, pp.141-61509, 1990.

M. Gessler, A. Poustka, W. Cavenee, R. Neve, S. Orkin et al., Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping, Nature, vol.343, issue.6260, pp.774-782, 1990.
DOI : 10.1038/343774a0

J. Pelletier, M. Schalling, A. Buckler, A. Rogers, D. Haber et al., Expression of the Wilms' tumor gene WT1 in the murine urogenital system Infrequent mutation of the WT1 gene in 77 Wilms' Tumors Huff V. Wilms tumor genetics, Genes Dev. Hum Mutat. Am J Med Genet, vol.5379, issue.214, pp.1345-56212, 1991.

R. Varanasi, N. Bardeesy, M. Ghahremani, M. Petruzzi, N. Nowak et al., Fine structure analysis of the WT1 gene in sporadic Wilms tumors Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms' tumors, Proc Natl Acad Sci U S A. Cancer Res, vol.9159, issue.2316, pp.3554-83880, 1994.

S. Maiti, R. Alam, C. Amos, and V. Huff, Frequent association of beta-catenin and WT1 mutations in Wilms tumors, Cancer Res, vol.60, issue.22, pp.6288-92, 2000.

D. Perotti, B. Gamba, M. Sardella, F. Spreafico, M. Terenziani et al., Functional inactivation of the WTX gene is not a frequent event in Wilms' tumors An X chromosome gene, WTX, is commonly inactivated in Wilms tumor Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling Relaxation of imprinted genes in human cancer, Oncogene. Science. Genes Chromosomes Cancer. Science. Nature, vol.2731547316362, issue.2858276422, pp.4625-32642, 1993.

R. Scott, C. Stiller, L. Walker, and N. Rahman, Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour, Journal of Medical Genetics, vol.43, issue.9, pp.705-720, 2006.
DOI : 10.1136/jmg.2006.041723

URL : http://jmg.bmj.com/content/jmedgenet/43/9/705.full.pdf

J. Bliek, C. Gicquel, S. Maas, V. Gaston, L. Bouc et al., Epigenotyping as a tool for the prediction of tumor risk and tumor type in patients with Beckwith-Wiedemann syndrome (BWS), The Journal of Pediatrics, vol.145, issue.6, pp.796-805, 2004.
DOI : 10.1016/j.jpeds.2004.08.007

F. Brioude, A. Lacoste, I. Netchine, M. Vazquez, F. Auber et al., Beckwith- Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance Relaxation of insulinlike growth factor II gene imprinting implicated in Wilms' tumour, Horm Res Paediatr. Nature, vol.80362, issue.336422, pp.457-65749, 1993.

R. Ohlsson, A. Nystrom, S. Pfeifer-ohlsson, V. Tohonen, F. Hedborg et al., IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome Genetic linkage of Beckwith-Wiedemann syndrome to 11p15 Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome Parental allele specific methylation of the human insulin-like growth factor II gene and Beckwith- Wiedemann syndrome, Nat Genet. Am J Hum Genet. Nat Genet. J Med Genet, vol.444530, issue.375, pp.94-7720, 1989.

L. Chao, V. Huff, G. Tomlinson, V. Riccardi, L. Strong et al., Genetic mosaicism in normal tissues of Wilms' tumour patients, Nature Genetics, vol.28, issue.2, pp.127-158, 1993.
DOI : 10.1111/j.1399-0004.1985.tb00403.x

Q. Hu, F. Gao, W. Tian, E. Ruteshouser, Y. Wang et al., Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation, Journal of Clinical Investigation, vol.121, issue.1, pp.174-83, 2011.
DOI : 10.1172/JCI43772

M. Maschietto, J. Charlton, D. Perotti, P. Radice, J. Geller et al., The IGF signalling pathway in Wilms tumours - A report from the ENCCA Renal Tumours Biology-driven drug development workshop, Oncotarget, vol.5, issue.18, pp.8014-8040, 2014.
DOI : 10.18632/oncotarget.2485

M. Maw, P. Grundy, L. Millow, M. Eccles, R. Dunn et al., A third Wilms' tumor locus on chromosome 16q Loss of heterozygosity for chromosomes 16q and 1p in Wilms' tumors predicts an adverse outcome Loss of heterozygosity on chromosome 16 in sporadic Wilms' tumour, Cancer Res. Cancer Res. Br J Cancer, vol.525478, issue.439, pp.3094-3102, 1992.

B. Klamt, M. Schulze, C. Thate, J. Mares, P. Goetz et al., Allele loss in Wilms tumors of chromosome arms 11q, 16q, and 22q correlate with clinicopathological parameters Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorablehistology Wilms tumor: a report from the National Wilms Tumor Study Group, Genes Chromosomes Cancer. J Clin Oncol, vol.2223, issue.4529, pp.287-947312, 1998.

T. Ha, F. Spreafico, N. Graf, S. Dallorso, J. Dome et al., An international strategy to determine the role of high dose therapy in recurrent Wilms??? tumour, European Journal of Cancer, vol.49, issue.1, pp.194-210, 2013.
DOI : 10.1016/j.ejca.2012.07.010

B. Messahel, R. Williams, A. Ridolfi, A. Hern, R. Warren et al., Allele loss at 16q defines poorer prognosis Wilms tumour irrespective of treatment approach in the UKW1???3 clinical trials: A Children???s Cancer and Leukaemia Group (CCLG) study, European Journal of Cancer, vol.45, issue.5, pp.819-845, 2009.
DOI : 10.1016/j.ejca.2009.01.005

F. Spreafico, B. Gamba, L. Mariani, P. Collini, D. Angelo et al., Loss of Heterozygosity Analysis at Different Chromosome Regions in Wilms Tumor Confirms 1p Allelic Loss as a Marker of Worse Prognosis: A Study from the Italian Association of Pediatric Hematology and Oncology, The Journal of Urology, vol.189, issue.1, pp.260-266, 2013.
DOI : 10.1016/j.juro.2012.09.009

S. Wittmann, B. Zirn, M. Alkassar, A. P. Graf, N. Gessler et al., Loss of 11q and 16q in Wilms tumors is associated with anaplasia, tumor recurrence, and poor prognosis, Genes, Chromosomes and Cancer, vol.220, issue.2, pp.163-70, 2007.
DOI : 10.1128/MCB.9.4.1799

N. Bown, S. Cotterill, P. Roberts, M. Griffiths, S. Larkins et al., Cytogenetic abnormalities and clinical outcome in Wilms tumor: A study by the U.K. cancer cytogenetics group and the U.K. Children's Cancer Study Group, Medical and Pediatric Oncology, vol.17, issue.1, pp.11-21, 2002.
DOI : 10.1002/(SICI)1098-2264(199611)17:3<141::AID-GCC1>3.0.CO;2-4

S. Hing, Y. Lu, B. Summersgill, L. King-underwood, J. Nicholson et al., Gain of 1q Is Associated with Adverse Outcome in Favorable Histology Wilms??? Tumors, The American Journal of Pathology, vol.158, issue.2, pp.393-401, 2001.
DOI : 10.1016/S0002-9440(10)63982-X

Y. Lu, S. Hing, R. Williams, R. Pinkerton, J. Shipley et al., Chromosome 1q expression profiling and relapse in Wilms' tumour Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse Gain of 1q is associated with inferior event-free and overall survival in patients with favorable histology Wilms tumor: a report from the Children's Oncology Group Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours Mutational spectrum of the APC and MUTYH genes and genotype-phenotype correlations in Brazilian FAP, AFAP, and MAP patients, L'hermine A, et al. Is Nephron Sparing Surgery Justified in Wilms Tumor With Beckwith-Wiedemann Syndrome or Isolated Hemihypertrophy? Pediatr Blood Cancer, pp.385-391, 2002.

J. Wegert, N. Ishaque, R. Vardapour, C. Georg, Z. Gu et al., Mutations in the SIX1/2 Pathway and the DROSHA/DGCR8 miRNA Microprocessor Complex Underlie High-Risk Blastemal Type Wilms Tumors, Cancer Cell, vol.27, issue.2, pp.298-311, 2015.
DOI : 10.1016/j.ccell.2015.01.002

M. Maschietto, R. Williams, T. Chagtai, S. Popov, N. Sebire et al., TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbours p53 gene mutations Focal versus diffuse anaplasia in Wilms tumor--new definitions with prognostic significance: a report from the National Wilms Tumor Study Group Clinical and biologic significance of nuclear unrest in Wilms tumor Wiedemann-Beckwith syndrome: autosomal-dominant inheritance in a family The Wiedemann-Beckwith syndrome: genetic considerations and a diagnostic sign, PLoS One. Nat Genet. Am J Surg Pathol. Cancer. Best LG Am J Med Genet. Lancet. Am J Med Genet, vol.9720979124, issue.6477551, pp.91-7909, 1972.

M. Gardinier, W. Macklin, A. Diniak, and P. Deininger, Characterization of myelin proteolipid mRNAs in normal and jimpy mice., Molecular and Cellular Biology, vol.6, issue.11, pp.3755-62, 1986.
DOI : 10.1128/MCB.6.11.3755

S. Choufani, C. Shuman, and R. Weksberg, Beckwith-Wiedemann syndrome, American Journal of Medical Genetics Part C: Seminars in Medical Genetics, vol.47, issue.3, pp.343-54, 2010.
DOI : 10.1016/S0002-9440(10)64605-6

M. Lee, R. Hu, L. Johnson, A. Feinberg, N. Smilinich et al., Human KVLQT1 gene shows tissue-specific imprinting and encompasses Beckwith-Wiedemann syndrome chromosomal rearrangements A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome, Nat Genet. Proc Natl Acad Sci U S A, vol.1596, issue.6914, pp.181-58064, 1997.

P. Lapunzina and D. Monk, The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer, Biology of the Cell, vol.19, issue.7, pp.303-320, 2011.
DOI : 10.1161/01.ATV.19.8.1950

S. Azzi, V. Steunou, A. Rousseau, S. Rossignol, N. Thibaud et al., Allele-specific methylated multiplex real-time quantitative PCR (ASMM RTQ-PCR), a powerful method for diagnosing loss of imprinting of the 11p15 region in Russell Silver and Beckwith Wiedemann syndromes An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome, Hum Mutat. Nat Genet, vol.3214, issue.722, pp.249-58171, 1996.

F. Brioude, I. Netchine, F. Praz, L. Jule, M. Calmel et al., Gene as a Cause of the Overgrowth Beckwith-Wiedemann Syndrome: Clinical Spectrum and Functional Characterization, Human Mutation, vol.387, issue.6629, pp.894-902, 2015.
DOI : 10.1038/387151a0

URL : https://hal.archives-ouvertes.fr/hal-01195734

K. Lee, A. Calikoglu, P. Ye, D. Ercole, A. Borer et al., Insulin-like growth factor-I (IGF-I) ameliorates and IGF binding protein-1 (IGFBP-1) exacerbates the effects of undernutrition on brain growth during early postnatal life: studies in IGF-I and IGFBP-1 transgenic mice Renal findings on radiological followup of patients with Beckwith-Wiedemann syndrome, Pediatr Res. J Urol, vol.45161, issue.751, pp.331-6235, 1999.

M. Elliott, R. Bayly, T. Cole, I. Temple, and E. Maher, Clinical features and natural history of Beckwith-Wiedemann syndrome: presentation of 74 new cases, Clinical Genetics, vol.1, issue.2, pp.168-74, 1994.
DOI : 10.1111/j.1399-0004.1994.tb04219.x

H. Wiedemann, G. Burgio, P. Aldenhoff, J. Kunze, H. Kaufmann et al., The proteus syndrome. Partial gigantism of the hands and/or feet, nevi, hemihypertrophy, subcutaneous tumors, macrocephaly or other skull anomalies and possible accelerated growth and visceral affections Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential Favorable outcome in children with Beckwith-Wiedemann syndrome and intraabdominal malignant tumors Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome Registry, Eur J Pediatr. J Pediatr. J Pediatr Surg. J Pediatr. Med Pediatr Oncol, vol.140963013221, issue.79733, pp.5-1247, 1980.

J. Bliek, S. Maas, J. Ruijter, R. Hennekam, M. Alders et al., Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS, Human Molecular Genetics, vol.10, issue.5, pp.467-76, 2001.
DOI : 10.1093/hmg/10.5.467

M. Debaun, E. Niemitz, D. Mcneil, S. Brandenburg, M. Lee et al., Epigenetic Alterations of H19 and LIT1 Distinguish Patients with Beckwith-Wiedemann Syndrome with Cancer and Birth Defects, The American Journal of Human Genetics, vol.70, issue.3, pp.604-615, 2002.
DOI : 10.1086/338934

V. Gaston, L. Bouc, Y. Soupre, V. Burglen, L. Donadieu et al., Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1 Characteristics and outcome of children with Beckwith-Wiedemann syndrome and Wilms' tumor: a report from the National Wilms Tumor Study GroupMolecular genetic analysis of the WT1 gene in patients suspected to have the Denys-Drash syndrome DNA modification mechanisms and gene activity during development, Eur J Hum Genet. Hum Mol Genet. J Clin Oncol. Coppes MJ Med Pediatr Oncol. Science. Genes Cells, vol.91018231878, issue.896, pp.409-182989, 1975.

M. Kane, M. Loda, G. Gaida, . J. Lipman, R. Mishra et al., Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines, Cancer Res, vol.57, issue.5, pp.808-819, 1997.

E. Li, J. Kung, D. Colognori, J. Lee, V. Paralkar et al., Chromatin modification and epigenetic reprogramming in mammalian development Long noncoding RNAs: past, present, and future Long noncoding RNAs in biology and hematopoiesis A misplaced lncRNA causes brachydactyly in humans Long noncoding RNAs, emerging players in muscle differentiation and disease, Nat Rev Genet. Genetics. Blood. J Clin Invest. Skelet Muscle. Nat Cell Biol, vol.3193121122414, issue.93241117, pp.662-73651, 2002.

J. Mcgrath and D. Solter, Completion of mouse embryogenesis requires both the maternal and paternal genomes, Cell, vol.37, issue.1, pp.179-83, 1984.
DOI : 10.1016/0092-8674(84)90313-1

R. Jirtle and M. Skinner, Environmental epigenomics and disease susceptibility, Nature Reviews Genetics, vol.403, issue.4, pp.253-62, 2007.
DOI : 10.1101/SQB.1993.058.01.037

J. Weidman, D. Dolinoy, S. Murphy, and R. Jirtle, Cancer Susceptibility: Epigenetic Manifestation of Environmental Exposures, The Cancer Journal, vol.13, issue.1, pp.9-16, 2007.
DOI : 10.1097/PPO.0b013e31803c71f2

S. Smallwood and G. Kelsey, De novo DNA methylation: a germ cell perspective, Trends in Genetics, vol.28, issue.1, pp.33-42, 2012.
DOI : 10.1016/j.tig.2011.09.004

P. Hajkova, S. Erhardt, N. Lane, T. Haaf, O. El-maarri et al., Epigenetic reprogramming in mouse primordial germ cells, Mechanisms of Development, vol.117, issue.1-2, pp.15-23, 2002.
DOI : 10.1016/S0925-4773(02)00181-8

P. Szabo, K. Hubner, H. Scholer, and J. Mann, Allele-specific expression of imprinted genes in mouse migratory primordial germ cells, Mechanisms of Development, vol.115, issue.1-2, pp.1-2157, 2002.
DOI : 10.1016/S0925-4773(02)00087-4

T. Tada, M. Tada, K. Hilton, S. Barton, T. Sado et al., Epigenotype switching of imprintable loci in embryonic germ cells, Development Genes and Evolution, vol.207, issue.8, pp.551-61, 1998.
DOI : 10.1007/s004270050146

P. Hajkova, K. Ancelin, T. Waldmann, N. Lacoste, U. Lange et al., Chromatin dynamics during epigenetic reprogramming in the mouse germ line, Nature, vol.171, issue.7189, pp.877-81, 2008.
DOI : 10.1038/nature06714

Y. Seki, K. Hayashi, K. Itoh, M. Mizugaki, M. Saitou et al., Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice, Developmental Biology, vol.278, issue.2, pp.440-58, 2005.
DOI : 10.1016/j.ydbio.2004.11.025

Y. Seki, M. Yamaji, Y. Yabuta, M. Sano, M. Shigeta et al., Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice, Development, vol.134, issue.14, pp.2627-2665, 2007.
DOI : 10.1242/dev.005611

C. Walsh, J. Chaillet, and T. Bestor, Transcription of IAP endogenous retroviruses is constrained by cytosine methylation, Nature Genetics, vol.66, issue.2, pp.116-123, 1998.
DOI : 10.1016/0092-8674(91)90140-T

J. Zhenwei, G. Shuxin, Z. Yongchun, and Z. Xianhua, Mechanisms of TET protein-mediated DNA demethylation and its role in the regulation of mouse development, Yi Chuan, vol.37, issue.1, pp.34-40, 2015.

H. Morgan, F. Santos, K. Green, W. Dean, and W. Reik, Epigenetic reprogramming in mammals, Human Molecular Genetics, vol.14, issue.suppl_1, pp.47-58, 2005.
DOI : 10.1093/hmg/ddi114

URL : https://academic.oup.com/hmg/article-pdf/14/suppl_1/R47/1495709/ddi114.pdf

A. Swales and N. Spears, Genomic imprinting and reproduction, Reproduction, vol.130, issue.4, pp.389-99, 2005.
DOI : 10.1530/rep.1.00395

D. Lucifero, C. Mertineit, H. Clarke, T. Bestor, and J. Trasler, Methylation Dynamics of Imprinted Genes in Mouse Germ Cells, Genomics, vol.79, issue.4, pp.530-538, 2002.
DOI : 10.1006/geno.2002.6732

E. Davis, F. Caiment, X. Tordoir, J. Cavaille, A. Ferguson-smith et al., RNAi-Mediated Allelic trans-Interaction at the Imprinted Rtl1/Peg11 Locus, Current Biology, vol.15, issue.8, pp.743-752, 2005.
DOI : 10.1016/j.cub.2005.02.060

URL : https://hal.archives-ouvertes.fr/hal-00021186

T. Davis, J. Trasler, S. Moss, G. Yang, and M. Bartolomei, Acquisition of theH19Methylation Imprint Occurs Differentially on the Parental Alleles during Spermatogenesis, Genomics, vol.58, issue.1, pp.18-28, 1999.
DOI : 10.1006/geno.1999.5813

J. Li, D. Lees-murdock, G. Xu, and C. Walsh, Timing of establishment of paternal methylation imprints in the mouse, Genomics, vol.84, issue.6, pp.952-60, 2004.
DOI : 10.1016/j.ygeno.2004.08.012

E. Geuns, M. De-rycke, V. Steirteghem, A. Liebaers, and I. , Methylation imprints of the imprint control region of the SNRPN-gene in human gametes and preimplantation embryos, Human Molecular Genetics, vol.12, issue.22, pp.2873-2882, 2003.
DOI : 10.1093/hmg/ddg315

E. Geuns, P. Hilven, V. Steirteghem, A. Liebaers, I. De-rycke et al., Methylation analysis of KvDMR1 in human oocytes, Journal of Medical Genetics, vol.44, issue.2, pp.144-151, 2007.
DOI : 10.1136/jmg.2006.044149

A. Kerjean, J. Dupont, C. Vasseur, L. Tessier, D. Cuisset et al., Establishment of the paternal methylation imprint of the human H19 and MEST/PEG1 genes during spermatogenesis, Human Molecular Genetics, vol.9, issue.14, pp.2183-2190, 2000.
DOI : 10.1093/hmg/9.14.2183

E. Geuns, D. Temmerman, N. Hilven, P. , V. Steirteghem et al., Methylation analysis of the intergenic differentially methylated region of DLK1-GTL2 in human, European Journal of Human Genetics, vol.21, issue.3, pp.352-61, 2007.
DOI : 10.1093/humrep/dei405

Y. Obata and T. Kono, Maternal Primary Imprinting Is Established at a Specific Time for Each Gene throughout Oocyte Growth, Journal of Biological Chemistry, vol.18, issue.7, pp.5285-5294, 2002.
DOI : 10.1038/ng574

D. Lucifero, M. Mann, M. Bartolomei, and J. Trasler, Gene-specific timing and epigenetic memory in oocyte imprinting, Human Molecular Genetics, vol.13, issue.8, pp.839-888, 2004.
DOI : 10.1093/hmg/ddh104

URL : https://academic.oup.com/hmg/article-pdf/13/8/839/17241233/ddh104.pdf

T. Davis, G. Yang, J. Mccarrey, and M. Bartolomei, The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development, Human Molecular Genetics, vol.9, issue.19, pp.2885-94, 2000.
DOI : 10.1093/hmg/9.19.2885

J. Weaver and M. Bartolomei, Chromatin regulators of genomic imprinting, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1839, issue.3, pp.169-77, 2014.
DOI : 10.1016/j.bbagrm.2013.12.002

X. Li, M. Ito, F. Zhou, N. Youngson, X. Zuo et al., A Maternal-Zygotic Effect Gene, Zfp57, Maintains Both Maternal and Paternal Imprints, Developmental Cell, vol.15, issue.4, pp.547-57, 2008.
DOI : 10.1016/j.devcel.2008.08.014

URL : https://doi.org/10.1016/j.devcel.2008.08.014

D. Mackay, J. Callaway, S. Marks, H. White, C. Acerini et al., Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57, Nature Genetics, vol.14, issue.8, pp.949-51, 2008.
DOI : 10.1515/JPEM.2001.14.7.897

S. Nonchev and R. Tsanev, Protamine-histone replacement and DNA replication in the male mouse pronucleus, Molecular Reproduction and Development, vol.11, issue.1, pp.72-78, 1990.
DOI : 10.1016/B978-0-12-379980-7.50036-9

W. Mayer, A. Niveleau, J. Walter, R. Fundele, and T. Haaf, Embryogenesis: Demethylation of the zygotic paternal genome, Nature, vol.43, issue.6769, pp.501-503, 2000.
DOI : 10.1101/gad.12.14.2108

F. Santos, B. Hendrich, W. Reik, and W. Dean, Dynamic Reprogramming of DNA Methylation in the Early Mouse Embryo, Developmental Biology, vol.241, issue.1, pp.172-82, 2002.
DOI : 10.1006/dbio.2001.0501

A. Olek and J. Walter, The pre-implantation ontogeny of the H19 methylation imprint, Nature Genetics, vol.6, issue.3, pp.275-281, 1997.
DOI : 10.1093/nar/24.24.5064

N. Rougier, D. Bourc-'his, D. Gomes, A. Niveleau, M. Plachot et al., Chromosome methylation patterns during mammalian preimplantation??development, Genes & Development, vol.12, issue.14, pp.2108-2121, 1998.
DOI : 10.1101/gad.12.14.2108

URL : http://genesdev.cshlp.org/content/12/14/2108.full.pdf

J. Oswald, S. Engemann, N. Lane, W. Mayer, A. Olek et al., Active demethylation of the paternal genome in the mouse zygote, Current Biology, vol.10, issue.8, pp.475-483, 2000.
DOI : 10.1016/S0960-9822(00)00448-6

W. Dean, F. Santos, M. Stojkovic, V. Zakhartchenko, J. Walter et al., Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos, Proceedings of the National Academy of Sciences, vol.11, issue.19, pp.13734-13742, 2001.
DOI : 10.1016/S0960-9822(01)00480-8

N. Beaujean, J. Taylor, M. Mcgarry, J. Gardner, I. Wilmut et al., The effect of interspecific oocytes on demethylation of sperm DNA, Proceedings of the National Academy of Sciences, vol.6, issue.12, pp.7636-7676, 2004.
DOI : 10.1080/1464770312331369053

M. Monk, M. Boubelik, and S. Lehnert, Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development, Development, vol.99, issue.3, pp.371-82, 1987.

T. Bestor, The DNA methyltransferases of mammals, Human Molecular Genetics, vol.9, issue.16, pp.2395-402, 2000.
DOI : 10.1093/hmg/9.16.2395

M. Sato, T. Kimura, K. Kurokawa, Y. Fujita, K. Abe et al., Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells, Mechanisms of Development, vol.113, issue.1, pp.91-95, 2002.
DOI : 10.1016/S0925-4773(02)00002-3

T. Nakamura, Y. Liu, H. Nakashima, H. Umehara, K. Inoue et al., PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos, Nature, vol.262, issue.7403, pp.415-424, 2012.
DOI : 10.1006/bbrc.1999.1187

D. Messerschmidt, W. De-vries, M. Ito, D. Solter, A. Ferguson-smith et al., Trim28 Is Required for Epigenetic Stability During Mouse Oocyte to Embryo Transition, Science, vol.344, issue.1, pp.1499-502, 2012.
DOI : 10.1016/j.ydbio.2010.04.020

C. Hanna and G. Kelsey, The specification of imprints in mammals, Heredity, vol.61, issue.2, pp.176-83, 2014.
DOI : 10.1038/nature12805

D. Peric-hupkes and B. Van-steensel, Role of the Nuclear Lamina in Genome Organization and Gene Expression, Cold Spring Harbor Symposia on Quantitative Biology, vol.75, issue.0, pp.517-541
DOI : 10.1101/sqb.2010.75.014

N. Engel, J. Thorvaldsen, and M. Bartolomei, CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus, Human Molecular Genetics, vol.15, issue.19, pp.2945-54, 2006.
DOI : 10.1093/hmg/ddl237

E. Rand, I. Ben-porath, I. Keshet, and H. Cedar, CTCF Elements Direct Allele-Specific Undermethylation at the Imprinted H19 Locus, Current Biology, vol.14, issue.11, pp.1007-1019, 2004.
DOI : 10.1016/j.cub.2004.05.041

C. Schoenherr, J. Levorse, and S. Tilghman, CTCF maintains differential methylation at the Igf2/H19 locus, Nature Genetics, vol.17, issue.1, pp.66-75, 2003.
DOI : 10.1093/nar/24.24.5064

J. Demars, M. Shmela, S. Rossignol, J. Okabe, I. Netchine et al., Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders, Human Molecular Genetics, vol.19, issue.5, pp.803-817, 2010.
DOI : 10.1093/hmg/ddp549

R. Poole, D. Leith, L. Docherty, M. Shmela, C. Gicquel et al., Beckwith???Wiedemann syndrome caused by maternally inherited mutation of an OCT-binding motif in the IGF2/H19-imprinting control region, ICR1, European Journal of Human Genetics, vol.20, issue.2, pp.240-243, 2012.
DOI : 10.1074/jbc.M202280200

URL : https://hal.archives-ouvertes.fr/hal-00673674

S. Berland, M. Appelback, O. Bruland, J. Beygo, K. Buiting et al., Evidence for anticipation in Beckwith???Wiedemann syndrome, European Journal of Human Genetics, vol.14, issue.12, pp.1344-1352, 2013.
DOI : 10.1073/pnas.0902087106

A. Habib, W. Azzi, S. Brioude, F. Steunou, V. Thibaud et al., Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome, Human Molecular Genetics, vol.23, issue.21, pp.5763-73, 2014.
DOI : 10.1093/hmg/ddu290

P. Leighton, J. Saam, R. Ingram, C. Stewart, and S. Tilghman, An enhancer deletion affects both H19 and Igf2 expression., Genes & Development, vol.9, issue.17, pp.2079-89, 1995.
DOI : 10.1101/gad.9.17.2079

URL : http://genesdev.cshlp.org/content/9/17/2079.full.pdf

J. Demars, S. Rossignol, I. Netchine, K. Lee, M. Shmela et al., New insights into the pathogenesis of beckwith-wiedemann and silver-russell syndromes: Contribution of small copy number variations to 11p15 imprinting defects, Human Mutation, vol.47, issue.10, pp.1171-82, 2011.
DOI : 10.1136/jmg.2009.071142

URL : https://hal.archives-ouvertes.fr/inserm-00610827

A. Hark, C. Schoenherr, D. Katz, R. Ingram, J. Levorse et al., CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus, Nature, vol.20, issue.6785, pp.486-495, 2000.
DOI : 10.1093/nar/20.14.3555

J. Beygo, V. Citro, A. Sparago, D. Crescenzo, A. Cerrato et al., The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites, Human Molecular Genetics, vol.22, issue.3, pp.544-57, 2013.
DOI : 10.1093/hmg/dds465

A. Murrell, S. Heeson, and W. Reik, Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops, Nature Genetics, vol.5, issue.8, pp.889-93, 2004.
DOI : 10.1038/ng1051

R. Nativio, K. Wendt, Y. Ito, J. Huddleston, S. Uribe-lewis et al., Cohesin Is Required for Higher-Order Chromatin Conformation at the Imprinted IGF2-H19 Locus, PLoS Genetics, vol.28, issue.11, p.1000739, 2009.
DOI : 10.1371/journal.pgen.1000739.s009

M. Lee, M. Debaun, G. Randhawa, B. Reichard, S. Elledge et al., Low Frequency of p57KIP2 Mutation in Beckwith-Wiedemann Syndrome, The American Journal of Human Genetics, vol.61, issue.2, pp.304-313, 1997.
DOI : 10.1086/514858

M. Du, W. Zhou, L. Beatty, R. Weksberg, and P. Sadowski, The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5, Genomics, vol.84, issue.2, pp.288-300, 2004.
DOI : 10.1016/j.ygeno.2004.03.008

S. Horike, K. Mitsuya, M. Meguro, N. Kotobuki, A. Kashiwagi et al., Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome, Human Molecular Genetics, vol.9, issue.14, pp.2075-83, 2000.
DOI : 10.1093/hmg/9.14.2075

R. Pandey, M. Ceribelli, P. Singh, J. Ericsson, R. Mantovani et al., Imprinting Control Region, Journal of Biological Chemistry, vol.62, issue.50, pp.52685-93, 2004.
DOI : 10.1074/jbc.M304606200

V. Grandjean, J. Smith, P. Schofield, and A. Ferguson-smith, Increased IGF-II protein affects p57kip2 expression in vivo and in vitro: Implications for Beckwith-Wiedemann syndrome, Proceedings of the National Academy of Sciences, vol.36, issue.7, pp.5279-84, 2000.
DOI : 10.1136/jmg.31.10.749

K. Pritchard-jones, R. Pieters, G. Reaman, L. Hjorth, P. Downie et al., Sustaining innovation and improvement in the treatment of childhood cancer: lessons from high-income countries, The Lancet Oncology, vol.14, issue.3, pp.95-103, 2013.
DOI : 10.1016/S1470-2045(13)70010-X

P. Grundy, E. Perlman, N. Rosen, A. Warwick, G. Bender et al., Current Issues in Wilms Tumor Management, Current Problems in Cancer, vol.29, issue.5, pp.221-60, 2005.
DOI : 10.1016/j.currproblcancer.2005.08.002

P. Grundy, P. Telzerow, J. Moksness, and N. Breslow, Clinicopathologic correlates of loss of heterozygosity in Wilms' tumor: A preliminary analysis, Medical and Pediatric Oncology, vol.54, issue.5, pp.429-462, 1996.
DOI : 10.1038/ng0594-91

G. Vujanic, B. Sandstedt, D. Harms, A. Kelsey, I. Leuschner et al., Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood, Medical and Pediatric Oncology, vol.35, issue.2, pp.79-82, 2002.
DOI : 10.1002/mpo.1276

S. Gadd, V. Huff, C. Huang, E. Ruteshouser, J. Dome et al., Clinically Relevant Subsets Identified by Gene Expression Patterns Support a Revised Ontogenic Model of Wilms Tumor: A Children's Oncology Group Study, Neoplasia, vol.14, issue.8, pp.742-56, 2012.
DOI : 10.1593/neo.12714

E. Tomlinson and S. Ferguson, -Type Cytochrome Has a Surprisingly Small Effect on Physicochemical Properties, Journal of Biological Chemistry, vol.149, issue.42, pp.32530-32534, 2000.
DOI : 10.1021/bi991831o

J. Beckwith, C. Zuppan, N. Browning, J. Moksness, and N. Breslow, Histological analysis of aggressiveness and responsiveness in Wilms' tumor, Medical and Pediatric Oncology, vol.5, issue.5, pp.422-430, 1996.
DOI : 10.1097/00000478-198109000-00001

S. Wittmann, C. Wunder, B. Zirn, R. Furtwangler, J. Wegert et al., New prognostic markers revealed by evaluation of genes correlated with clinical parameters in Wilms tumors, Genes, Chromosomes and Cancer, vol.45, issue.5, pp.386-95, 2008.
DOI : 10.1002/gcc.20544

D. Perotti, F. Spreafico, F. Torri, B. Gamba, D. Adamo et al., Genomic profiling by whole-genome single nucleotide polymorphism arrays in Wilms tumor and association with relapse, Genes, Chromosomes and Cancer, vol.3, issue.7, pp.644-53, 2012.
DOI : 10.1158/1541-7786.MCR-05-0082

K. Pritchard-jones, R. Williams, H. Segers, M. Van-den-heuvel-eibrink, R. Pieters et al., Response to the letter to the editor: 1q gain is a frequent finding in preoperatively treated Wilms tumors, but of limited prognostic value for risk satisfaction in the SIOP2009/Gesellschaft f??r P??diatrische Onkologie und H??matologie (GPOH) trial, Genes, Chromosomes and Cancer, vol.52, issue.6, pp.397-406, 2015.
DOI : 10.1002/gcc.22203

H. Segers, M. Van-den-heuvel-eibrink, R. Williams, H. Van-tinteren, G. Vujanic et al., Gain of 1q is a marker of poor prognosis in Wilms' tumors, Genes, Chromosomes and Cancer, vol.205, issue.11, pp.1065-74, 2013.
DOI : 10.1016/j.cancergen.2011.12.003

J. Schouten, C. Mcelgunn, R. Waaijer, D. Zwijnenburg, F. Diepvens et al., Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification, Nucleic Acids Research, vol.30, issue.12, p.57, 2002.
DOI : 10.1093/nar/gnf056

C. Gicquel, L. Bouc, and Y. , Molecular Markers for Malignancy in Adrenocortical Tumors, Hormone Research, vol.47, issue.4-6
DOI : 10.1159/000185475

H. Nakagawa, R. Chadwick, P. Peltomaki, C. Plass, Y. Nakamura et al., Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer, Proceedings of the National Academy of Sciences, vol.58, issue.23, pp.591-597, 2001.
DOI : 10.1038/ng0894-536

R. Ohlsson, H. Cui, L. He, S. Pfeifer, H. Malmikumpu et al., Mosaic allelic insulinlike growth factor 2 expression patterns reveal a link between Wilms' tumorigenesis and epigenetic heterogeneity, Cancer Res, vol.59, issue.16, pp.3889-92, 1999.

G. Ulaner, T. Vu, T. Li, J. Hu, X. Yao et al., Loss of imprinting of IGF2 and H19 in osteosarcoma is accompanied by reciprocal methylation changes of a CTCF-binding site, Human Molecular Genetics, vol.12, issue.5, pp.535-584, 2003.
DOI : 10.1093/hmg/ddg034

S. Zhan, D. Shapiro, and L. Helman, Loss of imprinting of IGF2 in Ewing's sarcoma, Oncogene, vol.11, issue.12, pp.2503-2510, 1995.

J. Hubertus, M. Lacher, M. Rottenkolber, J. Muller-hocker, M. Berger et al., Altered expression of imprinted genes in Wilms tumors, Oncology Reports, vol.25, issue.3, pp.817-840, 2011.
DOI : 10.3892/or.2010.1113

K. Brown, F. Power, B. Moore, A. Charles, and K. Malik, Frequency and Timing of Loss of Imprinting at 11p13 and 11p15 in Wilms' Tumor Development, Molecular Cancer Research, vol.6, issue.7, pp.1114-1137, 2008.
DOI : 10.1158/1541-7786.MCR-08-0002

E. Perlman, P. Grundy, J. Anderson, L. Jennings, D. Green et al., WT1 Mutation and 11P15 Loss of Heterozygosity Predict Relapse in Very Low-Risk Wilms Tumors Treated With Surgery Alone: A Children's Oncology Group Study, Journal of Clinical Oncology, vol.29, issue.6, pp.698-703, 2011.
DOI : 10.1200/JCO.2010.31.5192

Y. Ito, T. Koessler, A. Ibrahim, S. Rai, S. Vowler et al., Somatically acquired hypomethylation of IGF2 in breast and colorectal cancer, Human Molecular Genetics, vol.17, issue.17, pp.2633-2676, 2008.
DOI : 10.1093/hmg/ddn163

H. Byun, H. Wong, E. Birnstein, E. Wolff, G. Liang et al., Examination of IGF2 and H19 Loss of Imprinting in Bladder Cancer, Cancer Research, vol.67, issue.22, pp.10753-10761, 2007.
DOI : 10.1158/0008-5472.CAN-07-0329

S. Murphy, Z. Huang, Y. Wen, M. Spillman, R. Whitaker et al., Frequent IGF2/H19 Domain Epigenetic Alterations and Elevated IGF2 Expression in Epithelial Ovarian Cancer, Molecular Cancer Research, vol.4, issue.4, pp.283-92, 2006.
DOI : 10.1158/1541-7786.MCR-05-0138

M. Sullivan, T. Taniguchi, A. Jhee, N. Kerr, and A. Reeve, Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation, Oncogene, vol.18, issue.52, pp.7527-7561, 1999.
DOI : 10.1172/JCI117344

Y. Baba, K. Nosho, K. Shima, C. Huttenhower, N. Tanaka et al., Hypomethylation of the IGF2 DMR in Colorectal Tumors, Detected by Bisulfite Pyrosequencing, Is Associated With Poor Prognosis, Gastroenterology, vol.139, issue.6, pp.1855-64, 2010.
DOI : 10.1053/j.gastro.2010.07.050

A. Murata, Y. Baba, M. Watanabe, H. Shigaki, K. Miyake et al., IGF2 DMR0 Methylation, Loss of Imprinting, and Patient Prognosis in Esophageal Squamous Cell Carcinoma, Annals of Surgical Oncology, vol.5, issue.4, pp.1166-74, 2014.
DOI : 10.1038/nrd1930

H. Ali, E. Provenzano, S. Dawson, F. Blows, B. Liu et al., Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients, Annals of Oncology, vol.25, issue.8, pp.1536-1579, 2014.
DOI : 10.1093/annonc/mdu191

W. Fridman, F. Pages, C. Sautes-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nature Reviews Cancer, vol.29, issue.4, pp.298-306, 2012.
DOI : 10.1200/JCO.2010.30.6308

K. Krpina, E. Babarovic, and N. Jonjic, Correlation of tumor-infiltrating lymphocytes with bladder cancer recurrence in patients with solitary low-grade urothelial carcinoma, Virchows Archiv, vol.23, issue.6, pp.443-451, 2015.
DOI : 10.1111/j.1572-0241.2004.30733.x

S. Mahmoud, E. Paish, D. Powe, R. Macmillan, M. Grainge et al., Lymphocytes Predict Clinical Outcome in Breast Cancer, Journal of Clinical Oncology, vol.29, issue.15, pp.1949-55, 2011.
DOI : 10.1200/JCO.2010.30.5037

J. Muris, C. Meijer, S. Cillessen, W. Vos, J. Kummer et al., Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas, Leukemia, vol.19, issue.3, pp.589-96, 2004.
DOI : 10.1146/annurev.immunol.19.1.47

R. Salgado, C. Denkert, S. Demaria, N. Sirtaine, F. Klauschen et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014, Annals of Oncology, vol.26, issue.2, pp.259-71, 2015.
DOI : 10.1093/annonc/mdu450

M. Hernberg, J. Turunen, T. Muhonen, and S. Pyrhonen, Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma Receiving Chemoimmunotherapy, JOURNAL OF IMMUNOTHERAPY, vol.20, issue.6, pp.488-95, 1997.
DOI : 10.1097/00002371-199711000-00009

T. Igarashi, S. Murakami, H. Takahashi, O. Matsuzaki, and J. Shimazaki, Changes on Distribution of CD4+/ CD45RA- and CD87CD1Y Cells in Tumor-Infiltrating Lymphocytes of Renal Cell Carcinoma Associated with Tumor Progression, European Urology, vol.22, issue.4, pp.323-331, 1992.
DOI : 10.1159/000474780

I. Yoshino, T. Yano, M. Murata, M. Miyamoto, T. Ishida et al., Phenotypes of lymphocytes infiltrating non-small cell lung cancer tissues and its variation with histological types of cancer, Lung Cancer, vol.10, issue.1-2, pp.13-22, 1993.
DOI : 10.1016/0169-5002(93)90305-H

G. Assie, E. Letouze, M. Fassnacht, A. Jouinot, W. Luscap et al., Integrated genomic characterization of adrenocortical carcinoma, Nature Genetics, vol.11, issue.6, pp.607-619, 2014.
DOI : 10.1186/gb-2010-11-10-r106

URL : https://hal.archives-ouvertes.fr/hal-01255809

S. Kraggerud, J. Szymanska, V. Abeler, J. Kaern, M. Eknaes et al., DNA copy number changes in malignant ovarian germ cell tumors, Cancer Res, vol.60, issue.11, pp.3025-3055, 2000.

R. Chaganti and J. Houldsworth, Genetics and biology of adult human male germ cell tumors, Cancer Res, vol.60, issue.6, pp.1475-82, 2000.

J. Dome, C. Fernandez, E. Mullen, J. Kalapurakal, J. Geller et al., Children's Oncology Group's 2013 blueprint for research: Renal tumors, Pediatric Blood & Cancer, vol.25, issue.6, pp.994-1000, 2013.
DOI : 10.1200/JCO.2007.10.9298

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127041/pdf

G. Vujanic and B. Sandstedt, The pathology of Wilms' tumour (nephroblastoma): the International Society of Paediatric Oncology approach, Journal of Clinical Pathology, vol.63, issue.2, pp.102-111, 2010.
DOI : 10.1136/jcp.2009.064600

J. Dome, N. Graf, J. Geller, C. Fernandez, E. Mullen et al., Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration, Journal of Clinical Oncology, vol.33, issue.27, pp.2999-3007, 2015.
DOI : 10.1200/JCO.2015.62.1888

A. Scalabre, F. Brioude, C. Bergeron, D. Linda, L. Bouc-yves et al., Is Nephron Sparing Surgery justified in Wilms tumor with Beckwith- Wiedemann syndrome or Isolated Hemihypertrophy? Pediatr Blood and Cancer, pp.2-8

D. Linda, F. Brioude, M. Chagtai, G. Badibanga, F. Dijoud et al., herminé-Coulomb A and the French Paediatric Renal Tumors Pathology Group. 1p and 16q allelic loss and morphological and characterization of blastema in Wilms tumors in SFCE/SIOP 2001 Nephroblastoma trial ? Are they prognostic factors? En cours de soumission, Histopathology, pp.3-45

D. Linda, A. Blaise, F. Brioude, F. Dijoud, B. Ribault et al., Structural and methylation analysis in 11p15 region in a large cohort of Wilms tumors: correlation with pathological data and clinical outcome. En preparation, J of Pediatrics. IF, vol.3, p.79

D. Linda, *. Malouf, G. *. Blaise, A. Mowauad, R. Bergeron et al., Immunohistochemical characterisation of the immune response including PD1 and PDL1 in pre-treated Wilms tumors and correlation with pathological and clinical data. En cours de soumission, Modern Pathology. IF, vol.6, p.187

G. *. Malouf, D. Linda, *. Su, X. Verschuur, A. Bergeron et al., Genomic Landscape of Post-chemotherapy Anaplastic Wilms Tumors. En preparation. Pediatrics blood and cancer, pp.2-8

C. Orales, E. En, . Au, F. De-these-1.-dainese-linda, A. Brioude et al., Aurore L'herminé-Coulomb. 1p and 16q allelic loss in Wilms tumours in the SFCE/SIOP 2001 Nephroblastoma trial ? Are they correlated with pathology? 8 Mai 2013, 8th International Conference on Pediatric Renal Tumor Biology Presented by The Pablove Foundation and Children's National Medical Center, ANNEXE, vol.2

D. Linda, F. Brioude, A. Vershuur, C. Bergeron, L. Bouc et al., Corrélation entre la perte allélique des chromosomes 1p et 16q et les donnes anatomo-pathologiques dans les tumeurs de Wilms (Néphroblastomes), dans le cadre de l'étude SFCE, pp.18-22, 2001.

K. Jones, Copy number analysis of 1q gain in Wilms tumour by multiplex ligationdependent probe amplification. 8 Mai 2013, 8th International Conference on Pediatric Renal Tumor Biology Presented by The Pablove Foundation and Children's National Medical Center

M. Eibrink, N. Graf, H. Van-tinteren, A. Coulomb, M. Gessler et al., Gain of 1q and other molecular biomarkers in the context of histological risk group assessed after pre-operative chemotherapy in Wilms tumours treated in the SIOP 11éme Séminaire du CdR St Antoine, 2015.

D. Linda, A. Blaise, F. Brioude, F. Dijoud, B. Ribault et al., Structural and molecular characterization of 11p15 region in a cohort of SIOP Wilms Tumors, Society for Pediatric Pathology Spring Meeting, 2016.

L. Aurore, Immunohistochemical characterisation of the immune response including PD1 and PDL1 in pre-treated Wilms tumors and correlation with pathological and clinical data. Pediatric Renal Tumor Biology Group

D. Linda, A. Blaise, F. Brioude, F. Dijoud, B. Ribault et al., Structural and methylation analysis in 11p15 region in a large cohort of Wilms tumors: correlation with pathological data and clinical outcome

D. Linda, A. Blaise, F. Brioude, F. Dijoud, B. Ribault et al., Structural and methylation analysis in 11p15 region in a large cohort of Wilms tumors: correlation with pathological data and clinical outcome We thank Rebecca West and Nelly Bier for technical assistance, and Mariana Maschietto for helpful comments during the development of this study. The UK clinical database was managed by the Children's Cancer Trials Team Work in France was supported by L'Association Léon Bérard pour les Enfants Cancéreux, Enfants et Santé, Société Française du Cancer de l'Enfant, INSERM and UPMC (UMR.S 938) Work in Austria was supported by a CID grant of the St, Mai, 2016 (communication orale) with Cancer (11MH16), and the NIHR GOSH UCL Biomedical Research Centre the Wilhelm-Sander-Stiftung and the Competence Network Paediatric Oncology and Haematology Work in multiple countries was supported by the European Network for Cancer Research in Children and Andolescents (ENCCA, EU FP7 grant number 261474) and the P-medicine Project (EU FP7 grant number 270089). Samples were made available by individual treatment centres and in the UK by the Children's Cancer and Leukaemia Group (UK) and in France by the French Pediatric Renal Tumor Pathology Group, pp.3-5

A. Coulomb, M. Gessler, and D. Gisselsson, Author contributions Conception and design: Tasnim Chagtai

K. Pritchard-jones, V. Moroz, and G. Vujanic, Treatment and outcome of Wilms' tumour patients: an analysis of all cases registered in the UKW3 trial, Annals of Oncology, vol.23, issue.9, pp.2457-63, 2012.
DOI : 10.1093/annonc/mds025

J. Kalapurakal, J. Dome, and E. Perlman, Management of Wilms' tumour: current practice and future goals, The Lancet Oncology, vol.5, issue.1, pp.37-46, 2004.
DOI : 10.1016/S1470-2045(03)01322-6

G. Vujanic, B. Sandstedt, and D. Harms, Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood, Medical and Pediatric Oncology, vol.35, issue.2, pp.79-82, 2002.
DOI : 10.1002/mpo.1276

K. Pritchard-jones, C. Bergeron, and B. De-camargo, Omission of doxorubicin from the treatment of stage II???III, intermediate-risk Wilms' tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial, The Lancet, vol.386, issue.9999, pp.1156-64, 2015.
DOI : 10.1016/S0140-6736(14)62395-3

L. Bonetta, S. Kuehn, and A. Huang, Wilms tumor locus on 11p13 defined by multiple CpG island-associated transcripts, Science, vol.250, issue.4983, pp.994-1001, 1990.
DOI : 10.1126/science.2173146

K. Call, T. Glaser, and C. Ito, Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus, Cell, vol.60, issue.3, pp.509-529, 1990.
DOI : 10.1016/0092-8674(90)90601-A

M. Gessler, A. Poustka, and W. Cavenee, Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping, Nature, vol.343, issue.6260, pp.774-782, 1990.
DOI : 10.1038/343774a0

R. Koesters, R. Ridder, and A. Kopp-schneider, Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms' tumors, Cancer Research, vol.59, pp.3880-3882, 1999.

M. Rivera, W. Kim, and J. Wells, An X Chromosome Gene, WTX, Is Commonly Inactivated in Wilms Tumor, Science, vol.315, issue.5812, pp.642-647, 2007.
DOI : 10.1126/science.1137509

N. Bardeesy, D. Falkoff, and M. Petruzzi, Anaplastic Wilms' tumour, a subtype displaying poor prognosis, harbours p53 gene mutations, Nature Genetics, vol.74, issue.1, pp.91-98, 1994.
DOI : 10.1056/NEJM196404302701802

R. Williams, R. Saadi, and T. Chagtai, Subtype-Specific FBXW7 Mutation and MYCN Copy Number Gain in Wilms' Tumor, Clinical Cancer Research, vol.16, issue.7, pp.2036-2081, 2010.
DOI : 10.1158/1078-0432.CCR-09-2890

URL : http://clincancerres.aacrjournals.org/content/clincanres/16/7/2036.full.pdf

D. Rakheja, K. Chen, and Y. Liu, Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours, Nature Communications, vol.15, p.4802, 2014.
DOI : 10.1101/gad.943001

G. Torrezan, E. Ferreira, and A. Nakahata, Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour, Nature Communications, vol.11, p.4039, 2014.
DOI : 10.1261/rna.1591709

A. Walz, A. Ooms, and S. Gadd, Recurrent DGCR8, DROSHA, and SIX Homeodomain Mutations in Favorable Histology Wilms Tumors, Cancer Cell, vol.27, issue.2, pp.286-97, 2015.
DOI : 10.1016/j.ccell.2015.01.003

T. Pathway and . Drosha, DGCR8 miRNA microprocessor complex underlie highrisk blastemal type Wilms tumors, Cancer Cell, vol.27, pp.298-311, 2015.

R. Williams, T. Chagtai, and M. Alcaide-german, Multiple mechanisms of MYCN dysregulation in Wilms tumour, Oncotarget, vol.6, issue.9, pp.7232-7243, 2015.
DOI : 10.18632/oncotarget.3377

J. Schouten, C. Mcelgunn, and R. Waaijer, Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification, Nucleic Acids Research, vol.30, issue.12, p.57, 2002.
DOI : 10.1093/nar/gnf056

R. Furtwängler and K. Pritchard-jones, Treatment of Wilms Tumour: The SIOP Approach Renal Tumors of Childhood: Biology and Therapy, pp.101-118, 2014.

R. Williams, R. Saadi, and R. Natrajan, Molecular profiling reveals frequent gain of MYCN and anaplasia-specific loss of 4q and 14q in wilms tumor, Genes, Chromosomes and Cancer, vol.118, issue.12
DOI : 10.1002/ijc.21564

D. Hill, T. Shear, and T. Liu, Clinical and biologic significance of nuclear unrest in Wilms tumor, Cancer, vol.32, issue.9, pp.2318-2344, 2003.
DOI : 10.1177/29.4.6166661

N. Graf, H. Van-tinteren, and K. Pritchard-jones, Is the absolute blastema volume after preoperative chemotherapy in nephroblastoma relevant for prognosis?, Pediatr Blood Cancer, vol.57, pp.741-742, 2011.

A. and H. A. Trousseau, Service d'Hémato-Oncologie Pédiatrique

H. Vujanic, G. Sandstedt, B. Harms, D. Kelsey, A. Leuschner et al., mail: linda.dainese@trs.aphp.fr Running title: CD4/CD8 ratio and outcome in Wilms patients References 1SIOP) working classification of renal tumors of childhood, International Society of Paediatric Oncology Med Pediatr Oncol, vol.2638, issue.750122, pp.79-82, 2002.

F. Colotta, P. Allavena, A. Sica, C. Garlanda, and A. Mantovani, Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability, Carcinogenesis, vol.30, issue.7, pp.1073-81, 2009.
DOI : 10.1093/carcin/bgp127

A. Mantovani, Inflaming metastasis, Nature, vol.50, issue.7225, pp.36-43, 2009.
DOI : 10.1158/0008-5472.CAN-08-1327

A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, Cancer-related inflammation, Nature, vol.342, issue.7203, pp.436-480, 2008.
DOI : 10.4049/jimmunol.175.2.1197

H. Ali, E. Provenzano, S. Dawson, F. Blows, B. Liu et al., Association between CD8+ T-cell infiltration and breast cancer survival in 12 439 patients, Annals of Oncology, vol.25, issue.8, pp.1536-1579, 2014.
DOI : 10.1093/annonc/mdu191

R. Salgado, C. Denkert, S. Demaria, N. Sirtaine, F. Klauschen et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014, Annals of Oncology, vol.26, issue.2, pp.259-71, 2015.
DOI : 10.1093/annonc/mdu450

W. Fridman, F. Pages, C. Sautes-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nature Reviews Cancer, vol.29, issue.4, pp.298-306, 2012.
DOI : 10.1200/JCO.2010.30.6308

K. Krpina, E. Babarovic, and N. Jonjic, Correlation of tumor-infiltrating lymphocytes with bladder cancer recurrence in patients with solitary low-grade urothelial carcinoma, Virchows Archiv, vol.23, issue.6, pp.443-451, 2015.
DOI : 10.1111/j.1572-0241.2004.30733.x

S. Mahmoud, E. Paish, D. Powe, R. Macmillan, M. Grainge et al., Lymphocytes Predict Clinical Outcome in Breast Cancer, Journal of Clinical Oncology, vol.29, issue.15, pp.1949-55, 2011.
DOI : 10.1200/JCO.2010.30.5037

J. Muris, C. Meijer, S. Cillessen, W. Vos, J. Kummer et al., Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas, Leukemia, vol.19, issue.3, pp.589-96, 2004.
DOI : 10.1146/annurev.immunol.19.1.47

D. Scott, F. Chan, F. Hong, S. Rogic, K. Tan et al., Gene Expression???Based Model Using Formalin-Fixed Paraffin-Embedded Biopsies Predicts Overall Survival in Advanced-Stage Classical Hodgkin Lymphoma, Journal of Clinical Oncology, vol.31, issue.6, pp.692-700, 2013.
DOI : 10.1200/JCO.2012.43.4589

E. Sato, S. Olson, J. Ahn, B. Bundy, H. Nishikawa et al., Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer, Proceedings of the National Academy of Sciences, vol.34, issue.2, pp.18538-18581, 2005.
DOI : 10.1002/eji.200324181

B. Sheu, S. Hsu, H. Ho, R. Lin, P. Torng et al., Reversed CD4/CD8 ratios of tumor-infiltrating lymphocytes are correlated with the progression of human cervical carcinoma, Cancer, vol.10, issue.8, pp.1537-1580, 1999.
DOI : 10.1016/0169-5002(93)90305-H

N. Giraldo, E. Becht, F. Pages, G. Skliris, V. Verkarre et al., Orchestration and Prognostic Significance of Immune Checkpoints in the Microenvironment of Primary and Metastatic Renal Cell Cancer, Clinical Cancer Research, vol.21, issue.13, pp.3031-3071, 2015.
DOI : 10.1158/1078-0432.CCR-14-2926

J. Vakkila, R. Jaffe, M. Michelow, and M. Lotze, Pediatric Cancers Are Infiltrated Predominantly by Macrophages and Contain a Paucity of Dendritic Cells: a Major Nosologic Difference with Adult Tumors, Clinical Cancer Research, vol.12, issue.7, pp.2049-54, 2006.
DOI : 10.1158/1078-0432.CCR-05-1824

P. Maturu, W. Overwijk, J. Hicks, S. Ekmekcioglu, E. Grimm et al., Characterization of the Inflammatory Microenvironment and Identification of Potential Therapeutic Targets in Wilms Tumors, Translational Oncology, vol.7, issue.4, pp.484-92, 2014.
DOI : 10.1016/j.tranon.2014.05.008

M. Barros, G. Vera-lozada, F. Soares, G. Niedobitek, and R. Hassan, Tumor microenvironment composition in pediatric classical Hodgkin lymphoma is modulated by age and Epstein-Barr virus infection, International Journal of Cancer, vol.117, issue.5, pp.1142-52, 2012.
DOI : 10.1182/blood-2010-11-320481

F. Chowdhury, . Ds, S. Mitchell, T. Mellows, M. Ashton-key et al., PD-L1 and CD8+PD1+ lymphocytes exist as targets in the pediatric tumor therapy, Oncoimmunology, vol.4, issue.10, 2015.

R. Thompson, S. Kuntz, B. Leibovich, H. Dong, C. Lohse et al., Tumor B7-H1 Is Associated with Poor Prognosis in Renal Cell Carcinoma Patients with Long-term Follow-up, Cancer Research, vol.66, issue.7, pp.3381-3386, 2006.
DOI : 10.1158/0008-5472.CAN-05-4303

M. Mina, R. Boldrini, A. Citti, P. Romania, D. Alicandro et al., Tumorinfiltrating T lymphocytes improve clinical outcome of therapy-resistant neuroblastoma Tumor-infiltrating lymphocytes in patients with metastatic melanoma receiving chemoimmunotherapy, Oncoimmunology. J Immunother, vol.420, issue.96, pp.488-95, 1997.

I. Yoshino, T. Yano, M. Murata, M. Miyamoto, T. Ishida et al., Phenotypes of lymphocytes infiltrating non-small cell lung cancer tissues and its variation with histological types of cancer, Lung Cancer, vol.10, issue.1-2, pp.13-22, 1993.
DOI : 10.1016/0169-5002(93)90305-H

A. Diederichsen, J. Hjelmborg, P. Christensen, J. Zeuthen, and C. Fenger, Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells, Cancer Immunology, Immunotherapy, vol.52, issue.7, pp.423-431, 2003.
DOI : 10.1007/s00262-003-0388-5