L. Baffico, C. Grandmont, and B. Maury, MULTISCALE MODELING OF THE RESPIRATORY TRACT, Mathematical Models and Methods in Applied Sciences, vol.2, issue.01, pp.59-93, 2010.
DOI : 10.1007/978-3-642-87553-3

F. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible Navier-Stokes equations and related models, App. Math. Sc. Springer Science & Business Media, vol.183, 2012.
DOI : 10.1007/978-1-4614-5975-0

URL : https://hal.archives-ouvertes.fr/hal-00777731

C. Bruneau and P. Fabrie, Effective downstream boundary conditions for incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.59, issue.8, pp.693-705, 1994.
DOI : 10.1002/fld.1650190805

C. Bruneau and P. Fabrie, New efficient boundary conditions for incompressible Navier-Stokes equations : a well-posedness result, ESAIM: M2AN, pp.815-840, 1996.
DOI : 10.1051/m2an/1996300708151

R. Chatelin, Numerical methods for 3D Stokes flow: variable viscosity fluids in a complex moving geometry; application to biological fluids, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00946993

F. Clarelli, C. Di-russo, R. Natalini, and M. Ribot, A fluid dynamics model of the growth of phototrophic biofilms, Journal of Mathematical Biology, vol.70, issue.10, pp.1387-1408, 2013.
DOI : 10.1016/j.mimet.2007.05.013

URL : https://hal.archives-ouvertes.fr/hal-00764378

B. J. Debusschere, H. N. Najm, P. Pébay, O. M. Knio, R. Ghanem et al., Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes, SIAM Journal on Scientific Computing, vol.26, issue.2, pp.698-719, 2004.
DOI : 10.1137/S1064827503427741

G. Evans, Practical numerical integration, 1993.

R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, VII, Handb. Numer. Anal., VII, pp.713-1020, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00346077

T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numerical Algorithms, vol.18, issue.3/4, pp.209-232, 1998.
DOI : 10.1023/A:1019129717644

P. Gniewek and A. Kolinski, Coarse-Grained Modeling of Mucus Barrier Properties, Biophysical Journal, vol.102, issue.2, pp.195-200, 2012.
DOI : 10.1016/j.bpj.2011.11.4010

F. H. Harlow and J. E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, Physics of Fluids, vol.149, issue.12, pp.2182-2189, 1965.
DOI : 10.1098/rsta.1952.0006

M. E. Johansson, J. M. Larsson, and G. C. Hansson, The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions, Proc. Nat. Acad. Sc, pp.4659-4665, 2011.
DOI : 10.1016/j.immuni.2009.08.009

M. K. Kwan, W. M. Lai, and C. Van-mow, A finite deformation theory for cartilage and other soft hydrated connective tissues???I. Equilibrium results, Journal of Biomechanics, vol.23, issue.2, pp.145-155, 1990.
DOI : 10.1016/0021-9290(90)90348-7

K. Samuel, D. Lai, O. Elizabeth, S. Hanlon, . Harrold et al., Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus, Proceedings of the National Academy of Sciences, pp.1482-1487, 2007.

R. Muoz-tamayo, B. Laroche, E. Walter, J. Doré, and M. Leclerc, Mathematical modelling of carbohydrate degradation by human colonic microbiota, Journal of Theoretical Biology, vol.266, issue.1, pp.189-201, 2010.
DOI : 10.1016/j.jtbi.2010.05.040

E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Numerische Mathematik, vol.75, issue.1, pp.79-97, 1996.
DOI : 10.1007/s002110050231

L. Preziosi and A. Tosin, Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications, Journal of Mathematical Biology, vol.114, issue.4, pp.625-656, 2009.
DOI : 10.3934/nhm.2008.3.43

K. R. Rajagopal and L. Tao, Mechanics of mixtures, Series on Advances in Mathematics for Applied Sciences, 1995.
DOI : 10.1142/2197

J. Rambaud and J. Buts, Gut microflora: digestive physiology and pathology, 2006.

J. L. Round and S. K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease, Nature Reviews Immunology, vol.65, issue.5, pp.313-323, 2009.
DOI : 10.4049/jimmunol.174.5.2787

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4095778/pdf

I. M. Sobol, On sensitivity estimation for nonlinear mathematical models, Matematicheskoe Modelirovanie, vol.2, issue.1, pp.112-118, 1990.

A. Swidsinski and V. Loening-baucke, Functional Structure of Intestinal Microbiota in Health and Disease, pp.211-254
DOI : 10.1002/ibd.20763

L. De-alexandra, Étude d'Arf3 et de GEA2 dans l'organisation du cytosquelette d'actine chez Saccharomyces cerevisiae " ), 10 Processus de polymérisation de l'actine et illustration du flux rétrogradeThèse

L. Purich and D. , Actoclampin (+)-end-tracking motors: How the pursuit of profilin's role(s) in actin-based motility twice led to the discovery of how cells crawl, Illustration du principe du cliquet brownien, pp.41-55, 2015.
DOI : 10.1016/j.bpc.2015.10.008

A. T. Carvalho, K. Szeler, K. Vavitsas, J. Åqvist, S. C. Kamerlin et al., Modeling the mechanisms of biological GTP hydrolysis, Cycle d'action des protéines GTPases, pp.80-90
DOI : 10.1016/j.abb.2015.02.027

R. Mayor, Keeping in touch with contact inhibition of locomotion, Action des protéines Rac, Rho et Cdc42 sur la migration cellulaire, pp.319-328
DOI : 10.1016/j.tcb.2010.03.005

M. Instabilité-dynamique-du, P. L-'hydrolyse-de-la-coiffe-de-gtp-déclenche-une-catastrophedráber, V. Sulimenko, and E. Dráberová, Le phénomène de sauvetage permet au MT de regagner une coiffe en GTP, .) . . . . . . . . . . . . . 13, p.130, 2012.

). Déplacement-d-'une-protéine-de-kynésine-le-long-d-'un-microtubule, La molécule transportée par la kynésine n'est pas représentée. (Wikipedia contributors Wikipedia, The Free Encyclopedia. Wikipedia, The Free Encyclopedia, p.14, 2017.

C. &. Walczak, . Cai, &. Shang, and A. Khodjakov, Mechanisms of chromosome behavior during mitosis 91-102.), Rôle des microtubules dans les différentes phases de la mitoses, p.15, 2010.

.. Cellules-de-fibroblastes-présentant-un-aspect-Étiré-ou-en-Étoile, Contributeurs à Wikipedia, 'Fibroblaste' , Wikipédia, l'encyclopédie libre, pp.46-75, 2017.

?. Exemple-d-'interface-bornant-un-ouvert, 44 III.10Exemple de quadtree, avec la numérotation adaptée, 47 III.11Exemple de mailles quadrilatère et triangle raffinées, pp.47-48

. De-la-gauche-vers-la-droite, Mesh 3 and Mesh 4 avec leur premier raffinement en-dessous 90

=. Cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.104

=. Cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.104

E. Denicolai and .. , 110 VIII.2Principe de fonctionnement du test ELISA (https://www.ozyme.fr/ressources/cyberlettres/techozyme/ techozyme16-quantification-cytokines.asp), VIII.1Schéma récapitulatif du protocole expérimental utilisé pour les expériences de migration, p.111

.. Denicolai and .. , 112 VIII.4Dosage de l'activation de Rho et Rac par 112 VIII.5Dispositif du test de migration transwell (https://www.merckmillipore.com/FR/fr/product/InnoCyte%E2 %84%A2-Cell-Migration-Assay%2C-24-well-plate,EMD_BIO-CBA017), VIII.3Distance de migration des cellules en fonction du temps d'observation, p.115

=. Zoom-sur-la-cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.121

=. Zoom-sur-la-cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.121

=. Cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.126

=. Cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.126

=. Cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.127

=. Cellule-À-t and .. , A gauche la concentration de Rac et à droite la concentration de Rho. L'extrémité (+) des microtubules sont matérialisés par des points bleus, p.128

]. M. Références-[-abe80 and . Abercrombie, The croonian lecture, 1978: The crawling movement of metazoan cells, Proceedings of the Royal Society of London B: Biological Sciences, vol.207, issue.1167, pp.129-147, 1980.

]. R. Abg94 and . Abgrall, On essentially non-oscillatory schemes on unstructured meshes: Analysis and implementation, Journal of Computational Physics, vol.114, issue.1, pp.45-58, 1994.

[. Andreianov, F. Boyer, and F. Hubert, Discrete duality finite volume schemes for Leray???Lions???type elliptic problems on general 2D meshes, Numerical Methods for Partial Differential Equations, vol.152, issue.1, pp.145-195, 2007.
DOI : 10.1002/num.20170

URL : https://hal.archives-ouvertes.fr/hal-00005779

W. Alt, O. Brosteanu, B. Hinz, and H. W. Kaiser, Patterns of spontaneous motility in videomicrographs of human epidermal keratinocytes (HEK), Biochemistry and Cell Biology, vol.25, issue.7-8, pp.7-8, 1995.
DOI : 10.1002/cm.970250402

W. Alt, Mathematical Models and Analysing Methods for the Lamellipodial Activity of Leukocytes, pp.403-422, 1990.
DOI : 10.1007/978-3-642-83631-2_11

A. Aman and T. Piotrowski, Cell migration during morphogenesis, Developmental Biology, vol.341, issue.1, pp.20-33, 2010.
DOI : 10.1016/j.ydbio.2009.11.014

URL : https://doi.org/10.1016/j.ydbio.2009.11.014

R. [. Alt and . Tranquillo, BASIC MORPHOGENETIC SYSTEM MODELING SHAPE CHANGES OF MIGRATING CELLS: HOW TO EXPLAIN FLUCTUATING LAMELLIPODIAL DYNAMICS, Journal of Biological Systems, vol.03, issue.04, pp.905-916, 1995.
DOI : 10.1142/S0218339095000800

. Bcs-+-15-]-h, B. Babahosseini, J. S. Carmichael, S. N. Strobl, M. Mahmoodi et al., Sub-cellular force microscopy in single normal and cancer cells, Biochemical and Biophysical Research Communications, vol.463, issue.4, pp.587-592, 2015.

[. Boyer and P. Fabrie, Mathematical tools for the study of the incompressible navier-stokes equations and related models, Applied Mathematical Sciences, vol.183, 2012.
DOI : 10.1007/978-1-4614-5975-0

URL : https://hal.archives-ouvertes.fr/hal-00777731

D. Boffi, L. Gastaldi, and L. Heltai, Stability Results and Algorithmic Strategies for the Finite Element Approach to the Immersed Boundary Method, pp.575-582, 2006.
DOI : 10.1007/978-3-540-34288-5_54

D. Boffi, L. Gastaldi, and L. Heltai, NUMERICAL STABILITY OF THE FINITE ELEMENT IMMERSED BOUNDARY METHOD, Mathematical Models and Methods in Applied Sciences, vol.7, issue.10, pp.1479-1505, 2007.
DOI : 10.1063/1.1582476

J. Bereiter-hahn and H. Lüers, Subcellular tension fields and mechanical resistance of the lamella front related to the direction of locomotion, Cell Biochemistry and Biophysics, vol.33, issue.3, pp.243-262, 1998.
DOI : 10.1515/bchm2.1977.358.1.181

A. Gavin, S. L. Buxton, G. Siedlak, M. A. Perry, and . Smith, Mathematical modeling of microtubule dynamics: Insights into physiology and disease, Progress in Neurobiology, vol.92, issue.4, pp.478-483, 2010.

S. Clain, S. Diot, and R. Loubère, A high-order finite volume method for hyperbolic systems: Multi-dimensional optimal order detection (mood), Journal of Computational Physics, pp.0-0, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00518478

L. David and . Chopp, Computing minimal surfaces via level set curvature flow, Journal of Computational Physics, vol.106, issue.1, pp.77-91, 1993.

[. Cottet and E. Maitre, A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES, Mathematical Models and Methods in Applied Sciences, vol.11, issue.03, pp.415-438, 2006.
DOI : 10.1137/0913077

URL : https://hal.archives-ouvertes.fr/hal-00103198

[. Cottet, E. Maitre, and T. Milcent, An eulerian method for fluid-structure interaction with biophysical applications
URL : https://hal.archives-ouvertes.fr/hal-00171634

E. [. Cottet, T. Maitre, and . Milcent, Eulerian formulation and level set models for incompressible fluid-structure interaction, ESAIM: Mathematical Modelling and Numerical Analysis, vol.8, issue.3, pp.2-42, 2008.
DOI : 10.1007/BF01084616

URL : https://hal.archives-ouvertes.fr/hal-00297711

R. [. Cangiani and . Natalini, A spatial model of cellular molecular trafficking including active transport along microtubules, Journal of Theoretical Biology, vol.267, issue.4, pp.614-625, 2010.
DOI : 10.1016/j.jtbi.2010.08.017

URL : https://hal.archives-ouvertes.fr/hal-00637805

[. Cortez, The Method of Regularized Stokeslets, SIAM Journal on Scientific Computing, vol.23, issue.4, pp.1204-1225, 2001.
DOI : 10.1137/S106482750038146X

[. Cottet, Multi-physics and particle methods, Computational Fluid and Solid Mechanics, pp.1296-1298, 2003.

C. Hayot, S. Farinelle, D. Decker, R. Decaestecker, C. Darro et al., In vitro pharmacological characterizations of the anti-angiogenic and anti-tumor cell migration properties mediated by microtubule-affecting drugs, with special emphasis on the organization of the actin cytoskeleton, International Journal of Oncology, vol.21, pp.417-425, 2002.
DOI : 10.3892/ijo.21.2.417

. Domelevo, . Komla, and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM: Mathematical Modelling and Numerical Analysis, vol.14, issue.6, pp.1203-1249, 2005.
DOI : 10.1002/(SICI)1098-2426(199803)14:2<213::AID-NUM5>3.0.CO;2-R

. Bouti, . Tamara, . Goudon, . Thierry, . Labarthe et al., A mixture model for the dynamic of the gut mucus layer, pp.55-111, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01270350

B. Etchegaray, B. Grec, N. Maury, L. Meunier, and . Navoret, An Integro-Differential Equation for 1D Cell Migration, Integral Methods in Science and Engineering ? Theoretical and Computational Advances, pp.195-207, 2014.
DOI : 10.1007/978-3-319-16727-5_17

URL : https://hal.archives-ouvertes.fr/hal-01083510

L. Edelstein-keshet, W. R. Holmes, M. Zajac, and M. Dutot, From simple to detailed models for cell polarization, Philosophical Transactions of the Royal Society of London B, p.1629, 2013.
DOI : 10.1016/j.jcp.2010.06.014

]. C. Etc16 and . Etchegaray, Modélisation mathématique et numérique de la migration cellulaire, 2016.

[. Friedrich, Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids, Journal of Computational Physics, vol.144, issue.1, pp.194-212, 1998.
DOI : 10.1006/jcph.1998.5988

O. Gallinato, M. Ohta, C. Poignard, and T. Suzuki, Free boundary problem for cell protrusion formations: theoretical and numerical aspects, Journal of Mathematical Biology, vol.18, issue.1, pp.263-307, 2017.
DOI : 10.2977/prims/1195184016

URL : https://hal.archives-ouvertes.fr/hal-01228013

D. Hanahan, A. Robert, and . Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

R. William, L. Holmes, and . Edelstein-keshet, A comparison of computational models for eukaryotic cell shape and motility, PLOS Computational Biology, vol.8, issue.12, pp.1-17, 2012.

A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy, Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III, Journal of Computational Physics, vol.131, issue.1, pp.3-47, 1997.
DOI : 10.1006/jcph.1996.5632

]. F. Her00 and . Hermeline, A finite volume method for the approximation of diffusion operators on distorted meshes, Journal of Computational Physics, vol.160, issue.2, pp.481-499, 2000.

A. Harten and S. Osher, Uniformly High-Order Accurate Nonoscillatory Schemes. I, SIAM Journal on Numerical Analysis, vol.24, issue.2, pp.279-309, 1987.
DOI : 10.1137/0724022

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA158177&Location=U2&doc=GetTRDoc.pdf

A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, Some results on uniformly high-order accurate essentially nonoscillatory schemes, Applied Numerical Mathematics, vol.2, issue.3-5, pp.347-377, 1986.
DOI : 10.1016/0168-9274(86)90039-5

]. Honoré, A. Pagano, G. Gauthier, V. Bourgarel-rey, P. Verdier-pinard et al., Antiangiogenic vinflunine affects EB1 localization and microtubule targeting to adhesion sites, Molecular Cancer Therapeutics, vol.7, issue.7, pp.2080-2089, 2008.
DOI : 10.1158/1535-7163.MCT-08-0156

C. Hu and C. Shu, Weighted Essentially Non-oscillatory Schemes on Triangular Meshes, Journal of Computational Physics, vol.150, issue.1, pp.97-127, 1999.
DOI : 10.1006/jcph.1998.6165

URL : http://techreports.larc.nasa.gov/icase/1998/icase-1998-32.ps.gz

F. Hubert and R. Tesson, Weno Scheme for Transport Equation on Unstructured Grids with a DDFV Approach, pp.13-21
DOI : 10.1016/0021-9991(79)90051-2

D. Hanahan, A. Robert, and . Weinberg, The Hallmarks of Cancer, Cell, vol.100, issue.1, pp.57-70, 2000.
DOI : 10.1016/S0092-8674(00)81683-9

A. Jilkine, F. M. Athanasius, L. Marée, and . Edelstein-keshet, Mathematical Model for Spatial Segregation of the Rho-Family GTPases Based on Inhibitory Crosstalk, Bulletin of Mathematical Biology, vol.149, issue.6, 1943.
DOI : 10.1007/978-3-642-81703-8_24

[. Jiang and C. Shu, Efficient Implementation of Weighted ENO Schemes, Journal of Computational Physics, vol.126, issue.1, pp.202-228, 1996.
DOI : 10.1006/jcph.1996.0130

. Kpm-+-08-]-k, Z. Keren, G. M. Pincus, E. L. Allen, . Barnhart et al., Mechanism of shape determination in motile cells, Nature, 2008.

]. S. Kre10 and . Krell, Schémas volumes finis en mécanique des fluides complexes, 2010.

K. Kalwarczyk, A. Sozanski, J. Ochab-marcinek, M. Szymanski, S. Tabaka et al., Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model, Advances in Colloid and Interface Science, vol.223, pp.55-63, 2015.
DOI : 10.1016/j.cis.2015.06.007

T. Kalwarczyk, N. Ziebacz, A. Bielejewska, E. Zaboklicka, K. Koynov et al., Comparative Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale, Nano Letters, vol.11, issue.5, pp.2157-2163, 2011.
DOI : 10.1021/nl2008218

R. J. Leveque, High-Resolution Conservative Algorithms for Advection in Incompressible Flow, SIAM Journal on Numerical Analysis, vol.33, issue.2, pp.627-665, 1996.
DOI : 10.1137/0733033

. Maitre, Transport equations, Level Set and Eulerian mechanics Application to fluid-structure coupling, Habilitation à diriger des recherches, 2008.

L. [. Mizuhara, I. S. Berlyand, and . Aronson, Minimal Model of Directed Cell Motility on Patterned Substrates, ArXiv e-prints, 2017.

G. [. Mikhailov and . Gundersen, Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol, Cell Motility and the Cytoskeleton, vol.139, issue.4, pp.325-340, 1998.
DOI : 10.1083/jcb.139.2.417

T. Milcent, An eulerian approach to fluid-structure interaction, mathematical analysis and applications to biomecha Theses, 2009.

A. Mogilner, Mathematics of cell motility: have we got its number?, Journal of Mathematical Biology, vol.54, issue.101, p.105, 2008.
DOI : 10.1137/04060370X

[. Mulder, . Osher, A. James, and . Sethian, Computing interface motion in compressible gas dynamics, Journal of Computational Physics, vol.100, issue.2, pp.209-228, 1992.
DOI : 10.1016/0021-9991(92)90229-R

URL : http://www.ann.jussieu.fr/~frey/papers/levelsets/Mulder W., Osher S., Sethian J., Computing interface motion in compressible gas dynamics.pdf

K. D. Miller, C. J. Sweeney, G. W. Sledge, and . Jr, Redefining the Target: Chemotherapeutics as Antiangiogenics, Journal of Clinical Oncology, vol.19, issue.4, pp.1195-1206, 2001.
DOI : 10.1200/JCO.2001.19.4.1195

S. Otsuji, C. Ishihara, K. Co, A. Kaibuchi, S. Mochizuki et al., A mass conserved reaction?diffusion system captures properties of cell polarity, PLOS Computational Biology, vol.3, issue.6, pp.1-15, 2007.

S. Osher and R. P. Fedkiw, The level set methods and dynamic implicit surfaces, 2004.
DOI : 10.1115/1.1760520

S. Osher and F. Solomon, Upwind difference schemes for hyperbolic systems of conservation laws, Mathematics of Computation, vol.38, issue.158, pp.339-374, 1982.
DOI : 10.1090/S0025-5718-1982-0645656-0

S. Osher, A. James, and . Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://www.ann.jussieu.fr/~frey/papers/levelsets/Osher S., Fronts propagating with curvature dependent speed.pdf

C. [. Olz and . Schmeiser, How do cells move? mathematical modelling of cytoskeleton dynamics and cell migration, book chapter in cell mechanics: from single scale-based models to multiscale modelling, 2009.

C. S. Peskin, The immersed boundary method, Acta Numerica, vol.11, pp.479-517, 2002.

A. Pagano, S. Honoré, R. Mohan, R. Berges, A. Akhmanova et al., Epothilone B inhibits migration of glioblastoma cells by inducing microtubule catastrophes and affecting EB1 accumulation at microtubule plus ends, Biochemical Pharmacology, vol.84, issue.4, pp.432-443, 2012.
DOI : 10.1016/j.bcp.2012.05.010

G. [. Peskin, G. Odell, and . Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophysical Journal, vol.65, issue.1, pp.316-324, 1993.
DOI : 10.1016/S0006-3495(93)81035-X

URL : https://doi.org/10.1016/s0006-3495(93)81035-x

E. [. Rogerson and . Meiburg, A numerical study of the convergence properties of ENO schemes, Journal of Scientific Computing, vol.83, issue.2, pp.151-167, 1990.
DOI : 10.1007/BF01065582

G. Russo and P. Smereka, A Remark on Computing Distance Functions, Journal of Computational Physics, vol.163, issue.1, pp.51-67, 2000.
DOI : 10.1006/jcph.2000.6553

URL : http://www.math.lsa.umich.edu/~psmereka/LEVELSET/LSPAPERS/sdf_rs.pdf

M. [. Stephanou, P. Chaplain, and . Tracqui, A mathematical model for the dynamics of large membrane deformations of isolated fibroblasts, Bulletin of Mathematical Biology, vol.66, issue.5, pp.1119-1154, 2004.
DOI : 10.1016/j.bulm.2003.11.004

C. Shu, Numerical experiments on the accuracy of ENO and modified ENO schemes, Journal of Scientific Computing, vol.83, issue.2, pp.127-149, 1990.
DOI : 10.1007/BF01065581

C. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, vol.77, issue.2, pp.439-471, 1988.
DOI : 10.1016/0021-9991(88)90177-5

D. Schlüter, I. Ramis-conde, and M. A. Chaplain, Computational Modeling of Single-Cell Migration: The Leading Role of Extracellular Matrix Fibers, Biophysical Journal, vol.103, issue.6, pp.1141-1151, 2012.
DOI : 10.1016/j.bpj.2012.07.048

[. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

P. [. Stephanou and . Tracqui, Cytomechanics of cell deformations and migration: from models to experiments, Comptes Rendus Biologies, vol.325, issue.4, 2002.
DOI : 10.1016/S1631-0691(02)01447-6

[. Strain, Fast Tree-Based Redistancing for Level Set Computations, Journal of Computational Physics, vol.152, issue.2, pp.664-686, 1999.
DOI : 10.1006/jcph.1999.6259

URL : http://www.math.berkeley.edu/~strain/Publications/slr.ps.gz

]. R. Tes17 and . Tesson, Weno scheme for transport equation on unstructured grids with a ddfv approach, 2017.

B. Vanderlei, J. J. Feng, and L. Edelstein-keshet, A Computational Model of Cell Polarization and Motility Coupling Mechanics and Biochemistry, Multiscale Modeling & Simulation, vol.9, issue.4, pp.1420-1443, 2011.
DOI : 10.1137/100815335

[. Vigneaux, Level Set methods for interface problems in Microfluidics, Theses, Université Sciences et Technologies -Bordeaux I, 2007.

[. Wang, Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling, The Journal of Cell Biology, vol.101, issue.2, pp.597-602, 1985.
DOI : 10.1083/jcb.101.2.597

[. Wittmann and C. M. Waterman-storer, Cell motility: can rho gtpases and microtubules point the way?, Journal of Cell Science, vol.114, issue.21, pp.3795-3803, 2001.

P. [. Xu and . Bressloff, Model of Growth Cone Membrane Polarization via Microtubule Length Regulation, Biophysical Journal, vol.109, issue.10, pp.2203-2214, 2015.
DOI : 10.1016/j.bpj.2015.09.019

T. Steven and . Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol.31, issue.3, pp.335-362, 1979.

H. Zhao, T. Chan, B. Merriman, and S. Osher, A Variational Level Set Approach to Multiphase Motion, Journal of Computational Physics, vol.127, issue.1, pp.179-195, 1996.
DOI : 10.1006/jcph.1996.0167

J. Zhu and A. Mogilner, Mesoscopic model of actin-based propulsion, PLOS Computational Biology, vol.8, issue.11, pp.1-12, 2012.