R. 1. Puri, R. Worthley, M. I. Nicholls, and S. J. , Intravascular imaging of vulnerable coronary plaque: current and future concepts, Nature Reviews Cardiology, vol.83, issue.3, pp.131-139, 2011.
DOI : 10.1093/cvr/cvp243

V. R. Taqueti, Global Coronary Flow Reserve Is Associated With Adverse Cardiovascular Events Independently of Luminal Angiographic Severity and Modifies the Effect of Early Revascularization, Circulation, vol.131, issue.1, pp.19-27, 2015.
DOI : 10.1161/CIRCULATIONAHA.114.011939

P. Kaul and P. S. Douglas, Atherosclerosis Imaging: Prognostically Useful or Merely More of What We Know?, Circulation: Cardiovascular Imaging, vol.2, issue.2, pp.150-160, 2009.
DOI : 10.1161/CIRCIMAGING.109.850263

A. N. Demaria, J. Narula, E. Mahmud, and S. Tsimikas, Imaging Vulnerable Plaque by Ultrasound, Journal of the American College of Cardiology, vol.47, issue.8, pp.32-39, 2006.
DOI : 10.1016/j.jacc.2005.11.047

T. Ma, Multi-Frequency Intravascular Ultrasound (IVUS) Imaging, IEEE Trans
DOI : 10.1109/tuffc.2014.006679

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4522164/pdf

M. Yamagishi, Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome, Journal of the American College of Cardiology, vol.35, issue.1, pp.106-111, 2000.
DOI : 10.1016/S0735-1097(99)00533-1

J. Kotani, Intravascular Ultrasound Analysis of Infarct-Related and Non-Infarct-Related Arteries in Patients Who Presented With an Acute Myocardial Infarction, Circulation, vol.107, issue.23, pp.2889-2893, 2003.
DOI : 10.1161/01.CIR.0000072768.80031.74

S. Ehara, Spotty Calcification Typifies the Culprit Plaque in Patients With Acute Myocardial Infarction: An Intravascular Ultrasound Study, Circulation, vol.110, issue.22, pp.3424-3429, 2004.
DOI : 10.1161/01.CIR.0000148131.41425.E9

D. Vancraeynest, A. Pasquet, V. Roelants, B. L. Gerber, and J. J. Vanoverschelde, Imaging the Vulnerable Plaque, Journal of the American College of Cardiology, vol.57, issue.20, pp.1961-1979, 2011.
DOI : 10.1016/j.jacc.2011.02.018

S. K. Mehta, J. R. Mccrary, A. D. Frutkin, W. J. Dolla, and S. P. Marso, Intravascular ultrasound radiofrequency analysis of coronary atherosclerosis: an emerging technology for the assessment of vulnerable plaque, European Heart Journal, vol.28, issue.11, pp.1283-1288, 2007.
DOI : 10.1093/eurheartj/ehm112

J. A. Schaar, Current Diagnostic Modalities for Vulnerable Plaque Detection, Current Pharmaceutical Design, vol.13, issue.10
DOI : 10.2174/138161207780487511

M. J. Suter, Intravascular Optical Imaging Technology for Investigating the Coronary Artery, JACC: Cardiovascular Imaging, vol.4, issue.9, pp.1022-1039, 2011.
DOI : 10.1016/j.jcmg.2011.03.020

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, Optical coherence tomography - principles and applications, Reports on Progress in Physics, vol.66, issue.2, p.239, 2003.
DOI : 10.1088/0034-4885/66/2/204

M. E. Brezinski, Optical Coherence Tomography for Optical Biopsy : Properties and Demonstration of Vascular Pathology, Circulation, vol.93, issue.6, pp.1206-1213, 1996.
DOI : 10.1161/01.CIR.93.6.1206

I. Jang, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound, Journal of the American College of Cardiology, vol.39, issue.4, pp.604-609, 2002.
DOI : 10.1016/S0735-1097(01)01799-5

G. Van-soest, Atherosclerotic tissue characterization in vivo by optical coherence tomography attenuation imaging, Journal of Biomedical Optics, vol.15, issue.1, pp.11105-011105, 2010.
DOI : 10.1117/1.3280271

S. Uemura, Thin-cap fibroatheroma and microchannel findings in optical coherence tomography correlate with subsequent progression of coronary atheromatous plaques, European Heart Journal, vol.33, issue.1
DOI : 10.1093/eurheartj/ehr284

I. Jr and W. , The Pathology of Atherosclerosis: Plaque Development and Plaque Responses to Medical Treatment, Am. J. Med, vol.122, pp.3-14, 2009.

T. Quillard and P. Libby, Molecular Imaging of Atherosclerosis for Improving Diagnostic and Therapeutic Development, Circulation Research, vol.111, issue.2, pp.231-244, 2012.
DOI : 10.1161/CIRCRESAHA.112.268144

E. V. Zagaynova, studies and Monte Carlo simulation, Physics in Medicine and Biology, vol.53, issue.18, p.4995, 2008.
DOI : 10.1088/0031-9155/53/18/010

M. Kirillin, Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study, Journal of Biomedical Optics, vol.14, issue.2, pp.21017-021017, 2009.
DOI : 10.1117/1.3122373

A. Jefferson, Molecular imaging with optical coherence tomography using ligand-conjugated microparticles that detect activated endothelial cells: Rational design through target quantification, Atherosclerosis, vol.219, issue.2, pp.579-587, 2011.
DOI : 10.1016/j.atherosclerosis.2011.07.127

H. Yoo, Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo, Nature Medicine, vol.21, issue.12, pp.1680-1684, 2011.
DOI : 10.1016/S0008-6363(98)00255-7

G. J. Ughi, Clinical Characterization of Coronary??Atherosclerosis With Dual-Modality OCT??and Near-Infrared Autofluorescence??Imaging, JACC: Cardiovascular Imaging, vol.9, issue.11, 2016.
DOI : 10.1016/j.jcmg.2015.11.020

A. Gallino, ???In??vivo??? imaging of atherosclerosis, Atherosclerosis, vol.224, issue.1, pp.25-36, 2012.
DOI : 10.1016/j.atherosclerosis.2012.04.007

S. Kaur, Recent trends in antibody-based oncologic imaging, Cancer Letters, vol.315, issue.2, pp.97-111, 2012.
DOI : 10.1016/j.canlet.2011.10.017

E. A. Ferrante, J. E. Pickard, J. Rychak, A. Klibanov, and K. Ley, Dual targeting improves microbubble contrast agent adhesion to VCAM-1 and P-selectin under flow, Journal of Controlled Release, vol.140, issue.2, pp.100-107, 2009.
DOI : 10.1016/j.jconrel.2009.08.001

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783796/pdf

F. A. Jaffer, P. Libby, and R. Weissleder, Optical and Multimodality Molecular Imaging: Insights Into Atherosclerosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.29, issue.7, pp.1017-1024, 2009.
DOI : 10.1161/ATVBAHA.108.165530

URL : http://atvb.ahajournals.org/content/atvbaha/29/7/1017.full.pdf

M. Tatsumi, C. Cohade, Y. Nakamoto, and R. L. Wahl, Fluorodeoxyglucose Uptake in the Aortic Wall at PET/CT: Possible Finding for Active Atherosclerosis, Radiology, vol.229, issue.3, pp.831-837, 2003.
DOI : 10.1148/radiol.2293021168

N. Tahara, Vascular Inflammation Evaluated by [18F]-Fluorodeoxyglucose Positron Emission Tomography Is Associated With the Metabolic Syndrome, Journal of the American College of Cardiology, vol.49, issue.14, pp.1533-1539, 2007.
DOI : 10.1016/j.jacc.2006.11.046

H. Hetterich, Natural history of atherosclerotic disease progression as assessed by 18F-FDG PET/CT, The International Journal of Cardiovascular Imaging, vol.49, issue.1, pp.49-59, 2015.
DOI : 10.2967/jnumed.107.050294

T. Mazurek, PET/CT evaluation of 18F-FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesions' formation?, Journal of Nuclear Cardiology, vol.5, issue.6736, 2016.
DOI : 10.1016/j.jcmg.2012.02.016

D. Hartung, Radiolabeled Monocyte Chemotactic Protein 1 for the Detection of Inflammation in Experimental Atherosclerosis, Journal of Nuclear Medicine, vol.48, issue.11, pp.1816-1821, 2007.
DOI : 10.2967/jnumed.107.043463

M. Sarai, Broad and Specific Caspase Inhibitor-Induced Acute Repression of Apoptosis in Atherosclerotic Lesions Evaluated by Radiolabeled Annexin A5 Imaging, Journal of the American College of Cardiology, vol.50, issue.24, pp.2305-2312, 2007.
DOI : 10.1016/j.jacc.2007.08.044

S. Fujimoto, Molecular Imaging of Matrix Metalloproteinase in Atherosclerotic Lesions, Journal of the American College of Cardiology, vol.52, issue.23, pp.1847-1857, 2008.
DOI : 10.1016/j.jacc.2008.08.048

F. Hyafil, Quantification of Inflammation Within Rabbit Atherosclerotic Plaques Using the Macrophage-Specific CT Contrast Agent N1177: A Comparison with 18F-FDG PET/CT and Histology, Journal of Nuclear Medicine, vol.50, issue.6, pp.959-965, 2009.
DOI : 10.2967/jnumed.108.060749

URL : https://hal.archives-ouvertes.fr/hal-00837624

I. Laitinen, Evaluation of ??v??3 Integrin-Targeted Positron Emission Tomography Tracer 18F-Galacto-RGD for Imaging of Vascular Inflammation in Atherosclerotic Mice, Circulation: Cardiovascular Imaging, vol.2, issue.4, pp.331-338, 2009.
DOI : 10.1161/CIRCIMAGING.108.846865

A. J. Beer, PET/CT Imaging of Integrin ??v??3 Expression in Human Carotid Atherosclerosis, JACC: Cardiovascular Imaging, vol.7, issue.2, pp.178-187, 2014.
DOI : 10.1016/j.jcmg.2013.12.003

J. W. Seo, Cu-Labeled LyP-1-Dendrimer for PET-CT Imaging of Atherosclerotic Plaque, Bioconjugate Chemistry, vol.25, issue.2, pp.231-239, 2014.
DOI : 10.1021/bc400347s

M. Nahrendorf, 18F-4V for PET???CT Imaging of VCAM-1 Expression in Atherosclerosis, JACC: Cardiovascular Imaging, vol.2, issue.10, pp.1213-1222, 2009.
DOI : 10.1016/j.jcmg.2009.04.016

M. Torzewski, Reduced In Vivo Aortic Uptake of Radiolabeled Oxidation-Specific Antibodies Reflects Changes in Plaque Composition Consistent With Plaque Stabilization, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.12, pp.2307-2312, 2004.
DOI : 10.1161/01.ATV.0000149378.98458.fe

K. Ardipradja, Detection of activated platelets in a mouse model of carotid artery thrombosis with 18F-labeled single-chain antibodies, Nuclear Medicine and Biology, vol.41, issue.3, pp.229-237, 2014.
DOI : 10.1016/j.nucmedbio.2013.12.006

A. Phinikaridou, Molecular MRI of Atherosclerosis, Molecules, vol.3, issue.11, pp.14042-14069, 2013.
DOI : 10.1161/01.CIR.0000093185.16083.95

B. Chu, Cardiac Magnetic Resonance Features of the Disruption-Prone and the Disrupted Carotid Plaque, JACC: Cardiovascular Imaging, vol.2, issue.7, pp.883-896, 2009.
DOI : 10.1016/j.jcmg.2009.03.013

T. S. Hatsukami and C. Yuan, MRI in the early identification and classification of high-risk atherosclerotic carotid plaques, Imaging in Medicine, vol.2, issue.1, pp.63-75, 2010.
DOI : 10.2217/iim.09.33

X. Zhao, MR Imaging of Carotid Plaque Composition During Lipid-Lowering Therapy, JACC: Cardiovascular Imaging, vol.4, issue.9, pp.977-986, 2011.
DOI : 10.1016/j.jcmg.2011.06.013

J. D. Anderson and C. M. Kramer, MRI of Atherosclerosis: Diagnosis and Monitoring Therapy, Expert Rev. Cardiovasc. Ther, vol.5, pp.69-80, 2007.

S. S. Silvera, Multimodality imaging of atherosclerotic plaque activity and composition using FDG-PET/CT and MRI in carotid and femoral arteries, Atherosclerosis, vol.207, issue.1, pp.139-143, 2009.
DOI : 10.1016/j.atherosclerosis.2009.04.023

R. S. Ripa and A. Kjaer, Imaging Atherosclerosis with Hybrid Positron Emission Tomography, Magnetic Resonance Imaging. BioMed Res. Int, vol.2015, pp.1-8, 2015.
DOI : 10.1155/2015/914516

URL : http://doi.org/10.1155/2015/914516

Y. Petibon, Towards coronary plaque imaging using simultaneous PET-MR: a simulation study, Physics in Medicine and Biology, vol.59, issue.5, pp.1203-1222, 2014.
DOI : 10.1088/0031-9155/59/5/1203

K. C. Briley-saebo, V. Mani, F. Hyafil, J. Cornily, and Z. A. Fayad, Fractionated feridex and positive contrast: In vivo MR imaging of atherosclerosis, Magnetic Resonance in Medicine, vol.104, issue.4, pp.721-730, 2008.
DOI : 10.1148/radiology.179.2.2014305

URL : https://hal.archives-ouvertes.fr/hal-00837631

M. Terashima, Human ferritin cages for imaging vascular macrophages, Biomaterials, vol.32, issue.5, pp.1430-1437, 2011.
DOI : 10.1016/j.biomaterials.2010.09.029

H. Kosuge, FeCo/Graphite Nanocrystals for Multi-Modality Imaging of Experimental Vascular Inflammation, PLoS ONE, vol.286, issue.1, p.14523, 2011.
DOI : 10.1371/journal.pone.0014523.g003

K. C. Briley-saebo, Gadolinium mixed-micelles: Effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis, Magnetic Resonance in Medicine, vol.13, issue.6, pp.1336-1346, 2006.
DOI : 10.1148/radiology.175.2.2326474

A. Maiseyeu, Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis, Journal of Lipid Research, vol.1128, issue.11, pp.2157-2163, 2009.
DOI : 10.1016/0005-2760(92)90255-T

M. E. Kooi, Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging, Circulation, vol.107, issue.19, pp.2453-2458, 2003.
DOI : 10.1161/01.CIR.0000068315.98705.CC

T. Y. Tang, The ATHEROMA (Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study, Journal of the American College of Cardiology, vol.53, issue.22, pp.2039-2050, 2009.
DOI : 10.1016/j.jacc.2009.03.018

M. A. Mcateer, A. M. Akhtar, C. Von-zur-muhlen, and R. P. Choudhury, An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide, Atherosclerosis, vol.209, issue.1, pp.18-27, 2010.
DOI : 10.1016/j.atherosclerosis.2009.10.009

R. K. Kanwar, R. Chaudhary, T. Tsuzuki, and J. Kanwar, Emerging engineered magnetic nanoparticulate probes for targeted MRI of atherosclerotic plaque macrophages, Nanomedicine, vol.175, issue.5, pp.735-749, 2012.
DOI : 10.1161/CIRCULATIONAHA.109.916338

M. Michalska, Visualization of Vascular Inflammation in the Atherosclerotic Mouse by Ultrasmall Superparamagnetic Iron Oxide Vascular Cell Adhesion Molecule-1-Specific Nanoparticles, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.10, pp.2350-2357, 2012.
DOI : 10.1161/ATVBAHA.112.255224

M. Sirol, Chronic Thrombus Detection With In Vivo Magnetic Resonance Imaging and a Fibrin-Targeted Contrast Agent, Circulation, vol.112, issue.11, pp.1594-1600, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.522110

E. Spuentrup, Molecular Magnetic Resonance Imaging of Coronary Thrombosis and Pulmonary Emboli With a Novel Fibrin-Targeted Contrast Agent, Circulation, vol.111, issue.11, pp.1377-1382, 2005.
DOI : 10.1161/01.CIR.0000158478.29668.9B

E. Spuentrup, Molecular Magnetic Resonance Imaging of Atrial Clots in a Swine Model, Circulation, vol.112, issue.3, pp.396-399, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.529941

C. P. Stracke, Molecular MRI of Cerebral Venous Sinus Thrombosis Using a New Fibrin-Specific MR Contrast Agent, Stroke, vol.38, issue.5, pp.1476-1481, 2007.
DOI : 10.1161/STROKEAHA.106.479998

E. Spuentrup, MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients, European Radiology, vol.47, issue.9, pp.1995-2005, 2008.
DOI : 10.1148/radiology.218.1.r01ja50215

G. Clofent-sanchez, M. Jacobin-valat, and J. Laroche-traineau, The growing interest of fibrin imaging in atherosclerosis, Atherosclerosis, vol.222, issue.1, pp.22-25, 2012.
DOI : 10.1016/j.atherosclerosis.2012.01.041

R. Duivenvoorden, A Statin-Loaded Reconstituted High-Density Lipoprotein Nanoparticle Inhibits Atherosclerotic Plaque Inflammation, Nat. Commun, vol.5, p.3065, 2014.

J. Tardif, Effects of Reconstituted High-Density Lipoprotein Infusions on Coronary Atherosclerosis<SUBTITLE>A Randomized Controlled Trial</SUBTITLE>, JAMA, vol.297, issue.15, pp.1675-1682, 2007.
DOI : 10.1001/jama.297.15.jpc70004

M. Suzuki, Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus, Nanomedicine, vol.24, issue.7, pp.73-87, 2015.
DOI : 10.1016/j.addr.2006.09.013

S. A. Mousa, Adhesion molecules: potential therapeutic and diagnostic implications
DOI : 10.1007/978-1-60761-803-4_11

L. E. Paulis, Targeting of ICAM-1 on vascular endothelium under static and shear stress conditions using a liposomal Gd-based MRI contrast agent, Journal of Nanobiotechnology, vol.10, issue.1, p.1, 2012.
DOI : 10.1007/s00424-008-0475-8

J. M. Chan, C. Monaco, M. Wylezinska-arridge, J. L. Tremoleda, and R. G. Gibbs, Imaging of the Vulnerable Carotid Plaque: Biological Targeting of Inflammation in Atherosclerosis using Iron Oxide Particles and MRI, European Journal of Vascular and Endovascular Surgery, vol.47, issue.5, pp.462-469, 2014.
DOI : 10.1016/j.ejvs.2014.01.017

J. Rohlena, Endothelial CD81 is a marker of early human atherosclerotic plaques and facilitates monocyte adhesion, Cardiovascular Research, vol.81, issue.1, pp.187-196, 2009.
DOI : 10.1093/cvr/cvn256

F. Yan, Magnetic Resonance Imaging of Atherosclerosis Using CD81-Targeted Microparticles of Iron Oxide in Mice, BioMed Research International, vol.30, issue.2, p.2015, 2015.
DOI : 10.1161/01.ATV.14.1.133

V. Amirbekian, Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI, Proc. Natl. Acad. Sci, pp.961-966, 2007.

C. Tarin, Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI, Scientific Reports, vol.119, issue.1, p.17135, 2015.
DOI : 10.1046/j.1365-2141.2002.03790.x

H. F. Langer and M. Gawaz, Platelet-vessel wall interactions in atherosclerotic disease, Thrombosis and Haemostasis
DOI : 10.1160/TH07-11-0685

URL : https://www.schattauer.de/index.php?id=5236&mid=9468

D. Lievens and P. Von-hundelshausen, Platelets in atherosclerosis, Thrombosis and Haemostasis, vol.106, issue.5, pp.827-838, 2011.
DOI : 10.1160/TH11-08-0592

M. Jacobin-valat, MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis 86. te Boekhorst, B. C. et al. Molecular MRI of murine atherosclerotic plaque targeting NGAL: a protein associated with unstable human plaque characteristics, NMR Biomed. Cardiovasc. Res, vol.24, issue.89, pp.413-424, 2011.

K. C. Briley-saebo, Targeted Iron Oxide Particles for In Vivo Magnetic Resonance Detection of Atherosclerotic Lesions With Antibodies Directed to Oxidation-Specific Epitopes, Journal of the American College of Cardiology, vol.57, issue.3, pp.337-347, 2011.
DOI : 10.1016/j.jacc.2010.09.023

. Behring and . Kitasato, On the development of immunity to diphtheria and tetanus in animals], Dtsch. Med. Wochenschr, vol.90, p.2183, 1946.

P. Kourislky, 1854-1917) Encyclopaedia Universalis [en ligne] Available at, p.17, 2016.

M. Fougereau, Les anticorps monoclonaux : un fantastique arsenal th??rapeutique en plein devenir, m??decine/sciences, vol.25, issue.12, pp.997-998, 2009.
DOI : 10.1051/medsci/20092512997

URL : http://www.medecinesciences.org/articles/medsci/pdf/2009/12/medsci20092512p997.pdf

H. Watier, De la s??roth??rapie aux anticorps recombinants ????nus????, m??decine/sciences, vol.25, issue.12, pp.999-1009, 2009.
DOI : 10.1051/medsci/20092512999

URL : http://www.medecinesciences.org/articles/medsci/pdf/2009/12/medsci20092512p999.pdf

G. M. Edelman, B. Benacerraf, Z. Ovary, and M. D. Poulik, STRUCTURAL DIFFERENCES AMONG ANTIBODIES OF DIFFERENT SPECIFICITIES, Proc. Natl. Acad. Sci. 47, pp.1751-1758, 1961.
DOI : 10.1073/pnas.47.11.1751

R. R. Porter, CHEMICAL STRUCTURE OF ??-GLOBULIN AND ANTIBODIES, British Medical Bulletin, vol.19, issue.3, pp.197-201, 1963.
DOI : 10.1093/oxfordjournals.bmb.a070056

G. Köhler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature, vol.3, issue.5517, pp.495-497, 1975.
DOI : 10.1042/bj1280427

A. Beck, T. Wurch, C. Bailly, and N. Corvaia, Strategies and challenges for the next generation of therapeutic antibodies, Nature Reviews Immunology, vol.368, issue.5, pp.345-352, 2010.
DOI : 10.1182/blood-2009-02-205500

D. M. Ecker, S. D. Jones, and H. L. Levine, The therapeutic monoclonal antibody market, mAbs, vol.12, issue.3, pp.9-14, 2015.
DOI : 10.1016/j.jbiotec.2013.11.007

C. L. Hornick and F. Karuch, Antibody affinity???III the role of multivalence, Immunochemistry, vol.9, issue.3, pp.325-340, 1972.
DOI : 10.1016/0019-2791(72)90096-1

G. M. Edelman, Antibody Structure and Molecular Immunology, Science, vol.180, issue.4088, pp.830-840, 1973.
DOI : 10.1126/science.180.4088.830

S. Krapp, Y. Mimura, R. Jefferis, R. Huber, and P. Sondermann, Structural Analysis of Human IgG-Fc Glycoforms Reveals a Correlation Between Glycosylation and Structural Integrity, Journal of Molecular Biology, vol.325, issue.5, pp.979-989, 2003.
DOI : 10.1016/S0022-2836(02)01250-0

D. Reusch and M. L. Tejada, Fc glycans of therapeutic antibodies as critical quality attributes, Glycobiology, vol.25, issue.12, pp.1325-1334, 2015.
DOI : 10.1093/glycob/cwv065

C. Hamers-casterman, Naturally occurring antibodies devoid of light chains, Nature, vol.363, issue.6428, pp.446-448, 1993.
DOI : 10.1038/363446a0

L. Riechmann and S. Muyldermans, Single domain antibodies: comparison of camel VH and camelised human VH domains, Journal of Immunological Methods, vol.231, issue.1-2, pp.25-38, 1999.
DOI : 10.1016/S0022-1759(99)00138-6

P. Holliger, T. Prospero, and G. Winter, "Diabodies": small bivalent and bispecific antibody fragments., Proceedings of the National Academy of Sciences, vol.90, issue.14, pp.6444-6448, 1993.
DOI : 10.1073/pnas.90.14.6444

URL : http://www.pnas.org/content/90/14/6444.full.pdf

J. R. Birch and A. J. Racher, Antibody production, Advanced Drug Delivery Reviews, vol.58, issue.5-6, pp.671-685, 2006.
DOI : 10.1016/j.addr.2005.12.006

F. Schmidt, Recombinant expression systems in the pharmaceutical industry, Applied Microbiology and Biotechnology, vol.62, issue.4
DOI : 10.1007/s00253-004-1656-9

K. Terpe, Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems, Applied Microbiology and Biotechnology, vol.62, issue.2, p.211, 2006.
DOI : 10.1007/s00253-002-1156-8

Y. Ni and R. Chen, Extracellular recombinant protein production from Escherichia coli, Biotechnology Letters, vol.24, issue.4, pp.1661-1670, 2009.
DOI : 10.1128/jb.169.6.2345-2351.1987

S. Cabilly, Generation of antibody activity from immunoglobulin polypeptide chains produced in Escherichia coli., Proceedings of the National Academy of Sciences, vol.81, issue.11, pp.3273-3277, 1984.
DOI : 10.1073/pnas.81.11.3273

R. Robert, A. Noubhani, M. Jacobin, X. Santarelli, and G. Clofent-sanchez, Improvement in production and purification bioprocesses of bacterially expressed anti-alphaIIbbeta3 human single-chain FV antibodies, Journal of Chromatography B, vol.818, issue.1, pp.43-51, 2005.
DOI : 10.1016/j.jchromb.2004.10.038

M. Better, C. P. Chang, R. R. Robinson, and A. H. Horwitz, Escherichia coli secretion of an active chimeric antibody fragment, Science, vol.240, issue.4855, pp.1041-1043, 1988.
DOI : 10.1126/science.3285471

A. Skerra and A. Pluckthun, Assembly of a functional immunoglobulin Fv fragment in Escherichia coli, Science, vol.240, issue.4855, pp.1038-1041, 1988.
DOI : 10.1126/science.3285470

S. C. Makrides, Strategies for achieving high-level expression of genes in Escherichia coli, Microbiol. Rev, vol.60, pp.512-538, 1996.

Y. Inoue, Efficient production of a functional mouse/human chimeric Fab??? against human urokinase-type plasminogen activator by Bacillus brevis, Applied Microbiology and Biotechnology, vol.48, issue.4, pp.487-492, 1997.
DOI : 10.1007/s002530051084

T. Shiroza, Production of a single-chain variable fraction capable of inhibiting the Streptococcus mutans glucosyltransferase in Bacillus brevis: construction of a chimeric shuttle plasmid secreting its gene product, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1626, issue.1-3, pp.57-64, 2003.
DOI : 10.1016/S0167-4781(03)00038-1

S. Wu, R. Ye, X. Wu, S. Ng, and S. Wong, Enhanced Secretory Production of a Single-Chain Antibody Fragment from Bacillus subtilis by Coproduction of Molecular Chaperones, J. Bacteriol, vol.180, pp.2830-2835, 1998.

S. Wu, Functional Production and Characterization of a Fibrin-Specific Single-Chain Antibody Fragment from Bacillus subtilis: Effects of Molecular Chaperones and a Wall-Bound Protease on Antibody Fragment Production, Applied and Environmental Microbiology, vol.68, issue.7, pp.3261-3269, 2002.
DOI : 10.1128/AEM.68.7.3261-3269.2002

E. Jordan, L. Al-halabi, T. Schirrmann, M. Hust, and S. Dübel, Production of single chain Fab (scFab) fragments in Bacillus megaterium, Microbial Cell Factories, vol.6, issue.1, p.38, 2007.
DOI : 10.1186/1475-2859-6-38

F. David, Antibody production in Bacillus megaterium: Strategies and physiological implications of scaling from microtiter plates to industrial bioreactors, Biotechnology Journal, vol.29, issue.12, pp.1516-1531, 2011.
DOI : 10.1007/s00449-006-0051-6

C. Krüger, In situ delivery of passive immunity by lactobacilli producing single-chain antibodies, Nature Biotechnology, vol.37, issue.7, pp.702-706, 2002.
DOI : 10.1177/00220345580370060901

C. J. Chancey, Lactobacilli-Expressed Single-Chain Variable Fragment (scFv) Specific for Intercellular Adhesion Molecule 1 (ICAM-1) Blocks Cell-Associated HIV-1

N. Pant, Lactobacilli Expressing Variable Domain of Llama Heavy???Chain Antibody Fragments (Lactobodies) Confer Protection against Rotavirus???Induced Diarrhea, The Journal of Infectious Diseases, vol.194, issue.11, pp.1580-1588, 2006.
DOI : 10.1086/508747

A. Vallet-courbin, A Recombinant Human Anti-platelet scFv Antibody Produced in Pichia Pastoris for Atheroma Targeting Size distribution and general structural features of Nlinked oligosaccharides from the methylotrophic yeast, Pichia pastoris, Yeast Chichester Engl, vol.5, pp.107-115, 1989.

B. Choi, Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris, Proceedings of the National Academy of Sciences, vol.327, issue.1, pp.5022-5027, 2003.
DOI : 10.1016/S0076-6879(00)27283-2

S. R. Hamilton, Humanization of Yeast to Produce Complex Terminally Sialylated Glycoproteins, Science, vol.24, issue.2, pp.1441-1443, 2006.
DOI : 10.1038/nbt1178

H. Li, Optimization of humanized IgGs in glycoengineered Pichia pastoris, Nature Biotechnology, vol.4, issue.2, pp.210-215, 2006.
DOI : 10.1016/j.intimp.2004.04.015

T. I. Potgieter, Production of monoclonal antibodies by glycoengineered Pichia pastoris, Journal of Biotechnology, vol.139, issue.4, pp.318-325, 2009.
DOI : 10.1016/j.jbiotec.2008.12.015

S. Juliant, Engineering the Baculovirus Genome to Produce Galactosylated Antibodies in Lepidopteran Cells, zu Putlitz, J. et al. Antibody Production in Baculovirus-Infected Insect Cells. Nat, pp.59-77, 2013.
DOI : 10.1007/978-1-62703-327-5_5

URL : https://hal.archives-ouvertes.fr/hal-01224141

R. Jin, B. , J. Ryu, C. , K. Kang et al., Characterization of a murine-human chimeric antibody with specificity for the pre-S2 surface antigen of hepatitis B virus expressed in baculovirus-infected insect cells, Virus Research, vol.38, issue.2-3, pp.269-277, 1995.
DOI : 10.1016/0168-1702(95)00051-Q

L. Edelman, Obtaining a functional recombinant anti-rhesus (D) antibody using the baculovirus-insect cell expression system, Immunology, vol.91, issue.1, pp.13-19, 1997.
DOI : 10.1046/j.1365-2567.1997.00219.x

T. Hsu, Cells, Journal of Biological Chemistry, vol.203, issue.25, pp.9062-9070, 1997.
DOI : 10.1038/nbt1096-1288

URL : https://hal.archives-ouvertes.fr/hal-00903150

M. Cérutti and J. Golay, Lepidopteran cells, an alternative for the production of recombinant antibodies? mAbs 4, pp.294-309, 2012.

S. Fath, Multiparameter RNA and Codon Optimization: A Standardized Tool to Assess and Enhance Autologous Mammalian Gene Expression, PLoS ONE, vol.2, issue.3, p.17596, 2011.
DOI : 10.1371/journal.pone.0017596.s001

F. M. Wurm, Production of recombinant protein therapeutics in cultivated mammalian cells, Nature Biotechnology, vol.57, issue.11, pp.1393-1398, 2004.
DOI : 10.1038/nbt1021

D. L. Hacker and S. Balasubramanian, Recombinant protein production from stable mammalian cell lines and pools, Current Opinion in Structural Biology, vol.38, pp.129-136, 2016.
DOI : 10.1016/j.sbi.2016.06.005

S. Xiao, J. Shiloach, and M. J. Betenbaugh, Engineering cells to improve protein expression, Current Opinion in Structural Biology, vol.26, pp.32-38, 2014.
DOI : 10.1016/j.sbi.2014.03.005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4127093/pdf

U. Fiedler, J. Phillips, O. Artsaenko, and U. Conrad, Optimization of scFv antibody production in transgenic plants, Immunotechnology, vol.3, issue.3, pp.205-216, 1997.
DOI : 10.1016/S1380-2933(97)00014-6

D. Buck and S. , Production of camel-like antibodies in plants, Methods Mol. Biol

A. A. Mccormick, Individualized human scFv vaccines produced in plants: humoral anti-idiotype responses in vaccinated mice confirm relevance to the tumor Ig, Journal of Immunological Methods, vol.278, issue.1-2, pp.95-104, 2003.
DOI : 10.1016/S0022-1759(03)00208-4

T. Rademacher, Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans, Plant Biotechnology Journal, vol.265, issue.2, pp.189-201, 2008.
DOI : 10.1016/S1047-8477(02)00580-4

H. Matsushita, Triple Immunoglobulin Gene Knockout Transchromosomic Cattle: Bovine Lambda Cluster Deletion and Its Effect on Fully Human Polyclonal Antibody Production, PLoS ONE, vol.97, issue.3, p.90383, 2014.
DOI : 10.1371/journal.pone.0090383.s004

T. Flisikowska, Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases, PLoS ONE, vol.26, issue.1, p.21045, 2011.
DOI : 10.1371/journal.pone.0021045.s005

L. Zhu, Production of human monoclonal antibody in eggs of chimeric chickens, Nature Biotechnology, vol.34, issue.9
DOI : 10.1007/BF00285878

J. Castilla, B. Pintado, I. Sola, J. M. Sánchez-morgado, and L. Enjuanes, Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk, Nature Biotechnology, vol.29, issue.4, pp.349-354, 1998.
DOI : 10.1016/0378-1119(87)90344-1

R. 1. Jacobin and M. , Human IgG monoclonal anti-alpha(IIb)beta(3)-binding fragments derived from immunized donors using phage display, J. Immunol. Baltim. Md, vol.168, pp.2035-2045, 1950.

K. Deramchia, In Vivo Phage Display to Identify New Human Antibody Fragments Homing to Atherosclerotic Endothelial and Subendothelial Tissues, The American Journal of Pathology, vol.180, issue.6, pp.2576-2589, 2012.
DOI : 10.1016/j.ajpath.2012.02.013

M. Jacobin-valat, Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, issue.4, pp.927-937, 2015.
DOI : 10.1016/j.nano.2014.12.006

URL : https://hal.archives-ouvertes.fr/hal-01228125

A. Vallet-courbin, A Recombinant Human Anti-Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting, PLOS ONE, vol.29, issue.1, p.170305, 2017.
DOI : 10.1371/journal.pone.0170305.t001

Y. Ma, J. Qin, and E. F. Plow, Platelet integrin alpha(IIb)beta(3): activation mechanisms, J

P. Philibert, A focused antibody library for selecting scFvs expressed at high levels in the cytoplasm, BMC Biotechnology, vol.7, issue.1, p.81, 2007.
DOI : 10.1186/1472-6750-7-81

URL : https://hal.archives-ouvertes.fr/inserm-00192411

L. K. Curtiss, W. A. Boisvert, and E. Apolipoprotein, Apolipoprotein E and atherosclerosis, Current Opinion in Lipidology, vol.11, issue.3, pp.243-251, 2000.
DOI : 10.1097/00041433-200006000-00004

J. Zou, M. T. Dickerson, N. K. Owen, L. A. Landon, and S. L. Deutscher, Biodistribution of filamentous phage peptide libraries in mice, Molecular Biology Reports, vol.31, issue.2, pp.121-129, 2004.
DOI : 10.1023/B:MOLE.0000031459.14448.af

S. Mornet, Synthèse et modification chimique de la surface de nanoparticules de maghémite à des fins d'applications biomédicales. (Université Sciences et Technologies -Bordeaux I, 2002.

S. Mornet, J. Portier, and E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran, Journal of Magnetism and Magnetic Materials, vol.293, issue.1, pp.127-134, 2005.
DOI : 10.1016/j.jmmm.2005.01.053

URL : https://hal.archives-ouvertes.fr/hal-00022639

D. Pidard, R. R. Montgomery, J. S. Bennett, and T. J. Kunicki, Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets, J. Biol. Chem, vol.258, pp.12582-12586, 1983.

L. Adumeau, Développement de stratégies de biofonctionnalisation de surface de nano-objets pour des applications biologiques

S. Moutel, A multi-Fc-species system for recombinant antibody production, BMC Biotechnology, vol.9, issue.1, p.14, 2009.
DOI : 10.1186/1472-6750-9-14

URL : https://hal.archives-ouvertes.fr/hal-00565195

O. Schneewind, P. Model, and V. A. Fischetti, Sorting of protein a to the staphylococcal cell wall, Cell, vol.70, issue.2, pp.267-281, 1992.
DOI : 10.1016/0092-8674(92)90101-H

S. K. Mazmanian, G. Liu, H. Ton-that, and O. Schneewind, Staphylococcus aureus Sortase, an Enzyme that Anchors Surface Proteins to the Cell Wall, Science, vol.285, issue.5428, pp.760-763, 1999.
DOI : 10.1126/science.285.5428.760

M. Sartori, Laser-induced autofluorescence of human arteries, Circulation Research, vol.63, issue.6, pp.1053-1059, 1988.
DOI : 10.1161/01.RES.63.6.1053

R. 1. Malaud and E. , Carotid atherosclerotic plaques: Proteomics study after a low-abundance protein enrichment step, ELECTROPHORESIS, vol.30, issue.3, pp.470-482, 2012.
DOI : 10.1161/ATVBAHA.109.198440

E. Malaud, Local carotid atherosclerotic plaque proteins for the identification of circulating biomarkers in coronary patients, Atherosclerosis, vol.233, issue.2, pp.551-558, 2014.
DOI : 10.1016/j.atherosclerosis.2013.12.019

J. Zhu, Protein interaction discovery using parallel analysis of translated ORFs (PLATO), Nature Biotechnology, vol.65, issue.4, pp.331-334, 2013.
DOI : 10.1371/journal.pone.0004894

J. Zhu, Protein interaction mapping with ribosome-displayed using PLATO ORF libraries, Nat. Protoc, vol.9, pp.90-103, 2014.

M. Sartori, Laser-induced autofluorescence of human arteries, Circulation Research, vol.63, issue.6, pp.1053-1059, 1988.
DOI : 10.1161/01.RES.63.6.1053

C. Mazzocco, In vivo imaging of prostate cancer using an anti-PSMA scFv fragment as a probe, Scientific Reports, vol.269, issue.1, p.23314, 2016.
DOI : 10.1148/radiol.13122393

K. C. Briley-saebo, V. Mani, F. Hyafil, J. Cornily, and Z. A. Fayad, Fractionated feridex and positive contrast: In vivo MR imaging of atherosclerosis, Magnetic Resonance in Medicine, vol.104, issue.4, pp.721-730, 2008.
DOI : 10.1148/radiology.179.2.2014305

URL : https://hal.archives-ouvertes.fr/hal-00837631

K. C. Briley-saebo, Gadolinium mixed-micelles: Effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis, Magnetic Resonance in Medicine, vol.13, issue.6
DOI : 10.1148/radiology.175.2.2326474

A. Maiseyeu, Gadolinium-containing phosphatidylserine liposomes for molecular imaging of atherosclerosis, Journal of Lipid Research, vol.1128, issue.11, pp.2157-2163, 2009.
DOI : 10.1016/0005-2760(92)90255-T

Y. Chen, A Novel Mouse Model of Atherosclerotic Plaque Instability for Drug Testing and Mechanistic/Therapeutic Discoveries Using Gene and MicroRNA Expression Profiling, Circulation Research, vol.113, issue.3, pp.252-265, 2013.
DOI : 10.1161/CIRCRESAHA.113.301562

M. E. Kooi, Accumulation of Ultrasmall Superparamagnetic Particles of Iron Oxide in Human Atherosclerotic Plaques Can Be Detected by In Vivo Magnetic Resonance Imaging, Circulation, vol.107, issue.19, pp.2453-2458, 2003.
DOI : 10.1161/01.CIR.0000068315.98705.CC

E. Spuentrup, MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients, European Radiology, vol.47, issue.9, pp.1995-2005, 2008.
DOI : 10.1148/radiology.218.1.r01ja50215

F. A. Jaffer and J. W. Verjans, Molecular imaging of atherosclerosis: clinical state-of-the-art, Heart, vol.100, issue.18, pp.1469-1477, 2014.
DOI : 10.1136/heartjnl-2011-301370

R. 1. Psarros, C. Lee, R. Margaritis, M. Antoniades, and C. , Nanomedicine for the prevention, treatment and imaging of atherosclerosis, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, pp.59-68, 2012.
DOI : 10.1016/j.nano.2012.05.006

D. Siegel-axel and M. Gawaz, Platelets and Endothelial Cells, Seminars in Thrombosis and Hemostasis, vol.33, issue.2, pp.128-163, 2007.
DOI : 10.1055/s-2007-969025

N. Madamanchi, A. Vendrov, and M. Runge, Oxidative Stress and Vascular Disease, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, pp.29-38, 2005.
DOI : 10.1161/01.ATV.0000150649.39934.13

D. Siegel-axel, K. Daub, P. Seizer, S. Lindemann, and M. Gawaz, Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis, Cardiovascular Research, vol.78, issue.1, pp.8-17, 2008.
DOI : 10.1093/cvr/cvn015

A. May, P. Seizer, and M. Gawaz, Platelets: Inflammatory Firebugs of Vascular Walls, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.3, pp.5-10, 2008.
DOI : 10.1161/ATVBAHA.107.158915

S. Massberg, K. Brand, S. Gruner, S. Page, E. Muller et al., A Critical Role of Platelet Adhesion in the Initiation of Atherosclerotic Lesion Formation, The Journal of Experimental Medicine, vol.96, issue.7, pp.887-96, 2002.
DOI : 10.1161/01.RES.84.11.1237

M. Gawaz, H. Langer, and A. May, Platelets in inflammation and atherogenesis, Journal of Clinical Investigation, vol.115, issue.12, pp.3378-84, 2005.
DOI : 10.1172/JCI27196

S. Badrnya, W. Schrottmaier, J. Kral, K. Yaiw, I. Volf et al., Platelets Mediate Oxidized Low-Density Lipoprotein-Induced Monocyte Extravasation and Foam Cell Formation, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.34, issue.3, pp.571-80, 2014.
DOI : 10.1161/ATVBAHA.113.302919

S. Pitsilos, J. Hunt, E. Mohler, A. Prabhakar, M. Poncz et al., Platelet factor 4 localization in carotid atherosclerotic plaques: correlation with clinical parameters, Thrombosis and Haemostasis, vol.90, pp.1112-1132, 2003.
DOI : 10.1160/TH03-02-0069

J. Coppinger, G. Cagney, S. Toomey, T. Kislinger, O. Belton et al., Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions, Blood, vol.103, issue.6, pp.2096-104, 2004.
DOI : 10.1182/blood-2003-08-2804

A. Yilmaz, B. Lipfert, I. Cicha, K. Schubert, M. Klein et al., Accumulation of immune cells and high expression of chemokines/chemokine receptors in the upstream shoulder of atherosclerotic carotid plaques, Experimental and Molecular Pathology, vol.82, issue.3, pp.245-55, 2007.
DOI : 10.1016/j.yexmp.2006.10.008

P. Libby, P. Ridker, and G. Hansson, Inflammation in Atherosclerosis, Journal of the American College of Cardiology, vol.54, issue.23, pp.2129-2167, 2009.
DOI : 10.1016/j.jacc.2009.09.009

S. Stephen, K. Freestone, S. Dunn, M. Twigg, S. Homer-vanniasinkam et al., Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease, International Journal of Hypertension, vol.111, issue.16, p.646929, 2010.
DOI : 10.1182/blood-2007-11-122408

H. Stary, A. Chandler, S. Glagov, J. Guyton, I. Jr et al., A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association, Circulation, vol.89, issue.5, pp.2462-78, 1994.
DOI : 10.1161/01.CIR.89.5.2462

A. Tedgui and Z. Mallat, Cytokines in Atherosclerosis: Pathogenic and Regulatory Pathways, Physiological Reviews, vol.86, issue.2, pp.515-81, 2006.
DOI : 10.1038/nm0698-698

URL : https://hal.archives-ouvertes.fr/hal-01589451

J. Sluijter, W. Pulskens, A. Schoneveld, E. Velema, C. Strijder et al., Matrix Metalloproteinase 2 Is Associated With Stable and Matrix Metalloproteinases 8 and 9 With Vulnerable Carotid Atherosclerotic Lesions: A Study in Human Endarterectomy Specimen Pointing to a Role for Different Extracellular Matrix Metalloproteinase Inducer Glycosylation Forms, Stroke, vol.37, issue.1, pp.235-244, 2006.
DOI : 10.1161/01.STR.0000196986.50059.e0

C. Schulz and S. Massberg, Platelets in Atherosclerosis and Thrombosis, Handb Exp Pharmacol, vol.2012, pp.111-144
DOI : 10.1007/978-3-642-29423-5_5

B. Wasserman, R. Wityk, I. Trout, . Hh, and R. Virmani, Low-Grade Carotid Stenosis: Looking Beyond the Lumen With MRI, Stroke, vol.36, issue.11, pp.2504-2517, 2005.
DOI : 10.1161/01.STR.0000185726.83152.00

T. Saam, T. Hatsukami, N. Takaya, B. Chu, H. Underhill et al., The Vulnerable, or High-Risk, Atherosclerotic Plaque: Noninvasive MR Imaging for Characterization and Assessment, Radiology, vol.244, issue.1, pp.64-77, 2007.
DOI : 10.1148/radiol.2441051769

J. Klostergaard and C. Seeney, Magnetic nanovectors for drug delivery, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.1, pp.37-50, 2012.
DOI : 10.1016/j.nano.2012.05.010

H. Choi and J. Frangioni, Nanoparticles for biomedical imaging: fundamentals of clinical translation, Mol Imaging, vol.9, pp.291-310, 2010.

M. Jacobin, J. Laroche-traineau, M. Little, A. Keller, K. Peter et al., Human IgG Monoclonal Anti-??IIb??3-Binding Fragments Derived from Immunized Donors Using Phage Display, The Journal of Immunology, vol.168, issue.4, pp.2035-2080, 2002.
DOI : 10.4049/jimmunol.168.4.2035

S. Mornet, J. Portier, and E. Duguet, A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran, Journal of Magnetism and Magnetic Materials, vol.293, issue.1, pp.127-161, 2005.
DOI : 10.1016/j.jmmm.2005.01.053

URL : https://hal.archives-ouvertes.fr/hal-00022639

P. Kitts and R. Possee, A method for producing recombinant baculovirus expression vectors at high frequency, Biotechniques, vol.14, pp.810-817, 1993.

V. Luckow, S. Lee, G. Barry, and P. Olins, Efficient generation of infectious recombinant baculoviruses by site-specific transposonmediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli, J Virol, vol.67, pp.4566-79, 1993.

S. Juliant, M. Leveque, P. Cerutti, A. Ozil, S. Choblet et al., Engineering the Baculovirus Genome to Produce Galactosylated Antibodies in Lepidopteran Cells, Methods Mol Biol, vol.988, pp.59-77, 2013.
DOI : 10.1007/978-1-62703-327-5_5

URL : https://hal.archives-ouvertes.fr/hal-01224141

R. Robert, G. Clofent-sanchez, A. Hocquellet, M. Jacobin-valat, D. Daret et al., Large-scale production, bacterial localization assessment and immobilized metal affinity chromatography purification of a human single-chain Fv antibody against alphaIIb-beta3 integrin, International Journal of Biological Macromolecules, vol.39, issue.1-3, pp.51-60, 2006.
DOI : 10.1016/j.ijbiomac.2006.01.014

M. Jacobin-valat, K. Deramchia, S. Mornet, C. Hagemeyer, S. Bonetto et al., MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis, NMR in Biomedicine, vol.56, pp.413-437, 2011.
DOI : 10.1002/mrm.21093

URL : https://hal.archives-ouvertes.fr/hal-00589664

F. Sonvico, S. Mornet, S. Vasseur, C. Dubernet, D. Jaillard et al., Folate-Conjugated Iron Oxide Nanoparticles for Solid Tumor Targeting as Potential Specific Magnetic Hyperthermia Mediators: Synthesis, Physicochemical Characterization, and in Vitro Experiments, Bioconjugate Chemistry, vol.16, issue.5, pp.1181-1189, 2005.
DOI : 10.1021/bc050050z

URL : https://hal.archives-ouvertes.fr/hal-00102165

D. Pidard, R. Montgomery, J. Bennett, and T. Kunicki, Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb- IIIa complex, with intact platelets, J Biol Chem, vol.258, pp.12582-12588, 1983.

S. Shattil, J. Hoxie, M. Cunningham, and L. Brass, Changes in the platelet membrane glycoprotein IIb.IIIa complex during platelet activation, J Biol Chem, vol.260, pp.11107-11121, 1985.

G. Niccoli, G. Stefanini, D. Capodanno, F. Crea, J. Ambrose et al., Are the Culprit Lesions Severely Stenotic?, JACC: Cardiovascular Imaging, vol.6, issue.10, pp.1108-1122, 2013.
DOI : 10.1016/j.jcmg.2013.05.004

G. Stone, A. Maehara, A. Lansky, B. De-bruyne, E. Cristea et al., A Prospective Natural-History Study of Coronary Atherosclerosis, New England Journal of Medicine, vol.364, issue.3, pp.226-261, 2011.
DOI : 10.1056/NEJMoa1002358

S. Lajus, G. Clofent-sanchez, C. Jais, P. Coste, P. Nurden et al., Thrombocytopenia after abciximab use results from differentmechanisms, Thrombosis and Haemostasis, vol.103, issue.3, pp.651-61, 2010.
DOI : 10.1160/TH09-08-0603

O. Mccarty, R. Conley, W. Shentu, G. Tormoen, D. Zha et al., Molecular Imaging of Activated von Willebrand Factor to Detect High-Risk Atherosclerotic Phenotype, JACC: Cardiovascular Imaging, vol.3, issue.9, pp.947-55, 2010.
DOI : 10.1016/j.jcmg.2010.06.013

O. Postea, E. Vasina, S. Cauwenberghs, D. Projahn, E. Liehn et al., Contribution of Platelet CX3CR1 to Platelet-Monocyte Complex Formation and Vascular Recruitment During Hyperlipidemia, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.5, pp.1186-93, 2012.
DOI : 10.1161/ATVBAHA.111.243485

F. Czepluch, H. Kuschicke, C. Dellas, J. Riggert, G. Hasenfuss et al., Increased proatherogenic monocyte-platelet cross-talk in monocyte subpopulations of patients with stable coronary artery disease, Journal of Internal Medicine, vol.188, issue.Suppl 1, pp.144-54, 2014.
DOI : 10.1016/j.atherosclerosis.2005.10.015

N. Li, CD4+ T cells in atherosclerosis: Regulation by platelets, Thrombosis and Haemostasis, vol.109, issue.6, pp.980-90, 2013.
DOI : 10.1160/TH12-11-0819

A. Chandler and R. Hand, Phagocytized Platelets: A Source of Lipids in Human Thrombi and Atherosclerotic Plaques, Science, vol.134, issue.3483, pp.946-953, 1961.
DOI : 10.1126/science.134.3483.946

D. Meyer, G. , D. Cleen, D. Cooper, S. Knaapen et al., Platelet Phagocytosis and Processing of beta-Amyloid Precursor Protein as a Mechanism of Macrophage Activation in Atherosclerosis, Circulation Research, vol.90, issue.11, pp.1197-204, 2002.
DOI : 10.1161/01.RES.0000020017.84398.61

K. Daub, P. Seizer, K. Stellos, B. Kramer, B. Bigalke et al., Oxidized LDL-Activated Platelets Induce Vascular Inflammation, Seminars in Thrombosis and Hemostasis, vol.36, issue.02, pp.146-56, 2010.
DOI : 10.1055/s-0030-1251498

C. Foresta, G. Strapazzon, D. Toni, L. Fabris, F. Grego et al., Platelets express and release osteocalcin and co-localize in human calcified atherosclerotic plaques, Journal of Thrombosis and Haemostasis, vol.4, issue.2, pp.357-65, 2013.
DOI : 10.1371/journal.pone.0008359

P. Seizer, T. Schonberger, M. Schott, M. Lang, H. Langer et al., EMMPRIN and its ligand cyclophilin A regulate MT1-MMP, MMP-9 and M-CSF during foam cell formation, Atherosclerosis, vol.209, issue.1, pp.51-58, 2010.
DOI : 10.1016/j.atherosclerosis.2009.08.029

G. Van-lammeren, G. Pasterkamp, J. De-vries, L. Bosch, J. De-haan et al., Platelets enter atherosclerotic plaque via intraplaque microvascular leakage and intraplaque hemorrhage: A histopathological study in carotid plaques, Atherosclerosis, vol.222, issue.2, pp.355-364, 2012.
DOI : 10.1016/j.atherosclerosis.2012.03.008

T. Hatsukami and C. Yuan, MRI in the early identification and classification of high-risk atherosclerotic carotid plaques, Imaging in Medicine, vol.2, issue.1, pp.63-75, 2010.
DOI : 10.2217/iim.09.33

P. Cheruvu, A. Finn, C. Gardner, J. Caplan, J. Goldstein et al., Frequency and Distribution of Thin-Cap Fibroatheroma and Ruptured Plaques in Human Coronary Arteries, Journal of the American College of Cardiology, vol.50, issue.10, pp.940-949, 2007.
DOI : 10.1016/j.jacc.2007.04.086

A. Pavlou and J. Reichert, Recombinant protein therapeutics?success rates, market trends and values to 2010, Nature Biotechnology, vol.4, issue.12, pp.1513-1522, 2004.
DOI : 10.1038/nbt0901-819

J. Reichert, Antibodies to watch in 2014, mAbs, vol.6, issue.1, pp.5-14, 2014.
DOI : 10.4161/mabs.2.1.10677

URL : http://www.tandfonline.com/doi/pdf/10.4161/mabs.29282?needAccess=true

P. Stas and I. Lasters, Immunog??nicit?? de prot??ines d???int??r??t th??rapeutique, m??decine/sciences, vol.25, issue.12, pp.1070-1077, 2009.
DOI : 10.1051/medsci/200925121070

A. Chan and P. Carter, Therapeutic antibodies for autoimmunity and inflammation, Nature Reviews Immunology, vol.10, issue.5, pp.301-317, 2010.
DOI : 10.4049/jimmunol.169.9.5171

C. Morrell, A. Aggrey, L. Chapman, and K. Modjeski, Emerging roles for platelets as immune and inflammatory cells, Blood, vol.123, issue.18, pp.2759-2767, 2014.
DOI : 10.1182/blood-2013-11-462432

URL : http://www.bloodjournal.org/content/bloodjournal/123/18/2759.full.pdf

D. Lievens, A. Zernecke, T. Seijkens, O. Soehnlein, and L. Beckers, Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis, Blood, vol.116, issue.20, pp.4317-4327, 0690.
DOI : 10.1182/blood-2010-01-261206

F. Ferdous and T. Scott, A comparative examination of thrombocyte/platelet immunity, Immunology Letters, vol.163, issue.1, pp.32-39, 2015.
DOI : 10.1016/j.imlet.2014.11.010

C. Aloui, A. Prigent, C. Sut, S. Tariket, and H. Hamzeh-cognasse, The signaling 694 role of CD40 ligand in platelet biology and in platelet component transfusion, Int J, p.695, 2014.

K. Seizer, P. Stellos, K. Kramer, B. Bigalke, and B. , Oxidized LDL- 697 activated platelets induce vascular inflammation Platelets mediate 700 oxidized low-density lipoprotein-induced monocyte extravasation and foam cell 701 formation, Mol Sci Semin Thromb Hemost Arterioscler Thromb Vasc Biol, vol.15, issue.34, pp.22342-22364, 2010.

J. Reichert, A. Frenzel, M. Hust, T. Schirrmann, L. Amanuel et al., Expression of recombinant antibodies. Front 708 Immunol 4: 217. 709 21. Frenzel A, Schirrmann T, Hust M (2016) Phage display-derived human antibodies in 710 clinical development and therapy Antibody VH 712 and VL recombination using phage and ribosome display technologies reveals 713 distinct structural routes to affinity improvements with VH-VL interface residues 714 providing important structural diversity, MAbs MAbs MAbs, vol.8, issue.6, pp.197-204, 2013.

Z. Ahmad, S. Yeap, A. Ali, W. Ho, and N. Alitheen, scFv Antibody: Principles and Clinical Application, Clinical and Developmental Immunology, vol.10, issue.1, pp.980250-717, 2012.
DOI : 10.1089/hyb.2007.0531

URL : http://doi.org/10.1155/2012/980250

M. Jacobin, J. Laroche-traineau, M. Little, A. Keller, and K. Peter, Human IgG 718 monoclonal anti-alpha(IIb)beta(3)-binding fragments derived from immunized 719 donors using phage display Single-chain 721 antibodies as diagnostic tools and therapeutic agents, J Immunol Thromb Haemost, vol.168, issue.101, pp.2035-2045, 2002.

J. Hohmann, X. Wang, S. Krajewski, C. Selan, and C. Haller, Delayed targeting of CD39 to activated platelet GPIIb/IIIa via a single-chain antibody: breaking the link between antithrombotic potency and bleeding?, Blood, vol.121, issue.16, pp.3067-3075, 2013.
DOI : 10.1182/blood-2012-08-449694

X. Santarelli, High yield of recombinant human Apolipoprotein A-I 732 expressed in Pichia pastoris by using mixed-mode chromatography, Biotechnol J 733, vol.11, pp.117-126, 2016.

S. Shattil, J. Hoxie, M. Cunningham, and L. Brass, Changes in the platelet 743 membrane glycoprotein IIb.IIIa complex during platelet activation, J Biol Chem, vol.744, issue.260, pp.11107-11114, 1985.

D. Pidard, R. Montgomery, J. Bennett, and T. Kunicki, Interaction of AP-2, a 746 monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa 747 complex, with intact platelets, J Biol Chem, vol.258, pp.12582-12586, 1983.

F. Freyre, J. Vazquez, M. Ayala, L. Canaan-haden, and H. Bell, Very high expression of an anti-carcinoembryonic antigen single chain Fv antibody fragment in the yeast Pichia pastoris, Journal of Biotechnology, vol.76, issue.2-3, pp.157-163, 2000.
DOI : 10.1016/S0168-1656(99)00183-2

V. Joosten, C. Lokman, . Van-den, C. Hondel, and P. Punt, The production of antibody 752 fragments and antibody fusion proteins by yeasts and filamentous fungi, Microb 753 Cell Fact, pp.1-754, 2003.

P. Eldin, M. Pauza, Y. Hieda, G. Lin, and M. Murtaugh, High-level secretion of 755 two antibody single chain Fv fragments by Pichia pastoris, J Immunol Methods, vol.756, issue.201, pp.67-75, 1997.

S. Lange, J. Schmitt, and R. Schmid, High-yield expression of the recombinant, atrazine-specific Fab fragment K411B by the methylotrophic yeast Pichia pastoris, Journal of Immunological Methods, vol.255, issue.1-2, pp.103-114, 2001.
DOI : 10.1016/S0022-1759(01)00351-9

P. Cupit, J. Whyte, A. Porter, M. Browne, and S. Holmes, Cloning and expression of single chain antibody fragments in Escherichia coli and Pichia pastoris, Letters in Applied Microbiology, vol.7, issue.5, pp.273-277, 1999.
DOI : 10.1007/BF01575883

F. Bordeaux, All work with tissues from human subjects had been approved by the CPP 163 committee (Comité de Protection des Personnes Sud-Ouest et Outre Mer) of Bordeaux and from the 164

. To, the paraffin blocks were thinly sliced (7 µm) and adhered on glass 182 slides. The sections were deparaffinized, rehydrated, and heat mediated antigen retrieval was 183 performed with Tris-EDTA pH 9 buffer following the specifications of Abcam

. Afterwards, VUSPIO alone or antibody-conjugated VUSPIO corresponding to R3, pp.6-14

R. Virmani, F. Kolodgie, A. Burke, A. Farb, and S. Schwartz, Lessons From Sudden Coronary Death A 367 Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions Arterioscler 368

T. Vasc-biol, Available from: 369 http, pp.1262-75, 1262.

I. W. Jr, The Pathology of Atherosclerosis: Plaque Development and Plaque Responses to 371

H. Nording, P. Seizer, and H. Langer, Available from: 375 http, Platelets in Inflammation and Atherogenesis. Front Immunol, vol.3746, p.376, 2015.

S. Badrnya, W. Schrottmaier, J. Kral, K. Yaiw, I. Volf et al., Platelets mediate 377 oxidized low-density lipoprotein-induced monocyte extravasation and foam cell formation, p.378
DOI : 10.1161/atvbaha.113.302919

URL : http://atvb.ahajournals.org/content/atvbaha/34/3/571.full.pdf

M. Jacobin-valat, J. Laroche-traineau, M. Larivière, S. Mornet, S. Sanchez et al., 380 Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of 381 atherosclerotic plaque by magnetic resonance imaging Available from: 383 http, Nanomedicine Nanotechnol Biol Med, vol.38211, issue.4, pp.927-964

M. Jacobin, J. Laroche-traineau, M. Little, A. Keller, K. Peter et al., Human IgG 385 monoclonal anti-alpha(IIb)beta(3)-binding fragments derived from immunized donors using phage 386 display, J Immunol Baltim Md Feb, vol.15168, issue.4, pp.2035-2080, 1950.
DOI : 10.4049/jimmunol.168.4.2035

URL : http://www.jimmunol.org/content/jimmunol/168/4/2035.full.pdf

A. Vallet-courbin, M. Larivière, A. Hocquellet, A. Hémadou, P. Sarjapura-nagaraja et al., A Recombinant Human Anti-platelet scFv Antibody Produced in Pichia Pastoris for 389 Atheroma Targeting

S. Mornet, J. Portier, and E. Duguet, A method for synthesis and functionalization of ultrasmall 391 superparamagnetic covalent carriers based on maghemite and dextran, J Magn Magn Mater, vol.392, 2005.

L. Adumeau, Développement de stratégies de biofonctionnalisation de surface de nano-objets pour 395 des applications biologiques

K. Briley-saebo, V. Amirbekian, V. Mani, J. Aguinaldo, E. Vucic et al., Gadolinium mixed-micelles: Effect of the amphiphile on in vitro and in vivo efficacy in apolipoprotein E knockout mouse models of atherosclerosis, Magnetic Resonance in Medicine, vol.13, issue.6, pp.1336-1382, 2006.
DOI : 10.1148/radiology.175.2.2326474

A. Maiseyeu, G. Mihai, T. Kampfrath, O. Simonetti, C. Sen et al., Gadolinium-containing 407 phosphatidylserine liposomes for molecular imaging of atherosclerosis, J Lipid Res, 2009.

M. Jacobin, J. Laroche-traineau, M. Little, A. Keller, K. Peter et al., Human IgG monoclonal anti-alpha(IIb)beta(3)-binding fragments derived from immunized donors using phage display, J Immunol Baltim Md Feb, vol.15168, issue.4, pp.2035-2080, 1950.
DOI : 10.4049/jimmunol.168.4.2035

URL : http://www.jimmunol.org/content/jimmunol/168/4/2035.full.pdf

M. Jacobin-valat, J. Laroche-traineau, M. Larivière, S. Mornet, S. Sanchez et al., Nanoparticles functionalised with an anti-platelet human antibody for in vivo detection of atherosclerotic plaque by magnetic resonance imaging, Nanomedicine: Nanotechnology, Biology and Medicine, vol.11, issue.4, pp.927-964
DOI : 10.1016/j.nano.2014.12.006

URL : https://hal.archives-ouvertes.fr/hal-01228125

K. Deramchia, M. Jacobin-valat, A. Vallet, H. Bazin, X. Santarelli et al., In Vivo Phage Display to Identify New Human Antibody Fragments Homing to Atherosclerotic Endothelial and Subendothelial Tissues, The American Journal of Pathology, vol.180, issue.6, pp.2576-89, 2012.
DOI : 10.1016/j.ajpath.2012.02.013

A. Recombinant-human and . Anti, Platelet scFv Antibody Produced in Pichia pastoris for Atheroma Targeting, ):e0170305. Available from, p.2017