T. Ackmann, H. De, W. Lehnert, and D. Stolten, Modeling of Mass and Heat Transport in Planar Substrate Type SOFCs, Journal of The Electrochemical Society, vol.43, issue.6, pp.783-789, 2003.
DOI : 10.1149/1.1574029

S. B. Adler, Mechanism and kinetics of oxygen reduction on porous La 1-x Sr x CoO 3-? electrodes. Solid State Ion, pp.125-134, 1998.

J. Aicart, J. Laurencin, M. Petitjean, D. , and L. , Co-Electrolysis Modeling, Fuel Cells, vol.161, issue.153, pp.430-447, 2014.
DOI : 10.1016/j.jpowsour.2006.03.080

URL : https://hal.archives-ouvertes.fr/tel-01284476

J. Aicart, M. Petitjean, J. Laurencin, L. Tallobre, D. et al., Accurate predictions of H2O and CO2 co-electrolysis outlet compositions in operation, International Journal of Hydrogen Energy, vol.40, issue.8, pp.3134-3148, 2015.
DOI : 10.1016/j.ijhydene.2015.01.031

H. Al-kalbani, J. Xuan, S. García, W. , and H. , Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process, Applied Energy, vol.165, pp.1-13, 2016.
DOI : 10.1016/j.apenergy.2015.12.027

L. Andreassi, G. Rubeo, S. Ubertini, P. Lunghi, and R. Bove, Experimental and numerical analysis of a radial flow solid oxide fuel cell, International Journal of Hydrogen Energy, vol.32, issue.17, pp.4559-4574, 2007.
DOI : 10.1016/j.ijhydene.2007.07.047

P. W. Atkins, D. Paula, and J. , Atkins' Physical chemistry (Oxford

A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2001.

R. Barfod, M. Mogensen, T. Lemenso, A. Hagen, Y. Liu et al., Detailed Characterization of Anode-Supported SOFCs by Impedance Spectroscopy, Journal of The Electrochemical Society, vol.06, issue.88, p.371, 2007.
DOI : 10.1016/0167-2738(92)90088-7

W. L. Becker, R. J. Braun, M. Penev, and M. Melaina, Production of Fischer???Tropsch liquid fuels from high temperature solid oxide co-electrolysis units, Energy, vol.47, issue.1, pp.99-115, 2012.
DOI : 10.1016/j.energy.2012.08.047

R. Bhandari, C. A. Trudewind, and P. Zapp, Life cycle assessment of hydrogen production via electrolysis ??? a review, Journal of Cleaner Production, vol.85, pp.151-163, 2014.
DOI : 10.1016/j.jclepro.2013.07.048

D. M. Bierschenk, J. R. Wilson, and S. A. Barnett, High efficiency electrical energy storage using a methane???oxygen solid oxide cell, Energy Environ. Sci., vol.157, issue.3, pp.944-951, 2011.
DOI : 10.1149/1.3447752

T. Boëdec, M. Reytier, D. Lhachemi, D. Tschumperlé, P. Louat et al., A New Stack to Validate Technical Solutions and Numerical Simulations, Fuel Cells, vol.194, issue.2, pp.239-247, 2012.
DOI : 10.1016/j.jpowsour.2009.04.062

Q. Cacciuttolo, J. Vulliet, V. Lair, M. Cassir, and A. Ringuedé, Effect of pressure on high temperature steam electrolysis: Model and experimental tests, International Journal of Hydrogen Energy, vol.40, issue.35, pp.11378-11384, 2015.
DOI : 10.1016/j.ijhydene.2015.04.034

S. H. Chan and Z. T. Xia, Polarization effects in electrolyte/electrode-supported solid oxide fuel cells, Journal of Applied Electrochemistry, vol.32, issue.3, pp.339-347, 2002.
DOI : 10.1023/A:1015593326549

M. W. Chase, NIST-JANAF thermochemical tables, Physics for the National Institute of Standards and Technology), 1998.

A. Chatroux, M. Reytier, D. Iorio, S. Bernard, C. Roux et al., A Packaged and Efficient SOEC System Demonstrator, ECS Transactions, vol.68, issue.1, pp.3519-3526, 2015.
DOI : 10.1149/06801.3519ecst

B. Chen, H. Xu, L. Chen, Y. Li, C. Xia et al., Modelling of One-Step Methanation Process Combining SOECs and Fischer-Tropsch-like Reactor, Journal of The Electrochemical Society, vol.163, issue.11, pp.3001-3008, 2016.
DOI : 10.1149/2.0011611jes

K. Chen, N. Ai, and S. P. Jiang, Performance and stability of (La,Sr)MnO3???Y2O3???ZrO2 composite oxygen electrodes under solid oxide electrolysis cell operation conditions, International Journal of Hydrogen Energy, vol.37, issue.14, pp.10517-10525, 2012.
DOI : 10.1016/j.ijhydene.2012.04.073

M. Chen, J. V. Høgh, J. U. Nielsen, J. J. Bentzen, S. D. Ebbesen et al., in an SOC Stack: Performance and Durability, Fuel Cells, vol.157, issue.4, pp.638-645, 2013.
DOI : 10.1149/1.3447752

X. Chen, C. Guan, G. Xiao, X. Du, W. et al., Syngas production by high temperature steam/CO2 coelectrolysis using solid oxide electrolysis cells. Faraday Discuss, pp.341-351, 2015.
DOI : 10.1039/c5fd00017c

L. A. Chick, O. A. Marina, C. A. Coyle, and E. C. Thomsen, Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene, Journal of Power Sources, vol.236, pp.341-349, 2013.
DOI : 10.1016/j.jpowsour.2012.11.136

G. Corre and A. Brisse, 9000 Hours Operation of a 25 Solid Oxide Cells Stack in Steam Electrolysis Mode, ECS Transactions, vol.68, issue.1, pp.3481-3490, 2015.
DOI : 10.1149/06801.3481ecst

M. De-saint-jean, P. Baurens, and C. Bouallou, Parametric study of an efficient renewable power-to-substitute-natural-gas process including high-temperature steam electrolysis, International Journal of Hydrogen Energy, vol.39, issue.30, pp.17024-17039, 2014.
DOI : 10.1016/j.ijhydene.2014.08.091

URL : https://hal.archives-ouvertes.fr/hal-01299729

M. De-saint-jean, P. Baurens, C. Bouallou, and K. Couturier, Economic assessment of a power-to-substitute-natural-gas process including high-temperature steam electrolysis, International Journal of Hydrogen Energy, vol.40, issue.20, pp.6487-6500, 2015.
DOI : 10.1016/j.ijhydene.2015.03.066

J. Demailly, Analyse numérique et équations différentielles, 2006.

T. Dey, D. Singdeo, M. Bose, R. N. Basu, and P. C. Ghosh, Study of contact resistance at the electrode???interconnect interfaces in planar type Solid Oxide Fuel Cells, Journal of Power Sources, vol.233, pp.290-298, 2013.
DOI : 10.1016/j.jpowsour.2013.01.111

S. D. Ebbesen and M. Mogensen, Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells, Journal of Power Sources, vol.193, issue.1, pp.349-358, 2009.
DOI : 10.1016/j.jpowsour.2009.02.093

S. D. Ebbesen, C. Graves, and M. Mogensen, Production of Synthetic Fuels by Co-Electrolysis of Steam and Carbon Dioxide, International Journal of Green Energy, vol.49, issue.6, pp.646-660, 2009.
DOI : 10.1016/j.jcat.2004.02.032

S. D. Ebbesen, J. Høgh, K. A. Nielsen, J. U. Nielsen, and M. Mogensen, Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis, International Journal of Hydrogen Energy, vol.36, issue.13, pp.7363-7373, 2011.
DOI : 10.1016/j.ijhydene.2011.03.130

S. D. Ebbesen, R. Knibbe, and M. Mogensen, Co-Electrolysis of Steam and Carbon Dioxide in Solid Oxide Cells, Journal of the Electrochemical Society, vol.159, issue.8, pp.482-489, 2012.
DOI : 10.1149/2.076208jes

S. D. Ebbesen, S. H. Jensen, A. Hauch, and M. B. Mogensen, High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells, High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells, pp.10697-10734, 2014.
DOI : 10.1021/cr5000865

URL : http://orbit.dtu.dk/en/publications/high-temperature-electrolysis-in-alkaline-cells-solid-proton-conducting-cells-and-solid-oxide-cells(e5a0d15e-e3c0-4aa5-aa49-93c797332054).html

K. Eguchi, T. Hatagishi, and H. Arai, Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia-or ceria-based electrolyte. Solid State Ion, pp.1245-1249, 1996.

S. Elangovan, J. J. Hartvigsen, and L. J. Frost, Intermediate Temperature Reversible Fuel Cells, International Journal of Applied Ceramic Technology, vol.4, issue.2, pp.109-118, 2007.
DOI : 10.1016/S0167-2738(00)00744-X

Q. Fang, L. Blum, and N. H. Menzler, Performance and Degradation of Solid Oxide Electrolysis Cells in Stack, Journal of the Electrochemical Society, vol.162, issue.8, pp.907-912, 2015.
DOI : 10.1149/2.0941508jes

Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment, Energy & Environmental Science, vol.3, issue.1, p.1382, 2010.
DOI : 10.1039/c0ee00092b

G. Gahleitner, Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications, International Journal of Hydrogen Energy, vol.38, issue.5, pp.2039-2061, 2013.
DOI : 10.1016/j.ijhydene.2012.12.010

E. Giglio, A. Lanzini, M. Santarelli, L. , and P. , Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part I???Energy performance, Journal of Energy Storage, vol.1, pp.22-37, 2015.
DOI : 10.1016/j.est.2015.04.002

E. Giglio, A. Lanzini, M. Santarelli, L. , and P. , Synthetic natural gas via integrated high-temperature electrolysis and methanation: Part II???Economic analysis, Journal of Energy Storage, vol.2, pp.64-79, 2015.
DOI : 10.1016/j.est.2015.06.004

K. Girona, Modélisation et validation expérimentale du comportement électrochimique d'une pile à combustible SOFC en reformage interne de biocombustible, 2009.

S. Y. Gómez and D. Hotza, Current developments in reversible solid oxide fuel cells, Renewable and Sustainable Energy Reviews, vol.61, pp.155-174, 2016.
DOI : 10.1016/j.rser.2016.03.005

C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, Sustainable hydrocarbon fuels by recycling CO 2 and H 2 O with renewable or nuclear energy, Renewable and Sustainable Energy Reviews, vol.15, issue.1, pp.1-23, 2011.
DOI : 10.1016/j.rser.2010.07.014

URL : http://orbit.dtu.dk/en/publications/sustainable-hydrocarbon-fuels-by-recycling-co2-and-h2o-with-renewable-or-nuclear-energy(4cc6e93b-c64e-477c-80b1-b5a9677ffec7).html

C. Graves, S. D. Ebbesen, and M. Mogensen, Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability. Solid State Ion, pp.398-403, 2011.

C. Graves, S. D. Ebbesen, S. H. Jensen, S. B. Simonsen, and M. B. Mogensen, Eliminating degradation in solid oxide electrochemical cells by reversible operation, Nature Materials, vol.129, issue.153, pp.239-244, 2014.
DOI : 10.1149/1.2123965

URL : http://orbit.dtu.dk/en/publications/eliminating-degradation-in-solid-oxide-electrochemical-cells-by-reversible-operation(eaf53076-590f-4342-a108-1fd16c3bf618).html

D. Grondin, J. Deseure, P. Ozil, J. Chabriat, B. Grondin-perez et al., Computing approach of cathodic process within solid oxide electrolysis cell: Experiments and continuum model validation, Journal of Power Sources, vol.196, issue.22, pp.9561-9567, 2011.
DOI : 10.1016/j.jpowsour.2011.07.033

J. B. Hansen, Solid oxide electrolysis ??? a key enabling technology for sustainable energy scenarios, Faraday Discussions, vol.145, issue.88, pp.9-48, 2015.
DOI : 10.1016/j.apenergy.2015.01.075

J. B. Hansen, N. Christiansen, and J. U. Nielsen, Production of Sustainable Fuels by Means of Solid Oxide Electrolysis, ECS Transactions), pp.2941-2948, 2011.
DOI : 10.1149/1.3570293

J. Hartvigsen, S. Elangovan, L. Frost, A. Nickens, C. M. Stoots et al., Carbon Dioxide Recycling by High Temperature Co-electrolysis and Hydrocarbon Synthesis, ECS Transactions, pp.625-637, 2008.
DOI : 10.1149/1.2921588

A. Hauch, S. D. Ebbesen, S. H. Jensen, and M. Mogensen, Highly efficient high temperature electrolysis, Journal of Materials Chemistry, vol.32, issue.18, p.2331, 2008.
DOI : 10.1111/j.1151-2916.1999.tb01823.x

URL : http://orbit.dtu.dk/en/publications/highly-efficient-high-temperature-electrolysis(b83e750d-e1e2-453e-873c-37c3d91b7b11).html

M. Henke, J. Kallo, K. A. Friedrich, and W. G. Bessler, Influence of Pressurisation on SOFC Performance and Durability: A??Theoretical Study, Fuel Cells, vol.152, issue.153, pp.581-591, 2011.
DOI : 10.1016/S0167-2738(02)00359-4

M. Henke, C. Willich, J. Kallo, F. , and K. A. , Theoretical study on pressurized operation of solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.39, issue.24, pp.12434-12439, 2014.
DOI : 10.1016/j.ijhydene.2014.05.185

R. Hino, K. Haga, H. Aita, and K. Sekita, 38. R&D on hydrogen production by high-temperature electrolysis of steam, Nuclear Engineering and Design, vol.233, issue.1-3, pp.363-375, 2004.
DOI : 10.1016/j.nucengdes.2004.08.029

P. Hjalmarsson, X. Sun, Y. Liu, C. , and M. , Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells, Journal of Power Sources, vol.223, pp.349-357, 2013.
DOI : 10.1016/j.jpowsour.2012.08.063

P. Hjalmarsson, X. Sun, Y. Liu, C. , and M. , Durability of high performance Ni???yttria stabilized zirconia supported solid oxide electrolysis cells at high current density, Journal of Power Sources, vol.262, pp.316-322, 2014.
DOI : 10.1016/j.jpowsour.2014.03.133

M. Hubert, J. Laurencin, P. Cloetens, J. C. Da-silva, F. Lefebvre-joud et al., Role of microstructure on electrode operating mechanisms for mixed ionic electronic conductors: From synchrotron-based 3D reconstruction to electrochemical modeling, Solid State Ionics, vol.294, pp.90-107, 2016.
DOI : 10.1016/j.ssi.2016.07.001

G. Hughes, J. Railsback, D. Butts, and S. A. Barnett, Electrochemical Performance of Solid Oxide Cell Oxygen Electrodes Under Pressurization, ECS Transactions, vol.68, issue.1, pp.687-697, 2015.
DOI : 10.1149/06801.0687ecst

A. O. Isenberg, Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures. Solid State Ion, pp.431-437, 1981.

T. Ishihara, N. Jirathiwathanakul, and H. Zhong, Intermediate temperature solid oxide electrolysis cell using LaGaO3 based perovskite electrolyte, Energy & Environmental Science, vol.148, issue.4, p.665, 2010.
DOI : 10.1039/b915927d

S. H. Jensen, X. Sun, S. D. Ebbesen, R. Knibbe, and M. Mogensen, Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.35, issue.18, pp.9544-9549, 2010.
DOI : 10.1016/j.ijhydene.2010.06.065

S. H. Jensen, X. Sun, S. D. Ebbesen, C. , and M. , Pressurized Operation of a Planar Solid Oxide Cell Stack, Fuel Cells, vol.73, issue.4, pp.205-218, 2016.
DOI : 10.1007/s11242-007-9169-5

S. P. Jiang, A review of wet impregnation???An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells, Materials Science and Engineering: A, vol.418, issue.1-2, pp.199-210, 2006.
DOI : 10.1016/j.msea.2005.11.052

W. Kast and C. Hohenthanner, Mass transfer within the gas-phase of porous media, International Journal of Heat and Mass Transfer, vol.43, issue.5, pp.807-823, 2000.
DOI : 10.1016/S0017-9310(99)00158-1

P. Kazempoor and R. J. Braun, Model validation and performance analysis of??regenerative solid oxide cells for energy storage applications: Reversible operation, International Journal of Hydrogen Energy, vol.39, issue.11, pp.5955-5971, 2014.
DOI : 10.1016/j.ijhydene.2014.01.186

P. Kazempoor and R. J. Braun, Model validation and performance analysis of regenerative solid oxide cells: Electrolytic operation, International Journal of Hydrogen Energy, vol.39, issue.6, pp.2669-2684, 2014.
DOI : 10.1016/j.ijhydene.2013.12.010

P. Kazempoor and R. J. Braun, Hydrogen and synthetic fuel production using high temperature solid oxide electrolysis cells (SOECs), International Journal of Hydrogen Energy, vol.40, issue.9, pp.3599-3612, 2015.
DOI : 10.1016/j.ijhydene.2014.12.126

M. Keane, M. K. Mahapatra, A. Verma, and P. Singh, LSM???YSZ interactions and anode delamination in solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.37, issue.22, pp.16776-16785, 2012.
DOI : 10.1016/j.ijhydene.2012.08.104

K. Kendall, N. Q. Minh, and S. C. Singhal, Cell and Stack Designs, High- Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, pp.197-228, 2003.
DOI : 10.1016/B978-185617387-2/50025-8

J. Kim, Polarization Effects in Intermediate Temperature, Anode-Supported Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.146, issue.1, p.69, 1999.
DOI : 10.1149/1.1391566

S. J. Kim and G. M. Choi, Stability of LSCF electrode with GDC interlayer in YSZbased solid oxide electrolysis cell. Solid State Ion, pp.303-306, 2014.

S. J. Kim, K. J. Kim, and G. M. Choi, Effect of Ce0.43Zr0.43Gd0.1Y0.04O2????? contact layer on stability of interface between GDC interlayer and YSZ electrolyte in solid oxide electrolysis cell, Journal of Power Sources, vol.284, pp.617-622, 2015.
DOI : 10.1016/j.jpowsour.2015.02.156

S. J. Kim, K. J. Kim, and G. M. Choi, A novel solid oxide electrolysis cell (SOEC) to separate anodic from cathodic polarization under high electrolysis current, International Journal of Hydrogen Energy, vol.40, issue.30, pp.9032-9038, 2015.
DOI : 10.1016/j.ijhydene.2015.05.143

S. Kim, H. Kim, K. J. Yoon, J. Lee, B. Kim et al., Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production, Journal of Power Sources, vol.280, pp.630-639, 2015.
DOI : 10.1016/j.jpowsour.2015.01.083

P. Kim-lohsoontorn and J. Bae, Electrochemical performance of solid oxide electrolysis cell electrodes under high-temperature coelectrolysis of steam and carbon dioxide, Journal of Power Sources, vol.196, issue.17, 2011.
DOI : 10.1016/j.jpowsour.2010.09.018

P. Kim-lohsoontorn, N. Laosiripojana, and J. Bae, Performance of solid oxide electrolysis cell having bi-layered electrolyte during steam electrolysis and carbon dioxide electrolysis, Current Applied Physics, vol.11, issue.1, pp.223-228, 2011.
DOI : 10.1016/j.cap.2010.11.114

A. Kirubakaran, S. Jain, and R. K. Nema, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, vol.13, issue.9, pp.2430-2440, 2009.
DOI : 10.1016/j.rser.2009.04.004

T. Klemensø, C. Chung, P. H. Larsen, and M. Mogensen, The Mechanism Behind Redox Instability of Anodes in High-Temperature SOFCs, Journal of The Electrochemical Society, vol.144, issue.11, p.2186, 2005.
DOI : 10.1016/S0167-2738(99)00218-0

R. Knibbe, M. L. Traulsen, A. Hauch, S. D. Ebbesen, and M. Mogensen, Solid Oxide Electrolysis Cells: Degradation at High Current Densities, Journal of The Electrochemical Society, vol.158, issue.8, 1209.
DOI : 10.1149/1.3050398

URL : http://orbit.dtu.dk/en/publications/solid-oxide-electrolysis-cells-degradation-at-high-current-densities(e4fcf933-bd0b-43c7-ad54-07cc53240bc5).html

W. Kong, H. Zhu, Z. Fei, L. , and Z. , A modified dusty gas model in the form of a Fick's model for the prediction of multicomponent mass transport in a solid oxide fuel cell anode, Journal of Power Sources, vol.206, pp.171-178, 2012.
DOI : 10.1016/j.jpowsour.2012.01.107

M. A. Laguna-bercero, Recent advances in high temperature electrolysis using solid oxide fuel cells: A review, Journal of Power Sources, vol.203, pp.4-16, 2012.
DOI : 10.1016/j.jpowsour.2011.12.019

M. A. Laguna-bercero, H. Monzón, A. Larrea, and V. M. Orera, Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode, Journal of Materials Chemistry A, vol.243, issue.250, pp.1446-1453, 2016.
DOI : 10.1016/j.jpowsour.2013.06.106

J. Laurencin and J. And-mougin, High-Temperature Steam Electrolysis, pp.191-272, 2015.
DOI : 10.1016/j.ssi.2010.06.014

URL : https://hal.archives-ouvertes.fr/hal-01624821

J. Laurencin, G. Delette, F. Lefebvre-joud, and M. Dupeux, A numerical tool to estimate SOFC mechanical degradation: Case of the planar cell configuration, Journal of the European Ceramic Society, vol.28, issue.9, pp.1857-1869, 2008.
DOI : 10.1016/j.jeurceramsoc.2007.12.025

URL : https://hal.archives-ouvertes.fr/hal-00345517

J. Laurencin, F. Lefebvre-joud, and G. Delette, Impact of cell design and operating conditions on the performances of SOFC fuelled with methane, Journal of Power Sources, vol.177, issue.2, pp.355-368, 2008.
DOI : 10.1016/j.jpowsour.2007.11.099

J. Laurencin, D. Kane, G. Delette, J. Deseure, L. et al., Modelling of solid oxide steam electrolyser: Impact of the operating conditions on hydrogen production, Journal of Power Sources, vol.196, issue.4, pp.2080-2093, 2011.
DOI : 10.1016/j.jpowsour.2010.09.054

URL : https://hal.archives-ouvertes.fr/cea-00804211

J. Laurencin, V. Roche, C. Jaboutian, I. Kieffer, J. Mougin et al., Ni-8YSZ cermet re-oxidation of anode supported solid oxide fuel cell: From kinetics measurements to mechanical damage prediction, International Journal of Hydrogen Energy, vol.37, issue.17, pp.12557-12573, 2012.
DOI : 10.1016/j.ijhydene.2012.06.019

J. Laurencin, M. Hubert, K. Couturier, T. L. Bihan, P. Cloetens et al., Reactive Mechanisms of LSCF Single-Phase and LSCF-CGO Composite Electrodes Operated in Anodic and Cathodic Polarisations, Electrochimica Acta, vol.174, pp.1299-1316, 2015.
DOI : 10.1016/j.electacta.2015.06.080

E. Lay-grindler, J. Laurencin, G. Delette, J. Aicart, M. Petitjean et al., Micro modelling of solid oxide electrolysis cell: From performance to durability, International Journal of Hydrogen Energy, vol.38, issue.17, 2013.
DOI : 10.1016/j.ijhydene.2013.03.162

W. Lehnert, J. Meusinger, T. , and F. , Modelling of gas transport phenomena in SOFC anodes, Journal of Power Sources, vol.87, issue.1-2, pp.57-63, 2000.
DOI : 10.1016/S0378-7753(99)00356-0

R. L. Leroy, C. T. Bowen, R. L. Leroy, C. T. Bowen, L. et al., The Thermodynamics of Aqueous Water Electrolysis, Journal of The Electrochemical Society, vol.127, issue.9, pp.1954-1962, 1980.
DOI : 10.1149/1.2130044

W. Li, H. Wang, Y. Shi, and N. Cai, Performance and methane production characteristics of H2O???CO2 co-electrolysis in solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.38, issue.25, pp.11104-11109, 2013.
DOI : 10.1016/j.ijhydene.2013.01.008

W. Li, Y. Shi, Y. Luo, and N. Cai, Theoretical modeling of air electrode operating in SOFC mode and SOEC mode: The effects of microstructure and thickness, International Journal of Hydrogen Energy, vol.39, issue.25, pp.13738-13750, 2014.
DOI : 10.1016/j.ijhydene.2014.03.014

W. Li, Y. Shi, Y. Luo, and N. Cai, Elementary reaction modeling of solid oxide electrolysis cells: Main zones for heterogeneous chemical/electrochemical reactions, Journal of Power Sources, vol.273, pp.1-13, 2015.
DOI : 10.1016/j.jpowsour.2014.08.120

M. Liu, D. Dong, F. Zhao, J. Gao, D. Ding et al., High-performance cathode-supported SOFCs prepared by a single-step co-firing process, Journal of Power Sources, vol.182, issue.2, pp.585-588, 2008.
DOI : 10.1016/j.jpowsour.2008.04.039

T. Liu, C. Wang, S. Hao, Z. Fu, B. A. Peppley et al., Evaluation of polarization and hydrogen production efficiency of solid oxide electrolysis stack with La0, Z.-Q. Int. J. Hydrog. Energy, 2016.

X. Luo, J. Wang, M. Dooner, C. , and J. , Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied Energy, vol.137, 2015.
DOI : 10.1016/j.apenergy.2014.09.081

M. K. Mahapatra, L. , and K. , Seal glass for solid oxide fuel cells, Journal of Power Sources, vol.195, issue.21, pp.7129-7139, 2010.
DOI : 10.1016/j.jpowsour.2010.06.003

A. Mahmood, S. Bano, J. H. Yu, L. , and K. , High-performance solid oxide electrolysis cell based on ScSZ/GDC (scandia-stabilized zirconia/gadolinium-doped ceria) bilayered electrolyte and LSCF (lanthanum strontium cobalt ferrite) oxygen electrode, pp.344-350, 2015.
DOI : 10.1016/j.energy.2015.06.109

O. A. Marina, L. R. Pederson, M. C. Williams, G. W. Coffey, K. D. Meinhardt et al., Electrode Performance in Reversible Solid Oxide Fuel Cells, Journal of The Electrochemical Society, vol.56, issue.88, p.452, 2007.
DOI : 10.1146/annurev.matsci.33.022802.093258

E. A. Mason and A. P. Malinauskas, Gas transport in porous media: the dusty-gas model, 1983.

V. Menon, V. M. Janardhanan, and O. Deutschmann, Modeling of Solid-Oxide Electrolyser Cells: From H2, CO Electrolysis to Co-Electrolysis, ECS Transactions, vol.57, issue.1, pp.3207-3216, 2013.
DOI : 10.1149/05701.3207ecst

V. Menon, V. M. Janardhanan, and O. Deutschmann, A mathematical model to analyze solid oxide electrolyzer cells (SOECs) for hydrogen production, Chemical Engineering Science, vol.110, pp.83-93, 2014.
DOI : 10.1016/j.ces.2013.10.025

V. Menon, Q. Fu, V. M. Janardhanan, and O. Deutschmann, A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis, Journal of Power Sources, vol.274, pp.768-781, 2015.
DOI : 10.1016/j.jpowsour.2014.09.158

N. H. Menzler, F. Tietz, S. Uhlenbruck, H. P. Buchkremer, and D. Stöver, Materials and manufacturing technologies for solid oxide fuel cells, Journal of Materials Science, vol.61, issue.93, pp.3109-3135, 2010.
DOI : 10.1016/j.jpowsour.2007.10.002

D. G. Milobar, J. J. Hartvigsen, and S. Elangovan, A techno-economic model of a solid oxide electrolysis system, Faraday Discussions, vol.135, pp.329-339, 2015.
DOI : 10.1016/S0167-2738(00)00458-6

L. Mingyi, Y. Bo, X. Jingming, and C. Jing, Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.35, issue.7, pp.2670-2674, 2010.
DOI : 10.1016/j.ijhydene.2009.04.027

F. Miomandre, Électrochimie: des concepts aux applications (Paris: Dunod), 2011.

P. Moçoteguy and A. Brisse, A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells, International Journal of Hydrogen Energy, vol.38, issue.36, pp.15887-15902, 2013.
DOI : 10.1016/j.ijhydene.2013.09.045

A. Momma, K. Takano, Y. Tanaka, T. Kato, and A. Yamamoto, Experimental Investigation of the Effect of Operating Pressure on the Performance of SOFC and SOEC, ECS Transactions, vol.57, issue.1, pp.699-708, 2013.
DOI : 10.1149/05701.0699ecst

D. J. Moon and J. W. Ryu, Electrocatalytic reforming of carbon dioxide by methane in SOFC system, Catalysis Today, vol.87, issue.1-4, pp.255-264, 2003.
DOI : 10.1016/j.cattod.2003.10.017

B. Morel, J. Laurencin, Y. Bultel, L. , and F. , Anode-Supported SOFC Model Centered on the Direct Internal Reforming, Journal of The Electrochemical Society, vol.138, issue.153, p.1382, 2005.
DOI : 10.1149/1.1508551

URL : https://hal.archives-ouvertes.fr/hal-00386435

J. Mougin, A. Mansuy, A. Chatroux, G. Gousseau, M. Petitjean et al., Enhanced Performance and Durability of??a High Temperature Steam Electrolysis Stack, Fuel Cells, vol.38, issue.4, pp.623-630, 2013.
DOI : 10.1016/j.ijhydene.2012.09.176

URL : https://hal.archives-ouvertes.fr/hal-00861775

A. Nechache, M. Cassir, and A. Ringuedé, Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review, Journal of Power Sources, vol.258, pp.164-181, 2014.
DOI : 10.1016/j.jpowsour.2014.01.110

V. N. Nguyen, Q. Fang, U. Packbier, and L. Blum, Long-term tests of a J??lich planar short stack with reversible solid oxide cells in both fuel cell and electrolysis modes, International Journal of Hydrogen Energy, vol.38, issue.11, pp.4281-4290, 2013.
DOI : 10.1016/j.ijhydene.2013.01.192

M. Ni, Three-Dimensional Computational Fluid Dynamics Modeling of a Planar Solid Oxide Fuel Cell, Chemical Engineering & Technology, vol.63, issue.21, pp.1484-1493, 2009.
DOI : 10.1016/j.energy.2008.08.025

M. Ni, An electrochemical model for syngas production by co-electrolysis of H2O and CO2, Journal of Power Sources, vol.202, pp.209-216, 2012.
DOI : 10.1016/j.jpowsour.2011.11.080

M. Ni, 2D thermal modeling of a solid oxide electrolyzer cell (SOEC) for syngas production by H2O/CO2 co-electrolysis, International Journal of Hydrogen Energy, vol.37, issue.8, pp.6389-6399, 2012.
DOI : 10.1016/j.ijhydene.2012.01.072

M. Ni, Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming. Energy Convers, Manag, vol.70, pp.116-129, 2013.

M. Ni, M. K. Leung, and D. Y. Leung, Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production, Electrochimica Acta, vol.52, issue.24, pp.6707-6718, 2007.
DOI : 10.1016/j.electacta.2007.04.084

M. Ni, M. Leung, and D. Leung, Parametric study of solid oxide steam electrolyzer for hydrogen production, International Journal of Hydrogen Energy, vol.32, issue.13, pp.2305-2313, 2007.
DOI : 10.1016/j.ijhydene.2007.03.001

J. Nielsen, T. Jacobsen, and M. Wandel, Impedance of porous IT-SOFC LSCF:CGO composite cathodes, Electrochimica Acta, vol.56, issue.23, pp.7963-7974, 2011.
DOI : 10.1016/j.electacta.2011.05.042

URL : http://orbit.dtu.dk/en/publications/impedance-of-porous-itsofc-lscfcgo-composite-cathodes(6735d012-294b-4e5f-a9f0-3ae7fe89db67).html

O. 'brien, J. E. Stoots, C. M. Herring, J. S. Hartvigsen, and J. , Hydrogen Production Performance of a 10-Cell Planar Solid-Oxide Electrolysis Stack, J. Fuel Cell Sci. Technol, vol.3, p.213

O. 'brien, J. E. Zhang, X. Housley, G. K. Dewall, K. Moore-mcateer et al., High temperature electrolysis pressurized experiment design, operation, and results, Rep. US Dep. Energy Off. Nucl. Energy DOE Ida. Oper. Off. Contract -AC07-05ID14517, 2012.

T. Ogier, J. M. Bassat, F. Mauvy, S. Fourcade, J. C. Grenier et al., Enhanced Performances of Structured Oxygen Electrodes for High Temperature Steam Electrolysis, Fuel Cells, vol.185, issue.4, pp.536-541, 2013.
DOI : 10.1016/j.jpowsour.2008.06.072

URL : https://hal.archives-ouvertes.fr/hal-00860497

G. A. Olah, A. Goeppert, and G. K. Prakash, Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons, The Journal of Organic Chemistry, vol.74, issue.2, pp.487-498, 2009.
DOI : 10.1021/jo801260f

K. Onda, T. Kyakuno, K. Hattori, and K. Ito, Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis, Journal of Power Sources, vol.132, issue.1-2, pp.64-70, 2004.
DOI : 10.1016/j.jpowsour.2004.01.046

M. Petitjean, M. Reytier, A. Chatroux, L. Bruguière, A. Mansuy et al., Performance and Durability of High Temperature Steam Electrolysis: From the Single Cell to Short-Stack Scale, pp.2905-2913, 2011.
DOI : 10.1149/1.3570290

S. Primdahl and M. Mogensen, Oxidation of Hydrogen on Ni/Yttria-Stabilized Zirconia Cermet Anodes, Journal of The Electrochemical Society, vol.144, issue.10, pp.3409-3419, 1997.
DOI : 10.1149/1.1838026

S. Primdahl and M. Mogensen, Gas Conversion Impedance: A Test Geometry Effect in Characterization of Solid Oxide Fuel Cell Anodes, Journal of The Electrochemical Society, vol.145, issue.7, pp.2431-2438, 1998.
DOI : 10.1149/1.1838654

E. Resch, Numerical and experimental characterisation of convective transport in solid oxide fuel cells, 2008.

M. Reytier, J. Cren, M. Petitjean, A. Chatroux, G. Gousseau et al., Development of a Cost-Efficient and Performing High Temperature Steam Electrolysis Stack, ECS Transactions, vol.57, issue.1, pp.3151-3160, 2013.
DOI : 10.1149/05701.3151ecst

M. Reytier, D. Iorio, S. Chatroux, A. Petitjean, M. Cren et al., Stack performances in high temperature steam electrolysis and co-electrolysis, International Journal of Hydrogen Energy, vol.40, issue.35, pp.11370-11377, 2015.
DOI : 10.1016/j.ijhydene.2015.04.085

J. Schefold, A. Brisse, and F. Tietz, Nine Thousand Hours of Operation of a Solid Oxide Cell in Steam Electrolysis Mode, Journal of The Electrochemical Society, vol.196, issue.2, pp.137-144, 2011.
DOI : 10.1149/1.3205627

G. Schiller, A. Ansar, M. Lang, and O. Patz, High temperature water electrolysis using metal supported solid oxide electrolyser cells (SOEC), Journal of Applied Electrochemistry, vol.11, issue.1, pp.293-301, 2009.
DOI : 10.1007/s10800-008-9672-6

V. I. Sharma, Y. , and B. , Degradation Mechanism in La[sub 0.8]Sr[sub 0.2]CoO[sub 3] as Contact Layer on the Solid Oxide Electrolysis Cell Anode, Journal of The Electrochemical Society, vol.82, issue.3, pp.441-448, 2010.
DOI : 10.1063/1.2431780

Y. Shi, N. Cai, L. , and C. , Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion, Journal of Power Sources, vol.164, issue.2, pp.639-648, 2007.
DOI : 10.1016/j.jpowsour.2006.10.091

Y. Shi, Y. Luo, N. Cai, J. Qian, S. Wang et al., Experimental characterization and modeling of the electrochemical reduction of CO2 in solid oxide electrolysis cells, Electrochimica Acta, vol.88, pp.644-653, 2013.
DOI : 10.1016/j.electacta.2012.10.107

S. S. Shy, Y. D. Hsieh, C. M. Huang, C. , and Y. H. , Comparison of Electrochemical Impedance Measurements between Pressurized Anode-Supported and Electrolyte-Supported Planar Solid Oxide Fuel Cells, Journal of the Electrochemical Society, vol.162, issue.1, pp.172-177, 2015.
DOI : 10.1149/2.0041503jes

V. Singh, H. Muroyama, T. Matsui, S. Hashigami, T. Inagaki et al., Feasibility of alternative electrode materials for high temperature CO 2 reduction on solid oxide electrolysis cell, Journal of Power Sources, vol.293, pp.642-648, 2015.
DOI : 10.1016/j.jpowsour.2015.05.088

J. P. Stempien, Q. Liu, M. Ni, Q. Sun, C. et al., Physical principles for the calculation of equilibrium potential for co-electrolysis of steam and carbon dioxide in a Solid Oxide Electrolyzer Cell (SOEC), Electrochimica Acta, vol.147, pp.490-497, 2014.
DOI : 10.1016/j.electacta.2014.09.144

J. P. Stempien, M. Ni, Q. Sun, C. , and S. H. , Production of sustainable methane from renewable energy and captured carbon dioxide with the use of Solid Oxide Electrolyzer: A??thermodynamic assessment, Energy, vol.82, pp.714-721, 2015.
DOI : 10.1016/j.energy.2015.01.081

C. Stoots, J. O-'brien, and J. Hartvigsen, Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory, International Journal of Hydrogen Energy, vol.34, issue.9, pp.4208-4215, 2009.
DOI : 10.1016/j.ijhydene.2008.08.029

C. M. Stoots, J. E. O-'brien, J. S. Herring, and J. J. Hartvigsen, Syngas Production via High-Temperature Coelectrolysis of Steam and Carbon Dioxide, Journal of Fuel Cell Science and Technology, vol.101, issue.1, p.11014, 2009.
DOI : 10.1115/1.2179435

C. M. Stoots, J. E. O-'brien, . G. Condie, and J. J. Hartvigsen, High-temperature electrolysis for large-scale hydrogen production from nuclear energy ??? Experimental investigations, International Journal of Hydrogen Energy, vol.35, issue.10, pp.4861-4870, 2010.
DOI : 10.1016/j.ijhydene.2009.10.045

X. Sun, M. Chen, Y. Liu, P. Hjalmarsson, S. D. Ebbesen et al., Durability of Solid Oxide Electrolysis Cells for Syngas Production, Journal of the Electrochemical Society, vol.160, issue.9, pp.1074-1080, 2013.
DOI : 10.1149/2.106309jes

X. Sun, A. D. Bonaccorso, C. Graves, S. D. Ebbesen, S. H. Jensen et al., Performance Characterization of Solid Oxide Cells Under High Pressure, Fuel Cells, vol.154, issue.5, pp.697-702, 2015.
DOI : 10.1149/1.2433311

R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev et al., Performance comparison of Fick???s, dusty-gas and Stefan???Maxwell models to predict the concentration overpotential of a SOFC anode, Journal of Power Sources, vol.122, issue.1, pp.9-18, 2003.
DOI : 10.1016/S0378-7753(02)00724-3

Y. Takeda, R. Kanno, M. Noda, Y. Tomida, Y. et al., Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia, Journal of The Electrochemical Society, vol.134, issue.11, pp.2656-2661, 1987.
DOI : 10.1149/1.2100267

Y. Tao, S. D. Ebbesen, and M. B. Mogensen, Carbon Deposition in Solid Oxide Cells during Co-Electrolysis of H2O and CO2, Journal of the Electrochemical Society, vol.161, issue.3, pp.337-343, 2014.
DOI : 10.1149/2.079403jes

E. C. Thomsen, G. W. Coffey, L. R. Pederson, M. , and O. A. , Performance of lanthanum strontium manganite electrodes at high pressure, Journal of Power Sources, vol.191, issue.2, pp.217-224, 2009.
DOI : 10.1016/j.jpowsour.2009.02.057

B. Todd, Y. , and J. B. , Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling, Journal of Power Sources, vol.110, issue.1, pp.186-200, 2002.
DOI : 10.1016/S0378-7753(02)00277-X

D. Todd, M. Schwager, and W. Mérida, Thermodynamics of high-temperature, high-pressure water electrolysis, Journal of Power Sources, vol.269, pp.424-429, 2014.
DOI : 10.1016/j.jpowsour.2014.06.144

H. Topsoe and R. Logic, Plan SOEC -R&D and commercialization roadmap for SOEC electrolysis -R&D of SOEC stacks with improved durability, 2011.

J. Tranchant, Chromatographie en phase gazeuse, 1996.

K. Tseronis, I. S. Fragkopoulos, I. Bonis, T. , and C. , Detailed Multi-dimensional Modeling of Direct Internal Reforming Solid Oxide Fuel Cells, Fuel Cells, vol.189, issue.3, pp.294-312, 2016.
DOI : 10.1016/j.jpowsour.2008.12.121

J. Udagawa, P. Aguiar, and N. P. Brandon, Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.166, issue.1, pp.127-136, 2007.
DOI : 10.1016/j.jpowsour.2006.12.081

J. Udagawa, P. Aguiar, and N. P. Brandon, Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.46-55, 2008.
DOI : 10.1016/j.jpowsour.2008.02.026

J. Udagawa, P. Aguiar, and N. P. Brandon, Hydrogen production through steam electrolysis: Control strategies for a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources, vol.180, issue.1, pp.354-364, 2008.
DOI : 10.1016/j.jpowsour.2008.01.069

F. Usseglio-viretta, Optimisation des performances et de la robustesse d'un électrolyseur à hautes températures, 2015.

F. Usseglio-viretta, J. Laurencin, G. Delette, J. Villanova, P. Cloetens et al., Quantitative microstructure characterization of a Ni???YSZ bi-layer coupled with simulated electrode polarisation, Journal of Power Sources, vol.256, pp.394-403, 2014.
DOI : 10.1016/j.jpowsour.2014.01.094

URL : https://hal.archives-ouvertes.fr/hal-01667107

J. W. Veldsink, D. Van, G. F. Versteeg, and S. Van, The use of the dusty-gas model for the description of mass transport with chemical reaction in porous media, The Chemical Engineering Journal and the Biochemical Engineering Journal, vol.57, issue.2, pp.115-125, 1995.
DOI : 10.1016/0923-0467(94)02929-6

V. Vibhu, A. Rougier, C. Nicollet, A. Flura, S. Fourcade et al., Pr4Ni3O10+??: A new promising oxygen electrode material for solid oxide fuel cells, Journal of Power Sources, vol.317, pp.184-193, 2016.
DOI : 10.1016/j.jpowsour.2016.03.012

URL : https://hal.archives-ouvertes.fr/hal-01320381

Y. Vural, L. Ma, D. B. Ingham, and M. Pourkashanian, Comparison of the multicomponent mass transfer models for the prediction of the concentration overpotential for solid oxide fuel cell anodes, Journal of Power Sources, vol.195, issue.15, pp.4893-4904, 2010.
DOI : 10.1016/j.jpowsour.2010.01.033

W. Wang, Y. Huang, S. Jung, J. M. Vohs, and R. J. Gorte, A Comparison of LSM, LSF, and LSCo for Solid Oxide Electrolyzer Anodes, Journal of The Electrochemical Society, vol.66, issue.153, pp.2066-2070, 2006.
DOI : 10.1016/j.proci.2004.08.277

A. Weber and E. Ivers-tiffée, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, Journal of Power Sources, vol.127, issue.1-2, pp.273-283, 2004.
DOI : 10.1016/j.jpowsour.2003.09.024

J. Wei and E. Iglesia, Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts, Journal of Catalysis, vol.224, issue.2, pp.370-383, 2004.
DOI : 10.1016/j.jcat.2004.02.032

C. H. Wendel and R. J. Braun, Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage, Applied Energy, vol.172, pp.118-131, 2016.
DOI : 10.1016/j.apenergy.2016.03.054

J. Wu and X. Liu, Recent Development of SOFC Metallic Interconnect, Journal of Materials Science & Technology, vol.26, issue.4, pp.293-305, 2010.
DOI : 10.1016/S1005-0302(10)60049-7

P. C. Wu, H. S. Jheng, and S. S. Shy, Electrochemical Impedance Measurement and Analysis of Anodic Concentration Polarization for Pressurized Solid Oxide Fuel Cells, Journal of the Electrochemical Society, vol.161, issue.4, pp.513-517, 2014.
DOI : 10.1149/2.078404jes

Y. Xie and X. Xue, Modeling of solid oxide electrolysis cell for syngas generation with detailed surface chemistry. Solid State Ion, pp.64-73, 2012.

J. Xu and G. F. Froment, Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics, AIChE Journal, vol.35, issue.1, pp.88-96, 1989.
DOI : 10.1002/aic.690350109

Z. Zhan, W. Kobsiriphat, J. R. Wilson, M. Pillai, I. Kim et al., O: The Basis for a Renewable Energy Cycle, Energy & Fuels, vol.23, issue.6, pp.3089-3096, 2009.
DOI : 10.1021/ef900111f

X. Zhang, J. E. O-'brien, R. C. O-'brien, J. J. Hartvigsen, G. Tao et al., Improved durability of SOEC stacks for high temperature electrolysis, International Journal of Hydrogen Energy, vol.38, issue.1, pp.20-28, 2013.
DOI : 10.1016/j.ijhydene.2012.09.176

X. Zhang, J. E. O-'brien, G. Tao, C. Zhou, and G. K. Housley, Experimental design, operation, and results of a 4??kW high temperature steam electrolysis experiment, Journal of Power Sources, vol.297, pp.90-97, 2015.
DOI : 10.1016/j.jpowsour.2015.07.098

F. Zhao and A. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of Power Sources, vol.141, issue.1, pp.79-95, 2005.
DOI : 10.1016/j.jpowsour.2004.08.057

C. Zhao, R. Liu, S. Wang, W. , and T. , Fabrication of a large area cathode-supported thin electrolyte film for solid oxide fuel cells via tape casting and co-sintering techniques, Electrochemistry Communications, vol.11, issue.4, pp.842-845, 2009.
DOI : 10.1016/j.elecom.2009.02.007

Y. Zheng, Q. Li, W. Guan, C. Xu, W. Wu et al., Investigation of 30-cell solid oxide electrolyzer stack modules for hydrogen production, Ceramics International, vol.40, issue.4, pp.5801-5809, 2014.
DOI : 10.1016/j.ceramint.2013.11.020

H. Zhu, K. , and R. J. , Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies, Journal of The Electrochemical Society, vol.155, issue.7, p.715, 2008.
DOI : 10.1007/BF01400352