]. S. Ramakrishna, An Introduction to Electrospinning and Nanofibers, 2005.
DOI : 10.1142/5894

J. Fang, H. Niu, T. Lin, X. Wang, F. L. Zhou et al., Applications of electrospun nanofibersManufacturing technologies of polymeric nanofibres and nanofibre yarns, Functional polymeric nanofibers from electrospinning, pp.2265-2286, 2008.

A. Greiner, J. H. Wendorff, P. Supaphol, C. Mit?uppatham, M. Nithitanakul et al., Electrospinning: a fascinating method for the preparation of ultrathin fibersUltrafine electrospun polyamide?6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameterEffect of nonsolvent on morphologies of polyamide 6 electrospun fibers, Angew Chem Int Ed Engl Journal of Polymer Science Part B: Polymer Physics Journal of applied polymer science, vol.468, issue.118, pp.5670-703, 2005.

J. Zeleny, The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure, Journal of the Franklin Institute, vol.219, issue.6, pp.659-675, 1935.
DOI : 10.1016/S0016-0032(35)91985-8

W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers, Polymer, vol.45, issue.9, pp.2959-2966, 2004.
DOI : 10.1016/j.polymer.2004.03.006

X. N. Arshad, High strength carbon nanofibers derived from electrospun polyacrylonitrile, 2010.
DOI : 10.1016/j.carbon.2010.12.056

Z. Li and C. Wang, Effects of Working Parameters on Electrospinning, One- Dimensional Nanostructures, pp.15-28, 2013.
DOI : 10.1007/978-3-642-36427-3_2

H. Niu and T. Lin, Fiber Generators in Needleless Electrospinning, Journal of Nanomaterials, vol.17, issue.1, p.12, 2012.
DOI : 10.1002/pen.21599

URL : http://doi.org/10.1155/2012/725950

V. Pillay, C. Dott, Y. E. Choonara, C. Tyagi, L. Tomar et al., A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications, Journal of Nanomaterials, vol.36, issue.17, p.22, 2013.
DOI : 10.1016/j.matlet.2007.01.003

J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck-tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, vol.42, issue.1, pp.261-272, 2001.
DOI : 10.1016/S0032-3861(00)00250-0

P. K. Baumgarten, Electrostatic spinning of acrylic microfibers, Journal of Colloid and Interface Science, vol.36, issue.1, pp.71-79, 1971.
DOI : 10.1016/0021-9797(71)90241-4

L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, Engineered collagen???PEO nanofibers and fabrics, Journal of Biomaterials Science, Polymer Edition, vol.44, issue.9, pp.979-93, 2001.
DOI : 10.1002/app.1992.070440213

Y. Wang, Y. Li, G. Sun, G. Zhang, H. Liu et al., Fabrication of Au/PVP nanofiber composites by electrospinning, Journal of Applied Polymer Science, vol.25, issue.6, pp.3618-3622, 2007.
DOI : 10.1002/app.25003

M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk et al., Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity, Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-coacrylic acid)?PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity, pp.1787-1792, 2004.
DOI : 10.1021/ma035163x

M. M. Khan, M. Tsukada, X. Zhang, and H. Morikawa, Preparation and characterization of electrospun nanofibers based on silk sericin powders, Journal of Materials Science, vol.28, issue.10, pp.3731-3736, 2013.
DOI : 10.2115/fiber.28.4-5_91

X. M. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, vol.76, issue.5, pp.965-977, 2008.
DOI : 10.1016/j.talanta.2008.05.019

S. Gu, J. Ren, and G. Vancso, Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers, European Polymer Journal, vol.41, issue.11, pp.2559-2568, 2005.
DOI : 10.1016/j.eurpolymj.2005.05.008

S. Nataraj, K. Yang, and T. Aminabhavi, Polyacrylonitrile-based nanofibers?a state-ofthe-art review, Progress in polymer science, pp.487-513, 2012.
DOI : 10.1016/j.progpolymsci.2011.07.001

T. Maitra, S. Sharma, A. Srivastava, Y. Cho, M. Madou et al., Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning, Carbon, vol.50, issue.5, pp.1753-1761, 2012.
DOI : 10.1016/j.carbon.2011.12.021

Y. Ahn, S. Park, G. Kim, Y. Hwang, C. Lee et al., Development of high efficiency nanofilters made of nanofibers, Current Applied Physics, vol.6, issue.6, pp.1030-1035, 2006.
DOI : 10.1016/j.cap.2005.07.013

S. Zhang, W. S. Shim, and J. Kim, Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency, Materials & Design, vol.30, issue.9, pp.3659-3666, 2009.
DOI : 10.1016/j.matdes.2009.02.017

X. H. Qin and S. Y. Wang, Filtration properties of electrospinning nanofibers, Journal of Applied Polymer Science, vol.37, issue.2, pp.1285-1290, 2006.
DOI : 10.1002/app.24361

J. Fang, H. Niu, T. Lin, X. Wang, F. L. Zhou et al., 5% CNTs and (d and d1) with 7% CNTs References [1] Philadelphia University Textiles defined AvailableApplications of electrospun nanofibersManufacturing technologies of polymeric nanofibres and nanofibre yarnsFunctional polymeric nanofibers from electrospinningElectrospinning: a fascinating method for the preparation of ultrathin fibersFiber generators in needleless electrospinning, a1, b1,c1,d1) respectively carbonized PAN and PAN CNT samples with (a and a1) having 0% CNTs Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery ApplicationsThe effect of processing variables on the morphology of electrospun nanofibers and textiles, pp.2265-2286, 2001.

P. K. Baumgarten, Electrostatic spinning of acrylic microfibers, Journal of Colloid and Interface Science, vol.36, issue.1, pp.71-79, 1971.
DOI : 10.1016/0021-9797(71)90241-4

L. Huang, K. Nagapudi, R. P. Apkarian, and E. L. Chaikof, Engineered collagen???PEO nanofibers and fabrics, Journal of Biomaterials Science, Polymer Edition, vol.44, issue.9, pp.979-93, 2001.
DOI : 10.1002/app.1992.070440213

Y. Wang, Y. Li, G. Sun, G. Zhang, H. Liu et al., Fabrication of Au/PVP nanofiber composites by electrospinning, Journal of Applied Polymer Science, vol.25, issue.6, pp.3618-3622, 2007.
DOI : 10.1002/app.25003

M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk et al., Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity, Palladium Nanoparticles by Electrospinning from Poly(acrylonitrileco-acrylic acid)?PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity, pp.1787-1792, 2004.
DOI : 10.1021/ma035163x

M. M. Khan, M. Tsukada, X. Zhang, and H. Morikawa, Preparation and characterization of electrospun nanofibers based on silk sericin powders, Journal of Materials Science, vol.28, issue.10, pp.3731-3736, 2013.
DOI : 10.2115/fiber.28.4-5_91

L. Y. Yeo and J. R. Friend, Electrospinning carbon nanotube polymer composite nanofibers, Journal of Experimental Nanoscience, vol.31, issue.2, pp.177-209, 2006.
DOI : 10.1002/elps.200500329

L. Wannatong, A. Sirivat, and P. Supaphol, Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene, Polymer International, vol.53, issue.11, pp.1851-1859, 2004.
DOI : 10.1002/pi.1599

L. Zhang, A. Aboagye, A. Kelkar, C. Lai, and H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, Journal of Materials Science, vol.49, issue.167, pp.463-480, 2014.
DOI : 10.1016/j.carbon.2010.12.056

Z. Li and C. Wang, Effects of Working Parameters on Electrospinning, One- Dimensional Nanostructures, pp.15-28, 2013.
DOI : 10.1007/978-3-642-36427-3_2

Z. Huang, Y. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Composites Science and Technology, vol.63, issue.15, pp.2223-2253, 2003.
DOI : 10.1016/S0266-3538(03)00178-7

C. Mit?uppatham, M. Nithitanakul, and P. Supaphol, Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter, Macromolecular Chemistry and Physics, vol.43, issue.17, pp.2327-2338, 2004.
DOI : 10.1002/macp.200400225

M. Chowdhury and G. Stylios, Effect of experimental parameters on the morphology of electrospun Nylon 6 fibres, International Journal of Basic & Applied Sciences, vol.10, pp.116-131, 2010.

D. S. Katti, K. W. Robinson, F. K. Ko, and C. T. Laurencin, Bioresorbable nanofiber-based systems for wound healing and drug delivery: Optimization of fabrication parameters, Journal of Biomedical Materials Research, vol.40, issue.2, pp.286-296, 2004.
DOI : 10.1080/14786448208628425

J. Lyons, C. Li, and F. Ko, Melt-electrospinning part I: processing parameters and geometric properties, Polymer, vol.45, issue.22, pp.7597-7603, 2004.
DOI : 10.1016/j.polymer.2004.08.071

P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Klee, and M. Möller, Electrospinning of polymer melts: Phenomenological observations, Polymer, vol.48, issue.23, pp.6823-6833, 2007.
DOI : 10.1016/j.polymer.2007.09.037

S. Lee and S. K. Obendorf, Developing protective textile materials as barriers to liquid penetration using melt-electrospinning, Journal of Applied Polymer Science, vol.49, issue.4, pp.3430-3437, 2006.
DOI : 10.1520/STP14437S

J. Doshi and D. H. Reneker, Electrospinning process and applications of electrospun fibers, Industry Applications Society Annual Meeting Conference Record of the 1993 IEEE, pp.1698-1703, 1993.

J. Pu, X. Yan, Y. Jiang, C. Chang, and L. Lin, Piezoelectric actuation of direct-write electrospun fibers, Sensors and Actuators A: Physical, vol.164, issue.1-2, pp.131-136, 2010.
DOI : 10.1016/j.sna.2010.09.019

D. Rodoplu and M. Mutlu, Effects of electrospinning setup and process parameters on nanofiber morphology intended for the modification of quartz crystal microbalance surfaces, Journal of Engineered Fibers and Fabrics, vol.7, pp.118-123, 2012.

F. Abdel-hady, A. Alzahrany, and M. Hamed, Experimental Validation of Upward Electrospinning Process, ISRN Nanotechnology, vol.42, issue.1, 2011.
DOI : 10.1002/macp.200400225

H. Niu, X. Wang, and T. Lin, Upward needleless electrospinning of nanofibers, Journal of engineered fibers and fabrics, vol.7, pp.17-22, 2012.

A. Yarin and E. Zussman, Upward needleless electrospinning of multiple nanofibers, Polymer, vol.45, issue.9, pp.2977-2980, 2004.
DOI : 10.1016/j.polymer.2004.02.066

F. Abdel-hady, A. Alzahrany, and M. Hamed, Experimental Validation of Upward Electrospinning Process, ISRN Nanotechnology, vol.42, issue.1, pp.14-20, 2011.
DOI : 10.1002/macp.200400225

H. Jiang, Y. Hu, Y. Li, P. Zhao, K. Zhu et al., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents, Journal of Controlled Release, vol.108, issue.2-3, pp.237-243, 2005.
DOI : 10.1016/j.jconrel.2005.08.006

B. Lu, Y. Wang, Y. Liu, H. Duan, J. Zhou et al., Superhigh-Throughput Needleless Electrospinning Using a Rotary Cone as Spinneret, Small, vol.4, issue.15, pp.1612-1616, 2010.
DOI : 10.1002/smll.201000454

C. Huang, H. Niu, J. Wu, Q. Ke, X. Mo et al., Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture, Journal of Nanomaterials, vol.202, issue.7, p.7, 2012.
DOI : 10.1016/S0032-3861(02)00820-0

H. Niu, T. Lin, and X. Wang, Needleless Electrospinning: Developments and Performances, Nanofibers ? Production, Properties and Functional Applications, pp.17-36, 2011.
DOI : 10.5772/24999

J. He, Y. Liu, and L. Xu, Apparatus for preparing electrospun nanofibres: a comparative review, Materials Science and Technology, vol.28, issue.11, pp.1275-1287, 2010.
DOI : 10.1016/j.polymer.2004.02.066

Y. Liu and J. He, Bubble Electrospinning for Mass Production of Nanofibers, International Journal of Nonlinear Sciences and Numerical Simulation, vol.13, issue.4, pp.393-396, 2007.
DOI : 10.1016/j.polymer.2005.01.054

P. Supaphol, C. Mit?uppatham, and M. Nithitanakul, Ultrafine electrospun polyamide-6 fibers: Effect of emitting electrode polarity on morphology and average fiber diameter, Journal of Polymer Science Part B: Polymer Physics, vol.19, issue.24, pp.3699-3712, 2005.
DOI : 10.1002/pol.1981.180190601

W. Wei, J. T. Yeh, P. Li, M. R. Li, W. Li et al., Effect of nonsolvent on morphologies of polyamide 6 electrospun fibers, Journal of Applied Polymer Science, vol.49, issue.5, pp.3005-3012, 2010.
DOI : 10.1016/j.polymer.2005.04.021

J. Zeleny, The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure, Journal of the Franklin Institute, vol.219, issue.6, pp.659-675, 1935.
DOI : 10.1016/S0016-0032(35)91985-8

T. J. Sill and H. A. Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials, vol.29, issue.13, 1989.
DOI : 10.1016/j.biomaterials.2008.01.011

W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers, Polymer, vol.45, issue.9, pp.2959-2966, 2004.
DOI : 10.1016/j.polymer.2004.03.006

S. N. Arshad, High strength carbon nanofibers derived from electrospun polyacrylonitrile, 2010.
DOI : 10.1016/j.carbon.2010.12.056

A. K. Haghi and M. Akbari, Trends in electrospinning of natural nanofibers, physica status solidi (a), vol.108, issue.3, pp.1830-1834, 2007.
DOI : 10.1515/IJNSNS.2004.5.1.5

K. Nasouri, A. M. Shoushtari, and A. Kaflou, Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number, Micro & Nano Letters, vol.7, issue.5, pp.423-426, 2012.
DOI : 10.1049/mnl.2012.0054

J. Kleinmeyer, J. Deitzel, and J. Hirvonen, Electrospinning of submicron diameter polymer filaments, 2003.

T. Lin, H. Wang, H. Wang, and X. Wang, Effects of polymer concentration and cationic surfactant on the morphology of electrospun polyacrylonitrile nanofibres, Journal of materials science & technology, vol.21, pp.1-4, 2005.

H. Fong, I. Chun, and D. H. Reneker, Beaded nanofibers formed during electrospinning, Polymer, vol.40, issue.16, pp.4585-4592, 1999.
DOI : 10.1016/S0032-3861(99)00068-3

S. Gu, J. Ren, and G. Vancso, Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers, European Polymer Journal, vol.41, issue.11, pp.2559-2568, 2005.
DOI : 10.1016/j.eurpolymj.2005.05.008

Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park, and D. R. Lee, Transport properties of electrospun nylon 6 nonwoven mats, European Polymer Journal, vol.39, issue.9, pp.1883-1889, 2003.
DOI : 10.1016/S0014-3057(03)00096-X

W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers, Polymer, vol.45, issue.9, pp.2959-2966, 2004.
DOI : 10.1016/j.polymer.2004.03.006

X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, vol.43, issue.16, pp.4403-4412, 2002.
DOI : 10.1016/S0032-3861(02)00275-6

M. Yousefzadeh, M. Latifi, M. Amani-tehran, W. Teo, and S. Ramakrishna, A note on the 3D structural design of electrospun nanofibers, Journal of Engineered Fabrics & Fibers, vol.7, 2012.

J. A. Knopf, Investigation of Linear Electrospinning Jets, 2009.

A. G. Sener, A. S. Altay, and F. Altay, Effect of voltage on morphology of electrospun nanofibers, Electrical and Electronics Engineering (ELECO) 7th International Conference on, pp.324-328, 2011.

Y. Li, Z. Huang, and Y. L?, Electrospinning of nylon-6,66,1010 terpolymer, European Polymer Journal, vol.42, issue.7, pp.1696-1704, 2006.
DOI : 10.1016/j.eurpolymj.2006.02.002

S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers, Macromolecules, vol.35, issue.22, pp.8456-8466, 2002.
DOI : 10.1021/ma020444a

M. B. Bazbouz and G. K. Stylios, Alignment and optimization of nylon 6 nanofibers by electrospinning, Journal of Applied Polymer Science, vol.47, issue.5, pp.3023-3032, 2008.
DOI : 10.1002/app.27407

P. Heikkilä and A. Harlin, Electrospinning of polyacrylonitrile (PAN) solution: Effect of conductive additive and filler on the process, Express Polymer Letters, vol.3, issue.7, pp.437-445, 2009.
DOI : 10.3144/expresspolymlett.2009.53

Y. Ahn, S. Park, G. Kim, Y. Hwang, C. Lee et al., Development of high efficiency nanofilters made of nanofibers, Current Applied Physics, vol.6, issue.6, pp.1030-1035, 2006.
DOI : 10.1016/j.cap.2005.07.013

M. Naraghi, S. Arshad, and I. Chasiotis, Molecular orientation and mechanical property size effects in electrospun polyacrylonitrile nanofibers, Polymer, vol.52, issue.7, pp.1612-1618, 2011.
DOI : 10.1016/j.polymer.2011.02.013

C. Thompson, G. Chase, A. Yarin, and D. Reneker, Effects of parameters on nanofiber diameter determined from electrospinning model, Polymer, vol.48, issue.23, pp.6913-6922, 2007.
DOI : 10.1016/j.polymer.2007.09.017

P. Heikkilä and A. Harlin, Parameter study of electrospinning of polyamide-6, European Polymer Journal, vol.44, issue.10, pp.3067-3079, 2008.
DOI : 10.1016/j.eurpolymj.2008.06.032

C. Wang, H. Chien, K. Yan, C. Hung, K. Hung et al., Correlation between processing parameters and microstructure of electrospun poly(D,l-lactic acid) nanofibers, Polymer, vol.50, issue.25, pp.6100-6110, 2009.
DOI : 10.1016/j.polymer.2009.10.025

C. J. Angammana, A Study of the Effects of Solution and Process Parameters on the Electrospinning Process and Nanofibre Morphology, 2011.

H. I. Icoglu and R. T. Ogulata, Effect of ambient parameters on morphology of electrospun polyetherimide (PEI) fibers, TEKSTIL VE KONFEKSIYON, vol.23, pp.313-318, 2013.

E. S. Medeiros, L. H. Mattoso, R. D. Offeman, D. F. Wood, and W. J. Orts, Effect of relative humidity on the morphology of electrospun polymer fibers, Canadian Journal of Chemistry, vol.29, issue.6, pp.590-599, 2008.
DOI : 10.1007/BF00446002

E. Marsano, L. Francis, and F. Giunco, Polyamide 6 nanofibrous nonwovens via electrospinning, Journal of Applied Polymer Science, vol.37, pp.1754-1765, 2010.
DOI : 10.1002/app.32118

C. B. Giller, D. B. Chase, J. F. Rabolt, and C. M. Snively, Effect of solvent evaporation rate on the crystalline state of electrospun Nylon 6, Polymer, vol.51, issue.18, pp.4225-4230, 2010.
DOI : 10.1016/j.polymer.2010.06.057

S. Vrieze, T. Camp, A. Nelvig, B. Hagström, P. Westbroek et al., The effect of temperature and humidity on electrospinning, Journal of Materials Science, vol.5, issue.5, pp.1357-1362, 2008.
DOI : 10.6028/jres.081A.011

M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry, Talanta, vol.76, issue.5, pp.965-977, 2008.
DOI : 10.1016/j.talanta.2008.05.019

N. A. Gershenfeld, The Nature of Mathematical Modeling, 1999.

A. Ford, Modeling the Environment, 2009.

X. Yan, Linear Regression Analysis: Theory and Computing, 2009.
DOI : 10.1142/6986

A. French, M. Macedo, J. Poulsen, T. Waterson, and A. Yu, Multivariate analysis of variance (MANOVA), 2008.

G. E. Box, J. S. Hunter, and W. G. Hunter, Statistics for experimenters: design, innovation, and discovery, 2005.

M. Inc, What is a mixture design? Available: http, 2016.

K. D. Kim, D. N. Han, and H. T. Kim, Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method, Chemical Engineering Journal, vol.104, issue.1-3, pp.55-61, 2004.
DOI : 10.1016/j.cej.2004.08.003

M. Nalbant, H. Gökkaya, and G. Sur, Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning, Materials & Design, vol.28, issue.4, pp.1379-1385, 2007.
DOI : 10.1016/j.matdes.2006.01.008

W. Liu and S. Adanur, Properties of Electrospun Polyacrylonitrile Membranes and Chemically-activated Carbon Nanofibers, Textile Research Journal, vol.30, issue.2, 2009.
DOI : 10.1021/bm701225a

J. He, Y. Wan, and J. Yu, Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers, Fibers and Polymers, vol.6, issue.2, pp.140-142, 2008.
DOI : 10.1007/s12221-008-0023-3

M. G. Mckee, G. L. Wilkes, R. H. Colby, and T. E. Long, Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters, Macromolecules, vol.37, issue.5, pp.1760-1767, 2004.
DOI : 10.1021/ma035689h

M. M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of polyurethane fibers, Polymer, vol.43, issue.11, pp.3303-3309, 2002.
DOI : 10.1016/S0032-3861(02)00136-2

O. S. Yördem, M. Papila, and Y. Z. Mencelo?lu, Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology, Materials & Design, vol.29, issue.1, pp.34-44, 2008.
DOI : 10.1016/j.matdes.2006.12.013

D. H. Reneker, A. Yarin, E. Zussman, S. Koombhongse, and W. Kataphinan, Nanofiber Manufacturing: Toward Better Process Control, ACS symposium series, pp.7-20, 2006.
DOI : 10.1021/bk-2006-0918.ch002

S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus, and F. Ko, Regeneration of Bombyx mori silk by electrospinning???part 1: processing parameters and geometric properties, Polymer, vol.44, issue.19, pp.5721-5727, 2003.
DOI : 10.1016/S0032-3861(03)00532-9

J. Chen, K. Ho, Y. Chiang, and K. Wu, Fabrication of electrospun poly(methyl methacrylate) nanofibrous membranes by statistical approach for application in enzyme immobilization, Journal of Membrane Science, vol.340, issue.1-2, pp.9-15, 2009.
DOI : 10.1016/j.memsci.2009.05.002

J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H. Chen et al., Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven mat, Polymer, vol.46, issue.5, pp.1625-1634, 2005.
DOI : 10.1016/j.polymer.2004.11.029

X. Zhuang, B. Cheng, W. Kang, and X. Xu, Electrospun chitosan/gelatin nanofibers containing silver nanoparticles, Carbohydrate Polymers, vol.82, issue.2, pp.524-527, 2010.
DOI : 10.1016/j.carbpol.2010.04.085

Y. Zhang, B. Su, J. Venugopal, S. Ramakrishna, and C. Lim, Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers, International Journal of Nanomedicine, vol.2, pp.623-638

L. Fagundes, T. Sousa, A. Sousa, V. Silva, and E. Sousa, SBA-15-collagen hybrid material for drug delivery applications, Journal of Non-Crystalline Solids, vol.352, issue.32-35, pp.3496-3501, 2006.
DOI : 10.1016/j.jnoncrysol.2006.03.111

G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin, Electrospinning of Nanofiber Fibrinogen Structures, Nano Letters, vol.3, issue.2, pp.213-216, 2003.
DOI : 10.1021/nl025866c

X. Xu and M. Zhou, Antimicrobial gelatin nanofibers containing silver nanoparticles, Fibers and Polymers, vol.98, issue.6, pp.685-690, 2008.
DOI : 10.1016/j.nano.2006.12.001

C. P. Barnes¹, M. J. Smith¹, G. L. Bowlin¹, S. A. Sell¹, T. Tang¹ et al., Feasibility of electrospinning the globular proteins hemoglobin and myoglobin, 2006.

R. Nirmala, H. Park, R. Navamathavan, H. Kang, M. H. El-newehy et al., Lecithin blended polyamide-6 high aspect ratio nanofiber scaffolds via electrospinning for human osteoblast cell culture, Materials Science and Engineering: C, vol.31, issue.2, pp.486-493, 2011.
DOI : 10.1016/j.msec.2010.11.013

M. R. Karim, H. W. Lee, R. Kim, B. C. Ji, J. W. Cho et al., Preparation and characterization of electrospun pullulan/montmorillonite nanofiber mats in aqueous solution, Carbohydrate Polymers, vol.78, issue.2, pp.336-342, 2009.
DOI : 10.1016/j.carbpol.2009.04.024

L. Kong and G. R. Ziegler, Role of Molecular Entanglements in Starch Fiber Formation by Electrospinning, Biomacromolecules, vol.13, issue.8, pp.2247-2253, 2012.
DOI : 10.1021/bm300396j

L. M. Guerrini, M. C. Branciforti, T. Canova, and R. E. Bretas, Electrospinning and characterization of polyamide 66 nanofibers with different molecular weights, Materials Research, vol.42, issue.7, pp.181-190, 2009.
DOI : 10.1016/j.eurpolymj.2006.02.002

B. Ding, M. Yamazaki, and S. Shiratori, Electrospun fibrous polyacrylic acid membrane-based gas sensors, Sensors and Actuators B: Chemical, vol.106, issue.1, pp.477-483, 2005.
DOI : 10.1016/j.snb.2004.09.010

N. Kattamuri and C. Sung, Uniform polycarbonate nanofibers produced by electrospinning, Macromolecules, vol.3, p.425, 2004.

H. Hou, J. J. Ge, J. Zeng, Q. Li, D. H. Reneker et al., Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes, Chemistry of Materials, vol.17, issue.5, pp.967-973, 2005.
DOI : 10.1021/cm0484955

S. Moon, J. Choi, and R. J. Farris, Preparation of aligned polyetherimide fiber by electrospinning, Journal of Applied Polymer Science, vol.313, issue.2, pp.691-694, 2008.
DOI : 10.1098/rspa.1969.0205

M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, Electrospun nanofibrous polyurethane membrane as wound dressing, Journal of Biomedical Materials Research, vol.19, issue.2, pp.675-679, 2003.
DOI : 10.1002/jbm.b.10058

H. Zhu, S. Qiu, W. Jiang, D. Wu, and C. Zhang, Evaluation of Electrospun Polyvinyl Chloride/Polystyrene Fibers As Sorbent Materials for Oil Spill Cleanup, Environmental Science & Technology, vol.45, issue.10, pp.4527-4531, 2011.
DOI : 10.1021/es2002343

M. Jannesari, J. Varshosaz, M. Morshed, and M. Zamani, Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, Int J Nanomedicine, vol.6, pp.993-1003, 2011.

R. Gopal, S. Kaur, C. Y. Feng, C. Chan, S. Ramakrishna et al., Electrospun nanofibrous polysulfone membranes as pre-filters: Particulate removal, Journal of Membrane Science, vol.289, issue.1-2, pp.210-219, 2007.
DOI : 10.1016/j.memsci.2006.11.056

S. Imaizumi, H. Matsumoto, K. Suzuki, M. Minagawa, M. Kimura et al., Phenolic Resin-Based Carbon Thin Fibers Prepared by Electrospinning: Additive Effects of Poly(vinyl butyral) and Electrolytes, Polymer Journal, vol.6, issue.1, pp.1124-1128, 2009.
DOI : 10.1109/TED.2008.2005166

C. Yang, Z. Jia, Z. Guan, and L. Wang, Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries, Journal of Power Sources, vol.189, issue.1, pp.716-720, 2009.
DOI : 10.1016/j.jpowsour.2008.08.060

E. Kenawy, A. E. , -. R. El-shanshoury, N. O. Shaker, B. M. El-sadek et al., Synthesis and Biocide Activity of Polymers Based on Poly (hydroxy styrene) and Poly (hydroxy styrene-co-2-hydroxyethyl methacrylate), Main Group Chemistry, vol.12, pp.293-306, 2013.

A. G. Mikos, M. D. Lyman, L. E. Freed, and R. Langer, Wetting of poly(l-lactic acid) and poly(dl-lactic-co-glycolic acid) foams for tissue culture, Biomaterials, vol.15, issue.1, pp.55-58, 1994.
DOI : 10.1016/0142-9612(94)90197-X

C. Luo, E. Stride, and M. Edirisinghe, Mapping the Influence of Solubility and Dielectric Constant on Electrospinning Polycaprolactone Solutions, Macromolecules, vol.45, issue.11, pp.4669-4680, 2012.
DOI : 10.1021/ma300656u

C. Chen, L. Wang, and Y. Huang, Electrospinning of thermo-regulating ultrafine fibers based on polyethylene glycol/cellulose acetate composite, Polymer, vol.48, issue.18, pp.5202-5207, 2007.
DOI : 10.1016/j.polymer.2007.06.069

S. Nataraj, K. Yang, and T. Aminabhavi, Polyacrylonitrile-based nanofibers?a stateof-the-art review, Progress in polymer science, pp.487-513, 2012.

T. Maitra, S. Sharma, A. Srivastava, Y. Cho, M. Madou et al., Improved graphitization and electrical conductivity of suspended carbon nanofibers derived from carbon nanotube/polyacrylonitrile composites by directed electrospinning, Carbon, vol.50, issue.5, pp.1753-1761, 2012.
DOI : 10.1016/j.carbon.2011.12.021

M. S. Rahaman, A. F. Ismail, and A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polymer Degradation and Stability, vol.92, issue.8, pp.1421-1432, 2007.
DOI : 10.1016/j.polymdegradstab.2007.03.023

P. Morgan, Carbon Fibers and Their Composites, 2005.
DOI : 10.1201/9781420028744

C. Lai, G. Zhong, Z. Yue, G. Chen, L. Zhang et al., Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers, Polymer, vol.52, issue.2, pp.519-528, 2011.
DOI : 10.1016/j.polymer.2010.11.044

F. Agend, N. Naderi, and R. Fareghi?alamdari, Fabrication and electrical characterization of electrospun polyacrylonitrile-derived carbon nanofibers, Journal of Applied Polymer Science, vol.2, issue.1, pp.255-259, 2007.
DOI : 10.1002/app.26476

R. Jalili, M. Morshed, and S. A. Ravandi, Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers, Journal of Applied Polymer Science, vol.14, issue.6, pp.4350-4357, 2006.
DOI : 10.1002/app.24290

N. Li, Q. Hui, H. Xue, and J. Xiong, Electrospun Polyacrylonitrile nanofiber yarn prepared by funnel-shape collector, Materials Letters, vol.79, pp.245-247, 2012.
DOI : 10.1016/j.matlet.2012.04.005

S. Li, J. Chen, and W. Wu, Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization, Journal of Molecular Catalysis B: Enzymatic, vol.47, issue.3-4, pp.117-124, 2007.
DOI : 10.1016/j.molcatb.2007.04.010

T. Yang, Y. Yao, Y. Lin, B. Wang, R. Xiang et al., Electrospinning of polyacrylonitrile fibers from ionic liquid solution, Applied Physics A, vol.103, issue.3, pp.517-523, 2010.
DOI : 10.1007/s00216-002-1684-1

X. Yu, H. Xiang, Y. Long, N. Zhao, X. Zhang et al., Preparation of porous polyacrylonitrile fibers by electrospinning a ternary system of PAN/DMF/H2O, Materials Letters, vol.64, issue.22, pp.2407-2409, 2010.
DOI : 10.1016/j.matlet.2010.08.006

T. Wang and S. Kumar, Electrospinning of polyacrylonitrile nanofibers, Journal of Applied Polymer Science, vol.42, issue.188, pp.1023-1029, 2006.
DOI : 10.1016/j.polymer.2005.04.021

D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, vol.7, issue.3, p.216, 1996.
DOI : 10.1088/0957-4484/7/3/009

X. H. Qin, E. L. Yang, N. Li, and S. Y. Wang, Effect of different salts on electrospinning of polyacrylonitrile (PAN) polymer solution, Journal of Applied Polymer Science, vol.14, issue.6, pp.3865-3870, 2007.
DOI : 10.1002/app.25498

S. N. Arshad, M. Naraghi, and I. Chasiotis, Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon, vol.49, issue.5, pp.1710-1719, 2011.
DOI : 10.1016/j.carbon.2010.12.056

G. Che, B. Lakshmi, C. Martin, E. Fisher, and R. S. Ruoff, Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method, Chemistry of Materials, vol.10, issue.1, pp.260-267, 1998.
DOI : 10.1021/cm970412f

M. Adabi, R. Saber, R. Faridi-majidi, and F. Faridbod, Performance of electrodes synthesized with polyacrylonitrile-based carbon nanofibers for application in electrochemical sensors and biosensors, Materials Science and Engineering: C, vol.48, pp.673-678, 2015.
DOI : 10.1016/j.msec.2014.12.051

H. Ono and A. Oya, Preparation of highly crystalline carbon nanofibers from pitch/polymer blend, Carbon, vol.44, issue.4, pp.682-686, 2006.
DOI : 10.1016/j.carbon.2005.09.021

J. Liu, Z. Yue, and H. Fong, Continuous Nanoscale Carbon Fibers with Superior Mechanical Strength, Small, vol.52, issue.5, pp.536-542, 2009.
DOI : 10.1007/BF00772715

M. Wu, Q. Wang, K. Li, Y. Wu, and H. Liu, Optimization of stabilization conditions for electrospun polyacrylonitrile nanofibers, Polymer Degradation and Stability, vol.97, issue.8, pp.1511-1519, 2012.
DOI : 10.1016/j.polymdegradstab.2012.05.001

R. Houtz, "Orlon" Acrylic Fiber: Chemistry and Properties, Textile Research Journal, vol.3, issue.6, pp.786-801, 1950.
DOI : 10.1002/pol.1948.120030513

N. Grassie, J. N. Hay, and I. C. Mcneill, Coloration in acrylonitrile and methacrylonitrile polymers, Journal of Polymer Science, vol.31, issue.122, pp.205-206, 1958.
DOI : 10.1002/pol.1958.1203112232

N. Grassie and J. Hay, Thermal coloration and insolubilization in polyacrylonitrile, Journal of Polymer Science, vol.56, issue.163, pp.189-202, 1962.
DOI : 10.1002/pol.1962.1205616316

J. Schurz, Discoloration effects in acrylonitrile polymers, Journal of Polymer Science, vol.28, issue.117, pp.438-439, 1958.
DOI : 10.1002/pol.1958.1202811724

S. Dalton, F. Heatley, and P. M. Budd, Thermal stabilization of polyacrylonitrile fibres, Polymer, vol.40, issue.20, pp.5531-5543, 1999.
DOI : 10.1016/S0032-3861(98)00778-2

Y. Yang, F. Simeon, T. A. Hatton, and G. C. Rutledge, Polyacrylonitrile-based electrospun carbon paper for electrode applications, Journal of Applied Polymer Science, vol.37, issue.5, pp.3861-3870, 2012.
DOI : 10.1021/ac60230a016

D. Zhu, C. Xu, N. Nakura, and M. Matsuo, Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution, Carbon, vol.40, issue.3, pp.363-373, 2002.
DOI : 10.1016/S0008-6223(01)00116-6

B. O. Donnet and J. , Encyclopedia of Physical Science and Technology, 1987.

I. Chen, C. Wang, and C. Chen, Fabrication and Structural Characterization of Polyacrylonitrile and Carbon Nanofibers Containing Plasma-Modified Carbon Nanotubes by Electrospinning, The Journal of Physical Chemistry C, vol.114, issue.32, pp.13532-13539, 2010.
DOI : 10.1021/jp103993b

Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou et al., Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties, Polymer, vol.50, issue.13, pp.2999-3006, 2009.
DOI : 10.1016/j.polymer.2009.04.058

L. Zhang and Y. Hsieh, Carbon nanofibers with nanoporosity and hollow channels from binary polyacrylonitrile systems, European Polymer Journal, vol.45, issue.1, pp.47-56, 2009.
DOI : 10.1016/j.eurpolymj.2008.09.035

T. H. Ko, The influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization, Journal of Applied Polymer Science, vol.43, issue.3, pp.589-600, 1991.
DOI : 10.1002/app.1991.070430321

T. H. Ko and L. C. Huang, The influence of cobaltous chloride modification on physical properties and microstructure of modified PAN fiber during carbonization, Journal of Applied Polymer Science, vol.70, issue.12, pp.2409-2415, 1998.
DOI : 10.1002/(SICI)1097-4628(19981219)70:12<2409::AID-APP13>3.0.CO;2-0

S. Moon, J. Choi, and R. J. Farris, Highly porous polyacrylonitrile/polystyrene nanofibers by electrospinning, Fibers and Polymers, vol.41, issue.3, pp.276-280, 2008.
DOI : 10.1007/s12221-008-0044-y

Y. Chen, Z. Lu, L. Zhou, Y. Mai, and H. Huang, In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries, Nanoscale, vol.49, issue.21, pp.6800-6805, 2012.
DOI : 10.1016/j.carbon.2011.06.059

R. Ding, H. Wu, M. Thunga, N. Bowler, and M. R. Kessler, Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends, Carbon, vol.100, pp.126-136, 2016.
DOI : 10.1016/j.carbon.2015.12.078

M. Lisunova, A. Hildmann, B. Hatting, V. Datsyuk, and S. Reich, Nanofibres of CA/PAN with high amount of carbon nanotubes by core???shell electrospinning, Composites Science and Technology, vol.70, issue.11, pp.1584-1588, 2010.
DOI : 10.1016/j.compscitech.2010.07.001

URL : https://hal.archives-ouvertes.fr/hal-00666481

S. Park, B. Kim, and W. Lee, Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells, Journal of Power Sources, vol.239, pp.122-127, 2013.
DOI : 10.1016/j.jpowsour.2013.03.079

H. Chen, N. Wang, J. Di, Y. Zhao, Y. Song et al., Nanowire-in-Microtube Structured Core/Shell Fibers via Multifluidic Coaxial Electrospinning, Langmuir, vol.26, issue.13, pp.11291-11296, 2010.
DOI : 10.1021/la100611f

N. E. Zander, K. E. Strawhecker, J. A. Orlicki, A. M. Rawlett, and T. P. Beebe-jr, Coaxial Electrospun Poly(methyl methacrylate)???Polyacrylonitrile Nanofibers: Atomic Force Microscopy and Compositional Characterization, The Journal of Physical Chemistry B, vol.115, issue.43, pp.12441-12447, 2011.
DOI : 10.1021/jp205577r

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210579/pdf

A. V. Bazilevsky, A. L. Yarin, and C. M. Megaridis, Co-electrospinning of Core???Shell Fibers Using a Single-Nozzle Technique, Langmuir, vol.23, issue.5, pp.2311-2314, 2007.
DOI : 10.1021/la063194q

C. Kim, Y. I. Jeong, B. T. Ngoc, K. S. Yang, M. Kojima et al., Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs, Small, vol.36, issue.1, pp.91-95, 2007.
DOI : 10.1142/5894

P. Gupta, The Effect of Cooperative Charging On Filtration Properties Of Electrically Dissimilar Electrospun Nanofibers Of Polymers, PhD, Chemical Engineering, 2004.

T. Lin, H. Wang, and X. Wang, Self-Crimping Bicomponent Nanofibers Electrospun from Polyacrylonitrile and Elastomeric Polyurethane, Advanced Materials, vol.286, issue.188, pp.2699-2703, 2005.
DOI : 10.1002/adma.200500901

W. Wang, Z. Li, X. Xu, B. Dong, H. Zhang et al., Au-Doped Polyacrylonitrile-Polyaniline Core-Shell Electrospun Nanofibers Having High Field-Effect Mobilities, Small, vol.113, issue.5, pp.597-600, 2011.
DOI : 10.1021/jp900274b

J. Wang, K. Pan, Q. He, and B. Cao, Polyacrylonitrile/polypyrrole core/shell nanofiber mat for the removal of hexavalent chromium from aqueous solution, Journal of Hazardous Materials, vol.244, issue.245, pp.121-129, 2013.
DOI : 10.1016/j.jhazmat.2012.11.020

Y. Chou, C. Shao, X. Li, C. Su, H. Xu et al., BiOCl nanosheets immobilized on electrospun polyacrylonitrile nanofibers with high photocatalytic activity and reusable property, Applied Surface Science, vol.285, pp.509-516, 2013.
DOI : 10.1016/j.apsusc.2013.08.085

L. Ji and X. Zhang, Ultrafine polyacrylonitrile/silica composite fibers via electrospinning, Materials Letters, vol.62, issue.14, pp.2161-2164, 2008.
DOI : 10.1016/j.matlet.2007.11.051

L. Chen, S. Hong, X. Zhou, Z. Zhou, and H. Hou, Novel Pd-carrying composite carbon nanofibers based on polyacrylonitrile as a catalyst for Sonogashira coupling reaction, Catalysis Communications, vol.9, issue.13, pp.2221-2225, 2008.
DOI : 10.1016/j.catcom.2008.05.002

C. Su, Y. Tong, M. Zhang, Y. Zhang, and C. Shao, TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers mats: a flexible and recyclable photocatalyst for phenol degradation, RSC Advances, vol.101, issue.20, pp.7503-7512, 2013.
DOI : 10.1016/j.cattod.2005.03.018

H. Yu, Z. Jiao, H. Hu, G. Lu, J. Ye et al., Fabrication of Ag3PO4???PAN composite nanofibers for photocatalytic applications, CrystEngComm, vol.47, issue.559, pp.4802-4805, 2013.
DOI : 10.1002/anie.200802483

D. Zhang, A. B. Karki, D. Rutman, D. P. Young, A. Wang et al., Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis, Polymer, vol.50, issue.17, pp.4189-4198, 2009.
DOI : 10.1016/j.polymer.2009.06.062

L. Ji, Z. Lin, A. J. Medford, and X. Zhang, Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material, Carbon, vol.47, issue.14, pp.3346-3354, 2009.
DOI : 10.1016/j.carbon.2009.08.002

L. Ji and X. Zhang, Electrospun carbon nanofibers containing silicon particles as an energy-storage medium, Carbon, vol.47, issue.14, pp.3219-3226, 2009.
DOI : 10.1016/j.carbon.2009.07.039

J. Liwen, S. Carl, A. K. Saad, and Z. Xiangwu, Preparation and characterization of silica nanoparticulate ? polyacrylonitrile composite and porous nanofibers, Nanotechnology, vol.19, p.85605, 2008.

H. Jung, D. Ju, W. Lee, X. Zhang, and R. Kotek, Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes, Electrochimica Acta, vol.54, issue.13, pp.3630-3637, 2009.
DOI : 10.1016/j.electacta.2009.01.039

X. H. Qin and S. Y. Wang, Filtration properties of electrospinning nanofibers, Journal of Applied Polymer Science, vol.37, issue.2, pp.1285-1290, 2006.
DOI : 10.1002/app.24361

D. Y. Lee, K. Lee, B. Kim, and N. Cho, Silver nanoparticles dispersed in electrospun polyacrylonitrile nanofibers via chemical reduction, Journal of Sol-Gel Science and Technology, vol.275, issue.1, pp.63-68, 2010.
DOI : 10.1007/s10971-010-2158-0

Y. Wang, Q. Yang, G. Shan, C. Wang, J. Du et al., Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning, Materials Letters, vol.59, issue.24-25, pp.3046-3049, 2005.
DOI : 10.1016/j.matlet.2005.05.016

G. N. Sichani, M. Morshed, M. Amirnasr, and D. Abedi, In situ preparation, electrospinning, and characterization of polyacrylonitrile nanofibers containing silver nanoparticles, Journal of Applied Polymer Science, vol.65, pp.1021-1029, 2010.
DOI : 10.1002/app.31436

B. Kim, K. S. Yang, and H. Woo, Thin, bendable electrodes consisting of porous carbon nanofibers via the electrospinning of polyacrylonitrile containing tetraethoxy orthosilicate for supercapacitor, Electrochemistry Communications, vol.13, issue.10, pp.1042-1046, 2011.
DOI : 10.1016/j.elecom.2011.06.024

Y. Yu, Q. Yang, D. Teng, X. Yang, and S. Ryu, Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries, Electrochemistry Communications, vol.12, issue.9, pp.1187-1190, 2010.
DOI : 10.1016/j.elecom.2010.06.015

Z. Yang, G. Du, Q. Meng, Z. Guo, X. Yu et al., Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance, Journal of Materials Chemistry, vol.388, issue.14, pp.5848-5854, 2012.
DOI : 10.1016/j.carbon.2009.07.039

S. Nataraj, B. Kim, M. Dela-cruz, J. Ferraris, T. Aminabhavi et al., Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning, Materials Letters, vol.63, issue.2, pp.218-220, 2009.
DOI : 10.1016/j.matlet.2008.09.060

Z. Liu, C. Zhou, B. Zheng, L. Qian, Y. Mo et al., In situ synthesis of gold nanoparticles on porous polyacrylonitrile nanofibers for sensing applications, The Analyst, vol.109, issue.21, pp.4545-4551, 2011.
DOI : 10.1021/jp052843o

Y. T. Ong, A. L. Ahmad, S. H. Zein, and S. H. Tan, A review on carbon nanotubes in an environmental protection and green engineering perspective, Brazilian Journal of Chemical Engineering, vol.19, issue.46, pp.227-242, 2010.
DOI : 10.1016/j.bios.2009.02.028

J. Choy and Y. Zhang, Properties and Applications of Single-, Double-and Multi- Walled Carbon Nanotubes, 2014.

. Nanowerk, Carbon Nanotubes 101 ? Properties Available

M. Moniruzzaman and K. I. Winey, Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules, vol.39, issue.16, pp.5194-5205, 2006.
DOI : 10.1021/ma060733p

H. Guo, M. L. Minus, S. Jagannathan, and S. Kumar, Polyacrylonitrile/Carbon Nanotube Composite Films, ACS Applied Materials & Interfaces, vol.2, issue.5, pp.1331-1342, 2010.
DOI : 10.1021/am100155x

S. Prilutsky, E. Zussman, and Y. Cohen, The effect of embedded carbon nanotubes on the morphological evolution during the carbonization of poly(acrylonitrile) nanofibers, Nanotechnology, vol.19, issue.16, p.165603, 2008.
DOI : 10.1088/0957-4484/19/16/165603

X. Pei, W. Liu, and J. Hao, Functionalization of multiwalled carbon nanotube via surface reversible addition fragmentation chain transfer polymerization and as lubricant additives, Journal of Polymer Science Part A: Polymer Chemistry, vol.49, issue.9, pp.3014-3023, 2008.
DOI : 10.1002/pola.22639

G. Mountrichas, S. Pispas, and N. Tagmatarchis, Grafting-to approach for the functionalization of carbon nanotubes with polystyrene, Materials Science and Engineering: B, vol.152, issue.1-3, pp.40-43, 2008.
DOI : 10.1016/j.mseb.2008.06.006

A. Shanmugharaj, J. Bae, R. R. Nayak, and S. H. Ryu, Preparation of poly(styrene-co-acrylonitrile)-grafted multiwalled carbon nanotubes via surface-initiated atom transfer radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, vol.125, issue.3, pp.460-470, 2007.
DOI : 10.1002/pola.21858

J. Ji, G. Sui, Y. Yu, Y. Liu, Y. Lin et al., Significant Improvement of Mechanical Properties Observed in Highly Aligned Carbon-Nanotube-Reinforced Nanofibers, The Journal of Physical Chemistry C, vol.113, issue.12, pp.4779-4785, 2009.
DOI : 10.1021/jp8077198

J. S. Im, S. J. Kim, P. H. Kang, and Y. Lee, The improved electrical conductivity of carbon nanofibers by fluorinated MWCNTs, Journal of Industrial and Engineering Chemistry, vol.15, issue.5, pp.699-702, 2009.
DOI : 10.1016/j.jiec.2009.09.048

E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper, Chemical Physics Letters, vol.413, issue.1-3, pp.188-193, 2005.
DOI : 10.1016/j.cplett.2005.07.061

G. Mathew, J. P. Hong, J. M. Rhee, H. S. Lee, and C. Nah, Preparation and characterization of properties of electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes, Polymer Testing, vol.24, issue.6, pp.712-717, 2005.
DOI : 10.1016/j.polymertesting.2005.05.002

J. J. Ge, H. Hou, Q. Li, M. J. Graham, A. Greiner et al., Assembly of Well-Aligned Multiwalled Carbon Nanotubes in Confined Polyacrylonitrile Environments:?? Electrospun Composite Nanofiber Sheets, Journal of the American Chemical Society, vol.126, issue.48, pp.15754-15761, 2004.
DOI : 10.1021/ja048648p

P. Heikkilä, Nanostructured Fibre Composites, and Materials for Air Filtration, 2008.

E. Zussman, X. Chen, W. Ding, L. Calabri, D. Dikin et al., Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers, Carbon, vol.43, issue.10, pp.2175-2185, 2005.
DOI : 10.1016/j.carbon.2005.03.031

Y. Wang, J. J. Santiago-aviles, R. Furlan, and I. Ramos, Pyrolysis temperature and time dependence of electrical conductivity evolution for electrostatically generated carbon nanofibers, IEEE Transactions On Nanotechnology, vol.2, issue.1, pp.39-43, 2003.
DOI : 10.1109/TNANO.2003.808510

K. Chakrabarti, P. Nambissan, C. Mukherjee, K. Bardhan, C. Kim et al., Positron annihilation spectroscopy of polyacrylonitrile-based carbon fibers embedded with multi-wall carbon nanotubes, Carbon, vol.44, issue.5, pp.948-953, 2006.
DOI : 10.1016/j.carbon.2005.10.014

J. Che, T. Cagin, W. A. Goddard, and I. , Thermal conductivity of carbon nanotubes, Nanotechnology, vol.11, issue.2, p.65, 2000.
DOI : 10.1088/0957-4484/11/2/305

W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering, Journal of Biomedical Materials Research, vol.13, issue.4, pp.613-621, 2002.
DOI : 10.1016/0738-081X(95)00078-T

Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds, Tissue Engineering, vol.11, issue.1-2, pp.101-109, 2005.
DOI : 10.1089/ten.2005.11.101

R. L. Mauck, B. M. Baker, N. L. Nerurkar, J. A. Burdick, W. Li et al., Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration, Tissue Engineering Part B: Reviews, vol.15, issue.2, pp.171-193, 2009.
DOI : 10.1089/ten.teb.2008.0652

C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Electrospun Nanofiber Fabrication as Synthetic Extracellular Matrix and Its Potential for Vascular Tissue Engineering, Tissue Engineering, vol.10, issue.7-8, pp.1160-1168, 2004.
DOI : 10.1089/ten.2004.10.1160

T. Jun, T. A. Ho, M. Rashid, and Y. S. Kim, A Novel Methanol Sensor Based on Gas-Penetration Through a Porous Polypyrrole-Coated Polyacrylonitrile Nanofiber Mat, Journal of Nanoscience and Nanotechnology, vol.13, issue.9, pp.6249-6253, 2013.
DOI : 10.1166/jnn.2013.7693

J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You et al., Fabrication of Ultrafine Metal-Oxide-Decorated Carbon Nanofibers for DMMP Sensor Application, ACS Nano, vol.5, issue.10, pp.7992-8001, 2011.
DOI : 10.1021/nn202471f

C. Kim, B. T. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim et al., Self-Sustained Thin Webs Consisting of Porous Carbon Nanofibers for Supercapacitors via the Electrospinning of Polyacrylonitrile Solutions Containing Zinc Chloride, Advanced Materials, vol.10, issue.17, pp.2341-2346, 2007.
DOI : 10.1016/S0008-6223(01)00268-8

C. Kim and K. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning, Applied Physics Letters, vol.3, issue.6, pp.1216-1218, 2003.
DOI : 10.1149/1.1490535

L. Chen, L. Bromberg, H. Schreuder-gibson, J. Walker, T. A. Hatton et al., Chemical protection fabrics via surface oximation of electrospun polyacrylonitrile fiber mats, Journal of Materials Chemistry, vol.116, issue.188, pp.2432-2438, 2009.
DOI : 10.1557/mrs2003.168

L. Zhang, J. Luo, T. J. Menkhaus, H. Varadaraju, Y. Sun et al., Antimicrobial nano-fibrous membranes developed from electrospun polyacrylonitrile nanofibers, Journal of Membrane Science, vol.369, issue.1-2, pp.499-505, 2011.
DOI : 10.1016/j.memsci.2010.12.032

C. L. Phillip, F. Gibson, D. Ko, and . Reneker, Application of Nanofiber Technology to Nonwoven Thermal Insulation, Journal of Engineered Fibers and Fabrics, vol.2, pp.32-40, 2007.

K. J. Lee, N. Shiratori, G. H. Lee, J. Miyawaki, I. Mochida et al., Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent, Carbon, vol.48, issue.15, pp.4248-4255, 2010.
DOI : 10.1016/j.carbon.2010.07.034

K. Saeed, S. Y. Park, and T. J. Oh, Preparation of hydrazine-modified polyacrylonitrile nanofibers for the extraction of metal ions from aqueous media, Journal of Applied Polymer Science, vol.97, issue.188, pp.869-873, 2011.
DOI : 10.1002/app.21825

H. Xiang, S. Tan, X. Y. Zhang, and N. Zhao, Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes, Chinese Journal of Polymer Science, vol.70, issue.8, pp.650-657, 2011.
DOI : 10.1016/j.apacoust.2009.03.003

H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang et al., Surface modification of electrospun polyacrylonitrile nanofiber towards developing an affinity membrane for bromelain adsorption, Desalination, vol.256, issue.1-3, pp.141-147, 2010.
DOI : 10.1016/j.desal.2010.01.026

R. Bagherzadeh, M. Latifi, S. S. Najar, M. Gorji, and L. Kong, Transport properties of multi-layer fabric based on electrospun nanofiber mats as a breathable barrier textile material, Textile Research Journal, vol.34, issue.1, pp.70-76, 2012.
DOI : 10.1016/j.memsci.2006.09.020

A. P. Sawhney, B. Condon, K. V. Singh, S. S. Pang, G. Li et al., Modern Applications of Nanotechnology in Textiles, Textile Research Journal, vol.12, issue.3, pp.731-739, 2008.
DOI : 10.1016/S0011-9164(03)00386-2

B. Johnson and K. Standiford, Practical Heating Technology: Cengage Learning, Heat Transfer and Cooking, vol.225, p.9, 2007.

. Available, Energy Conservation Program: Test Procedures for Conventional Cooking Products; Proposed Rule, United States: Office of the Federal Register, National Archives and Records Service, General Services Administration, 2014.

. Frima, VarioBoost?: the patented heating system will really speed up your cooking Available: https, 2015.

H. R. Pant, M. P. Bajgai, C. Yi, R. Nirmala, K. T. Nam et al., Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.370, issue.1-3, pp.87-94, 2010.
DOI : 10.1016/j.colsurfa.2010.08.051

R. Sinclair, Textiles and Fashion: Materials, Design and Technology, 2014.

S. Zhang, W. S. Shim, and J. Kim, Design of ultra-fine nonwovens via electrospinning of Nylon 6: Spinning parameters and filtration efficiency, Materials & Design, vol.30, issue.9, pp.3659-3666, 2009.
DOI : 10.1016/j.matdes.2009.02.017

M. B. Bazbouz and G. K. Stylios, The tensile properties of electrospun nylon 6 single nanofibers, Journal of Polymer Science Part B: Polymer Physics, vol.48, issue.42, pp.1719-1731, 2010.
DOI : 10.1002/polb.21993

C. Mit?uppatham, M. Nithitanakul, and P. Supaphol, Effects of Solution Concentration, Emitting Electrode Polarity, Solvent Type, and Salt Addition on Electrospun Polyamide-6 Fibers: A Preliminary Report, Macromolecular Symposia, pp.293-300, 2004.
DOI : 10.1002/masy.200451227

S. S. Ojha, M. Afshari, R. Kotek, and R. E. Gorga, Morphology of electrospun nylon-6 nanofibers as a function of molecular weight and processing parameters, Journal of Applied Polymer Science, vol.41, issue.1, pp.308-319, 2008.
DOI : 10.1002/pol.1981.180190603

R. Nirmala, H. R. Panth, C. Yi, K. T. Nam, S. Park et al., Effect of solvents on high aspect ratio polyamide-6 nanofibers via electrospinning, Macromolecular Research, vol.13, issue.8, pp.759-765, 2010.
DOI : 10.1007/BF03218470

R. Nirmala, R. Navamathavan, M. H. El?newehy, and H. Y. Kim, Preparation and characterization of electrospun ultrafine polyamide-6 nanofibers, Polymer International, vol.36, issue.10, pp.1475-1480, 2011.
DOI : 10.1021/ma0344137

R. Nirmala, K. T. Nam, S. Park, Y. Shin, R. Navamathavan et al., Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning, Applied Surface Science, vol.256, issue.21, pp.6318-6323, 2010.
DOI : 10.1016/j.apsusc.2010.04.010

J. H. Park, B. S. Kim, Y. C. Yoo, M. S. Khil, and H. Y. Kim, Enhanced mechanical properties of multilayer nano-coated electrospun nylon 6 fibers via a layer-by-layer self-assembly, Journal of Applied Polymer Science, vol.25, issue.4, pp.2211-2216, 2008.
DOI : 10.1016/j.polymer.2005.04.021

C. Carrizales, S. Pelfrey, R. Rincon, T. M. Eubanks, A. Kuang et al., Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6,6, Polymers for Advanced Technologies, vol.46, issue.2, pp.124-130, 2008.
DOI : 10.1016/j.polymer.2005.04.021

D. Aussawasathien, C. Teerawattananon, and A. Vongachariya, Separation of micron to sub-micron particles from water: Electrospun nylon-6 nanofibrous membranes as pre-filters, Journal of Membrane Science, vol.315, issue.1-2, pp.11-19, 2008.
DOI : 10.1016/j.memsci.2008.01.049

Y. Guibo, Z. Qing, Z. Yahong, Y. Yin, and Y. Yumin, The electrospun polyamide 6 nanofiber membranes used as high efficiency filter materials: Filtration potential, thermal treatment, and their continuous production, Journal of Applied Polymer Science, vol.5, issue.2, pp.1061-1069, 2013.
DOI : 10.1016/j.memsci.2008.01.049

P. Heikkilä, A. Taipale, M. Lehtimäki, and A. Harlin, Electrospinning of polyamides with different chain compositions for filtration application, Polymer Engineering & Science, vol.39, issue.6, pp.1168-1176, 2008.
DOI : 10.4028/www.scientific.net/SSP.121-123.1237

J. Matulevicius, L. Kliucininkas, D. Martuzevicius, E. Krugly, M. Tichonovas et al., Design and Characterization of Electrospun Polyamide Nanofiber Media for Air Filtration Applications, Journal of Nanomaterials, vol.12, issue.2, pp.14-14, 2014.
DOI : 10.1080/02786820802249133

S. De-vrieze, N. Daels, K. Lambert, B. Decostere, Z. Hens et al., Filtration performance of electrospun polyamide nanofibres loaded with bactericides, Textile Research Journal, vol.36, issue.1, 2011.
DOI : 10.1016/S0376-7388(98)00251-8

A. Aluigi, C. Tonetti, C. Vineis, C. Tonin, and G. Mazzuchetti, Adsorption of copper(II) ions by keratin/PA6 blend nanofibres, European Polymer Journal, vol.47, issue.9, pp.1756-1764, 2011.
DOI : 10.1016/j.eurpolymj.2011.06.009

B. Ding, Y. Si, X. Wang, J. Yu, L. Feng et al., Label-free ultrasensitive colorimetric detection of copper(ii) ions utilizing polyaniline/polyamide-6 nano-fiber/net sensor strips, Journal of Materials Chemistry, vol.41, issue.35, pp.13345-13353, 2011.
DOI : 10.1016/0013-4686(95)00482-3

B. Ding, X. Wang, J. Yu, and M. Wang, Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors, Journal of Materials Chemistry, vol.155, issue.34, pp.12784-12792, 2011.
DOI : 10.1007/BF01337937

Y. Li, Y. Si, X. Wang, B. Ding, G. Sun et al., Colorimetric sensor strips for lead (II) assay utilizing nanogold probes immobilized polyamide-6/nitrocellulose nano-fibers/nets, Biosensors and Bioelectronics, vol.48, pp.244-250, 2013.
DOI : 10.1016/j.bios.2013.03.085

J. E. Oliveira, V. P. Scagion, V. Grassi, D. S. Correa, and L. H. Mattoso, Modification of electrospun nylon nanofibers using layer-by-layer films for application in flow injection electronic tongue: Detection of paraoxon pesticide in corn crop, Sensors and Actuators B: Chemical, vol.171, issue.172, pp.249-255, 2012.
DOI : 10.1016/j.snb.2012.03.056

X. Wang, B. Ding, J. Yu, and M. Wang, Highly sensitive humidity sensors based on electro-spinning/netting a polyamide 6 nano-fiber/net modified by polyethyleneimine, Journal of Materials Chemistry, vol.155, issue.40, pp.16231-16238, 2011.
DOI : 10.1007/BF01337937

K. Devarayan, D. Lei, H. Kim, and B. Kim, Flexible transparent electrode based on PANi nanowire/nylon nanofiber reinforced cellulose acetate thin film as supercapacitor, Chemical Engineering Journal, vol.273, pp.603-609, 2015.
DOI : 10.1016/j.cej.2015.03.115

A. Liu, A. Walther, O. Ikkala, L. Belova, and L. A. Berglund, Clay Nanopaper with Tough Cellulose Nanofiber Matrix for Fire Retardancy and Gas Barrier Functions, Biomacromolecules, vol.12, issue.3, pp.633-641, 2011.
DOI : 10.1021/bm101296z

T. C. Dickenson, Filters and Filtration Handbook, 1997.

D. B. Purchas and K. Sutherland, Handbook of Filter Media, 2002.

I. M. Hutten, Handbook of Nonwoven Filter Media: Butterworth-Heinemann, 2007.

K. R. Spurny, Advances in Aerosol Gas Filtration, 1998.

S. Yang and G. W. Lee, Filtration characteristics of a fibrous filter pretreated with anionic surfactants for monodisperse solid aerosols, Journal of Aerosol Science, vol.36, issue.4, pp.419-437, 2005.
DOI : 10.1016/j.jaerosci.2004.10.002

H. Fong, W. Liu, C. Wang, and R. A. Vaia, Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite, Polymer, vol.43, issue.3, pp.775-780, 2002.
DOI : 10.1016/S0032-3861(01)00665-6

I. M. Hutten, Handbook of Nonwoven Filter Media, 2015.

3. and R. Direct, About respirators Available: http://www, 2015.

N. Jaksic, D. Jaksic, and H. Jeon, Novel Theoretical Approach to the Filtration of Nano Particles Through Non-Woven Fabrics, Woven Fabrics, pp.205-234

. Wearamask, Available, Face Masks vs. Respirators, 2009.

A. Ba?azy, M. Toivola, A. Adhikari, S. K. Sivasubramani, T. Reponen et al., Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks?, American Journal of Infection Control, vol.34, issue.2, pp.51-57, 2006.
DOI : 10.1016/j.ajic.2005.08.018

B. Demir, I. Cerkez, S. D. Worley, R. M. Broughton, and T. Huang, N-Halamine-Modified Antimicrobial Polypropylene Nonwoven Fabrics for Use against Airborne Bacteria, ACS Applied Materials & Interfaces, vol.7, issue.3, pp.1752-1757, 2015.
DOI : 10.1021/am507329m

B. J. Mccarthy, Textiles for Hygiene and Infection Control, 2011.
DOI : 10.1533/9780857093707

I. Laird, R. Goldsmith, R. Pack, and A. Vitalis, The effect on heart rate and facial skin temperature of wearing respiratory protection at work, Annals of Occupational Hygiene, vol.46, pp.143-148, 2002.

Y. Wang, W. Li, Y. Xia, X. Jiao, and D. Chen, Electrospun flexible self-standing ??-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media, J. Mater. Chem. A, vol.46, issue.436, pp.15124-15131, 2014.
DOI : 10.1007/s10853-011-5531-7

F. Dotti, A. Varesano, A. Montarsolo, A. Aluigi, C. Tonin et al., Electrospun Porous Mats for High Efficiency Filtration, Journal of Industrial Textiles, vol.96, issue.2, pp.151-162, 2007.
DOI : 10.1016/j.actbio.2004.09.003

URL : http://jit.sagepub.com/content/37/2/151.full.pdf

L. Li, M. W. Frey, and T. B. Green, Modification of air filter media with nylon-6 nanofibers, Journal of Engineered Fibers and Fabrics, vol.1, pp.1-24, 2006.

R. Barhate, C. K. Loong, and S. Ramakrishna, Preparation and characterization of nanofibrous filtering media, Journal of Membrane Science, vol.283, issue.1-2, pp.209-218, 2006.
DOI : 10.1016/j.memsci.2006.06.030

Y. Kuo, F. C. Bruno, and J. Wang, Filtration Performance Against Nanoparticles by Electrospun Nylon-6 Media Containing Ultrathin Nanofibers, Aerosol Science and Technology, vol.34, issue.12, pp.1332-1344, 2014.
DOI : 10.1039/c0nr00016g

URL : http://www.tandfonline.com/doi/pdf/10.1080/02786826.2014.985782?needAccess=true

M. Faccini, D. Amantia, S. Vázquez-campos, C. Vaquero, J. L. De-ipiña et al., Nanofiber-based filters as novel barrier systems for nanomaterial exposure scenarios, Journal of Physics: Conference Series, p.12067, 2011.
DOI : 10.1088/1742-6596/304/1/012067

C. Kuo, H. Chen, J. Lin, and B. Wan, Nano-gold supported on TiO2 coated glass-fiber for removing toxic CO gas from air, Catalysis Today, vol.122, issue.3-4, pp.270-276, 2007.
DOI : 10.1016/j.cattod.2007.02.019

S. A. Muhamed, Study and development of nonwovens made of electrospun composite nanofibers, PhD, Laboratory of Textile Physics and Mechanics (LPMT), 2016.

B. Tony and B. David, Electrical properties of polymers, 2005.

S. Almuhamed, Study and development of nonwovens made of electrospun composite nanofibers, 2016.

H. and W. Gao, National Insititute of health Image processing and analysis in Java Available: https://imagej.nih.gov [280] XDevelopment of kawabata evaluation system-fabric (KES- F), Image J Wool Textile Journal, vol.3, pp.46-48, 2005.

J. Yip and S. Ng, Study of three-dimensional spacer fabrics:, Journal of Materials Processing Technology, vol.206, issue.1-3, pp.359-364, 2008.
DOI : 10.1016/j.jmatprotec.2007.12.073

]. S. Frima, J. Lee, B. Kim, J. Ku, H. Kim et al., Available: www.frima-online.com [283Structural evolution of polyacrylonitrile fibers in stabilization and carbonization, 2012.

I. M. Alarifi, A. Alharbi, W. S. Khan, A. Swindle, and R. Asmatulu, Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring, Materials, vol.3, issue.10, pp.7017-7031, 2015.
DOI : 10.3390/ma8020499

S. Sell, C. Barnes, D. Simpson, and G. Bowlin, Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen, Journal of Biomedical Materials Research Part A, vol.42, issue.1, pp.115-126, 2008.
DOI : 10.1002/jbm.a.30232

L. Liu and Y. A. Dzenis, Analysis of the effects of the residual charge and gap size on electrospun nanofiber alignment in a gap method, Nanotechnology, vol.19, issue.35, p.355307, 2008.
DOI : 10.1088/0957-4484/19/35/355307

H. L. Schreuder-gibson, P. Gibson, P. Tsai, P. Gupta, and G. Wilkes, Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers

G. Collins, J. Federici, Y. Imura, and L. H. Catalani, Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications, Journal of Applied Physics, vol.111, issue.4, p.44701, 2012.
DOI : 10.1002/pen.v49:12

M. Inc, Basics of correlation and covariance Available: http, 2016.

A. Wong and Y. Li, Relationship between thermophysiological responses and psychological thermal perception during exercise wearing aerobic wear, Journal of Thermal Biology, vol.29, issue.7-8, pp.791-796, 2004.
DOI : 10.1016/j.jtherbio.2004.08.057

K. Prasad, W. Twilley, and J. R. Lawson, Thermal Performance of Fire Fighters' Protective Clothing. 1. Numerical Study of Transient Heat and Water Vapor Transfer, National Institute of Standards and Technology, 2002.
DOI : 10.6028/nist.ir.6901

L. Yi, L. Fengzhi, and Z. Qingyong, Numerical simulation of virus diffusion in facemask during breathing cycles, International Journal of Heat and Mass Transfer, vol.48, issue.19-20, pp.4229-4242, 2005.
DOI : 10.1016/j.ijheatmasstransfer.2005.03.030

M. Matusiak, Investigation of the thermal insulation properties of multilayer textiles, Fibres & Textiles in Eastern Europe, vol.14, pp.98-102, 2006.

M. Sampath, S. Mani, and G. Nalankilli, Effect of filament fineness on comfort characteristics of moisture management finished polyester knitted fabrics, Journal of Industrial Textiles, vol.1, issue.2, pp.160-173, 2011.
DOI : 10.1177/1528083709102922

B. Das, A. Das, V. Kothari, R. Fanguiero, and M. D. Araújo, Effect of fibre diameter and cross-sectional shape on moisture transmission through fabrics, Fibers and Polymers, vol.71, issue.9, pp.225-231, 2008.
DOI : 10.1177/004051750107100911