B. Ali, M. Okabe, and S. , Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues, Chemosphere, vol.141, pp.144-153, 2015.
DOI : 10.1016/j.chemosphere.2015.06.094

I. C. Anderson and J. S. Levine, Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers, Appl. Environ. Microbiol, vol.51, pp.938-945, 1986.

N. Aro, T. Pakula, and M. Penttilä, Transcriptional regulation of plant cell wall degradation by filamentous fungi, FEMS Microbiology Reviews, vol.29, issue.4, pp.719-739, 2005.
DOI : 10.1016/j.femsre.2004.11.006

V. Artursson, R. D. Finlay, and J. K. Jansson, Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth, Environmental Microbiology, vol.65, issue.1, pp.1-10, 2006.
DOI : 10.1016/S1360-1385(03)00184-5

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-2920.2005.00942.x/pdf

I. A. Aschenbrenner, T. Cernava, G. Berg, and M. Grube, Understanding Microbial Multi-Species Symbioses, Frontiers in Microbiology, vol.220, issue.67, pp.143-152, 2016.
DOI : 10.1111/j.1558-5646.2012.01676.x

URL : http://journal.frontiersin.org/article/10.3389/fmicb.2016.00180/pdf

L. Badalucco, F. Pomare, S. Grego, L. Landi, and P. Nannipieri, Activity and degradation of streptomycin and cycloheximide in soil, Biology and Fertility of Soils, vol.19, issue.4, pp.334-340, 1994.
DOI : 10.1007/BF00570637

. Bailey, . Bilskis, . Fansler, . Mccue, and . Smith, Measurements of microbial community activities in individual soil macroaggregates, Soil Biology and Biochemistry, vol.48, pp.4-4, 2012.
DOI : 10.1016/j.soilbio.2012.01.004

V. L. Bailey, S. J. Fansler, J. C. Stegen, and L. A. Mccue, Linking microbial community structure to ??-glucosidic function in soil aggregates, The ISME Journal, vol.39, issue.10, pp.2044-2053, 2013.
DOI : 10.1038/nature08656

L. R. Bakken, Separation and Purification of Bacteria from Soil, Appl. Environ. Microbiol, vol.49, pp.1482-1487, 1985.

L. R. Bakken, L. Bergaust, B. Liu, and Å. Frostegård, Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.327, issue.5968, pp.1226-1234, 2012.
DOI : 10.1126/science.1182570

M. G. Bakker, D. C. Schlatter, L. Otto-hanson, and L. L. Kinkel, Diffuse symbioses: roles of plant-plant, plant-microbe and microbe-microbe interactions in structuring the soil microbiome, Molecular Ecology, vol.61, issue.6, pp.1571-1583, 2014.
DOI : 10.1006/bcon.2001.1015

R. Bardgett, M. Usher, and D. Hopkins, Biological Diversity and Function in Soils, 2005.
DOI : 10.1017/CBO9780511541926

B. M. Barker, K. Kroll, M. Vödisch, A. Mazurie, O. Kniemeyer et al., Transcriptomic and proteomic analyses of the Aspergillus fumigatus hypoxia response using an oxygen-controlled fermenter, BMC Genomics, vol.13, issue.1, p.62, 2012.
DOI : 10.1186/1471-2164-13-62

A. Barreiro, E. Bååth, and M. Díaz-raviña, Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials, Soil Biology and Biochemistry, vol.97, pp.102-111, 2016.
DOI : 10.1016/j.soilbio.2016.03.009

E. J. Bateman and E. M. Baggs, Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space, Biology and Fertility of Soils, vol.33, issue.6, pp.379-388, 2005.
DOI : 10.1007/s00374-005-0858-3

E. Battaglia, I. Benoit, J. Van-den-brink, A. Wiebenga, P. M. Coutinho et al., Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level, BMC Genomics, vol.438, issue.7071, p.38, 2011.
DOI : 10.1038/nature04341

E. Bååth and T. H. Anderson, Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques, Soil Biology and Biochemistry, vol.35, issue.7, pp.955-963, 2003.
DOI : 10.1016/S0038-0717(03)00154-8

M. H. Beare, S. Hu, D. C. Coleman, and P. F. Hendrix, Influences of mycelial fungi on soil aggregation and organic matter storage in conventional and no-tillage soils, Applied Soil Ecology, vol.5, issue.3, pp.211-219, 1996.
DOI : 10.1016/S0929-1393(96)00142-4

M. J. Bell, N. Hinton, J. M. Cloy, C. F. Topp, R. M. Rees et al., Nitrous oxide emissions from fertilised UK arable soils: Fluxes, emission factors and mitigation, Agriculture, Ecosystems & Environment, vol.212, pp.134-147, 2015.
DOI : 10.1016/j.agee.2015.07.003

S. F. Bender, F. Plantenga, A. Neftel, M. Jocher, H. Oberholzer et al., Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil, The ISME Journal, vol.61, issue.6, pp.1336-1345, 2013.
DOI : 10.1016/j.soilbio.2012.05.007

M. Benito, A. Masaguer, A. Moliner, and N. Arrigo, Chemical and microbiological parameters for the characterisation of the stability and maturity of pruning waste compost, Biol Fertil Soils, vol.37, pp.184-189, 2003.

H. Berger, A. Basheer, S. Böck, Y. Reyes-dominguez, T. Dalik et al., nitrate cluster, Molecular Microbiology, vol.259, issue.Suppl. 1, pp.1385-1398, 2008.
DOI : 10.1128/MCB.18.3.1339

D. Berry and S. Widder, Deciphering microbial interactions and detecting keystone species with co-occurrence networks, Frontiers in Microbiology, vol.6, pp.1-14, 2014.
DOI : 10.1046/j.1365-294X.1997.00205.x

URL : http://journal.frontiersin.org/article/10.3389/fmicb.2014.00219/pdf

M. R. Betlach and J. M. Tiedje, Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification, Appl. Environ. Microbiol, vol.42, pp.1074-1084, 1981.

T. Biesebeke, R. Levasseur, A. Boussier, A. Record, E. Van-den-hondel et al., Phylogeny of fungal hemoglobins and expression analysis of the Aspergillus oryzae flavohemoglobin gene fhbA during hyphal growth, Fungal Biology, vol.114, issue.2-3, pp.135-143, 2010.
DOI : 10.1016/j.mycres.2009.08.007

G. Billen, J. Garnier, and L. Lassaletta, The nitrogen cascade from agricultural soils to the sea: modelling nitrogen transfers at regional watershed and global scales, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.485, issue.7397, p.20130123, 2013.
DOI : 10.1038/nature11069

URL : https://hal.archives-ouvertes.fr/hal-01195674

D. Binns, E. Dimmer, R. Huntley, D. Barrell, C. O-'donovan et al., QuickGO: a web-based tool for Gene Ontology searching, Bioinformatics, vol.25, issue.22, pp.3045-3046, 2009.
DOI : 10.1093/bioinformatics/btp536

R. H. Bischof, J. Ramoni, and B. Seiboth, Cellulases and beyond: the first 70??years of the enzyme producer Trichoderma reesei, Microbial Cell Factories, vol.4, issue.6289, pp.24-38, 2016.
DOI : 10.1186/s13568-014-0034-y

S. Bittman, T. A. Forge, and C. G. Kowalenko, Responses of the bacterial and fungal biomass in a grassland soil to multi-year applications of dairy manure slurry and fertilizer, Soil Biology and Biochemistry, vol.37, issue.4, pp.613-623, 2005.
DOI : 10.1016/j.soilbio.2004.07.038

F. Blasco, B. Guigliarelli, A. Magalon, M. Asso, G. Giordano et al., The coordination and function of the redox centres of the membrane-bound nitrate reductases, Cellular and Molecular Life Sciences, vol.58, issue.2, pp.179-193, 2001.
DOI : 10.1007/PL00000846

B. H. Bleakley and J. M. Tiedje, Nitrous oxide production by organisms other than nitrifiers or denitrifiers, Appl. Environ. Microbiol, vol.44, pp.1342-1348, 1982.

W. Boer, . De, L. B. Folman, R. C. Summerbell, and L. Boddy, Living in a fungal world: impact of fungi on soil bacterial niche development, FEMS Microbiology Reviews, vol.29, issue.4, pp.795-811, 2005.
DOI : 10.1016/j.femsre.2004.11.005

N. A. Bokulich, N. A. Bokulich, D. A. Mills, and D. A. Mills, ABSTRACT, Applied and Environmental Microbiology, vol.79, issue.8, pp.2519-2526, 2013.
DOI : 10.1128/AEM.03870-12

. Briar, . Fonte, . Park, . Six, . Scow et al., The distribution of nematodes and soil microbial communities across soil aggregate fractions and farm management systems, Soil Biology and Biochemistry, vol.43, issue.5, pp.10-10, 2011.
DOI : 10.1016/j.soilbio.2010.12.017

C. J. Bronick and R. Lal, Soil structure and management: a review, Geoderma, vol.124, issue.1-2, pp.3-22, 2005.
DOI : 10.1016/j.geoderma.2004.03.005

D. Bru, A. Ramette, N. P. Saby, S. Dequiedt, L. Ranjard et al., Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale, The ISME Journal, vol.1, issue.3, pp.532-542, 2011.
DOI : 10.2307/3546751

URL : https://hal.archives-ouvertes.fr/hal-01190281

B. Buchfink, C. Xie, and D. H. Huson, Fast and sensitive protein alignment using DIAMOND, Nature Methods, vol.266, issue.1, pp.59-60, 2014.
DOI : 10.1093/nar/gkq275

T. D. Bugg, M. Ahmad, E. M. Hardiman, and R. Rahmanpour, Pathways for degradation of lignin in bacteria and fungi, Natural Product Reports, vol.19, issue.12, pp.1883-1896, 2011.
DOI : 10.1016/j.cub.2008.12.031

M. X. Caddick, D. Peters, and A. Platt, Nitrogen regulation in fungi, Antonie van Leeuwenhoek, vol.88, issue.9, pp.169-177, 1994.
DOI : 10.1128/MCB.12.10.4562

T. C. Caesar-tonthat and V. L. Cochran, Role of saprophytic basidiomycete soil fungus in aggregate stabilization. Sustaining the Global Farm, pp.575-579, 2001.

J. G. Caporaso, J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman et al., QIIME allows analysis of high-throughput community sequencing data, Nature Methods, vol.8, issue.5, pp.335-336, 2010.
DOI : 10.1038/nmeth.f.303

S. Castaldi and K. A. Smith, Effect of cycloheximide on N 2 O and NO 3 - production in a forest and an agricultural soil, Biology and Fertility of Soils, vol.27, issue.1, pp.27-34, 1998.
DOI : 10.1007/s003740050395

L. Y. Chao, J. Rine, and M. A. Marletta, Spectroscopic and kinetic studies of Nor1, a cytochrome P450 nitric oxide reductase from the fungal pathogen Histoplasma capsulatum, Archives of Biochemistry and Biophysics, vol.480, issue.2, pp.132-137, 2008.
DOI : 10.1016/j.abb.2008.09.001

C. Prévost-bouré, N. Christen, R. Dequiedt, S. Mougel, C. Lelièvre et al., Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR, PLoS ONE, vol.8, issue.9, p.24166, 2011.
DOI : 10.1371/journal.pone.0024166.s011

H. Chen, N. V. Mothapo, and W. Shi, Fungal and bacterial N2O production regulated by soil amendments of simple and complex substrates, Soil Biology and Biochemistry, vol.84, pp.116-126, 2015.
DOI : 10.1016/j.soilbio.2015.02.018

H. Chen, N. V. Mothapo, and W. Shi, Soil Moisture and pH Control Relative Contributions of Fungi and Bacteria to N2O Production, Microbial Ecology, vol.7, issue.1, pp.180-191, 2014.
DOI : 10.1099/00221287-7-3-4-295

H. Chen, N. V. Mothapo, and W. Shi, The significant contribution of fungi to soil N2O production across diverse ecosystems, Applied Soil Ecology, vol.73, pp.70-77, 2014.
DOI : 10.1016/j.apsoil.2013.08.011

Z. Chen, C. Wang, S. Gschwendtner, G. Willibald, S. Unteregelsbacher et al., Relationships between denitrification gene expression, dissimilatory nitrate reduction to ammonium and nitrous oxide and dinitrogen production in montane grassland soils, Soil Biology and Biochemistry, vol.87, pp.67-77, 2015.
DOI : 10.1016/j.soilbio.2015.03.030

L. Chernin, Z. Ismailov, S. Haran, C. , and I. , Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens, Appl. Environ. Microbiol, vol.61, pp.1720-1726, 1995.

A. J. Coby and F. W. Picardal, Inhibition of NO 3 and NO 2 reduction by microbial Fe(III) reduction: evidence of a reaction between NO 2 and cell surface, 2005.

J. Cole, Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?, FEMS Microbiology Letters, vol.136, issue.1, pp.1-11, 1996.
DOI : 10.1111/j.1574-6968.1996.tb08017.x

D. C. Cooper and F. W. Picardal, Chemical and Biological Interactions during Nitrate and Goethite Reduction by Shewanella putrefaciens 200, Applied and Environmental Microbiology, vol.69, issue.6, pp.3517-3525, 2003.
DOI : 10.1128/AEM.69.6.3517-3525.2003

P. M. Coutinho, M. R. Andersen, K. Kolenova, P. A. Vankuyk, I. Benoit et al., Post-genomic insights into the plant polysaccharide degradation potential of Aspergillus nidulans and comparison to Aspergillus niger and Aspergillus oryzae, Fungal Genetics and Biology, vol.46, issue.1, pp.161-169, 2009.
DOI : 10.1016/j.fgb.2008.07.020

R. D. Cox, Determination of nitrate and nitrite at the parts per billion level by chemiluminescence, Analytical Chemistry, vol.52, issue.2, pp.332-335, 1980.
DOI : 10.1021/ac50052a028

S. M. Cragg, G. T. Beckham, N. C. Bruce, T. D. Bugg, D. L. Distel et al., Lignocellulose degradation mechanisms across the Tree of Life, Current Opinion in Chemical Biology, vol.29, pp.108-119, 2015.
DOI : 10.1016/j.cbpa.2015.10.018

N. M. Crawford and H. N. Arst, The Molecular Genetics of Nitrate Assimilation in Fungi and Plants, Annual Review of Genetics, vol.27, issue.1, 1993.
DOI : 10.1146/annurev.ge.27.120193.000555

C. L. Crenshaw, C. Lauber, R. L. Sinsabaugh, and L. K. Stavely, Fungal control of nitrous oxide production in semiarid grassland, Biogeochemistry, vol.175, issue.1, pp.17-27, 2007.
DOI : 10.1007/s00442-003-1389-y

J. Cuhel, M. Simek, R. J. Laughlin, D. Bru, D. Cheneby et al., Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity, Applied and Environmental Microbiology, vol.76, issue.6, pp.1870-1878, 2010.
DOI : 10.1128/AEM.02484-09

B. ?re?nar and ?. Petri?, Cytochrome P450 enzymes in the fungal kingdom, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1814, issue.1, pp.29-35, 2011.
DOI : 10.1016/j.bbapap.2010.06.020

H. Daims, E. V. Lebedeva, P. Pjevac, P. Han, C. Herbold et al., Complete nitrification by Nitrospira bacteria, Nature, vol.63, issue.7583, pp.504-509, 2015.
DOI : 10.1073/pnas.0906412106

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5152751/pdf

A. Dance, Soil ecology: What lies beneath, Nature, vol.139, issue.7214, pp.724-725, 2008.
DOI : 10.1016/j.agee.2006.12.013

URL : http://www.nature.com/news/2008/081008/pdf/455724a.pdf

A. Darwin, P. Tormay, L. Page, L. Griffiths, C. et al., Identification of the formate dehydrogenases and genetic determinants of formate-dependent nitrite reduction by Escherichia coli K12, Journal of General Microbiology, vol.139, issue.8, pp.1829-1840, 1993.
DOI : 10.1099/00221287-139-8-1829

M. Davinic, L. M. Fultz, and V. Acosta-martínez, Pyrosequencing and mid-infrared spectroscopy reveal distinct aggregate stratification of soil bacterial communities and organic matter composition, Soil Biology and Biochemistry, vol.46, pp.63-72, 2012.
DOI : 10.1016/j.soilbio.2011.11.012

G. J. Davis and M. L. Sinnott, Sorting the diverse: the sequence-based classifications of carbohydrate-active enzymes, Biochemical Journal, pp.26-32, 2008.
DOI : 10.1042/BJ20080382

G. De-gonzalo, D. I. Colpa, M. H. Habib, and M. W. Fraaije, Bacterial enzymes involved in lignin degradation, Journal of Biotechnology, vol.236, pp.110-119, 2016.
DOI : 10.1016/j.jbiotec.2016.08.011

M. De-jesús-berríos, L. Liu, J. C. Nussbaum, G. M. Cox, J. S. Stamler et al., Enzymes that Counteract Nitrosative Stress Promote Fungal Virulence, Current Biology, vol.13, issue.22, pp.1963-1968, 2003.
DOI : 10.1016/j.cub.2003.10.029

H. J. Di, K. C. Cameron, A. Podolyan, R. , and A. , Effect of soil moisture status and a nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous oxide emissions in a grassland soil, Soil Biology and Biochemistry, vol.73, pp.59-68, 2014.
DOI : 10.1016/j.soilbio.2014.02.011

M. Diacono and F. Montemurro, Long-term effects of organic amendments on soil fertility. A review, Agronomy for Sustainable Development, vol.13, issue.2, pp.401-422, 2010.
DOI : 10.1065/espr2005.06.268

URL : https://hal.archives-ouvertes.fr/hal-00886539

D. C. Eastwood, D. Floudas, M. Binder, A. Majcherczyk, P. Schneider et al., The Plant Cell Wall-Decomposing Machinery Underlies the Functional Diversity of Forest Fungi, Science, vol.24, issue.2, pp.762-765, 2011.
DOI : 10.1039/b603084j

O. Einsle, A. Messerschmidt, P. Stach, G. P. Bourenkov, H. D. Bartunik et al., Structure of cytochrome c nitrite reductase, Nature, vol.54, issue.6743, pp.476-480, 1999.
DOI : 10.1107/S0907444998003254

M. J. Ellington, W. L. Fosdike, R. G. Sawers, D. J. Richardson, F. et al., Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control, Archives of Microbiology, vol.309, issue.5, pp.298-304, 2005.
DOI : 10.1099/00221287-146-11-2977

E. T. Elliott and C. A. Cambardella, Physical separation of soil organic matter, Agriculture, Ecosystems & Environment, vol.34, issue.1-4, pp.407-419, 1991.
DOI : 10.1016/0167-8809(91)90124-G

S. Elmholt and A. Kjøller, Measurement of the length of fungal hyphae by the membrane filter technique as a method for comparing fungal occurrence in cultivated field soils, Soil Biology and Biochemistry, vol.19, issue.6, pp.679-682, 1987.
DOI : 10.1016/0038-0717(87)90047-2

B. Engelking, H. Flessa, and R. G. Joergensen, Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil, Soil Biology and Biochemistry, vol.39, issue.8, pp.2111-2118, 2007.
DOI : 10.1016/j.soilbio.2007.03.020

K. Enwall, L. Philippot, and S. Hallin, Activity and Composition of the Denitrifying Bacterial Community Respond Differently to Long-Term Fertilization, Applied and Environmental Microbiology, vol.71, issue.12, pp.8335-8343, 2005.
DOI : 10.1128/AEM.71.12.8335-8343.2005

K. Enwall, I. N. Throbäck, M. Stenberg, M. Söderström, and S. Hallin, Soil Resources Influence Spatial Patterns of Denitrifying Communities at Scales Compatible with Land Management, Applied and Environmental Microbiology, vol.76, issue.7, pp.2243-2250, 2010.
DOI : 10.1128/AEM.02197-09

J. W. Erisman, J. Galloway, S. Seitzinger, A. Bleeker, and K. Butterbach-bahl, Reactive nitrogen in the environment and its effect on climate change, Current Opinion in Environmental Sustainability, vol.3, issue.5, pp.281-290, 2011.
DOI : 10.1016/j.cosust.2011.08.012

K. Faust and J. Raes, Microbial interactions: from networks to models, Nature Reviews Microbiology, vol.393, issue.8, pp.538-550, 2012.
DOI : 10.1038/30918

D. Fernández-calviño and E. Bååth, Interaction between pH and Cu toxicity on fungal and bacterial performance in soil, Soil Biology and Biochemistry, vol.96, pp.20-29, 2016.
DOI : 10.1016/j.soilbio.2016.01.010

M. J. Ferris, G. Muyzer, and D. M. Ward, Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community, Appl. Environ. Microbiol, vol.62, pp.340-346, 1996.

B. D. Folwell, T. J. Mcgenity, W. , and C. , ABSTRACT, Applied and Environmental Microbiology, vol.82, issue.8, pp.2288-2299, 2016.
DOI : 10.1128/AEM.03713-15

M. T. Forrester and M. W. Foster, Protection from nitrosative stress: A central role for microbial flavohemoglobin, Free Radical Biology and Medicine, vol.52, issue.9, pp.1620-1633, 2012.
DOI : 10.1016/j.freeradbiomed.2012.01.028

P. Forster, V. Ramaswamy, and P. Artaxo, Changes in atmospheric constituents and in radiative forcing. In, Climate Change The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, 2007.

D. Fowler, M. Coyle, U. Skiba, M. A. Sutton, J. N. Cape et al., The global nitrogen cycle in the twenty-first century, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.20, issue.1, p.20130164, 2013.
DOI : 10.1890/08-1140.1

P. Frey-klett, P. Burlinson, A. Deveau, M. Barret, M. Tarkka et al., Bacterial-Fungal Interactions: Hyphens between Agricultural, Clinical, Environmental, and Food Microbiologists, Microbiology and Molecular Biology Reviews, vol.75, issue.4, pp.583-609, 2011.
DOI : 10.1128/MMBR.00020-11

URL : http://mmbr.asm.org/content/75/4/583.full.pdf

P. Frey-klett, J. Garbaye, and M. Tarkka, The mycorrhiza helper bacteria revisited, New Phytologist, vol.108, issue.1, pp.22-36, 2007.
DOI : 10.1104/pp.108.4.1519

J. N. Galloway, The global nitrogen cycle, Treatise on Geochemistry, pp.557-583, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01194826

J. N. Galloway, J. D. Aber, J. W. Erisman, S. P. Seitzinger, R. W. Howarth et al., The Nitrogen Cascade, BioScience, vol.53, issue.4, pp.341-356, 2003.
DOI : 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

J. Gans, M. Wolinsky, and J. Dunbar, Computational Improvements Reveal Great Bacterial Diversity and High Metal Toxicity in Soil, Science, vol.309, issue.5739, pp.1387-1390, 2005.
DOI : 10.1126/science.1112665

J. Garbaye, Tansley Review No. 76 Helper bacteria: a new dimension to the mycorrhizal symbiosis, New Phytologist, vol.119, issue.2, pp.197-210, 1994.
DOI : 10.1007/BF00210586

P. R. Gardner, Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases, Journal of Inorganic Biochemistry, vol.99, issue.1, pp.247-266, 2005.
DOI : 10.1016/j.jinorgbio.2004.10.003

P. R. Gardner, A. M. Gardner, L. A. Martin, and A. L. Salzman, Nitric oxide dioxygenase: An enzymic function for flavohemoglobin, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.10378-10383, 1998.
DOI : 10.1007/BF01891987

S. Georgieva, S. Christensen, H. Petersen, P. Gjelstrup, and K. Thorup-kristensen, Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots, Soil Biology and Biochemistry, vol.37, issue.6, pp.1145-1155, 2005.
DOI : 10.1016/j.soilbio.2004.11.012

K. Glaser, E. Hackl, E. Inselsbacher, J. Strauss, W. Wanek et al., Dynamics of ammonia-oxidizing communities in barley-planted bulk soil and rhizosphere following nitrate and ammonium fertilizer amendment, FEMS Microbiology Ecology, vol.74, issue.3, pp.575-591, 2010.
DOI : 10.1111/j.1574-6941.2010.00970.x

C. M. Gomes, A. Giuffrè, E. Forte, J. B. Vicente, L. M. Saraiva et al., A Novel Type of Nitric-oxide Reductase, Journal of Biological Chemistry, vol.267, issue.28, pp.25273-25276, 2002.
DOI : 10.1128/JB.183.5.1560-1567.2001

M. Gorfer, M. Blumhoff, S. Klaubauf, A. Urban, E. Inselsbacher et al., Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil, The ISME Journal, vol.61, issue.11, pp.1771-1783, 2011.
DOI : 10.1128/EC.00076-08

J. Green and B. J. Bohannan, Spatial scaling of microbial biodiversity, Trends in Ecology & Evolution, vol.21, issue.9, pp.501-507, 2006.
DOI : 10.1016/j.tree.2006.06.012

M. G. Guerrero, J. M. Vega, and M. Losada, The Assimilatory Nitrate-Reducing System and its Regulation, Annual Review of Plant Physiology, vol.32, issue.1, pp.169-204, 1981.
DOI : 10.1146/annurev.pp.32.060181.001125

F. Haber, L. Rossignol, and R. , Über die technische Darstellung von Ammoniak aus den Elementen, Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol.19, pp.53-72, 1913.
DOI : 10.1002/zaac.19050470106

S. Hallin, C. M. Jones, M. Schloter, and L. Philippot, Relationship between N-cycling communities and ecosystem functioning in a 50-year-old fertilization experiment, The ISME Journal, vol.5, issue.5, pp.597-605, 2009.
DOI : 10.2307/1218190

J. Hassan, L. L. Bergaust, L. Molstad, S. De-vries, and L. R. Bakken, Homeostatic control of NO at nanomolar concentrations in denitrifying bacteria -modelling and experimental determination of nitric oxide reductase kinetics in vivo in Paracoccus denitrificans, Environmental Microbiology, pp.1-15, 2015.

M. Hayatsu, K. Tago, and M. Saito, Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification, Soil Science and Plant Nutrition, vol.61, issue.1, pp.33-45, 2008.
DOI : 10.1007/s002030000231

J. Hendriks, A. Oubrie, J. Castresana, A. Urbani, S. Gemeinhardt et al., Nitric oxide reductases in bacteria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1459, issue.2-3, pp.266-273, 2000.
DOI : 10.1016/S0005-2728(00)00161-4

B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochemical Journal, vol.280, issue.2, pp.309-316, 1991.
DOI : 10.1042/bj2800309

URL : https://hal.archives-ouvertes.fr/hal-00310263

S. Henry, E. Baudoin, J. C. López-gutiérrez, F. Martin-laurent, A. Brauman et al., Quantification of denitrifying bacteria in soils by nirK gene targeted real-time PCR, Journal of Microbiological Methods, vol.59, issue.3, pp.327-335, 2004.
DOI : 10.1016/j.mimet.2004.07.002

S. Henry, D. Bru, B. Stres, S. Hallet, and L. Philippot, Quantitative Detection of the nosZ Gene, Encoding Nitrous Oxide Reductase, and Comparison of the Abundances of 16S rRNA, narG, nirK, and nosZ Genes in Soils, Applied and Environmental Microbiology, vol.72, issue.8, pp.5181-5189, 2006.
DOI : 10.1128/AEM.00231-06

S. Henry, S. Texier, S. Hallet, D. Bru, C. Dambreville et al., Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates, Environmental Microbiology, vol.48, issue.11, pp.3082-3092, 2008.
DOI : 10.1016/S0167-4781(99)00072-X

A. Ho, A. Reim, S. Y. Kim, M. Meima-franke, A. Termorshuizen et al., Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application, Global Change Biology, vol.5, issue.10, pp.3864-3879, 2015.
DOI : 10.3389/fmicb.2014.00030

R. Hood-nowotny, N. H. Umana, E. Inselbacher, P. Oswald-lachouani, and W. Wanek, Alternative Methods for Measuring Inorganic, Organic, and Total Dissolved Nitrogen in Soil, Soil Science Society of America Journal, vol.74, issue.3, 1018.
DOI : 10.2136/sssaj2009.0389

R. W. Howarth, Coastal nitrogen pollution: A review of sources and trends globally and regionally, Harmful Algae, vol.8, issue.1, pp.14-20, 2008.
DOI : 10.1016/j.hal.2008.08.015

S. Humbert, S. Tarnawski, N. Fromin, M. Mallet, M. Aragno et al., Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity, The ISME Journal, vol.24, issue.3, pp.450-454, 2009.
DOI : 10.1111/j.1462-2920.2007.01357.x

S. M. Huse, L. Dethlefsen, J. A. Huber, D. M. Welch, D. A. Relman et al., Exploring Microbial Diversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing, PLoS Genetics, vol.16, issue.11, pp.1000255-1000265, 2008.
DOI : 10.1371/journal.pgen.1000255.t003

D. H. Huson, S. Beier, I. Flade, A. Górska, M. El-hadidi et al., MEGAN Community Edition - Interactive Exploration and Analysis of Large-Scale Microbiome Sequencing Data, PLOS Computational Biology, vol.3, issue.1, p.1004957, 2016.
DOI : 10.1371/journal.pcbi.1004957.t001

E. R. Ingham and D. C. Coleman, Effects of streptomycin, cycloheximide, Fungizone, captan, carbofuran, cygon, and PCNB on soil microorganisms, Microbial Ecology, vol.14, issue.4, pp.345-358, 1984.
DOI : 10.1007/BF02015559

E. Inselsbacher, K. Ripka, S. Klaubauf, D. Fedosoyenko, E. Hackl et al., A cost-effective high-throughput microcosm system for studying nitrogen dynamics at the plant-microbe-soil interface, Plant and Soil, vol.38, issue.1-2, pp.293-307, 2008.
DOI : 10.1016/B978-0-12-372180-8.50042-1

T. W. Jeffries, I. V. Grigoriev, J. Grimwood, J. M. Laplaza, A. Aerts et al., Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis, Nature Biotechnology, vol.32, issue.2, pp.319-326, 2007.
DOI : 10.1101/gr.8.3.175

D. H. Jennings, TRANSLOCATION OF SOLUTES IN FUNGI, Biological Reviews, vol.47, issue.3, pp.2046-2051, 1987.
DOI : 10.1111/j.1469-8137.1975.tb02607.x

J. Jirout, M. ?imek, and D. Elhottová, Fungal contribution to nitrous oxide emissions from cattle impacted soils, Chemosphere, vol.90, issue.2, pp.565-572, 2012.
DOI : 10.1016/j.chemosphere.2012.08.031

R. G. Joergensen and F. Wichern, Quantitative assessment of the fungal contribution to microbial tissue in soil, Soil Biology and Biochemistry, vol.40, issue.12, pp.2977-2991, 2008.
DOI : 10.1016/j.soilbio.2008.08.017

K. S. Johansen, Lytic Polysaccharide Monooxygenases: The Microbial Power Tool for Lignocellulose Degradation, Trends in Plant Science, vol.21, issue.11, pp.926-936, 2016.
DOI : 10.1016/j.tplants.2016.07.012

J. F. Johansson, L. R. Paul, and R. D. Finlay, Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture, FEMS Microbiology Ecology, vol.48, issue.1, pp.1-13, 2004.
DOI : 10.1016/j.femsec.2003.11.012

C. M. Jones, D. R. Graf, D. Bru, and L. Philippot, The unaccounted yet abundant nitrous oxide-reducing microbial community: a potential nitrous oxide sink, The ISME Journal, vol.61, issue.2, pp.417-426, 2013.
DOI : 10.1016/S0065-2911(06)52003-X

C. M. Jones, A. Spor, F. P. Brennan, M. Breuil, D. Bru et al., Recently identified microbial guild mediates soil N2O sink capacity, Nature Climate Change, vol.48, issue.9, pp.801-805, 2014.
DOI : 10.1186/1471-2105-9-307

M. J. Kampschreur, R. Kleerebezem, W. W. De-vet, and M. C. Van-loosdrecht, Reduced iron induced nitric oxide and nitrous oxide emission, Water Research, vol.45, issue.18, pp.5945-5952, 2011.
DOI : 10.1016/j.watres.2011.08.056

E. Kandeler, K. Deiglmayr, D. Tscherko, D. Bru, and L. Philippot, Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland, Applied and Environmental Microbiology, vol.72, issue.9, pp.5957-5962, 2006.
DOI : 10.1128/AEM.00439-06

B. Kartal, M. M. Kuypers, G. Lavik, J. Schalk, H. J. Op-den-camp et al., Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium, Environmental Microbiology, vol.47, issue.3, pp.635-642, 2007.
DOI : 10.1016/j.jinorgbio.2004.09.024

K. Keegstra, Plant Cell Walls, PLANT PHYSIOLOGY, vol.154, issue.2, pp.483-486, 2010.
DOI : 10.1104/pp.110.161240

D. Keil, A. Meyer, D. Berner, C. Poll, A. Schützenmeister et al., Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils, FEMS Microbiology Ecology, vol.77, issue.1, pp.95-106, 2011.
DOI : 10.1111/j.1574-6941.2011.01091.x

S. Kim, S. Fushinobu, S. Zhou, T. Wakagi, and H. Shoun, Eukaryotic nirK Genes Encoding Copper-Containing Nitrite Reductase: Originating from the Protomitochondrion?, Applied and Environmental Microbiology, vol.75, issue.9, pp.2652-2658, 2009.
DOI : 10.1128/AEM.02536-08

S. O. Kim, Y. Orii, D. Lloyd, M. N. Hughes, and R. K. Poole, flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide, FEBS Letters, vol.332, issue.2-3, pp.389-394, 1999.
DOI : 10.1042/bj3320009

M. G. Klotz and L. Y. Stein, Nitrifier genomics and evolution of the nitrogen cycle, FEMS Microbiology Letters, vol.278, issue.2, pp.146-156, 2008.
DOI : 10.1111/j.1574-6968.2007.00970.x

M. Kobayashi, Y. Matsuo, A. Takimoto, S. Suzuki, F. Maruo et al., Denitrification, a Novel Type of Respiratory Metabolism in Fungal Mitochondrion, Journal of Biological Chemistry, vol.266, issue.27, pp.16263-16267, 1996.
DOI : 10.1271/bbb.56.2058

S. Kohlmeier, T. H. Smits, R. M. Ford, C. Keel, H. Harms et al., Taking the Fungal Highway:?? Mobilization of Pollutant-Degrading Bacteria by Fungi, Environmental Science & Technology, vol.39, issue.12, pp.4640-4646, 2005.
DOI : 10.1021/es047979z

A. Y. Kong, K. M. Scow, A. L. Córdova-kreylos, W. E. Holmes, and J. Six, Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems, Soil Biology and Biochemistry, vol.43, issue.1, pp.20-30, 2011.
DOI : 10.1016/j.soilbio.2010.09.005

D. Kracher, S. Scheiblbrandner, A. K. Felice, E. Breslmayr, M. Preims et al., Extracellular electron transfer systems fuel cellulose oxidative degradation, Science, vol.7, issue.7, pp.1098-1101, 2016.
DOI : 10.1371/journal.ppat.1002137

B. Kraft, M. Strous, and H. E. Tegetmeyer, Microbial nitrate respiration ??? Genes, enzymes and environmental distribution, Journal of Biotechnology, vol.155, issue.1, pp.104-117, 2011.
DOI : 10.1016/j.jbiotec.2010.12.025

A. Krapp, Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces, Current Opinion in Plant Biology, vol.25, pp.115-122, 2015.
DOI : 10.1016/j.pbi.2015.05.010

URL : https://hal.archives-ouvertes.fr/hal-01204189

L. Land, L. Badalucco, F. Pomare, and P. Nannipieri, Effectiveness of antibiotics to distinguish the contributions of fungi and bacteria to net nitrogen mineralization, nitrification and respiration, Soil Biology and Biochemistry, vol.25, issue.12, pp.1771-1778, 1993.
DOI : 10.1016/0038-0717(93)90182-B

C. Lang, J. Seven, and A. Polle, Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest, Mycorrhiza, vol.109, issue.4, pp.297-308, 2010.
DOI : 10.1016/B978-0-12-372180-8.50042-1

D. J. Lary, Catalytic destruction of stratospheric ozone, Journal of Geophysical Research: Atmospheres, vol.37, issue.2, pp.21515-21526, 1997.
DOI : 10.1175/1520-0469(1980)037<0339:ABAOPI>2.0.CO;2

R. J. Laughlin, T. Rütting, C. Müller, C. J. Watson, and R. J. Stevens, Effect of acetate on soil respiration, N2O emissions and gross N transformations related to fungi and bacteria in a grassland soil, Applied Soil Ecology, vol.42, issue.1, pp.25-30, 2009.
DOI : 10.1016/j.apsoil.2009.01.004

R. S. Leger and R. M. Cooper, Cuticle-degrading Enzymes of Entomopathogenic Fungi: Regulation of Production of Chitinolytic Enzymes, Microbiology, vol.132, issue.6, pp.1509-1517, 1986.
DOI : 10.1099/00221287-132-6-1509

J. Lehmann and M. Kleber, The contentious nature of soil organic matter, Nature, vol.5, pp.60-68, 2015.
DOI : 10.1021/es9031419

J. Leigh, A. H. Fitter, and A. Hodge, Growth and symbiotic effectiveness of an arbuscular mycorrhizal fungus in organic matter in competition with soil bacteria, FEMS Microbiology Ecology, vol.76, issue.3, pp.428-438, 2011.
DOI : 10.1111/j.1574-6941.2011.01066.x

S. Leininger, T. Urich, M. Schloter, L. Schwark, J. Qi et al., Archaea predominate among ammonia-oxidizing prokaryotes in soils, Nature, vol.36, issue.7104, pp.806-809, 2006.
DOI : 10.1073/pnas.82.20.6955

A. Levasseur, E. Drula, V. Lombard, P. M. Coutinho, and B. Henrissat, Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes, Biotechnology for Biofuels, vol.6, issue.1, pp.1-1, 2013.
DOI : 10.1186/1471-2148-12-186

URL : https://hal.archives-ouvertes.fr/hal-01268121

?. Levi?nik-höfferle, G. W. Nicol, L. Ausec, I. Mandi?-mulec, and J. I. Prosser, Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen, FEMS Microbiology Ecology, vol.80, issue.1, pp.114-123, 2012.
DOI : 10.1111/j.1574-6941.2011.01275.x

R. E. Ley and S. K. Schmidt, Fungal and bacterial responses to phenolic compounds and amino acids in high altitude barren soils, Soil Biology and Biochemistry, vol.34, issue.7, pp.989-995, 2002.
DOI : 10.1016/S0038-0717(02)00032-9

S. Lê, J. Josse, and F. Husson, FactoMineR: an R package for multivariate analysis, Journal of statistical software, vol.25, pp.1-18, 2008.

X. Li, P. Sørensen, J. E. Olesen, and S. O. Petersen, Evidence for denitrification as main source of N 2 O emission from residue-amended soil, Soil Biology and Biochemistry, vol.92, pp.153-160, 2016.
DOI : 10.1016/j.soilbio.2015.10.008

H. Lim, Y. Kim, K. , and S. , Pseudomonas stutzeri YPL-1 Genetic Transformation and Antifungal Mechanism against Fusarium solani, an Agent of Plant Root Rot, Appl. Environ. Microbiol, vol.57, pp.510-516, 1991.

D. A. Lipson, C. W. Schadt, and S. K. Schmidt, Changes in Soil Microbial Community Structure and Function in an Alpine Dry Meadow Following Spring Snow Melt, Microbial Ecology, vol.43, issue.3, pp.307-314, 2002.
DOI : 10.1007/s00248-001-1057-x

G. Liti, D. M. Carter, A. M. Moses, J. Warringer, L. Parts et al., Population genomics of domestic and wild yeasts, Nature, vol.26, issue.7236, pp.337-341, 2009.
DOI : 10.1099/00207713-50-5-1931

L. Liu, M. Zeng, A. Hausladen, J. Heitman, and J. S. Stamler, Protection from nitrosative stress by yeast flavohemoglobin, Proceedings of the National Academy of Sciences, vol.394, issue.6693, pp.4672-4676, 2000.
DOI : 10.1038/29087

URL : http://www.pnas.org/content/97/9/4672.full.pdf

V. Lombard, H. Golaconda-ramulu, E. Drula, P. M. Coutinho, and B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, vol.42, issue.D1, pp.490-495, 2013.
DOI : 10.1093/nar/gkt1178

A. Long, B. Song, K. Fridey, and A. Silva, Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils, FEMS Microbiology Ecology, vol.91, issue.2, pp.1-9, 2015.
DOI : 10.1093/femsec/fiu004

D. Loque, V. Wiren, and N. , Regulatory levels for the transport of ammonium in plant roots, Journal of Experimental Botany, vol.55, issue.401, pp.1293-1305, 2004.
DOI : 10.1093/jxb/erh147

P. H. Macarthur, S. Shiva, and M. T. Gladwin, Measurement of circulating nitrite and S-nitrosothiols by reductive chemiluminescence, Journal of Chromatography B, vol.851, issue.1-2, pp.93-105, 2007.
DOI : 10.1016/j.jchromb.2006.12.012

K. Maeda, A. Spor, V. Edel-hermann, C. Heraud, M. Breuil et al., N2O production, a widespread trait in fungi, Scientific Reports, vol.20, issue.1, pp.9697-9704, 2015.
DOI : 10.1093/bioinformatics/btg412

I. Mahne and J. M. Tiedje, Criteria and methodology for identifying respiratory denitrifiers, Appl. Environ. Microbiol, vol.61, pp.1110-1115, 1995.

E. Marti, J. Jofre, and J. L. Balcazar, Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant, PLoS ONE, vol.63, issue.457, pp.78906-78914, 2013.
DOI : 10.1371/journal.pone.0078906.s001

Y. Marusenko, D. P. Huber, and S. J. Hall, Fungi mediate nitrous oxide production but not ammonia oxidation in aridland soils of the southwestern US, Soil Biology and Biochemistry, vol.63, pp.24-36, 2013.
DOI : 10.1016/j.soilbio.2013.03.018

G. A. Marzluf, Genetic regulation of nitrogen metabolism in the fungi, Microbiol. Mol. Biol. Rev, vol.61, pp.17-32, 1997.

A. P. Masella, A. K. Bartram, J. M. Truszkowski, D. G. Brown, and J. D. Neufeld, PANDAseq: paired-end assembler for illumina sequences, BMC Bioinformatics, vol.13, issue.1, p.31, 2012.
DOI : 10.1093/bioinformatics/btl158

C. P. Mcswiney and G. P. Robertson, Nonlinear response of N2O flux to incremental fertilizer addition in a continuous maize (Zea mays L.) cropping system, Global Change Biology, vol.2, issue.10, pp.1712-1719, 2005.
DOI : 10.1016/S0038-0717(01)00013-X

J. P. Megonigal, M. E. Hines, and P. T. Visscher, Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes, Treatise on Geochemistry, pp.317-424, 2003.

S. B. Mohan and J. A. Cole, The Dissimilatory Reduction of Nitrate to Ammonia by Anaerobic Bacteria, Biology of the Nitrogen Cycle, 2007.
DOI : 10.1016/B978-044452857-5.50008-4

L. Molstad, P. Dörsch, and L. R. Bakken, Robotized incubation system for monitoring gases, Journal of Microbiological Methods, vol.2, issue.71, pp.202-211, 2007.

C. Moni, D. Derrien, P. J. Hatton, B. Zeller, and M. Kleber, Density fractions versus size separates: does physical fractionation isolate functional soil compartments?, Biogeosciences, vol.9, issue.12, pp.5181-5197, 2012.
DOI : 10.5194/bg-9-5181-2012

L. J. Monrozier, J. N. Ladd, R. W. Fitzpatrick, R. C. Foster, and M. Rapauch, Components and microbial biomass content of size fractions in soils of contrasting aggregation, Geoderma, vol.50, issue.1-2, pp.37-62, 1990.
DOI : 10.1016/0016-7061(91)90025-O

N. Mothapo, H. Chen, M. A. Cubeta, J. M. Grossman, F. Fuller et al., Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy, Soil Biology and Biochemistry, vol.83, pp.160-175, 2015.
DOI : 10.1016/j.soilbio.2015.02.001

N. V. Mothapo, H. Chen, M. A. Cubeta, and W. Shi, Nitrous oxide producing activity of diverse fungi from distinct agroecosystems, Soil Biology and Biochemistry, vol.66, pp.94-101, 2013.
DOI : 10.1016/j.soilbio.2013.07.004

C. Mouginot, R. Kawamura, K. L. Matulich, R. Berlemont, S. D. Allison et al., Elemental stoichiometry of Fungi and Bacteria strains from grassland leaf litter, Soil Biology and Biochemistry, vol.76, pp.278-285, 2014.
DOI : 10.1016/j.soilbio.2014.05.011

D. Mummey, W. Holben, J. Six, and P. Stahl, Spatial Stratification of Soil Bacterial Populations in Aggregates of Diverse Soils, Microbial Ecology, vol.35, issue.3, pp.404-411, 2006.
DOI : 10.2136/sssaj1988.03615995005200030030x

C. Müller, R. J. Laughlin, O. Spott, R. , and T. , Quantification of N2O emission pathways via a 15N tracing model, Soil Biology and Biochemistry, vol.72, pp.44-54, 2014.
DOI : 10.1016/j.soilbio.2014.01.013

M. M. Nakano, Essential Role of Flavohemoglobin in Long-Term Anaerobic Survival of Bacillus subtilis, Journal of Bacteriology, vol.188, issue.17, pp.6415-6418, 2006.
DOI : 10.1128/JB.00557-06

A. Navel and J. M. Martins, Effect of long term organic amendments and vegetation of vineyard soils on the microscale distribution and biogeochemistry of copper, Science of The Total Environment, vol.466, issue.467, pp.466-467, 2014.
DOI : 10.1016/j.scitotenv.2013.07.064

R. Nazir, J. A. Warmink, H. Boersma, and J. D. Van-elsas, Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats, FEMS Microbiology Ecology, vol.71, issue.2, pp.169-185, 2010.
DOI : 10.1111/j.1574-6941.2009.00807.x

D. W. Nelson and J. M. Bremner, Factors affecting chemical transformations of nitrite in soils, Soil Biology and Biochemistry, vol.1, issue.3, pp.229-239, 1969.
DOI : 10.1016/0038-0717(69)90023-6

D. W. Nelson and J. M. Bremner, Gaseous products of nitrite decomposition in soils, Soil Biology and Biochemistry, vol.2, issue.3, pp.203-215, 1970.
DOI : 10.1016/0038-0717(70)90008-8

D. W. Nelson and J. M. Bremner, Role of soil minerals and metallic cations in nitrite decomposition and chemodenitrification in soils, Soil Biology and Biochemistry, vol.2, issue.1, pp.1-8, 1970.
DOI : 10.1016/0038-0717(70)90019-2

D. Neumann, A. Heuer, M. Hemkemeyer, R. Martens, and C. C. Tebbe, Response of microbial communities to long-term fertilization depends on their microhabitat, FEMS Microbiology Ecology, vol.86, issue.1, pp.71-84, 2013.
DOI : 10.1111/1574-6941.12092

D. D. Németh, C. Wagner-riddle, and K. E. Dunfield, Abundance and gene expression in nitrifier and denitrifier communities associated with a field scale spring thaw N2O flux event, Soil Biology and Biochemistry, vol.73, pp.1-9, 2014.
DOI : 10.1016/j.soilbio.2014.02.007

G. W. Nicol, S. Leininger, C. Schleper, and J. I. Prosser, The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria, Environmental Microbiology, vol.68, issue.11, pp.2966-2978, 2008.
DOI : 10.1111/j.1462-2920.2008.01701.x

U. N. Nielsen, E. Ayres, and D. H. Wall, Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships, European Journal of Soil Science, vol.41, issue.1, pp.105-116, 2011.
DOI : 10.1016/j.soilbio.2008.12.028

M. P. Nittler, D. Hocking-murray, C. K. Foo, and A. Sil, Identification of Histoplasma capsulatum Transcripts Induced in Response to Reactive Nitrogen Species, Molecular Biology of the Cell, vol.16, issue.10, pp.4792-4813, 2005.
DOI : 10.1091/mbc.E05-05-0434

D. H. Northcote, Chemistry of the Plant Cell Wall, Annual Review of Plant Physiology, vol.23, issue.1, pp.113-132, 1972.
DOI : 10.1146/annurev.pp.23.060172.000553

J. M. Oades, Soil organic matter and structural stability: mechanisms and implications for management, Plant and Soil, vol.21, issue.1-3, pp.319-337, 1984.
DOI : 10.1007/BF02205590

J. M. Oades and A. G. Waters, Aggregate hierarchy in soils, Australian Journal of Soil Research, vol.29, issue.6, pp.815-828, 1991.
DOI : 10.1071/SR9910815

R. A. Ohm, R. Riley, A. Salamov, B. Min, I. Choi et al., Genomics of wood-degrading fungi, Fungal Genetics and Biology, vol.72, pp.82-90, 2014.
DOI : 10.1016/j.fgb.2014.05.001

J. C. Ottow, . Klopotek, and A. Von, Enzymatic reduction of iron oxide by fungi, Appl Microbiol, vol.18, pp.41-43, 1969.

S. Park, P. Croteau, K. A. Boering, D. M. Etheridge, D. Ferretti et al., Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940, Nature Geoscience, vol.5, issue.4, pp.261-265, 2012.
DOI : 10.5194/acp-8-389-2008

J. Paw?owska, T. Aleksandrzak-piekarczyk, A. Banach, B. Kiersztyn, A. Muszewska et al., Preliminary studies on the evolution of carbon assimilation abilities within Mucorales, Fungal Biology, vol.120, issue.5, pp.752-763, 2016.
DOI : 10.1016/j.funbio.2016.02.004

C. M. Payne, B. C. Knott, H. B. Mayes, H. Hansson, M. E. Himmel et al., Fungal Cellulases, Chemical Reviews, vol.115, issue.3, pp.1308-1448, 2015.
DOI : 10.1021/cr500351c

URL : http://doi.org/10.1021/cr500351c

N. Peinemann, N. M. Amiotti, and P. Zalba, Effect of Clay Minerals and Organic Matter on the Cation Exchange Capacity of Silt Fractions, Journal of Plant Nutrition and Soil Science, vol.163, issue.1, pp.47-52, 2000.
DOI : 10.1002/(SICI)1522-2624(200002)163:1<47::AID-JPLN47>3.0.CO;2-A

T. Pennanen, H. Fritze, P. Vanhala, O. Kiikkila, S. Neuvonen et al., Structure of a microbial community in soil after prolonged addition of low levels of simulated acid rain, Appl. Environ. Microbiol, vol.64, pp.2173-2180, 1998.

C. R. Penton, A. H. Devol, and J. M. Tiedje, Molecular Evidence for the Broad Distribution of Anaerobic Ammonium-Oxidizing Bacteria in Freshwater and Marine Sediments, Applied and Environmental Microbiology, vol.72, issue.10, pp.6829-6832, 2006.
DOI : 10.1128/AEM.01254-06

L. Philippot, Denitrifying genes in bacterial and Archaeal genomes, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1577, issue.3, pp.355-376, 2002.
DOI : 10.1016/S0167-4781(02)00420-7

J. Pietikäinen, M. Pettersson, and E. Bååth, Comparison of temperature effects on soil respiration and bacterial and fungal growth rates, FEMS Microbiology Ecology, vol.52, issue.1, pp.49-58, 2005.
DOI : 10.1016/j.femsec.2004.10.002

M. Pihlatie, E. Syväsalo, A. Simojoki, M. Esala, R. et al., O production in peat, clay and loamy sand soils under different soil moisture conditions, Nutrient Cycling in Agroecosystems, vol.70, issue.2, pp.135-141, 2004.
DOI : 10.1023/B:FRES.0000048475.81211.3c

K. Pilegaard, Processes regulating nitric oxide emissions from soils, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.346, issue.3, p.20130126, 2013.
DOI : 10.1007/s11104-011-0821-z

R. W. Portmann, J. S. Daniel, and A. R. Ravishankara, Stratospheric ozone depletion due to nitrous oxide: influences of other gases, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.10, issue.954, pp.1256-1264, 2012.
DOI : 10.5194/acp-10-7697-2010

M. J. Prather, J. Hsu, and N. M. Deluca, Measuring and modeling the lifetime of nitrous oxide including its variability, Journal of Geophysical Research: Atmospheres, vol.102, issue.D21, pp.5693-5705, 1984.
DOI : 10.1029/97JD02215

I. D. Pulford, The Chemistry of the Solid Earth, Principles of Environmental Chemistry, pp.234-278, 2007.

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Research, vol.41, issue.D1, pp.590-596, 2013.
DOI : 10.1093/nar/gks1219

R. Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2015.

R. M. Rajapaksha, M. A. Tobor-kaplon, and E. Bååth, Metal Toxicity Affects Fungal and Bacterial Activities in Soil Differently, Applied and Environmental Microbiology, vol.70, issue.5, pp.2966-2973, 2004.
DOI : 10.1128/AEM.70.5.2966-2973.2004

L. Ranjard, E. Brothier, and S. Nazaret, Sequencing Bands of Ribosomal Intergenic Spacer Analysis Fingerprints for Characterization and Microscale Distribution of Soil Bacterium Populations Responding to Mercury Spiking, Applied and Environmental Microbiology, vol.66, issue.12, pp.5334-5339, 2000.
DOI : 10.1128/AEM.66.12.5334-5339.2000

G. Rasul, A. Appuhn, T. Müller, and R. G. Joergensen, Salinity-induced changes in the microbial use of sugarcane filter cake added to soil, Applied Soil Ecology, vol.31, issue.1-2, pp.1-10, 2006.
DOI : 10.1016/j.apsoil.2005.04.007

A. R. Ravishankara, J. S. Daniel, and R. W. Portmann, Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century, Science, vol.106, issue.27, pp.123-125, 2009.
DOI : 10.1073/pnas.0902817106

H. Rennenberg, M. Dannenmann, A. Gessler, J. Kreuzwieser, J. Simon et al., Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses, Plant Biology, vol.123, pp.4-23, 2009.
DOI : 10.1002/jpln.200320322

M. Richardson, The ecology of the Zygomycetes and its impact on environmental exposure, Clinical Microbiology and Infection, vol.15, pp.2-9, 2009.
DOI : 10.1111/j.1469-0691.2009.02972.x

M. Richardson, The ecology of the Zygomycetes and its impact on environmental exposure, Clinical Microbiology and Infection, vol.15, pp.2-9, 2009.
DOI : 10.1111/j.1469-0691.2009.02972.x

R. Rileya, A. A. Salamova, and D. W. Brownb, Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi, Proceedings of the National Academy of Sciences, vol.111, issue.27, pp.9923-9928, 2014.
DOI : 10.1128/jb.169.5.2195-2201.1987

L. F. Roesch, R. R. Fulthorpe, A. Riva, G. Casella, A. K. Hadwin et al., Pyrosequencing enumerates and contrasts soil microbial diversity, The ISME Journal, vol.7, issue.4, pp.283-290, 2007.
DOI : 10.1038/ismej.2007.53

URL : http://www.nature.com/ismej/journal/v1/n4/pdf/ismej200753a.pdf

J. Rousk and E. Bååth, Fungal and bacterial growth in soil with plant materials of different C/N ratios, FEMS Microbiology Ecology, vol.62, issue.3, pp.258-267, 2007.
DOI : 10.1111/j.1574-6941.2007.00398.x

J. Rousk, L. A. Demoling, and E. Bååth, Contrasting Short-Term Antibiotic Effects on Respiration and Bacterial Growth Compromises the Validity of the Selective Respiratory Inhibition Technique to Distinguish Fungi and Bacteria, Microbial Ecology, vol.29, issue.1, pp.75-85, 2008.
DOI : 10.1111/j.1365-2672.1985.tb01461.x

J. Rousk, L. A. Demoling, A. Bahr, and E. Bååth, Examining the fungal and bacterial niche overlap using selective inhibitors in soil, FEMS Microbiology Ecology, vol.63, issue.3, pp.350-358, 2008.
DOI : 10.1111/j.1574-6941.2008.00440.x

S. Saggar, N. Jha, J. Deslippe, N. S. Bolan, J. Luo et al., Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts, Science of The Total Environment, vol.465, pp.173-195, 2013.
DOI : 10.1016/j.scitotenv.2012.11.050

R. A. Sanford, D. D. Wagner, Q. Wu, J. C. Chee-sanford, S. H. Thomas et al., Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils, Proceedings of the National Academy of Sciences, vol.11, issue.6, pp.19709-19714, 2012.
DOI : 10.1111/j.1365-2486.2005.01040.x

M. Sardinha, T. Müller, H. Schmeisky, and R. G. Joergensen, Microbial performance in soils along a salinity gradient under acidic conditions, Applied Soil Ecology, vol.23, issue.3, pp.237-244, 2003.
DOI : 10.1016/S0929-1393(03)00027-1

C. W. Schadt, A. P. Martin, D. A. Lipson, and S. K. Schmidt, Seasonal Dynamics of Previously Unknown Fungal Lineages in Tundra Soils, Science, vol.301, issue.5638, pp.1359-1361, 2003.
DOI : 10.1126/science.1086940

J. P. Schimel and S. M. Schaeffer, Microbial control over carbon cycling in soil, Frontiers in Microbiology, vol.3, p.348, 2012.
DOI : 10.3389/fmicb.2012.00348

S. K. Schmidt, C. S. Naff, and R. C. Lynch, Fungal communities at the edge: Ecological lessons from high alpine fungi, Fungal Ecology, vol.5, issue.4, pp.443-452, 2012.
DOI : 10.1016/j.funeco.2011.10.005

R. Schmieder and R. Edwards, Quality control and preprocessing of metagenomic datasets, Bioinformatics, vol.27, issue.6, pp.863-864, 2011.
DOI : 10.1093/bioinformatics/btr026

D. C. Seo and R. D. Delaune, Fungal and bacterial mediated denitrification in wetlands: Influence of sediment redox condition, Water Research, vol.44, issue.8, pp.2441-2450, 2010.
DOI : 10.1016/j.watres.2010.01.006

A. J. Sexstone and N. P. Revsbech, Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil. Sci. Soc. Am. J, vol.49, pp.549-559, 1985.

I. Shcherbak, N. Millar, and G. P. Robertson, Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen, Proceedings of the National Academy of Sciences, vol.169, issue.5934, pp.9199-9204, 2014.
DOI : 10.1002/jpln.200521954

I. Shcherbak, N. Millar, and G. P. Robertson, Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen, Proceedings of the National Academy of Sciences, vol.169, issue.5934, pp.9199-9204, 2014.
DOI : 10.1002/jpln.200521954

H. Shoun and T. Tanimoto, Denitrification by the fungus Fusarium oxysporum and involvement of cytochrome P-450 in the respiratory nitrite reduction, J. Biol. Chem, vol.266, pp.11078-11082, 1991.

H. Shoun, S. Fushinobu, L. Jiang, S. W. Kim, and T. Wakagi, Fungal denitrification and nitric oxide reductase cytochrome P450nor, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.184, issue.11, pp.1186-1194, 2012.
DOI : 10.1128/JB.184.11.2963-2968.2002

URL : http://rstb.royalsocietypublishing.org/content/royptb/367/1593/1186.full.pdf

J. Simon, Enzymology and bioenergetics of respiratory nitrite ammonification, FEMS Microbiology Reviews, vol.26, issue.3, pp.285-309, 2002.
DOI : 10.1111/j.1574-6976.2002.tb00616.x

J. Simon, M. Sänger, S. C. Schuster, and R. Gross, Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein, Molecular Microbiology, vol.181, issue.1, pp.69-79, 2003.
DOI : 10.1042/bj3310897

J. Simon, R. J. Van-spanning, and D. J. Richardson, The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.12, pp.1480-1490, 2008.
DOI : 10.1016/j.bbabio.2008.09.008

J. Six and K. Paustian, Aggregate-associated soil organic matter as an ecosystem property and a measurement tool, Soil Biology and Biochemistry, vol.68, pp.4-9, 2014.
DOI : 10.1016/j.soilbio.2013.06.014

J. Six, H. Bossuyt, S. Degryze, and K. Denef, A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics, Soil and Tillage Research, vol.79, issue.1, pp.7-31, 2004.
DOI : 10.1016/j.still.2004.03.008

J. Six, E. T. Elliott, and K. Paustian, Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture, Soil Biology and Biochemistry, vol.32, issue.14, pp.2099-2103, 2000.
DOI : 10.1016/S0038-0717(00)00179-6

J. C. Slot and D. S. Hibbett, Horizontal Transfer of a Nitrate Assimilation Gene Cluster and Ecological Transitions in Fungi: A Phylogenetic Study, PLoS ONE, vol.300, issue.(Pt 1), pp.1097-1105, 2007.
DOI : 10.1371/journal.pone.0001097.s005

K. A. Smith and F. Conen, Impacts of land management on fluxes of trace greenhouse gases, Soil Use and Management, vol.17, issue.1-2, pp.255-263, 2004.
DOI : 10.1029/1999JD900427

D. M. Snider, J. J. Venkiteswaran, S. L. Schiff, and J. Spoelstra, From the Ground Up: Global Nitrous Oxide Sources are Constrained by Stable Isotope Values, PLoS ONE, vol.10, p.118954, 2015.

M. L. Sogin, H. G. Morrison, J. A. Huber, D. M. Welch, S. M. Huse et al., Microbial diversity in the deep sea and the underexplored "rare biosphere", Proceedings of the National Academy of Sciences, vol.18, issue.11, pp.12115-12120, 2006.
DOI : 10.1093/bioinformatics/18.11.1546

T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, A. et al., IPCC, 2013: Climat Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change IPCC Localised, 2013.

U. Stockmann, M. A. Adams, J. W. Crawford, D. J. Field, N. Henakaarchchi et al., The knowns, known unknowns and unknowns of sequestration of soil organic carbon, Agriculture, Ecosystems & Environment, vol.164, pp.80-99, 2013.
DOI : 10.1016/j.agee.2012.10.001

URL : https://hal.archives-ouvertes.fr/hal-01594846

M. A. Stremi?ska, H. Felgate, G. Rowley, D. J. Richardson, and E. M. Baggs, Nitrous oxide production in soil isolates of nitrate-ammonifying bacteria, Environmental Microbiology Reports, vol.34, issue.1, pp.66-71, 2011.
DOI : 10.1016/S0038-0717(02)00049-4

M. S. Strickland and J. Rousk, Considering fungal:bacterial dominance in soils ??? Methods, controls, and ecosystem implications, Soil Biology and Biochemistry, vol.42, issue.9, pp.1385-1395, 2010.
DOI : 10.1016/j.soilbio.2010.05.007

M. Strous, J. A. Fuerst, E. Kramer, and S. Logemann, Missing lithotroph identified as new planctomycete, Nature, vol.142, issue.6743, pp.446-449, 1999.
DOI : 10.1099/13500872-142-8-2187

E. A. Susyan, N. D. Ananyeva, and E. V. Blagodatskaya, The Antibiotic-Aided Distinguishing of Fungal and Bacterial Substrate-Induced Respiration in Various Soil Ecosystems, Microbiology, vol.26, issue.11, pp.336-342, 2005.
DOI : 10.1007/s11021-005-0072-1

N. Takaya, Dissimilatory nitrate reduction metabolisms and their control in fungi, Journal of Bioscience and Bioengineering, vol.94, issue.6, pp.506-510, 2002.
DOI : 10.1016/S1389-1723(02)80187-6

P. Tavares, A. S. Pereira, J. J. Moura, and I. Moura, Metalloenzymes of the denitrification pathway, Journal of Inorganic Biochemistry, vol.100, issue.12, pp.2087-2100, 2006.
DOI : 10.1016/j.jinorgbio.2006.09.003

J. Tejero and M. T. Gladwin, The globin superfamily: functions in nitric oxide formation and decay, Biological Chemistry, vol.395, issue.6, pp.1-10, 2014.
DOI : 10.1515/hsz-2013-0289

D. D. Thomas, L. A. Ridnour, J. S. Isenberg, W. Flores-santana, C. H. Switzer et al., The chemical biology of nitric oxide: Implications in cellular signaling, Free Radical Biology and Medicine, vol.45, issue.1, pp.18-31, 2008.
DOI : 10.1016/j.freeradbiomed.2008.03.020

P. E. Thornton, J. Lamarque, N. A. Rosenbloom, and N. M. Mahowald, Influence of carbonnitrogen cycle coupling on land model response to CO 2 fertilization and climate variability, Global Biogeochemical Cycles, vol.21, pp.1-15, 2007.

A. Tillmann, N. A. Gow, and A. J. Brown, Nitric oxide and nitrosative stress tolerance in yeast, Biochemical Society Transactions, vol.18, issue.1, pp.219-223, 2011.
DOI : 10.1128/EC.00206-09

D. Tilman, Global environmental impacts of agricultural expansion: The need for sustainable and efficient practices, Proceedings of the National Academy of Sciences, vol.58, issue.2, pp.5995-6000, 1999.
DOI : 10.2136/sssaj1994.03615995005800020040x

J. M. Tisdall, Possible role of soil microorganisms in aggregation in soils, Plant and Soil, vol.19, issue.1, pp.85-98, 1994.
DOI : 10.1071/SR9810159

J. M. Tisdall and J. M. Oades, Organic matter and water-stable aggregates in soils, Journal of Soil Science, vol.29, issue.2, pp.141-163, 1982.
DOI : 10.1016/B978-0-12-395699-6.50007-9

E. Tisserant, M. Malbreil, A. Kuo, A. Kohler, A. Symeonidi et al., Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis, Proceedings of the National Academy of Sciences, vol.451, issue.7175, pp.20117-20122, 2013.
DOI : 10.1038/nature06453

URL : https://hal.archives-ouvertes.fr/hal-01578663

J. F. Toljander, V. Artursson, L. R. Paul, J. K. Jansson, and R. D. Finlay, Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species, FEMS Microbiology Letters, vol.254, issue.1, pp.34-40, 2006.
DOI : 10.1111/j.1574-6968.2005.00003.x

A. C. Tolonen, T. Cerisy, H. El-sayyed, M. Boutard, M. Salanoubat et al., Fungal lysis by a soil bacterium fermenting cellulose, Environmental Microbiology, vol.68, issue.8, pp.2618-2627, 2014.
DOI : 10.1128/AEM.68.6.3176-3179.2002

M. P. Turpault, P. Bonnaud, J. Fighter, J. Ranger, and E. Dambrine, Distribution of cation exchange capacity between organic matter and mineral fractions in acid forest soils (Vosges mountains, France), European Journal of Soil Science, vol.104, issue.4, pp.545-556, 1996.
DOI : 10.1097/00010694-196708000-00008

B. D. Ullmann, H. Myers, W. Chiranand, A. L. Lazzell, Q. Zhao et al., Inducible Defense Mechanism against Nitric Oxide in Candida albicans, Eukaryotic Cell, vol.3, issue.3, pp.715-723, 2004.
DOI : 10.1128/EC.3.3.715-723.2004

B. L. Vallee and R. J. Williams, Metalloenzymes: the entatic nature of their active sites., Proceedings of the National Academy of Sciences, vol.59, issue.2, pp.498-505, 1968.
DOI : 10.1073/pnas.59.2.498

O. Van-cleemput and A. H. Samater, Nitrite in soils: accumulation and role in the formation of gaseous N compounds, Fertilizer Research, vol.68, issue.1, pp.81-89, 1995.
DOI : 10.1007/BF00749884

J. Van-den-brink and R. P. De-vries, Fungal enzyme sets for plant polysaccharide degradation, Applied Microbiology and Biotechnology, vol.58, issue.8, 2011.
DOI : 10.1271/bbb.58.1392

J. Van-den-brink and R. P. De-vries, Fungal enzyme sets for plant polysaccharide degradation, Applied Microbiology and Biotechnology, vol.58, issue.8, 2011.
DOI : 10.1271/bbb.58.1392

M. G. Van-der-heijden, S. De-bruin, L. Luckerhoff, R. S. Van-logtestijn, and K. Schlaeppi, A widespread plant-fungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment, The ISME Journal, vol.10, issue.2, pp.389-399, 2015.
DOI : 10.2307/3236106

M. G. Van-der-heijden, F. M. Martin, M. Selosse, S. , and I. R. , Mycorrhizal ecology and evolution: the past, the present, and the future, New Phytologist, vol.102, issue.4, pp.1406-1423, 2015.
DOI : 10.1111/1365-2745.12249

URL : https://hal.archives-ouvertes.fr/hal-01579582

J. Van-dorst, A. Bissett, A. S. Palmer, M. Brown, I. Snape et al., Community fingerprinting in a sequencing world, FEMS Microbiology Ecology, vol.89, issue.2, pp.316-330, 2014.
DOI : 10.1111/1574-6941.12308

R. J. Van-spanning, D. J. Richardson, F. , and S. J. , Introduction to the Biochemistry and Molecular Biology of Denitrification, Biology of the Nitrogen Cycle, Biology of the Nitrogen Cycle, pp.3-20, 2007.
DOI : 10.1016/B978-044452857-5.50002-3

H. Velvis, Evaluation of the selective respiratory inhibition method for measuring the ratio of fungal:bacterial activity in acid agricultural soils, Biology and Fertility of Soils, vol.25, issue.4, pp.354-360, 1997.
DOI : 10.1007/s003740050325

D. T. Verhamme, J. I. Prosser, N. , and G. W. , Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms, The ISME Journal, vol.62, issue.6, pp.1067-1071, 2011.
DOI : 10.1073/pnas.0600756103

R. A. Voloshin and M. V. Rodionova, Review: Biofuel production from plant and algal biomass, International Journal of Hydrogen Energy, vol.41, issue.39, pp.17257-17273, 2016.
DOI : 10.1016/j.ijhydene.2016.07.084

M. Vos and G. J. Velicer, Genetic Population Structure of the Soil Bacterium Myxococcus xanthus at the Centimeter Scale, Applied and Environmental Microbiology, vol.72, issue.5, pp.3615-3625, 2006.
DOI : 10.1128/AEM.72.5.3615-3625.2006

M. Vos, A. B. Wolf, S. J. Jennings, and G. A. Kowalchuk, Micro-scale determinants of bacterial diversity in soil, FEMS Microbiology Reviews, vol.37, issue.6, pp.936-954, 2013.
DOI : 10.1111/1574-6976.12023

C. Wagg, S. F. Bender, F. Widmer, and M. G. Van-der-heijden, Soil biodiversity and soil community composition determine ecosystem multifunctionality, Proceedings of the National Academy of Sciences, vol.84, issue.4, pp.5266-5270, 2014.
DOI : 10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2

URL : http://www.pnas.org/content/111/14/5266.full.pdf

K. J. Waldron and N. J. Robinson, How do bacterial cells ensure that metalloproteins get the correct metal?, Nature Reviews Microbiology, vol.283, issue.1, pp.25-35, 2009.
DOI : 10.1007/s00775-002-0341-7

G. Walther, S. Garnica, and M. Weiss, The systematic relevance of conidiogenesis modes in the gilled Agaricales, Mycological Research, vol.109, issue.5, pp.525-544, 2005.
DOI : 10.1017/S0953756205002868

D. A. Wardle, The influence of biotic interactions on soil biodiversity, Ecology Letters, vol.67, issue.7, pp.870-886, 2006.
DOI : 10.1007/s00374-003-0659-5

J. A. Warmink and J. D. Van-elsas, Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved?, The ISME Journal, vol.5, issue.8, pp.887-900, 2008.
DOI : 10.1038/ismej.2008.41

J. A. Warmink, R. Nazir, V. Elsas, and J. D. , Universal and species-specific bacterial ???fungiphiles??? in the mycospheres of different basidiomycetous fungi, Environmental Microbiology, vol.2, issue.2, pp.300-312, 2009.
DOI : 10.1099/00221287-27-3-509

K. Watanabe, Y. Kodama, and S. Harayama, Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting, Journal of Microbiological Methods, vol.44, issue.3, pp.253-262, 2001.
DOI : 10.1016/S0167-7012(01)00220-2

F. A. Webster and D. W. Hopkins, Contributions from different microbial processes to N2O emission from soil under different moisture regimes, Biology and Fertility of Soils, vol.48, issue.4, pp.331-335, 1996.
DOI : 10.1007/BF00334578

W. Wei, K. Isobe, Y. Shiratori, T. Nishizawa, N. Ohte et al., Development of PCR primers targeting fungal nirK to study fungal denitrification in the environment, Soil Biology and Biochemistry, vol.81, pp.282-286, 2015.
DOI : 10.1016/j.soilbio.2014.11.026

W. Wei, K. Isobe, Y. Shiratori, T. Nishizawa, N. Ohte et al., N2O emission from cropland field soil through fungal denitrification after surface applications of organic fertilizer, Soil Biology and Biochemistry, vol.69, pp.157-167, 2014.
DOI : 10.1016/j.soilbio.2013.10.044

E. Wessén, M. Söderström, M. Stenberg, D. Bru, M. Hellman et al., Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning, The ISME Journal, vol.63, issue.7, pp.1213-1225, 2011.
DOI : 10.1073/pnas.0709016105

S. Willför, A. Pranovich, T. Tamminen, J. Puls, C. Laine et al., Carbohydrate analysis of plant materials with uronic acid-containing polysaccharides???A comparison between different hydrolysis and subsequent chromatographic analytical techniques, Industrial Crops and Products, vol.29, issue.2-3, pp.571-580, 2009.
DOI : 10.1016/j.indcrop.2008.11.003

N. Wrage, G. L. Velthof, V. Beusichem, and M. L. , Role of nitrifier denitrification in the production of nitrous oxide, Soil Biology and Biochemistry, vol.33, issue.12-13, pp.1723-1732, 2001.
DOI : 10.1016/S0038-0717(01)00096-7

J. P. Zehr, B. D. Jenkins, S. M. Short, and G. F. Steward, Nitrogenase gene diversity and microbial community structure: a cross-system comparison, Environmental Microbiology, vol.64, issue.7, pp.539-554, 2003.
DOI : 10.1038/35088063

URL : http://onlinelibrary.wiley.com/doi/10.1046/j.1462-2920.2003.00451.x/pdf

I. Zelitch, Pathways of Carbon Fixation in Green Plants, Annual Review of Biochemistry, vol.44, issue.1, pp.123-145, 1975.
DOI : 10.1146/annurev.bi.44.070175.001011

. Zhou, . Shengmin, S. Fushinobu, Y. Nakanishi, S. Kim et al., Cloning and characterization of two flavohemoglobins from Aspergillus oryzae, Biochemical and Biophysical Research Communications, vol.381, issue.1, pp.7-11, 2009.
DOI : 10.1016/j.bbrc.2009.01.112

Z. Zhou, N. Takaya, M. A. Sakairi, and H. Shoun, Oxygen requirement for denitrification by the fungus Fusarium oxysporum, Archives of Microbiology, vol.175, issue.1, pp.19-25, 2001.
DOI : 10.1007/s002030000231

Z. Zhou, X. Shi, Y. Zheng, Z. Qin, D. Xie et al., Abundance and community structure of ammonia-oxidizing bacteria and archaea in purple soil under long-term fertilization, European Journal of Soil Biology, vol.60, pp.24-33, 2014.
DOI : 10.1016/j.ejsobi.2013.10.003

X. Zhu-barker, T. A. Doane, and W. R. Horwath, Role of green waste compost in the production of N2O from agricultural soils, Soil Biology and Biochemistry, vol.83, pp.57-65, 2015.
DOI : 10.1016/j.soilbio.2015.01.008

W. G. Zumft, Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. Rev, vol.61, pp.533-616, 1997.

W. G. Zumft and P. M. Kroneck, Respiratory Transformation of Nitrous Oxide (N2O) to Dinitrogen by Bacteria and Archaea, Adv Microb Physiol, vol.52, pp.107-227, 2007.
DOI : 10.1016/S0065-2911(06)52003-X