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« Je ne cesserai jamais de m’émerveiller que cette chair soutenue par ses 
vertèbres, ce tronc joint à la tête par l’isthme du coup et disposant autour de 

lui symétriquement ses membres, contiennent, et peut-être produisent un esprit 
qui tire parti de mes yeux pour voir et de mes mouvements pour palper… J’en 

sais les limites, et que le temps lui manquera pour aller plus loin, et la force, si 
par hasard lui était accordé le temps. Mais il est, et, en ce moment, il est Celui 

qui Est. Je sais qu’il se trompe, erre, interprète souvent à tort les leçons que lui 
dispense le monde, mais je sais aussi qu’il a en lui de quoi connaître et parfois 
rectifier ses propres erreurs. J’ai parcouru au moins une partie de cette boule 
où nous sommes ; j’ai étudié le point de fusion des métaux et la génération des 

plantes ; j’ai observé les astres et examiné l’intérieur des corps. Je suis 
capable d’extraire de ce tison que je soulève la notion de poids et de ces 

flammes la notion de chaleur. Je sais que je ne sais pas ce que je ne sais pas ; 
j’envie ceux qui sauront d’avantage, mais je sais qu’ils auront tout comme moi 

à mesurer, peser, déduire et se méfier des déductions produites, faire dans le 
faux la part du vrai et tenir compte dans le vrai de l’éternelle admixtion du 

faux. Je ne me suis jamais entêté à une idée par crainte du désarroi où je 
tomberais sans elle. Je n’ai jamais assaisonnée un fait vrai à la sauce du 
mensonge, pour m’en rendre à moi-même la digestion plus facile. Je n’ai 

jamais déformé les vues de l’adversaire pour en avoir plus aisément raison 
(…). Ou plutôt si : je me suis surpris à le faire, et me suis chaque fois 

réprimandé (…). J’ai rêvé mes songes ; je ne les tiens pas pour autre chose que 
des songes. Je me suis gardé de faire de la vérité une idole, préférant lui 

laisser son nom plus humble d’exactitude. Mes triomphes et mes dangers ne 
sont pas ceux qu’on pense ; il y a d’autres gloires que la gloire et d’autres 

bûchers que le bûcher. J’ai presque réussi à me défier des mots. 
Je mourrai un peu moins sot que je ne suis né. » 

Marguerite Yourcenar, L’Œuvre au Noir (1968)
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Résumé 

Tous les soirs, nous nous endormons; tous les matins, nous nous réveillons. De ce qui 

advient entre temps nous gardons peu de souvenirs. Les personnes qui nous entourent 

pourraient nous dire que nous avons bougé, parlé, ri ou crié, que les émotions les plus 

vives ont pris le contrôle de notre corps sans pour autant avoir laissé le moindre 

souvenir. Ou encore, les personnes qui nous entourent ont pu bouger, parler, rire ou 

crier sans que nous nous en rendîmes compte le moins du monde. Ou au contraire, nous 

pouvons émerger de la plus fantastique des aventures dans un lit pourtant bien calme, 

bercé par le calme tic-tac de l’horloge. Il semble que le sommeil opère une dissociation 

complète entre ce qui arrive dans notre environnement immédiat et dans notre esprit, 

sans pour autant que la chose éveille en nous la moindre alarme. À tout moment qui plus 

est, nous pouvons nous réveiller et reprendre conscience de notre environnement de 

façon quasi instantanée. Curieusement, il semble que certains sons aient une plus grande 

facilité à nous réveiller que d’autres. 

Sommes-nous donc complètement déconnectés de notre environnement quand nous 

dormons ? Dans les années 60, David Formby et col. montrèrent que la pertinence d’un 

son importe en effet, en observant que les jeunes mères se réveillent plus aisément en 

entendant le cri de leur propre enfant plutôt que celui d’un autre. Plus tard, Hélène 

Bastuji et col. démontrèrent que les traitements sensoriels peuvent être préservés pendant 

le sommeil sans pour autant nécessairement conduire à un réveil. Cette capacité à 

analyser les informations venant du monde extérieur pendant le sommeil pourrait 

s’appuyer sur un phénomène appelé ‘sommeil local’ : le fait que certaines régions 

cérébrales puissent être réveillées dans un cerveau globalement endormi. Dans le 

Chapitre 1, je présenterai quelques études explorant la physiologie du sommeil et 

montrant que le sommeil est un phénomène plus local que la description qui est en 

classiquement faite. À la lumière de ces travaux, je soulignerai la nécessité de considérer 

le sommeil à des échelles spatiales (Études 1 et 2) et temporelles (Étude 3) plus précises. 

Au cours de cette thèse, j’ai également exploré les conséquences fonctionnelles de ce 

sommeil local en étudiant notamment jusqu’à quel point les processus cognitifs sont 

préservés pendant le sommeil naturel chez l’homme. Notre approche est plutôt simple : 

les personnes participant à nos expériences devaient catégoriser des sons (des mots, des 

phrases, des bruits) pendant qu’elles étaient éveillées. Une fois que l’exercice était devenu 

automatique, ces participants étaient invités à le poursuivre confortablement allongés 

dans l’obscurité. La plupart du temps, ceux-ci se sont endormis en écoutant les sons. 

Nous enregistrions en parallèle l’activité cérébrale au moyen d’un 

électroencéphalogramme et avons utilisé ces enregistrements afin de déterminer d’une 

part si les individus dormaient et d’autre part s’ils continuaient à catégoriser les stimuli. 
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En faisant varier les instructions données ou la nature des sons, nous avons pu 

déterminer si ces dormeurs pouvaient extraire des informations complexes à partir des 

entrées auditives et si ces informations pouvaient être utilisées pour prendre des 

décisions ou pour être apprises. 

Dans le chapitre 2, je détaillerai nos efforts consistant à examiner quels traitements sont 

possibles pendant le sommeil. En utilisant l’approche évoquée ci-dessus, nous avons pu 

montrer que les dormeurs peuvent traiter une information auditive à un haut niveau de 

représentation (niveau sémantique ou lexical, Études 4 et 5).  En outre, nos données 

suggèrent que cette information peut être envoyée vers d’autres régions cérébrales et 

permettre des prises de décision. Je décrierai également les mécanismes permettant au 

cerveau de traiter ces informations extérieures ou au contraire de s’en isoler (Étude 5). 

Enfin, je monterai comment les dormeurs peuvent non seulement traiter de façon 

complexe une information pendant le sommeil mais aussi sélectionner une source 

d’information en particulier quand deux sont présentées en compétition (Étude 6). 

Le cerveau éveillé apprend sans cesse et le simple fait d’user de ses sens peut conduire à 

la formation de nouveaux souvenirs, qu’ils soient implicites ou explicites, grossiers ou 

élaborés. De semblables traces mnésiques apparaissent-elles quand le cerveau dormant 

traite les informations extérieures ? Le Chapitre 3 se concentrera sur cette question. Dans 

une première étude (Étude 7) nous avons obtenu d’encourageant résultats : traiter une 

information même endormi peut conduire à l’établissement d’un souvenir implicite. Afin 

d’approfondir ce premier résultat ainsi que les mécanismes sous-jacents, nous avons 

étudié la capacité du cerveau dormant à former de nouvelles représentations (Études 8 et 

9). Je présenterai ici des données expérimentales montrant que le cerveau endormi peut à 

la fois créer et supprimer de nouvelles traces mnésiques en fonction du stade de sommeil. 

Ce travail nous a en outre permis de formuler une synthèse du rôle du sommeil dans la 

mémoire, notamment quant à la fonction bien établie du sommeil dans la consolidation 

des souvenirs. 

En résumé, au cours de mon doctorat j’ai essayé de rendre compte de la richesse du 

sommeil. Bien loin de l’inactivité, le sommeil est un équilibre dynamique dans lequel les 

informations extérieures peuvent être traitées, permettant au cerveau de décider s’il vaut 

mieux continuer à dormir ou se réveiller. L’aphorisme d’Héraclite, vieux de plus de 2000 

ans, trouve ici une modeste confirmation: 

 “Même une âme plongée dans le sommeil 

s’attèle au travail et aide 

à donner un sens au monde”. 
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Summary 

Every night we fall asleep and every morning we wake up. From what happens in the 

meantime, little is remembered. Others may say that we have moved, talked, laughed or 

cried, that the strongest and most vivid emotions took control of our body without 

leaving the faintest memory behind. Or others may have moved, talked, laughed or cried 

without our slightest notice. On the contrary, we can emerge from the most fantastic 

adventure in a quiet bed, cradled by a peaceable ticking clock. Without causing us much 

alarm, it seems that sleep entails a dissociation between what happens in our 

environment and within our mind. Yet, at any moment, we can wake up and immediately 

regain consciousness of the surrounding world. Interestingly, it seems that certain sounds 

are more likely to awake us than others.  

Thus, are we completely disconnected from our environment when we sleep? Indeed, 

loudness is not the only criterion that determines whether a sound will wake up a sleeper. 

In the 60s, David Formby and colleagues showed that relevance matters when observing 

that young mothers wake up more easily to the cry of their own child. Later, Hélène 

Bastuji and colleagues demonstrated that sensory processing can be preserved in sleep 

without necessarily leading to an awakening. The maintenance of some ability to monitor 

the external world while being sleep could rely on a phenomenon called local sleep, i.e. 

the fact that some brain regions could be awake in a globally sleeping brain. In Chapter 1, 

I will present several studies exploring sleep physiology and showing that sleep is a more 

local phenomenon than usually described. In the light of such evidence, I will stress the 

need to consider sleep at refined spatial (Studies 1 and 2) and temporal (Study 3) scales.  

During my doctoral work, I also explored the functional consequence of local sleep and 

the extent to which cognitive processes are preserved during natural human sleep. Our 

approach was rather simple: participants to our experiments were asked to discriminate 

acoustic stimuli (e.g. words, sentences, sounds…) while awake. Once the task at hand 

had been automated, participants were invited to continue it while comfortably laying in 

a dark room. Most of the time, they fell asleep while listening to our stimuli. We recorded 

neural activity with scalp electroencephalograpy and used it to assess both the vigilance 

of participants and their ability to discriminate the stimuli. By varying the task 

instructions and the nature of stimuli, we could probe whether sleepers can extract 
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complex information from the acoustic signal and, whether this information can be used 

to make decisions or for learning. 

In Chapter 2, I will detail our efforts to examine to which extent external information 

can be processed during sleep. Using the approach detailed above, we showed that 

sleepers can access acoustic information at a rather high level of representation (i.e. 

semantic or lexical level; Studies 4 and 5). Importantly, we showed that this information 

can be routed to other brain areas up to the decision level. I will also describe the 

mechanisms allowing the sleeping brain to process or on the contrary inhibit sensory 

information (Study 5). Finally, I will show that sleepers can not only process complex 

information but also that sleepers can select and lean toward one source of information 

when two sources are presented in competition (Study 6).  

The awake brain is constantly learning and the fact of experiencing almost inevitably 

leads to the establishment of memory traces, being it explicit or implicit, strong or fine. 

Are similar memories formed when the sleeping brain processes external information? 

This question will be the focus of Chapter 3. Our initial effort (Study 7) led to 

encouraging observations: processing information while asleep may allow the formation 

of implicit mnesic traces. To better explore this question and the underlying mechanisms, 

we investigated whether a new representation can be created during sleep (Studies 8 and 

9).  I report here evidence that the sleeping brain can both establish and suppress novel 

mnesic traces depending on sleep stages. This work allowed us to formulate an 

integrative view of the role of sleep in memory and especially the well-established 

function of sleep regarding memory consolidation. 

In summary, in the course of my Ph.D., I tried to better depict the richness of sleep. Far 

from being an idle state, sleep is a dynamic equilibrium in which the environment can be 

monitored, allowing the brain to decide whether to stay asleep or to wake up. Heraclitus’ 

aphorism stated more than 2000 years ago finds here a modest corroboration:  

“Even a soul submerged in sleep 

 is hard at work and helps 

make something of the world”. 
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What is sleep? 

Sleep is ubiquitous 

From our very first cry to our last breath, sleep marks the passage of days. Whatever its potential 
costs and whatever we think we could achieve in the meantime1, humans organize their lives and 
societies around sleep. This centrality of sleep in existence may have inspired Shakespeare when 
he wrote these immortal verses2:  

‘We are such stuff  
As dreams are made on, and our little life  

Is rounded with a sleep.’ 

In Humans, sleep is characterized by the disappearance of the surrounding world. Aristotle in his 
rich essay on sleep (Aristotle, 350BC) describes it as a “privation of waking” that is to say the 
inability to “exercis[e] sense-perception”. Indeed, every night our minds dissolve at times into 
nothingness at times into a phantasmagoric inner world. Personal experience suggests that we 
cease to experience our environment while we sleep, since we cannot really tell what happened 
over these many hours. The direct consequence is that sleepers remain quite unresponsive to 
external stimulations, just as Gulliver when tied up by the Lilliputs. Such unresponsiveness can 
be objectively measured, providing a defining criterion for sleep that can be applied to both 
Humans and animals (Cirelli and Tononi, 2008). 

Using the absence of responsiveness to probe sleep, it has been shown that sleep expands much 
further than the humankind (see Figure 0-1) and phenomena resembling human sleep have been 
described in all animal species studied so far, from fruit flies to platypuses (Cirelli and Tononi, 
2008). Even animals for which sleep represents an ecological disadvantage do sleep. For 
example, migratory birds must fly for extended periods without landing. In this context, sleeping 
becomes both difficult to achieve and dangerous to maintain. Down the sea, dolphins need to 
periodically reach the surface in order to breathe, which implies that they cannot stop swimming 
in order to sleep. Hence, the ecological niches of these species put a huge pressure on sleep. But 
sleep remains, in an adapted way. In these species can be found what is called unihemispheric 
sleep (Rattenborg et al., 2000). Its principle is simple: one cerebral hemisphere only sleeps at a 
time, letting the other hemisphere deal with the environment and its potential dangers. Thus, 
even in the most constrained and unfavorable environments, animals do sleep. But how then can 
sleep be defined so as to take into account all its implementations? 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1 Plato for example considered sleeping too much as ‘shameful and unworthy’: ‘A sleeping man does not worth 
anything, just as a dead man’ (Plato, Laws, 370-345 BC). 
2 Shakespeare, The Tempest (1611) Act IV Scene I 
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Figure 0-1 Presence of NREM and REM sleep across Vertebrates 

All studied animals so far have been shown to sleep (even if some particular cases are still a matter of 
debate (Cirelli and Tononi, 2008)). But there are important differences across species. While placental 
mammals like primates or rodents show two types of sleep alternating within a night (NREM and REM 
sleep, see below), non-therian mammals do not show signs of REM-sleep. Other species show REM-
sleep only during the early stage of life. Crucially, NREM sleep is present in all these species. Adapted 
from (Hobson, 2009). 

 

Sleep as a state 

Amongst human beings, the best way to know whether a person is asleep is simply to have a 
look. A still and curled posture, deep breathing, closed eyelids are well-known signs of sleep. If 
some doubt persists, asking is enough. An absence of response would probably mean that the 
person is asleep. Of course, such a definition lacks both specificity and sensitivity and can be 
hardly transferred to non-human species. But the core idea can be reprieved: sleep is a state in 
which the responsiveness to external stimuli is greatly diminished.  

In 1862, Ernst Kohlschütter made the first detailed description of how sleepers get disconnected 
from their environment (Kohlschütter, 1862) by measuring the intensity a sound needed to 
awake a sleeper. This ‘perturbational’ approach that consists in determining the arousal threshold 
was later used to operationally characterize sleep in humans (Rechtschaffen et al., 1966). A 
similar approach is recommended to assess sleep in animals (Cirelli and Tononi, 2008). Such 
measure has the advantage to probe the most striking consequence of sleep at the subjective 
level in an objective manner. However, it supposes the ability to stimulate an organism in an 
appropriate way so as to record a behavioral response when the arousal threshold is exceeded. 
This is not always possible. 
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Let’s take the example of patients with disorders of consciousness (in a vegetative, minimally 
conscious or locked-in state). These patients cannot always interact with their surrounding 
environment. How can we possibly assess whether they sleep or not? It is obviously not possible 
to rely on behavioral markers. Instead, sleep (and wakefulness) can be defined at the neural level. 
Indeed, with the invention of the EEG in 1924 by Hans Berger (Berger, 1929) came quickly the 
discovery that the waking and sleeping brain had a very different electrical activity (Loomis et al., 
1935). I will detail later the changes occurring during sleep, but the most striking is the 
replacement of low-amplitude desynchronized rhythms by high-amplitude synchronized 
oscillations (see Figure 0-3). Similar changes in neo-cortical activity can be observed in other 
mammals and birds. Nowadays, the EEG is routinely used in hospitals (and soon at home) to 
accurately monitor sleep without perturbing it. 

EEG is also one of the key tools to investigate sleep, its mechanisms and functions. Accordingly, 
it is the technique I relied on for most of the work presented here. Using EEG, two different 
types of sleep have been clearly identified in mammals: Rapid Eye-Movement (REM) sleep (also 
called Paradoxical Sleep) and Non-Rapid Eye-Movement (NREM) sleep (often referred as Slow-
Waves Sleep, SWS). They both occur while individuals are lying in a horizontal position, with 
eyelids closed, a reduced or absent muscle tone and increased arousal thresholds. However, 
NREM and REM sleep have also many different properties, stressing the variety of states that 
the term sleep encompasses. 

 

Sleep as a process 

Defining sleep as a state, surely, has an undeniable operational efficiency. But from a closer 
perspective, sleep seems much more than a mere condition. We sleep not necessarily for the 
enjoyment of it, but for a purpose and this purpose is to be found in our waking life. Indeed 
sleep has a restorative effect on the mind and body that will persist even after awaking. These 
long-term effects of sleep are things we look for when, for example, one takes a nap after a short 
night or because she got tired driving (Figure 0-2). Sleep can be therefore seen as a process: we 
sleep to realize a specific end. I will review in more details the many benefits of sleeping. 

 

Figure 0-2 Road sign in Australia 

Sleep is a process also in the sense that it is not a monolithic condition: sleep is a series of states 
that are laid out in a precise order. Indeed, our nights are structured in cycles, which vary in 
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numbers and durations across nights and individuals but share the same core properties (Figure 
0-4). Each of these cycles starts with a gradual increase in the intensity and EEG markers of 
NREM sleep. Sleepers then stabilize in deep NREM sleep during which the brain activity is 
dominated by sleep slow-waves. Next, NREM sleep suddenly dampens and sleepers transit to a 
brain activity closer to wakefulness (REM sleep) although they do not wake up. After an episode 
of REM sleep, a new descent to NREM sleep starts again marking the beginning of a new cycle.  

Another reason to conceptualize sleep as a process rather than a state is that sleep does not 
appear randomly but is built upon the preceding wakefulness period. Scientific articles dealing 
with sleep often mention the term ‘sleep pressure’: the more one stays awake, the more she will 
get tired and the easier it will be to fall asleep (Borbely and Achermann, 1999). Thus, sleep can 
sometimes irrepressibly appear at the worst moment possible. Sleep also depends on the time of 
the day: it is easier to fall asleep right after lunch time (even if we don’t eat) than later in the 
afternoon even if the time spent awake has increased. These views have been succinctly summed 
up by Alexander Borbély in his “two process model of sleep” (Borbély, 1982). According to this 
model, sleep is regulated by two processes: (i) a circadian process which determines for example 
that we, humans, usually sleep at night while rodents sleep during the day, (ii) an homeostatic 
process which gradually builds up with time spent awake. These two processes interact in 
shaping sleep. For example, the proportion of Slow-Waves Sleep (SWS) increases with time 
spent awake prior to sleep illustrating the built up of the homeostatic pressure (Dijk et al., 1987; 
Friedman et al., 1979). Reversely, this pressure is dissipated during the night and the proportion 
of SWS within sleep cycles declines within a night (Riedner et al., 2007). This link between wake 
activity and sleep intensity is use-dependant and the circuits that have been solicited the most 
during the wake period get ‘tired’ first and sleep more soundly (Huber et al., 2004; Hung et al., 
2013). Sleep can be therefore seen as a process reflecting and compensating our waking life, i.e. 
the price we pay for being awake (Tononi and Cirelli, 2014). 

 

The function(s) of sleep 

Seeing sleep as process comes down to attribute to sleep one or several functions. However, 
despite the elements briefly presented below, the search for the function of sleep is still one of 
the biggest challenges of sleep research (Tononi and Cirelli, 2014). Scientists have reach a quite 
good understanding of what is sleep, how it works and how it is regulated but less regarding its 
purpose. The problem is not really the lack of candidates but rather the multiplicity of functions 
that sleep seems to subserve and the difficulty to prove the specificity of sleep in their 
accomplishment3.  

To gather clues about the potential function of sleep, one strategy consists in examining the 
effect of its absence, i.e. the effects of sleep deprivation. Acute sleep deprivation leads to death 
after few days, as evidenced in animals (Orzeł-Gryglewska, 2010). Sleep loss affects cognitive 
performance but also the immune system, triggers hormonal changes, obesity, alters cardio-
vascular function. Sleep seems therefore very important to the correct functioning of the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

3 Concerning this search for a function of sleep, Chiara Cirelli and Giulio Tononi reminded appropriately the words 
of the mythical phoenix: “Che vi sia ciascun lo dice, dove sia nessun lo sa” (“that there is one they all say, where it may be no one 
knows” Wolfgang Amadeus Mozart and Lorenzo da Ponte, Cosi fan tutte (1790)). 
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organism, not only the nervous system. Accordingly, the immune systems has been shown to 
benefit from SWS (Westermann et al., 2015). Sleep seems also very important for the 
conservation of energy (Benington and Heller, 1995), the cleansing of metabolic waste in the 
central nervous system (Xie et al., 2013), and the maintenance of the nervous system at the 
circuit or neuronal level (Maquet, 1995; Tononi and Cirelli, 2014).  

Acute sleep deprivation impairs also a variety of cognitive abilities (Alhola and Polo-Kantola, 
2007; Durmer and Dinges, 2005). The spectrum of cognitive processes affected goes from the 
simple reactivity to unpredicted stimuli to more complex processes such as attention allocation, 
memory, cognitive control, emotional balance, reasoning, creativity (De Gennaro et al., 2001; 
Doran et al., 2001; Gevers et al., 2015; Gujar et al., 2011; Harrison and Horne, 2000, 1999; 
Wimmer et al., 1992). At the neural level, sleep deprivation translates into the intrusion of sleep-
like activity within the awake brain (Hung et al., 2013; Vyazovskiy et al., 2011). This has been 
interpreted as the fact that neurons cannot maintain their level of waking activity for an 
indeterminate amount of time and when neurons get ‘tired’, they ‘fall’ into sleep (Tononi and 
Cirelli, 2014; Vyazovskiy and Harris, 2013).  

Sleep would thus be a process allowing the brain to recover its optimal functioning in the safest 
way, i.e., at a given time when the consequences of getting disconnected and unresponsive 
minimally impair survival. An extensive literature has also assessed the function of sleep in 
memory (Diekelmann and Born, 2010; P Peigneux et al., 2001; Rasch and Born, 2013; Tononi 
and Cirelli, 2014) (see also p20-21 and Discussion). Although the exact mechanisms are still 
unclear (see Chapter 3 and Discussion), sleep has an important role (i) in the consolidation of 
existing memories, (ii) in the ability to create novel associations between existing memories and 
(iii) in the ability to form new memories in ensuing wakefulness. The fact that the brain goes 
offline during sleep could be crucial to fulfill this memory function by suppressing potential 
external interferences during the consolidation and transfer of memories (Diekelmann and Born, 
2010). 

Can one or any of these functions be coined as ‘the function of sleep’? To conclude on this 
issue, scientists must firstly control for the circadian confound: sleep occurring at a certain phase 
of the circadian cycle, it is therefore easy to confound something co-occurring with sleep for 
something caused by sleep (Frank and Cantera, 2014). Functions of sleep should be specific to 
sleep. Among the functions listed above, which ones necessitate to be asleep, e.g. in a state of 
disconnection from the environment? Metabolic recovery or the consolidation of the immune 
memory does not need, a priori, such disconnected state. However, it has been argued that the 
neural homeostasis and memory consolidation functions would match this criterion since they 
benefit from the brain going offline (Diekelmann and Born, 2010; Tononi and Cirelli, 2014). 
Thus, according to Allan Hobson, “sleep is of the brain, by the brain and for the brain” 
(Hobson, 2005). 

Another view, championed by Jeremy Siegel advances that there is no real function of sleep 
(Siegel, 2009). On the contrary sleep can be regarded as an adaptive phenomenon and a simple 
variant of the dormant state that spans both animal and vegetal kingdoms. In this view, sleep is 
the mere extreme of a continuum including rest. This argument is based on the failure to find (i) 
a function that necessitates being asleep and (ii) a function that would be common for all the 
species known to sleep. This argument also reckons on the variety of sleep properties across 
species and the absence of obvious boundary between resting and sleeping. While thought 
provoking, this approach falls short at explaining certain key features of sleep (e.g. a sensory 
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disconnection far more pronounced than during rest, the existence of REM sleep) and their 
striking preservation across species and biotopes. 

The fact that NREM and REM sleep subserve different functions may account for the difficulty 
to identify ‘the function of sleep’. Indeed NREM sleep is the part of sleep that is most vital to 
animals since (i) not all animals experience REM sleep or an equivalent of it (see Figure 0-1), (ii) 
in Humans, REM sleep can be suppressed for long period of times, using for example anti-
depressors (Mayers and Baldwin, 2005), without causing noticeable issues. On the other hand, 
acute sleep deprivation triggers REM sleep intrusion (animals falling into REM sleep directly 
from wake) stressing the importance of this state (Orzeł-Gryglewska, 2010).  

In conclusion, sleep affects our brain but also our behavior and mind through the brain. As a 
‘neuro-apprentice’, I am especially interested in the causal link between changes in brain activity 
and changes at the behavioral and phenomenological levels. Countless studies have confirmed 
the interest of such reductionist approach and the tight correlation between the transformation 
of brain dynamics at sleep onset and the loss of awareness or, on the contrary, its recovery 
during dreams (Nir and Tononi, 2010; Tononi and Massimini, 2008).  
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The physiology of sleep 

As we have seen, sleep is a rich, complex and ubiquitous phenomenon that is hardly reduced to a 
unique definition due to the variety of its implementations in the animal kingdom. However, 
sleep has been mostly studied in vertebrates and especially mammals such as cats, rodents and 
humans. These species present a highly organized central nervous system whose activity follows 
the same common characteristics (Buzsáki, 2006). Among these shared properties is the impact 
of sleep on brain activity. I will give here few elements on sleep physiology, which will be 
recurrently mentioned throughout this manuscript.  

 

NREM and REM sleep 

When examining EEG recordings across an entire night, brain activity clearly fluctuates between 
3 drastically different states: (i) wakefulness, (ii) NREM sleep and (iii) REM sleep. Figure 0-3 
shows representative snapshots of these 3 stages as well as their associated spectral profiles.  

During wakefulness, the EEG signal is dominated by low-amplitude fast rhythms such as alpha 
oscillations ([8, 12] Hz). The alpha rhythm is a resting oscillation, increasing when the eyelids are 
closed, potentially due to the disengagement of the visual cortex (Cantero et al., 2002). 
Interestingly, alpha oscillations slowly fade with drowsiness and mark the transition with light 
NREM sleep (NREM sleep stage 1, NREM1). Quickly after the disappearance of alpha 
oscillations, other rhythms appear, which are specific to NREM sleep. K-complexes for example 
are the biggest non-pathological brain response that can be recorded from the Human EEG. It 
consists in an isolated high-amplitude slow-wave ([0.5, 4] Hz) that can be either spontaneous or 
evoked by an external stimulation (Halasz, 2005). Another hallmark of NREM sleep are sleep 
spindles, a waxing-and-waving [10, 16] Hz oscillation, which is the central topic of Study 2 
(Andrillon et al., 2011). The apparition of the first slow-waves and spindles mark the transition 
toward consolidated sleep and the NREM sleep stage 2 (NREM2). Then, slow oscillations tend 
to become more and more frequent, and to occur in trains rather than in isolation. The transition 
to an EEG signal dominated by slow-waves mark the onset of NREM sleep stage 3 (NREM3). 

Usually after an episode of continuous NREM3, sleep lightens again announcing the transition 
to REM sleep. REM sleep could be easily mistaken with wakefulness at first sight since the brain 
activity recovers in REM sleep properties similar to wakefulness (EEG activity is dominated 
again by low-amplitude desynchronized fast rhythms as in wakefulness). In REM sleep, NREM 
sleep attributes, such as slow-waves and sleep spindles, are no longer seen. Surprisingly, alpha 
oscillations are also absent despite the closed eyelids. More surprising is the apparition of rapid 
eye-movements in the electrooculogram (EOG) (Aserinsky and Kleitman, 1953), as if the 
recorded individual was awake in its bed, looking around. The contrast between a wake-like brain 
activity and the fact that the sleeper is profoundly asleep with a highly reduced if not absent 
muscle tone (as recorded through and electromyogram, EMG) inspired Michel Jouvet in calling 
it ‘paradoxical sleep’ (Jouvet, 1992), although the term of Rapid Eye-Movement (REM) sleep is 
now more widely used. 
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Figure 0-3 Electrical activity of the brain across wake and sleep 

Top: Scalp electroencephalographic (EEG, blue curves) and electrooculographic (EOG, black curves) 
recordings performed in a healthy young adult during wakefulness with closed eyelids (left), NREM sleep 
(middle) and REM sleep (right). Note the drastic changes occurring in the different states. From 
wakefulness to NREM sleep, fast oscillations are replaced by slow-waves. REM sleep is characterized by a 
partial recovery of wake-like rhythms as well as the presence of saccades in the EOG (opposite 
deflections). Bottom: Power spectra corresponding to the different states obtained through a Fast Fourier 
Transform on the EEG signal displayed atop. Wakefulness is characterized by a peak in the alpha band 
(~10 Hz), NREM sleep by an increase in the delta (< 4 Hz) and spindle (11-16 Hz) bands.  

The American Society of Sleep Medicine set a series of guidelines defining precisely these 
different stages and their neural signature (Iber et al., 2007). Here are some key points summing 
up sleep physiology: 
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The hypnogram and the structure of sleep 

As already mentioned above, NREM and REM sleep are not randomly distributed within a night 
but follow a precise structure. The hypnogram depicts this structure by showing the succession 
of sleep stages across times. Figure 0-4 shows a typical example of hypnogram. The first sleep 
cycle has been highlighted in yellow. 

 

Figure 0-4 Hypnogram of a healthy young individual 

The hypnogram shows the succession of sleep stages across a night. A pattern can be quickly recognized: 
the succession of NREM and REM episodes. The first sleep cycle is highlighted in yellow. It is 
characterized by an initial descent from wakefulness to NREM3 via NREM1 and 2. Then NREM sleep 
dampens and a transition toward REM sleep appears. One typical night contains several cycles. The 
proportion of REM sleep within a cycle increases during the night and the proportion of NREM3 
decreases. Awakenings are more frequent at the end of recordings. Note that here the large number of 
recordings may be due to the fact that sleepers were presented with auditory stimuli during the entire 
night (see Studies 4-7 and 9). 

Each cycle starts first with NREM sleep, followed by REM sleep. Transitions may be 
accompanied by periods of wakefulness. It is worth noting that the proportion of REM sleep 
and awakenings tend to increase with the time spent asleep. For example the last cycle contains 
many awakenings from NREM2, and the individual did not enter the NREM3 stage. This 
illustrates the dissipation of the aforementioned homeostatic pressure (sleep gets lighter and 
more fragile toward the end of the night). On Figure 0-4, NREM1 was put in gray color to 
emphasize the specificity of this stage. Neither wake nor consolidated sleep, NREM1 usually 
spans the hypnagogic (i.e. sleep onset) period. It is a very rich ever-changing state (Hori et al., 
1994; Ogilvie, 2001). However, such heterogeneity makes hypnagogia quite hard to study and its 
twilight nature places it out of scope of the present manuscript. 

 

Macro and micro dynamics of NREM sleep 

I have described so far sleep physiology as a series of snapshots rather than as a dynamic 
process. And indeed, sleep physiologists have mainly focused on stable states such as deep 
NREM sleep (usually called in rodents Slow-Waves Sleep, SWS) and REM sleep. Nonetheless, 
transitional states such as light NREM sleep, which marks the passage between wake and SWS 
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or SWS and REM sleep, are preponderant in Humans and amount for 50 % of the total amount 
of sleep in healthy young adults (25-35 years old, (Carskadon and Dement, 2011)). Thus, periods 
of continuous slow-wave trains are preceded by rather long episodes of light NREM sleep 
during which NREM hallmarks (slow-waves and spindles) appear only occasionally. It is 
therefore important not only to distinguish the different NREM stages but also to consider the 
broader context in which they occur, especially when considering sleepers’ ability to process 
external information. Light NREM is present at transition between states of deep stable sleep 
and represents a state in which the sleeping brain is more responsive to external stimuli (see 
Studies 4-6). 

Light NREM sleep has also been seen as a forerunner which prepares the brain for deep NREM 
sleep (De Gennaro et al., 2000). Indeed, transiting from wakefulness to deep NREM sleep is not 
instantaneous since the apparition of slow-waves is the result of a profound change in the 
functioning of the brain. The larger the brain, the more complex such process is (Buzsáki et al., 
2013), which could explain why Humans spend more time in transitional states than rodents. 
These changes are controlled by cholinergic neurons in the brainstem, which implies a rather 
slow dynamics (Mircea Steriade, 2003).  

A recent study (Siclari et al., 2014a) has shown how NREM sleep hallmarks change through 
sleep onset. Siclari and colleagues propose to sort slow-waves into two types reflecting drastically 
different processes. Type-I slow-waves, that are predominant in light NREM sleep, could be 
approximated to K-complexes (i.e. isolated, usually evoked slow-waves occurring in light NREM 
sleep (Colrain, 2005; Loomis et al., 1938)). Rather global subcortico-cortical events, these type-I 
slow-waves affect a broad fronto-medial network and are associated to the activation of wake-
promoting structures. Such properties may favor the processing of external information, as some 
of the data presented in Study 9 suggest. Through the nesting of other sleep rhythms such as 
sleep spindles and hippocampal ripples (Staresina et al., 2015), these type-I slow-waves could 
also organize the replay and consolidation of existing memories (Diekelmann and Born, 2010). 
On the other hand, type-II slow-waves (which can be approximated to NREM3 slow-waves) 
reflect local synchronization processes. The local nature of slow-waves will be presented in Study 
1. By putting the brain into a state in which cortical regions become functionally independent 
(Massimini et al., 2005), the impact of type-II slow-waves on sensory processing could be 
diametrically different than for type-I slow-waves (see Discussion). Finally, Siclari et al. proposed 
that these type-II slow-waves are associated to the homeostatic recovery of neuronal networks 
(synaptic homeostatsis). They could therefore have an opposite effect on memory formation 
compared to type-I slow waves as well (see Study 9). 

The micro-dynamics of sleep is very relevant when exploring how the brain processes 
information. As we have seen, slow-wave sleep is populated by slow-waves, which correspond to 
periods of neuronal silencing (OFF state or down-state) followed by a rebound activity (up-state) 
(Nir et al., 2011; Mircea Steriade, 2003) (see also Figure 0-5). This succession of down and up-
states has been proposed to explain the lack of responsiveness and the loss of awareness during 
sleep (Tononi and Massimini, 2008). Indeed, off-states would cut any neural computation and 
break the temporal integration of information (Pigorini et al., 2015), which is necessary for the 
brain to perform complex processes. In study 5, I will present evidence showing that indeed 
down-states occurring right after stimuli are detrimental for integrated processes such as the 
preparation of a motor response.  
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Figure 0-5 Slow-waves and neuronal silencing 

Slow-waves recorded during NREM3 in an epileptic patient implanted with depth electrodes (Nir et al., 
2011). The top red curves show the scalp EEG with its characteristic trains of slow-waves. Blue curves 
show the corresponding depth EEG across different brain regions (SMA: supplementary motor area, EC: 
entorhinal cortex, HC: hippocampus, Am: amygdala, R: right, L: left). Slow-waves span here very distant 
regions, which is quite rare. Slow-waves’ down-states are marked with a blue dot (negative peak on scalp 
EEG, positive peak in depth EEG). These down-states are accompanied by a silencing of neurons (black 
vertical ticks: each line shows a different neuron recorded in the same region as the depth EEG, each 
ticks correspond to a spike). Down-states are followed by an up-state (positive peak at the scalp level, 
negative in depth EEG), a rebound in units’ activity. Reproduced from (Nir et al., 2011) (see Study 1). 

!

NREM sleep spatial dynamics 

Sleep is not only a dynamic process in time but also in space, a dimension that had been rather 
overseen until recently (Nobili et al., 2012). This could be due to the focus on sleep stages that 
are stable across time, as mentioned above. It might also be due to the favored animal model for 
sleep physiology: rodents. Rodents indeed have a rather small brain (and are usually recorded 
with few electrodes), which makes the observation of regional differences more difficult than in 
larger brains such as in Humans. In the first chapter of this manuscript, I will present studies I 
have contributed to (Studies 1 and 2) that are part of a larger re-description of sleep as a more 
local phenomenon than previously thought (Andrillon et al., 2011; Nir et al., 2011).  
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Indeed, textbooks usually depict sleep as a rather global phenomenon (Mircea Steriade, 2003). In 
particular slow-waves have been described as a global synchronization process during which 
large portions of the neocortical neurons go silent (OFF state), followed by an identically 
synchronous up-state. However, this view has been recently challenged. Giulio Tononi and 
Chiara Cirelli’s group showed that slow-waves could be locally modulated depending on wake 
activity, portraying sleep as a use-dependent process (Huber et al., 2006, 2004). It has been later 
shown that, in human scalp EEG, these slow-waves were not perfectly synchronous across brain 
regions but traveled within the cortex along a fronto-parietal axis (Massimini et al., 2004). This 
fronto-parietal axis is more an average trend than a rigid path and slow-waves seem to emerge in 
various brain locations (Mak-McCully et al., 2015; Siclari et al., 2014a). With Yuval Nir, Chiara 
Cirelli and Giulio Tononi, I had the chance, as a Master student, to dive into the brain of 
epileptic patients4 and to have a closer look on these slow-waves (Nir et al., 2011). Indeed, scalp 
recordings reflect only partially the underlying cortical activity. Deep structures or regions in 
which neurons are not well aligned will be less (or not at all) reflected in the scalp EEG signal. 
One of the reason sleep and slow-waves were seen as a truly global phenomenon could have 
stemmed from these limitations:  local phenomena are less likely to show up at the scalp level. 
What we found is that, when recording many different brain regions, slow-waves are rarely 
global (Nir et al., 2011). A similar analysis of sleep spindles reach the same conclusions 
(Andrillon et al., 2011).  

The spatial aspect of sleep has also been emphasized during the sleep onset period. In a 
important study performed again thanks to the participation of epileptic implanted patients, 
Michel Magnin and colleagues showed that sleep onset is not synchronous across brain regions 
(Magnin et al., 2010). On the contrary, some regions fall into NREM sleep minutes before 
others. Interestingly, the Hippocampus is one of the first to fall asleep, a fact corroborated by 
another study showing the early appearance of sleep spindle before neocortical and scalp sleep 
onset (Sarasso et al., 2014). Such phenomenon could explain the so-called sleep-related amnesia: 
it is quite common to fall asleep while reading a book or watching a movie. The last lines of the 
book or the last scene of the movie read or seen before falling asleep are usually not 
remembered. This could be explained by the fact that, before falling asleep, we may spend a few 
minutes with an awake neocortex but an asleep hippocampus (Magnin et al., 2010; Sarasso et al., 
2014). Under these conditions, the formation of the long-term memories necessary to remember 
the elements perceived during this period of time would be greatly impaired. 

Another highly interesting development of the study of regional differences during sleep 
concerns our waking life. Indeed, local sleep has been found in wakefulness too. In a seminal 
study, Vlad Vyazovksiy and colleagues showed the OFF periods can be recorded in awake 
behaving animals after sleep deprivation (Vyazovskiy et al., 2011). Not only can neurons locally 
fall asleep in a context of global wakefulness, but this local OFF periods can affect behavior. 
Thus, lapses of attention could be reinterpreted as a phenomenon of local sleep, establishing a 
continuum between wake and sleep. Other studies in human scalp recordings showed evidence 
for intrusion of sleep-like pattern during wakefulness after sleep deprivation (Bernardi et al., 
2015; Hung et al., 2013). Wake and sleep can be therefore seen as a dynamic continuum. And the 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

4 Studies 1 to 3 are based on data from implanted epileptic patients. It is important to remember that these patients 
are not implanted with intracranial electrodes, a very intrusive procedure, for research but as part of their treatment. 
The data collected is used primarily to plan the resection of the epileptic focus. These patients can also participate to 
research protocol if they wish. We are, of course, immensely grateful for their help in advancing scientific knowledge 
and trust. 
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intrusion of sleep in wake (or wake in sleep) could potentially impair (or restore) the processing 
of sensory information. 

 

The REM sleep paradox 

As we said earlier, REM sleep offers a drastic contrast with NREM sleep in terms of brain 
activity. In only few seconds, the trains of slow-waves, characteristic of deep NREM sleep, are 
replaced by low-amplitude high-frequency rhythms (Jouvet, 1965). At first sight, the sleepers 
seem to have awakened. EOG traces show the occurrence of bursts of rapid eye-movements 
(Aserinsky and Kleitman, 1953), the heartbeat and the respiration frequency increase. Yet, the 
sleeper is still in bed, profoundly asleep. The absent muscle tone visible on the EMG indicate a 
paralysis of the skeletal muscles, preventing any movement to be made. An awake brain in a 
sleeping body, such is the paradox of REM sleep (Jouvet, 1992).  

Thus, instead of the bi-stability observes in deep NREM sleep (Steriade et al., 2001), during 
which OFF and ON periods alternate, neurons in REM sleep show a tonic regime of activity 
(Nir and Tononi, 2010). At the systemic level, the cortico-cortical connectivity is restored 
(Massimini et al., 2010) compared to NREM sleep. And the complexity of the neural activity 
increases back, almost up to the wake level (see Study 5 for example), which is in line with the 
frequent occurrence of dreams in REM sleep. Interestingly, this complexity has been shown to 
precisely track the level of consciousness in anesthesia or in patients with disorders of 
consciousness (Abásolo et al., 2015; Casali et al., 2013; Schartner et al., 2015). All of these 
changes could be mediated by a modification of the neuromodulation compared to NREM 
sleep. Indeed REM sleep is characterized by levels of Acetylcholine that are quite similar to 
wakefulness (Jones, 2005; Siegel, 2004), which could explain the recovery of wake-like activity.  

Yet, from a functional point of view, REM sleep is very different from wakefulness and despite a 
brain activity resembling the awake state, sleepers are quite isolated from their environment in 
REM sleep (Rechtschaffen et al., 1966). Even if dreams frequently occur and consciousness is 
regained (Yuval Nir et al., 2013), external stimuli are rarely integrated to the dream scenery. Why? 
Until recently, the mechanisms gating sensory information during REM sleep remained a 
complete mystery. But a very recent study from Chiara Cirelli and Giulio Tononi’s group may 
bring the beginning of an answer (Funk et al., 2016). Despite decades of detailed investigation of 
sleep physiology, they discovered something that had gone unnoticed: the presence of NREM-
like slow-waves in the superficial layers of primary sensory cortices during REM sleep. The 
locality of these slow-waves may explain why they had not been observed before. By disrupting 
the activity of the superficial layers within primary cortices, which receive most of the sensory 
thalamic inputs, such slow-waves may isolate the cortex from the surrounding environment. In 
addition, since these slow-waves are circumcised to primary cortices, the remaining cortical 
regions could still perform computations close to wake activity, leading to the generation of 
dreams. I will discuss these gating mechanisms in the Discussion. 
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The sleeping brain is not dormant 

As we have seen in the preceding section, sleep physiology is very rich and reflects a highly 
structured and dynamic phenomenon. What are the consequences on the sleeping brain ability to 
respond to external stimulations? Is the brain truly isolated from its environment during sleep as 
subjective introspection and behavioral observations suggest? Can the sleeping brain process 
sensory information without waking up? Up to which level? 

 

Sleep and phenomenology 

One of the most classical arguments brought to stress how active can the sleeping brain be 
concerns dreams. Every night indeed, we create new worlds. Most of the time we do not notice 
and do not remember, some will eventually never or rarely do, but if someone wakes you up at 
the correct moment of the night, there is a very high probability that you will be able to report 
glimpses of these worlds (Nir and Tononi, 2010). Nonetheless, if dreams occur every night, they 
do not occur at any moment during the night. Parts of sleep will be truly blank even when 
forcing the awakening. What causes the brain to enter, at times such void, and at times universes 
as rich as the real world? This question had been laid out more than 2,000 years ago by Aristotle 
(Aristotle, 350BC):  

“Further, in addition to these questions, we must also inquire what the dream is, 
and from what cause sleepers sometimes dream, and sometimes do not; 

or whether the truth is that sleepers always dream but do not 
always remember (their dream); and if this occurs, what its explanation is.” 

Awakening sleepers during their night showed a strong relationship between REM sleep and 
oneiric imagery (Nir and Tononi, 2010). While dreams are not completely absent in NREM, they 
are rare and usually rather simple (e.g. static images). In REM sleep however, dreams can last for 
extended periods of time and deploy complex plots and scenes.  

The core questions regarding dreams are still unanswered. Why do we dream? How are dreams 
generated? What do we dream of certain contents? Some even put the very existence of dreams 
into questions such as the philosopher Daniel Dennett (Dennett, 1976). According to him, 
dreams could be a mere construction (or reconstruction) performed upon awakening. Several 
arguments can be brought against this view. The strongest may be found in RSBD patients 
(REM sleep Behavior Disorders (Schenck et al., 1986)). These patients are deprived of skeletal 
muscle paralysis during REM sleep (which explains the near absent muscle tone observed in the 
EMG). The consequence is highly turbulent nights. As said above, the REM sleeping brain has 
an activity closed to wakefulness, which implies activations within the motor cortices. In RSBD 
patients such activations are enacted resulting in complex motor patterns. These patients move, 
talk, sing, fight, dance, and copulate while sleeping. Interestingly, these movements correspond 
to their dream reports (Leclair-Visonneau et al., 2010) making it clear that dreams are generated 
during REM sleep.  

But if movements in RSBD patients open a window on the dream scenery, does it mean that 
eye-movements, which are preserved even in healthy individuals, share the same property?  This 
issue has been debated for decades and is still debated nowadays (Arnulf, 2011). Rapid eye-
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movements (REMs) in REM sleep are triggered by the so-called PGO (Ponto-Geniculo-
Occipital) waves (Jouvet and Michel, 1959). Through PGO waves, the brainstem sends to the 
neo-cortex a volley of activation that generates, among other activations, the eye-movements. 
What happens during and after this volley? Are PGO waves pulling the strings of the cortex and 
generate dreams in a stochastic way (Hobson, 1990)? Does each eye-movement in REM sleep 
correspond to a change in the visual scene as in wakefulness? In Study 3 we explored the neural 
activity around eye-movements within the medio-temporal lobe, a structure heavily involved in 
conscious vision and memory. We found similarities with wake activity associated to the 
processing of visual images (Andrillon et al., 2015b).  This result suggests that sensory processes 
are performed around eye-movements. Investigating how sensory information flows during 
REM sleep in comparison with wake vision or mental imagery (i.e. top-down vs. bottom-up 
flow) could help disentangling these opposite views on dream generation. But what happens 
when we do not dream? Is the brain truly inactive at that time? 

 

Sleep and its reversibility  

Sleep, unlike coma, anesthesia or other disorders of consciousness leading to a state of 
unresponsiveness, is quickly and spontaneously reversible. This reversibility is both a potential 
advantage (allowing sleepers to wake up when endangered) and a challenge (to prevent the brain 
to wake up when not necessary). This reversibility fluctuates within a night as shown by the 
evolution of arousal thresholds (Rechtschaffen et al., 1966). Thresholds are maximal at the 
beginning of the night when deep NREM sleep and slow-waves train are predominant, which 
suggests that these sleep oscillations may participate to sensory gating. These thresholds vary also 
across individuals, which has an obvious impact on sleep quality. Interestingly, the density of 
sleep spindles is predictive of the arousal thresholds (the more an individual shows sleep 
spindles, the higher her threshold (Dang-Vu et al., 2010)), suggesting also a role of sleep spindles 
in sleep protection.  

Interestingly, stimulus intensity is not the only parameter determining whether a stimulus will 
wake up a sleeper or not. The relevance or familiarity of the stimulus also matters. In the 60s, 
Formby and colleagues showed that mothers, right after their child’s birth, wake up more easily 
for their own baby’s cry compared to another baby (Formby, 1967). Similarly, Oswald and 
colleagues showed that sleepers are more sensitive to their own name during their sleep than 
someone else’s name (Oswald et al., 1960). These simple experiments show that equally loud 
stimuli do not necessarily impact sleep the same way. Is it because these stimuli are processed as 
more relevant during sleep, or does their familiarity modify the ‘subjective intensity’ of these 
stimuli? In other words, does this differential processing of information originate in sleep, or is it 
a consequence of an increase sensitivity acquired during wakefulness? In the following section I 
will detail studies that have investigated this question by examining sleepers’ ability to process 
information while remaining asleep (see (Atienza et al., 2001; Bastuji, 1999; Hennevin et al., 
2007) for reviews). This has been done by examining the covert responses of the brain to 
external stimuli, and by checking that equivalent processes occur during sleep compared to 
wakefulness (see Box p19). 
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Are sleepers isolated from their environment? 

It was initially thought that sleepers were quite isolated from their environment and that, unless 
the stimulation was strong enough to lead to an awakening, sensory information would not reach 
the neo-cortex during sleep. Bal and McCormick proposed that the changes in the dynamics of 
the thalamo-cortical loops occurring during NREM sleep (such as during sleep spindles) would 
prevent the thalamus from relaying sensory information from the peripheral senses to the 
neocortex (‘thalamic gating hypothesis’, (McCormick and Bal, 1994)). Indeed, except for 
olfaction, all sensory information passes by the thalamus before reaching the neo-cortex (Jones, 
2007). If the thalamus does not relay sensory information anymore, the resultant would be a neo-
cortex isolated from its peripheral senses. In accordance with this view, fMRI recordings showed 
that sensory information provided during sleep spindles or slow-waves down-state are effectively 
blocked at the thalamic level (Schabus et al., 2012). 

However, ligtht NREM sleep is dominated by K-complexes and sleep spindles, which are phasic 
events, i.e. they do not occur continuously. Can information pass to the cortex in between these 
events? Recent studies have largely tempered the thalamic gating hypothesis by showing a 
remarkably faithful encoding of acoustic information in primary sensory cortices during NREM 
and REM sleep (Issa and Wang, 2008; Y. Nir et al., 2013). But does this reflect a purely passive 
encoding of information at a low-level of representation or can more complex computation be 
performed? 

This question has been the object of a series of studies in the 00’s (see (Atienza et al., 2001; 
Bastuji, 1999; Hennevin et al., 2007) for reviews). These studies relied on the comparison of 
brain responses to different stimuli categories (e.g. contrasting participants’ brain responses to 
their own name vs. another name as in (Perrin et al., 1999)) to unravel the preservation of 
specific processes during sleep. During wakefulness, the occurrence of a given process (i.e. 
differentiating one’s own name from another name) is associated to differences in the brain 
responses triggered by the two types of stimuli. These differences can be measured using fMRI 
and EEG recordings. EEG has been more extensively used to study sleep for a number of 
reasons: its good temporal resolution compared to fMRI which allows to track the rapid changes 
occurring during sleep, the difficulty to sleep in an fMRI scanner, the cost, etc. So far, most 
studies relied on the Event-Related Potentials (EPRs) approach (see Box below). They have 
shown for example that, even when sleep is preserved, sleepers’ own name elicited a different 
brain response that someone else’s name (Perrin et al., 1999). Non-familiar stimuli can also be 
processed in their context. This has been shown using the so-called ‘oddball paradigm’, in which 
a series of identical tone is played, intermixed with, from time to time, a different sound (the 
oddball). The repetition of the same standard sound can be seen as a rule and the occurrence of 
the oddball as a violation of this rule. The awake brain reacts to the oddball sound in a specific 
manner, which corresponds the detection of the rule violation. Such detection is conserved 
during sleep (Nordby et al., 1996; Ruby et al., 2008), stressing the fact that, as in wakefulness, the 
sleeping brain processes external sounds in their context. 

Even higher levels of representation can be accessed in light NREM sleep. Studies using 
linguistic material (pairs of words, sentences…) demonstrated that the sleeping brain preserves 
its ability to detect semantic violations (Bastuji et al., 2002; Brualla et al., 1998; Ibanez et al., 
2006), and thus, can have access to high-level contents. One of the daunting questions that these 
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studies ask is whether the processes evidenced here in sleep are passive processes, or whether the 
sleeping brain remains, to a certain extent, proactive. 

In Chapter 2, I will present studies that I conducted under the supervision of Sid Kouider to 
tackle this issue. We relied on a paradigm developed with Louise Goupil and Tristan 
Bekinschtein (Kouider et al., 2014) . In these experiments sleepers were asked to classify words 
while falling asleep (see Studies 4-5 and 7). Participants were asked to indicate stimuli category 
through hand responses. When participants fell asleep, they stopped overtly responding to 
stimuli. However, we observed that during sleep participants continued to prepare for the 
appropriate response. Such covert motor preparation was assessed through the analysis of brain 
responses to sounds with the EEG (Kouider et al., 2014) (see also Study 4). The presence of 
such task-induced motor preparation indicates that, not only can sleepers process the stimuli 
correctly in order to perform the task, but also, that the information about the stimuli can be 
routed to other non-sensory areas dealing with motor preparation. We therefore revealed the 
maintenance of goal-directed and distributed processes, performing computations that are very 
close to what happens during wakefulness. Hélène Bastuji and colleagues went even further in a 
case study involving an implanted epileptic patient: they showed an overt response to a 
nociceptive stimuli during NREM sleep without any global arousal (Mazza et al., 2014). The 
sleeping brain, thus, does not seem to be a dormant brain but is capable of complex sensory and 
cognitive processing. 

What could be the mechanisms underlying the processing of external information during sleep? 
Local aspects of sleep provide a very interesting framework to understand the experimental 
results cited above. Indeed, if sleep depth can be regionally modulated, one could think that 
some regions can even wake up in a context of a globally sleeping brain (Nobili et al., 2012). 
Bastuji and colleagues showed that indeed arousal can be local during sleep (Peter-Derex et al., 
2015). This local arousal could allow for the recovery of wake-like processing. In Studies 5 and 9, 
I will show that the processing of information is indeed associated with a local modulation of 
sleep depth and the recovery of wake-like auditory responses. But only the use of intracranial 
recordings could confirm this hypothesis.  
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The Event-Related Potentials (ERPs) technique and its application to sleep 

The Event-Related Potentials (ERPs) technique1 has been extensively used to investigate sensory and 

cognitive processes in the sleeping brain. This technique relies on the averaging of the EEG signal in 

dozens if not hundred of repetitions of the same experimental condition (e.g. presentation of stimulus A). 

By doing so, activity that is unrelated to the stimulus is averaged out. Indeed, the EEG signal can be seen 

as a combination of oscillations. Averaging oscillations that are not in phase (across a sufficient amount 

of trials) leads to a null average. However, if the stimulus evokes a stereotypical pattern of activity phase-

locked to stimulus onset, such pattern will not be cancelled out and will be visible in the average EEG 

response (the ERP). Thus, the ERP technique can be seen as a simple de-noising tool.  

Averaging the EEG signal in response to sounds reveals a series of negative and positive peaks (or 

components), each of them marking the occurrence of a given processing stage. While components close 

to stimulus onset are usually related to the processing of sensory information (and can be used to assess 

whether a given stimulus was encoded), later components can reflect higher-order processes (e.g. 

semantic processes, expectations…)2. For example, the N1 potential (a negative deflection occurring 

about 100ms after stimulus onset) has been related to the encoding of auditory information within the 

primary and secondary auditory cortices3 and is weakly affected by the nature of the stimulus (a word and 

a sound will produce very similar N1 although they are quite different types of information). Later 

potentials such as the N400 (a negativity at 400ms after stimulus onset) or the P3 (a positivity around 

600ms) are, on the contrary, greatly affected by the cognitive processes following sensory encoding. 

When hearing a series of sounds, a rare tone embedded in a stream of recurrent tones will elicit a strong 

P300. Here the potential is not elicited by the information contained within the stimulus but reveals 

brain’s ability to process a sound in its context.  

ERPs can be also computed in relation to internally generated events such as hand (see Studies 4-5) or 

eye movements (see Study 3). Similarly, in sleep, since behavioral responses are usually abolished, ERPs 

can be used to probe cognition by comparing ERPs in response to sounds across wake and sleep4,5. For 

example, when playing semantically congruous (dog-leash) and incongruous (cat-coin) word-pairs to an 

awake individual, a larger N400 is observed for the incongruous pair6. The observance of this N400 is 

usually interpreted as the ability to access and integrate the meaning of these two words as well as to 

react when the pair seems odd. The preservation of a similarly larger N400 for incongruous pairs than for 

congruous pairs in sleep would mean that this ability is conserved and that sensory information can be 

accessed at the semantic level during sleep7,8.  

Yet, such approach relies on the assumption that responses to sounds or ERP components associated to 

given cognitive processes are similarly observed in brain states whose dynamics are drastically different. 

And indeed, sleep slow oscillations largely affect ERPs2,9. Since ERP components are usually equated to 

precise brain processes, a modification of the ERP between wake and sleep would make its interpretation 

difficult. Sleep-related activity (that are typically high in amplitude) can also mask smaller differences in 

the EPRs: the absence of a given difference in the ERP in sleep does not mean a disappearance of the 

process observed in wakefulness. Another disadvantage of the ERPs is the need for large amount of data 

to average out the non-phase locked activity and evidence the ERPs. Sleep being a dynamic process, 

different states are potentially confounded within a single ERP trace.  

One alternative is to use multi-variate analyses. In such analyses, instead of analyzing the average brain 

response in a given electrode, all the data available from all sensors, time-points and trials are taken into 

account (see 10 for an application to sleep). In Study 6 we applied such approach. This allowed us to 

investigate precisely the influence of sleep micro-structure on sensory processing. 

1. Luck, S. J. An introduction to the event-related potential technique. (MIT Press, 2005). 

2. Picton, T. W. Human auditory evoked potentials. (Plural Pub, 2010). 

3. Näätänen, R. & Picton, T. The N1 Wave of the Human Electric and Magnetic Response to Sound: A Review and an Analysis of the 

Component Structure. Psychophysiology 24, 375–425 (1987). 

4. Bastuji, H. Evoked potentials as a tool for the investigation of human sleep. Sleep Med. Rev. 3, 23–45 (1999). 

5. Atienza, M., Cantero, J. L. & Escera, C. Auditory information processing during human sleep as revealed by event-related brain 

potentials. Clin. Neurophysiol. 112, 2031–2045 (2001). 

6. Kutas, M. & Federmeier, K. D. Thirty years and counting: finding meaning in the N400 component of the event-related brain 

potential (ERP). Annu Rev Psychol 62, 621–47 (2011). 

7. Bastuji, H., Perrin, F. & Garcia-Larrea, L. Semantic analysis of auditory input during sleep: studies with event related potentials. Int J 

Psychophysiol 46, 243–55 (2002). 

8. Brualla, J., Romero, M. F., Serrano, M. & Valdizan, J. R. Auditory event-related potentials to semantic priming during sleep. 

Electroenc Clin Neurophysiol 108, 283–90 (1998). 

9. Colrain, I. M. & Campbell, K. B. The use of evoked potentials in sleep research. Sleep Med Rev 11, 277–93 (2007). 

10. Strauss, M. et al. Disruption of hierarchical predictive coding during sleep. Proc. Natl. Acad. Sci. 112, E1353–E1362 (2015). 
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Can sleepers learn while they sleep? 

When we are awake, interaction with our environment continuously imprints on our brain (Kolb 
and Whishaw, 1998). As I will show in Study 8, even pure noise can leave mnesic traces as soon 
as it recurs (Andrillon et al., 2015a). If sleepers can process external information, can they also 
learn from it? In Chapter 3, I will focus on this exciting question. 

There is an extensive literature on the role of sleep in memory consolidation (see (Diekelmann 
and Born, 2010; P Peigneux et al., 2001; Rasch and Born, 2013; Tononi and Cirelli, 2014; Walker 
and Stickgold, 2006) for reviews) but only a handful of studies on the formation of new 
memories during sleep. This is not due to a lack on interest since the ability to learn while we 
sleep would have huge implications in our daily lives. The topic was accordingly an intense topic 
of investigation and triggered a scientific race between the American and Soviet blocks during 
the Cold War. However, the learning of novel information during sleep has proven difficult to 
establish, even when such information would be easily learnt during wakefulness (Bruce et al., 
1970; Emmons and Simon, 1956; Wood et al., 1992). Due to methodological issues, many 
claims, made at that time for the occurrence of learning during sleep, had to be discarded. The 
few methodologically sound studies that convincingly evidence learning effects during sleep 
focus on fear or delay conditioning, which are forms of memory that do not rely on the 
hippocampal structure (Beh and Barratt, 1965; Fifer et al., 2010; Ikeda and Morotomi, 1996; 
Maho and Hennevin, 2002). This distinction is of importance since declarative memories (i.e. 
memories than can be consciously recalled and manipulated in a goal-directed fashion) rely on 
the hippocampus (Eichenbaum, 2008). On the other hand, fear and delay conditioning are forms 
of learning rudimentary enough to be implemented by basic neural networks (Carew and Sahley, 
1986). Attempts to probe hippocampus-dependent learning during sleep have often led to 
negative results (Hennevin et al., 2007; Wood et al., 1992). 

Why would the sleeping brain be unable to learn as during wakefulness? It had been initially 
proposed that the blockade of sensory information at the thalamic level (McCormick and Bal, 
1994) would prevent learning. Indeed, under such circumstances, the information to be learnt 
would be inaccessible to the neo-cortical and hippocampal regions, impairing any ability to learn 
(as information that is not processed cannot be learnt). And indeed, the few notable exceptions 
having demonstrated hippocampus-dependent learning in sleep have bypassed thalamic relays by 
relying on olfactive stimuli (olfactive information that does not transit through the thalamus 
(Jones, 2007)) (Arzi et al., 2014, 2012), on endogenously generated activations (de Lavilléon et 
al., 2015) or on direct stimulations of hippocampal cells (Maho and Bloch, 1992). Yet, we have 
seen earlier that sensory information can reach the cortex under certain conditions. Sensory 
information can be even accessed at high levels of representation during sleep, which is known 
to favor learning when we are awake (Craik and Tulving, 1975). 

To account for the lack of learning despite the fact that information appears to be processed, 
several hypotheses can be brought out. It has been proposed that during sleep, memory systems 
are involved in the offline consolidation of existing memories (Diekelmann and Born, 2010) 
which could imply a disconnection for the sensory systems and the outside world or between 
sensory systems themselves (Fischer et al., 2006; Robertson, 2009) in order to prevent any 
interference while memories are strengthened or displaced. Alternatively, it has been proposed 
that the core mechanism of learning (i.e. synaptic plasticity) is modified in sleep, preventing the 
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formation of new memories (Synaptic Homeostasis Hypothesis (Tononi and Cirelli, 2014)). 
Indeed, modifications of synapses are thought to be the basis of any form of learning 
(Eichenbaum, 2008; Klampfl and Maass, 2013). These mechanisms are under the control of 
neuromodulators such as Acetylcholine (ACh) and Noradrenaline (NA) (Pawlak, 2010). 
Importantly, these neuromodulators happen to be down-modulated during sleep (Jones, 2005; 
Siegel, 2004). ACh for example is at a low-level of secretion in NREM sleep and NA is 
suppressed in both NREM and REM sleep. According to the Synaptic Homeostasis Hypothesis, 
learning would be impaired in NREM sleep due to the impairment of its associated synaptic 
mechanisms. In Study 9, I will present evidence that could integrate these different views 
(Genzel et al., 2014).  

One last hypothesis that could explain the absence of sleep-learning relates to memories’ 
strength. When we learn a set of words while awake, the memory for the words is often paired 
with a memory of the context in which the words had been learned (episodic memory). Knowing 
the origin of a memory can increase our confidence in its reliability, which is crucial to optimally 
use such memories. In sleep, it can be hypothesized that memories, when formed, are weaker 
(just as sensory processing seem weaker). Therefore, memory traces might not be strong enough 
to be explicitly recalled or behaviorally measurable. Yet, detailed analyses of behavioral and brain 
responses could unravel the existence of a mnesic trace. This will be the focus of Study 7. 

 

 

 



Introduction 

22!

Sleep as a tool 

So far, I have focused on sleep, its nature, its mechanisms and its functions. Along the different 
chapters of this manuscript, I will expand on these various themes with the firm conviction that 
the approach I have developed throughout my Ph.D. can help exploring these questions. 
However, this work could also provide novel insights in the study of other cognitive functions. 
Here, I will present how sleep can be seen, not as an end, but as a tool to investigate different 
aspects of consciousness, perception and memory. 

 

The study of consciousness and the contrastive approach 

Consciousness, as sleep, is an obvious phenomenon: the world would not exist without the 
faculty of representing it to ourselves. For a long time considered a non-scientific or meta-physic 
question, cognitivists have found ways to explore this daunting question. 

First, consciousness can be considered in its intransitive sense, as a state. What does it mean to 
be conscious? How can I know whether other human beings, animals or machines are conscious 
(Tononi and Koch, 2015)? Sleep is a very interesting tool to understand how can a brain be at a 
time conscious and how can the same brain be, only minutes later, unconscious. Indeed, every 
night we undergo what may be the closest approximation to death, the disappearance of 
ourselves as a conscious mind. Perhaps these transitions can tell us much and more about the 
neural basis of consciousness (Tononi, 2012). Along these lines, Giulio Tononi and Marcello 
Massimini showed that sleep onset is accompanied by the breakdown of brain’s functional 
connectivity (Massimini et al., 2005). They hypothesized that the associated loss in the ability to 
integrate information was at the foundation of consciousness (Tononi and Massimini, 2008).  

From a more practical point of view, sleep can be used to benchmark the so-called 
consciousness-meters. In the recent years, several approaches have been designed in order to 
acurately determine whether an individual (a patient in coma or under anesthesia, an healthy 
subject, a sleeper) is conscious or not (Casali et al., 2013; Chennu et al., 2014; King et al., 2013). 
Sleep could help assessing the precision of these metrics. Indeed, within a night, the same 
individual can undergo many different conscious states and report them. This would allow the 
alignment of the ‘consciousness-meter’ with the subjective report, the gold standard of 
consciousness research5. 

Second, consciousness can be considered in its transitive sense. Being conscious of something 
means that we represent a specific content to ourselves. This apparently simple operation opens 
an infinity of potential computations (Dehaene, 2014) and explains the richness of consciousness 
(Kouider et al., 2010). Cognitivists have studied in details the mechanisms and functions of 
transitive consciousness (see (Dehaene, 2014) for a thorough review). To do so, they mostly 
relied on the so-called contrastive approach. The idea is to present to participants two versions 
of the same sensory information: for example an image and a degraded version of this image. If 
the experimental paradigm is well tuned, the degraded image can still be processed by the brain, 
although it is not consciously accessed (Dehaene et al., 2006). A contrast can therefore be 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

5 Reversely, these metrics can also be used to explore sleep, as we will see in Study 5. 
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established between the properties of the two conscious and unconscious processes (Kouider 
and Dehaene, 2007). The degradation can take different forms: brief presentation (subliminal 
stimulation and masking), presentation of two images on each eye (binocular rivalry and 
continuous flash suppression) (see (Landry et al., 2014) for an overview). Of course, these 
techniques are not limited to the domain of vision (e.g. in audition: (Kouider and Dupoux, 
2005)).  

The contrastive approach has notably been used for two purposes: (i) identifying the processes 
that can be performed unconsciously and (ii) identifying the signature of consciousness. But the 
contrastive approach has some limitations for both these purposes. Identifying processes that 
can be performed unconsciously by using the contrastive approach can seem a bit odd. Indeed, if 
the participant may indeed be unconscious of the specific content presented, the participant 
remains fully conscious (in the intransitive sense), fully conscious of performing a task, fully 
conscious of task instructions and sometimes fully conscious of making decisions on 
unconscious information. As for the second purpose, the contrastive approach also has its limits. 
Indeed identifying the signature of consciousness (also called NCCs: neural correlates of 
consciousness (Crick, 2000)) is difficult given the fact that the two stimulations cannot be equally 
compared. To be processed unconsciously, the information was indeed degraded (especially 
when using the masking technique). The differences observed can de therefore due to the 
stimulus strength rather than the fact of being conscious of it. Even when the stimulation is 
equated in both conscious and unconscious conditions, the difference in brain activity can be 
due to the consequences rather than the causes of being conscious. 

Stimulating sleepers can bring a partial solution to these purposes: the identification of processes 
that can be performed unconsciously and the identification of their neural correlates. Sid 
Kouider and I developed an approach in which we “degraded” the participant rather than the 
information to perceive. Indeed, sleep (and especially NREM sleep) can be seen as a natural 
modulation of consciousness (Figure 0-6). Under these circumstances, it is possible to study how 
the very same information (stimulations were kept constant across wake and sleep in our studies) 
is processed by a conscious and awake brain, by a sleeping and unconscious brain (NREM sleep) 
or even by a sleeping, conscious but disconnected brain (REM sleep). In other words, sleep 
allows to manipulate conscious levels rather than conscious contents in order to study whether a 
process can be performed unconsciously in the transitive and intransitive senses of 
consciousness.  
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Figure 0-6 Sleep as a modulation of conscious contents and levels 

Consciousness is greatly affected by individuals’ state: from states in which conscious levels and contents 
are minimal such as in comatose patients to wakefulness where both levels and contents are maximal. The 
different sleep stages can allow an exploration of these two axes. By targeting the appropriate states, it is 
possible for example to study the impact of the modifications of either conscious levels or contents on 
sensory processing. From (Laureys, 2005). 

 

Studying a brain in a vat? 

In his book, Consciousness explained (Dennett, 1991), the philosopher Daniel Dennett invites its 
reader to the following thought experiment: imagine that you are just a brain in a vat and that all 
you know about the surrounding world is provided to you by a sophisticated machine. Dreams 
are perhaps (with ketamine-induced anesthesia (Sarasso et al., 2015)) the best approximation to 
such a brain in a vat. Even more interesting: the machine providing you with all the sensory 
inputs making up your dream is your brain itself. Dreams represent therefore a unique case of 
conscious perception without actual sensory input. When we see something in our dreams, are 
the mechanisms involved similar as when we see something in our environment?  

In Study 3, I will present the work I have conducted with Yuval Nir, Chiara Cirelli, Giulio 
Tononi and Itshak Fried on ocular movement during REM sleep (Andrillon et al., 2015b). Our 
question was rather simple: do eye-movements in REM sleep share the same function as in 
wakefulness, that is to say exploring the visual environment (Wurtz, 2008). We discovered that 
neurons in the visuo-mnemonic pathway (medio-temporal lobe: amygdala, hippocampus, 
entorhinal cortex, parahippocampal gyrus) react similarly after an eye-movement performed in 
REM sleep, after an eye-movement performed in wakefulness and when an image is directly 
presented to participants’ eyes. This result suggests that, not only do eye-movements subserve 
the same function in REM sleep as in wakefulness, but also suggests that seeing during our 
dreams involve the same mechanisms as when seeing the real world. In other words that dreams 
are made with the same ‘stuff’ as reality. However, the question of how these dreams are 
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generated is still open. Are dreams akin to perception or to imagination? Are dreamers active in 
the making of their dreams or are dreams the resultant of random volley of activations from the 
brainstem (Nir and Tononi, 2010)?  

Using another approach (Siclari et al., 2013), Francesca Siclari and Giulio Tononi investigated the 
neural basis of dream contents. The principle is simple: sleepers are awaken in the middle of 
REM sleep and asked to report what they had in mind (i.e. the content of their dream) when 
they were woken up. The EEG of participants was recorded in parallel and using the source 
reconstruction approach, Siclari and colleagues mapped the various contents reported with the 
corresponding neural sources. These maps are strikingly similar with what could be obtained 
with awake participants experiencing similar contents (Siclari et al., 2014b), corroborating the 
perceptual nature of dreams. Besides, dreams also provide situations that are quite difficult to 
imagine when awake. Some dreams for example are purely abstract: participants report dreaming 
of concepts without any perceptual implementations. Recordings such dreams could thus 
provide neural correlates of conscious thoughts purified from any perceptual representation.  

Among the obstacles in using dreams to study consciousness and conscious contents it should 
be noted the fact that (i) dreams are not controlled by sleepers, and that (ii) dreams’ content is 
accessible only when the dream is interrupted, through post-hoc and necessarily imperfect 
reports. However, there is a third state, between dreams and wakefulness, which could solve 
these issues: lucid dreaming (LaBerge, 2000). During a lucid dream, sleepers are aware that they 
dream and regain their sense of agency. They can therefore communicate with the outside world 
through eye-movements to manifest their awareness and they can dictate the content of their 
dreams. Lucid dreams are quite rare events but, aside from the methodological difficulties, they 
could provide scientists a way to study purely endogenous contents in a systematic and robust 
manner. 

 

Exploring memory through sleep 

I will finish this section with some words on the interest of sleep in studying memory, which will 
be the topic of Chapter 3.  

Memory is a very complex and polymorph phenomenon (Eichenbaum, 2008). Crucially sleep 
could help understanding the mechanisms underlying memory formation. In Study 8, we show a 
form of perceptual learning that is supposed to occur automatically and independently from 
attention (Andrillon et al., 2015a; Luo et al., 2013). However controlling for the influence of 
attention is always difficult. With Study 9, we strengthened the argument of automaticity by 
showing that such learning can occur even during sleep.  

While memory can be simply defined as the storage of information within the brain, its 
implementations are multiple. However, a clear line can be drawn between explicit and implicit 
memory. Let’s say that I just presented to you a series of words with the instruction to memorize 
as much items as you can. When meeting the day after, I will present you again with the same 
words, alongside novel items. Your task is now to determine which words had been presented 
the day before and which are the new ones (a paradigm called Old New recognition task). For 
some items, you may be pretty sure of your answer since you explicitly and precisely remember 
hearing or seeing the corresponding words the day before. But for other items, you may be less 
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sure and rely on fainter cues such as a sense of familiarity (Tulving, 1985). Nevertheless, you may 
be right in saying that you recognize the world. Such form of memory is called implicit memory.  

In the case mentioned above, explicit and implicit memory positively and jointly contribute to 
your answers. What would happen if they were in conflict? Arzi and colleagues designed 
experiments in which human participants were conditioned during their sleep (Arzi et al., 2012). 
In a recent study (Arzi et al., 2014), they conditioned smokers: the cigarette smell was associated 
to a very unpleasant one (rotten fish). During the week after the conditioning night, cigarette 
consumption of the test group significantly diminished. Importantly, similar conditioning in 
wake does not lead to a decrease in cigarette consumption. Associating tobacco to repulsive 
stimuli can work, but the conscious brain knows better!  

In Study 7, I similarly investigated the difference between explicit and implicit memory. In this 
study, participants performed an Old New recognition test on items previously heard. However 
and unknown to participants, some of the old items were presented when they were awake and 
some while they were asleep (Kouider et al., 2014). These words were processed and accessed at 
a high level of representation during sleep. Such access would automatically lead to the 
formation of a mnesic trace in wakefulness. What about sleep? I will show that the processing of 
this information lead to an implicit form of memory. Brain and behavioral responses to the 
words heard during sleep indicate that they are differentially processed compared to novel items. 
Yet, participants consistently declared them as novel and could not differentiate them for new 
words. Such results could be interpreted as a conflict between the presence of an implicit trace 
and the absence of explicit memory. In such conflicting situation, the implicit trace may be 
overlooked because it is not linked to any explicit recollection. Thus, these results could helps us 
understanding whether implicit and explicit memories are truly independent processes (Squire et 
al., 2007) and how they are implemented in the brain (Study 7). 
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Key points: 

- Sleep is an ubiquitous and vital phenomenon but some core 
questions concerning its function remain unsettled; 

- Sleepers are usually unresponsive, yet it does not mean that the 
sleeping brain is a dormant brain; 

- Sleep is a complexly structured phenomenon, its spatial and 
temporal dynamics may influence greatly brain’s ability to process 
external information; 

- Sleep can be used as a tool to investigate cognitive functions such as 
consciousness, perception or memory. 
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Note on contributions: 

In this Chapter’s studies (Studies 1-3), intracranial recordings from epileptic patients were 
analyzed. Itzhak Fried performed all surgeries and Yuval Nir collected data. I was not 
directly involved in data collection. In Study 1, I contributed to the sleep spindles 
analyses and some of the analyses demonstrating the existence of local slow-waves 
(paragraphs 3 to 5 in the Results section). I completed all the analyses of Studies 2 and 3 
in close collaboration with Yuval Nir. Studies 1 and 2 were published during my Master 
degree. However, the results detailed in these studies motivated the direction I undertook 
in my doctoral research and I decided to include these studies in the present manuscript. 



 

31!

!

!

!

Study 1: 
Regional slow waves and spindles 

in human sleep 
!

 

Published in Neuron 
April 14, 2011 

 

Yuval Nir1, Richard J. Staba2, Thomas Andrillon1,3, Vladyslav V. Vyazovskiy1, Chiara 
Cirelli1, Itzhak Fried4,5, and Giulio Tononi1 

 

 

1 Department of Psychiatry, University of Wisconsin-Madison 
Madison, WI, USA 

2 Department of Neurology, David Geffen School of Medicine, 
University of California-Los Angeles 

Los Angeles, CA, USA 

3 Department of Cognitive Studies, École Normale Supérieure 
Paris, France 

4 Department of Neurosurgery and Semel Institute for Behavioral 
Neuroscience, David Geffen School of Medicine, University of 

California-Los Angeles 
Los Angeles, CA, USA 

5 Functional Neurosurgery Unit, Tel Aviv Medical Center and Sackler 
School of Medicine, Tel Aviv University 

Tel Aviv, Israel. 

 

 



Study 1 

32!

!

 

!

!

!

!

!

Summary 

The most prominent EEG events in sleep are slow waves, reflecting a slow (< 1Hz), 
oscillation between up and down states in cortical neurons. It is unknown whether slow 
oscillations are synchronous across the majority or the minority of brain regions - are 
they a global or local phenomenon? To examine this, we recorded simultaneously scalp 
EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical 
patients. We find that most sleep slow waves and the underlying active and inactive 
neuronal states occur locally. Thus, especially in late sleep, some regions can be active 
while others are silent. We also find that slow waves can propagate, usually from medial 
prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other 
hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral 
communication during sleep is constrained because slow and spindle oscillations often 
occur out-of-phase in different brain regions.    
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Introduction 

Sleep is defined by behavioral unresponsiveness, and is usually regarded as a global 
phenomenon. Indeed, sleep is accompanied by global changes in neuromodulation 
(Jones, 2005), and the transition from waking to sleep is accompanied by clearcut 
changes in the electroencephalograph (EEG): from low-amplitude high-frequency 
activity to high-amplitude low-frequency slow waves (below 4Hz) and sleep spindles 
(Steriade, 2000).  

Intracellular recordings indicate that sleep slow waves reflect a bistability of cortical 
neurons undergoing a slow oscillation (< 1Hz) between two distinct states, each lasting 
hundreds of milliseconds. Up states are associated with depolarization and vigorous 
firing, whereas in down states the membrane potential is hyperpolarized and neuronal 
firing fades (Contreras and Steriade, 1995; Crunelli and Hughes; Destexhe and Contreras, 
2006; Destexhe et al., 2007; Steriade et al., 1993c; Steriade et al., 2001; Timofeev et al., 
2001). Although a role has been suggested for thalamic oscillators (Crunelli and Hughes, 
2010), the slow oscillation can be generated and sustained in cerebral cortex alone 
(Amzica and Steriade, 1995a; Shu et al., 2003; Steriade et al., 1993a; Timofeev et al., 2000; 
Timofeev and Steriade, 1996). The slow oscillation affects virtually all neocortical 
neurons (Amzica and Steriade, 1995b; Chauvette et al., 2010; Sejnowski and Destexhe, 
2000), is remarkably synchronous when examined in brain slices (Sanchez-Vives and 
McCormick, 2000), in animals under anesthesia (Steriade et al., 1993b, c), and in natural 
sleep as shown by intracellular recordings of up to four neurons simultaneously 
(Chauvette et al., 2010; Volgushev et al., 2006). But are slow oscillations truly global 
events, i.e. occurring in phase across most brain regions, or can the slow oscillation occur 
locally, i.e. in a minority of regions independently of other brain areas? 

Recent observations have shown that slow waves can be locally regulated so that their 
intensity varies among cortical regions. Prolonged waking induces an increase in slow 
wave activity (SWA, EEG power below 4Hz) which is largest over frontal cortex (Finelli 
et al., 2001; Werth et al., 1997). High-density EEG (hd-EEG) demonstrates that sleep 
slow waves can be locally regulated as a function of prior use and plastic processes (Esser 
et al., 2006; Huber et al., 2006; Huber et al., 2004). Slow waves propagate along major 
anatomical pathways (Massimini et al., 2004; Murphy et al., 2009) so that individual 
waves may be driven by distinct cortical origins (Riedner et al., 2007).  Additional 
evidence for local sleep goes beyond local regulation of slow waves in non-rapid Eye-
Movement (NREM) sleep. For example, when falling asleep cortical activity is highly 
variable across brain regions (Magnin et al., 2010). Moreover, in natural sleep of some 
animals (e.g. dolphins) one hemisphere can be awake while the other asleep 
(Mukhametov et al., 1977). Finally, in humans, some sleep disorders (e.g. sleep walking) 
suggest the existence of "dissociated states" (Mahowald and Schenck, 2005), where some 
brain regions are "asleep" when others are simultaneously "awake".  

Given the recent evidence supporting local regulation of SWA, we hypothesized that 
sleep slow waves may occur locally such that neurons alternate between active and 
inactive states at different times in different brain regions. To evaluate this possibility, 
simultaneous recordings of intracranial depth EEG and spiking activities of isolated units 
were obtained in 8-12 brain regions in the cortex and hippocampus of thirteen 
individuals undergoing presurgical clinical testing. The results provide direct evidence for 
local slow waves, revealing a continuum of global-local waves with the majority of events 
being confined to specific regions. At one extreme, typical of early NREM sleep, high-



Study 1 

34!

amplitude slow waves were usually global, detectable with scalp EEG. At the other 
extreme, more typical of late NREM sleep, slow waves could be entirely local, where any 
region could be active or inactive. In addition, we find that sleep spindles – the other 
EEG hallmark of NREM sleep - also occur mostly locally, establishing that the two 
fundamental sleep oscillations are mostly confined to local circuits. We also reveal a 
robust tendency of sleep slow waves to propagate from medial prefrontal cortex to the 
medial temporal lobe (MTL) and hippocampus. Both local occurrence and propagation 
of slow wave events reflect the underlying connectivity such that transitions into activity 
in a given region can be predicted by the activity of its afferent regions.  
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Results 

Polysomnographic sleep studies and sleep slow waves 

We obtained full night continuous polysomnographic sleep recordings in thirteen 
neurosurgical patients, lasting 421 ± 20 minutes (mean ± SEM). Figure 1-1 illustrates the 
experimental setup and provides an overview of the data. Polysomnography included 
electrooculogram (EOG), electromyogram (EMG), scalp EEG, and video monitoring. 
Sleep-wake stages were scored as waking, NREM sleep stages N1 through N3 and REM 
sleep according to established guidelines (Iber et al., 2007). Depth intracranial electrodes 
recorded activity in 129 medial brain regions in frontal and parietal cortices, 
parahippocampal gyrus, entorhinal cortex, hippocampus and amygdala (Figure 1-1E and 
Table S 1-1).   

 

 

Figure 1-1 Sleep studies and data overview 

(A) Setup for polysomnographic sleep recordings. (B) Hypnogram: time-course of sleep-wake 
stages in one representative individual. W, wake; R, REM sleep; N1-N3, NREM sleep, stages 1-3. 
(C) Average power spectra of scalp EEG in the same individual computed separately in stages 
N2 (blue), N3 (red) and REM sleep (green). Note high power in slow wave (<4Hz) and spindle 
(10-16Hz) range in NREM sleep. (D) Diagram of flexible probes used for concomitant recording 
of depth EEG (platinum contacts, blue) and unit activity (microwires, green). (E) Overview of 
129 depth electrode locations in 13 individuals encompassing multiple brain regions seen from 
medial view. Abbreviations: OF, orbitofrontal cortex; AC, anterior cingulate; SM, supplementary 
motor; PC/P, posterior cingulate / parietal cortex; PH, parahippocampal gyrus; HC, 
hippocampus; E, entorhinal cortex; Am, amygdala; L, left hemisphere; R, right hemisphere. (F) 
Example of data acquired during 6 sec of NREM sleep. Rows (top to bottom) show activity in 
scalp EEG (Cz, red), depth EEG (entorhinal cortex, blue), multi-unit activity (MUA) in one 
microwire (green) and spiking activity in six isolated single-unit (black bars). 
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We simultaneously recorded scalp EEG, depth EEG, multi-unit activity (MUA), and 
neuronal spiking activity (Figure 1-1D) from a total of 600 units (355 single units, 245 
multiunit clusters). 

Measures of overnight sleep in patients resembled normal sleep in individuals without 
epilepsy (Figure 1-1). Average (± SEM) sleep efficiency (sleep time per time in bed) was 
82 ± 2 % . NREM sleep, REM sleep, and wake after sleep onset (WASO) constituted 75 
± 2 %, 13 ± 2 %, and 12 ± 2 % of sleep time, respectively. Moreover, power spectra of 
scalp EEG data in individual subjects (Figure 1-1) revealed robust SWA and spindle (10-
16Hz) power throughout NREM sleep, while REM sleep was characterized by power in 
the theta (4-8Hz) range and in high frequencies (above 20Hz), in accordance with 
previous studies (Campbell, 2009). All patients showed typical NREM-REM sleep cycles, 
and some showed homeostatic decline of SWA throughout sleep. These results indicate 
that sleep measures were in general agreement with typical findings in healthy young 
adults (e.g. (Riedner et al., 2007)).   

Having characterized sleep using standard non-invasive polysomnography, individual 
slow waves in NREM sleep were identified in the depth EEG of each brain region 
separately. Although sleep profiles were within the normal range, we further verified that 
detected waves reflected physiological sleep slow waves rather than epileptic events 
(Experimental Procedures). Putative slow waves were separated to those preceded 
(within 1s) by an interictal spike (“paroxysmal” discharges) versus those unrelated to 
epilepsy (“physiological” sleep slow waves). The shape of physiological sleep slow waves 
was symmetrical and significantly different than that of asymmetrical paroxysmal 
discharges (Figure S 1-3A). Specifically, in paroxysmal slow waves following interictal 
spikes the rise slope was 44% ± 0.07 steeper than the fall slope (n=129 depth electrodes, 
p < 7.4E-5, paired t-test on rise and fall slopes). In addition, paroxysmal discharges were 
limited to specific sites in comparison to physiological slow waves, which were detected 
in all brain structures in all patients. Thus, in many channels virtually no interictal spikes 
were observed before slow waves (and nearly all putative slow waves were physiological), 
while in a few channels many events were pathological (mean = 14%, range - 0.06% - 
46%). By contrast, the number of physiological slow waves was consistent between 
electrodes, with numbers matching those found in healthy individuals (37.3 ± 0.5 slow 
waves per minute of NREM sleep), as in (Riedner et al., 2007).  

 

Neuronal activity underlying sleep slow waves 

Next, isolated unit discharges underlying physiological sleep slow waves were examined. 
Figure 1-2 provides an example of EEG and unit activities during global slow waves 
occurring in unison across multiple brain regions during deep NREM sleep in one 
individual. Negative peaks in the scalp EEG tightly corresponded to positive peaks of 
depth EEG in cortical and subcortical structures across different lobes and hemispheres. 
Locally, extracellular recordings revealed an OFF period where unit spiking activity 
ceased almost entirely, likely corresponding to the down state of the slow oscillations as 
recorded intracellularly. As in previous work (Vyazovskiy et al., 2009), we use the terms 
‘‘ON’’ and ‘‘OFF’’ periods, instead of ‘‘up’’ and ‘‘down’’ or ‘‘depolarized’’ and 
‘‘hyperpolarized’’ states (Steriade et al., 2001), because activity and silence periods were 
defined here based on extracellular activity rather than membrane potential fluctuations 
measured intracellularly. In contrast, positive peaks in scalp EEG tightly corresponded to 
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negative peaks of depth EEG and to ON periods with rigorous spiking, in accordance 
with a depolarized up state.  

 

Figure 1-2 Example of EEG and single-unit activity during global sleep slow waves  

Example of EEG and unit activities in multiple brain regions during 11.5sec of deep NREM 
sleep in one individual. Rows (top to bottom) depict activity in scalp EEG (Cz), right 
supplementary motor area (R-SMA), left entorhinal cortex (L-EC), right entorhinal cortex (R-
EC), left hippocampus (L-HC), and left amygdala (L-Am). Red, scalp EEG; blue, depth EEG; 
black lines, unit spikes. Cyan dots show individual slow waves detected automatically in each 
channel separately. Gray and white vertical bars mark ON and OFF periods occurring in unison 
across multiple brain regions. 

We set out to examine quantitatively the relation between sleep slow waves and the 
underlying spiking activity across all brain regions where units were detected (Figure 1-3). 
Individual slow waves were detected automatically in the depth EEG of each brain 
region separately (e.g. cyan dots in Figure 1-2), and unit spiking activity surrounding slow 
waves was averaged. When focusing on the highest amplitude waves in each channel (top 
20%), positive and negative peaks in depth EEG were associated with marked decreases 
and increases in unit discharges, respectively (Figure 1-3A, B, n=600). This result should 
be viewed as a lower limit on the modulation strength since timing variability across 
individual neurons introduced a temporal jitter, thereby smearing the average result. 
Therefore, the wave-triggered average of spiking activity was computed in each unit 
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separately, searching for the minimal (maximal) rate while allowing for different time 
offsets around EEG peaks (n=600, average of 10,595 waves per neuron). The minimal 
firing rate around EEG positivity was 39% ± 1 compared with the mean firing rate in 
NREM (N2+N3) sleep, and the mean latency of such OFF periods was 72ms ± 9 before 
the positive EEG peak. Around EEG negativity, a maximal firing rate of 198% ± 11 was 
found across individual units, at 46ms ± 10 before the negative EEG peak.  

 

Figure 1-3 Spiking activity underlying EEG slow waves 

(A) Wave-triggered averaging of unit spiking activity, time locked to the positive peak of depth 
EEG slow waves (OFF periods). Red shades denote SEM across neurons (n=600 in all brain 
structures) (B) Same as (A) time locked to the negative peak of depth EEG slow waves (ON 
periods). (C) Examples of neurons in different individuals and brain structures with spiking 
activity highly linked to EEG slow waves. (D) Percentage of units linked to sleep slow waves in 
different brain structures Numbers at base of bars mark the number of units in each brain 
structure, and error bars denote SEM across electrodes. (E) Wave-triggered averaging of units in 
all brain structures (n=600) as a function of amplitude of the positive EEG peaks. Slow waves 
were divided into three amplitude percentiles so that black, dark gray, and light gray depict high, 
medium, and low-amplitude slow waves, respectively.  

In each subject and in each brain region, individual neurons whose activity was highly 
modulated by slow waves were identified (Figure 1-3C). Such neurons were found not 
only in neocortex, but also in limbic structures such as hippocampus and amygdala. 
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Given the variability across individual neurons, we examined the percent of neurons 
showing significant phase locking to sleep slow waves separately in each brain structure 
(Figure S 1-4 and Experimental Procedures). The results revealed considerable variability 
(Figure 1-3D): the lowest percentages of phase locked neurons were found in anterior 
cingulate (12% ± 11, n=84 units in 11 regions, mean and SEM across electrodes). 
Neocortical regions (41% ± 11, n=109 units in 16 regions), hippocampus (49% ± 7, 
n=100 units in 17 regions), and parahippocampal gyrus (55% ± 10, n=97 units in 13 
regions) showed intermediate effects, while the highest percentages of phase locked 
neurons were found in amygdala (87% ± 11, n=61 units in 9 Amygdala regions), 
entorhinal cortex (84% ± 13, n=67 units in 10 regions), and posterior cingulate cortex 
(100% ± 0, n=30 units in 3 regions). Since slow waves were detected in the depth EEG 
recorded ~4mm away from unit activity, the percentages of modulated neurons should 
be regarded as a lower bound. Given that slow wave amplitudes change throughout sleep 
with the dissipation of sleep pressure (Riedner et al., 2007), it was of interest to check 
whether slow wave amplitudes were indicative of the level of unit activity modulation. To 
this end, unit activities were averaged around slow waves depending on the peak 
amplitude of the depth EEG (Figure 1-3E). The amplitude of EEG waves was 
parametrically related to the degree of modulation in underlying unit activity. Thus, our 
results demonstrate that within specific brain structures, sleep slow waves in depth EEG 
reliably reflect synchronous transitions between ON and OFF periods among many 
neurons. 

Importantly, unit discharges associated with pathological waves were markedly different 
in that firing rate was significantly different before and after the EEG positivity, in 
accord with the asymmetry observed in depth EEG (Figure S 1-3B). The clear distinction 
found in spiking activity underlying physiological vs. pathological waves supports the 
notion that sleep slow waves and epileptic events could be reliably separated. 

 

Extent of local sleep slow waves 

Next we examined if, to what extent, and under what circumstances slow waves occur 
locally, i.e. out of phase between brain regions. We operationally define a local (global) 
slow wave as an event detected in less (more) than 50% of recording locations. 
Numerous incidences of regional slow waves were found (Figure 1-4A, see Figure S 1-5 
for additional examples). In such incidences, diverse measurements (depth EEG, MUA, 
spiking of individual neurons) jointly indicated that one brain region was in an OFF 
period while another region was active. 

To explore this phenomenon quantitatively we examined to what extent slow waves 
occurred near-simultaneously (±400ms) across multiple brain structures and in scalp 
EEG. For each wave, the underlying unit activity at concordant sites (i.e. where the same 
EEG wave was observed) was compared with that found in non-concordant sites (i.e. 
where the "seed" wave was not observed in the "target" region). The results (Figure 
1-4B) revealed a clear difference in underlying spiking activity (p < 6.8E-07, paired t-test 
between concordant and non-concordant conditions across neurons). 
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Figure 1-4 Local sleep slow waves 

(A) An example of local sleep slow waves occurring at different times in left and right posterior 
cingulate cortices, where 100% of units are locked to slow waves. Rows (top to bottom) depict 
activity in scalp EEG (Cz, red), left posterior cingulate, and right posterior cingulate. Blue, depth 
EEG; green, MUA; black lines, single-unit spikes. White shadings mark local OFF periods. (B) 
Units in concordant "target" regions (expressing the same EEG slow wave, upper panel) exhibit 
a clear OFF period, while units in non-concordant "target" regions do not exhibit a clear OFF 
period. Wave-triggered averaging of "target" units is time locked to the positive peak of depth 
EEG in the "seed" region (blue trace). Red shades denote SEM across neurons (n=410 in all 
brain structures). (C) Most slow waves are local. Distribution of slow wave involvement (percent 
of monitored brain structures expressing each wave). (D) Global slow waves are of high 
amplitude. Scatter plot of slow wave amplitudes as a function of involvement (percent of brain 
structures expressing each wave). (E) A graph depicting the tendency of each pair of regions to 
express waves concordantly. Nodes (individual regions) are depicted schematically as seen from 
above, where deep regions away from scalp (MTL) are smaller and scalp electrodes are 
surrounded by cyan. Node color (legend) denotes the rank of each region - how often it is 
involved in slow waves seen in other regions. Edge width and color (legend) denotes the 
probability of each pair of regions to express slow waves concordantly, while node color 
expresses the region's rank (i.e. its average probability to be concordant with all neighbors). Note 
that regions in prefrontal cortex have higher ranks and show concordance across hemispheres 
relative to MTL.  
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We quantified the number of brain structures involved in each slow wave (i.e. the 
number of channels in which a particular wave was detected). The distribution of 
involvement was skewed towards fewer regions (Figure 1-4C) indicating that slow waves 
were typically spatially confined. Mean slow wave involvement was 27.1% ± 0.4 of 
monitored brain regions (n=129 electrodes). Moreover, 85% ± 0.7 of slow waves were 
detected in less than half of the recording sites indicating that most slow waves were 
local, given the definition above. There was a strong tendency (r = 0.79, p <<  1E-10) of 
widespread waves to be of higher amplitude than spatially restricted lower-amplitude 
waves (Figure 1-4D). The high variability in amplitude and spatial extent of slow waves 
suggests a continuum rather than a categorical dichotomy between local and global 
waves. At one extreme, waves could be entirely local, where one region was ON and 
others were OFF and vice versa, and such local waves could be observed in any brain 
structure. At the other extreme, high-amplitude waves occurred in unison across the 
brain. Nearly all waves fell somewhere along this gradual continuum, with most waves 
being more local than global given our working definition. Finally, we examined whether 
specific pairs of brain structures had a strong tendency to express local slow waves 
concordantly, and whether particular brain regions had a strong degree of involvement in 
slow waves (Figure 1-4E). Medial prefrontal regions such as the anterior cingulate and 
orbitofrontal cortex were typically more involved than regions in MTL. In addition, 
homotopic cortical regions across hemispheres tended to be concordant in prefrontal 
cortex (but not MTL), and there was a slight bias of regions in the left hemisphere to be 
more involved in slow waves. 

 

Extent of local sleep spindles 

Our results thus far demonstrate that slow waves, the most prominent EEG event of 
NREM sleep, occur mostly locally. This suggests that sleep, usually associated with highly 
synchronized activity, has an important local component. We thus wondered whether 
sleep spindles, the other hallmark of NREM sleep EEG (Loomis et al., 1935), also occur 
locally. Spindles are generated in the highly interconnected thalamic reticular nucleus and 
the neocortex governs their synchronization through corticothalamic projections 
(McCormick and Bal, 1997; Mircea Steriade, 2003). Asynchronous spindles were reported 
in non-physiological conditions (Contreras et al., 1997a, 1996; Gottselig et al., 2002).  

To examine this issue, spindles were detected automatically in each depth electrode 
separately (Experimental Procedures, Figure S 1-6) and we examined to what extent 
spindles occurred concurrently across frontal and parietal channels. Examination of local 
vs. coincident spindles was carried out only in cortical sites that had regular spindle 
occurrences, thereby excluding the possibility that local occurrence of spindles arises 
merely from their total absence in remote brain structures. As defined for slow waves, we 
operationally define a local (global) sleep spindle as an event detected in less (more) than 
50% of recording locations. Numerous incidences of sleep spindles occurring in specific 
brain areas were found (Figure 1-5A). Regional spindles occurred without spindle activity 
in other regions, including homotopic regions across hemispheres and regions with 
equivalent signal-to-noise ratio (SNR) showing the same slow waves.  
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Figure 1-5 Local sleep spindles 

(A) Three examples in three different patients of depth EEG along with corresponding 
spectrograms in the spindle frequency range (10-16Hz) during 15sec of NREM sleep. Note that 
regardless of slow waves, local spindles often occur without spindle activity in other regions, 
including homotopic regions across hemispheres and regions with equivalent SNR showing the 
same global slow waves. (B) Quantitative analysis of spindle occurrence across pairs of channels. 
Top row (concordant events, 34% of cases) shows spectrograms for events in which a spindle 
was detected in the "seed" channel but not in the "target" channel (N = 13,750 events in 156 
pairs of regions in 12 individuals). Bottom row (non-concordant events, 66% of cases) shows 
spectrograms for events in which a spindle was detected in the seed channel but not detected in 
the target channel (N = 26,874 events in 156 pairs of regions in 12 individuals). Note that spindle 
power in non-concordant target channels is at near-chance levels, indicating that our detection 
can reliably separate between presence and absence of spindle activity (C) Distribution of 
involvement (percent of monitored brain structures expressing each spindle) across 22,914 
spindles in 50 electrodes of 12 individuals. Note that the distribution is skewed to the left, 
indicating that most spindles are local. (D) Scatter plot of spindle amplitudes as a function of 
involvement (percent of brain structures expressing each spindle) shows that global spindles have 
some tendency to be of higher amplitude (r = 0.63, p < 0.0001, n = 177).  

We set out to quantitatively establish to what extent local sleep spindles occur across the 
entire dataset. We determined for each spindle in a given region whether spindles were 
present or not in other brain structures (Experimental Procedures). The spectral power 
changes in concordant sites (34% of events where a spindle was detected in both "seed" 
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and "target" channels, Figure 1-5B top row) were compared with those at non-
concordant sites (66% of events where a spindle was detected in the seed channel but 
not in the target, Figure 1-5B bottom row). A clear difference in spectral power was 
revealed (p < 1E-41, paired t-test), pointing to significant differences in underlying 
neuronal activity, and indicating that non-concordant events are indeed regional spindles. 
Furthermore, the analysis of those cases where target channels did not exhibit any 
increase in spindle spectral power above the noise level (Experimental Procedures) 
revealed that 32% of all non-concordant events were local in the strongest sense, i.e. a 
full-fledged spindle occurred in the seed channel while spectral power in the target 
channel was not different from chance. Importantly, the occurrence of local spindles was 
independent of local slow waves, since spindles occurring in isolation (i.e. not associated 
with a slow wave within ± 1.5s) constituted 53.7% ±  3.1 of all events and a separate 
analysis confirmed that such "isolated" spindles were likewise mostly local (Figure S 1-7). 
In addition, comparing homotopic regions revealed that 40.4% ± 1.7 of spindles were 
observed only in one hemisphere (mean  ± SEM across 9 pairs), indicating that 
differences between anterior and posterior regions could not account for spindle locality.  

Next, we quantified the involvement in spindle events by computing the number of brain 
structures in which each spindle was observed. The distribution of involvement in sleep 
spindles was skewed towards fewer regions (Figure 1-5C), indicating that spindles were 
typically spatially restricted. Mean involvement for sleep spindles was 45.5% ± 0.3 of 
brain regions (n=50 depth electrodes). Moreover, 75.8% ± 0.9 of spindles were detected 
in less than 50% of regions, indicating that most spindles were local given the definition 
above. Finally, as was the case for slow waves, the spatial extent of spindles was 
significantly correlated with spindle amplitude (Figure 1-5D, r = 0.62, p < 0.0001, n = 
177).  

 

Changes in spatial extent of slow waves and spindles between early and 
late sleep 

Increasing evidence suggests that early and late NREM sleep differ substantially in 
underlying cortical activity (V. V. Vyazovskiy et al., 2009). Hence, it was of interest to 
determine whether the spatial extent of slow waves and spindles changes between early 
and late NREM sleep. To this end, we focused on episodes of early and late NREM 
sleep in five individuals exhibiting a clear homeostatic decline of SWA during sleep (). 
We identified separately slow waves, spindles, and K-complexes - isolated high-amplitude 
slow waves that are triggered by external or internal stimuli on a background of lighter 
sleep (Colrain, 2005). We examined for each type of sleep event separately how its spatial 
extent varied between early and late sleep (Figure 1-6). Slow waves became significantly 
more local in late sleep as compared to early sleep (Figure 1-6A, involvement of 30.4% ± 
0.57 in early sleep vs. 25.0% ± 0.62 in late sleep, p<2.6E-10, unequal variance t-test). 
This result is in line with the finding that local waves were usually low-amplitude, and 
low-amplitude waves typically occur in late NREM sleep when homeostatic sleep 
pressure has largely dissipated (Riedner et al., 2007). By contrast, K-complexes were 
mostly global and stereotypical throughout the night, i.e. they did not show significant 
changes between early and late sleep (Figure 1-6B, involvement of 54.8% ± 4.4 in early 
sleep vs. 52.5% ± 1.9 in late sleep, p = 0.98). Interestingly, sleep spindles became slightly 
less local in late sleep, as sleep pressure dissipated (Figure 1-6C, involvement of 44.2% ± 
0.6 in early sleep vs. 47.1% ± 0.5 in late sleep, p < 0.00014). This result once again 
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supports the notion that local sleep spindles cannot be simply explained by an 
association with local slow waves.  

!

Figure 1-6 Changes in spatial extent of slow waves and spindles between early and late sleep 

(A) Slow waves become more local in late sleep. Slow wave involvement (percent of monitored 
brain structures expressing each wave) in early NREM sleep vs. late NREM sleep in five 
individuals exhibiting a clear homeostatic decline of SWA during sleep (Figure S 1-1). Error bars 
denote SEM (n=1436 and 1698 events in early and late sleep). Asterisk denotes statistically 
significant difference (p<2.6E-10, unequal variance t-test). (B) K complexes are more global and 
similar in early and late sleep. Same sleep segments and analysis as (A). Error bars denote SEM 
(n=148 and 181 events in early and late sleep; p=0.98, unequal variance t-test). (C) Spindles 
become more global in late sleep. Same sleep segments and analysis as (A). Error bars denote 
SEM (n=1272 and 2554 events in early and late sleep, p < 0.00014, unequal variance t-test). 

 

Sleep slow waves propagate along typical pathways 

To examine whether slow waves propagate along typical pathways, we checked for 
consistent temporal delays between brain regions in which the same wave was observed.  
Figure 1-7A provides an example of mean slow waves in depth EEG of different brain 
structures in one individual, revealing a propagation trend from medial frontal cortex to 
the MTL and hippocampus. This propagation was evident also when examining the 
distribution of lags for individual waves (Figure 1-7A, right). Despite variability in the 
timings of individual waves, some regions consistently preceded scalp EEG whereas 
others followed it.  

A systematic analysis of depth EEG established that slow waves had a strong propensity 
to propagate from medial frontal cortex to the MTL and hippocampus. Specifically, we 
identified all slow waves that were detected within ±400ms across several brain 
structures (Experimental Procedures). Sorting regions according to the order in which 
their slow waves were detected revealed a clear tendency of slow waves to propagate 
from medial frontal cortex to the MTL (Figure 1-7B), which was highly significant 
statistically (Figure 1-7C, p < 2.3E-08, unequal variance t-test). In addition, this 
propagation tendency was consistent across individual subjects (Figure S 1-8) and robust 
to different examinations (Figure S 1-7D).  
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Figure 1-7 Sleep slow waves propagate across typical paths  

(A) Left: average depth EEG slow waves in different brain structures of one individual illustrate 
propagation from frontal cortex (yellow) to MTL (red). All slow waves are triggered by scalp 
EEG negativity. Black, scalp mean waveform. Right: distributions of time lags for individual 
waves in supplementary motor area (SM, yellow) and hippocampus (HC, red) relative to scalp. 
(B) Mean position in sequences of propagating waves in all 129 electrodes across 13 individuals. 
Each circle denotes one depth electrode according to its precise anatomical location. Yellow-red 
colors denote waves observed sooner in frontal cortex compared with MTL (see legend). (C) 
Quantitative analysis: mean position in propagation sequences as a function of brain region. 
Abbreviations: SM, supplementary motor area; PC, posterior cingulate; OF, orbitofrontal cortex; 
AC, anterior cingulate; ST, superior temporal gyrus; EC, entorhinal cortex; Am, amygdala; HC, 
hippocampus; PH, parahippocampal gyrus. (D) An example of individual slow waves 
propagating from frontal cortex to MTL. Rows (top to bottom) depict activity in scalp EEG (Cz, 
red), supplementary motor area (SM) , entorhinal cortex (EC), hippocampus (HC), and amygdala 
(Am). blue, depth EEG; green, MUA; black lines, spikes of isolated units. Red dots mark center 
of OFF periods in each brain region based on the middle of silent intervals as defined by last and 
first spikes across the local population. Diagonal green lines are fitted to OFF period times via 
linear regression and illustrate propagation trend. (E) Left, the average unit activity in frontal 
cortex (top, n=76) and MTL (bottom, n=155), triggered by the same scalp slow waves reveals a 
robust time delay (illustrated by vertical red arrow). Right, distribution of time delays in individual 
frontal (top) and MTL (bottom) units reveals a time delay of 187ms. Red vertical arrows denote 
mean time offset relative to scalp EEG (F) Left, the average unit activity in parahippocampal 
gyrus (PH, n=32), entorhinal cortex (EC, n=49) and hippocampus (HC, n=35), triggered by the 
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same depth EEG slow waves reveals a cortico-hippocampal gradient of slow wave occurrence 
(illustrated by vertical red arrows). Right, distribution of time delays in individual PH, EC, and 
HC units reveals a time delay of 121ms between PH and HC. Red vertical arrows denote mean 
time offset relative to depth EEG. 

Figure 1-7D shows an example of individual slow waves propagating across multiple 
brain structures. As can be seen, time offsets in OFF periods in different brain regions 
followed a propagation from frontal cortex to the MTL (diagonal green lines). Next, slow 
wave propagation was quantitatively examined in unit discharges in all 11 individuals in 
whom unit recordings were obtained simultaneously in frontal and MTL regions. Mean 
spiking activities underlying slow waves in medial frontal cortex vs. MTL revealed a 
robust time offset (Figure 1-7E, left). Across individual neurons, minimal firing in frontal 
neurons (n=76) was -85 ms ± 22 relative to scalp Fz negative peak, whereas minimal 
firing in MTL neurons (n=155) was +102ms ± 20 relative to the same time reference, 
indicating an average difference of 187ms (Figure 1-7E, right). The statistical significance 
of this time offset was confirmed via bootstrapping by computing time delays of 
individual neurons while randomly shuffling their anatomical labels (p <<  1E-10, Figure 
S 1-7G). In fact, across 10,000 iterations, not even one instance was found in which a 
random time offset between the two groups of neurons was as high as (the real) 187ms. 
Next, we examined whether within the MTL, spiking activities could also reveal a 
preferred direction of signal propagation between cortex and hippocampus. In 11 
individuals in whom unit recordings were obtained simultaneously from multiple MTL 
regions, slow wave-triggered averaging of spiking activity (Figure 1-7F, left) revealed that 
slow waves occurred first in the parahippocampal gyrus, next in entorhinal cortex, and 
lastly in the hippocampus, emulating the anatomical pathways (see also Discussion). 
Across individual neurons minimal firing in parahippocampal neurons occurred  -19 ms 
± 20 relative to positive peak of depth EEG slow waves in MTL, while minimal firing in 
hippocampal neurons occurred  +103 ms ± 47 relative to the same time reference, 
indicating that slow waves exhibited an average time difference of 122ms between cortex 
and hippocampus (Figure 1-7F, right). The statistical significance of this time offset was 
confirmed via bootstrapping while randomly shuffling anatomical labels (p <  0.0097, 
Figure S 1-7H).  

Finally, we examined whether hippocampal sharp-wave/ripple (SWR) bursts may 
precede and drive responses in medial prefrontal cortex (mPFC), a primary projection 
zone of hippocampal output in primates (Cavada et al., 2000). To this end, we focused 
on seven subjects in whom hippocampal ripples were recorded simultaneously along 
with spiking activities in hippocampus and mPFC. Hippocampal ripples were detected 
and their relation to sleep slow waves examined (Experimental Procedures and Figure S 
1-7). In line with previous observations (Clemens et al., 2007; Molle et al., 2006; Sirota et 
al., 2003), hippocampal ripples were found to occur preferentially around ON periods 
(Figure S 1-8D). A fine time scale examination of spiking activities revealed that 
hippocampal neurons transiently elevated their firing rates around ripple occurrence 
(Figure S 1-8E). Across individual hippocampal neurons (n=72), time offsets of peak 
firing were -31 ms ± 7 from detected ripples (Figure S 1-8G). Adjacent entorhinal 
neurons also elevated their firing rates transiently albeit to a lesser degree (Figure S 1-8E), 
and time offsets were -2 ms ± 9, indicating that they followed hippocampal neurons by 
29ms on average. By contrast, individual mPFC neurons did not show a consistent 
transient firing rate increase (Figure S 1-8G). Rather, mPFC neurons only exhibited a 
sustained increase in firing that was significantly higher than the mean rates in NREM 
sleep (Figure S 1-8E, p < 0.05, unequal variance t-test), most probably due to the fact 
that ripples occurred preferentially during ON periods. These results suggest that ripples 
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reflect hippocampal output that is largely confined spatially to the MTL. By contrast, 
slow wave-triggered averaging of spiking activity in mPFC and hippocampus once again 
revealed that slow waves in prefrontal cortex preceded those found in hippocampus 
(Figure S 1-8F). On the whole, our results suggest that signal propagation in slow wave 
sleep primarily follows a cortical-hippocampal direction. 

 

Afferent synaptic input predicts occurrence and timing of activity onsets 
in individual slow waves  

What determines whether and when a given region transitions into an active state? We 
hypothesized that this process is not entirely stochastic and is determined by what 
proportion of its afferents have just transitioned to an active state. To test this possibility, 
we focused on the amygdala and its afferents. This choice was guided by the fact that 
projections to the amygdala in primates are mostly ipsilateral and arrive from diverse 
sources, with a notable contribution from other limbic structures such as entorhinal 
cortex, cingulate cortex, hippocampus, as well as medial prefrontal and orbitofrontal 
cortices serving mainly as input sources (Amaral et al., 1992; McDonald, 1998).  

 

Figure 1-8 Afferent Information Predicts Occurrence and Timing of Activity Onsets in 
Individual Slow Waves 

(A) Predicting occurrence of individual amygdala slow waves with information about slow waves 
in other limbic regions. Each sub-panel shows prediction accuracies for one individual using 
either ipsilateral (red) or contralateral (blue) information, as a function of the number of regions 
made available to the classifier. Green horizontal line shows chance prediction at 50%. Error 
bars denote SEM across 100 classifier iterations in which training and testing datasets (individual 
waves) as well as the identity of available neighbors were shuffled. Black and gray asterisks 
denote significant differences in prediction accuracy (p<0.001 and p<0.05 respectively, paired t-
test). Note that in all 9 individuals, prediction was significantly more accurate using ipsilateral 
information, reflecting the fact that bulk anatomical projections to amygdala arrive from 
ipsilateral brain regions (p < 1E-39 in all 9 individuals, paired t-test, n=100 classifier iterations). 
(B) Same as above when predicting the timing of individual amygdala slow waves (before or after 
slow waves in parietal scalp electrode Pz). Timing prediction was likewise more accurate based 
on ipsilateral information (p < 1.4 E-7 in 8 individuals and p = 0.02 in ninth individual, paired t-
test, n=100 classifier iterations). 
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We capitalized on this anatomical organization and examined whether we could predict 
the occurrence and timing of individual slow waves in the amygdala. Crucially, if 
transitions into ON periods indeed reflect cumulative drive of anatomical afferents, we 
expected that we could better predict the occurrence of events based on ipsilateral limbic 
afferents than based on equivalent contralateral information. 

To examine this possibility, we inspected data in 17 hemispheres of 9 individuals in 
which signals from amygdala and several other limbic structures were recorded. A linear 
classifier was trained with a subset of slow waves to utilize information about the 
occurrence, amplitude, and timing of transitions into population ON periods (positive 
peaks in depth EEG) in ipsilateral (or contralateral) limbic regions to predict the 
occurrence and timing of individual slow waves in the amygdala (Experimental 
Procedures). Its performance was then tested with a separate subset of waves (Figure 
1-8). In all 9 individuals, the information from ipsilateral afferent regions led to 
significantly greater accuracy in predicting the occurrence of slow waves in the amygdala 
(p < 1E-39 in all 9 individuals). Moreover, ipsilateral prediction accuracy monotonically 
increased as a function of the number of afferent regions that were made available for 
classifier training (Figure 1-8A, red, slope = 0.04  ± 0.005 percent correct per neighbor). 
By contrast, contralateral prediction was sometimes at near-chance levels and did not 
depend as strongly on the number of regions (Figure 1-8A, blue, significantly smaller 
slopes, p < 5.4-4  via paired t-test). Along the same line, the timing of individual slow 
waves in the amygdala (whether they occurred before or after the parietal scalp electrode) 
could be more accurately predicted with information from ipsilateral afferent regions (p 
< 1.4-7 in 8 individuals and p = 0.02 in ninth individual, Figure 1-8B). Thus, despite the 
probabilistic nature of activity onsets in slow waves, the underlying process is not entirely 
stochastic and reflects the cumulative drive of afferent synaptic input. 
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Discussion 

By examining simultaneous depth EEG and single-unit recordings in multiple regions of 
the human brain we show that ON and OFF periods of spiking activity and 
corresponding EEG slow waves typically involve a limited number of brain regions. 
Similarly, sleep spindles are mostly local. In addition, slow waves have a tendency to 
propagate from prefrontal cortex to the MTL and hippocampus. We also found that 
activity onsets in individual waves reflect the afferent synaptic drive to a given region.  

 

Local sleep slow waves 

The main novel observation reported here is that most sleep slow waves are in fact 
confined to local regions, i.e. detected in a minority of brain areas. Specifically, in most 
cases we found that when some brain regions were in an ON state, neurons in other 
brain regions were completely silent. The unique dataset employed here was instrumental 
in unequivocally establishing this phenomenon, since (i) the large size of the human brain 
facilitated simultaneous recordings across multiple distant sites; (ii) the simultaneous 
recording of depth EEG, MUA, and spiking of individual neurons allowed us to 
establish that differences between depth EEGs in different regions reflect local activities 
rather than noise.  

Typically, less than 30% of monitored brain regions were involved in each slow wave 
event. Although our sampling was mostly limited to medial brain areas, it represented 
activity in multiple (8-12) regions across lobes and hemispheres, so it is reasonable to 
infer that these results can be generalized to the entire brain. When global ON and OFF 
states were observed, they were associated with large slow waves in scalp recordings, 
usually during deep sleep early in the night, or with K-complexes throughout the night. 
Local slow waves tended to co-occur across homotopic prefrontal regions, but not 
across homotopic regions in the MTL (Figure 1-4E), supporting the role of callosal 
pathways in slow wave synchronization and propagation (Amzica and Steriade, 1995). 
Medial prefrontal regions including the anterior cingulate and orbitofrontal cortex were 
among the most involved in slow wave occurrence.  

The demonstration that slow waves are mostly local shows that examples of isolated 
slow waves (Mohajerani et al., 2010; Sirota and Buzsaki, 2005) constitute the rule rather 
than the exception. It is also consistent with evidence that the intensity of sleep slow 
waves can vary across brain regions (Finelli et al., 2001), that sleep can be regulated 
locally (Huber et al., 2006, 2004), and that multiple local generators could contribute to 
EEG SWA (Murphy et al., 2009; Riedner et al., 2007). 

 

Local sleep spindles 

In physiological conditions spindles are believed to reflect global signal propagation 
between cortex and thalamus (Achermann and Borbely, 1998; Contreras et al., 1996; 
Mircea Steriade, 2003). Although spindles are generated in the thalamus, the neocortex 
governs spindle synchronization through corticothalamic projections (Mircea Steriade, 
2003). Asynchronous spindles were observed during development (Khazipov et al., 2004) 
or in non-physiological conditions such as decortication, cortical depression, and acute 
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stroke, where a non-functional cortex is not able to exert its normal synchronizing 
influence (Contreras et al., 1997a, 1996; Gottselig et al., 2002) 

By simultaneously examining spindle occurrence across multiple brain regions (Figure 
1-5), the present results demonstrate that, like most slow waves, most sleep spindles 
occur locally in natural sleep. Thus, each spindle event was usually detected in only a 
minority of brain regions. Even when applying the most conservative criteria, treating 
any spindle spectral power above the noise level as a spindle event, approximately one 
third of events occurred independently across regions. As found for slow waves, the 
spatial extent of spindles was correlated with their amplitude. Although spindles are 
often associated with slow wave up-states (Molle et al., 2002; Steriade et al., 1993b), 
spindles occurred locally in a way that was independent of local slow waves. Also, the 
local occurrence of spindles cuts across the distinction between fast (13-15Hz) 
centroparietal spindles and slow (11-13Hz) frontal spindles (Anderer et al., 2001) since 
spindles of the same frequency can occur in isolation between homotopic regions across 
hemispheres. It is an open question whether local and global spindles may be mediated 
by different mechanisms such as corticothalamic projections from different layers (Jones, 
2009) or thalamocortical projections via the core and matrix cells (Rubio-Garrido et al., 
2009; Zikopoulos and Barbas, 2007). 

Some previous data hinted at the possibility that sleep spindles may occur or be regulated 
locally. One study reported that during drowsiness spindles occurred in medial prefrontal 
cortex while posterior regions showed alpha activity (Caderas et al., 1982). Another study 
reported that spindle power can vary and correlate with motor learning (Nishida and 
Walker, 2007). A recent study using non-invasive magnetoencephalography found that 
the average coherence between pairs of sensors was significantly lower than that found 
between scalp EEG (Dehghani et al., 2010a), implying asynchronous generators. Indeed, 
the present findings demonstrate that local sleep spindles constitute the majority of 
events in natural human sleep.  

Taken together, the finding that both slow waves and spindles are mainly confined to 
local regions adds to the evidence suggesting that sleep arises from activities of local 
circuits and is not exclusively a global phenomenon (Krueger et al., 2008). In isolated 
cortical slices long periods of silence are interrupted by short bursts of activity much like 
the EEG of preterm newborns (tracé alternant) (Kristiansen and Courtois, 1949). Prior 
use and induction of plastic changes lead to regional enhancements of SWA in human 
sleep (Esser et al., 2006; Huber et al., 2006, 2004) and rodent sleep (Vyazovskiy et al., 
2000; Werth et al., 1997). In addition, local circuits may exhibit OFF periods even during 
wakefulness while the animal is performing a task (Vyazovskiy et al., 2009). Imaging 
studies demonstrate some local modulation of thalamocortical activity in slow wave sleep 
(Albouy et al., 2008; Braun et al., 1997; Dang-Vu et al., 2005; Maquet, 2000) Apart from 
local slow waves, clinical evidence suggests the existence of "dissociated states" 
(Mahowald and Schenck, 2005). For example, in sleepwalking and REM sleep behavior 
disorder some brain circuits may be asleep while others are awake (Bassetti et al., 2000; 
Mahowald and Schenck, 2005; Terzaghi et al., 2009). Naturally occurring sleep patterns 
in dolphins (Mukhametov et al., 1977), seals (Siegel, 2009), and birds (Rattenborg et al., 
2001) also suggest that parts of the brain can be awake while others are asleep. Overall, 
such evidence implies that although sleep is often considered as a global phenomenon, it 
may be best understood in relation to activities of local circuits. 
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Unit discharges underlying sleep slow waves 

A tight relation between EEG sleep slow waves and underlying unit activity was evident 
in all monitored brain structures (Figure 1-2 and Figure 1-3). Although there was 
considerable variability among individual neurons, in each brain region the activity of a 
substantial portion of neurons was phase locked with slow waves (Figure 1-3D). 
Moreover, the amplitude of EEG slow waves reflected the degree of modulation in 
neuronal firing (Figure 1-3E). A tight relation between EEG slow waves and underlying 
unit activity is a widely established phenomenon in natural sleep of mammals, as 
demonstrated by extracellular recordings (Amzica and Steriade, 1998; D. Ji and Wilson, 
2007; Noda and Adey, 1970; Sirota et al., 2003; V. V. Vyazovskiy et al., 2009), owing to 
the fact that within each region, the activity of different neurons is highly synchronized 
(Destexhe et al., 1999). In neocortex, sleep slow waves reflect a slow oscillation of 
membrane potential fluctuations, as demonstrated by intracellular recordings (Isomura et 
al., 2006; Steriade et al., 2001; Volgushev et al., 2006). Recent studies in human cortex 
have similarly demonstrated that slow waves reflect alternations between neuronal firing 
and suppressed activity (Cash et al., 2009; Csercsa et al., 2010; Le Van Quyen et al., 2010, 
2008). Our results extend these observations to multiple regions in the human brain 
(Figure 1-3C). Neurons phase-locked to slow waves were found not only in neocortex, 
but also in limbic paleocortex (e.g. cingulate cortex, parahippocampal gyrus, entorhinal 
cortex), archicortex (hippocampus), and in subcortical structures (amygdala). Although 
neurons in subcortical structures seem to lack the inherent bistability of cortical neurons 
(Isomura et al., 2006), their activity is nevertheless modulated by slow oscillations 
generated locally or imposed by the cortex (Pare et al., 2002; Wolansky et al., 2006) 
Indeed, our recordings demonstrate that neurons in entorhinal cortex, hippocampus, and 
amygdala modulate their spiking activities in concert with EEG slow waves.  

 

Propagation of sleep slow waves and cortico-hippocampal dialogue 

Previous studies suggested that slow waves may have a tendency to propagate along an 
anterior-posterior axis through the cingulate gyrus and neighboring structures (Murphy et 
al., 2009), which constitute an anatomical backbone of anatomical fibers (Hagmann et al., 
2008). By simultaneously recording from 8-12 brain structures directly, the current results 
establish that slow waves indeed propagate in the human brain as previously suggested 
(Massimini et al., 2009b, 2004), and as observed in part in rodents (Vyazovskiy et al., 
2009) and cats (Volgushev et al., 2006). The consistent tendency of slow waves to 
propagate along distinct anatomical pathways (e.g. cingulum) indicates that such waves 
can be used to investigate changes in neuronal excitability and connectivity. 

By recording EEG and spiking activities from multiple adjacent MTL structures we 
demonstrate that cortical slow waves precede hippocampal waves in the human brain. As 
far as can be inferred from medial brain structures, the results reveal a sequential cortico-
hippocampal propagation of slow waves along well-known anatomical paths, from the 
parahippocampal gyrus, through entorhinal cortex, to hippocampus (Figure 1-7F), as was 
observed in intracellular recordings in rodents (Isomura et al., 2006). A similar cortico-
hippocampal succession was revealed when focusing exclusively on hippocampus and 
mPFC recorded simultaneously in seven patients (Figure S 1-8F). Our results are in line 
with previous animal studies (Hahn et al., 2007; Isomura et al., 2006, p. 200; D. Ji and 
Wilson, 2007; Molle et al., 2006; Sirota et al., 2003) and with a recent study of human 
depth EEG (Wagner et al., 2010). That cortical slow waves precede hippocampal waves 
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is also compatible with a cortical origin for sleep slow waves (Chauvette et al., 2010; 
Steriade et al., 1993c). 

We also examined whether hippocampal SWR bursts may be driving responses in mPFC 
on a fine time scale as suggested recently (Wierzynski et al., 2009). Our results reveal a 
clear tendency of hippocampal ripples to occur around ON periods of slow waves 
(Figure S 1-8), as reported previously (Clemens et al., 2007; Molle et al., 2006; Sirota et 
al., 2003). Moreover, delayed and attenuated spike discharges were observed in 
entorhinal cortex compared with hippocampus (Figure S 1-8). Since the entorhinal cortex 
provides both the major input to and receives output from the hippocampus, our results 
support the notion that ripples reflect hippocampal output (Chrobak and Buzsaki, 1996). 
Local effects of hippocampal output within the MTL are in line with a recent human 
study reporting some incidences of delayed gamma bursts in parahippocampal cortex 
following hippocampal ripples (Le Van Quyen et al., 2010). However, transient firing in 
mPFC units was not found following ripple occurrence (Figure S 1-8).  The apparent 
discrepancy with (Wierzynski et al., 2009) is most likely related to the fact that our data 
represent a different neuronal population in the mPFC where neuronal activity is highly 
modulated by slow waves (compare to their Figure 1-1), but differences in species and 
electrode locations may contribute as well.  

More generally, the direction of the cortico-hippocampal dialogue in sleep has been a 
hotly debated issue. An influential suggestion has been that signals propagate from 
cortex to hippocampus during wakefulness, and from hippocampus to cortex during 
sleep (Buzsaki, 1998). Since declarative memories become progressively more resistant to 
hippocampal damage, it is thought that the hippocampus "transfers" such memories to 
the cortex by replaying activity patterns during SWRs in sleep (Lee and Wilson, 2002). 
The current results add to existing evidence showing that during NREM sleep neural 
activity propagates predominantly from the neocortex to the hippocampus (Hahn et al., 
2007; Isomura et al., 2006; D. Ji and Wilson, 2007; Molle et al., 2006; Sirota et al., 2003). 
Future studies are needed to determine whether within this robust cortico-hippocampal 
broadcast there may be islands of functionally relevant hippocampo-cortical transmission 
(Tononi et al., 2006).  

 

Cumulative synaptic input determines transitions to ON periods 

While slow waves reflect spontaneous alternations of activity and silence in 
corticothalamic networks, what causes the transition from silence to activity in a given 
brain region remains unclear. Several scenarios could explain the source of transitions at 
the network level. One possibility is that whether and when a given region will transition 
into an ON period is determined by a global process such as subcortical common input, 
which could serve as a main "switch". However, since most slow waves occur locally and 
since slow oscillations are also observed in vitro (Sanchez-Vives and McCormick, 2000), 
such a global mechanism seems implausible. A second possibility is that transitions to 
activity are stochastic and driven by intrinsic processes within each region. For example, 
currents that are activated close to the resting membrane potential (such as the 
hyperpolarization-activated depolarizing current (McCormick and Pape, 1990)) could 
lead neurons to discharge during OFF periods and initiate activity that would then spread 
within a region, irrespective of other brain regions. A third possibility is that synaptic 
drive gradually builds up prior to the onset of ON periods, so that if and when a region 
becomes active reflects the cumulative input to that region (Chauvette et al., 2010).  
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By capitalizing on the amygdala, for which ipsilateral projections constitute the dominant 
input (Amaral et al., 1992; McDonald, 1998), we show that predicting individual ON 
periods is significantly more accurate when based on information from ipsilateral limbic 
regions compared with contralateral limbic regions. This suggests that the state of 
afferent regions provides particularly relevant information about the transition into an 
active state. Moreover, within ipsilateral regions, the prediction grew stronger depending 
on the number of inputs made available to the classifier, whereas this effect was much 
weaker for contralateral regions. Taken together, our results suggest that the cumulative 
synaptic input to a given region is a major determinant of whether and when it will enter 
an active state.  

 

Potential confounding factors 

Our data were recorded in medicated epilepsy patients in whom abnormal events during 
seizure-free periods may affect brain activity in slow wave sleep (Dinner and Lüders, 
2001). Inter-ictal epileptiform activity, as well as anti-epileptic drugs (AED) and their 
adjustments could affect sleep in general, and the nature of slow waves in particular. 
Therefore, it was imperative to confirm that our results could indeed be generalized to 
the healthy population, and multiple observations strongly suggest that this is indeed the 
case. First, our overnight recordings were carried out prior to routine tapering of AEDs 
to ensure a less significant contribution of epileptiform activities. Second, sleep measures 
were within the expected normal range, including distribution of sleep stages, NREM-
REM cycles, and EEG power spectra of each sleep stage (Figure 1-1). By specifically 
detecting pathological interictal spikes and paroxysmal discharges and separating them 
from physiological sleep slow waves, several additional features were revealed that clearly 
distinguish these phenomena (Figure S 1-3). Third, the occurrence rate of paroxysmal 
discharges was highly variable across channels, limited in its spatial extent, and entirely 
absent in some channels. By contrast, the number of physiological sleep slow waves was 
highly consistent across channels, and in line with that reported in healthy individuals. 
Fourth, all the results reported here, including a tight relation between EEG slow waves 
and unit activities, local slow waves and spindles, and slow wave propagation, could be 
observed in every individual despite drastically different clinical profiles (Table S2). This 
consistency argues against contributions of idiosyncratic epileptiform events, for which 
underlying unit activities are highly variable (Wyler et al., 1982). Fifth, comparing the 
morphology of sleep slow waves and interictal paroxysmal discharges revealed a 
significant difference in the waveform shape of pathological events. Sixth and most 
importantly, our analysis of spiking activities underlying physiological vs. pathological 
waves revealed significant differences, confirming our ability to separate sleep slow 
waves from epileptic events (Figure S 1-3). Specifically, elevated firing rates around 
interictal spikes, presumably reflecting a high degree of synchrony among neurons within 
the epileptogenic focus (Wyler et al., 1982)led to highly asymmetric patterns.  

 

Functional significance 

The observation that most slow waves are local has several implications. Although sleep 
slow waves are the most conspicuous electrical activity pattern observed during sleep, it 
is not yet clear whether they serve a specific function. However, since EEG SWA is 
tightly regulated (i.e. increases with time awake and decreases during sleep) and is a 
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reliable indicator of sleep need (Borbely and Achermann, 1999), it may serve some 
restorative function. Moreover, slow wave deprivation (Aeschbach et al., 2008; 
Landsness et al., 2009) and enhancement (Marshall et al., 2006) impair and improve 
learning, respectively, suggesting that slow waves, or perhaps spindle, gamma, and ripple 
oscillations that are grouped by the slow oscillation, may play a role in memory 
consolidation (Diekelmann and Born, 2010; Stickgold and Walker, 2007; Tononi and 
Cirelli, 2006). The present results offer some constraints on how slow waves may aid 
memory consolidation. The fact that the up-state in one brain region is usually out of 
phase with respect to other brain regions constrains the nature of such information 
transfer during up states. In addition, when slow waves do occur across several brain 
regions, they have a clear tendency to propagate across typical paths so that they occur 
with typical time delays across different regions. This trait imposes a directionality to 
plasticity-related processes, and such propagating waves may play a role in time-
dependent synaptic plasticity (Ermentrout and Kleinfeld, 2001), such as spike timing-
dependent plasticity (Caporale and Dan, 2008).  

The results also refine our view of what happens in the brain in late sleep at the end of 
the night. Once sleep pressure has largely dissipated, NREM sleep is dominated at the 
EEG level by low-amplitude slow waves (Riedner et al., 2007). As shown here, low-
amplitude scalp slow waves do not reflect small waves occurring simultaneously across 
the brain, but mostly represent local waves occurring out of phase across different brain 
regions. Therefore, whatever functional process is supported by slow waves, it occurs 
more and  more locally towards the end of sleep. Moreover, the fact that in late sleep 
many brain regions remain in an ON state while only a minority of areas are in an OFF 
state may not be unrelated to the increased occurrence and intensity of dreaming in 
NREM sleep towards the end of the night (Nir and Tononi, 2010). Finally, local slow 
waves observed in wake are usually interpreted as reflecting pathology (e.g. lesions). 
Given that local slow waves are the norm in sleep, similar events in wake could be re-
interpreted as reflecting ‘piecemeal-sleep'. 

The finding that most sleep spindles are local may also bear functional implications. That 
spindle oscillations in cortico-thalamic-cortical loops maintain regional specificity during 
sleep provides further evidence that spontaneous activity during resting states is locally 
organized. Thus, rather than just implementing a global "thalamic gate", sleep spindle 
oscillations may contribute to synaptic plasticity in a circuit-specific manner.  

In summary, the current results further extend and refine our evolving view of neuronal 
activity in sleep by showing that the two fundamental brain oscillations of sleep - slow 
waves and spindles - occur mostly locally. It may be that a functional disconnection 
among different sectors of the corticothalamic system may represent a unique feature of 
sleep, with as yet unexplored functional consequences.  
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Experimental Procedures 

Subjects and sleep studies 

Thirteen patients with intractable epilepsy were implanted with intracranial depth 
electrodes to identify seizure foci for potential surgical treatment. Electrode location was 
based solely on clinical criteria. All patients provided written informed consent to 
participate in the research study, under the approval of the Medical Institutional Review 
Board at UCLA. Sleep studies were conducted on the hospital ward 48–72 hr after 
surgery, lasted 7 hours on average, and sleep-wake stages were scored according to 
established guidelines. The montage included two EOG electrodes, two EMG 
electrodes, scalp electrodes at C3, C4, Pz and Fz, two earlobe electrodes used for 
referencing, and continuous video monitoring.  

 

Data acquisition and spike sorting 

In each patient 8–12 depth electrodes were implanted targeting medial brain areas. Both 
scalp and depth EEG data were continuously recorded at a sampling rate of 2 kHz, 
bandpass-filtered between 0.1-500 Hz, and re-referenced offline to the mean signal 
recorded from the earlobes.  Intracranial / depth EEG refers to data recorded from the 
most medial platinum-iridium contact along the shaft (Figure 1-1D, blue). Each electrode 
terminated in eight 40-µm microwires from which extracellular signals were continuously 
recorded (referenced locally to a ninth non-insulated microwire) at a sampling rate of 
28/30 kHz and bandpass-filtered between 1-6000 Hz. Action potentials were detected by 
high-pass filtering the extracellular recordings above 300Hz and applying a threshold at 5 
SD above the median noise level. Detected events were further categorized as noise, 
single- or multi-unit events using superparamagnetic clustering as in (Nir et al., 2008). 
Unit stability throughout sleep recordings was confirmed by verifying that spike 
waveforms and inter-spike-interval distributions were consistent and distinct throughout 
the night (Figure S 1-4). For visualizations purposes in Figure 1-1F, Figure 1-4A, Figure 
1-7D, Figure S 1-5, multi-unit activity (MUA) traces were extracted from microwire 
recordings by filtering the signals offline between 300-3000Hz. 

 

Analysis of slow waves, sleep spindles, and hippocampal ripples in depth 
EEG data 

Detection details for all events are given in the Supplemental Data. Putative slow waves 
were subdivided into those preceded (within 1s) by an interictal spike (“paroxysmal” 
discharges) and those unrelated to paroxysmal events (“physiological” sleep slow waves). 
Physiological slow waves occurring near-simultaneously across channels (within ± 400 
ms, Figure S 1-5) were considered 'concordant' events (Figure 1-4). For slow wave 
propagation (Figure 1-7) we focused on events identified in Fz and in intracranial 
recordings of at least three brain structures, although the results were highly robust to the 
exact detection parameters and to other examinations (Figure S 1-7). To compare timing 
of unit discharges within MTL (Figure 1-5F), we defined time zero based on the positive 
peak of EEG slow waves in parahippocampal gyrus (9/13 subjects), or entorhinal cortex 
(4/13 subjects). For analysis of local spindles, spectrograms were computed in ± 1sec 
intervals around peak spindle power, using a short-time Fourier transform with a 
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window of 744ms and 95% overlap, and normalizing power relative to random intervals 
as in (Sirota et al., 2003). 

 

Relationship between neuronal spiking and sleep slow waves 

Phased-locked spiking (Figure 1-3D) was assessed by extracting the instantaneous phase 
of the depth EEG filtered between 0.5-4Hz ±500ms surrounding slow wave positive 
peaks via the Hilbert transform, testing for nonuniformity of the phase distribution of 
spike occurrences using Rayleigh's test, and determining critical p-values using shuffled 
data to control for asymmetries in the EEG waveforms (Figure S 1-4). Slow-wave-
triggered averaging was conducted for each unit separately using the highest amplitude 
slow waves in each channel (top 20%). The timing and magnitude of firing rate 
modulations were defined based on the maxima/minima using 20ms bins. Propagation 
in unit activities were evaluated across all significantly phase-locked units within a region 
(Figure 1-7E-F, Figure S 1-8, left), or for individual units separately using 20ms bins 
(Figure 1-7E-F, Figure S 1-8, right). Statistical significance of time differences between 
spiking activities of individual units in distinct brain structures (Figure 1-4E,F) was 
evaluated via bootstrapping by (a) assigning a random anatomical label to each neuron 
separately (either frontal or MTL for Figure S 1-7G, either PH or HC for 'within MTL' 
analysis in Figure S 1-7H), (b) creating surrogate groups with the same number of units 
as the real data, and (c) computing the random time offset between the two groups as 
was done for the real data (Figure S 1-7). 

 

Dynamics throughout sleep 

In five individuals exhibiting a clear homeostatic decline of SWA during sleep we 
analyzed slow waves, K-complexes and sleep spindle separately in early and late NREM 
sleep  (Figure S 1-1). Putative K-complexes were detected in Fz recordings as isolated 
slow waves (within ±3s) with peak-to-peak amplitude > 75 µV. 

 

Prediction of individual slow waves via linear classifier 

Classification was performed with a support vector machine using a linear (dot product) 
kernel, using data from 17 hemispheres of 9 individuals in which signals from amygdala 
and other limbic structures were recorded. The occurrence, amplitude and timing of 
transitions into population ON periods (positive peaks in depth EEG) were used to train 
(80% of events) and test (20% of events) a linear classifier using either ipsilateral or 
contralateral limbic information. Differences between ipsilateral vs. contralateral 
prediction accuracy were evaluated using a paired t-test with df=100 (number of classifier 
iterations) for each number of neighbors separately.  

 

!!
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Supplemental Data 

Supplemental Experimental Procedures  

Subjects 

Thirteen neurosurgical patients with pharmacologically intractable epilepsy were 
implanted with intracranial depth electrodes to identify seizure foci for potential surgical 
treatment (Fried et al., 1999b) Electrode location was based solely on clinical criteria. 
Prior to implantation, patients provided written informed consent to participate in the 
research study, under the approval of the Medical Institutional Review Board at UCLA. 
All surgery was performed by I.F. For each subject, localization of the seizure onset zone 
was based on recordings during hospital monitoring, in combination with prior 
functional and anatomical neuroimaging (see Table S1B for details). 

  

Polysomnographic sleep studies 

Sleep studies were conducted on the hospital ward 48–72 hr after surgery (see Table S1B 
for details). All sleep recordings were obtained at a minimal interval of 12 hours from 
identifiable seizures. The montage included two electrooculogram (EOG) electrodes, two 
electromyogram (EMG) electrodes, scalp electrodes at C3, C4, Pz and Fz, two earlobe 
electrodes used for referencing, and continuous video monitoring. Sleep-wake stages 
were scored according to established guidelines (Iber et al., 2007), and power spectra for 
different sleep stages (Figure 1-1C, Figure S 1-1C) were calculated using Fast Fourier 
Transform with 0.1Hz bin resolution on 10sec data segments.  

 

Data acquisition 

Electrode location was based solely on clinical criteria and varied among patients. 
Coverage was obtained in the following regions: hippocampus, amygdala, entorhinal 
cortex, parahippocampal gyrus, temporal gyrus, fusiform gyrus, temporo-occipital 
junction; anterior, middle and posterior cingulate; supplementary motor area, inferior 
frontal gyrus, orbitofrontal cortex, and parietal cortex (Figure 1-1E & Table S 1-1A). 
Each patient was implanted with 8–12 flexible polyurethane depth electrodes (1.25 mm 
diameter) stereotactically targeted to specific medial brain areas. Each electrode tip was 
localized using post-implant computed tomography (CT) co-registered with pre-implant 
magnetic resonance imaging (MRI) (Brain Navigator Grass-Telefactor Corp., 
Philadelphia, PA). EEG data were continuously recorded, sampled at 2 kHz, and 
bandpass-filtered in hardware between 0.1 Hz and 500 Hz. Intracranial / depth EEG 
refers to data recorded from the most medial platinum-iridium contact along the shaft of 
the electrodes (Figure 1-1D, blue) . Both scalp and depth EEG were re-referenced 
offline to the mean signal recorded from the earlobes.  

Extracellular microwire recordings were simultaneously obtained continuously (Cheetah 
Recording System; Neuralynx, Tucson, AZ for 10 patients; Neuroport Recording 
System; Blackrock, Salt Lake City, UT for 3 patients). Each electrode terminated in a set 
of nine 40- µm platinum-iridium microwires with impedances ranging from 200 to 500 
kΩ (Fried et al., 1999b) Signals from eight microwires were referenced locally to the 
ninth non-insulated microwire, sampled at 28 kHz (10 patients) or 30 kHz (3 patients) 
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and bandpass-filtered in hardware between 1 Hz and 6 kHz. For further details regarding 
data acquisition, see (Nir et al., 2008; Staba et al., 2004).  

 

Unit identification  

Units were identified using the 'wave_clus' software package (Quian Quiroga et al., 2004) 
as described previously (Nir et al., 2008). Briefly, extracellular microwire recordings were 
high- pass filtered above 300Hz, a threshold was set at 5 SD above the median noise 
level, detected events were clustered using superparamagnetic clustering, and categorized 
as noise, single- or multi-unit clusters. Classification of single- and multi-unit clusters was 
based on the consistency of action potential waveforms, and by the presence of a 
refractory period for single units, i.e. less than 1% of inter-spike-intervals (ISIs) within 
3ms (Figure S 1-4A). The stability of unit recordings throughout long (~7h) sleep 
recordings was confirmed by comparing action potential waveforms and ISI distributions 
of detected units separately in 1 hour intervals, and verifying that both waveforms and 
ISI distributions were indeed consistent and separable between different clusters 
throughout the night (Figure S 1-4B). Multi- unit activity (MUA) traces, used for 
visualizations purposes in Figure 1-1F, Figure 1-4A, Figure 1-7D, Figure S 1-5, were 
extracted from each microwire by filtering the recorded signal offline between 300Hz 
and 3000Hz.  

 

Detection of sleep slow waves and their separation from paroxysmal events 

 Individual slow waves were detected as described previously (Riedner et al., 2007). In 
brief, for each scalp or depth channel separately, the EEG signal was band-pass filtered 
offline to the slow wave range (0.5-4.0 Hz) using a zero-phase 4th order Butterworth 
filter (MATLAB, The Math Works Inc, Natick, MA). Individual half-waves in scalp (and 
depth) EEG were detected as negative (positive) deflections between two zero crossings. 
Waves detected in sleep stages N2 or N3 whose consecutive zero crossings were 
separated by 0.25 to 1.0 seconds were considered slow waves and their positive and 
negative peak amplitudes were stored for further analysis. Similar results were obtained 
using peak-to-peak measures instead of zero-crossings (not shown).  

To rule out false detections of pathological paroxysmal events, putative slow waves were 
further separated into those preceded (within 1s) by an interictal spike (“paroxysmal” 
discharges) and those unrelated to paroxysmal events (“physiological” sleep slow waves). 
To this end, epileptiform interictal spikes were identified by high-pass filtering offline 
above 100Hz and detecting events whose amplitude exceeded 5 SDs above the mean and 
whose duration was under 70ms (de Curtis and Avanzini, 2001). We verified visually that 
automatic detection was effective in identifying interictal spikes in each channel 
separately.  

Dynamics throughout sleep. In five individuals exhibiting a clear homeostatic decline of 
SWA during sleep we analyzed separately early NREM sleep (Figure S 1-1D, cyan) and 
late NREM sleep (Figure S 1-1D, yellow). Putative K-complexes (Colrain, 2005) were 
distinguished from other slow waves by identifying in Fz data high-amplitude waves 
(peak-to-peak > 75 µV) that were isolated from other slow waves (no other high-
amplitude waves occurring within +/- 3sec).  
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Locality and propagation of sleep slow waves in depth EEG data 

Local waves.! To investigate the possibility of slow waves occurring independently in 
various brain regions, for each physiological sleep slow wave we examined the signals in 
all other channels within ± 400 ms around the detected peak in the “seed” channel, using 
each channel as seed in turn. Channels in which the slow-wave-filtered EEG had a single 
peak in this time window were considered concordant with the seed channel (Figure S 
1-5). A ± 400 ms window was chosen based on the average profile of slow waves as seen 
in Figure 1-3A and the results were highly robust to the exact parameters used (e.g. 
windows of ± 200 ms or ± 800 ms, not shown). We computed the probability of each 
pair of brain regions (e.g. A,B) to express slow waves concordantly, and created an 
undirected graph (Figure 1-4E) where the color and width of each edge depicts this 
probability for each pair of regions, while the color of each node expresses its rank (its 
average probability to be concordant with all neighbors).  

Propagating waves.!For the analysis of propagation of slow waves across the entire brain 
(Figure 1-7B,C) we focused on waves which could be identified in scalp EEG (Fz, seed), 
as well as in at least three brain structures intracranially. Concordant peaks (relative to 
seed channels) and their time offsets were used to evaluate delays and possible 
propagation across brain structures (Figure 1-7). For each wave, we extracted a 
propagation sequence by sorting time offsets of EEG positive peaks, for example A-C-
D-B. We then computed the average position of each brain region in all propagation 
sequences and normalized for different sequence lengths (different number of monitored 
regions in different individuals) by applying a z-score transformation (Figure 1-7C). For 
each brain region, we color coded the precise anatomical location of its corresponding 
depth electrode according to its mean position in propagation sequences (Figure 1-7B). 
Importantly, the results were highly robust to other examinations, for example when 
defining waves based on different brain channels rather than by scalp detection (Figure S 
1-7), when focusing on particular sleep stages or when using EEG negative peaks to 
define timing (Figure S 1-7). As was the case for concordance of local waves (above), 
propagation results were also highly robust to the exact parameters used for identifying 
the same wave across channels (not shown). For example, Fz-triggered-averaging of 
depth EEG with no detection parameters gave rise to similar propagation trends (Figure 
1-7A). For examining propagation of unit discharges within MTL (Figure 1-5F), we 
defined time zero based on slow wave detection in parahippocampal gyrus EEG when 
possible (9/13 subjects), or based on detection in entorhinal cortex EEG otherwise 
(4/13 subjects).  

 

Spiking activities during sleep slow waves  

Phase locking.!Phase locking to slow waves (procedure illustrated in Figure S 1-4 and 
result shown in Figure 1-3D) was assessed as follows. Depth EEG was filtered in the 
slow wave range (0.5-4.0 Hz) and individual slow waves were detected as above. For each 
slow wave, we extracted the instantaneous phase of the filtered EEG in a window of 
±500ms surrounding the positive peak via the Hilbert transform. We computed the 
distribution of phase values at action potential times and computed a p-value using 
Rayleigh's test for nonuniformity. Since non-uniformity can be partially attributed to 
asymmetries in the EEG waveforms (Siapas et al., 2005), the critical p-values for 
significance were determined for each unit separately as the 95th percentile after 
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examining p-values across 1,000 iterations while shuffling action potential timings within 
each segment.  

Wave-triggered averaging.! Slow-wave-triggered averaging was performed separately for 
each unit. To this end, we focused on the 20% slow waves with the highest amplitude 
detected in each channel (Riedner et al., 2007). Focusing on high-amplitude waves helped 
visualize the effects but did not qualitatively affect the result, as seen in Figure 1-3E, 
where the result was computed separately after sorting all slow waves into three equally 
subdivided percentiles based on the amplitude of the positive peak. The timing and 
magnitude of firing rate modulations were defined based on the maxima/minima while 
using 20ms bins.  

Propagation in unit activities.! Propagation of slow waves in each region's spiking 
activities was evaluated on average and for individual units separately. On average, we 
computed the mean wave-triggered averaging result across phase locked units in each 
region (left panels in Figure 1-7E,F and Figure S 1-8E). In addition, the time of minimal 
firing was extracted for each phase- locked unit separately while using 20ms bins 
(distributions on right in Figure 1-7E,F and Figure S 1-8F).  

 

Ripple detection  

Hippocampal ripples were detected automatically using similar methodology as in our 
previous work (Le Van Quyen et al., 2008). First, microwires in which high-amplitude 
sinusoid-like 80-200 Hz oscillations could be visually discernable above background in 
the raw local field potential were selected. The instantaneous amplitude was extracted via 
the Hilbert transform and an amplitude threshold was set at 3 SDs calculated over the 
entire length of the band-pass filtered signal across sleep. Events whose amplitude in the 
ripple range exceeded the threshold for 20-50 ms (Figure S 1-8A) were identified. Our 
results are insensitive to the precise choice of threshold (2-5 SDs). For each channel, the 
average power spectra (> 80Hz) of detected events was examined (see Figure S 1-8B for 
mean spectrum). To avoid high-frequency oscillations in epileptogenic hippocampi, we 
discarded 2 channels exhibiting a bimodal distribution with significant power above 
200Hz (Staba et al., 2004). Next, detection was collapsed across microwires situated 
within the same hippocampus by choosing events that were detected on at least two 
separate microwires within 15ms (Figure S 1-8C). We found 30 times more ripples in 
NREM sleep compared with REM sleep, a ratio of 3.1 : 0.43 (7 fold) in terms of ripples 
per minute when controlling for the duration of sleep stages. This provided further 
indication that our detection largely captured physiological ripples, known to rarely occur 
in REM sleep (Staba et al., 2004). 

 

Sleep spindles detection  

EEG spindles were detected automatically as described in previous reports (Clemens et 
al., 2007; Ferrarelli et al., 2010). In order to minimize false detections, the parameters of 
spindle detection were optimized for depth recordings based on extensive visual 
inspection of the data recorded in every individual. The procedure is illustrated in Figure 
S 1-6 and consists of a sequential three-step process implemented in Matlab (The Math 
Works Inc, Natick, MA). First, the channels with spindle activity in NREM sleep were 
chosen for further analysis (significant spectral power increases in spindle range as 
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compared with a 1/f model, p < 0.001, paired t-test across 10s segments, see Figure S 
1-6A). Second, individual spindle events were selected based on their spectral content 
and duration (Figure S 1-6B) as follows. The EEG signal of each electrode was band-
pass filtered between 10 and 16Hz (-3dB at 9.2Hz and 16.8Hz) using a zero-phase 4th 
order Butterworth filter. Next, the instantaneous amplitude in the spindle-frequency 
range was extracted via the Hilbert transform. To avoid excessive multiple crossings of 
thresholds within the same spindle event, instantaneous amplitude was temporally 
smoothed using a Gaussian kernel (σ=40ms). Events with amplitude greater than mean 
+ 3SD (computed across all artifact-free NREM sleep epochs) were considered putative 
spindles and detections within 1s were merged. A threshold of mean + 1SD defined start 
and end times, and events with duration between 0.5s and 2s were selected for further 
analysis. Detected spindles within ± 1s of paroxysmal events (see above) were discarded. 
Third, those channels, in which an increase in spectral power within the detected events 
was restricted to the spindle-frequency range (10-16 Hz) rather than broadband 
(unpaired t-test (α=0.001) between maximal spectral power in detected vs. random 
events, Figure S 1-6C), and with at least 1 spindle per min of NREM sleep were chosen 
for further analysis. Finally, we focused on the frontal and parietal channels, where 
spindle-events could be reliably detected and successfully separated from paroxysmal 
events. This highly conservative procedure of including in the analysis only the channels 
with high spindle SNR, ensured that local occurrence of spindle events (below) does not 
arise merely as a result of the lack of spindles or poor spindle SNR in some channels.  

 

Analysis of local spindles  

For each detected sleep spindle, we examined whether other channels showed a 
detection whose time window overlapped with the detected event in the “seed” channel, 
using each channel as seed in turn. Channels which showed (or did not show) such 
spindle detections were labeled 'concordant', and 'non concordant', respectively (Figure 
1-5B). In both seed and target regions we computed the spectral dynamics 
(spectrograms) in ± 1sec intervals aligned to the peak spindle power in the seed channel. 
Spectrograms were computed using a short- time Fourier transform with a window of 
744ms and 95% overlap, and normalized in each channel separately relative to power 
modulations in random intervals with no detected spindles in the seed channel (Sirota et 
al., 2003). Statistical comparison of spindle power in concordant and non-concordant 
cases was carried out via a t-test based on peak power. To determine the percent of cases 
in which "entirely local" spindles occurred (i.e. seed channel showed detected spindle 
while nothing different from chance occurred in a target channel), we relaxed our spindle 
detection criteria (above) so that any events that exceed a confidence interval of 95% 
(rather than mean + 3SD) were considered as spindles.  

 

Prediction of individual slow waves via linear classifier  

Classification was performed with a support vector machine implemented in the Matlab 
function "svmclassify" with a default linear (dot product) kernel (MathWorks). 

Data.!Data in 17 hemispheres of 9 individuals in which the amygdala and other limbic 
structures were monitored were used. All slow waves were detected using the algorithm 
described above and the information on each slow wave (timing, amplitude) refers to the 
positive (negative) peaks in depth (scalp) EEG, which correspond to the transition into 



Study 1 

62!

ON state (Figure 1-3A). For each slow wave detected on the scalp (Pz), we first 
determined if there was also a slow wave occurring in the amygdala, and if so, we also 
determined whether it was preceded or followed by the scalp slow wave. We selected an 
equal number of scalp slow waves with and without detections in amygdala, and for 
waves expressed in both channels, we selected an equal number of waves occurring 
earlier and later in the amygdala, so that chance prediction for occurrence and timing will 
be at 50%. The labels present/absent and before/after served as the categories, and the 
classifier was trained to predict whether new individual waves fell into one category or 
the other. The number of individual slow waves varied between subjects (mean = 423; 
range = 182 - 748). Training of the classifier using either ipsilateral or contralateral limbic 
information was based on three parameters: the occurrence, amplitude and timing of 
slow waves. Thus, if, for example, four regions (medial prefrontal, anterior cingulate, 
posterior cingulate, and entorhinal cortex) were monitored in the same hemisphere as the 
left amygdala, in total 12 parameters were used as the training data for each slow wave, 
corresponding to the occurrence, amplitude, and timing of slow waves in each of these 
four structures. The entire process was performed separately for slow waves in left and 
right amygdala, and the results were averaged for each individual.  

Classification.! For each set consisting of the amygdala and the input structures (for 
example, left amygdala and three ipsilateral limbic regions) and for a given number of 
input regions whose information was made available (e.g. 2 neighbors), performance of 
the classifier was evaluated across 100 iterations. In each iteration, 80% of waves were 
chosen randomly as the "training" set (to optimize the linear combination of input 
information), whereas the remaining 20% of waves served as the "testing" set (to 
evaluate prediction accuracy). For a given number of input regions (e.g. 2) the specific 
structures that were used for training were chosen randomly in each iteration (e.g. [1 4]), 
so that the result for few neighbors will not reflect prediction based on specific brain 
structures. Replacing realistic labels for amygdala (presence/timing of actual slow waves) 
with noise yielded chance (~50%) performance as expected (not shown). The differences 
between ipsilateral vs. contralateral prediction accuracy were evaluated using a paired t-
test with df=100 (number of classifier iterations) for each number of neighbors 
separately.  

Statistical analyses: bootstrapping.!The statistical significance of time differences between 
spiking activities of individual units in distinct brain structures (Figure 1-4E,F) was 
evaluated via bootstrapping as follows. We assigned a random anatomical label to each 
neuron separately (either frontal or MTL for Figure S 1-7G, either PH or HC for 'within 
MTL' analysis in Figure S 1-7H), created surrogate groups with the same number of units 
as the real data, and computed the random time offset between the two groups as was 
done for the real data. This procedure was repeated across 10,000 iterations to create the 
null distribution of time offsets. A final p- value was computed by examining the percent 
of random iterations that showed a time offset equal or greater than the one observed in 
real data (Figure S 1-7).  
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Supplemental Figures 

!

Figure S 1-2 Patient sleep resembles normal sleep in healthy individuals 

(A) Representative examples of 30s polysomnographic data used for sleep scoring in stages N2 
(left), N3 (middle) and REM sleep (right) in one individual. (B) Sleep measures for the entire 
night expressed as mean ± SEM (n=13). Sleep efficiency corresponds to total sleep time per time 
in bed. Sleep latency is to Stage 2. WASO refers to waking after sleep onset; NREM, non-rapid 
eye-movement; REM, rapid eye-movement. (C) Average power spectra of scalp EEG in all 
derivations as a function of different sleep stages. Blue, N2; Red, N3; Green, REM sleep. (D) 
Individual hypnograms (time course of sleep stages throughout sleep) and power spectra of scalp 
EEG in all 13 individuals. In hypnograms, rows (top to bottom) denote wake (W), REM sleep 
(R), N1, N2, and N3. Colors in power spectra as above. First five individuals (red asterisks) mark 
patients who showed the typical homeostatic dissipation of SWA throughout sleep and in whom 
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early NREM sleep (cyan shading) and late NREM sleep (yellow shading) were further analyzed 
separately. 
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Figure S 1-3 Physiological sleep slow waves are different from pathological paroxysmal 
discharges 

(A) Mean waveforms of physiological sleep slow waves (blue) and epileptogenic paroxysmal 
discharges (red) aligned by the positive peak of the slow waves. Note that physiological sleep 
slow waves are largely symmetrical. By contrast, in pathological events, a sharp interictal spike (at 
average time -334msec) is followed by an asymmetrical slow wave. Specifically, the rise slope of 
such waves had two components A,B and a fall component C. The slope of the initial rise slope 
A was steeper by 44% ± 0.07 (n=129 depth electrodes) than the fall slope of component C (p < 
7.4E-5, paired t-test on rise and fall slopes). (B) A comparison of spiking activity of the same 
individual neuron triggered by pathological paroxysmal discharges (left) or by physiological sleep 
slow waves (right). Note the pronounced difference in activity underlying pathological vs. 
physiological conditions, in accordance with the difference in symmetry seen in the EEG. 
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Figure S 1-4 Unit identification, stability and phase locking to EEG slow waves 

(A) An illustration of unit identification scheme. Top row depicts the high-pass filtered LFP 
(>300Hz) along with the threshold for spike identification set at 5 SDs above the noise level (red 
line). Middle row shows action potential waveforms for three detected units. Bottom row shows 
the distribution of inter-spike-intervals (ISIs). Based on the consistency of waveforms and the 
occurrence of ISIs within the expected refractory period (<3ms), we categorized clusters as a 
multi-unit cluster (blue), two single-unit clusters (red and green), and a noise cluster (not shown). 
(B) Waveforms and ISI distributions are consistent and distinct throughout sleep. Mean action 
potential waveforms for 5 distinct units recorded in the same individual. Each color denotes a 
different unit and each trace denotes the mean waveform in separate 1h intervals throughout 
sleep. Note that waveforms were consistent and separable between different units throughout 
sleep, confirming the stability of our unit recordings throughout long (~7h) recordings. Inset 
depicts ISI distributions in separate 1h intervals for two units. (C) Illustration of phase locking 
analysis on a 10 sec data segment. Raw depth EEG (blue trace) is filtered in the slow wave range 
(0.5-4.0 Hz, cyan trace) and slow waves are detected using an automated algorithm (black dots). 
For each slow wave, we focus on a window of ±500ms surrounding the positive peak in depth 
EEG (gray zones). The instantaneous phase of the filtered depth EEG is extracted via the 
Hilbert transform (green trace). We then examine the spiking activity of each unit (red vertical 
lines) separately in relation to slow wave phase. (D) We compute the distribution of phase values 
at times of action potentials in intervals surrounding slow waves ("Real distribution") and a p-
value is computed using Rayleigh's test for nonuniformity. The critical p-value for significance is 
determined for each unit separately as follows. Rayleigh p-values are computed across 1,000 
iterations while shuffling the action potential timings within each segment ("Shuffled spikes" is 
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an example of one such iteration). A unit is considered to be phase locked to slow waves only if 
the Rayleigh p-value for its real distribution is smaller than the critical p-value defined as the 95th 
percentile across shuffled iterations for the same unit. (E) Phase distribution for all neurons 
significantly phase locked to depth EEG slow waves (n=307, 51%). Note the robust tendency of 
phase locked units to fire around the negative peak of depth EEG slow waves (ON periods). 

!
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Figure S 1-5 Sleep slow waves across multiple brain regions 

(A-D) Four 10s examples of slow wave identification across multiple channels in different 
individuals. In each panel, top row (blue trace) depicts scalp EEG (Cz); other numbered rows 
depict intracranial EEG from a different brain structure; bottom row (gray background) depicts 
the EEG averaged across all intracranial channels. Green and cyan vertical bars denote a slow 
wave detected on the scalp and corresponding activity in each brain region. Red/black dots mark 
slow waves concordant with scalp EEG, while yellow dots mark local slow waves, non-
concordant with scalp EEG. Blown-up inset in panel (A) illustrates how a slow wave detected on 
the scalp can be concordant in one brain structure and non-concordant in another. (E-G) Three 
examples of local sleep slow waves in one individual (different from the one in Figure 1-4). In 
each example, rows (top to bottom) depict activity recorded in scalp EEG (Cz), right 
supplementary motor area (R-SMA), right entorhinal cortex (R-EC), left hippocampus (L-AH), 
and left amygdala (L-Am). Red, scalp EEG; blue, intracranial EEG; green, MUA; black lines, 
spikes of isolated units. Vertical yellow bars mark the occurrence of local OFF periods in distinct 
brain regions according to EEG positive peaks and cessation of unit firing. 
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Figure S 1-6 Illustration of spindle detection scheme in scalp and depth EEG 

Spindle detection was based on a sequential three-step process as follows: (A) Channels with 
spindle activity in NREM sleep were chosen for further analysis. Spectral profiles of a typical 
selected channel (parietal lobe, top) and a typical discarded channel (amygdala, bottom). For each 
channel, power in NREM sleep (red) was compared with a 1/f model (blue), and channels whose 
spectral profile shows a significant peak (asterisks) in the spindle range (10-16Hz) were 
considered for further analysis. Yellow dots denote frequency with maximal power difference 
and error bars denote SEM across 10s epochs of NREM sleep. (B) Individual spindle events 
were selected based on their power and duration. Raw EEG (top row) is filtered in the spindle 
range (10-16Hz, second row). The instantaneous amplitude is extracted via the Hilbert transform 
(red trace, third row). A detection threshold is set at mean + 3SD of spindle power across 
NREM sleep (horizontal black line, fourth row) and peaks exceeding this threshold (red dot) are 
considered putative spindles. A start/end threshold is set at mean + 1SD of spindle power across 
NREM sleep (horizontal green line, bottom row) thereby defining start and end times (cyan and 
green dots respectively) and determining spindle duration. Events whose duration is between 0.5s 
and 2s were considered for further analysis. (C) Channels in which power increases of detected 
events were specific to the spindle range rather than broadband were chosen for final analysis. 
Spectral profiles of detected events in a typical selected channel (parietal lobe, top) and a typical 
discarded channel (entorhinal cortex, bottom). For each channel, power of detected events (red) 
is compared with power of random 1s segments (blue), and channels with a significant peak 
which is specific to the spindle range (10-16Hz) are chosen for final analysis. Note that detected 
events in entorhinal cortex had a diffuse broadband power increase. Yellow dots denote 
frequency with maximal power difference and error bars denote SEM across detected events. 
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Figure S 1-7 Slow wave propagation is a robust phenomenon 

(A) Slow wave propagation is consistent across individual subjects. Mean position in sequences 
of propagating waves is shown separately for each individual (n=13). Each circle denotes one 
depth electrode according to its precise anatomical location. Yellow-red colors denote a tendency 
to express propagating waves sooner-later (see legend). Note that the tendency of slow waves to 
propagate from prefrontal cortex to the medial temporal lobe can be observed in most individual 
data. (B-F) Slow wave propagation is robust to different examinations. (B) Propagation 
sequences are stable in individual slow waves. An example of propagation sequences for all slow 
waves in one individual. Top inset denotes hypnogram where periods above red threshold are 
NREM sleep episodes. Bottom inset shows a color-coded plot where each numbered row is a 
distinct brain region, each column is one slow wave, and colors (black to red) denote position 
within that wave's propagation sequence. Note that in the top two rows, slow waves tend to be 
observed earlier (black) in a consistent manner across individual waves. (C) Propagation 
sequences are stable throughout sleep. A comparison between typical position in propagation 
sequences (y-axis) and anatomical location (x-axis) separately for the first and second half of 
sleep in one individual. Regions are sorted from left to right on x-axis according to a anterior-to-
posterior axis, with entorhinal cortex, hippocampus and amygdala as most right (last in 
propagation sequences). Error bars denote standard-error of the mean across individual waves. 
Note that propagation trends are similar between early and late sleep. (D) Propagation sequences 
are stable between ON and OFF periods and sleep stages. Similar results are obtained when 
considering separately positive peaks in intracranial EEG (OFF periods, blue), negative peaks in 
intracranial EEG (ON periods, red), positive peaks in stage N2 only (stage 2 OFF periods, 
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green), or positive peaks in stage N3 only (stage 3 OFF periods, cyan). Axes and error bars as 
above. (E) Propagation sequences are stable when using different regions to detect waves. When 
using each brain region in turn as the "central" channel in the slow wave detection process 
(multiple colors). Note that this demonstrates that frontal-MTL propagation can not be 
explained by easier detection of slow waves in frontal channels. Axes and error bars as above (F) 
Propagation sequences are stable when considering separately local and global waves. A similar 
propagation trend is observed when considering separately local slow waves (red, maximum of 4 
brain regions involved) and global waves (blue, minimum of 5 brain regions involved). Axes and 
error bars as above. (G-H) Bootstrapping analysis of slow wave propagation in unit activities. (G) 
Distribution of random time delays between OFF periods in "frontal" units (n=76) and MTL 
units (n=155) after randomly shuffling the anatomical identity of individual units. Note that the 
real mean time offset between OFF periods of individual units is 187ms (green dot, p << 1E-
10), while the confidence interval of α = 0.05 is at 74ms (vertical red line). (H) Distribution of 
random time delays between OFF periods within the MTL: in parahippocampal (PH) units 
(n=32) and hippocampal (HC) units (n=35) after randomly shuffling the anatomical identity of 
individual units. Note that the real mean time offset between OFF periods of individual units is 
122ms (green dot, p < 0.0097), while the confidence interval of α = 0.05 is at 88ms (vertical red 
line). 



Study 1 

72!

!

Figure S 1-8 Hippocampal ripples 

(A-C) Ripple detection. (A) Example of automatic ripple detection in the LFP of an individual 
microwire. Rows (top to bottom) show the wideband LFP, MUA (in blue), the band-passed 
filtered LFP to the ripple range (80-200Hz), the instantaneous amplitude extracted via Hilbert 
transform along with the detection threshold (horizontal green line) set at mean + 3SDs of 
amplitude in ripple range. Note that the ripple event is clearly oscillatory and can not be entirely 
explained by leakage of high frequency components seen in the MUA of the same microwire 
(blue). (B) Mean power spectrum (band-passed > 80Hz) of detected ripples. Note that for the 
physiological ripples included in our analysis, spectral distribution is unimodal and lacks 
substantial epileptiform high frequency oscillations (HFOs) above 250Hz. (C) An example of the 
procedure employed for integrating ripple detections across 8 microwires spanning the same 
hippocampal formation. Red dots mark detection in individual microwires and blue arrows show 
the overall detection for that hippocampus, when events were detected in at least two separate 
microwires within 15ms (green boxes). (D) Ripples occur preferentially during ON periods. Black 
bars depict number of detected hippocampal ripples (y-axis) in 30ms bins around negative peak 
of intracranial EEG (x-axis), reflecting ON periods. Blue waveform shows the mean waveform 
of hippocampal slow waves used as triggers. Note that ripple occurrence is 5 times more likely 
around the ON period as compared to the OFF period (compare zero with a few hundred 
milliseconds away from zero). (E) Ripples represent spatially constrained hippocampal output. 
Ripple-triggered-averaging of spiking activities in multiple brain structures recorded 
simultaneously in 7 patients. Rows (top to bottom) show mean spiking activity in hippocampus 
(n=72), entorhinal cortex (n=93), and medial prefrontal cortex (mPFC, n=54). Blue dots on top 
show statistically significant deviations from mean firing rate in NREM sleep. Note that 
entorhinal cortex shows a delayed transient peak following the hippocampus whereas the 
increase in mPFC firing rate does not show a transient peak of spiking activity. (F) Slow wave 
OFF periods appear sooner in mPFC compared to hippocampus. Slow-wave triggered averaging 
of mPFC neurons (n=29, top) and hippocampal neurons (n=27, bottom) recorded 
simultaneously in 7 patients. Gray shades denote SEM across neurons. (G) Distribution of time 
delays in individual neurons around ripple occurrence in hippocampus, entorhinal cortex, and 
mPFC. Vertical red arrows denote delays of -31 ms ± 7 (mean ± SEM) in hippocampus, -2 ms ± 
9 in entorhinal cortex, and +5 ms ± 13 in mPFC. 
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Table S 1-1 Recording details and patient information 

(A) A full description of the brain structures and number of units identified in our recordings. 
Rows correspond to individual patients and columns correspond to different brain regions. 
Green boxes mark implanted brain regions and numbers show detected units. Abbreviations: 
LH, left hemisphere; RH, right hemisphere; H, hippocampus; A, amygdala; EC, entorhinal 
cortex; PH, parahippocampal gyrus; TG, temporal gyrus; AC, anterior cingulate; MC, middle 
cingulate; PC, posterior cingulate; OF, orbitofrontal and medial prefrontal cortex; SM, 
supplementary motor area; P, parietal cortex; TO, temporo-occipital, PT, posterior temporal 
cortex; FG, fusiform gyrus; IFG, inferior frontal gyrus. (B) Clinical information and sleep study 
details for all patients. 
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Summary 

Sleep spindles are an electroencephalographic (EEG) hallmark of non-rapid eye-
movement (NREM) sleep and are believed to mediate many sleep-related functions, 
from memory consolidation to cortical development. Spindles differ in location, 
frequency, and association with slow waves, but whether this heterogeneity may reflect 
different physiological processes and potentially serve different functional roles remains 
unclear. Here we exploited a unique opportunity to record intracranial depth EEG and 
single-unit activity in multiple brain regions of neurosurgical patients to better 
characterize spindle activity in human sleep. We find that spindles occur across multiple 
neocortical regions, and less frequently also in the parahippocampal gyrus and 
hippocampus. Most spindles are spatially restricted to specific brain regions.  In addition, 
spindle frequency is topographically organized with a sharp transition around the 
supplementary motor area between fast (13-15Hz) centroparietal spindles often 
occurring with slow wave up-states, and slow (9-12Hz) frontal spindles occurring 200ms 
later on average. Spindle variability across regions may reflect the underlying 
thalamocortical projections. We also find that during individual spindles, frequency 
decreases within and between regions. In addition, deeper sleep is associated with a 
reduction in spindle occurrence and spindle frequency. Frequency changes between 
regions, during individual spindles, and across sleep may reflect the same phenomenon, 
the underlying level of thalamocortical hyperpolarization. Finally, during spindles 
neuronal firing rates are not consistently modulated, although some neurons exhibit 
phase-locked discharges. Overall, regional spindle diversity can be well accounted for by 
anatomical considerations while differences in spindle frequency could be indicative of 
variable hyperpolarization levels. 
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Introduction 
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Sleep spindles constitute an EEG hallmark of NREM sleep (Achermann and Borbely, 
1998; Andersen and Andersson, 1968; De Gennaro and Ferrara, 2003; Destexhe and 
Sejnowski, 2001; Loomis et al., 1935; Mircea Steriade, 2003). In humans, spindles are 
classically defined as waxing-and-waning 10-16Hz oscillations lasting 0.5-2s (Gibbs, 
1950). Comparable sleep spindles have been found in all tested mammalian species 
(Zepelin et al., 1994) and similar phenomena occur during barbiturate anesthesia 
(Contreras et al., 1997a) and in vitro (McCormick and Bal, 1997).  

The neurophysiological mechanisms of spindle generation reflect the intrinsic properties 
and interactions between inhibitory cells in the thalamic reticular nucleus (RE) and 
bursting thalamocortical (TC) relay neurons (Mircea Steriade, 2003; Steriade, 2000). The 
GABAergic neurons in the highly interconnected thalamic RE act as pacemakers and are 
both necessary and sufficient for spindle generation (Bal et al., 1995; Destexhe et al., 
1998; Destexhe and Sejnowski, 2001; Halassa et al., 2011; Marini et al., 1992; Morison 
and Bassett, 1945; Steriade et al., 1987; Steriade and Timofeev, 2003). Spindle waxing is 
attributed to gradual cell recruitment in RE-TC-RE loops (Steriade et al., 1993a; von 
Krosigk et al., 1993). The source of spindle waning and termination is less clear but 
possibly involves the depolarizing action of the thalamic IH current and/or 
corticothalamic influence (Bal et al., 1995; Bonjean et al., 2011; Luthi and McCormick, 
1998; Timofeev et al., 2001). Spindle synchronization is controlled by the neocortical 
feedback, as decortication or spreading depression lead to asynchronous spindles 
(Contreras et al., 1997a; Contreras and Steriade, 1996). 

Increasing evidence suggests that sleep spindles in human sleep are a diverse rather than 
prototypical phenomenon. One distinction involves fast (13-15Hz) centroparietal versus 
slow (11-13Hz) frontal spindles (Anderer et al., 2001; Gibbs, 1950; Schabus et al., 2007). 
Another distinction is between spindles that occur on a background of low-amplitude 
EEG in stage 2 sleep and are easily identified visually (Iber et al., 2007), and spindles 
associated with slow waves (Molle et al., 2002; Steriade et al., 1993b). The functional role 
of spindles remains unclear, although they may play a role in memory consolidation 
(Schabus et al., 2004), cortical development (Khazipov et al., 2004), regulation of arousal 
(Destexhe and Sejnowski, 2002), and in maintaining a disconnection from the external 
environment through a “thalamic gate” (Mircea Steriade, 2003). In addition, spindles 
have been recently explored as a potential biomarker for psychiatric disorders such as 
schizophrenia (Ferrarelli et al., 2010). To be able to identify the role(s) spindles could 
play during normal states of vigilance and to exploit them as a biomarker for pathology, 
it is necessary to first better understand spindle properties through a comprehensive 
investigation of their characteristics when they occur most prominently, i.e. human sleep. 
To this aim, here we characterize in detail sleep spindles in human sleep using 
simultaneous recordings of intracranial depth EEG and unit spiking activities in multiple 
brain regions in the cortex and hippocampus of thirteen individuals undergoing 
presurgical clinical testing.   
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Materials and Methods 

Subjects and polysomnographic sleep studies 

Thirteen patients (6 males, 7 females) with pharmacologically intractable epilepsy (ages 
19-52) underwent monitoring with depth electrodes (Figure 2-1A) for seizure foci 
identification and potential surgical treatment (Fried et al., 1999b). Patients provided 
written informed consent to participate in the research study, under the approval of the 
Medical Institutional Review Board at UCLA. Electrode location was based only on 
clinical criteria, and all surgery was performed by Itzhak Fried.  

Sleep recordings were conducted 48-72 hr after surgery, at a minimal interval of 12 hours 
from identifiable seizures, and lasted for about 7 hours between 2300 and 0600. In 
addition to continuous video monitoring, the montage included two electrooculogram 
(EOG), two electromyogram (EMG), and four scalp electrodes (positioned at C3, C4, 
Pz, Fz) as well as two earlobe electrodes for referencing. Sleep-wake stages were scored 
according to established guidelines (Iber et al., 2007). 

 

Data Acquisition 

Electrode location varied between patients based on their clinical profiles. Electrodes 
were placed in frontal, parietal, and cingulate cortices, as well as temporal lobe regions 
such as hippocampus, amygdala, entorhinal cortex and parahippocampal gyrus (Figure 
2-1B). For each patient, 8-12 flexible polyurethane depth electrodes (1.25 mm diameter) 
targeted specific regions, typically medial limbic brain areas. Each electrode position was 
identified using post-implant computed tomography (CT) co-registered  with pre-implant 
magnetic resonance (MR) imaging (Brain Navigator, Grass-Telefactor Corp., 
Philadelphia, PA). Scalp and intracranial depth EEG data were continuously recorded, 
sampled at 2kHz, bandpass-filtered in hardware between 0.1Hz and 500Hz and re-
referenced offline to the mean signal of the earlobes electrodes.   

Each depth electrode terminated in a set of eight insulated 40-µm platinum-iridium 
microwires (impedances 200 to 500 kΩ) (Fried et al., 1999b) (Figure 2-1A). Microwire 
signals were simultaneously recorded continuously (Cheetah Recording System; 
Neuralynx, Tucson, AZ for 10 patients; Neuroport Recording System; Blackrock, Salt 
Lake City, UT for 3 patients), sampled at 28 kHz (10 patients) or 30 kHz (3 patients), 
band-pass filtered in hardware between 1Hz and 9kHz, and referenced locally to a ninth 
non-insulated microwire. 

 

Detection of spindles and their separation from pathological events 

Spindles were detected automatically following previously published algorithms (Clemens 
et al., 2007; Ferrarelli et al., 2010) based on a sequential three-step process (see Figure 
2-1E-G) implemented in Matlab (MathWorks) as follows. First, to minimize false 
detections, only channels with robust spindle activity in NREM sleep were chosen for 
further analysis. In each individual channel, spindle (9-16Hz) power in NREM sleep was 
compared with a fitted 1/f α model (both were estimated across multiple 10s epochs) and 
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channels with a difference that was statistically significant at p < 0.001 (unpaired t-test 
for maximal peak) were further considered (Figure 2-1E). Second, putative spindles were 
selected based on their power and duration. EEG signals were band-pass filtered 
between 9 and 16Hz (-3dB at 8.8 and 17.3Hz) using a zero-phase 4th order Butterworth 
filter.  The instantaneous amplitude was computed via the Hilbert transform and two 
thresholds were defined based on this amplitude time-course across artifact-free sleep 
epochs. A detection threshold was set at mean + 3SD and amplitudes exceeding this 
threshold were considered potential spindles. A start/end threshold was set at mean + 
1SD and events whose duration was between 0.5s and 2s were further considered (Figure 
2-1). Detections within 1s were merged as single events. Third, since transient events can 
introduce power increases across a wide range of frequencies including the spindle range 
(De Gennaro and Ferrara, 2003), only events in which power increases were specific to the 
spindle range rather than broadband were chosen for final analysis. For each channel, 
power of detected events was compared via an unpaired t-test with power of random 1s 
segments in NREM sleep (Figure 2-1G). Channels exhibiting weaker diffuse broadband 
power increases (p >= 0.0001 at maximal difference) were excluded. We further verified 
the spectral specificity of each spindle by excluding any detection that coincided with 
control events that were above mean+5SD in the 20-30Hz range.  

Sleep spindles were separated from pathological interictal epileptiform events as follows. 
As was recently done for slow waves (Nir et al., 2011), epileptiform interictal spikes were 
separately detected automatically  in depth EEG by high-pass filtering offline above 
100Hz and by identifying events whose amplitude exceeded mean + 5SD and whose 
duration was under 70ms (de Curtis and Avanzini, 2001). We verified visually that such 
automatic detection was effective in identifying interictal spikes in each channel 
separately. Based on this detection we discarded post-hoc any putative spindles within ±1s 
of interictal spikes. In addition, the parameters of the spindle detection algorithm (e.g. 
frequency range, filter settings, thresholds) were optimized after extensive visual 
inspection to minimize false detections of epileptiform activities as spindles, although a 
wide range of parameters yielded similar detections (not shown). Naturally, the density 
and duration of spindles reported throughout the paper depend on the specific detection 
parameters employed. 

In the hippocampus, we visually selected for further analysis a subset of the automatically 
detected events that also exhibited a clear waxing-and-waning spindle shape. We 
computed in each hippocampal electrode separately the probability of such spindles to 
co-occur with detected events in other locations as p = number of concomitant spindles 
for a given pair of structures / number of hippocampal spindles. 
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Figure 2-1 Data overview and spindle detection  

(A) Illustration of flexible probes used for simultaneous recording of depth EEG (platinum 
contacts, blue) and unit activity (microwires, green). (B) Overview of 129 depth electrode 
locations in 13 individuals spanning multiple brain regions as seen from medial view. 
Abbreviations: OF, orbitofrontal cortex; AC, anterior cingulate; SM, supplementary motor; 
PC/P, posterior cingulate / parietal cortex; PH, parahippocampal gyrus; HC, hippocampus; E, 
entorhinal cortex; Am, amygdala; LH, left hemisphere; RH, right hemisphere. (C) Example 
power spectra of scalp EEG in one representative individual in stage N2 sleep (blue), N3 sleep 
(red) and REM sleep (green). Note high power in slow wave (<4Hz) and spindle (11-16Hz) range 
in NREM sleep. (D) Hypnogram: time-course of sleep-wake stages in the same individual. W, 
wake; R, REM sleep; N1-N3, NREM sleep, stages 1-3. (E) Spindle detection step 1: channels 
with spindle activity in NREM sleep are chosen for further analysis. Spectral profiles of a typical 
selected channel (parietal lobe, top) and a typical discarded channel (amygdala, bottom). For each 
channel, power in NREM sleep (red) was compared with a 1/fα model (blue), and channels with 
a significant peak (asterisks) in the range of 9-16Hz are considered for further analysis. Yellow 
dots denote frequency with maximal power difference and error bars denote SEM across 10s 
epochs of NREM sleep. (F) Spindle detection step 2: individual spindles were selected based on 
their power and duration. Raw EEG (top row) is filtered in the spindle range (9-16Hz, second 
row). The instantaneous amplitude is extracted via the Hilbert transform (red trace, third row). A 
detection threshold is set at mean + 3SD of spindle power across NREM sleep (horizontal black 
line, fourth row) and peaks exceeding this threshold (red dot) are considered putative spindles. A 
start/end threshold is set at mean + 1SD of spindle power across NREM sleep (horizontal green 
line, bottom row) thereby defining start and end times (cyan and green dots respectively) and 
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determining spindle duration (between 0.5s and 2s). (G) Spindle detection step 3: channels in 
which power increases of detected events were specific to the spindle range rather than 
broadband were chosen for final analysis. Spectral profiles of detected events in a typical selected 
channel (parietal lobe, top) and a typical discarded channel (entorhinal cortex, bottom). For each 
channel, power of detected events (red) is compared with power of random 1s segments (blue), 
and channels with a significant peak which is specific to the spindle range (9-16Hz) are chosen 
for final analysis. Note that detected events in entorhinal cortex had a diffuse broadband power 
increase.  Yellow dots and error bars as above.  

Timing and frequency of spindles 

For each detected spindle, several parameters were stored for further analysis including 
start and end times, frequency, and amplitude. The timing of individual spindles was 
determined as the mean of their start and end times (center), thereby avoiding influence 
by the choice of the start/end threshold.  

The frequency of each detected spindle was estimated by computing the spectrogram in 
10s intervals (short-time Fourier transform, 744ms window, 95% overlap) and identifying 
the maximal power for each event within the spindle frequency range with a resolution of 
0.2Hz. Next, distribution of spindle frequencies were computed per channel and later 
averaged for each brain region (Figure 2-2B). 

Spectral dynamics during individual spindles in specific regions (e.g. Figure 2-2C) were 
evaluated by computing spectrograms (as above) in 2s windows centered around the time 
of maximal amplitude. Differences in frequency between the beginning and end of 
spindles (e.g. Figure 2-2C) were evaluated in each event separately by comparing the 
instantaneous frequency (in spectrograms) between start and end times via a paired t-test 
(α=0.05). 

 

Comparing timing and frequency across regions 

For each pair of channels in the same individual, concomitant spindles were selected if 
there was temporal overlap in their occurrence. Both channels were considered as the 
"seed" and "target" alternatively and spectrograms (as above) were aligned to the time of 
maximal amplitude in the seed channel (e.g. Figure 2-3C). For each spindle event 
separately, the timing of maximal amplitude and the frequency at maximal amplitude 
were compared across the two channels and the mean difference in timing and frequency 
across spindles was computed for each pair (Figure 2-3). Next, electrode locations in 
frontal and parietal locations were grouped into ten regions: bilateral orbitofrontal 
cortices, anterior cingulate cortices, pre-supplementary motor areas, supplementary 
motor areas, and posterior cingulate cortices (Figure 2-3B). In twelve individuals in 
whom there was more than one such location, the typical delay between all pairs of 
spindles for any given pair of region (e.g. left orbitofrontal cortex vs. right posterior 
cingulate cortex) was averaged (edge color in Figure 2-3B). Furthermore, each region was 
ranked in each individual from 0 (earliest detection) to 1 (latest detection) and such ranks 
were similarly averaged across individuals (node colors in Figure 2-3B). We also 
examined whether the timing differences between regions (pooled in 50ms bins) were 
proportional to frequency differences via linear regression (Figure 2-3D).  

!
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Association of spindles with slow waves 

Individual slow waves  (positive and negative peaks in the EEG filtered below 4Hz that 
were separated by 0.25s to 1s) were automatically detected as described previously 
(Riedner et al., 2007) and separated from abnormal paroxysmal events (Nir et al., 2011). 
The highest amplitude waves in each channel (top 20%) were used to examine spindle 
occurrence ±2s around down-states (depth positive and surface negative peaks) or up-
states (depth negative and surface positive peaks) in 100ms bins (Figure 2-4B). 
Confidence intervals (α=0.05) were estimated by computing the mean and SD of spindle 
occurrence across the 4s detection interval and significant deviations from chance were 
identified via a paired t-test for each electrode and each time bin separately. 

 

Local sleep spindles  

For each detected spindle, we examined whether other channels recorded a spindle that 
temporally overlapped with the spindle in the “seed” channel, using each channel as seed 
in turn. The presence or absence of coincident spindles between channels was labeled 
'concordant' or 'non-concordant', respectively (Figure 2-5B). In both seed and target 
regions we computed the spectral dynamics (spectrograms as above) in ± 1sec intervals 
aligned to the peak spindle power in the seed channel. Spectrograms were normalized in 
each channel separately relative to power modulations in random intervals with no 
detected spindles in the seed channel (Sirota et al., 2003). Statistical comparison of 
spindle power in concordant and non-concordant cases was carried out via a t-test based 
on peak power.  To determine the percent of cases in which "entirely local" spindles 
occurred (i.e. seed channel showed detected spindle while nothing different from chance 
occurred in a target channel), we reduced our detection criteria (above) to include 
spindles that exceeded a confidence interval of 95% (rather than mean + 3SD). 

 

Dynamics of spindles throughout sleep 

In a subset of five individuals exhibiting a clear homeostatic decline of slow wave activity 
(SWA) during sleep, early and late NREM sleep were analyzed separately. We compared 
the density, frequency, amplitude, and locality of spindles between early and late NREM 
sleep via non-parametric Mann-Whitney U-tests (α=0.01) separately for different spindle 
categories (e.g. all spindles, fast vs. slow, frontal and centroparietal, see Figure 2-6A).  
The dynamics of spindle frequency within NREM sleep cycles was further examined. To 
this end, NREM sleep cycles were identified visually as continuous time intervals in 
NREM sleep preceding REM episodes (N=16 cycles in 8 individuals). Figure 2-6B shows 
four of these NREM episodes (the third one being discarded since it is disrupted by a 
brief arousal). To compile results across individuals and cycles that varied in their 
duration, each cycle was divided into shorter epochs (n=10 bins per sleep cycle) and the 
mean SWA and spindle parameters were computed for each bin (Figure 2-6C). Bins were 
sorted based on their SWA and the frequency and density of spindles was compared 
across varying depths of sleep (as indicated by SWA levels).  
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Spiking activities during spindles 

Units were identified using the 'wave_clus' software package (Quiroga et al., 2004) as 
described previously (Nir et al., 2008). Briefly, a threshold was set at 5SD above the 
median noise level of the high-pass filtered signal (above 300Hz), detected events were 
clustered using superparamagnetic clustering, and categorized as noise, single- or multi-
unit clusters. Classification of putative single-units and multi-unit clusters was based on 
the consistency of action potential waveforms, and by the presence of a refractory period 
for putative single units, i.e. less than 1% of inter-spike-intervals (ISIs) within 3ms. The 
stability of unit recordings was confirmed throughout long (~7h) sleep recordings by 
comparing action potential waveforms and ISI distributions of detected units separately 
in 1 hour intervals, and verifying that both waveforms and ISI distributions were indeed 
consistent and separable between different clusters throughout the night.  

Neuronal action potential discharges recorded on individual microwires were examined 
in relation to sleep spindles detected in the depth EEG (macro-electrode ~4mm away) in 
the same brain structure (see Figure 2-1A), as was recently done for slow waves (Nir et 
al., 2011). To quantify changes in firing rate during spindles, action potentials were 
binned in 100ms bins ±2s around the middle of each spindle. Confidence intervals 
(α=0.05) were estimated across the 4s interval and significant deviations from chance 
were identified via a paired t-test for each bin separately (Figure 2-7A).  

Phase-locked unit discharges during spindles (Figure 2-7B) were examined as follows. 
Depth EEG was filtered in the spindle (9-16Hz) range and individual spindles were 
detected as above. For each spindle, we extracted the instantaneous phase of the filtered 
EEG via the Hilbert transform. We examined the distribution of phase values at action 
potential times ("real distribution" in Figure 2-7C) and computed a p-value using 
Rayleigh's test for nonuniformity ('circ_mean' function, Circular Statistics Toolbox for 
Matlab). Since non-uniformity can be partially attributed to asymmetries in the EEG 
waveforms (Siapas et al., 2005), the critical p-values for significance were determined 
using bootstrapping for each unit separately as the 95th percentile after examining p-
values across 1,000 iterations while shuffling action potential timings within each 
segment ("shuffled spikes" in Figure 2-7C). Finally, the preferred phase was determined 
for each phase-locked unit. 

 

Statistical Analysis 

Error bars in figures denote standard error of the mean (SEM = SD/√(n-1). Student T-
tests were performed after confirming normal distributions via Kolmogorov-Smirnov 
tests or the Mann-Whitney U-test rank sum test (non-parametric) when normality could 
not be established.  

!
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Results 

Polysomnographic sleep studies 

Polysomnographic sleep studies were conducted in 13 neurosurgical patients with 
intractable epilepsy. Continuous overnight recordings lasted 421 ± 20 minutes (mean ± 
SEM). Polysomnography included electrooculogram (EOG), electromyogram (EMG), 
scalp EEG, and video monitoring. Figure 2-1A-D summarizes the experimental 
recording setup during sleep. Sleep-wake stages were scored following established 
guidelines as waking, NREM sleep stages 1 through 3 and REM sleep (Iber et al., 2007). 
Intracranial depth EEG was recorded in 129 medial brain regions bilaterally in frontal 
and parietal cortices as well as multiple limbic structures in the medial temporal lobe 
(Figure 2-1B).  While it should be noted that our sampling was mostly limited to medial 
brain areas, scalp topography suggests that human spindle activity is maximal at midline 
regions (Ferrarelli et al., 2007), thereby making our data particularly well suited to 
examine sleep spindles. We simultaneously recorded scalp EEG, depth EEG, and 
spiking activity from a total of 600 units (355 putative single units, 245 multiunit 
clusters). 

Measures of overnight sleep in patients were in general agreements with typical findings 
in healthy young adults (Riedner et al., 2007). Sleep efficiency, time spent in different 
sleep stages, NREM-REM sleep cycles, and power spectra of scalp EEG resembled 
normal sleep characteristics. Moreover, in every subject, power spectra of scalp EEG 
data in NREM sleep (Figure 2-1C) revealed robust slow wave activity (<4Hz) and 
spindle (9-16Hz) power. These results indicate that sleep measures were similar to those 
of normal sleep in individuals without epilepsy.  

 

Spindle occurrence across multiple regions in the human brain 

Having characterized sleep using standard non-invasive polysomnography, we proceeded 
to identify individual spindles in NREM sleep in the scalp EEG and in the depth EEG 
of each brain region separately using an automatic algorithm (see Methods and Figure 
2-1E-G). Channels with robust spindle activity in NREM sleep (Figure 2-1E) in which 
power increases of detected events were specific to the spindle range rather than 
broadband (Figure 2-1G) were identified. Table 2-1 provides the results of spindle 
detection across multiple brain regions. In the scalp EEG, spindles were robustly 
observed (90 ±4.7% of electrodes showed spindle detections; mean ± SEM across 
individuals) and their density (1.9 ±0.13 spindles/min) was consistent with densities 
reported in healthy individuals (Ferrarelli et al., 2010; Wei et al., 1999). Spindle density 
was significantly higher during sleep stage N2 than N3 (1.9 ±0.14 vs. 1.6 ±0.14 
spindles/min respectively, p < 10E-3 via paired t-test, n = 46 channels). In the depth 
EEG, frontal and parietal cortices exhibited robust spindle detections (82% and 89% 
respectively) with densities comparable to those observed in scalp EEG (1.8 ±0.16 and 
1.3 ±0.29 spindles/min, respectively). 
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Table 2-1 Spindle occurrence across multiple regions in the human brain 

Columns (left to right) show the brain region, the number of channels with spindle detections 
(over the total number of electrodes in that region), and the mean density of spindles per minute 
(±SEM across electrodes, n=13 individuals). Note that while frontal and parietal regions showed 
robust spindle activity (comparable to scalp EEG channels), there was large variability in the 
occurrence and density of spindles in the medial temporal lobe. 

Spindle occurrence was further examined in the medial temporal lobe (MTL), where the 
presence of physiological spindles is still debated (Malow et al., 1999; Nakabayashi et al., 
2001; Pare et al., 2002). The current results indicate reliable spindle occurrence in the 
parahippocampal gyrus (PHG, 69% of channels with a density of 1.3 ±0.25 
spindles/min) and hippocampus (44% of channels with a density of 1.1 ±0.13 
spindles/min), while spindle occurrence was lower in entorhinal cortex and amygdala 
(31% and 21% of channels with a density of 0.74 ±0.11 and 0.89 ±0.18 spindles/min, 
respectively). Given the variability in spindle occurrence in the MTL that could be due in 
part to epileptogenicity, we analyzed spindles in MTL separately from spindles in frontal 
and parietal cortices, and present these data in the final section of the results. 

 

Fast centroparietal spindles differ from slow frontal spindles 

Since scalp EEG studies have long suspected a distinction between slow (11-13Hz) and 
fast (13-16Hz) spindles (Anderer et al., 2001; De Gennaro and Ferrara, 2003; Gibbs, 
1950; Schabus et al., 2007), we computed the distribution of frequencies across all 
spindles in each channel separately across multiple brain regions (see Methods). In scalp 
EEG, centroparietal electrodes (C3, C4, Pz) showed a significant albeit diffuse 
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dominance of fast spindles, whereas slow spindles prevailed in frontal derivations (Fz). 
Average spindle frequencies in Pz and Fz were 12.6 ±0.23 Hz vs. 11.3 ±0.30 Hz, 
respectively (mean ± SEM across individuals) and these differences were statistically 
significant (p < 0.01, non-parametric Mann-Whitney U-test across 24 channels). Next, 
the mean frequency of spindles was mapped across individual depth electrodes (Figure 
2-2A). In contrast to the small differences in frequency observed with scalp EEG, the 
intracranial results reveal a topographical organization with a clear difference between 
fast (>12.5Hz) centroparietal spindles and slow (<12.5Hz) frontal spindles. The 
distributions of spindle frequencies were averaged within and compared between the 
following five regions: orbitofrontal cortex (OF), anterior cingulate cortex (AC), pSMA, 
SMA, and posterior cingulate cortex (PC).  

 

Figure 2-2 Fast centroparietal spindles differ from slow frontal spindles 

(A) Average frequency of spindles across all depth electrodes (n=50 electrodes in 13 individuals). 
The color of each circle denotes the mean spindle frequency in an individual electrode according 
to its precise anatomical location. Green outlines marks electrodes placed more laterally than the 
midline. Note the contrast between slow (9-12Hz) frontal spindles and fast (13-16Hz) 
centroparietal spindles. The two outliers in the medial prefrontal cortex (red circles) were the 
only electrode placements in one atypical individual in whom parietal spindles may be even faster. 
Numbers as in legend of panel B. (B) Distribution of spindle frequencies grouped by region. 
Slow spindles are found in prefrontal regions (1-3) while fast spindles are found in centroparietal 
regions (4-5). Note the difference in spindle frequency between SMA and adjacent pSMA. 
Abbreviations: OF, orbitofrontal; AC, anterior cingulate; pSMA, pre-supplementary motor area; 
SMA, supplementary motor area; PC, posterior cingulate. (C) In each brain region, spectral 
frequency decreases during individual spindles. Spectrogram shows mean frequency dynamics in 
a representative centroparietal electrode in the SMA (left, n=159 spindles) and in frontal 
electrode in the OF (right, n=237spindles). Black crosses mark the mean instantaneous frequency 
around the beginning and end of spindles (13.8 and 12.5Hz for fast spindles, 11.5 and 10.3Hz for 
slow spindles). Note that frequency decreases during fast spindles and to a lesser degree during 
slow spindles. 
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The results (Figure 2-2B) confirm the distinction between slow and fast spindles hinted 
at by scalp EEG. Furthermore, a difference between adjacent pSMA and SMA was 
observed in the same patient, and it nearly reached statistical significance across patients 
despite the limited sample (10.9 ±0.72Hz vs. 12.6 ±0.19Hz respectively, p = 0.057, non-
parametric Mann-Whitney U-test, n=7 channels) supporting the notion of two spindle 
groups rather than a continuous cortical gradient (see also Discussion). In addition, while 
frontal spindles were exclusively slow, centroparietal spindles had a bimodal distribution 
with a majority of fast spindles and fewer slow spindles, and this was also evident in the 
data of individual channels. By “centroparietal” we refer here to those fast spindles 
occurring from the SMA proper back to posterior cingulate and parietal cortex, although 
some of these locations are in the frontal lobe. 

We also found that in the same brain region, frequency decreases during individual 
spindles. Figure 2-2C shows the average frequency dynamics in a representative SMA 
electrode (fast spindles, left) and an OF electrode (slow spindles, right). As can be seen, 
the instantaneous frequency of fast SMA spindles dropped on average from 13.8 to 
12.4Hz, and slow OF spindles showed a similar deceleration (from 11.5 to 10.4Hz on 
average). A quantitative analysis across the entire dataset (2,851 fast and 10,607 slow 
spindles in 50 channels) revealed a significant decrease of -0.8Hz/s in instantaneous 
frequency between spindle start and end times (-0.8 ±0.04Hz/s and -0.8 ±0.02Hz/s for 
fast and slow spindles, respectively, p < 10E-12 between start and end times via two-tail 
t-test).  

 

Fast centroparietal spindles precede slow frontal spindles 

To further understand the distinction between fast centroparietal and slow frontal 
spindles, we examined whether these occurred independently or with consistent temporal 
relations. Figure 2-3A shows examples of individual spindles recorded simultaneously 
across several brain regions. As can be seen, fast centroparietal spindles occurred before 
slow frontal spindles, and the successive temporal occurrence across channels was 
accompanied by a decrease in spindle frequency. Next, a quantitative analysis of time 
offsets across all pairs of brain regions was conducted and the order in which spindles 
appeared was computed (Figure 2-3B). The results indicate that centroparietal spindles 
(in SMA and PC) occurred before slow frontal spindles (pSMA, AC, and OF) with a time 
difference of 203 ±16ms (mean ± SEM across 2,024 pairs of spindles, p < 10E-12 via 
one-tail t-test). Sorting regions according to the order in which their spindles were 
detected revealed that centroparietal regions typically preceded frontal locations (Figure 
2-3B). In contrast, within centroparietal regions and within frontal regions no significant 
time differences were found, supporting the notion of a discontinuous transition in 
timing and frequency between fast centroparietal and slow frontal spindles (see 
Discussion). Figure 2-3C provides an example of the average timing relation between all 
spindle pairs (n=139) detected concomitantly in the PC and AC in one individual. As can 
be seen, timing and frequency differences appear closely linked. Indeed, a quantitative 
analysis of all pairs of regions across the entire dataset revealed that timing and frequency 
of spindles were tightly related (r = 0.90, n = 9,741 spindles). Overall, the reduction in 
spectral frequency with respect to time delay between spindles was -1.3 ±0.5Hz/s, and 
this negative rate was comparable to that found for fast spindles within the same regions 
(-0.8 ±0.02Hz/s, see previous section).  
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Figure 2-3 Fast centroparietal spindles precede slow frontal spindles 

(A) Four examples of individual spindles in three individuals showing depth EEG along with 
corresponding spectrograms in the spindle range (9-16Hz) during 4sec of NREM sleep. When 
spindles occur in multiple brain regions, fast centroparietal spindles precede slow frontal spindles. 
(B) Quantitative analysis of time offsets in spindle occurrence. A graph showing the order in 
which spindles are detected across multiple regions (node color) and the mean temporal delays 
between each pair of regions (edge color). Mean order and timing across spindles for all 
individuals (n=12) indicate that centroparietal spindles precede frontal spindles. Abbreviations as 
in Figure 2. (C) An example of differences in timing and frequency between posterior cingulate 
(PC) and anterior cingulate (AC) in one individual. Spectrograms are aligned to peak power of PC 
spindles. Note that AC shows a hint of an early fast component aligned with peak power in PC 
while its peak is at lower frequencies and delayed by over 500ms. (D) Frequency decreases (y 
axis) and temporal delays (x axis) are closely related in individual spindles (R=0.90, n = 9,741 
spindles in 50 electrode pairs).  

  

Association of spindles with slow wave up-states 

Since spindles are often associated with slow wave up-states (Amzica and Steriade, 1998; 
Molle et al., 2002; Steriade et al., 1993b), we examined how this association may vary for 
different spindles detected across different brain structures. We have recently 
characterized in detail slow waves and underlying unit activities in the same dataset (Nir 
et al., 2011). Here we used the same automatic detection of slow waves in each individual 
channel and examined the occurrence of spindles around positive and negative peaks in 
depth EEG, corresponding to down and up states, respectively. Figure 2-4A depicts an 
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example of an individual slow wave detected in the anterior cingulate followed by a 
spindle, whereas Figure 2-4B presents the quantitative analysis of spindle detections 
around slow waves across the entire dataset. Higher spindle occurrence (Figure 2-4B, 
right) was found in the 0-500ms interval following negative peaks in depth EEG (up 
states), in line with previous reports (Molle et al., 2002; Steriade et al., 1993b).  

 

Figure 2-4 Association of spindles with slow wave up-states 

(A) Example of a single spindle associated with a slow wave up-state as recorded in the depth 
EEG of the anterior cingulate cortex. (B) Number of detected spindles around slow wave down-
states (left, positive peaks in depth EEG) and up-states (right, negative peaks in depth EEG). 
Blue traces show average slow waves (n=13 individuals). Red shading, SEM across channels. 
Green horizontal lines, confidence interval (α=0.05). Thicker green bars, significant deviations 
from chance. Note that around slow waves, spindles occur more often after transition to the up-
state. (C) Regional differences in association of spindles with slow wave up-states. Note that fast 
centroparietal spindles (regions 4-5, red-brown colors) are more tightly associated with slow 
waves up-states. Asterisks mark the average time to up-states for each region.  

Next, association of spindles with slow wave up states was compared between different 
brain regions in the second immediately following the transition to up states when 
spindle occurrence was maximal (Figure 2-4C). Fast centroparietal spindles were found 
to be more tightly associated with up states compared with slow frontal spindles. 
Specifically, the average delays from negative peaks in the depth EEG to maximal 
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spindle density in the SMA and PC were 267 ±11ms and 363 ±11ms, respectively, while 
frontal regions exhibited longer delays (AC, 460 ±8ms; OF, 425 ±6ms; pSMA, 449 
±14ms). The difference between centroparietal delays and frontal delays was statistically 
significant (p < 10E-12, unpaired two-tailed t-test). Spindles exhibited the shortest delay 
with up-states in the SMA, the region where spindles were also detected earliest. More 
generally, typical time differences between regions were maintained for spindles 
associated with slow wave up-states. Thus, the tighter association between centroparietal 
spindles and slow wave up states is consistent with their earlier occurrence compared 
with slow frontal spindles (see also Discussion).  

 

Local sleep spindles 

Although concomitant spindles were observed across multiple recording sites (above), 
we recently found that both sleep spindles and slow waves often occur independently in 
separate brain regions (Nir et al., 2011). We present these findings here as well to place 
them in the context of a comprehensive examination of sleep spindles in the human 
brain. Examination of local vs. simultaneous spindles was carried out only in cortical sites 
that had regular spindle occurrences, thereby excluding the possibility that local 
occurrence of spindles arises merely from their total absence in remote brain structures. 
Numerous examples of local sleep spindles occurring in specific brain regions were 
found (Figure 2-5A). Local spindles occur without spindle activity in other regions, 
including homotopic regions across hemispheres and regions with equivalent signal-to-
noise ratio (SNR) showing global slow waves. We set out to quantitatively establish to 
what extent local sleep spindles occur across the entire dataset. We determined for each 
spindle in a given region whether spindles were present or not in other brain structures 
(Methods). The spectral power changes in concordant sites (45% of cases where a 
spindle was detected in both "seed" and "target" channels, Figure 2-5B top row) were 
compared with those at non-concordant sites (55% of cases where a spindle was detected 
in the seed channel but not in the target, Figure 2-5B bottom row). The results revealed a 
clear difference between peak spectral power values of concordant and non-concordant 
conditions across spindles in target channels (p < 10E-48, paired t-test), indicating 
significant differences in underlying neuronal activity, and that non-concordant cases are 
indeed local spindles. Furthermore, the analysis of those cases where target channels did 
not exhibit any increase in spindle spectral power above the noise level (Methods) 
revealed that 32% of all non-concordant cases were local in the strongest sense, i.e. a full-
fledged spindle was detected in the seed channel while spectral power in the target 
channel was not different from chance. Importantly, the occurrence of local spindles was 
independent of local slow waves, since spindles occurring in isolation (i.e. not associated 
with a slow wave within ± 1.5s) constituted 37 ±2% of all cases and a separate analysis 
confirmed that such "isolated" spindles were likewise mostly local (Figure 2-5C). In 
addition, comparing homotopic regions revealed that 36 ±2% of spindles were observed 
only in one hemisphere (mean ± SEM across 12 pairs), indicating that differences 
between anterior and posterior regions could not account for spindle locality.  
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Figure 2-5 Local sleep spindles 

(A) Two examples in two different individuals of depth EEG along with corresponding 
spectrograms in the spindle frequency range (9-16Hz) during 15sec of slow wave sleep. Note that 
regardless of slow waves, local spindles robustly occur without spindle activity in other regions, 
including homotopic regions across hemispheres and regions with equivalent SNR showing the 
same global slow waves. (B) Quantitative analysis of spindle occurrence across pairs of channels. 
Top row (concordant spindles, 45% of cases) shows spectrograms for cases in which a spindle 
was detected in the "seed" channel as well as in the "target" channel (N = 27,338 in 170 pairs of 
regions in 12 individuals). Bottom row (non-concordant spindles, 55% of cases) shows 
spectrograms for cases in which a spindle was detected in the seed channel but not in the target 
channel (N = 32,797 in 170 pairs of regions in 12 individuals). Note that spindle power in non-
concordant target channels is at near chance levels, indicating that our detection can reliably 
separate between presence and absence of spindle activity. (C) Most sleep spindles are local. 
Distribution of involvement (percent of monitored brain structures expressing each spindle) for 
all spindles (blue bars, n = 21,240 spindles in 49 electrodes of 12 individuals) and for isolated 
spindles (red bars, spindles without a slow wave within ± 1.5s, 37% of events). Note that 73% of 
spindles are observed in less than 50% of electrodes indicating that most spindles are local (D) 
Scatter plot of spindle amplitudes as a function of involvement shows that global spindles have 
some tendency to be of higher amplitude (r = 0.52, p < 0.0001, n = 170). 

Next, we quantified the involvement of multiple regions in spindles by computing the 
number of brain areas in which spindles were observed. The majority of sleep spindles 
involved a limited number of brain regions (Figure 2-5C), indicating that local spindles 
were more frequent than global spindles. Mean involvement in individual spindles was 48 
±0.7% of monitored brain regions (mean ± SEM across 49 depth electrodes), indicating 
that most spindles were predominantly local. Finally, the spatial extent of spindles was 
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significantly correlated with spindle amplitude (Figure 2-5D, r = 0.52, p < 0.0001, n = 
212). 

 

Deep sleep is associated with lower spindle frequencies 

The variability in spindle spectral frequency between brain structures and during 
individual spindles described in the preceding paragraphs could be due to changes in 
levels of thalamocortical polarization. Since the degree of thalamic hyperpolarization 
dictates the period of spindle oscillations (McCormick and Bal, 1997; Mircea Steriade, 
2003), we hypothesized that spindles during deep sleep (early in the night or in the 
middle of NREM cycles when SWA is highest), would contain lower spectral frequencies 
than spindles during lighter sleep (late in the night or closer to REM transitions when 
SWA is lower).  

To examine this possibility, we first compared spindle frequencies in five individuals 
showing a typical homeostatic decline of SWA, i.e. a progression from deep early sleep 
with powerful slow waves to lighter sleep late in the night. Spindle frequency was 
significantly lower in early deep sleep when SWA was highest (Figure 2-6A, reduction of 
0.63 ± 0.12Hz, mean ± SEM across 16 channels, p = 0.0004, non-parametric Mann-
Whitney U-test). The modulation of spindle frequency in early vs. late sleep was specific 
to slow spindles (p = 0.002 for slow frontal spindles vs. p = 0.62 for fast spindles, Mann-
Whitney U-test).   
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Figure 2-6 Deep sleep and high SWA are associated with lower spindle frequencies 

(A) Frequency of slow spindles changes between early and late NREM sleep (n=5 individuals, see 
Methods). Left, frequency changes in centroparietal channels (black bars) and frontal channels 
(red bars). Right, frequency changes for all channels (blue), fast spindles in centroparietal 
channels (black), slow frontal spindles (red) and occasional slow spindles in centroparietal 
channels (green). (B) Example of time-course of SWA and spindle frequency dynamics 
throughout sleep in the anterior cingulate of one individual. Note that within NREM cycles, 
spindle frequency is lowest when SWA is highest (vertical purple bars) and increases towards 
transitions to REM sleep. (C) Quantitative analysis across the entire dataset (n=8 individuals) 
comparing sleep depth (as measured by SWA, blue) with spindle frequency (red) and density 
(green). Note that deep sleep (high SWA on the right) is accompanied by fewer spindles (r = -
0.73, p = 0.02) with lower frequencies (r = -0.81, p = 0.005). Error bars denote SEM across 
NREM sleep intervals (n=16, see Methods).  

Along the same line, spindle frequency changed within NREM cycles in accord with 
changes in SWA. Figure 2-6B shows an example of dynamics in spindle frequency and 
SWA across sleep in one individual, illustrating that in the middle of each NREM cycle 
when SWA was highest, spindle frequency was lowest. Next, this relation was examined 
in all NREM cycles followed by REM epochs (16 cycles in 29 depth EEG channels and 
8 individuals, see Methods). Each NREM cycle was divided into 10 intervals with equal 



Study 2 

94!

duration and SWA, spindle frequency and spindle density were computed separately for 
each interval (Figure 2-6C). Both spindle frequency and spindle density were negatively 
correlated with SWA during NREM episodes (r= -0.81, p = 0.005 and r = -0.73 p = 
0.02). These results indicate that deeper sleep and higher SWA are associated with lower 
spindle frequencies and fewer events.  

 

Neuronal discharges during sleep spindles 

 

Figure 2-7 Unit discharges during sleep spindles 

(A) Spindle-triggered averaging of unit spiking activity (n= 207 units), time locked to the positive 
peak closest to the middle of the spindles in depth EEG (n = 40 channels). Left, spindles 
associated with slow waves up-states (8.5% of events). Right, all spindles. Red shades denote 
SEM across neurons. Black traces below bar graphs show the average depth EEG at those times. 
In contrast to robust firing rate modulations around transitions to UP states, generally firing rates 
modulations are largely absent during spindles. (B) Example of phase-locking analysis for one 
neuron and one spindle. For each detected spindle, raw depth EEG (blue trace) is filtered in the 
spindle range (9-16Hz, cyan trace). The instantaneous phase is computed (green trace) and phase 
values are extracted for each action potential (red bars). (C) Phase-locking of spikes for the same 
unit displayed in A across all spindles ("real distribution") and for spikes randomly shuffled 
within each spindle ("shuffled spikes"). A unit is considered phase-locked only if the Rayleigh p-
value for its real distribution is smaller than the critical p-value defined as the 95th percentile 
across shuffled iterations. (D) Cumulative histogram of preferred firing phase for all phase-
locked neurons (n=41/212, 20% in 12 individuals). Note the tendency of phase-locked units to 
fire between the negative and positive peaks of spindles in the depth EEG. 

Given  that spiking activity across the human brain is tightly locked to EEG slow waves 
(Nir et al., 2011) we examined whether cortical neurons consistently modulated their 
firing rate during spindles. Examination of firing rates in putative single-units from 
individual subjects revealed little evidence for consistent modulations in relation to 
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spindles. On average across all 207 cortical units, we found that 8.5% of spindles - those 
occurring around transitions from inactive to active (UP) periods - were accompanied by 
robust firing rate modulations (Figure 2-7A, left), as expected (Nir et al., 2011). In 
contrast, when considering all spindles (n=63,724) firing rate modulations were largely 
absent (Figure 2-7A, right), although a small (~4%) yet significant reduction in neuronal 
discharges was observed 100-400 ms following the peak amplitude of spindles, likely 
reflecting a diffuse tendency for an inactive (DOWN) state to occur at that time.  

Next, we evaluated the phase-locking of unit discharges during spindles to determine if 
units preferably fire at a specific phase of spindle oscillations (Figure 2-7B). Figure 2-7C 
presents an example unit in which spikes preferably occurred at a particular phase (-30 
degrees) during spindles. Overall, 19.5% of neurons showed significant phase locking (p 
< 0.05, see Methods) with a tendency to fire more at the ascending phase of the spindle 
oscillation (preferred phase = -35 ±8.5 degrees, SEM across units) as measured with 
depth EEG (Figure 2-7D).  

On average, phase-locked units had a higher firing rate than the average firing rate (5.9 
±1.2Hz vs. 3.1 ±0.3Hz, p = 0.004, Mann-Whitney U-test for putative single units). It 
could be argued that the firing of many neurons is phase-locked during spindles, but only 
high firing rate neurons allow enough statistical power to reveal this phenomenon. 
However, 46% of phase locked neurons had firing rates that were below the mean rate 
across the entire population. Alternatively, higher firing rates in phase-locked units may 
reflect a bias towards specific cell types such as interneurons (see also Discussion). 

 

Spindles in the Medial Temporal Lobe (MTL) 

Spindle occurrence in the MTL and its possible relation to pathology in epilepsy patients 
is a matter of continued debate (Malow et al., 1999; Nakabayashi et al., 2001; Pare et al., 
2002). Our results (Table 2-1) revealed reliable spindle occurrence in the PHG, a 
dependable albeit lower occurrence in the hippocampus, and lower spindle occurrence in 
the entorhinal cortex and amygdala. Could such events reflect epileptiform activity? To 
address this, spindle detections in MTL were further analyzed in relation to the seizure 
onset zone (SOZ) based on the medical records of the patients. We examined whether 
inclusion in the epileptic focus (25 of 64 MTL channels) could predict spindle detection 
and spindle density in each region separately. If detected events in the MTL solely reflect 
epileptiform activities rather than physiological spindles, the number of channels with 
spindles and their density would be higher within the SOZ. However, we found that in 
PHG and hippocampus the majority of channels with spindles were outside the SOZ 
(64% and 63% respectively), and observed a trend for more hippocampal spindles 
outside the SOZ (1.1 vs. 0.8 spindles/min outside and inside the SOZ, respectively). In 
the entorhinal cortex and amygdala, spindle occurrence was comparable within and 
outside the SOZ. Finally, we examined to what extent spindles detected in PHG and 
hippocampus co-occurred with spindles in frontal and centroparietal cortices remote 
from the SOZ. We found that detected events in hippocampus (Methods) co-occur more 
often with frontal/parietal spindles than with events detected in amygdala or entorhinal 
cortex (p < 0.05, Mann-Whitney U-test). It should be noted that due to possible volume 
conduction and lack of clear firing rate modulations our results cannot resolve the long-
lasting controversy of potential epileptiform nature of hippocampal spindles. 
Nevertheless, these results indicate that although MTL spindles are less frequent and 
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more variable, PHG and hippocampus may exhibit physiological spindles that may 
transcend possible links to pathology.  

 

Sleep spindles and epilepsy 

Our data were recorded in medicated epilepsy patients in whom abnormal events during 
seizure-free periods may affect sleep, and sleep spindles in particular (Dinner and Lüders, 
2001; Steriade, 2005). Therefore, it was imperative to confirm that our results could be 
generalized to the healthy population, and multiple observations strongly suggest that 
this is the case. First, overnight recordings were carried out prior to routine tapering of 
anti-epileptic drugs to ensure a less significant contribution of epileptiform activities. 
Second, sleep measures were within the expected normal range, including distribution of 
sleep stages, NREM-REM cycles, and EEG power spectra of each sleep stage. Third, we 
specifically detected paroxysmal discharges and separated them from physiological sleep 
spindles, and we also confirmed that pathological events were not falsely detected as 
spindles through extensive visual inspection of each individual's data (Methods). Fourth, 
the occurrence rate of paroxysmal discharges was highly variable across channels, limited 
in its spatial extent, and entirely absent in some channels. By contrast, all the results 
reported here could be observed in every individual despite highly idiosyncratic clinical 
profiles. Fifth and most importantly, previous analysis revealed significant firing rate 
modulations in the same neurons during paroxysmal discharges (Nir et al., 2011),  
whereas unit discharges were not robustly modulated during sleep spindles, attesting to a 
good separation between pathological and physiological spindles. Since interictal spikes 
and sleep spindles may be confounded in a more complex manner in the MTL, we 
adopted a conservative approach and analyzed those spindles separately from data 
obtained in frontal and parietal cortices based on a visual detection. Overall, we are 
confident that the current results can be generalized to individuals without epilepsy.  

 

 

!
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Discussion 

Spindle occurrence and thalamic projections 

Spindles were observed most frequently in neocortical regions, less often in the 
hippocampus and parahippocampal gyrus, but were not robustly detected in amygdala 
and entorhinal cortex (Clemens et al., 2010; Malow et al., 1999; Nakabayashi et al., 2001; 
Pare et al., 2002; Sirota et al., 2003), likely reflecting the underlying thalamic projections. 
For example, the lack of spindles in amygdala is consistent with sparse thalamocortical 
projections that only target the lateral nucleus (Jones, 2007). Moreover, many thalamic 
nuclei that are reciprocally connected with the RE project robustly to frontal and parietal 
cortices where spindles are abundant. By contrast, dorsal thalamic nuclei projecting to 
the MTL are not reciprocally connected with the RE in cats where spindles are absent 
(Barr et al., 2007; Pare et al., 1987; Steriade et al., 1984). The difference in spindle 
occurrence between the hippocampus and entorhinal cortex is puzzling and may reflect 
variability of the recording layers in different structures.  

 

Slow and fast spindles  

Our intracranial results confirm and refine the proposed distinction between slow (9-
12Hz) frontal and fast (13-16Hz) centroparietal spindles (Anderer et al., 2001; Clemens 
et al., 2010; De Gennaro and Ferrara, 2003; Jankel and Niedermeyer, 1985; Jobert et al., 
1992; Loomis et al., 1935; Nakamura et al., 2003). We find that (a) this distinction is 
present in each individual (b) spindle frequency shows a sharp transition between SMA 
and pSMA, (c) centroparietal spindles show a bimodal distribution whereas frontal 
spindles are exclusively slow, (d) frontal spindles often have frequencies as low as 9-
10Hz. 

What gives rise to slow and fast spindles? Thalamocortical (TC) projections from 
different nuclei terminate in cortical regions that exhibit slow vs. fast spindles. Posterior 
and lateral dorsal nuclei project to centroparietal cortex, whereas ventral and anterior 
dorsal nuclei mainly project to prefrontal regions (Cappe et al., 2009; Jones, 2007; Zhang 
et al., 2009). Some anterior nuclei (e.g. ventral anterior (VA) and ventral anterior 
magnocellular (VAmc)) project diffusely along the cingulate cortex (Jones, 2002) and 
could explain occasional slow spindles in centroparietal regions. Since spindles arise from 
RE-TC-RE loops, this model implies a preserved topographical organization between 
thalamic nuclei and sub-regions in the RE sheet (Guillery and Harting, 2003; Jones, 2007, 
p. 200; Lam and Sherman, 2011; Steriade and Timofeev, 2003). Finally, the difference in 
spindle frequency between SMA and pSMA suggests that these adjacent cortical regions 
receive input from different thalamic nuclei (Akkal et al., 2007).  

 

Faster spindle frequencies are associated with earlier time onsets 

Fast centroparietal spindles precede slow frontal spindles with a significant difference 
between adjacent SMA and pSMA, as was the case for spindle frequency. Spindle timing 
is closely related to spindle frequency such that the regional delays are well correlated to 
frequency differences in individual spindles. Furthermore, frequency decreases during 



Study 2 

98!

spindles within each brain region such that frontal spindles show a hint of an early fast 
component aligned with centroparietal spindles and vice versa. Thus, individual spindles 
exhibit different frequencies and timings in distinct regions. 

Timing and frequency differences in spindles have been noted but their close relation 
during individual spindles had yet to be established (Anderer et al., 2001; Clemens et al., 
2010; Dehghani et al., 2010a; Nakamura et al., 2003; Zygierewicz et al., 1999). Earlier 
studies suggested that timing differences among cortical spindles reflect propagation 
along the RE rather than through intracortical pathways (Contreras et al., 1997a; Kim et 
al., 1995). Accordingly, spindles may propagate along the RE from its caudal section to 
its rostral section, progressively innervating different dorsal nuclei (posterior to anterior), 
which project topographically to the cortex generating spindles with different frequencies 
at different times in different locations. 

!

Sleep spindles are mostly local 

Spindles have been traditionally regarded as events reflecting global signal propagation 
between thalamus and cortex. While local spindles have been noted in previous studies 
(Andersen and Andersson, 1968; Contreras et al., 1997b, 1996) , asynchronous spindles 
were usually associated with non-physiological conditions. The current results further 
extend our recent demonstration that most sleep spindles occur locally in natural sleep, 
as do sleep slow waves (Nir et al., 2011). Most spindles occurred locally in a way that was 
independent of slow waves and of their frequency content: "isolated" spindles as well as 
both slow and fast spindles could occur independently between homotopic regions 
across hemispheres. These findings join other suggestions that spindles may occur or be 
regulated locally (Caderas et al., 1982; Dehghani et al., 2010a; Halassa et al., 2011; Nishida 
and Walker, 2007) and support the notion that sleep arises from activities of local circuits 
(Esser et al., 2006; Huber et al., 2004; Krueger et al., 2008; Nir et al., 2011; Vyazovskiy et 
al., 2000; Werth et al., 1997).  It is an open question whether local and global spindles 
may be mediated by different mechanisms such as corticothalamic projections from 
different layers or different thalamocortical projections via the core and matrix cells 
(Jones, 2009; Rubio-Garrido et al., 2009; Zikopoulos and Barbas, 2007).  

!

The relation of spindles with sleep slow waves 

Around slow waves, spindles tend to occur preferentially at up states (Molle et al., 2002; 
Mircea Steriade, 2003). Such association between the depolarizing component of slow 
waves and subsequent spindles has also been termed K-complex but this terminology is 
still under debate (Amzica and Steriade, 1998; Cash et al., 2009). Centroparietal spindles 
tend to occur shortly after the transition to up states and since up states are believed to 
trigger spindles through corticothalamic projections, this suggests that centroparietal 
cortex may exert particularly powerful corticothalamic feedback. Given that slow waves 
propagate from prefrontal cortex towards posterior regions (Massimini et al., 2004; Nir et 
al., 2011), and spindles occur sooner in posterior regions (above), the net result is that 
frontal spindles occur later during slow wave up states.  

Our results confirm and extend the notion of reciprocal relation between SWA and 
spindle frequency and density (De Gennaro and Ferrara, 2003; Himanen et al., 2002; 
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Steriade and Amzica, 1998; Wei et al., 1999). In stage N3 when SWA is maximal, spindle 
density is reduced. In early NREM sleep when SWA is highest, spindle frequency is 
significantly lower. Moreover, the level of SWA within NREM cycles is anti-correlated 
with spindle frequency and density. Thus, few spindles with lower frequency occur in the 
middle of NREM cycles when SWA is highest. Towards the transition to REM sleep 
when SWA tapers off, spindles increase in density and frequency.  

!

Unit discharges during sleep spindles 

We found that firing rate modulations of cortical neurons during spindles are weak and 
unreliable compared with those observed during slow waves (Nir et al., 2011), largely 
consistent with previous reports (Sirota et al., 2003). This seems at odds with suggestions 
that sleep spindles play an important role in disconnection from the external 
environment or in memory consolidation (Diekelmann and Born, 2010) but perhaps 
specific neuronal populations are more strongly modulated during spindles (Dehghani et 
al., 2010b). Another possibility is that inhibition in NREM sleep  (Evarts, 1964; Steriade 
et al., 1974) may occur concomitantly with spindle-driven post-synaptic potentials in 
dendrites and often cancel out the excitation such that spindles may not reliably drive 
spike firing (Contreras et al., 1997b). 

In addition, we found that spindles affected spike timing in cortical neurons. The 
discharges of 20% of neurons were significantly phase-locked, firing maximally in the 
ascending slope of spindles in the depth EEG as in animal studies (Contreras and 
Steriade, 1996; Sirota et al., 2003). The precise proportion of entrained neurons and their 
preferred phase should be interpreted cautiously, since unit discharges were recorded 
~4mm away from depth EEG and their laminar profiles remain unknown, and these 
methodological limitations may possibly underlie minor differences with studies in other 
species (Dehghani et al., 2010b; Sirota et al., 2003). That spike timing is modulated by 
sleep spindles and is also implicated in plasticity processes (Caporale and Dan, 2008) 
supports the notion that spindles may have a role in synaptic plasticity (Khazipov et al., 
2004). A trend for higher firing rates in phase-locked units could suggest that specific cell 
types (e.g. inhibitory interneurons) preferentially modulate their spike timing in concert 
with spindles, but our data could not resolve this intriguing possibility.  

 

Spindle density and frequency as reflections of thalamic 
hyperpolarization 

We suggest that the level of thalamic hyperpolarization may be a key factor governing 
multiple spindle properties such as their spectral frequency, density, regional variability, 
dynamics during individual events, and across sleep. In TC cells, the degree of 
hyperpolarization affects the duration of the hyperpolarized state and consequently 
dictates the period of thalamic spindle oscillations (McCormick and Bal, 1997; Mircea 
Steriade, 2003). Along this line, we find that deeper sleep (higher SWA and presumably 
stronger thalamic hyperpolarization) is associated with lower frequency spindles. In 
addition, spindles arise at membrane potentials around -60mV, while slow waves arise at 
more hyperpolarized levels (-68 to -90mV), and these two states are mutually exclusive at 
the level of individual thalamic neurons (Nunez et al., 1992). Indeed, we find that high 
SWA is associated with fewer spindles, presumably since strong hyperpolarization 
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reduces the recruitment of neurons that support spindle generation. As for regional 
differences, posterior thalamic nuclei receive stronger cholinergic innervations (Jones, 
2007) and this may explain faster spindles in those nuclei projecting to centroparietal 
cortices. Alternatively, generation of slow and fast spindles may reflect intrinsic 
properties of cells in thalamic and RE neurons (e.g. distributions of neurotransmitter 
receptors or ionic channels) leading to differential hyperpolarization levels in specific 
thalamic sub-regions. Finally, frequency decreases during each spindle could also reflect 
increasing hyperpolarization. Cortical neurons are increasingly more involved in the 
waning and termination phases of spindles (Contreras et al., 1996; Mircea Steriade, 2003), 
and these corticothalamic projections are believed to exert an overall inhibitory influence 
through their strong influence on RE cells (Golshani et al., 2001). If this hypothesis is 
correct, a simple non-invasive EEG measure of spindle frequency could provide an 
important proxy for the level of thalamocortical polarization at any given time.  
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Supplemental Figures 

!

Table S 2-1 Recording details 

A full description of the brain structures and number of units identified in our recordings. Rows 
correspond to individual patients and columns correspond to different brain regions. Green 
boxes mark implanted brain regions and numbers show detected units. Abbreviations: LH, left 
hemisphere; RH, right hemisphere; H, hippocampus; A, amygdala; EC, entorhinal cortex; PH, 
parahippocampal gyrus; TG, temporal gyrus; AC, anterior cingulate; MC, middle cingulate; PC, 
posterior cingulate; OF, orbitofrontal and medial prefrontal cortex; SM, supplementary motor 
area; P, parietal cortex; TO, temporo-occipital, PT, posterior temporal cortex; FG, fusiform 
gyrus; IFG, inferior frontal gyrus. 
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! P& Age&Gender&Handedness& Seizure&
onset&

Resection&/&

outcome&

Imaging:&&

PET&&&MRI&

Recording&

length&(h)&
Recording&
start&time&

1! 396! 27! M! R!
Left!

temporal!
Left!temporal,!

seizure!free!

metabolic!and!

structural!

abnormalities!left!

temporal!

7.0! 11:00!PM!

2! 398! 41! F! R!

Left!

temporal!

spreading!

to!REC!

Left!temporal,!

significant!

improvement!

metabolic!

abnormalities!

bilateral!temporal!

lobe,!normal!

structural!

5.1! 12:41!PM!

3! 399! 43! F! R!

Right!

prefrontal!

cortex! Right!prefrontal,!

seizure!free!

normal!metabolism,!

right!frontal!

dysplasia!
6.3! 11:45!PM!

4! 402! 25! F! R!
Bilateral!

MTL!
No!surgery!

Mild!metabolic!

abnormality!right!

temporal,!normal!

structural!

6.6! 11:30!PM!

5! 404! 25! M! L!
Left!

prefrontal!

Left!prefrontal,!

significant!

improvement!

Normal!metabolism,!

periventricular!

structural!

abnormalities!

10.9! 6:29!PM!

6! 405! 38! F! R!

Right!

MTL!

spreading!

to!RPHG!

Right!MTL,!

seizure!free!

Mild!metabolic!

abnormality!bilateral!

temporal,!possible!

dysplasia!right!

temporal!

6.6! 10:29!PM!

7! 406! 33! F! R!
Left!MTL! No!surgery!

Mild!metabolic!

abnormaility!left!

temporal,!structural!

abnormality!right!

frontal!lobe!

6.6! 10:40!PM!

8! 415! 39! M! R! Left!MTL! Left!temporal,!

seizure!free! Normal!

7.7! 10:13!PM!

9! 416! 26! M! R!

Bilateral!

MTL!and!

R!IFG!
No!surgery!

Mild!metabolic!

abnormaility!right!

temporal,!mild!

structural!

abnormaility!left!

temporal!

7.7! 10:43!PM!

10!417! 23! M! R!
Right!

Parietal! Right!parietal,!

seizure!free!

Metabolic!

abnormality!right!

parietal!lobe,!normal!

structural!

8.7! 9:51!PM!

11!422! 19! F! R!
Bilateral!

multifocal! No!surgery!
Normal!

7.9! 10:01!PM!

12!423! 52! F! R!
Left!MTL!

To!be!

determined!
metabolic!and!

structural!

abnormalities!left!

temporal!

8.3! 10:09!PM!

13!424! 26! M! R!

Left!

lateral!

temporal!

Left!lateral!

temporal!to!be!

resected!

metabolic!

abnormalities!R!

temoral,!dysplasia!L!

frontal!

7.9! 10:15!PM!

Table S 2-2 Patient information and details of sleep studies 

Clinical information and sleep study details for all patients.  
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Figure S 2-1 Patient sleep resembles normal sleep in healthy individuals 

(A) Representative examples of 30s polysomnographic data used for sleep scoring in stages N2 
(left), N3 (middle) and REM sleep (right) in one individual. (B) Sleep measures for the entire 
night expressed as mean ± SEM (n=13). Sleep efficiency corresponds to total sleep time per time 
in bed. Sleep latency is to Stage 2. WASO refers to waking after sleep onset; SWS, slow-wave 
sleep (N2 + N3); NREM, non-rapid eye movement; REM, rapid eye-movement. (C) Average 
power spectra of scalp EEG in all derivations as a function of different sleep stages. Blue, N2; 
Red, N3; Green, REM sleep. (D) Individual hypnograms (time course of sleep stages throughout 
sleep) and power spectra of scalp EEG in all 13 individuals. In hypnograms, rows (top to 
bottom) denote wake (W), REM sleep (R), N1, N2, and N3. Colors in power spectra as above. 
First five individuals (red asterisks) mark patients who showed the typical dissipation of SWA 
throughout sleep (see Figure S2).  
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Figure S 2-2 Homeostatic decline of SWA throughout sleep 

Individual hypnograms (black) and time-courses of SWA (red) in five individuals who showed a 
clear homeostatic decline of SWA throughout sleep. Sleep stages: W, wake; REM, rapid eye-
movement sleep; N1, N2 and N3: non-rapid eye-movement sleep stages 1,2 and 3. Yellow 
highlights denote intervals of 'early' and 'late' sleep used for analysis presented in Figure 7. 
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Figure S 2-3 Figure S3. Spindle frequencies across all individuals and electrodes. 

Spindle frequency distributions in each individual and depth electrode separately. Note that in 
every individual, fast centroparietal spindles differ from slow frontal spindles despite individual 
variability in the exact spindle frequencies. While frontal spindles consist of one group of slow 
events, centroparietal spindles often have a bimodal distribution with most spindles being fast 
and some being slow.  
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Figure S 2-4 Spindles that are isolated from slow waves are also mostly local 

Distribution of involvement (percent of monitored brain structures expressing each spindle) 
across 22,914 events in 50 electrodes of 12 individuals. "Isolated" spindle events in this analysis 
(without a slow wave in ± 1.5s) constituted 53.7% ±  3.1 of events. Note that the distribution is 
skewed to the left, indicating that most "isolated" spindles are local and that the phenomenon of 
local spindles can not be explained by local slow waves.  
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Figure S 2-5 Unit identification and stability throughout sleep recordings  

(A) An illustration of unit identification scheme. Top row depicts the high-pass filtered LFP 
along with the threshold for spike identification set at 5 SDs above the noise level (red line). 
Middle row shows action potential waveforms for three detected units. Bottom row shows the 
distribution of inter-spike-intervals (ISIs). Based on the consistency of waveforms and the 
occurrence of ISIs within the expected refractory period (<3ms), we categorized clusters as a 
multi-unit cluster (blue), two single-unit clusters (red and green), and a noise cluster (not shown).  

(B) Waveforms and ISI distributions are consistent and separable throughout sleep. Mean action 
potential waveforms for 5 distinct units recorded in the same individual. Each color denotes a 
different unit and each trace denotes the mean waveform in separate 1h intervals throughout 
sleep. Note that waveforms were consistent and separable between different units throughout 
sleep, confirming the stability of our unit recordings throughout long (~7h) recordings. Inset 
depicts ISI distributions in separate 1h intervals for two units.  

!
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Summary 

Are rapid eye movements (REMs) in sleep associated with visual-like activity, as during 
wakefulness? Here we examine single-unit activities (n=2057) and intracranial EEG 
across the human medial temporal lobe (MTL) and neocortex during sleep, wakefulness, 
and during visual stimulation with fixation. During sleep and wakefulness, REM onsets 
are associated with distinct intracranial potentials, reminiscent of ponto-geniculate-
occipital waves. Individual neurons, especially in the MTL, exhibit reduced firing rates 
prior to REMs as well as transient increases in firing rate immediately after, similar to 
activity patterns observed upon image presentation during fixation without eye 
movements. Moreover, the selectivity of individual units is correlated with their response 
latency, such that units activated after a small number of images or REMs exhibit delayed 
increases in firing rates. Finally, the phase of theta oscillations is similarly reset following 
REMs in sleep and wakefulness, and after controlled visual stimulation. Our results 
suggest that REMs during sleep rearrange discrete epochs of visual-like processing as 
during wakefulness.  
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Introduction 

A seminal discovery in sleep research identified sleep periods with rapid eye movements 
(REMs), vivid dreams, electroencephalographic (EEG) activation and muscle atonia, 
known as REM sleep (Aserinsky and Kleitman, 1953; Dement and Kleitman, 1957; 
Jouvet and Michel, 1959). Since its discovery, a straightforward, fascinating question 
endures: are REMs non-specific signatures of arousability or do they represent specific 
times at which visual-like processing is updated? 

The intuitive “scanning hypothesis”, relating directional properties of REMs in sleep to 
shifts of gaze scanning the dream imagery, has proven difficult to assert. REMs have 
been shown to be highly similar to saccades during wakefulness in terms of their 
kinematic properties (Sprenger et al., 2010) and we use the terms interchangeably 
throughout. Retrospective comparisons of REM directions with dream recall yielded 
highly inconsistent results (Berger and Oswald, 1962; Dement and Kleitman, 1957; 
Dement and Wolpert, 1958; Jacobs et al., 1972; Roffwarg et al., 1962), reviewed in detail 
in (Arnulf, 2011). Several lines of evidence oppose the scanning hypothesis: for example, 
REMs in sleep (“s-REMs”) persist in animals and humans without sight (e.g. fetuses, 
congenitally blind who do not report visual dreams). Visual dreams also occur in NREM 
sleep (Nir and Tononi, 2010) and during ~80% of REM sleep that is devoid of REMs 
(“tonic REM sleep”). Indeed, it could be that REMs reflect general arousal and are 
analogous to penile erections that occur throughout REM sleep but do not necessarily 
imply sexual contents in dreams (Schenck et al., 2007). On the other hand, recent studies 
with patients who enact their dreams due to absence of muscle paralysis (REM Sleep 
Bheavior Disorder, (Schenck et al., 1986)) suggest that, when present, REMs scan the 
dream scene (Arnulf, 2011). Overall, the evidence to date is limited to relating REMs in 
human sleep to either reports of dream content or to overt behavior, but the underlying 
changes in brain activity have remained relatively unexplored. 

Thus, an important and tractable question is whether s-REMs co-occur with similar 
modulations in neuronal activity as during wakefulness, particularly in regions associated 
with visual-mnemonic processing (such as occipitotemporal cortex and the medial 
temporal lobe (MTL)). Indeed, during wakefulness each saccade  ("w-REMs") gives rise 
to a discrete epoch of visual processing (VanRullen and Koch, 2003), associated with 
behavioral saccadic suppression and a subsequent visual response (Burr and Morrone, 
2005; Henderson, 2003; Ibbotson and Krekelberg, 2011). In animals, s-REMs often 
coincide with stereotypical potentials termed ponto-geniculo-occipital (PGO) waves 
(Brooks and Bizzi, 1963; Farber et al., 1980; Gucer and Viernstein, 1979; Jouvet and 
Michel, 1959). However, the relation of s-REMs with neuronal activity in high-order 
visual and mnemonic circuits remains unknown.  

The goal of this study was to establish the relation between s-REMs and underlying 
activity in visual-mnemonic regions, and to compare such modulations with those 
occurring during waking vision. To this end, we examined the underlying intracranial 
EEG (n=172 depth electrodes) and single-unit activities around REMs during sleep and 
wakefulness (n=600) and during controlled visual stimulation (n=1457) in neurosurgical 
epilepsy patients. The results demonstrate, for the first time, that MTL activity during s-
REMs shares many properties with that observed during saccades and vision. A plausible 
interpretation is that s-REMs represent privileged time-points at which neuronal activity 
and associated visual-like processing is updated. 
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Results 

Rapid eye movements in sleep and wakefulness 

To compare neuronal activity underlying REMs in sleep and wakefulness, we conducted 
full-night (421 ± 20 min (mean ± SEM)) polysomnographic sleep studies with adjacent 
epochs of wakefulness (n=13 participants), as well as recordings during controlled visual 
stimulation (n=9 participants) and an eye-movement paradigm (one participant), in 
nineteen neurosurgical patients with intractable epilepsy. Participants were implanted 
with depth electrodes (Figure 3-1A-C) that recorded depth EEG and spiking activity 
during sleep and wake from 600 units (355 putative single units, 245 multi-unit clusters), 
as described in detail elsewhere (Nir et al., 2011).  

 

Figure 3-1 Data overview and eye movement detection  

(A) Set-up for polysomnographic sleep and wake recordings. (B) Illustration of flexible probes 
used for recording depth EEG (blue: platinum contact) and unit activity (green: microwires). (C) 
Medial view of depth electrode locations (purple dots) spanning multiple brain regions. SM, 
Supplementary motor; PC/P, posterior cingulate/parietal cortex; PH, parahippocampal gyrus; 
HC, hippocampus; E, entorhinal cortex; Am, amygdala; LH, left hemisphere; RH, right 
hemisphere. (D) REM detection: 1st row, raw EOG showing 2 typical REMs in REM sleep. 2nd 
row, band-pass filtered (0.1-3Hz) EOG with thresholds set at mean+2SD (black lines). 3rd rows, 
detection of epochs crossing the threshold in one EOG channel (green dots). 4th row, detection 
is confirmed with opposite polarity in second EOG channel (yellow dot). 5th row, verification 
that epoch is free of epileptic spikes in high-pass filtered trace. 6th row, visual confirmation of 
REM onset. (E) Occurrence of REMs across vigilance states (mean ± SEM, n = 11/12/13 in 
REM sleep, wake, and NREM sleep, respectively). Note the near-absence of REMs in NREM 
sleep. (F) Average traces of REMs in each participant during wakefulness (black, n=12) and 
REM (red, n=11). (G) Example of EOGs (top, red/blue), depth EEG (brown) and unit spiking 
activities in the MTL (black lines) during 20s of wakefulness. Vertical green lines depict 
detections of REM onsets. Note that some REMs are associated with a tendency of neurons to 
show transient spike-train responses shortly after REM onset. 
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Stability of unit recordings across several hours was assessed in detail (Figure S 3-1). 
Recordings also included synchronized scalp EEG, electrooculogram (EOG), 
electromyogram (EMG) and continuous video monitoring. Sleep–wake stages were 
scored following established guidelines (Iber et al., 2007). Sleep architecture and power 
spectra of scalp EEG were in general agreement with typical findings in healthy young 
adults. 

REMs were detected in EOG traces in a semi-automatic fashion (Methods, Figure 3-1D-
F). REMs were selected for further analysis when at least 20 events were detected for a 
given subject and sleep stage (n=12 and 11 individuals for wakefulness and REM sleep, 
respectively). On average, 3.7 ± 0.8 and 2.6 ± 0.5 REMs per minute were detected in 
REM sleep and wakefulness, respectively, while detection in NREM sleep was not 
significantly different from zero (Figure 3-1E; p=0.17, Mann-Whitney U-test, n=13 
patients), attesting to a low rate of false detections. The relatively low density of REMs in 
wakefulness likely reflects the experimental setup (overnight recordings in darkness) and 
EOG measurements that best capture saccades with a large horizontal component (see 
Supplemental Note for further details). 

The morphology of REMs in sleep and wakefulness was highly similar (Figure 3-1F), in 
line with previous studies (Sprenger et al., 2010; Takahashi and Atsumi, 1997). For 
example, when subtracting the EOG traces of w-REMs and s-REMs, no statistical 
differences were found (paired t-test, n=11 pairs, α=0.05, FDR correction for multiple 
comparisons). 

 

Modulation of neuronal activity during rapid eye movements 

We set out to examine if neuronal activity, especially that occurring in MTL regions 
including the amygdala, hippocampus, entorhinal cortex and parahippocampal gyrus 
(Table 3-1), is robustly modulated in concert with REMs, and to what extent such 
activity is reminiscent of visually evoked activity in wakefulness. To this end, we 
compared neuronal activity during (a) REM sleep ("s-REMs"), (b) spontaneous REMs in 
wakefulness ("w-REMs"), and (c) during a controlled visual stimulation paradigm in 
which subjects maintained fixation during short (200ms) presentation of images. Figure 
3-1G depicts representative traces of eye movements along with simultaneously recorded 
neuronal activity and depth EEG in the MTL. As can be seen, in some cases REMs were 
associated with modulations in spiking activity. 

We proceeded to quantify the REM-related changes in neuronal activity across the entire 
dataset, and further compared such activities to visually evoked responses to pictures of 
faces and places (n=133 responsive neurons out of 1457 overall; 27 sessions in 8 
individuals, see Methods). A triggered-averaging analysis was performed around REM 
onsets, as well as following controlled visual stimulation (Figure 3-2). We examined 
simultaneously recorded scalp EEG (n=12, 10, and 4 electrodes located at Pz in wake, 
sleep, and visual experiment, respectively), depth EEG (n=53 (13 patients), 51 (11 
patients), and 13 (2 patients) recording sites in wake, sleep, and visual experiment, 
respectively) and spiking activity within the MTL (n=437, 349, and 1049 in wake, sleep, 
and visual experiment, respectively).  
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Table 3-1 Bi-phasic single-unit modulation around REMs is more prevalent in the MTL 
compared to frontal regions. 

The number of recorded units by brain region and vigilance state is depicted (1st column) along 
with the proportion of neurons modulated in any direction (2nd column) and those presenting a 
bi-phasic pattern of activity (decreasing activity before REMs and showing transient increases 
after REM onsets, 3rd column). For each region and each column, we indicated in parenthesis 
the number or patients in which these units were recorded. Statistical significance was established 
by comparing these proportions to those obtained for random time-points (paired Mann-
Whitney U-test between real and surrogate proportions, n=8 and n=6 pairs in the MTL and 
frontal lobe, respectively). Note that significantly higher proportions of bi-phasic firing patterns 
were found only in MTL regions (*: p<0.05, **: p<0.01). , ns: p≥0.05). Fourth column: the 
proportion of REMs associated with transient spike-train responses (see Supplemental Methods). 
On average, such spike-train responses were detected only for a minority of REMs. 

Scalp event-related potentials (ERPs) around REMs (Figure 3-2B) during both sleep and 
wakefulness revealed a waveform in line with previous studies (Jagla et al., 2007), 
consisting of an initial transient peak before saccade onset ([-25 0]ms, p<0.001, one-
tailed t-test compared to a [-800 -400]ms baseline) followed by a second positive 
component ([50 200]ms p<0.001). Following controlled visual stimulation, the scalp ERP 
exhibited a more delayed positive component ([200-600]ms, p<0.05) (Figure 3-2B, right).  
In the depth EEG (“dERP”), robust evoked potentials were found across MTL regions 
in relation to REMs with a similar positivity around 150ms as found in the scalp EEG 
(p<0.01, Figure 3-2C). This component was absent during visual presentation without 
eye movements (p>0.8, Figure 3-2C, right). Notwithstanding, a late negativity ([300 
400]ms, p<0.05) was observed within the MTL after REMs in sleep and wakefulness as 
well as after the presentation of images with fixation. Since depth EEG signals were 
referenced to ear lobes (thereby attenuating ocular artifacts (Kovach et al., 2011)), the 
presence of robust dERPs in the MTL (and especially components occurring hundreds 
of milliseconds after eye movement onsets) suggests an underlying modulation of 
neuronal activity upon REMs in both sleep and wakefulness, whose late component is 
reminiscent of visual-evoked activity.  
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Figure 3-2 REM-triggered averaging of neuronal activity  

REM-triggered averaging of multiple signals of interest in wakefulness (left) and REM sleep 
(middle), as well as during controlled visual stimulation (right). Intracranial recordings (panels C-
E) focused on MTL regions. (A) Mean (± SEM) waveform of EOG traces (light colors: 
amplitude; dark colors, velocity). (B) Mean scalp ERPs computed at Pz. (C) Mean depth EEG 
potentials (dERP), (D) mean peri-REM time histogram for ‘biphasic’ MTL neurons in 
wakefulness (n=79 units, n=16,738 REMs), REM sleep (n=47 units, n=4,510 REMs), and visual 
stimulation (n=196 units, n=23,248 trials). Note the reduction in firing rate ([-400 0ms]) and 
increased activity ([150 550ms]) relative to REM onsets, and similar increased activity upon visual 
stimulation (right). Yellow shading highlights a time window in which negative components in 
the dERPs are associated with increase neuronal activity in all 3 conditions. Bars illustrate 
statistical deviances from baseline corrected for multiple comparisons (Methods). (E) 
Representative examples of activity in individual neurons (black inset: spike waveform) around 
REM onsets in wake and sleep (same neuron from parahippocampal gyrus), and visual 
stimulation (different neuron but from same brain region). Peri-REM-time histograms were 
computed on 120ms bins (100ms overlap). Mean firing rate of each neuron is marked with a 
dashed horizontal line, gray bars above illustrate statistically significant deviations from baseline 
(t-test, p<0.05). Error bars denote the SEM across patients (A,B), dEEG channels (C) or REMs 
(D,E). 

Most importantly, single-unit spiking activity was robustly modulated around REMs, and 
this modulation was highly similar across wakefulness and REM sleep. A pattern 
consisting of a reduction in firing rate just before REM onsets, followed by subsequent 
increased spiking was observed in the average activity of all recorded units in 
wakefulness. A similar albeit weaker modulation was likewise observed in the average 
activity across all units during REM-sleep (Figure S 3-2A, n=412 and n=318 in 
wakefulness and sleep, respectively). We searched for neurons whose activity was 
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significantly modulated in any direction and at any time interval around REMs (see 
Methods and Figure S 3-2 for full details of selection process). From this unbiased 
approach, the stereotypical bi-phasic pattern of activity emerged in both sleep and 
wakefulness (Figure S 3-2B). We then focused on the units showing this bi-phasic pattern 
in MTL regions specifically for further analysis (Methods, see Figure 3-2D and E for 
MTL population average and representative neurons, respectively) since neurons that 
showed bi-phasic modulations around REMs were more readily observed in the MTL 
(Table 3-1, 24% of all MTL units in wake (n=79 in 10 patients) and 18% in REM sleep 
(n=47 in 9 patients)) compared with frontal lobe regions (13% in wake and 12% in REM 
sleep). In contrast, non bi-phasic modulation profiles were observed as frequently across 
regions (Table 3-1). Along the same line, when searching for bi-phasic activity profiles 
around random time-points (instead of real REMs) a significantly lower proportion of 
MTL neurons was found (one-tail paired Mann-Whitney U-Test, p<0.01, see 
Supplemental Material) but the proportion of frontal lobe neurons did not show such a 
difference (p=0.9). The higher proportion of bi-phasic modulations in the MTL argues 
against a global non-specific activity pattern.  

Finally, the temporal dynamics of increased MTL firing following REMs was reminiscent 
of neuronal responses in the controlled visual experiment (Figure 3-2D,E, right), 
although these were of stronger amplitude (p<0.001) – a difference to be expected given 
that stimuli were specifically selected to drive strong responses in the recorded neurons 
(Methods). On average, around REMs, bi-phasic neurons reduced their firing by 11% in 
sleep and 7% in wake at -200ms (p<0.005, t-test) and increased their firing by 17% in 
sleep and 22% in wake at +250ms (p<0.001, t-test). The post-REM increase coincided in 
time with the negativity observed in the dERPs. The pre-REM reduction in firing was 
unrelated to effects of previous REMs, as it was similarly observed also when focusing 
on “isolated” REMs that did not occur in succession (not shown). In addition, visual 
responses were substantially later in time, peaking at 300ms after image onset, whereas 
post-REM activity peaked around 250ms after REM onset (equivalent roughly to 150ms 
after eventual fixation (Berchicci et al., 2012)). In summary, REMs in both sleep and 
wakefulness were associated with multiple signatures of transient neuronal activities in 
the MTL that were similar across vigilance states and reminiscent of visually evoked 
activity. 
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Figure 3-3 Comparison of neuronal activity underlying visual and non-visual REMs 

(A) REM-triggered averaging of single-unit firing rate in wakefulness, separately for epochs 
tagged as 'non-visual' (open eyes in a dark room, green) or 'visual' (patient watching TV/DVD or 
interacting with people in a well-lit room, blue). s-REMs during REM sleep are superimposed for 
comparison (red). Top: Mean waveform of EOG traces for 'visual' w-REMs (blue), 'non-visual' 
w-REMs (green), and s-REMs (red) could not reveal differences between conditions. Middle: 
Average peri-REM-time-histogram ('visual': N=79 units and 1,250 REMs; 'non-visual': N=47 
units and 140 REMs) expressed in percentage change of baseline. Statistical analysis matched for 
sample size (n=140 REMs in both conditions) revealed a significant decrease in firing rate prior 
to REM onsets for both 'visual' and 'non-visual' epochs, whereas a significant increase was 
observed following REM onsets only for 'visual' w-REMs ('visual': p<0.05, 'non-visual': p=0.33, 
Mann-Whitney U-test). Bottom: dERP time-locked to REMs onset ('visual': N=287 REMs in 70 
channels, 'non-visual': N=287 REMs in 50 channels). Numbers of REMs were equated across 
conditions (n=287). Note the negative deflection between 200 and 500ms for 'visual' REMs only. 
Error-bars show standard-deviation across REMs. (B) Average EOG and intracranial dERPs in 
one participant when performing saccades in darkness with eyes-closed (cyan, N=42), eyes-open 
in darkness (dark blue, N=47), when performing saccades to pictures presented at the periphery 
(green, N=55) or when being presented with images directly at the center of fixation (magenta, 
N=59). Top: EOG traces corresponding to the 4 different experimental conditions. Note the 
major difference in shape between the eyes-closed and eyes-open conditions. Bottom: MTL 
dERPs time-locked to the onset of saccades/image presentation. Note that while evoked 
responses following image presentation and saccades appear similar, saccades in darkness reveal a 
much weaker or absent modulation. 

To further investigate to what extent REM-related effects were driven by motor aspects 
of eye movements (‘corollary discharge’) vs. visual-like aspects, we further divided 
wakefulness into putatively 'visual' and 'non-visual' periods based on behavioral notes 
(e.g. watching television or meeting family in a well-lit room as ‘visual’ vs. lying with open 
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eyes in a dark room as ‘non-visual’, see Supplemental Methods). The rate of w-REMs in 
‘visual’ periods was significantly greater than in ‘non-visual’ periods (14.7 ± 14.6 vs. 0.7 ± 
2.8 REMs per minute, p<0.05, Mann-Whitney U-test). Analysis of evoked potentials 
(Figure 3-3) revealed that both 'visual' and 'non-visual' epochs were associated with a 
significant suppression of firing rates prior to REM onsets (difference from baseline: 
p<0.01, between 'visual' and 'non-visual': p=0.09, Mann-Whitney U-test, N=110 units 
and 140 REMs across 8 patients). However, only 'visual' epochs showed a robust 
increase in neuronal activity after REM onsets within the MTL (difference between 
'visual' and baseline: p<0.05; 'non-visual' and baseline: p=0.33).  Similarly, dERPs of 
'visual' and 'non-visual' differed in their late negative potential (Figure 3-3A) which was 
present only for 'visual' REMs (significant difference observed 375-475ms after REM 
onset, t-test, p<0.05, FDR correction). Moreover, a controlled paradigm during 
wakefulness in one individual further compared neuronal modulations occurring around 
w-REMs with closed eyes or during darkness with saccades towards visual targets (or 
passive fixation). Interestingly, already at the level of EOG waveforms, eye movements 
with open eyes and those occurring during REM sleep were highly similar, whereas w-
REMs with closed eyes during wakefulness had markedly slower kinematics (Figure 
3-3B). Intracranial evoked potentials in the MTL revealed a negative deflection following 
image presentation that also resembled those found after REMs (in Figure 3-2C). This 
negative deflection was significantly attenuated during w-REMs without visual input 
(Figure 3-3B). Taken together, these results suggest that neuronal modulations within the 
MTL after REMs cannot be solely explained by a motor corollary discharge (see also 
Discussion).  

Spike-train latency, selectivity, and theta phase reset 

Given that the dominant pattern of neuronal activity around s-REMs included a transient 
increase in firing rate in the few hundred milliseconds following REM onsets, it was of 
interest to determine to what extent the detailed features of this activity resembled visual 
processing in wakefulness. In particular, a robust and recently described feature of 
human MTL responses to visual stimulation is the significant correlation between the 
latency and the selectivity of neuronal spike-trains, reflecting a hierarchical processing 
mode: a longer latency from image presentation is more readily found in neurons 
responding to fewer images (Mormann et al., 2008). We thus examined the presence and 
precise onset of spike-trains in individual trials following spontaneous REMs in sleep and 
wakefulness, as well as following controlled visual stimulation.  

In MTL neurons, spike-trains were detected in 23.3 ± 1% (mean ± SEM) and 19.6 ± 1% 
of REMs in wakefulness and sleep respectively (N=209 and 152 units respectively). 
Despite the small subset of REMs associated with spike-trains, these events accounted 
well for the overall increase in firing rate (see Figure S 3-3). Moreover, the increase in 
firing rate for REMs associated with spike-trains was correlated across vigilance states 
even when regressing out the mean firing rate of each unit (Spearman's partial 
correlation: r=0.28, p<0.01, n=131 units in 8 patients). Furthermore, we found a 
significant correlation between the average latency of firing rate increase in each neuron 
(after REM onset) and its selectivity (tendency to increase firing rates only after a small 
subset of REMs, Methods). Figure 3-4A-C present this correlation for w-REMs 
(Spearman's rank correlation, r = 0.26, p = 10-4, n=209 in 10 patients), s-REMs (r = 0.33, 
p = 10-6, n=152 in 10 patients), and controlled visual stimulation (r = 0.48, p = 10-8, 
n=142 in 9 patients). Crucially, when applying the same analysis on random time-points 
during REM sleep (not associated with eye movements), latency and selectivity were not 
significantly correlated (p=0.3 and p=0.9 for sleep and wake), indicating that this relation 
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occurred at specific moments, rather than reflecting basic properties of neuronal firing 
such as the average discharge rate. Moreover, in those cases where the same neurons 
were recorded in both wakefulness and REM sleep, the selectivity of neurons was highly 
correlated across vigilance states (r = 0.71, p = 10-23, n=131 units in 8 patients, Figure 
3-4D) such that neurons that were highly selective in their visual responses in wake also 
showed spike-trains following few s-REMs. This relation was conserved even when 
taking into account the average firing rate of these neurons (partial correlation: r = 0.51, 
p = 10-11, n=131 units in 8 patients). The average latencies of neurons were also 
correlated across vigilance states (r=0.20, p=0.02, n=131 units in 8 patients) however this 
correlation was not significant when regressing out the average firing rate (partial 
correlation: r=0.09, p=0.3, n=131 units in 8 patients). 

 

Figure 3-4 Comparison of transient spike-train properties in REM sleep and wakefulness  

(A-C) Scatter plot of spike-train latency (ordinate) vs. selectivity (abscissa, percent of trials 
eliciting a spike-train after REMs or image presentations) in w-REMs (A), s-REMs (B), and in the 
visual stimulation experiment (C). Low selectivity: neurons responds to all REMs/pictures; high 
selectivity: neurons responds to few REMs/pictures. Selectivity in panel (C) is restricted to a 
limited number of discrete values due to the use of 6 images in the image presentation 
experiment. Note that in all three conditions a robust correlation was observed, indicating the 
existence of hierarchical processing along the visual-mnemonic axis. Such correlation could not 
be revealed in random time points during REM sleep and wake. (D) Selectivity following REMs 
is correlated in the same neurons across wakefulness and sleep (Spearman's rank correlation, r = 
0.71, p = 10-23; partial correlation taking average firing rate into account: r = 0.51, p=10-11).  
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Finally, it is well established that theta (4-8Hz) oscillations prevail in the MTL during 
both wakefulness and REM sleep (Buzsáki, 2006) and that the phase of theta oscillations 
is reset upon engagement of visual-mnemonic mechanisms in humans (Rutishauser et al., 
2010) and monkeys (Ito et al., 2011).  We found comparable phase resets around 2-6Hz 
('human theta', see (Watrous et al., 2011)) in s-REMs and w-REMs. A brief and 
broadband reset was visible at REM onsets (potentially reflecting a myogenic 
contamination) followed by a delayed, sustained, and frequency-specific increase in phase 
coherence around 2-6Hz (see Methods and Figure 3-5A,B). Such theta-band coherence 
was correlated across vigilance states (Pearson's r=0.27, p<0.05, see Supplemental 
Methods). Following controlled visual stimulation, stronger phase reset was observed in 
the MTL and the maximal effect occurred at similar time-frequency windows (Figure 
3-5C).  

!

Figure 3-5 Reset of field oscillation phase following REMs and visual stimulation  

(A-C) Phase consistency of intracranial dEEG within the MTL across time and frequency around 
w-REMs (A, N=71 channels), s-REMs (B, N=59 channels) and in the visual stimulation 
experiment (C, N=102 channels). Note that a significant increase within the lower theta-band (2-
6Hz) can be seen in all conditions from 0 to ~400ms (blue lines: A,B: p<0.05; C: p<10-4, FDR 
correction). Following controlled image presentation a stronger phase reset is observed and the 
maximal effect occurs at similar time-frequency windows. (D) Phase coherence of dEEG by 
MTL region within the theta-band (2-6 Hz) following REMs in wakefulness (blue) and during 
REM-sleep (red) compared to controlled image presentation (green). Error-bars show SEM 
across channels. Phase coherence was averaged during the first 400ms following REMs or image 
onset. 
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When considering MTL regions separately (Figure 3-5D), hippocampus and 
parahippocampal gyrus showed strong phase resets while the entorhinal cortex did not 
show phase coherence above chance levels. These effects were consistant across 
vigilance states (ANOVA, effect of regions: p<0.005, F=4.8; effect of state: p=0.4, 
F=0.6). Similar differences between the theta phase coherence across MTL regions were 
observed during controlled imaged presentation. The stronger and delayed effects during 
controlled visual fixation (in comparison to REMs) mirrored those found in dERPs and 
single-unit firing rates (Figure 3-2 and Figure 3-3). Thus, the temporal dynamics of MTL 
activity were similar during REM sleep and during visual processing in wakefulness, 
possibly reflecting a partial conservation of the hierarchical processing in the visuo-
mnemonic pathway.  
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Discussion  

 

Despite decades of intense interest and debate, it has remained difficult to determine to 
what extent eye movements in REM sleep modulate brain activity. In this study, we show 
for the first time that in human REM sleep s-REMs were associated with transient bi-
phasic modulations of spiking activity in the MTL associated with evoked potentials in 
depth EEG signals. A significant subset of MTL neurons exhibited a transient spike-train 
immediately following some s-REMs, as is the case during wakefulness. Indeed, multiple 
properties of this activity - including spike-train latency, selectivity, and the phase of 
simultaneous theta oscillations - were comparable during sleep and wakefulness and 
reminiscent of visual-mnemonic responses.  

It is likely that dERPs co-occurring with modulations of neuronal activity are closely 
related to PGO waves, a hallmark of REM sleep (Amzica and Steriade, 1996; Gucer and 
Viernstein, 1979; Jouvet, 1992). PGO waves are sharp field potentials occurring 
concomitantly with s-REMs and were first observed in the pons, lateral geniculate 
nucleus and occipital cortex of cats. Recent studies described similar phenomena in 
humans (Ioannides, 2004; Lim et al., 2007; Miyauchi et al., 2009; P. Peigneux et al., 2001). 
Originally, PGO waves were believed to occur exclusively during sleep and only in the 
aforementioned brain structures (Brooks and Bizzi, 1963; Jouvet and Michel, 1959), but 
subsequent evidence suggested they are akin to visually evoked potentials (Brooks, 1968a; 
Mccarley et al., 1983) and that PGO potentials similar to the current dERPs occur across 
wide cortical territories (Brooks, 1968b). Although our electrode locations cannot 
unequivocally confirm the relation with PGO waves, it seems likely that the evoked 
potentials time-locked to s-REMs are closely related to PGO potentials. 

The transient reduction in MTL neuronal activity immediately before REM onsets 
could be related to saccadic suppression (Uematsu et al., 2013), a behavioral 
phenomenon reflecting a transient increase in visual perception thresholds during 
saccades (Dodge, 1905; Wurtz et al., 2011). Saccadic suppression was initially attributed 
to degraded retinal input, but later studies pointed to a more complex process (Ibbotson 
and Krekelberg, 2011). However, the decreases in activity observed here may be 
somewhat earlier and longer in duration than to be expected, and future studies are 
needed to establish this connection.  

Despite the resemblance between neuronal activity around REMs and following 
controlled visual presentation, post-REM modulation in both sleep and wake occurred 
earlier than that occurring during visual processing with fixation. In the ventral visual 
stream of awake macaques (V4, IT), visual responses during fixation are typically 
observed after 100-200ms (Thorpe and Fabre-Thorpe, 2001). In contrast, REMs in 
monkeys are associated with earlier modulations shortly after eventual fixation (Chelazzi 
et al., 2001; Jagadeesh et al., 2001; Rajkai et al., 2008), in line with the difference observed 
here. Why is activity around REMs earlier than during passive vision? One possibility is 
that the observed neuronal modulations reflect some form of ‘attentional priming’ (see 
below), rather than visual processing. Alternatively, during REMs some predictive 
expectation already exists and drives earlier visual activity in the neurons that will 
participate in representing the new image. 
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It is important to explicitly acknowledge several limitations of the present study. First, 
recordings were obtained in patients with refractory epilepsy. However, great care was 
taken to discard data recorded in close proximity to seizures, from epileptogenic regions, 
and to avoid REMs temporally close to interictal epileptic spikes (see Methods). In 
addition, it is well established that paroxysmal activities are far less prevalent during REM 
sleep (Nir et al., 2014). Finally, sleep architectures and grapho-elements were 
quantitatively and qualitatively within the range of those observed in healthy 
individuals(Andrillon et al., 2011; Nir et al., 2011). Second, dream reports were not 
collected. Nevertheless, given that the vast majority of awakenings from REM sleep yield 
vivid dream recalls (Nir and Tononi, 2010), it seems reasonable to assume that REM 
episodes analyzed here were likewise associated with dreaming. It is, however, important 
to note that dreams also occur during NREM sleep (Nir and Tononi, 2010), hence 
REMs may not be necessary for dream imagery. In addition, we were only able to acquire 
data in one individual during negative-control paradigms in wakefulness (i.e. REMs 
during eye closure or darkness), however the available data as well as retrospective 
analysis based on behavioral notes yielded significant differences. Finally, electrode 
locations were determined exclusively by clinical criteria and therefore it was not possible 
to examine activity in regions where PGO waves occur, or in brain regions implicated in 
saccade preparation. Indeed, neuronal dynamics in motor preparation centers giving rise 
to REMs may differ in sleep and wakefulness (Abe et al., 2004).  

What is the functional significance of the current results? One possible explanation is 
that such modulation reflects a motor corollary discharge driven by oculo-motor 
networks, but several arguments suggest that this is an insufficient explanation: (a) The 
post-REM increase in spiking activity during sleep exhibits several detailed characteristics 
observed also during wakefulness (and upon visual processing), and therefore cannot be 
dismissed as a non-specific effect. Accordingly, individual neurons with longer spike-
train latencies after s-REMs also exhibited greater selectivity, as in vision (Mormann et 
al., 2008). Both the magnitude and the selectivity of the response in individual units were 
stable across sleep and wakefulness. Moreover, such spike-train responses were 
associated with a phase reset of MTL theta oscillations; (b) we found different neuronal 
modulations after w-REMs associated with vision in comparison to non-visual contexts 
such as darkness (Figure 3-3). Along this line, the late (‘lambda’) component following 
saccades in human scalp ERPs is abolished in total darkness (Miyauchi et al., 1987). 
Although in monkeys w-REMs during darkness are also accompanied by a bi-phasic 
modulation of firing rates in occipitotemporal cortex and MTL, such modulation is 
weaker than that found during vision, as we observe here (Gallant et al., 1998; Jeannerod 
and Sakai, 1970; Kayama et al., 1979; Nakamura and Colby, 2000; Rajkai et al., 2008; 
Reppas et al., 2002; Ringo et al., 1994; Sobotka et al., 1997); (c) the fact that effects were 
strongest in the MTL (where retinotopic (re)mapping plays a minor role and where 
activity is tightly correlated with visual-mnemonic representations in humans) seems 
incompatible with a motor-only interpretation; (d) the timing of human MTL activity 
following REMs is still later than that following REMs in homologous macaque cortex as 
observed during visual processing. It seems more reasonable to expect such timing 
differences across species for visual-like, rather than motor, phenomena.  

A second possibility is that REMs transiently increase cortical excitability and represent 
attentional shifts that ‘reset’ processing frames (Duhamel et al., 1992; Hamker et al., 
2011; Kleiser et al., 2004). Brief pre-REM decreases in neuronal activity may prepare the 
ground for subsequent processing by increasing sensitivity to inputs and amplifying 
responses, thereby enhancing the signal-to-noise ratio. In addition, the observed 
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neuronal modulations co-occurred with a theta phase reset in the MTL, as in monkeys 
(Purpura et al., 2003). Modulations of hippocampal oscillatory activity in primates was 
found to be predictive of subsequent recognition in wakefulness (Ito et al., 2011; Jutras et 
al., 2013; Rutishauser et al., 2010). In this context, our findings support the notion that 
theta in primate MTL may play an important role in exploration of the visual (or mental) 
space (Killian et al., 2012). While the underlying mechanisms remain unclear, cholinergic 
modulations associated with PGO waves and theta oscillations may play an important 
role (Kramis et al., 1975; Steriade et al., 1990). The fact that peri-saccadic modulations in 
both sleep and wakefulness are earlier than those found during vision may further 
support the ‘attentional reset’ interpretation.  

Finally, given that activity in the human MTL is tightly correlated with visual awareness 
(Rees et al., 2002), the current results may imply that REMs during sleep reflect a change 
of the visual imagery in dreams, but future studies are needed to unequivocally establish 
this possibility. In summary, the results establish that eye movements in REM sleep are 
associated with successive "micro-states" of cortical activity(Jones et al., 2007; Lehmann, 
1971) and represent transitions between discrete epochs of visual-like processing. These 
findings open new paths for exploring in more detail the prospective roles of eye 
movements and intrinsic brain activity during sleep.  
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Methods 

Subjects, data acquisition, and experimental paradigms 

General procedures related to data acquisition have been described in detail elsewhere 
(Nir et al., 2011). Here, we examined 19 neurosurgical epilepsy patients (ages 19-52, 11 
females). Patients provided written informed consent prior to participation in the 
research study, under the approval of the Medical IRB at UCLA. 13 patients participated 
in full-night sleep studies that also included epochs of wakefulness. Sleep-wake stages 
were scored off-line according to established guidelines (Iber et al., 2007). In each 
participant, 8-12 depth electrodes recorded intracranial depth EEG and single-unit 
activities, along with continuous video, EOG, EMG and scalp EEG from four scalp 
derivations, as in (Nir et al., 2011). Eight participants (four participated in the sleep 
studies) also performed a visual object recognition paradigm (n=27 sessions) that 
included 2 blocks * 12 minutes, when 24 trials * 12 pictures of famous people and 
landmarks were presented for 200ms on a laptop while participants performed a 
categorization task. One individual participated in a paradigm during wakefulness directly 
comparing activity during w-REMs in darkness, with closed eyes, towards visual targets 
and during visual stimulation with fixation. Spike sorting was performed offline 
separately for spontaneous sleep/wake data (n=600) and for visual stimulation sessions 
(n=1334) using 'wave_clus' (Nir et al., 2011; Quiroga et al., 2004). 

Eye movement detection 

Eye movements were detected through EOG recordings. Although indirect, this measure 
can be used to reliably infer about saccadic eye movements in both open eyes and closed 
eyes conditions (see Supplemental Note). EOG traces were obtained using two 
electrodes pasted below the left and above the right canthi, referenced to contralateral ear 
lobe signals. REMs were detected in a semi-automatic manner (Figure 3-1D) by applying 
a bandpass filter (0.1-3 Hz), setting a detection threshold (mean + 2 SD) and verifying: 
(a) duration < 1.5s, (b) opposite polarity across the two leads (corresponding to 
horizontal movements), (c) maximal slope > 1µV/ms, and (d) no interictal spikes within 
0.5s. These parameters were chosen after careful visual examination of detected REMs. 
REM onsets were defined automatically as the first crossing of the 2 raw EOGs traces 
before the crossing of the detection threshold. All REM detections were verified visually. 
In addition, random time-points were selected from the same 10s segments but at least 
4s away from any EOG deflections, serving as control epochs devoid of any ocular 
activity but matched in terms of occurrence rate and position within the ultradian cycle. 
Latency and selectivity were computed from these random time-points as a control and 
then compared to real REMs onsets (see Results section). 

REM-triggered averaging 

Evoked potentials were obtained by averaging scalp EEG (ERP) and depth EEG 
(dERP) signals around REM onsets, after preprocessing (notch filter at 60Hz and 
harmonics, band-passed between 0.1 and 30Hz), mean subtraction (using a [-800 -400]ms 
interval), selecting epochs devoid of interictal spikes, and smoothing with a Gaussian 
kernel of 5ms (80ms in Figure 3-3B). In addition, for each unit separately, an average 
peri-REM time histogram (PRTH) was computed using 100ms bins (50ms overlap, see 
Supplemental Methods). A mean PRTH across all neurons (Figure S 3-2A), all modulated 
neurons (Figure S 3-2B), and all bi-phasic units (Figure S 3-2C) was computed after 
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normalizing each neuron's PRTH (% of baseline activity at [-800 -400]ms). Due to the 
predominance of bi-phasic units within the MTL, subsequent analysis (as shown in 
Figure 3-2D and Figure 3-3A) were only performed for neurons within the MTL 
exhibiting significant bi-phasic modulations around REMs (see also Supplemental 
Methods). 

Analysis of spike-train properties 

Occurrence and latencies of spike-trains in individual trials (REMs or images) were 
determined by a Poisson spike train analysis as in (Hanes et al., 1995), separately for s-
REMs, w-REMs, and following controlled visual stimulation. Selectivity was defined as: 
100% - the percent of trials (either REMs or visual stimuli) for which a spike-train was 
detected. Comparison between individual neurons in wake and sleep (n=131, Figure 
3-4D) focused on those neurons that were recorded in both vigilance states.  

Theta Phase Consistency 

Consistency of the phase in the time-frequency domain was determined by extracting the 
phase of EEG oscillations for each REM/image. Then, for each frequency-bin and time-
interval, we estimated the consistency of the phase across REMs/images for a given 
dEEG channel. Statistical differences were evaluated by comparing each time and 
frequency point to baseline values and correcting for multiple comparisons 
(Supplemental Methods).  

&
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Supplemental Methods 

Subjects 

Nineteen patients with pharmacologically intractable epilepsy (ages 19-52, 11 females) 
underwent monitoring with depth electrodes for seizure foci identification and potential 
surgical treatment (Fried et al., 1999a). Patients provided written informed consent prior 
to participation in the research study, under the approval of the Medical Institutional 
Review Board at the University of California, Los Angeles, USA. Electrode location was 
based only on clinical criteria, and Itzhak Fried performed all surgery. For each subject, 
localization of the seizure onset zone was based on recordings during hospital 
monitoring, in combination with prior functional and anatomical neuroimaging (Nir et 
al., 2011). Thirteen patients participated in a full overnight sleep study that also included 
epochs of wakefulness, nine patients participated in a visual object recognition paradigm 
(four of these individuals participated in both experiments), and one individual 
participated in a paradigm directly comparing activity around eye movements in darkness, 
with closed eyes, towards visual targets and during visual stimulation with fixation during 
wakefulness. 

 

Data Acquisition 

For each patient, 8 to 12 flexible polyurethane depth electrodes (1.25 mm diameter, see 
Figure 3-1B) were placed in some of the following regions: hippocampus, amygdala, 
entorhinal cortex, parahippocampal gyrus, temporal gyrus, fusiform gyrus, temporo-
occipital junction; anterior, middle and posterior cingulate; supplementary motor area, 
inferior frontal gyrus, orbitofrontal cortex, and parietal cortex. Electrode location varied 
between patients based on their clinical profiles (see Figure 3-1C for an overview). 
Electrode positions were verified using post-implant computed tomography (CT) co-
registered with pre-implant magnetic resonance (MR) imaging (Brain Navigator, Grass-
Telefactor Corp., Philadelphia, PA). Scalp and intracranial depth EEG data were 
continuously recorded, sampled at 2 kHz, bandpass-filtered in hardware between 0.1Hz 
and 500Hz and re-referenced offline to the mean signal of the earlobes electrodes. Scalp 
EEG (C3, C4, Pz and Fz), EOG, EMG, video, and behavioral observations were 
collected and preprocessed according to established guidelines for sleep study 
ploysomnography (Iber et al., 2007) (see Figure 3-1A). The two EOG electrodes (used 
for REM detection) were pasted below the left and above the right canthi and referenced 
to the contralateral ear lobe.  

In addition, each depth electrode terminated in a set of eight insulated 40-µm platinum-
iridium microwires (impedances 200 to 500 kΩ, see Figure 3-1B) (Fried et al., 1999a). 
Microwire signals were simultaneously recorded continuously (Cheetah Recording 
System; Neuralynx, Tucson, AZ for 10 patients; Neuroport Recording System; 
Blackrock, Salt Lake City, UT for 9 patients), sampled at 28 kHz (10 patients) or 30 kHz 
(9 patients), band-pass filtered in hardware between 1Hz and 9kHz, and referenced 
locally to a ninth non-insulated microwire. 
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Unit identification and spike sorting 

Units were identified using the 'wave_clus' software package (Quiroga et al., 2004) as 
follows: (i) extracellular microwire recordings were highpass filtered above 300Hz, (ii) a 5 
SD threshold above the median noise level was computed, (iii) detected events were 
categorized into either real clusters or noise based on the reliability of action potential 
waveforms and by the presence of a refractory period for single units, as in 23 (see 
Figure S 3-1A). The enduring nature of unit recordings throughout hours of continuous 
recordings (sleep studies: ~7h) was assessed by ensuring that action potential waveforms, 
and inter-spike-interval distributions were conserved in 1-hour intervals and that clusters 
remained separable throughout the recording session (see Figure S 3-1B). Overall, 600 
units were identified for full-night sleep/wake recordings (355 putative single units, 245 
multi-unit clusters) and 1,334 units for the visual stimulation sessions (541 putative single 
units, 916 multi-unit clusters). 

 

Polysomnographic sleep studies 

Sleep recordings were conducted at a minimal interval of 12 hours from identifiable 
seizures, 48-72 hr after surgery, and lasted for about 7 hours between 23:00 and 06:00. 
Sleep-wake stages (wakefulness, NREM sleep stages N1-N3 and REM sleep) were scored 
according to established guidelines (Iber et al., 2007). Additional information about sleep 
properties, hypnograms and power spectra of scalp EEG were can be found in previous 
publications (Andrillon et al., 2011; Nir et al., 2011). Wakefulness data relate here to 
periods preceding or following sleep as well as awakenings during sleep. On average, 
during these night recordings, patients had 4.5 (SD=2.2) continuous epochs of, at least, 1 
minute of data scored as wakefulness (mean duration: 17.8 min, SD=15.2). 

Behavioral notes during sleep studies were carefully examined to putatively distinguish 
between 'visual' and 'non-visual' epochs of wakefulness. Accordingly, in eight participants 
we were able to identify epochs which were either mostly 'non visual' (participant had 
open eyes while seated or lying in bed in a dark room; a total of 140 w-REMs in 304 
minutes, 10% of REMs), or mostly 'visual' (participant actively watching TV/DVD or 
interacting with other people in a well-lit room; a total of 1250 w-REMs in 355 minutes). 
In order to compare neuronal firing rates around these 'visual' and 'non-visual' events 
(Figure 3-3A middle), we randomly selected 140 'visual' w-REMs (among 1,250) to yield 
an equal number of 'visual' and 'non-visual' REMs (287 REMs for the dEEG analysis, 
Figure 3-3A bottom). Firing rates ±500ms around REM onsets were compared to the 
baseline activity ([-800, -500]ms) across bi-phasic units and REMs (see Methods and 
below for a definition of bi-phasic units). 

 

Visual stimulation studies 

Eight patients participated in 22 sessions of a visual object recognition paradigm (2 sets 
of 6 pictures each). When possible, pictures were chosen based on their effectiveness in 
eliciting responses in the recorded neurons by means of a 'visual screening' experiment 
performed earlier that day (Quiroga et al., 2005). Each session included two blocks, 
lasting 12 minutes each. During each block, 4 face and 2 place images were presented on 
a laptop computer for 200ms while subjects performed a face/place task. Each picture 
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was presented 24 times in a pseudo-randomized order, with pseudo-random inter-
stimulus intervals of 2-8s (uniform distribution).  

 

Wakefulness eye movement paradigm  

One individual participated in an eye-movement paradigm including four different 
experimental conditions examined in separate blocks: (a) saccades in darkness with open 
eyes, (b) saccades in darkness with closed eyes, (c) saccades to pictures presented at the 
periphery, (d) image presentation at the center of fixation. In the first two blocks 
(saccades in darkness), each trial started with a central fixation (white cross displayed on a 
portable computer screen superimposed on a dark background for [300 to 600]ms). A 
tone was then played (3,000 or 1,000 Hz, duration: 400ms), such that the low/high pitch 
tones instructed the patient to perform a horizontal saccade towards the left/right sides 
of the screen. The participant was instructed to maintain peripheral fixation for [1400 to 
1700]ms until the appearance of a double beep (2,000 Hz, duration: 300ms) after which 
participant had to fixate at the central cross again, in preparation for the next trial. The 
next trials started after a [1600 to 1900]ms period and the central fixation cross was not 
visible while gaze was directed at the periphery. In each block (see above) a total of 30 
saccades were made to each direction. In the 3rd block (saccades to pictures), trials 
likewise began with central fixation for [300 to 600]ms, after which a beep was played 
(2,000 Hz, duration: 400ms) and an image appeared at the periphery either to the left or 
right side of the screen. The subject was instructed to make a saccade toward the picture 
and to maintain the fixation for [1400 to 1700]ms until it disappeared. Then, the patient 
had to make a saccade back to the center where the central fixation cross re-appeared. 
Ten pictures were displayed 6 times each, randomly in either the left or right visual field. 
The next trial started after a [1600 to 1900]ms period. Finally, in the 4th block (vision with 
fixation), the participant was instructed to maintain fixation on a central cross while 
pictures appeared at random intervals. The participant followed a face/place 
categorization task by pressing two keyboard buttons; ten images (5 places, 5 faces) were 
presented 6 times each. 

 

Detection of Rapid-Eye Movements (REMs) 

We used EOG recordings as a proxy to track saccadic eye movements in wakefulness 
and sleep. EOG constitutes a reliable indirect measure of eye position even through 
closed eye-lids (see Supplemental Note). REMs were detected in a semi-automatic 
manner as illustrated in Figure 3-1D. The two EOG signals (Figure 3-1D, 1st row, blue 
and red curves) were first band-pass filtered between 0.1 and 3 Hz using a zero-phase 
2nd-order Butterworth filter, to attenuate fast background activity (Figure 3-1D, 2nd row). 
A detection threshold was then set at mean + 2 SD of the EOG signals across the whole 
night (epochs with absolute amplitude over 1,000µV were discarded from this 
computation so that such abnormal voltage would not influence our estimation) (Figure 
3-1D, 2nd row). Events crossing this threshold were considered REMs candidates (Figure 
3-1D, 3rd row) and further inspected so that (1) the segments above threshold had a 
duration of less than 1.5s; (2) they corresponded to an amplitude exceeding an equivalent 
threshold in the other EOG trace and of opposite sign; (3) their maximal slope (temporal 
1st derivative) was above a threshold of 1µV/ms (Figure 3-1D, 4th row). We discarded 
REMs too close to each other (<0.5s) as well as REMs in close vicinity (within 0.5s) with 
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detected epileptiform interictal spikes (rare). However, REMs tended to cluster in close 
succession, as illustrated in Figure 3-1G. Accordingly, 30±3% and 30±4% of REM 
onsets appeared within 1s from another REM onset in wakefulness and REM-sleep, 
respectively, Consequently, in both wakefulness and REM-sleep, the typical inter-REM 
interval was shorter than the expected value when considering uniform REM density 
across time (around 2.0s on average in wakefulness, see Supplemental Note and Figure 
3-1). Possible residues of epileptiform interictal spikes were identified in the EOG signal 
by searching for abnormal increase (absolute amplitude superior to mean + 10 SD) in the 
100-150 Hz band (Figure 3-1D, 5th row). We converged on these parameters after careful 
visual examination of the detected REMs and rejected candidates. We selected only the 
EOGs deflections with opposite phases since they correspond, in our EOG montage, to 
horizontal eye movements. Signal deflections that were in-phase across the two EOG 
traces were not analyzed since these may reflect either vertical eye movements or cortical 
potentials such as slow waves “leaking” to EOG measurements. REM onsets were 
defined automatically as the first crossing of the 2 raw EOGs traces before detected 
REMs (Figure 3-1D, 6th row). To ensure the quality of this detection scheme, all the 
automatically detected REMs and respective onset times were visually inspected. REM 
onsets were used as reference time points throughout our analysis, but considering other 
time (peaks of REMs, times of maximal slope) did not significantly alter the main results 
reported. In order to minimize the influence of outliers on inter-subjects or inter-units 
averaging, epochs of REM sleep and wakefulness with less than 20 REMs were discarded 
for each patient from subsequent analysis (except for the 'visual' vs. 'non-visual' 
comparison). In addition to this detection, random epochs were selected to be used as a 
control data set. For each identified REM, we detected nearby 2s epochs (within 10s of 
real REMs) during which there was no significant increase in either EOG channel and no 
traces of epileptiform interictal spikes. These “random” events matched REMs detection 
in terms of frequency of occurrence, sleep stages and presence within the ultradian cycle 
(i.e. time within sleep) for each patient.  

Evoked potentials in scalp and depth EEG 

Evoked potentials for depth EEG channels (dERP) in the MTL were computed as 
follows. Depth EEG channels were segmented in 10s segments, notch-filtered (2nd-
order IIR notch filter at 60 Hz and harmonics) to eliminate electrical noise, bandpass-
filtered (4th-order Butterworth filter between 0.1 and 30Hz) and corrected for baseline 
activity by subtracting the mean amplitude across 10s segments. Epochs around REMs 
onsets were selected ([-800 1000] ms) and averaged by channel and vigilance state.  
Statistical deviance between dERPs (around REMs) and baseline ([-800, -400]ms) was 
assessed using a paired t-test (alpha=0.05, n=11 patients) on fixed windows (pre-REMs: 
[-50 0]ms, post-REMs: [50 200]ms and late-component: [300 400]ms in the sleep study, 
[200 600]ms for image presentation) in order to match common components across 
conditions.  

 

Analysis of spiking activities during REMs 

A triggered-averaging analysis computing peri-REM-time histograms (PRTH) was 
performed for each unit separately as follows. Spike data were time-locked to REM 
onsets and averaged across REMs (Figure 3-2D,E) or units (Figure S 3-2) on a [-800, 
1000]ms window with 100ms bins (50ms overlap). Only REMs showing at least one 
spike in the [-800, 1000]ms window were included in PRTHs (for MTL units: n=16,738 
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events in wakefulness and 4,510 in REM-sleep). Individual neuronal activity was 
normalized on a [-800, -400]ms window and expressed as a percentage of baseline 
activity. In Figure S 3-2, MTL and non-MTL units were averaged together. Only units 
with at least 10 remaining REMs were included in the PRTH for Figure S 3-2. 

When considering all units from all recorded brain regions (Figure S 3-2, top), a clear bi-
phasic pattern appeared in wakefulness with a reduction in neuronal activity just before 
REM onset akin to saccadic suppression evidenced in monkeys (Bremmer et al., 2009) ([-
100, -50]ms) followed by an increase in neural activity. This increase lasted for about 
500ms after REM onsets, which is in accordance with latencies observed in MTL units in 
response to visual stimuli (Mormann et al., 2008). Interestingly, a similar (albeit smaller) 
increase was observed in REM-sleep between unit discharges after REM onsets ([50, 
400]ms) and either (i) pre-onset activity ([-100, -50]ms): one-tailed t-test p<0.01) or (ii) 
baseline (p<0.05). Significant modulations were then detected unit-by-unit by comparing 
each bin separately to PRTHs of the same unit computed around random epochs via 
bootstrapping: for each time-interval, the real firing rate around REMs was compared to 
surrogate values computed around random epochs across 500 iterations and compared 
via a paired Mann-Whitney U-test (α=0.005, uncorrected). To facilitate averaging 
between low- and high-firing rate neurons, the mean PRTH across all modulated 
neurons was computed after normalization of each neuron’s PRTH by the average firing 
rate over the entire window ([-800, 1000ms]). Figure S 3-2 (middle row) shows the 
emergence of a bi-phasic modulation pattern around REMs (activity over [50, 400]ms > 
[-100, 50]ms or baseline activity, one-tailed t-tests, p<0.05) despite the fact that our 
selection criterion did not impose a particular directionality. 

Subsequently, in order to focus on units showing a significant bi-phasic modulations 
resembling the pattern emerging from the neuronal population, we specifically selected 
units showing a significant increase in neuronal activity by comparing the average firing 
rate across REMs per unit and per sleep stage before ([-500, 0]ms) and after ([100, 
600]ms) REM onsets (one-tailed sign-test, α=0.1). Figure S 3-2 (bottom row) shows the 
equivalent PRTHs for all units from all recorded brain regions and Table 3-1 summarizes 
the proportion of modulated and bi-phasic units in the MTL and frontal regions (496 out 
of 600 units, the remaining units recorded in other temporal/parietal regions). Since bi-
phasic units were more observed within the MTL, we restricted our subsequent analysis 
(Figure 3-2, Figure 3-3, Figure 3-4, Figure 3-5 in main text) to these “bi-phasic” units 
recorded in MTL regions. Figure 3-2D shows the PRTHs for all bi-phasic MTL units. To 
ensure the robustness of the bi-phasic pattern obtained in Figure 3-2D, statistical tests 
across bins were controlled for multiple comparisons using a cluster-permutation 
approach (Maris and Oostenveld, 2007). Figure 3-2D show the presence of significant 
positive clusters after REMs onset in wakefulness and REM-sleep (Monte-Carlo p-
value<0.0001, cluster threshold: p<0.05) preceded by a decrease in firing rate prior to 
REMs onset (Monte-Carlo p-value<0.0001 in wakefulness, p<0.05 in REM sleep, cluster 
threshold: p<0.1). In the visual stimulation task, we observed only a positive cluster after 
image onset (Monte-Carlo p-value<0.0001, cluster threshold: p<0.05). 

 

Analysis of spike-train latency and selectivity 

Existence and latencies of spike-trains in individual trials (picture presentations or eye 
movements) were determined by Poisson spike train analysis as in(Mormann et al., 2008). 
In this procedure, the inter-spike intervals (ISIs) of a given unit are processed 
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continuously over a [-800, 1000]ms window and the onset of a spike-train is detected 
based on its deviation from a baseline Poisson, i.e., exponential, distribution of ISIs. 
Only units with mean firing rate above 2 Hz were included in this analysis (i.e. units 
behaving as a Poisson-process). For each trial (either picture presentation in controlled 
visual experiment or REM in wakefulness or REM in sleep) we determined the presence 
of spike-trains in this trial and the latency as the time between REM/image onset and the 
onset of the first spike in the spike-train. Only latencies within the first 1000ms were 
considered and the overall latency of that neuron was taken as the mean across all trials. 
Selectivity was defined as 100% minus the percentage of trials (either REMs or visual 
stimuli) for which a spike-train was detected. In the visual presentation paradigm, this 
value was restricted to limited set of fixed values due to the fact that a set of 6 images 
was presented to each patient. In Figure 3-4 and Figure S 3-3, all units within the MTL 
were analyzed and not only bi-phasic units. Comparison between individual neurons in 
wake and sleep focused on those neurons that were recorded in both vigilance states 
(n=131, Figure 3-4D). 

 

Analysis of phase consistency of intracranial EEG 

Phase consistency across REMs was estimated as follows. First, we performed a time-
frequency decomposition of the intracranial dEEG signal (EEGlab toolbox (Delorme 
and Makeig, 2004)) using a standard Fast-Fourier Transform on a 384ms window and a 
padding ratio of 2. Then the phase of the signal was extracted for all REMs/images and 
for each time and frequency. Phase coherence across REMs/image presentation was 
then computed using Euler's formula by time and frequency: 

 

(ITCP: inter-trial phase coherence; n: number of REMs/images; φt,f: phase of the dEEG 
signal at time t and frequency f) 

Due to the circularity of phase, a uniform distribution of phases across trials leads to a 
null phase coherence value. However, the repeated occurrence of a particular phase 
across trials (REMs or images), regardless of its exact value, leads to a non-null phase 
coherence value (with a maximum at 1 when the exact same phase recurs from trial to 
trial). Therefore, this procedure provides a measure of the re-occurrence across all trials 
of a specific phase at the same time relative to trial onset. Each time and frequency point 
was then compared to the phase coherence within a [-507, -151]ms baseline window 
(paired t-test, False-Discovery Rate (FDR) correction for multiple comparison) in 
wakefulness (N=71 dEEG channels), REM sleep (N=59) and image presentation 
(N=102, see Figure 3-5). Correlation across vigilances states was assessed by means of 
Pearson's correlation method by averaging phase coherence over a [2, 6]Hz window and 
[0, 400]ms window after REMs onset in wake and sleep. Given that ITCP depends on 
the number of events used to estimate it (see equation above), the number of REMs was 
equated across wake and sleep for each dEEG channel (N=50 REMs per channel, N=57 
channels). 
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Statistics 

Error bars in all figures denote standard error of the mean (SEM = SD/√(n-1), where n 
is the number of data points) unless otherwise stated. Student T-tests were performed 
after confirming normal distributions via Kolmogorov-Smirnov tests. Mann-Whitney U-
tests (non-parametric) were used when the normality was not confirmed. Correlations 
were examined using the non-parametric Spearman's rank correlation coefficient or 
Pearson's method for normally distributed pairs of variables. When necessary, 
corrections for multiple comparisons were performed using the False Discovery Rate 
(FDR) method (Benjamini and Yekutieli, 2011) or using a non-parametric cluster-
permutation approach (Maris and Oostenveld, 2007).  
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Supplemental Note 

Relation between electro-oculography (EOG) and saccadic 
eye-movements 

!

Recording saccades with EOG 

Since its discovery, the EOG has been extensively used to monitor ocular movements 
and saccades in particular. EOG is a reliable non-invasive measurement of eye-
movements and numerous studies established its relation with gold-standard techniques 
such as high-end video monitoring.  Saccades are classically defined as “a rapid conjugate 
eye movement that shifts the line of sight (center of gaze) rapidly from one part of the 
visual field to another, mainly used for orienting towards an object of interest. It is 
characterized by stereotyped relationships between amplitude, duration, and peak 
velocity. In human subjects, peak velocity typically rises along with saccade amplitude up 
to a saturation level of 400–500° per second, which is reached when the amplitude 
exceeds 10–30°, whereas duration rises linearly at a rate of 1.5–3 ms per degree starting 
from a minimum of 20–30 ms” (Squire, 2009). 

There are various methods to reliably record saccades made by an individual. The most 
accurate methods are the magnetic search coil (Robinson, 1963) and video eye-tracking 
techniques (Carpenter, 1988; Marg, 1951; Straube and Büttner, 2007; Young and Sheena, 
1975). However, these methods do not allow recording eye-movements with closed eyes 
or may cause major discomfort that render them unsuitable for prolonged sleep studies. 
To date, EOG is the most widely used technique to record saccadic eye movements with 
closed eyes (Iwasaki et al., 2005; Straube and Büttner, 2007). EOG is a non-invasive 
indirect proxy that records movements of the eyes through the perturbation of electric 
currents generated by the eyes (corneo-retinal potentials, (Abe et al., 2004; Young and 
Sheena, 1975)). Importantly, many studies have already compared in detail EOG with 
direct measurement of eye-movements to assess the reliability and limitations of this 
technique. 

With electrode placement (montage) and referencing as employed in our study, EOG 
reliably captures horizontal saccadic movements from 5° up to 70-80° of angle deviation 
(Boulanger et al., 2012; Joyce et al., 2002; Marg, 1951; Straube and Büttner, 2007; Young 
and Sheena, 1975). In this approximate angle range, there exists a linear relationship 
between EOG and saccade amplitude (Baloh et al., 1975; Becker and Fuchs, 1969; Leigh, 
2003; Straube and Büttner, 2007; Young and Sheena, 1975). However, the EOG is 
limited in the case of vertical eye-movements due to movements of the eye-lid(Ford et 
al., 1959; Iwasaki et al., 2005; Yee et al., 1985), therefore our study focuses on horizontal 
eye-movements.  

Thus, EOG captures horizontal saccades with medium angle deviations (that encompass 
the bulk of naturally occurring saccades (Becker and Fuchs, 1969)) and, within this range, 
the amplitude of the EOG signal can be used to infer about saccade amplitude. Ideally, 
the EOG is frequently calibrated against eye tracking so that the amplitude of each 
saccade can be estimated accurately from EOG signals (with a precision of about 0.5° 
(Straube and Büttner, 2007)). Despite good inter-subject reliability (Baloh et al., 1975), 
calibration requires the participant to periodically follow tasks with open eyes, and was 
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therefore not feasible in the current sleep study. However, saccade duration and 
amplitude are tightly correlated with good inter-subject reliability (Bahill et al., 1975; 
Baloh et al., 1975). Duration represents a more robust estimate since it does not depend 
on the absolute EOG voltage and can thus be used to indirectly assess saccades 
amplitude.  

Given the linear relationship between EOG duration and saccade amplitude in degrees, 
we estimated the amplitude of detected REMs by computing the duration of each REM 
(defined as the time interval between REM onset and REM peak in the EOG signal). 
Figure S 3-4 shows the distribution of REM durations, and the estimated saccade 
amplitude based on the established linear relationship. As can be seen, 90% of saccades 
were with durations within the 69-223ms range, corresponding to saccades between 
~10° and ~70° of angle deviation. In line with the literature and the details of our 
algorithm, none of our detected REMs had durations shorter than 50ms (corresponding 
to saccades below 10° of angle deviation). All in all, the events detected in our study 
represent a broad range of saccades with angles mostly in the range of 10°-70°.  

 

Detected REMs and their relation to saccades 

In our study we recorded EOG signals using a standard montage that is recommended 
by the American Academy of Sleep Medicine (AASM) to record horizontal eye-
movements during sleep studies (Iber et al., 2007), as well as for recordings of horizontal 
saccades (Straube and Büttner, 2007). We placed 2 electrodes on the right and left canthi 
referenced to earlobe electrodes, and the signals were band-pass filtered between 0.1 and 
35Hz. Our own analysis supports the conclusion of previous studies that the specific 
filter settings do not significantly influence the detection outcome (Boulanger et al., 
2012). Using a semi-automatic algorithm, we detected rapid eye movements in wake and 
sleep from EOG recordings (see Figure 3-1D, Methods section and Supplemental 
Material). The shape of detected events (see single events in Figure 3-1G, average in 
Figure 3-1F) is in very good agreement with EOG traces as described in those studies 
that directly compared EOG signals to saccadic eye movements with eye tracking 
(Boulanger et al., 2012; Plöchl et al., 2012). Therefore, the specific parameters used here 
to detect REM events are ideal to maximize the correspondence with horizontal saccadic 
eye-movements as detected with other techniques. 

Saccades are typically considered to occur a few times every second during wakefulness, 
and this may seem at odds with our detected REMs - occurring 2.6 times per minute 
(0.04 per second) on average during wakefulness (Figure 3-1E). However, several factors 
can account for this apparent discrepancy: 

(1) Our recordings took place during overnight sleep studies, therefore some 
epochs during wakefulness correspond to time intervals in which patients were 
awake but with closed eyes in bed, not gazing around. Indeed, when focusing 
on 10s epochs in which any REMs were detected, the rate of REMs was found 
to be 0.2 ± 0.01 REMs per second, representing a 5-fold increase compared to all 
wakefulness epochs. As a comparison, a recent study using infrared (IR) eye-
tracking to record saccades during free-viewing conditions reported an average 
inter-saccade interval of 0.73sec (Wang et al., 2012) (vs. 2.0s ± 0.1 in our 
study). 
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(2) Even when our participants were in fact awake with open eyes, they were 
looking around in a static hospital room with no specific instructions to 
explore a visual scene that could remain constant at moments,  

(3) Our conservative detection was optimized to avoid false-positives and 
therefore probably underestimates the occurrence of REMs (entails false-
negatives) 

(4) As explained in the previous section, vertical eye-movements as well as 
small (<5°) and micro-saccades (<2°) are not reliably captured with EOG 
recordings, therefore our detected events constitute a subset of all saccades as 
recorded with video tracking. 

 

Temporal dynamics of detected REMs and relation to saccades' 
dynamics 

In the saccade research field, it is often customary to focus on saccade velocity (rather 
than amplitude/duration) i.e. to extract the 1st derivative (Straube and Büttner, 2007), 
whereas in the sleep polysomnography field it is customary to treat the EOG signal “as-
is”19-21. The advantage of velocity is to clearly isolate the moment during which eyes are 
moving (non-null velocity). To better compare the temporal dynamics of REM reported 
here vs. saccades as classically described, we superimposed the EOG traces along with 
their 1st derivatives (as customary in saccade research). As illustrated in Figure S 3-5 (and 
in Figure 3-2 in the main manuscript) a saccade starts with a sharp increase in EOG 
velocity (Figure S 3-5, red arrow). The velocity reaches a peak (green arrow, after ~25ms) 
and decreases back to zero (pink arrow, end of saccadic movement). Thus, in terms of 
the EOG (light blue traces), the peak in the signal corresponds to the end of the saccade 
and the new fixation (Boulanger et al., 2012; Plöchl et al., 2012). EOG velocity highlights 
the transient nature of saccades (about 100ms) and verifies that in EOG traces, saccade 
duration can be approximated as the time between the onset and the peak in EOG 
amplitude (as defined in our Methods section).   

It seems that the late slow component of the EOG trace returning to baseline (after the 
peak in amplitude, around 100-600ms) occurs after the new fixation and is not part of 
the saccadic main sequence. This slow drift could either reflect after-saccade 
physiological processes (such as up-shooting (Leigh, 2003; Straube and Büttner, 2007), 
correction for head-movements (Boulanger et al., 2012) or subsequent saccades) or, 
alternatively, could reflect in part our high-pass filter settings (0.1Hz, see ure S 3-7).  
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Supplemental Figures 

!

Figure S 3-1 Stability of unit recordings and identification 

(A) Illustration of the unit identification scheme. Top row shows the high-pass filtered LFP along 
with the threshold for spike identification (5 SDs above the noise level (red line)). Middle row 
depicts action potential waveforms for three identified clusters. Bottom row shows the 
distribution of inter-spike-intervals (ISIs). Identification was based on the consistency of 
waveforms and the occurrence of ISIs within the expected refractory period (<3ms). Units were 
categorized either as multi-unit (blue), single-unit (red) or noise clusters (black). (B) Across long-
duration recordings (~7h), waveforms and ISI distributions were consistent and separable as 
illustrated here by the mean action potential waveforms for 5 distinct units recorded in the same 
individual. Each color denotes a different unit and each trace denotes the mean waveform in 
separate 1h intervals throughout sleep. Inset depicts ISI distributions in separate 1h intervals for 
two units. 
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Figure S 3-2 Population neuronal activity shows a bi-phasic modulation around REMs in 
wakefulness and REM sleep 

Bi-phasic neuronal responses to REM in wakefulness (w-REMs, blue, left panels) and REM-sleep 
(s-REMs, red, right panels) for all recorded units (A, top row), units showing significant 
modulations of their firing rate around REMs at any time and in any direction (B, middle row, 
see Methods) and units showing the specific bi-phasic pattern (C, bottom row). Units from all 
recorded brain regions were analyzed (see Figure 3-2 for an analysis focusing only on MTL 
neurons). Note that in both wake and sleep, a bi-phasic pattern emerges with a reduction in firing 
rate prior to REMs onset ([-100, -50]ms) and an increase immediately after REMs onset ([50, 
400]ms). The significance of the modulation was assessed by comparing across units (one-tail 
paired t-tests) the activity after REM onsets to (i) the activity prior to REM onsets (see gray bars) 
or to (ii) baseline activity (“pre”: [-100, -50]ms<baseline, “post”: [50, 400]ms>baseline, see p-
values reported on each panel). The number of units from all brain regions in each group (all, 
modulated and bi-phasic) is indicated as well as the proportion of these units located within the 
MTL (for an analysis focusing on MTL units, see Figure 3-2). Note the increase in MTL 
proportion for bi-phasic units. Error-bars show the SEM across units. 
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Figure S 3-3 Selective responses of units to images and REMs 

(A) Raster plots of representative single-unit responses following image presentation (top left) or 
REMs in wakefulness (top right, bottom right) and REMs during REM-sleep (bottom left). 
Dotted vertical red line denotes the time of image presentation or detected REM onset. Each 
spike is marked by a vertical tick. For the visual presentation, 6 different images were presented 
and the responses are grouped by image where the color of each spike corresponds to a different 
image. In other subpanels, trials are ordered chronologically from first (bottom) to last (top) 
REM. Circles show the onset of the detected spike-trains after time zero. Note the selectivity of 
the unit in the visual presentation paradigm (spike-trains detected almost exclusively for one 
image in green). Similar high ‘selectivity’ could be observed for REMs in wakefulness (top right). 
Other units exhibited low ‘selectivity’ during REMs, showing spike-trains for a larger percent of 
REMs in the few hundred milliseconds following REM onset (bottom). (B) Increase in firing 
rates for responsive MTL neurons (filled bars, N=50 in wakefulness, N=19 in REM-sleep) or 
non-responsive neurons (unfilled, N=132 units in wakefulness, N=113 units in REM-sleep) for 
all REMs (left), REMs with detected spike-trains (middle) or without (right). Green bars show 
the equivalent for MTL units in response to images (N=70). Note that REMs associated with 
spike-trains accounted well for the average post-REM increase in neuronal activity (as seen in 
Figure 3-2D). Error bars denote SEM across units. (C) Correlation of post-REM responses 
across vigilance states for those MTL neurons recorded in both wakefulness and REM-sleep 
(N=131 units) and for REMs with spike-trains. A partial correlation coefficient was estimated 
(Spearman's correlation) to establish the effect above and beyond differences in the mean firing 
rate of individual units (r=0.28, p<0.01 (**)). Thus, the magnitude of neuronal modulations was 
correlated across REM-sleep and wakefulness 
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Figure S 3-4 Amplitude and duration of detected REMs 

(A-C) For saccades larger than 5°, there is a linear relationship between saccades amplitude and 
duration (Panel A adapted from (Leigh, 2003), Panel B from (Baloh et al., 1975), Panel C from 
(Becker and Fuchs, 1969)). Red lines show the 5th and 95th percentile of REMs duration as 
detected in our dataset during wakefulness (n=2679 REMs). (D) Distribution of REMs duration: 
90% of REMs lasted between 69 and 223ms. On top, an approximate scale gives the equivalence 
in deviation amplitude computed from panel A and B. 
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Figure S 3-5 Temporal dynamics of saccades and detected REMs 

(A) Adapted from (Straube and Büttner, 2007), schematic representation of the saccadic 
dynamics. At 150ms after target presentation, a 10° saccade is made, lasting for ~30ms. This 
corresponds to a sudden increase in velocity. Velocity goes back to 0 by the time the eye position 
is stabilized to the new target. (B) EOG amplitude and EOG 1st derivative triggered-average for 
REMs detected in wakefulness and averaged by subject (N=13, time-locked to REMs onset). The 
amplitude and 1st derivative were computed on the EOG signal z-scored on the [-600, 800]ms 
time-window for each REM. The red arrows show saccade onset and velocity initial increase. The 
green arrow shows the velocity peak. The pink arrows show the saccade offset and new fixation, 
which corresponds to a null velocity and peak in EOG amplitude. 
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Figure S 3-6ure S 3-7 Effect of band-pass filtering on REMs average traces 

Triggered-average of simulated data (Gaussian noise with step function modeling EOG data with 
saccades) with or without band-pass filtering. Note that with band-pass filtering, the post-
saccadic potential is not constant as in the unfiltered case (step function) but drifts toward 0. 
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Note on contributions: 

Study 4: Louise Goupil, Tristan Bekinschtein and Sid Kouider designed Experiment 1. 
Louise Goupil collected the data. Leonardo Barbosa, Louise Goupil and myself analysed 
the data. Sid Kouider and myself designed Experiment 2. I analyzed the data in 
collaboration with Leonardo Barbosa. 

Study 5: Sid Kouider and I designed the experiment. I collected and analyzed the data 
with the help of Andreas Tier Poulsen for the computation of the Lempel-Ziv 
complexity. 

Study 6: Sid Kouider, Guillaume Legendre and I designed the experiment. Guillaume 
Legendre collected the data. Guillaume Legendre and I analyzed the data. 
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Summary 

Falling asleep leads to a loss of sensory awareness and to the inability to interact with the 
environment (Ogilvie, 2001). While this was traditionally thought as a consequence of the 
brain shutting down to external inputs, it is now acknowledged that incoming stimuli can 
still be processed, at least to some extent, during sleep (Hennevin et al., 2007). For 
instance, sleeping participants can create novel sensory associations between tones and 
odours (Arzi et al., 2012) or reactivate existing semantic associations, as evidenced by 
event-related potentials (Bastuji et al., 2002; Brualla et al., 1998; Goupil and Bekinschtein, 
2012; Ibanez et al., 2006). Yet, the extent to which the brain continues to process 
external stimuli remains largely unknown. In particular, it remains unclear whether 
sensory information can be processed in a flexible and task-dependent manner by the 
sleeping brain, all the way up to the preparation of relevant actions. Here, using semantic 
categorization and lexical decision tasks, we studied task-relevant responses triggered by 
spoken stimuli in the sleeping brain. Awake participants classified words as either animals 
or objects (Experiment 1) or as either words vs. pseudo-words (Experiment 2) by 
pressing a button with their right or left hand, while transitioning towards sleep. The 
lateralized readiness potential (LRP), an electrophysiological index of response 
preparation, revealed that task-specific preparatory responses are preserved during sleep. 
These findings demonstrate that despite the absence of awareness and behavioural 
responsiveness, sleepers can still extract task-relevant information from external stimuli 
and covertly prepare for appropriate motor responses.  

 

 

 

 

!
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Results 

We studied whether the categorisation of spoken words can still trigger task-relevant 
motor plans during early sleep stages. One main difficulty in addressing this issue 
consists in instructing a new task to sleeping subjects, arguably because prefrontal regions 
dealing with executive functions are then particularly suppressed in comparison to other 
cortical regions (Maquet, 2000; Muzur et al., 2002). One potential solution is to rely on 
the induction approach commonly used by studies on implicit perception in awake 
participants. This research reveals that the processing stream involved in making a 
semantic classification can, through explicit practice, be automatized and bypass 
prefrontal regions. Under those conditions, the categorisation of visual words and 
numbers can lead to the covert activation of motor cortex even when those stimuli are 
masked and presented below the threshold of consciousness (Dehaene et al., 1998; 
Kouider and Dehaene, 2007). In the current study, we extend this task induction strategy 
to track the ability of sleepers in extracting task-relevant information from speech and 
prepare for the appropriate motor plan.  

 

LRPs reveal semantic classification and response preparation before and 
after falling asleep 

We recorded the EEG of human participants while they were awake and instructed to 
classify spoken words as animals or objects (Figure 4-1). This procedure allowed us to 
compute LRPs – a neural marker of response selection and preparation (Masaki et al., 
2004) – by mapping each specific semantic category to a specific motor plan (e.g., 
animals with right hand, objects with left hand, counterbalanced across participants). 
This design allows for the assessment of lateralized response preparation towards the 
side associated with the appropriate semantic category. Thus, it allows testing whether 
sensory signals are processed beyond semantic levels, by probing how the meaning 
extracted from external words can lead to the covert selection and preparation of 
context-dependent actions. Testing conditions encouraged the transition towards sleep 
while remaining engaged with the same task-set: subjects received explicit allowance to 
fall asleep and were sitting in a dark room, eyes closed, in a reclining chair, listening to 
several repetitions of the same list of stimuli with a long inter-trial interval of 6-9 
seconds. Crucially, participants received an entirely new list of words (N=48) during 
sleep to ensure that their responses were based on the extraction of word meaning rather 
than a mere reactivation of stimulus-response associations established during the wake 
stage.  

!
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Figure 4-1 Experimental paradigm 

A. Participants (N=18 in each experiment) first made overt manual responses either to animal vs. 
object names presented every 6 to 9 seconds (semantic decision task; Experiment 1), or to words 
vs. pseudowords (lexical decision task; Experiment 2), while wearing an EEG cap. B. After either 
falling asleep (Experiment 1) or entering the N2 stage (Experiment 2), as assessed both by the 
absence of behavioural responses and by electrophysiological markers of sleep, a second list of 
stimuli was presented and EEG indices of response preparation were used to evaluate covert 
classification. 

Sleep onset was assessed online both behaviourally, by ensuring the absence of overt 
responses for at least two minutes of stimulation, and electrophysiologically, through 
sleep markers (i.e., disappearance of low-amplitude alpha/beta rhythms and development 
of high-amplitude delta/theta rhythms, see Figure S 4-1, presence of slow eye 
movements and other sleep graphoelements such as vertex sharp waves, regular 
spontaneous and evoked K-complexes or sleep spindles) before and after the 
presentation of each word. Participants underwent the transition from full wakefulness to 
light sleep and then oscillated primarily between stages NREM1 and NREM2. Note that 
trials were only considered as NREM1 when there was a complete lack of alpha rhythm 
accompanied by sleep markers. In order to discard epochs comprising brief awakenings 
and micro-arousals (i.e., re-appearance of a wake-like EEG activity for less than 3 
seconds; mean = 11.6%, SD = 8%), and to ensure that each trial included in the sleep 
conditions genuinely reflected a sleep state, we performed an offline and conservative 
evaluation of sleep stages relying on strict criteria. Scoring was performed here by two 
trained neurophysiologists blind to experimental conditions who additionally verified that 
participants remained asleep after stimuli onset, by tracking any electrophysiological signs 
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of arousals (re-appearance of a wake-like EEG activity for more than 3 seconds (Iber et 
al., 2007), whether the trial was associated or not with a button press), or any micro-
arousals. Details and statistics about sleep scoring are provided in the Supplemental 
Experimental Procedures (see also Figure S 4-1 for individual sleep architectures). 

 

Figure 4-2 Motor preparation to semantic categories 

Semantic categorization LRPs, computed by subtracting contralateral from ipsilateral activations 
(see Supplemental Experimental Procedures), revealed covert response preparation towards the 
target side (i.e., contralateral to the appropriate hand movement) in the vicinity of motor areas, 
both during wake and sleep trials. Time-series show the LRP curves from stimulus onset on 
central (C3/C4) and central posterior (CP3/CP4) electrodes for (A) the main effect, (B) the 
difference between sleep and wake conditions, and (C-D) the LRPs restricted to each condition. 
Bars above the time-series show significant clusters with a monte carlo p-value < 0.05. 2D 
topographies show the LRP over the whole scalp obtained for each couple of electrodes (i.e., 
left/right couples), during the peak of activation of each cluster (when both electrodes pairs 
reached significance at the same time, the topographies were identical in both peaks, and only 
one is shown for brevity). The color code shows significance at the sample level (time-series) and 
electrode level (topographies), with white color on all non-significant data points (p > 0.05). 
Histograms in the wake LRP show the RTs distribution. 

Lateralized Readiness Potentials constitute a direct and sensitive measure of response 
selection and preparation towards the target side, which is maximal in amplitude at scalp 
sites over the motor/premotor cortices contralateral to the responding hand (Coles, 
1989; Kutas and Donchin, 1980). LRPs, traditionally computed by reference to response 
onset, can also be measured by reference to stimulus onset (Leuthold, 2003a; Tollner et 
al., 2012a), making them suitable to measure cortical responses in the absence of overt 



Study 4 

150!

motor responses (i.e. during sleep). We first characterised the main (i.e., state-
independent) effect of response preparation, by collapsing sleep and wake trials and 
computing stimulus-locked LRPs using cluster-based permutation analysis (see 
Supplemental Experimental Procedures). This analysis revealed a first negative deflection 
corresponding to the LRP with two significant peaks at 660 and 1620ms, primarily over 
central (C3/C4) and central posterior (CP3/CP4) electrodes (Figure 4-2a). Interestingly, 
after 2000ms the LRP returned to baseline for several seconds until the emergence of a 
second negative deflection peaking around 5570ms. Secondly, to test the difference 
between wake and sleep states we subtracted the wake condition from the sleep 
condition (Figure 4-2b). Remarkably, we found no significant difference for the first LRP 
deflection but a clear significant effect afterwards, during the opposite deflection around 
2920ms for C3/C4 and 3800ms for CP3/CP4. Restricted analysis for each vigilance state 
confirmed the significant early LRP deflection for wake trials and, crucially, also for sleep 
trials separately (Figure 4-2c-d). However, the opposite and later positive deflection was 
present only during wake trials. As shown in Figure 4-2c, the distribution of response 
times during wake trials suggests that the initial LRP reflects the preparation of the 
motor plan, while the inversion of potential appears to follow manual responses. This 
interpretation was confirmed by performing a similar analysis on readiness potentials 
now time locked to the actual response showing the classical LRP deflection at response 
onset, followed immediately by the opposite deflection following the manual response 
(Figure S 4-2). As discussed below, this opposite deflection in the wake condition is likely 
to reflect a post-response checking mechanism that is exacerbated under conditions of 
drowsiness. 

These results suggest that task-relevant motor preparation can be triggered during sleep. 
Yet, several potential issues should be addressed before drawing this conclusion. First, 
one might question whether participants in our study were truly asleep. Although our 
procedure for assessing sleep involved both online scoring and waiting for at least 2 
minutes of absent responses before shifting to the new list of words, subjects sometimes 
pressed buttons either spontaneously or in response to auditory stimulation during the 
sleep list (14% of trials, not included in the analyses). Those button presses could be 
regarded as temporary arousals whereby the subjects might wake up for one or two trials, 
or even micro-arousals (i.e., less than 3 seconds). However, they might also reflect a 
nonconscious triggering of motor actions in responses to a sensory stimulation, as it is 
well-known in the literatures on visual masking (e.g., subliminal action priming; (Vorberg 
et al., 2003)) and blindsight patients (Cowey and Stoerig, 2004; Weiskrantz, 1990). In 
addition, past studies have shown that motor reflexes can be triggered during sleep 
(Dagnino et al., 1969). Finally, these button presses, might reflect, more simply, the fact 
that subjects during early sleep stages are prone to perform small movements considered 
in the literature as peripheral motor activations (i.e., unrelated to task or environmental 
contexts) such as muscle twitches (Chase and Morales, 2005). Inspection of the data 
revealed that in most cases button presses were associated with micro-arousals, although 
there were cases where button presses were not accompanied by any signs of arousal. 
Importantly, our results were computed not only by excluding any trial with button 
presses, but also after performing a conservative evaluation of their vigilance state.  
Indeed, in order to be fully confident that the trials we included in our analysis genuinely 
reflect a state of sleep, micro-arousals and arousals (associated or not with button 
presses) were detected and trials in the direct vicinity of these events were discarded, 
although they may be considered as sleep trials according to established guidelines. A 
related issue concerns the fact that our participants received the sleep list from the onset 
of NREM1, and thus our sleep condition reflects a mixture of NREM1 and NREM2 
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stages. Yet, contrary to NREM2, the NREM1 stage is sometimes regarded as an 
ambiguous transition state in which awareness and responsiveness might be partially 
preserved (Bareham et al., 2014; Goupil and Bekinschtein, 2012; Ogilvie, 2001). Our data 
set did not allow us to reliably separate the two sleep stages due to a lack of power, as the 
48 items were distributed across both stages. It thus remains possible that, even 
controlling for electrophysiological and behavioural markers of arousal, participants may 
have somehow remained conscious aware during NREM1 late stages, To account for 
this potential issue and ensure that task-relevant responses can genuinely be triggered 
during sleep, a more stringent control of vigilance was implemented in the second 
experiment, where only NREM2 brain activity was considered in the sleep condition. 

Another potential issue concerns the use in our study of a specific scoring method 
developed by Hori and collaborators for protocols with short epochs and focusing on 
hypnagogia (Hori et al., 1994; Tanaka et al., 1997). One might argue that this method, 
which is less commonly used, might underestimate the level of sleepiness and/or miss 
potential contaminations by micro-arousals in comparison to the standard scoring 
approach. We thus re-scored our semantic decision data using the widely used guidelines 
of the American Academy of Sleep Medicine (AASM) (Iber et al., 2007). We observed 
that the two scoring methods largely matched in terms of classifying trials in the wake or 
sleep state (93.1% overlap across participants; SD = 4.1%). Crucially, re-analyses of our 
data using the AASM scoring revealed a very similar pattern with a significant LRP 
deflection for sleep trials (see Supplemental Experimental Procedures and results in 
Figure S 4-3), confirming the presence of task-relevant responses during sleep even when 
using a more conventional method for scoring sleep. Finally, regarding the comparison 
with the wake state, a potential issue might be that the strong positive deflection we 
observed with a reversal of the LRP response after an overt motor response, might 
reflect specific conditions of drowsiness. Indeed, participants were tested while falling 
asleep and reaching a certain level of drowsiness, which might increase the reliance on 
post-response checking mechanisms, leading to the reconfiguration and 
amplification/reduction of ipsi/contra-lateral motor areas (Haggard, 2005; Praamstra et 
al., 2005). Hence, a more direct comparison between wake and sleep states would thus, 
not only exclude NREM1 trials as described above, but also compare sleep with 
conditions of full wakefulness (i.e., avoiding the drowsiness period where subjects are in 
the process of falling asleep). 

 

LRPs for lexical decisions in full wakefulness and NREM2 sleep 

We performed a second experiment in which we instructed participants to perform a 
lexical decision on spoken material. Participants classified auditory stimuli as words vs. 
pseudowords (i.e., items that don’t exist in the lexicon, but share the same phonological 
properties as real words) with their left vs. right hand (counterbalanced across subjects). 
This second experiment, in addition to dealing with the potential issues mentioned above 
regarding the wake-sleep transition, allowed us to verify whether the induction approach 
can be generalized to other classification tasks on external stimuli. Here, the nap was 
preceded by a session where participants received the first list of stimuli under full 
wakefulness, while siting upright and not allowed to fall asleep. Participants were then 
presented repeatedly with the same list while now being reclined and allowed to fall 
asleep under similar testing conditions as in the semantic decision group. In addition, 
participants in this second experiment received the second list of stimuli (N=72) only 
after the onset of the NREM2 stage (i.e.,following the first appearance of a spontaneous 
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K-complex or sleep spindle). This design allowed contrasting LRPs during consolidated 
sleep vs. full wakefulness rather than during the transition where subjects are either 
drowsy or in a labile (NREM1) sleep stage. Since the Hori scoring is optimized for 
evaluating the hypnagogic period (primarily NREM1), we decided to apply AASM 
scoring for this second experiment, while also controlling for micro-arousals (see 
Supplemental Experimental Procedures and Figure S 4-4 for individual hypnograms). 
Trials associated with a button press and micro-arousals dropped to 2.3% (SD=1,7%) 
and 0.3% (SD=0.6), respectively, and were excluded from further analysis.  

 

Figure 4-3 Motor preparation to lexical categories 

Lexical decision LRPs (see Figure 4-2 for a description). 

Analysis of the main (i.e., state-independent) effect of response preparation revealed two 
LRP clusters, with an early effect peaking at 1276ms and a later and more sustained 
effect peaking at 5016ms and extending from 3508ms until the end of the epoch at 
8000ms (Figure 4-2a). Separate analyses for each vigilance state showed that the early 
LRP component was mostly driven by the wake condition, while the later and more 
sustained cluster was primarily driven by the sleep condition (Figure 4-2c-d). Indeed, 
while the LRP in the wake condition was rather transient and overlapped with the 
reaction times distribution, the LRP during sleep corresponded to a large and sustained 
response developing slowly over time. As a consequence, the contrast of wakefulness 
(i.e., the difference between wake and sleep trials, Figure 4-2b) revealed a trend for an 
early negativity, suggesting a stronger early LRP under wake conditions, and a significant 
and sustained positivity for the late component, reflecting a delayed LRP during sleep. 
These results confirm the presence of covert task-relevant responses to speech during 
sleep, and extend the finding in the semantic decision from experiment 1 to the 
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classification of lexical properties during the NREM2 state. Notably, the opposite 
deflection found in Experiment 1 under drowsy conditions was not observed here under 
conditions of full wakefulness. It is also interesting to observe that the LRP during sleep 
was further delayed in time compared to Experiment 1. We interpreted this finding as the 
involvement of slower mechanisms of evidence accumulation during the N2 stages in 
Experiment 2, compared to the mixture of N1 and N2 responses in Experiment 1 
(Ogilvie, 2001).  

One might still argue that participants in our study were somewhat aware of the spoken 
stimuli, with fleeting micro-arousals that are difficult to detect in the EEG, resulting in a 
state of transient arousal/drowsiness not allowing them to perform an overt behavioural 
response. In order to directly address this issue, through an operational measure of 
stimulus awareness, we instructed participants to performed an explicit recognition task 
right after the lexical decision experiment, after regaining full consciousness. They were 
presented with the stimuli either from the wake list, from the sleep list or from a new list 
of completely novel items (counterbalanced across participants), and were instructed to 
classify each stimulus as either old or new, and then rate their confidence about their 
decision on a scale ranging from 1 (completely guessing) to 7 (completely sure).  

 

Figure 4-4 Memory test upon awakening 

Results of the old/new explicit recognition test performed immediately after the nap. Participants 
received stimuli from the wake list, sleep list and an entirely new list, and were instructed to 
indicated which items has been played previously or was entirely new. Performance, computed by 
comparing responses of the wake and sleep lists to the new list, revealed high-accuracy 
performance for the wake list, but chance-level performance for stimuli presented during sleep. 
Error bars denote 1 SD. 

The post-test revealed that participants could distinguish new words from words 
presented during the wake period (performance=81,5%; d’=2.16; both p<0.0001), but 
crucially not from words presented during sleep (performance=51,2%; d’=0.13; both 
n.s). Consistently, the post-decision confidence estimates also did not differ between the 
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new and sleep lists (mean confidence: 4.79 vs 4.80, respectively, n.s), while they were 
significantly higher for the list presented during the preceding period of wakefulness 
(5.80; both ps <0.001). Overall, these results add strong evidence supporting the fact that 
participants did not have explicit access to the stimuli presented during sleep, and 
confirm that the LRP obtained during sleep most likely reflects a nonconscious form of 
speech processing.  
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Discussion 

There is now converging evidence that environmental stimuli can still be processed 
during sleep, at least to a certain degree (Hennevin et al., 2007). For instance, meaningful 
stimuli (e.g. own names, own baby's cry, fire alarm) are more likely to lead to awakening 
(Bruck et al., 2009; Formby, 1967; Oswald et al., 1960; Portas et al., 2000). Furthermore, 
sleeping participants, while in REM or non-REM stages, can create novel sensory 
associations between tones and odours (Arzi et al., 2012) or reactivate existing semantic 
associations as evidenced by the presence of an N400 component in EEG (Bastuji et al., 
2002; Brualla et al., 1998; Goupil and Bekinschtein, 2012; Ibanez et al., 2006). Besides, 
sleepwalkers are able to re-enact recently learned sequences of movements (Oudiette et 
al., 2011). Thus, there is evidence, albeit scarce, that sleep does not preclude meaning 
extraction or the activation of learned associations and sensorimotor links. However to 
date, no study has directly tested the possibility that environmental stimuli are processed 
in a flexible manner, all the way up to the preparation of task-relevant responses. Here, 
using LRPs, we show that sleeping participants are still able to prepare for the 
appropriate response on semantic and lexical decision tasks practiced before falling 
asleep. The current design, using single word presentations, does not directly test for 
meaning extraction (unlike classical N400 paradigms using word pairs or sentences). 
However, our study reveals speech processing through semantic and lexical 
categorization by demonstrating the preparation of motor plans conditional on the 
meaning of spoken words. These results not only confirm previous findings showing that 
semantic information can still be extracted during sleep, but further show that this 
nonconscious meaning extraction can be routed by the task context and reach higher 
processing levels, up to motor preparation stages. This suggests that when processing 
environmental information during sleep, at least during early non-REM stages, only the 
final stages related to action execution might be suppressed. 

An important remaining question, therefore, is where in the neural stream ranging from 
motor preparation to action execution lays the bottleneck responsible for the lack of 
behavioural response. Previous studies revealed that sleep is associated with both the 
inhibition of dorso-lateral prefrontal cortex, a crucial area for executive functions 
(Maquet, 2000; Muzur et al., 2002), and the functional breakdown in thalamo-cortical 
connectivity, associated with the loss of wakefulness and sensory awareness (Massimini 
et al., 2005). On the contrary, neural activity in other cortical regions, including 
sensorimotor areas, do not importantly differ from the wake stage (Issa and Wang, 2008; 
Maquet, 2000; Y. Nir et al., 2013). The preserved functionality of these regions may 
support elaborate -albeit automatized- cognitive processes such as those observed in the 
present study. One might even expect that, as long as a given task has been induced 
during the wake stage, almost any processing stream could potentially remain activated 
during sleep. Future studies will be necessary to address this issue, and in particular 
whether even higher-order regions dealing with executive functions such as cognitive 
control or task-switching can be triggered using a task-induction strategy. 

It remains to elucidate whether this finding would generalize to other sleep stages, and in 
particular to REM sleep, where there is an almost complete muscular paralysis but 
electrophysiological activity is closer to that of wakefulness. On the one side, because the 
strong inhibition of motor neurons during REM sleep involves only sub-cortical 
structures (such as the locus coeruleus which targets motor neurons in the spinal cord) 
and given the relatively preserved information processing capabilities during this stage 
(Chennu and Bekinschtein, 2012), one might still expect similar covert responses as 
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found here. On the other side, these findings might be restricted to the initial stages of 
sleep during which the thalamus is mostly deactivated while large parts of the cortex 
remain active (Magnin et al., 2010). Future studies relying on full night protocols will be 
necessary to address whether the integration of semantic and decision processes can 
bypass early sleep stages.  

Beyond revealing unsuspected processing capabilities in the sleeping brain, this study 
uncovers a promising avenue to study nonconscious influences. Research investigating 
the distinction between conscious and nonconscious mechanisms (the so-called 
‘contrastive approach’ (Baars, 1988)) generally focuses on the notion of contents of 
consciousness. In this framework, the participant can be nonconscious ‘of’ a specific 
content as in a typical situation of visual masking, but she remains fully conscious in the 
intransitive sense of being aroused and vigilant. For instance, while previous studies 
using subliminal priming have shown that invisible primes can trigger lateralized 
readiness potentials (Dehaene et al., 1998; Eimer and Schlaghecken, 1998), participants in 
these studies were still having conscious access to their goal-directed behaviors in order 
to perform a specific task on target stimuli. Here, although sleeping participants may 
continue to process information in a goal-oriented manner, this task-set is presumably 
maintained without the participant being conscious of it. Moreover, our experimental 
approach relying on levels rather than contents of consciousness allows not only to 
examine the neural consequences of perceptual processes when the subject is 
nonconscious in any possible respects, but also offers the opportunity to use sensory 
stimuli that are not degraded in any manner. Indeed, the strong degradation of sensory 
signals typically used to achieve robust unawareness in masking studies, either in the 
visual (Kouider and Dehaene, 2007) or the auditory modality (Kouider and Dupoux, 
2005), unavoidably decreases the strength of neural responses, especially in brain regions 
dealing with high-level information (Kouider and Dehaene, 2007). Hence, studying sleep 
in this context allows pushing further the limits and extents of nonconscious processes 
and establishing the properties of a broader and more natural type of cognitive 
unconscious. 
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Supplemental Information 

Participants 

Eighteen native English speakers (6 women and 12 men, age range: 18-30 years) took 
part in Experiment 1. An additional 29 participants were tested but not included in the 
final analysis because of a failure to fall asleep (N=27) or due to excessive artefacts in the 
EEG signal (N=2).  For Experiment 2, 18 native French speakers (12 women and 4 
men, age range: 20-28 years) were included out of 22 subjects. Four subjects were thus 
excluded either due to not falling asleep (N=1) or note reaching the N2 stages (N=3). All 
subjects were right-handed, and reported no auditory, neurological or psychiatric 
alterations. To increase the probability that participants would fall asleep in our 
experimental setup, only easy sleepers, as assessed by the Epworth Sleepiness Scale, were 
selected for this study. This scale evaluates whether participants are used to easily falling 
asleep, for instance when watching TV or during train trips. Recruited participants were 
considered healthy with relatively high ESS scores but not corresponding to a condition 
of pathological sleep such as hypersomnia: the average ESS scores were 10.4 with (range 
7-14) for Experiment 1, and 11.6 (range 7-16) for Experiment 2, while the maximum 
possible score is 24. Participants were also asked to avoid exciting substances as coffee, 
and to sleep 1-2 hours (20%) less than usual the night preceding experiment 1 and 2-3 
hours (30%) less than usual for Experiment 2. They signed a written consent and were 
paid for their participation. Both experiments were approved by the relevant local ethical 
committees (Cambridge psychology research ethics committee for Experiment 1, Conseil 
d'évaluation éthique pour les recherches en santé for Experiment 2). 

 

Stimuli 

For Experiment 1, stimuli were spoken words selected from the CELEX lexical database 
(Linguistic Data Consortium, University of Pennsylvania). There were 48 names of 
objects and 48 names of animals. Half were monosyllabic and the other half disyllabic, 
with animal and object names matched as closely as possible in terms of combined 
(spoken and written) log lemma frequencies, as confirmed by an independent t-test (p > 
0.10). Additionally, words within the two categories were matched in a pair-wise fashion 
regarding their phonological properties: each object name was matched with a similar 
animal name (for example “quilt” was matched with “quail”), ensuring that animal and 
objects names could not be differentiated in terms of sub-semantic (i.e., phonological) 
properties. The words were tape-recorded by a female voice and digitized. Two lists of 
48 stimuli each were produced, one for the wake period and the other for the sleeping 
period (counterbalanced across participants). For Experiment 2, the material consisted of 
216 auditory stimuli corresponding to 108 pairs of words and pseudowords (half CVC 
monosyllabic and half CV-CV disyllabic) recorded by a male native French speaker and 
digitized. Within each pair, words and pseudowords were matched in length and 
phonological (consonant-vowel) structure. The words were selected from the Lexique 
database (New et al., 2004) and the pseudowords were all legal and pronounceable 
combinations of sounds in French. Three lists of 72 stimuli matched for frequency and 
phonological structure were constructed such as to be counterbalanced across 
participants for the wake period, the sleep period and the new list in the old/new 
recognition task following the main experiment.  
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Procedure 

Participants were lying down with their eyes closed in a comfortable reclining chair in a 
dark and electrically and acoustically shielded EEG cabin. Stimuli were presented 
binaurally through headphones (Experiment 1) or through loud speakers (Experiment 2). 
Participants were instructed to perform a semantic categorization on whether each 
spoken word referred to an animal or to an object (Experiment 1) or to perform a lexical 
decision on whether each spoken stimulus existed or not in French (Experiment 2), by 
pressing a button with either their left or right hand (with response hand 
counterbalanced between participants). For Experiment 1, they were told that they could 
fall asleep at any time during the task, but were asked not to stop responding deliberately 
before falling asleep (i.e. not to stop responding in order to fall asleep). For Experiment 
2, participants first performed a full session with the wake list items (about 10 minutes) 
under conditions were they were fully wake and not allowed to fall asleep, before hearing 
the wake list again while being reclined and allowed to fall asleep under similar testing 
conditions as in Experiment 1. Testing conditions encouraged the transition towards 
sleep while remaining engaged with the same task-set (explicit allowance to fall asleep, 
dark room, eyes closed, reclining chair, several repetitions of the first stimulus list, long 
inter stimulus interval). The continuous, uninterrupted flow within and across the two 
lists of stimuli was aimed at reducing the probability of awakening. 

While being awake, participants could hear up to 4 repetitions of the first list. In 
Experiment 1, they were presented with the second list of 48 items only once during 
sleep while in Experiment 2, they could receive the second list of 72 items up to 3 times 
to increase the number of sleep trials. Stimuli were presented in a random order with an 
inter-stimulus interval varying between 6 and 9 seconds in Experiment 1 and a fixed 
duration of 9 seconds for Experiment 2. The presentation of spoken items would switch 
to the second list without interrupting the pace of the experiment whenever the 
participant was assessed by the experimenter as being asleep (Experiment 1) or as 
entering the NREM2 stage (Experiment 2, see details below),  For Experiment 2, 
stimulation was switched back to the wake list  in cases of  return to NREM1, (micro)-
awakenings and/or button presses. Stimulus delivery and response collection was 
controlled by the E-Prime software (Psychology Software Tools, Pittsburgh, PA) for 
Experiment 1 and by the Matlab (MathWorks Inc. Natick, MA, USA) using the 
Psychophysics Toolbox (Brainard, 1997) for Experiment 2. 

 

EEG recordings and analysis 

The electroencephalogram was continuously recorded from 64 Ag/AgCl electrodes 
(NeuroScan Labs system for Experiment 1; Electrical Geodesic Inc system for 
Experiment 2), with Cz as a reference. The impedance for electrodes was kept following 
constructor recommendations. Data were acquired with a sampling rate of 500 Hz 
(Experiment 1) or 250 Hz (Experiment 2). For the wake trials, only the first list 
occurrence was analysed (Experiment 1: N=48, Experiment 2: N=72). Continuous data 
were epoched from -2000 to 6000ms (Experiment 1) or to 8000ms (Experiment 2) in 
relation to stimulus onset, low-pass filtered at 30Hz and baseline corrected in respect to 
the pre-stimulus window of 2000ms. Trials with any electrode passing an absolute 
threshold (Experiment 1 with the NeuroScan system: 1000 µV, Experiment 2 with the 
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Electrical Geodesic Inc system: 250 µV) were rejected from the analysis (this concerned 
only non-physiological events). We used a very liberal threshold because sleep trials may 
contain large-magnitude K-complexes.  

Separate averages were computed for left (L) and right (R) hand trials, resulting in two 
average waveforms for each electrode and participant. Stimulus locked LRP were then 
computed according to the procedure by Coles (1989, (Coles, 1989)), using the ERP 
waveforms recorded from corresponding electrode pairs in each hemisphere as follow:  

LRP = [(R hand – L hand trials) on L electrode 
+ 

(L hand – R hand trials) on R electrode] * 0.5 

Statistical significance was assessed through cluster/permutation statistics calculated 
within participants, allowing us to deal with the potential issue of multiple comparisons 
in a principled manner. Each cluster was constituted by the samples that consecutively 
passed a specified threshold (in this case sample p-value of 0.1). As demonstrated by 
Maris & Oostenveld (Maris and Oostenveld, 2007), this threshold doesn't change the 
type-1 error, and the method controls for false alarms independent of this value. The 
cluster statistics was chosen as the sum of the t-values of all the samples in the cluster. 
Then, we compared the cluster statistics of each cluster with the maximum cluster 
statistics of 1000 random permutations. The significance of LRPs was assessed during 
both for the wake and sleep conditions by using a threshold monte-carlo p-value of 0.05. 

 

Sleep assessment for Experiment 1 

Sleep onset was determined online by relying on both behavioural and electrophysiological 
criteria. Participants were assumed to be asleep if they were not responding for at least 2 
minutes, and if they were presenting EEG and EOG patterns characteristic of NREM 
sleep: reduction of fast rhythms (alpha – beta) in favour of slower rhythms (theta waves), 
slow-eye movements, vertex sharp waves and possibly evoked and/or spontaneous K-
complexes and sleep spindles. Once sleep onset was confirmed, the first list was switched 
to a second one, never heard by the participant. For Experiment 1, after switching list, 
participants could occasionally press a button (14% of the trials in the sleep list). An 
offline sleep assessment was therefore conducted to confirm the sleeping state and to 
remove arousals or ambiguous trials (i.e., with potential micro-arousals), as well as trials 
with a button press. For Experiment 1, in which we concentrated on wake-to-sleep 
transition, we used an extension of standard sleep staging adapted and validated by Hori 
and collaborators (Hori et al., 1994; Tanaka et al., 1997). This method allows for a more 
refined sleep scoring since it uses smaller epochs prior to the stimulus onset (4 seconds) 
and allows for a more detailed characterisation of the hypnagogic period at the time of 
the auditory stimulation. Wakefulness was characterized by regular responses to stimuli, 
presence of fast low-amplitude rhythms such as alpha rhythms (8-13 Hz) especially on 
occipital electrodes, eye-blinks or saccades. Participants were declared asleep after the 
disappearance of alpha rhythm, replaced by slower oscillations (vertex sharp waves, theta 
rhythms). On the EOG, presence of slow eye movements was also indicative of the wake 
to NREM1 transition. Finally, when spontaneous K-complexes or spindles occurred in 
the 4s epoch prior to stimulus onset, the trial was scored as NREM2.  

Importantly, in our protocol, it was crucial to assess not only the context in which stimuli 
were played (determined through the careful examination of the pre-stimulus activity) but 
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also how these stimuli affected brain activity by potentially triggering micro-arousals. In 
order to retain as sleep trials only those for which participants were genuinely asleep and 
remained in this state, we visually detected and marked every sign of arousal (increase in 
low-amplitude fast rhythms such as alpha oscillations or oscillations above 16Hz for 
more than 3 seconds and stable for at least 10 seconds) or micro-arousal (increase in low-
amplitude fast rhythms such as alpha oscillations or oscillations above 16Hz for less than 
3 seconds) following the stimulus onset (see (Iber et al., 2007)). Although micro-arousals 
were accompanied with behavioural responses in only a few cases, such trials were 
discarded from our analysis to ensure a conservative sleep scoring. This resulted in a total 
average of 70.8 trials per participant in this experiment, corresponding to 42.6 and 28.2 
trials per participants in the wake and sleep conditions, respectively. Remaining trials 
were discarded (e.g. trials from the sleep list that were potentially associated with micro-
arousals and/or with a button press). Among the trials included in the sleep condition, 
79.4% were scored as NREM1 and 19.7% as NREM2. However, in order to satisfy 
standard definitions, NREM2 was scored only after the first occurrence of a spontaneous 
spindle or K-complex. As a consequence, evoked K-complexes or sleep spindles were 
still observed in 27.2% of NREM1, which reflects a deeper sleep stage than the standard 
NREM1. None of the participants reached the NREM3 stage or showed a REM episode. 
When considering a -2 to 4s window around stimuli onset, K-complexes were observed 
in 24.5% of sleep trials (23.2% of NREM1 trials) and sleep spindles in 8.5% of sleep 
trials (4.9% of NREM1 trials). 

Note that no consensus exists for a simple (e.g. scalar) criterion that can be used 
automatically to separate sleep from wake trials, arguably because of the individual 
differences in terms of amplitude/frequency range used to score vigilance states (see for 
instance (Klimesch et al., 1999) for alpha and theta rhythms). For these reasons, the sleep 
assessment was performed by visual inspection, ensuring an evaluation that is both 
conservative (i.e., eliminating any sign of micro-arousal) and adaptative (i.e., taking into 
account individual variability). Nevertheless, to verify the validity of our sleep scoring 
methodology, we developed a scalar criterion that would constitute a quantitative 
evaluation of the difference between trials in the sleep and wake conditions. This scalar 
Vigilance Index (VI) was defined as the ratio of the mean power in specific frequency 
ranges computed on C3-C4 electrodes over each epoch (i.e., -2 to 6 seconds around 
stimulus onset), using a fast Fourier transform: 

VI = [delta power + theta power + spindle power] / [alpha power + high-beta power] 

With delta corresponding to 0.1 – 4 Hz, theta to 4 – 7 Hz, spindle frequency to 11 – 16 
Hz, alpha to 8 – 13 Hz, and high-beta to 20 – 40 Hz). Low-Beta was not included as it 
overlaps with the frequency of spindles. For each epoch, power was normalized by the 
power in high frequency range (215 – 245 Hz). Delta, theta and spindle power being 
classically associated with sleep while alpha and high-beta are associated with wakefulness 
(see Figure S 4-1 for an illustration), “sleep” trials should show higher VI values than 
“wake” trials. VI was computed for every trial in the sleep and wake conditions. The 
distribution of VI values across all trials was bi-modal (p<0.01, Hardigan Dip Test). 
Importantly, when considering VI values for “sleep” and “wake” trials separately, we 
checked that their respective distributions were statistically different (p<0.001, unpaired 
t-test). This was also true when considering subjects individually (p<0.001, unpaired t-
test, Bonferroni correction). This demonstrates that we are genuinely dealing with two 
distinct brain states in our study. 
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Supplemental sleep scoring of Experiment 1 using standard guidelines 

To ensure that our results did not reflect an underestimation of the level of sleepiness 
due to the sleep scoring method we used, and thus the possibility of missing potential 
contaminations by micro-arousals, we performed a re-scoring of our data using standard 
guidelines of the AASM (Iber et al., 2007). Data were first continuously scored as wake, 
NREM1 and NREM2 using 20s epochs. Regular correct responses to stimuli, presence 
of alpha rhythms on occipital regions, eye-blinks or saccades were indicative of 
wakefulness. NREM1 was defined by the replacement of alpha rhythms with theta 
rhythms. Presence of slow eye movements, vertex sharp waves, evoked K-complexes or 
sleep spindles were also indicative of NREM1 onset. Finally, epochs showing 
spontaneous K-complexes or spindles were scored as NREM2. In order to retain as 
sleep trials only trials for which participants were and remained asleep, NREM1 and 
NREM2 trials associated with motor responses or micro-arousal (increase in low-
amplitude fast rhythms lasting less than 3s) and arousals (e.g. associated or not with 
button presses) were discarded from further analysis. The corresponding LRP results are 
presented in Figure S 4-3. 

 

Sleep assessment for Experiment 2 

For Experiment 2, in which we directly compared a state of full alertness with NREM2, 
we relied exclusively on the standard sleep scoring method of the ASSM relying on 20-30 
seconds epochs [S8], which is more adapted to the evaluation of deeper sleep states. In 
order to focus on NREM2, participants were assumed to be fully asleep if they were 
unresponsive and after the occurrence of the first spontaneous K-complex or sleep 
spindle (i.e. not appearing within at least 1 second following stimulus onset). There were 
also trials scored as NREM3 but those were not included in the final analysis as it 
concerned fewer trials and only a restricted set of participants (N=11). There was a total 
average of 147.7 trials per participant, corresponding to 68.7 and 79 trials in the wake and 
sleep conditions, respectively. The same procedure as for Experiment 1 was used here to 
discard trials micro-arousals and button presses. 

 

Old/new recognition post-test 

Experiment 2 was followed, after awakening, by an explicit recognition test in which they 
were presented, in random order, with spoken words that were previously presented 
during the wake or sleep period, or new words that were not presented before. They 
were instructed to report, using one of two keys on a keyboard, whether the word was 
old (i.e., presented in the wake or sleep list) or new, without time pressure. Following 
their answer, they indicated their level of confidence on a scale ranging from 1 
(completely guessing) to 7 (completely sure), again without time pressure. Each 
participant was presented with 108 words (36 words per condition). The old items from 
the sleep conditions that were subsequently scored as reflecting N1, (micro)-awakenings 
and/or button presses were discarded from the analysis, to match items used in the LRP 
analysis. 
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Figure S 4-1 Sleep assessment (Experiment 1) 

Top. Average power spectra across participants for wake trials (blue) and sleep trials (red) in 
Experiment 1. Note the turnaround between alpha (8-13 Hz) and beta (20-40 Hz) rhythms 
predominant in wakefulness and sleep-related oscillations (delta (0.1-4 Hz), theta (4-7 Hz), 
spindle range (11-16 Hz)). Power spectra were computed on C3/C4 referenced to the mastoids 
with a fast Fourier transform and averaged across subjects. Purple bars mark frequencies for 
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which power was significantly higher in sleep compared to wake (paired t-test, 0.05, false 
detection rate correction). Light green bars mark frequencies for which power was significantly 
higher in wake compared to sleep (paired t-test, 0.05, false detection rate correction). Red and 
blue shadings denote standard-error to the mean. Bottom. Individual hypnograms. Black lines 
show the vigilance state per trial visually scored using AASM guidelines. Grey dots show 
recorded response times (RTs). Note the large variability in RTs typical of drowsiness. The line 
below each hypnogram contains information about the stimulus list (cyan: wake list; magenta: 
sleep list) and the line above each hypnogram depicts the final scoring taking into account 
behavioral and electrophysiological criteria (blue: “wake” trials; red: “sleep” trials). 
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Figure S 4-2 Electrophysiological markers of motor preparation 

Response-locked LRPs for Experiment 1 (top panel) and Experiment 2 (bottom panel).  LRPs 
were here averaged with respect to the participant response on each trial (i.e. 0 ms corresponds to 
the response time). Baseline correction was performed with respect to a -4000 to -2000ms period 
before stimulus onset. Time-series show the LRP curves on central (C3/C4) and central posterior 
(CP3/CP4) electrodes (See Figure 4-2 for more details). 
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Figure S 4-3 Motor preparation to semantic categories 

Stimulus-locked LRPs in Experiment 1 with standard sleep scoring. LRPs for the sleep condition 
in which trials were scored according to standard guidelines (see section on “Supplemental sleep 
scoring using standard guidelines” and Figure 4-2 for more details). 
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Figure S 4-4 Sleep assessment (Experiment 2) 

Top. Average power spectra across participants for wake trials (blue) and sleep trials (red) in 
Experiment 2. Bottom. Individual hypnograms See Figure S 4-1 for details. 
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Summary 

Sleep is characterized by a loss of behavioral responsiveness. However, recent research 
has shown that the sleeping brain is not completely disconnected from its environment. 
How neural activity constrains the ability to process sensory information while asleep is 
yet unclear. Here, we instructed human volunteers to classify words with lateralized hand 
responses while falling asleep. Using an electroencephalographic (EEG) marker of covert 
motor preparation, we show the conservation of complex task-dependent sensory 
processes in light Non-Rapid Eye-Movement (NREM) sleep. However, these processes 
were abolished in deep NREM sleep and, importantly, in REM sleep despite the recovery 
of wake-like brain activity in this latter sleep stage. A detailed examination of the brain 
ongoing activity and its responses to sounds further specified the mechanisms gating the 
processing of external information. Acoustic stimulations were associated with a decrease 
of sleep depth and sensory processing could be related to a form of local awakening in 
NREM sleep. Indeed, sensory processing positively correlated with the Lempel-Ziv 
complexity, a measure that has been shown to track arousal in sleep and anesthesia. In 
REM sleep however, the relationship between complexity and external information 
processing was reversed. We propose that endogenously generated processes compete 
with the processing of external input in REM sleep. In NREM sleep, sensory activations 
were counter-balanced by evoked down-states, which blocked, when present, further 
processing of external information. Sleep can therefore be seen as a self-regulated 
process in which external information can be processed in lighter stages but suppressed 
in deeper stages. However, gating mechanisms drastically differ between NREM and 
REM sleep. 

!



Chapter 2 -Processing 

169!

Introduction  

Sleep can be operationally defined as a state of behavioral unresponsiveness (P Peigneux 
et al., 2001). Such disconnection from the external world may play a crucial role in 
memory consolidation, allowing the organisms to turn inward and protect endogenous 
mechanisms of neural plasticity from external interferences (Diekelmann and Born, 2010; 
Tononi and Cirelli, 2014)). Yet, this disconnection potentially comes at the expense of 
survival, as a sleeping organism becomes highly vulnerable to menaces from the 
environment. It thus remains unclear why and how this disconnection occurs. In 
particular, whether the brain is fully shut down from the environment, or whether it 
remains partially responsive to external events, remains an active topic of research. The 
influential thalamic gating hypothesis proposed that behavioral unresponsiveness was 
achieved very early on through the blockade of sensory information at the thalamic level, 
leading to the abolition of sensory cortical responses (McCormick and Bal, 1994). 
However, there is accumulating evidence showing that the brain is far from being 
isolated during sleep (Hennevin et al., 2007; Issa and Wang, 2008; Y. Nir et al., 2013). 
The very fact that sleep is quickly reversible argues against a complete disconnection. In 
fact, not only can sleepers awake at any moment but they can do so more easily for 
familiar and salient stimuli such as their own baby’s cry (Formby, 1967) or their own 
name (Oswald et al., 1960). Even when sleep is preserved, stimulus familiarity impacts 
brain responses (Perrin et al., 1999), suggesting that the sleeping brain maintain some 
ability to track incoming information while staying asleep.  In recent years, several studies 
have shown that the sleeping brain’s ability to process external information extends far 
beyond such automatic processes. From the detection of semantic incongruity (Bastuji, 
1999; Brualla et al., 1998; Ibanez et al., 2006) or the violation of simple rules (Ruby et al., 
2008; Strauss et al., 2015) to the formation of new associations (Arzi et al., 2012; de 
Lavilléon et al., 2015), the cognitive processes involved during sleep appear far more 
elaborated than previously thought.  

However, although these studies have demonstrated the preservation of cognitive 
abilities during sleep, the neural mechanisms allowing sleepers to process or isolate from 
external stimulations remain unsettled. The role of evoked slow oscillations such as K-
complexes, a hallmark of NREM sleep, is particularly unclear (Halasz, 2005). K-
complexes have been related to arousal systems (Halász, 2016; Siclari et al., 2014a) 
providing windows of wakefulness (Destexhe et al., 2007). Conversely, they have been 
described as local down-states (Cash et al., 2009) entailing large-scale neuronal silencing 
(Vyazovskiy and Harris, 2013) and protecting sleep against external stimulations (Bastien 
et al., 2000; Wauquier et al., 1995). Sleep spindles are also thought to enable sleeper’s 
isolation by blocking incoming input at the thalamic level (McCormick and Bal, 1994). 
However, evidence supporting this function is scarce (Schabus et al., 2012) while cellular 
recordings showed remarkably preserved responses to sounds during spindles (Sela et al., 
2016). REM sleep on the other hand has been far less studied. Paradoxically, even if 
brain activity in REM sleep resembles wakefulness and consciousness is regained 
(Hobson and Pace-Schott, 2002), sleepers remain largely unresponsive (Ermis et al., 
2010). What are the mechanisms enabling such sensory disconnection? It has been 
proposed that dreams themselves would compete and block the processing of external 
inputs (Nir and Tononi, 2010) but direct evidence is still missing. 

Here, we attempted to bridge the gap between functional and physiological explorations 
of sleep in humans. We relied on a paradigm that aimed at inducing task-dependent 
responses in the sleeping brain (Kouider et al., 2014). In practice participants felt asleep 
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while categorizing spoken words with lateralized responses. Using EEG recordings, we 
explored whether stimuli elicited brain activations corresponding to the motor 
preparation of the correct response (i.e. Lateralized Readiness Potential, (Masaki et al., 
2004; Smulders et al., 2012)). The presence of such LRP implies that stimuli were not 
only encoded at the sensory level but also processed at a high-level of semantic 
representation and that such high-level information is used up to the preparation of a 
motor response (see Kouider et al., 2014). Thus, the presence of an LRP highlights the 
maintenance of complex distributed processes during sleep. While our previous study 
was limited to light daytime sleep (nap study), we investigated here all sleep stages in a 
full-night protocol. Furthermore, the presence or magnitude of the LRP was further 
evaluated in light of brain activity before and after the stimulus so as to provide novel 
insights about how the brain manages to both track its environment and preserve sleep. 
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Material and Methods 

Participants 

22 right-handed French native speakers (14 females, age 21-31) with no history of 
neurological or sleep disorders participated to this study. Participants underwent an 
interview with a sleep specialist and filled in questionnaires determining their sleep habits 
and their propensity to fall asleep in noisy environments. Participants did not differ from 
the general population. They were monitored for 7-10 days prior to the recording session 
through actigraphy and sleep diaries to ensure stable sleep/wake rhythms. Among these 
22 participants, 4 participants were discarded from our analysis either for technical issues 
affecting the recordings (N = 1) or because the experiment was aborted (N = 3, 
participants experiencing difficulties to fall asleep with auditory stimulation). The 
protocol had been approved by the local ethics committee (Comité de Protection des 
Personnes, Ile-de-France I, Paris, France).  

 

Experimental Procedure 

Task. We adapted a procedure previously used during daytime naps (Kouider et al., 2014) 
to a full-night protocol in order to explore all sleep stages. The night of the recordings, 
participants were equipped for polysomnographic recordings. They were put to bed and 
spoken words in French were then played in isolation one after the other. These words 
referred either to an animal or to an object. Participants were instructed to perform a 
semantic-decision task by indicating the category of each word through right and left-
hand responses. They were asked to categorize words as long as they were awake and to 
resume responding in case of an awakening. Subjects were reminded to do so whenever 
they awoke during the night without resuming to respond. However, participants were 
explicitly authorized to fall asleep while performing the task. Crucially, three different 
lists of words were played to participants according to their vigilance state, as assessed 
though an online assessment of sleep stages (see below). A list was played whenever 
participants were in NREM sleep, another list was played during REM sleep and a wake 
list was played otherwise, i.e. mainly during wakefulness. Thus, unpracticed words (i.e. 
novel words not previously categorized during wakefulness) were played in sleep to 
ensure that participants had to access the meaning of the word in order to prepare for 
the appropriate response without relying on stimulus-response associations formed while 
awake. 

Stimuli.. Stimuli were French spoken words uttered by a female voice. Four lists of 72 
words were created each containing 36 words referring to animals and 36 words referring 
to objects. Animals and objects words were matched in frequency and number of 
syllables using the Lexique database (New et al., 2004). Three of the 4 lists were used for 
the semantic-categorization task. The 4th list was used in the memory-test (see below). 
The attribution of the different lists to a given vigilance state or to the memory-test was 
counter-balanced across participants. 

Apparatus. Response-handles were attached to participants' hands. The mapping 
between semantic categories and response-hands was counter-balanced across 
participants. Stimuli were played through loud speakers around 55dB (depending on 
participants’ preferences) using the Psychtoolbox extension (Brainard, 1997) for Matlab 
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(Mathworks Inc., Natick, MA, USA). Stimuli were played every 6 to 9 s (random uniform 
jitter). 

 

 

Figure 5-1 Semantic categorization task during full-night sleep 

Illustration of the protocol. Different lists of animal and objects word were played to 
participants. Participants were instructed to classify these words through left and right hand 
responses according to their semantic category (here right-hand response for animals). 
Lateralized hand-response preparation involves the contra-lateral motor cortices, a task-
dependent lateralization of brain activity that can be tracked with the EEG (Figure 5-2). 
Different lists of words were presented to participants. A list was restricted to NREM-sleep 
(NREM2 and NREM3, blue) and REM-sleep (green) while the wake list (red) was played 
otherwise. Changing list between wake and sleep prevents sleepers from using stimulus-response 
association learnt in wake to classify words in sleep. Words being novel, participants must have 
had access to the semantic level of each word representation to prepare for the correct response.  

 

Data analysis 

Electrophysiological recordings. Electroencephalographic (EEG, N = 19 derivations, 10-
20 montage), electroocculographic (EOG, N = 2 derivations, positioned above the right 
canthus and under the left canthus), electromyograhpic (EMG, 1 derivation placed on 
the chin measuring muscle tone and 2 derivations on the right and left abductor pollicis 
brevis (thumb flexor muscle) recording muscle activity accompanying participants’ 
responses) and electrocardiographic (ECG, N = 1 derivation) data were continuously 
recorded. Video monitoring was also available. EEG, EOG, ECG and EMG data were 
recorded with AgCl electrodes attached to participants’ skin and hair with an adhesive 
paste (EC2, Natus Neurology Inc., Middleton, WI, USA). Signal were amplified through 
a B1IP or B2IP MEDATEC amplifier (Medical Data Technology SPRL, Bruxelles, 
Belgique) and recorded at a 200Hz sampling-rate. Impedances of scalp electrodes were 
generally below 5kΩ. EEG and EOG electrodes were referenced online to the opposite 
mastoids. An additional channel was used to synchronize EEG data with stimulus 
presentation.  
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Online sleep assessment. The presentation of stimuli was continuous but the words 
presented to participants were selected from lists that differed depending on participant's 
vigilance state (Figure 5-1). Vigilance states were scored online following standard 
guidelines (Iber et al., 2007). In practice, the experimenter waited for the apparition of 
NREM hallmarks (first spontaneous K-complex or sleep spindle, absence of signs of 
arousal) before switching to the NREM list. Similarly, the REM list was presented to 
participants when they entered the REM stage (absence of slow oscillations or sleep 
spindles, absence of alpha oscillations, presence of saw-tooth waves, rapid-eye 
movements, increase in theta oscillations, reduced or absent muscle tone). The 
experimenter typically waited for few minutes after the transition to the new sleep stage 
before switching the list to ensure its stability. The wake list was presented to participants 
whenever they showed signs of arousals (body movements, increase in low-amplitude 
desynchronized rhythms, EMG activation…). This online scoring was confirmed and 
refined offline (see below). 

Offline sleep scoring. Wakefulness and sleep stages were scored following established 
guidelines (Iber et al., 2007). Only Fz, C3, C4 and Pz EEG derivations (within the 10-20 
montage) were used along ECG and EMG derivations. EEG channels were first re-
referenced to the average mastoids. The EEG and EOG signals were high-pass filtered 
above 0.1 Hz and then low-pass filtered below 30 Hz (two-pass Butterworth filters at the 
5th order). Using the same filter types, EMG data were band-pass filtered between 60 and 
80 Hz. A notch-filter (2nd order Infinite Impulse Response filter) around 50Hz was used 
on all channels to reduce line-noise. Vigilance states were continuously scored on 20-s-
long windows as wakefulness, NREM sleep stage 1, 2 and 3 (NREM1, NREM2 and 
NREM3 stages resp.) and REM sleep. Importantly, epochs showing signs of arousal 
(increase in alpha oscillations or oscillations above 16Hz lasting more than 3 seconds) or 
micro-arousal (less than 3 seconds) in association with trial onsets were marked. The 
corresponding trials were not included in further analyses to avoid potential confounds.  

Slow-waves detection. Slow-waves were detected in NREM sleep using algorithms that 
have been presented in details elsewhere (Nir et al., 2011; Riedner et al., 2007). Briefly, 
slow-waves were detected for each EEG channel by band-pass filtering the EEG signal 
between 0.2 and 3 Hz (two-pass Butterworth filter at the 3rd order). The first order 
derivative was used to detect local extrema and identify single waves. Only slow-
oscillations with a peak-to-peak amplitude exceeding 75 µV and a period of more than 
0.5 s and less than 2 s were considered as slow-waves. These slow-oscillations were used 
to define light and deep NREM trials (see below).  

EEG preprocessing. EEG data were analyzed using a combination of SPM (Functional 
Imaging Laboratory, Univ. College London, London, UK), FieldTrip (Oostenveld et al., 
2011) and EEGlab (Delorme and Makeig, 2004) toolboxes running on Matlab 
(Mathworks Inc., Natick, MA, USA). We examined the brain activity in response to 
sounds by computing Event-Related Potentials (ERPs) and Lateralized Readiness 
Potentials (LRPs). To do so, the continuous EEG signal referenced to the average 
mastoids was high-pass filtered above 0.1 Hz (two-pass Butterworth filter at the 5th 
order) and then segmented on large temporal windows around stimulus onsets ([-14, 14] 
s). The EEG signal was then low-pass filtered below 40 Hz and notch-filtered around 50 
Hz (same filter types as for the sleep scoring) to reduce line noise. Epochs were re-sized 
to focus on the activity around stimulus onsets ([-2, 7] s). Trials with absolute amplitude 
over central electrodes (Cz, C3, C4) exceeding a given threshold were discarded (a 150 
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µV threshold in wake and REM sleep, and larger 200 µV threshold in NREM sleep since 
NREM sleep contains high-amplitude physiological slow-waves).  

Conditions of interest. NREM sleep being a quite heterogeneous state, ranging from 
NREM1 - a state in which participants may conserve some awareness of the surrounding 
world and are able to overtly respond to external stimuli - to NREM3 - in which brain 
dynamics is profoundly transformed - we divided NREM trials between light and deep 
NREM sleep. We thus divided trials in 4 different conditions of interest: (i) wake:  
correct trials during which participants were scored as awake and the wake list was 
played; (ii) l i ght  NREM sleep:  trials scored as NREM2 or NREM3, during which 
participants were unresponsive and in which the NREM list was played but no slow-
wave were detected (on a [-2, 3] s window time-locked to stimulus onset); (iii) deep 
NREM sleep:  trials scored as NREM2 or NREM3, during which participants were 
unresponsive and in which the NREM list was played and slow-waves were detected (on 
a [-2, 3] s window time-locked to stimulus onset); (iv) REM sleep:  trials scored as REM 
sleep, during which participants were unresponsive and in which the REM list was 
played. Importantly, we did not analyze the twilight NREM1 stage as well as trials in 
which any sign of arousal could be observed in the EEG signal to ensure that observed 
sensory processes are not due to (partial) awakenings. For each condition, only 
participants with at least 70 trials were included. On average, there were 174 ± 20 trials in 
the wake condition (mean ± standard error of the mean (SEM) across N=17 
participants), 232 ± 28 in light NREM sleep (N=15), 400 ± 25 in deep NREM sleep 
(N=18) and 186 ± 9 in REM sleep (N=18). We also examined trials corresponding to the 
definition of light NREM and REM sleep with the exception that the wake list was 
presented to participants (i.e. trials already categorized during wakefulness). Indeed, 
participants were switched to the wake list whenever the experimenter was unsure of the 
state of the sleeper (later verified off-line), at transitions between states or when the 
experimenter had to attend to another participant (two participants participated in the 
experiment on each recording night). Although these trials containing practiced words 
were not randomly intermixed with the unpracticed words, they were scored offline as 
either REM or NREM sleep by two scorers blind to the list used and revealed ERPs and 
power spectra identical to the ones obtained in trials in which the sleep lists were played 
(Figure 5-3). Thus, these trials allowed us investigating how practiced (i.e., overtly 
categorized) words were processed during sleep, although precautions must be taken 
when interpreting such results (see Discussion).  

Event-Related Potentials. ERPs were computed by averaging the EEG signal across trials 
for a given experimental condition after baseline correction ([-0.2, 0] s).  

Lateralized Readiness Potentials. Lateralized Readiness Potentials (LRPs) allow the 
monitoring of action selection and preparation (Smulders et al., 2012). LRPs are usually 
computed with EEG data time-locked to motor responses but can also be computed 
time-locked to stimuli (Leuthold, 2003b; Tollner et al., 2012b). In our case, due to the 
absence of responses during sleep, we computed LRPs on stimulus-locked data. LRPs 
were computed using ERPs computed on the right (C4) and left (C3) electrodes placed 
over motor cortices: 

LRP =
(C3right−hand −C3left−hand ) + (C4 left−hand −C4 right−hand )

2
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ERPs over C3 and C4 electrodes were computed similarly as described above except for 
the baseline correction ([-2, 0] s). Using this formula, LRP are characterized by a negative 
deflection starting before participants’ response. In subsequent analyses, we extracted the 
amplitude of the LRP (LRP magnitude) over the temporal windows in which significant 
negative clusters were observed (Figure 5-2 and Figure 5-3). To examine how this LRP 
magnitude was dynamically related to others markers of responsiveness, we computed 
LRPs on windows of 60 consecutive left-response and right-response trials slid every trial 
(see Figure 5-4, Figure 5-5, Figure 5-6 and Figure 5-7). The LRP negative potential was 
extracted as a positive value (LRP magnitude) by adding a negative sign to the LRP 
formula. Other variables of the EEG signal were estimated on the same windows such as 
the Lempel-Ziv complexity (LZc, see below, Figure 5-4) or ERP components (see Figure 
5-6 and Figure 5-7). These variables were z-scored across trials for each participant and 
then aggregated across participants to examine their correlation. 

Time-Frequency analyses. To better understand how sleep rhythms impact sensory 
processing, we computed the time-frequency decomposition of the EEG signal in 
response to stimuli. To do so, we applied a Fast-Fourier Transform (FFT) on 1.28-s-long 
windows (padding ration of 2) on the preprocessed EEG signal (see above). The 
resulting power for each frequency and time was expressed as the log-ratio of the power 
at the corresponding frequency and time over the baseline activity ([-1.5, 0] s) at the same 
frequency. LRP magnitude and the activity within the slow-waves ([1, 6] Hz) and spindle 
([11, 16] Hz) bands were extracted on windows of 60 consecutive right-hand and left-
hand responses.  

Lempel-Ziv complexity. The Lempel-Ziv complexity (LZc) measures the compressibility 
of a given signal (Ziv and Lempel, 1977). The higher the LZc value, the less compressible 
is the signal. A temporally predictable signal will have a low LZc value while an 
unpredictable signal will have a high LZc value. Previous studies have shown that LZc 
accurately tracks the level of consciousness in patients, healthy subjects under anesthesia 
and during sleep (Abásolo et al., 2015; Casali et al., 2013; Schartner et al., 2015). To 
calculate the LZc on the EEG signal, we implemented the approach developed by 
Schartner and colleagues (Schartner et al., 2015). Here, the complexity was computed at 
the sensor level and not in the source-space as originally done by Casali and colleagues 
(Casali et al., 2013). The raw EEG signal was first lowpass filtered below 85Hz (111th 
order, Finite Impulse Response (FIR) filter) and then notch-filtered around 50Hz to 
reduce line noise (296th order FIR filter). Matlab FDAtool was used to create equiripple 
FIR filters with linear phase to avoid phase distortion in the EEG. A surface Laplacian 
was then applied to the EEG data (BCILAB plug-in for the EEGLAB toolbox 
((Delorme and Makeig, 2004; Kothe and Makeig, 2013) with a neighbor count of four) to 
minimize the influence of volume conduction. The data was then epoched around 
stimuli onset ([-2, 6]s), and the LZc was extracted for each trial by integrating the EEG 
data over all the sensors on 500-ms-long windows slid every 50 ms. Details of the LZc 
algorithm can be found elsewhere (Schartner et al., 2015). Briefly, for each window, the 
mean of the EEG signal was subtracted for each sensor and linear trends over the entire 
epoch were removed. A Hilbert transform was then applied to the signal in order to 
extract the envelope of the signal. Each channel was then binarised: values above the 
mean value of the envelope for the corresponding epoch and sensors were coded as 1, 
and 0 otherwise. The resulting binary matrix was then reshaped sensor-wise into a vector 
containing the time-points for all channels. The complexity was computed on such 
vector and normalized by the complexity calculated on the same vector, but with its 
elements randomly shuffled. After normalization, LZc is comprised between 0 (fully 
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compressible, i.e. predictable signal) and 1 (minimally compressible, i.e. as predictable as 
the shuffle data). The normalized complexity was thus computed for each trial and 
averaged across vigilance states (as scored offline) over the pre-stimulus baseline ([-1.5, 
0]s) to compare the overall level of complexity between these different states (Figure 
5-4a). We also examined how the complexity was affected by stimulations by averaging 
the LZc on a [-1.5, 6]s windows for each vigilance state separately (Figure 5-4b). To 
better compare the dynamics, LZc was normalized (ratio) by the level of complexity in 
the pre-stimulus window ([-1.5, 0]s). To relate the level of complexity with the index of 
motor preparation (LRP magnitude), the baseline LZc was extracted in wakefulness, 
NREM2 and REM-sleep on windows of 60 consecutive left and right hand-response 
trials slid every trial along the entire recordings. The values obtained were then z-scored 
across trials for each participant before examining their correlation (Figure 5-4c).  

Sleep cycles identification. To examine how markers of responsiveness are modulated 
across NREM-sleep, we identified the sleep cycles based on each participant’s 
hypnograms. A total of 100 cycles were individualized in 18 participants (5.6 ± 0.2 cycle 
per participant). Values of interest (LRP magnitude, LZc and delta (<4Hz) power) were 
computed on 60 right-hand and left-hand consecutive NREM trials (NREM2 and 3) slid 
every trial within each cycle. Delta power was extracted by applying a Fast-Fourrier 
Transform of the signal time-locked to stimulus onsets ([-2, 6]s) and normalizing the 
delta range (<4Hz) with higher frequencies ([20, 40]Hz, log ratio). Later on, each sleep 
cycle was normalized in duration in order to average variables of interests across sleep 
cycles. To do so, each cycle was divided in 30 equal bins and the mean value of the 
variables of interests was computed for each bin. Eighty-three cycles were eventually 
included in this analysis. The other cycles did not have enough NREM2 and NREM3 
trials so as to be similarly normalized in duration. 

Statistics. To correct for the multiple comparison problem when examining statistical 
differences between two time series (see Figure 5-2, Figure 5-3, Figure 5-4 and Figure 
5-5), we used a cluster-permutation approach (Maris and Oostenveld, 2007). Each cluster 
was constituted by the samples that consecutively passed a specific threshold (here, p < 
0.1 for LRPs and 0,05 otherwise). For each cluster, we computed the sum of the t-values 
of all the samples within the cluster. Then, we compared the cluster statistics of each 
cluster with the maximum cluster statistics of 1000 random permutations and obtained a 
non-parametric p-value (Monte-Carlo p-value: pcluster). Significant clusters are displayed as 
horizontal bars on plots, and pcluster are reported in the main text and figures’ legends. For 
scalp topographies of correlation analyses (Figure 5-6, Figure 5-7), the False Detection 
Rate (FDR) method was used to correct individual p-values (Benjamini and Yekutieli, 
2011).  
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Results 

Sleepers can classify words in during sleep  

A classical LRP was observed when participants were awake and responsive (Figure 5-2a, 
significant cluster: [0.490, 2.025] s, pcluster=0.002, N=17 participants), characterized by a 
large negative deflection starting before the average response time (RTs, black arrow) 
over motor electrodes (Figure 5-2a inset). When focusing on light NREM sleep, we 
observed a significant negative deflection for the LRP (Figure 5-2c, significant cluster: 
[3.035, 3.775] s, pcluster=0.01, N=15 participants). As in wakefulness, this negative 
deflection was maximal over motor cortices (central electrodes, see inset Figure 5-2b) but 
was delayed compared to wake trials. This LRP is strikingly similar to our previous nap 
studies (Kouider et al., 2014).  

 

Figure 5-2 Lateralized Readiness Potentials (LRPs) across sleep stages 

The Lateralized Readiness Potential (LRP) allows monitoring the lateralization of brain activity 
associated with motor selection and preparation. We used it here as an index of participants’ 
ability to process sensory information up to the semantic level and to use this information in a 
flexible task-dependent fashion (see Material and Methods and (Kouider et al., 2014)). Each 
subpanel shows, on the right, the stimulus-locked ERP computed on Cz (a: in wakefulness, b: in 
REM sleep c: in light NREM sleep (blue, black curves show deep NREM sleep for comparison) 
and d: in deep NREM sleep). On the left, the corresponding stimulus-locked LRP computed on 
C3/C4 electrodes are plotted. Shaded areas represent the standard error of the mean (SEM) 
computed across participants. Colored horizontal bars show significant clusters for LRP 
(pcluster<0.05). Insets show the scalp topographies of LRP averaged over the red and blue clusters. 
Curves were smoothed using a Gaussian kernel (width: 50ms for ERPs, 200ms for LRPs) for 
display only (statistics were performed prior to smoothing). Note that an LRP peaking over 
motor cortices is visible in light NREM, but is absent in deeper sleep stages (deep NREM and 
REM sleep). 

However, no significant deviation in the LRP was observed in deep NREM sleep or 
REM sleep (Figure 5-2b,d), suggesting, at first glance, that processing of sensory 
information up to the decision level is abolished in deeper stages of sleep. Interestingly, 
light and deep NREM sleep also differed regarding the evoked responses to stimuli 
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(ERPs). Light NREM sleep was characterized by a reduction of the large negativity 
evoked by stimuli in NREM sleep (N550, (Picton, 2010)). This N550 is often attributed 
to evoked slow-waves (such as K-complexes) (Bastien et al., 2000) and entails large-scale 
neuronal silencing (Vyazovskiy and Harris, 2013), which could explain the absence of an 
LRP when the N550 is larger. 

 

In REM sleep, only words previously heard in wake are classified  

 

 

Figure 5-3 Lateralized Readiness Potentials (LRPs) in light NREM and REM sleep for words 
categorized during wakefulness 

Top: Power spectra (left), stimulus-locked Event-Related Potentials (EPRs; middle) and stimulus-
locked Lateralized Readiness Potentials (LRPs; right) computed in light NREM sleep for trials in 
which either the NREM list (blue) or the wake (purple) list was played. The wake ERPs and 
power spectrum (red curves) are displayed for comparison. Horizontal bars show the significant 
clusters for LRPs (pcluster<0.05). Note the presence of a similar (and slightly earlier) LRP when 
words categorized during wakefulness were played. Bottom: Power spectra (left), ERPs (middle) 
and LRPs (right) computed in REM sleep for trials in which either the REM list (light green) or 
the wake (dark green) list was played. Interestingly, for words previously categorized in 
wakefulness, a clear LRP was observed (pcluster<0.05) but not for novel words (as shown in Figure 
5-2). Yet, the power spectrum and ERPs corresponding to the REM trials in which the wake list 
was played are typical of REM sleep and different from wake trials (red curves).   
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Does the absence of an LRP in REM sleep mean that stimuli were not processed at all, 
or is this absence due to the complexity of the task at hand? To investigate this issue, we 
took advantage of the fact that words from the wake list were sometimes presented in 
REM-sleep (see Material and Methods), albeit not intermixed with unpracticed words, 
which would have allowed a stronger comparison (see Discussion). 

Importantly, the ERPs and power spectra were similar for both lists and differed from 
wake ERP and power spectrum (Figure 5-3). Strikingly, a clear LRP was also observed 
for the wake list only ([2.750, 3.200] s, pcluster=0.036 and [3.230, 3.900] s, pcluster=0.014, 
N=14 participants). This LRP suggests that sleepers can still map stimuli with the correct 
response side in REM sleep when stimuli are familiar, suggesting that part of the 
processing chain was conserved in this particular case. However it is possible that REM 
sleep was qualitatively different when the two lists were presented despite the overlap of 
the ERPs and power spectra (see Discussion). When repeating this procedure in light 
NREM sleep, an LRP was also observed for the words practiced in wake ([2.23, 2.9] s, 
pcluster=0.011, N=15 participants). 

 

The processing of information depends on the degree of neural 
complexity 

We then set out to examine whether the overall complexity of the EEG signal was 
predictive of sleepers’ ability to process information up to the decision level. To do so, 
we used a recently developed approach (Casali et al., 2013) consisting in measuring the 
temporal predictability of the EEG signal by reducing it to a single value: the Lempel-Ziv 
complexity (LZc, (Ziv and Lempel, 1977)). Applying this methodology to our data 
(Figure 5-3a) revealed a strong modulation of LZc according to the vigilance state 
(F(3)=9.67, p=2.10-5). We could separate sleep and wake stages along a gradient matching 
the phenomenology associated to these states (Yuval Nir et al., 2013), confirming initial 
results in humans (Casali et al., 2013) and animals (Abásolo et al., 2015). Precisely, LZc 
was maximal in wakefulness (paired t-tests across participants with other sleep stages: all 
p<0.005) and minimal in deep NREM sleep. Light NREM and REM sleep had 
intermediary values with REM sleep being the closest to wakefulness (REM vs. wake: 
t(17)=-3.3, p=0.004; REM vs. light NREM: t(17)=5.4, p=5.10-5; light vs. deep nREM: 
t(17)=-9, p=7.10-8), in accordance with the fact that dreams are more frequent and 
complex in REM compared to light NREM sleep and quasi absent in deep NREM sleep 
(Nir and Tononi, 2010). 

We then investigated whether this baseline LZc was predictive of LRP magnitude. LRP 
magnitude was extracted on the windows in which a LRP was observed in wakefulness 
(Figure 5-2a), light NREM sleep (Figure 5-2c) and REM sleep when the wake list was 
played (Figure 5-3). To facilitate the interpretation of the figures, the LRP formula was 
reversed so that the presence of an LRP would translate into a positive LRP magnitude 
(see Material and Methods). Importantly, the baseline LZc was positively correlated with 
LRP magnitude in wakefulness and NREM sleep (Pearons’s coefficient: r=0.08 and 0.13, 
p=0.001 and 1.10-13, across N=2035 and 3111 samples in 17 and 15 participants resp.) 
but this correlation was reversed in REM sleep (r=-0.23, p=5.10-24, N=1937 samples in 
18 participants). Comparing LZc in REM seep when practiced words were presented 
(LRP present) and when unpracticed words were presented (LRP absent) revealed again 
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that the presence of the LRP was associated to a lower amount of complexity (paired t-
test: t(17)=3.5, p=0.004).  

 

Figure 5-4 Lempel-Ziv complexity across sleep stages and in relation to motor preparation 
indexes 

(a) The Lempel-Ziv complexity (LZc) extracted over the pre-stimulus activity ([-1.5, 0]s) was 
averaged across trials scored as wakefulness, light NREM, deep NREM and REM sleep. Error-
bars depict the standard error of the mean computed across participants. LZc allowed to 
unambiguously separate the different vigilance states (one-way ANOVA: F(3)=9.67, p=2.10-5, 
N=18 participants). Post-hoc comparisons show high significant differences with a gradual 
decrease in complexity: wake>REM>light NREM>deep NREM (all paired t-tests, p<0.005). (b) 
LZc time-course locked on stimulus onsets and expressed as a ratio of the baseline level ([-1.5, 
0]s). Stimuli strongly modulate the overall complexity of the EEG signal with an initial decrease 
(pcluster<0.05, except for REM sleep). The initial decrease was followed by an increase in 
complexity in light NREM, deep NREM and REM sleep (pcluster<0.05). (c) Correlation between 
the baseline LZc (see panel a) and the LRP magnitude computed across the entire night for wake 
(left), light NREM (middle) and REM sleep (right) trials. Correlations between the pairs of 
variables were assessed using the Pearson’s method, which coefficient is displayed on each 
subplot along its significance level (***: p<0.005). Dotted line shows the linear fit between the 
pairs of variables. Values were z-scored across trials for each participant before being aggregated 
across participants. Values were binned for visual purpose (N=50 bins on the sorted LZc values). 
Error-bars depict the standard error of the mean of the LRP magnitude for the corresponding 
bin. 
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This paradoxical pattern contrasts with the correlation observed in NREM sleep and 
wakefulness, suggesting a diametrically opposed relationship between levels of 
consciousness and the degree of connectedness to the environment in NREM and REM 
sleep (Sanders et al., 2012). 

We also examined how the LZc was modulated in responses to stimuli above and 
beyond its baseline level (Figure 5-4b). Stimulus onset was followed by a decrease in LZc 
(i.e. increase in signal predictability), potentially due to highly stereotypical EPRs. And 
indeed this decrease in LZc was more pronounced for the states in which high-amplitude 
ERPs were observed such as in NREM sleep (Figure 5-3). This decrease in LZc did not 
reach our significance threshold in REM sleep, a state in which auditory stimulation has 
less impact on brain activity (Bastuji, 1999; Picton, 2010). Interestingly, in NREM and 
REM sleep, this initial decrease was followed by an increase in LZc (pcluster<0.05), which 
could be interpreted as a stimulus-induced modulation of sleep depth.  

 

Sensory processing locally disrupt sleep rhythms  

So, are the LRP observed in sleep and the associated increase in LZc reflecting the 
consequence of a partial awakening? To answer these questions we examined the 
consequences of auditory stimulation on sleep itself. Figure 5-5a shows the time-
frequency decomposition of the EEG signal in response to sounds in NREM sleep (light 
and deep NREM) for electrode Cz. Stimulus onset was accompanied by an increase 
within the slow-wave (<6 Hz: pcluster=0.001, N=18 participants) and spindle ([11, 16] Hz: 
pcluster=0.002) ranges (Figure 5-5b). This increase was followed by a decrease within these 
two ranges (<6 Hz: [2.1, 6.3] s; [11, 16] Hz: [2.4, 5.0] s, both pcluster<0.001), interestingly at 
a time corresponding to the apparition of an LRP in light NREM sleep. This results 
suggests that the preparation of task-related responses translates into a local-in-time 
modulation of sleep-rhythms and hence of sleep depth. Such modulation was also local-
in-space. Indeed while the increase within the slow-wave and spindle range after stimulus 
onset showed a typical frontal topography (Figure 5-5b), the following decrease had a 
different topography and was prominent over central electrodes, i.e. over the sensors 
showing the LRP. It is important to note that this decrease within the slow-wave and 
sleep spindle ranges was not accompanied by an increase in frequency bands associated 
with wakefulness (alpha: [9, 11] Hz, beta: >16 Hz). Thus, in NREM sleep, the processing 
of auditory information resulted in a local (in time and space) modulation of NREM 
oscillations but this disruption did not lead to any observable trace of awakening on the 
scalp. 

In REM sleep, brain responses were qualitatively different (Figure 5-5c-d): auditory input 
clearly disturbed REM sleep with an initial increase in higher frequencies (>12Hz, 
pcluster=0.01) and a sustained decrease within the theta range ([4, 8]Hz, pcluster<0.001). 
Interestingly, these increases were both maximal over central electrodes where auditory 
and motor components are observed in wakefulness (Picton, 2010; Smulders et al., 2012). 
However, these transient markers of arousal did not lead to the apparition of a clear LRP 
(Figure 5-2) unless when practiced words were presented (Figure 5-3).  
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Figure 5-5 Local modulations of NREM sleep slow-waves and spindles in association to stimuli 

(a) Time-frequency decomposition of the EEG signal at Cz in response to stimuli. The time-
frequency decomposition was extracted for each trial in NREM sleep (light and deep) and 
averaged, first across trials then across participants (N=18) (see Material and Methods). Right 
after stimulus onset, a large increase in the low-frequency range (<6Hz) and spindle range ([11, 
16] Hz) can be observed, which correspond to the slow-waves and spindles evoked by stimuli. 
Interestingly, these rhythms decreased later on, around the temporal window in which a LRP was 
observed in light NREM sleep (Figure 5-2). This decrease was confirmed in panel b by examining 
the modulation of the power (at Cz) in these 2 frequency bands (<6 Hz: slow-wave range, black 
curve; [11, 16] Hz: spindle range, gray curve). Horizontal bars show the significant clusters 
determined across participants (pcluster<0.05). Insets show the scalp topographies of the power 
within the slow-wave and spindle ranges at trial onset ([0 2]s) and during the LRP window ([2.9, 
3.8]s). Power was z-scored across sensors to emphasize regional differences. Note that the 
decrease associated to the LRP is centrally distributed for slow-waves and sleep spindles despite 
their originally frontal distribution, suggesting a local modulation of sleep rhythms. (c-d) Same as 
panel a but for REM sleep. Note the initial broadband increase in the higher frequency range 
(>12Hz) and the decrease within the theta range ([4, 8] Hz). Scalp topographies were computed 
by averaging power over the significant clusters (pcluster<0.05). 

 

Neuronal bi-stability gates sensory processing in NREM sleep  

In NREM sleep, brain responses to stimuli were characterized by strong evoked 
potentials such as the P200 and the N550 (Figure 5-6a). These two potentials are of high 
interest since the P200 is thought to reflect an activation within the primary sensory 
cortices corresponding to the eliciting event (i.e. dependent of the sensory modality) 
while the N550 is thought to reflect a broad modality-independent neuronal silencing 
maximal at frontal cortices (Halász, 2016; Laurino et al., 2014). The respective scalp 
topographies of these potentials corroborated such view (Figure 5-6a, right). According 
to this interpretation, the P200 is a marker of brain responsiveness to external events 
while the N550 is associated to sleep protection against external perturbation. 
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Figure 5-6 Bi-stability of neuronal responses in NREM-sleep gates sensory processing 

(a) Event-Related Potentials computed at Cz for trials in light NREM (blue curve) and deep 
NREM sleep (black). Two distinct potentials are clearly visible: a positivity around 200ms (P200) 
maximal at centro-parietal electrodes (see scalp topography on the top right), a negativity around 
550ms (N550) maximal for deep NREM sleep (trials associated with slow-waves) predominant at 
frontal electrodes (see scalp topography on the bottom right). The later P900 potentials 
correspond the up-state of evoked slow-waves. Scalp topographies were established by averaging 
the voltage over windows around the two potentials of interest (see gray areas on ERP plot). 
These values were average across participants and z-scored across channels to emphasize regional 
differences. (b) Correlations between the LRP magnitude and the P200 amplitude (left) or the 
N550 amplitude (right) for trials in light NREM sleep. P200 and N550 amplitudes were 
computed on Pz and Cz respectively. Correlations between the pairs of variables were assessed 
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using the Pearson’s method, which coefficient is displayed on each subplot along its significance 
level (***: p<0.005; ns: p>0.05). Dotted line shows the linear fit between the two pairs of 
variables. Values were z-scored across trials for each participant before being aggregated across 
participants. Values were binned for visual purpose (N=50 bins on the sorted x-axis variable). 
Error-bars depict the standard error of the mean of the LRP magnitude for the corresponding 
bin. Scalp topographies on the right show the Pearson coefficients computed for each sensor 
(non significant coefficients were set to 0, p>0.05, FDR correction for multiple comparisons). (c) 
Same as in panel b for trials in deep NREM sleep. Note the reversal of the relationship between 
the LRP and the P200 from light to deep NREM, paralleled with the apparition of a large N550, 
showing a suppressive effect on LRP magnitude. 

We thus examined whether the auditory responses (evoked-potentials associated to 
stimulus onset) were predictive of the apparition of an LRP. Interestingly, in light NREM 
sleep, the N550 was largely reduced which is in line with the fact that only trials without 
slow-waves were included. The P200 was also reduced. When examining the relationship 
between these events and the LRP magnitude in light NREM sleep (Figure 5-6b), a 
positive relationship was found between LRP magnitude and the P200 (Pearson 
coefficient at Pz: r=0.24, p=6.10-42, N=3111 samples in 15 participants). This correlation 
was maximal over centro-parietal electrodes. Thus, the larger the P200, the larger the 
LRP in light NREM sleep. No clear correlation was observed with the amplitude of the 
N550 (r=0.04, p=0.02), which could be explained by the fact that, in light NREM, the 
N550 was more or less abolished. On the other hand, in deep NREM sleep, there was a 
clear positive correlation between the N550 amplitude and the LRP magnitude (Pearson 
coefficient at Cz: r=0.10, p=10-4, N=6037 samples in 18 participants). Thus, the smaller 
the N550, the larger the LRP in deep NREM sleep. Interestingly, in deep NREM sleep, 
the relationship between LRP magnitude and the P200 was reversed (Pearson coefficient 
at Cz: r=-0.12, p=10-20) compared to light NREM sleep. Such reversal could be due to 
the fact that the P200 activation can trigger a down-state (N550) in deeper stages of 
NREM sleep, which would ultimately inhibit information processing and reverse the 
relationship between the P200 and the LRP (see Discussion).  

!

Auditory evoked potentials are predictive of motor preparation in REM 
sleep  

We applied the same approach to REM sleep. Auditory stimuli in REM sleep also evoked 
archetypal potentials: a positivity around 200 ms followed by a negativity around 500 ms 
(Figure 5-7a). However, the topography and temporal profile of these potentials are quite 
different from NREM potentials. In REM sleep, the P200 is usually associated to the 
wake auditory P200, generated over the primary and secondary cortices (Picton, 2010). 
The scalp topography of the P200 with a maximum over central electrodes is concordant 
with this view. Contrary to light NREM sleep, the P200 was negatively correlated with 
the LRP magnitude in REM sleep (Pearson coefficient at Pz: r=-0.13, p=4.10-11, N=2622 
samples in 18 participants; Figure 5-7b).  
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Figure 5-7 Evoked responses to sounds correlate with LRP magnitude in REM sleep 

(a) Event-Related Potentials computed at Cz for trials in REM sleep. Two distinct potentials are 
again visible: a positivity around 200ms (P200) maximal at central electrodes (see scalp 
topography on the top right), a negativity around 500ms (N500) maximal at parietal electrodes 
(see scalp topography on the bottom right). Scalp topographies were established by averaging the 
voltage over windows around the two potentials of interest (see gray bar on ERP plot). These 
values were average across participants and z-scored across channels to emphasize regional 
differences. Note that these two potentials are quite different form the potentials described in 
NREM (Figure 5-6) in terms of temporal profile, amplitude and topography. (b) Correlations 
between the LRP magnitude and the P200 amplitude (left) or the N500 amplitude (right) for 
trials in REM sleep. P200 and N550 amplitudes were computed on Cz and Pz respectively. 
Correlation between the pairs of variables was assessed using the Pearson’s method, which 
coefficient is displayed on each subplot along its significance level (***: p<0.005; ns: p>0.05). 
Dotted line shows the linear fit between the two pairs of variables. Values were z-scored across 
trials for each participant before being aggregated across participants. Values were binned for 
visual purpose (N=50 bins on the sorted x-axis variable). Error-bars depict the standard error of 
the mean of the LRP magnitude for the corresponding bin. Scalp topographies on the right show 
the Pearson coefficients computed for each sensor (non significant coefficients were set to 0, 
p>0.05, FDR correction for multiple comparisons). Similar correlations were obtained when 
focusing on REM trials during which wake items were played (not shown). 
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These negative correlations were maximal over occipital electrodes. Similarly, the N500, a 
potential that is prominent over occipital electrodes in REM sleep, was also negatively 
correlated with LRP magnitude (Pearson coefficient at Pz: r=-0.15, p=3.10-14; Figure 
5-7c), an opposite relationship than the one found in NREM sleep with the N550 
potential. Similar correlations were observed when considering the REM trials in which 
words practiced in wake were played (P200: r=-0.12, p=8.10-4; N500: r=-0.15, p=7.10-15). 
These results indicate that the evoked potentials associated to auditory stimuli are 
predictive of later and more complex stages of processing (here motor preparation) and 
suggest that these auditory potentials are not an unspecific reaction to external stimuli. 

 

Markers of responsiveness are modulated within sleep cycles  

The presence of LRP in light NREM but not deep NREM sleep or REM sleep (when 
unpracticed words are presented) could be due to the fact that light NREM sleep is more 
pervasive to external information. Another interpretation would be that the ability to 
prepare for the adequate motor response slowly decays with the time spent asleep. Light 
NREM sleep occurring first, the LRP would be prominent in this state. To test this 
possibility we examined how the LRP magnitude was modulated within sleep cycles. 
Sleep cycles were detected using participant’s hypnograms (see Material and Methods). 
For each cycle, we retrieved the dynamics of the LZc (Figure 5-4), the slow-wave power 
(a proxy for slow-wave density) and the LRP magnitude in the NREM part of the cycle 
(see Figure 5-8). In accordance with the archetypal profile of sleep cycles, slow-wave 
power density gradually increased at the beginning of the sleep cycle (descending slope) 
but decreased toward the end (ascending slope and transition to REM sleep, (Halász, 
2016)). The LZc mirrored this pattern with a gradual decrease in overall complexity 
followed by a steep increase. Interestingly, the LRP magnitude followed the LZc dynamic 
and increased again toward the end of the cycle and during the ascending slope (u-shape). 
This result suggests that the capacity to process information is dynamically related to 
signal complexity and neural bistability rather than sleep stages. Indeed, toward the end 
of the cycles, dark colors indicate that trials were scored mostly as NREM3 but showed 
an increase in LRP magnitude. Thus, the beginning and end of NREM episodes might 
represent temporal windows in which monitoring of the surrounding environment is 
possible. 
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Figure 5-8 The ability to process information is dynamically modulated within sleep cycles 

Modulation of the LRP magnitude (colored dots), the Lempel-Ziv complexity (LZc, black curve) 
and the delta power (gray curve) within the NREM sleep part of sleep cycles. Colors of dots 
(LRP magnitude) show the proportion of light and deep NREM trials included in the 
corresponding bin. A classical increase in delta power (a proxy for slow-wave density) is observed 
corresponding to the transition from light to deep NREM sleep. This increase in delta power is 
accompanied by a decrease in LZc and LRP magnitude. Note that both LZc and LRP have the 
tendency to increase again at the end of the NREM cycle, paralleling the transition from deep 
NREM sleep to REM sleep. LRP, LZc and delta values were estimated within each sleep cycle on 
fixed windows (see Material and Methods). Sleep cycles were then binned (N=30) so as to 
average cycles with different durations and values were normalized across the entire cycle to 
better visualize the dynamics of each variable of interest (expressed here in arbitrary units: a.u.). 
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Discussion 

Several studies have shown that the sleeping brain is far from being disconnected (Issa 
and Wang, 2008; Nir et al., 2011; Portas et al., 2000; Sela et al., 2016). Not only can 
sleepers encode external information but they can also process this information at 
different levels of representation and analyze it in its context (Bastuji, 1999; Hennevin et 
al., 2007; Ruby et al., 2008; Strauss et al., 2015). Here, we provide compelling evidence 
that sleepers can even flexibly use sensory information to make decisions in accordance 
with our previous findings during daytime naps (Kouider et al., 2014).  

 

Complex and distributed processes in the sleeping brain 

Participants had to categorize spoken words based on their semantic category (animals 
vs. objects) while falling asleep. Responses were given through lateralized hand responses 
(right vs. left) when participants were awake. The rule matching one semantic category 
with a given response-side was arbitrary. To assess participants’ responsiveness, we 
computed an LRP (Smulders et al., 2012). The LRP indicates whether brain activity is 
lateralized according to the expected response side. When computed on response-locked 
EEG data and during wakefulness, the LRP cluster started before the overt behavioral 
response itself (significant cluster: [-1.1 0.8]s, pcluster=0.001, N=17 participants), 
confirming a functional link with the preparation of the response (Masaki et al., 2004). A 
similar negative deflection was also observed on the stimulus-locked LRP (Figure 5-2a). 
This negativity was conserved in light NREM sleep when unpracticed words were played 
(Figure 5-2c), with a similar timing and scalp topography as previously found in naps 
(Kouider et al., 2014). 

Since the assignment of a stimulus category to a given response hand was 
counterbalanced across participants, the presence of an LRP can solely be explained by 
response-related activity. Thus, the presence of such LRP in sleep reflects the 
maintenance of complex and distributed processes during light NREM going from the 
encoding of the auditory information to the preparation of the appropriate motor 
response. The maintenance of such complex processing chain could seem at odd with 
the breakdown of functional connectivity reported at NREM sleep onset (Massimini et 
al., 2005) but could be explained by the automation of the task-set prior to sleep onset 
(Kouider et al., 2014). Since consciousness fades at NREM sleep onset (Tononi and 
Massimini, 2008), our results suggest that participants continued classifying the words 
without being aware of it (Dehaene et al., 1998; Kouider and Dehaene, 2007).  

No LRP were observed in deep NREM sleep or REM sleep (for unpracticed words), 
suggesting that part of this chain is disrupted. However, when considering practiced 
words (wake list, Figure 5-1) played during sleep, an LRP was observed in both light 
NREM and REM sleep (Figure 5-3). Both auditory evoked potentials (AEPs) and power 
spectra were in accordance with either NREM or REM sleep staging, confirming that 
these trials genuinely corresponded to these stages. The presence of an LRP in REM 
sleep for practiced but not for novel words could be interpreted as a failure of the 
sleeping brain to access the meaning of words during the REM period. Under such 
circumstances, the sleeping brain would fail to categorize novel words, but could still rely 
on stimulus-responses contingencies previously learnt during wakefulness in order to 
prepare for the appropriate response. Alternatively, the presence of an LRP for practiced 
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words only could stem from a difference in sleep rather than stimulus type. Since the 
wake and REM lists were not randomly intermixed, we cannot rule out this 
interpretation. And indeed, despite equivalent power spectra and ERPs (Figure 5-3), trials 
during which the wake list was played showed smaller LZc values than trials of the REM 
list (paired t-test: t(17)=3.5, p=0.004). This smaller complexity for practiced compared to 
unpracticed words argue against the hypothesis that an LRP would be visible for 
practiced words because participants had been more awake. 

 

The complexity of brain dynamics interacts with the processing of the 
environment 

Certain periods of sleep proved more propitious for the induction of task-dependent 
responses. What dictates the brain to keep monitoring, at least partially, its environment 
during sleep? To investigate this question, we first relied on the Lempel-Ziv complexity 
(Ziv and Lempel, 1977). The LZc determines the temporal predictability of the EEG 
signal. Coupled to TMS stimulations, it has been used to determine the level of 
consciousness during anesthesia, sleep or in brain-damaged patients (Casali et al., 2013; 
Sarasso et al., 2015). LZc has also been applied to spontaneous neural data in humans 
(Schartner et al., 2015) and rodents (Abásolo et al., 2015), evidencing a remarkable link 
between complexity and consciousness levels. We confirmed these previous findings 
here in natural sleep and using scalp EEG (Figure 5-4). LZc decreased from wakefulness 
to deep NREM sleep. REM sleep showed intermediate complexity values, between 
wakefulness and light NREM sleep. Such pattern perfectly matches the phenomenology 
of these sleep stages (Laureys, 2005; Yuval Nir et al., 2013): consciousness is not absent 
from sleep since we dream, but dreams are usually more frequent and complex in REM 
sleep than NREM sleep and are quite rare in deep NREM sleep. 

LZc did not only track participants’ vigilance state but also predicted the magnitude of 
the LRP. In light NREM sleep, we observed a positive correlation between LZc and LRP 
(Figure 5-4b, middle), suggesting that sensory processing is associated with some sort of 
partial awakening. In REM sleep however this relationship was reversed (Figure 5-4b, 
left). The higher the LZc, the weaker the LRP. Interestingly, as said above, trials for 
which the wake list was played and an LRP observed (Figure 5-3) showed smaller LZc 
values than trials during which unpracticed words were used (no LRP). This opposite 
relationship between complexity and responsiveness in REM sleep could be related to 
the peculiarity of REM sleep, a state of consciousness disconnected from the 
environment, and emphasizes the difference between consciousness and responsiveness 
often observed in anesthesia (Sanders et al., 2012; Sarasso et al., 2015). 

 

Neuronal bistability and the gating of sensory processing 

By contrast to light sleep, no LRP was observed in deep NREM sleep. What could 
explain such a drastic difference? Light and deep NREM sleep were defined based on the 
presence of slow-oscillations. Light NREM sleep was notably characterized by a near-
absence of the frontally distributed N550 potential (Figure 5-2 and Figure 5-6), which is 
usually linked to the down-states of stimuli-evoked K-complexes (Bastien et al., 2002; 
Halász, 2016). We therefore explored whether evoked responses (i.e. early stages of 
sensory processing) were predictive of the apparition of an LRP. We found that in light 
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NREM sleep, the P200 is positively correlated with LRP magnitude (Figure 5-6b). The 
P200 potential has been interpreted has a local stimulus-dependent excitation (Laurino et 
al., 2014) and could be related to the encoding of the stimulus. A pronounced P200 
could evidence the sleeping brain’s responsiveness to the external world. 

However, in deep NREM sleep, this relationship was reversed (Figure 5-6c). In addition, 
in deep NREM sleep, large-amplitude evoked K-complexes (N550/P900 potentials) are 
visible and maximal over frontal electrodes. The more pronounced these potentials, the 
smaller the LRP. Indeed the N550 is associated to K-complexes’ down-state, i.e. an 
episode of neuronal silencing (Mircea Steriade, 2003) perturbing the encoding and 
integration of information (Dang-Vu et al., 2010; Pigorini et al., 2015; Schabus et al., 
2012). The N550 could therefore prevent the further processing of information by 
stopping the continuity of neural operations. 

But how could be explained the reversal of the relationship between LRP magnitude and 
the P200? From light to deep NREM sleep, cortical neurons become more and more bi-
stable and exhibit successions of neuronal silencing (down-states) and activations (up-
states) (Mircea Steriade, 2003). Importantly, a local excitation can trigger a down-state 
(Halász, 2016; Menicucci et al., 2013; Sanchez-Vives et al., 2010). The P200 could 
therefore ignite a down-state that would shut down in turn any further processing. Thus, 
whenever the P200 would trigger a down-state, its relationship with sensory processing 
would reverse: from a potentiating activation to a suppressive mechanism. Increasing 
sleep depth could increase the probability that a local excitation transforms into a global 
silencing (Halász, 2016), by facilitating the apparition of down-states. It is also possible 
that a larger P200 would have a greater probability to trigger a down-state, sleep depth 
being kept equal. Indeed, the P200 was larger when down-states were observed (Figure 
5-6a). Brain responses to sound could therefore follow a self-regulated process in NREM 
sleep whereby sensory activations are suppressed as a consequence of cortical bi-stability. 

 

Could dreams gate sensory processing in REM sleep? 

How the brain gets disconnected from its environment in REM sleep is still a mystery 
(Nir and Tononi, 2010). Indeed, the recovery of a wake-like brain activity and 
consciousness should favor the processing of external information and yet sleepers 
remain largely unresponsive in REM sleep. Accordingly, we did not observe an LRP for 
novel words during REM sleep (Figure 5-2) despite increased levels of neural complexity 
(Figure 5-4). A recent study described the presence of slow-waves in REM sleep 
restricted to the superficial layers of primary sensory cortices (Funk et al., 2016). These 
slow-waves could act as a gating mechanism since these layers are the main targets of 
thalamic relays (Jones, 2007) We showed here however that stimuli had a clear impact on 
cortical activity: signs of arousals could be observed after stimulus onset (Figure 5-5c-d, 
broadband increase in higher frequencies, decrease in theta oscillations) as well as strong 
auditory potentials (Figure 5-7). These activations indicate that sensory information did 
reach the cortex during REM sleep in accordance with previous studies (Bastuji, 1999; Y. 
Nir et al., 2013; Sallinen et al., 1996). However, no LRP was observed when novel words 
were played. It is therefore possible that the stimulus-evoked perturbations were 
confined in sensory areas and not further processed.  

But what could be the mechanisms limiting the further processing of information at the 
cortical level? Indeed, REM sleep is characterized by a recovery of cortico-cortical 



Chapter 2 -Processing 

191!

connectivity compared to NREM sleep (Massimini et al., 2010), which should allow the 
recovery of complex cortical processes when sensory information reaches the cortex. We 
propose that sensory information may compete with endogenous processes (i.e. dream 
contents) preventing the correct processing of the former. Indeed, brain activity sharing 
properties with wake sensory processing can be observed in REM sleep around eye-
movements (Andrillon et al., 2015b), as well as the replay of previously learned 
information (Louie and Wilson, 2001).  These endogenous contents could in turn 
interfere with the processing of external inputs. Accordingly, the overall degree of 
complexity had a negative impact on LRP magnitude (Figure 5-4). This ‘informational 
gating’ could also explain the surprisingly rare integration of external stimuli during REM 
sleep (Nir and Tononi, 2010). This gating mechanism could be mediated by a change in 
the balance between top-down and bottom-up signaling in favor of top-down processes 
(Funk et al., 2016; Nir and Tononi, 2010). Further investigations are needed to 
specifically investigate this question. 

 

Consequences of external stimulations on sleep 

How did stimulation affect sleep? Were participants able to covertly respond to stimuli in 
light NREM because they marginally awoke? To explore this question we examined the 
time-frequency decomposition of the EEG signal in response to sounds (Figure 5-5). In 
NREM sleep, we observed a two-step response to sounds (Figure 5-5a-b). Right after 
stimulus onset, power increased within the slow-waves and spindle range in accordance 
with the fact that sleep rhythms can be evoked by external stimulations (Halász, 2016). 
These increases were maximal over frontal electrodes and could correspond to a 
protective mechanisms ensuring that sleep is preserved (Halász et al., 2014; Laurino et al., 
2014). After this initial increase, these oscillations decreased in power. Interestingly, the 
spatial and temporal distributions of this decrease overlap with the time and location of 
LRP in light NREM sleep (Figure 5-2c) and is concomitant with the increase in LZc 
following stimulus presentation (Figure 5-4b). 

The initial protective response is therefore followed by a local modulation of sleep depth 
accompanying the processing of information. No sign of arousal was observed (alpha or 
high-frequency increase). However the absence of arousal at the scalp level does not 
preclude local awakening in motor or sensory areas of example (Nobili et al., 2011; Peter-
Derex et al., 2015), a phenomenon called local sleep (Nir et al., 2011; Nobili et al., 2012). 
The local modulation of sleep depth associated here to sensory processing could reflect, 
at the scalp level, the occurrence of local wake within the sleeping brain. 

In REM sleep, auditory stimulations also perturbed the theta rhythm (Figure 5-5c-d) and 
signs of arousals could be observed after stimulus onset (broadband increase in higher 
frequencies). Once again, these perturbations were maximal over central electrodes, 
potentially revealing the recruitment of auditory and motor regions by the acoustic 
perturbation. 

 

Responsiveness is dynamically modulated during sleep cycles 

We finally explored the dynamics of neural complexity (LZc), motor preparation (LRP 
magnitude) and delta power (a proxy for slow-waves density) across sleep cycles. Both 



Study 5 

192!

LZc and delta power followed a dynamic that precisely reflected the structure of sleep 
cycles with an initial descent toward deep NREM sleep characterized by a clear increase 
in delta power and decrease in neural complexity. The peak in delta power was followed 
by a steep decrease corresponding to the dampening of NREM sleep and the transition 
to REM sleep. This delta decrease was mirrored by an increase in complexity. The LRP 
magnitude was also robustly modulated within sleep cycles and paralleled complexity’s 
dynamics, with notably an increase in LRP magnitude toward the end of sleep cycles. 
The disappearance of the LRP is therefore not due to a slow decay from the cycle onset 
but is tightly linked to sleep depth. A similar increase of brain responsiveness in the sleep 
cycles’ ascending slope has been evidenced through the Cycling Alternating Patterns 
(Terzano et al., 1985). This fragility of sleep at the transition with REM sleep could be 
instrumental in allowing the brain to monitor its environment and decide whether to stay 
asleep or to wake up (Halász et al., 2004).  

Overall, our data suggests that sleepers can complexly and flexibly process information 
during sleep. However this ability is finely regulated by the neural dynamics of the 
sleeping brain. Cortical bi-stability seems to play a suppressive role in NREM sleep, 
moving the sensory gating from the thalamus (McCormick and Bal, 1994) to the cortex 
(Tononi and Massimini, 2008). In REM sleep, we propose a completely different gating 
mechanisms by which endogenously generated information compete with and limits the 
processing of external information (informational gating). 
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Summary 

Although sleep is characterized by a loss of behavioral responsiveness, the sleeping brain 
is far from being disconnected. Processing of external inputs has been evidenced in 
sleep, ranging from sensory encoding all the way up to complex processes of semantic 
integration and motor preparation. However, it remains unclear whether the sleeping 
brain can select which information to process. During wakefulness, we can effortlessly 
focus on and track a specific speaker and ignore other competing auditory sources in the 
environment, as illustrated by the cocktail party situation. Here, we investigated whether 
the sleeping brain could similarly resolve the cocktail party problem. We asked 
participants to listen carefully to stories while falling asleep. The stories were 
simultaneously presented with pseudo-speech that participants were instructed to ignore. 
By reconstructing both stimuli envelopes from the EEG signal, we could assess whether 
participants paid attention to the real or to the pseudo speech. Attention to the relevant 
stream was conserved in sleep. However attentional processes were transient and 
vanished in deep sleep. NREM sleep being characterized by the presence of particular 
sleep rhythms (K-complexes, slow-waves and sleep spindles), we examined their 
respective influence on sensory encoding and attention allocation. K-complexes were 
found to promote attention allocation while slow-waves seemed to specifically shut down 
the processing of the relevant stream in deep sleep. Sleep spindles however had only a 
moderate impact on attention orientation. Thus, our results provide a novel approach to 
the study of sensory coupling during sleep and emphasize important differences between 
light and deep NREM sleep in terms of sensory processing. 
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Introduction 

Sleep is both a ubiquitous phenomenon and a vital need (Cirelli and Tononi, 2008). But 
the loss of responsiveness to the surrounding world places sleepers in a state of great 
vulnerability. Reversibility (i.e. sleepers’ ability to wake up at any moment) is therefore 
one of the most crucial features of sleep (Halász et al., 2004). But for sleep to be 
efficient, sleepers must be able to wake up only when necessary. Thus, sleepers should 
maintain some ability to monitor their environment while being asleep in order to detect 
relevant stimuli. Accordingly, previous research has shown that despite the absence of 
behavioral responsiveness, the sleeping brain continues encoding incoming stimuli (Issa 
and Wang, 2008; Y. Nir et al., 2013). Furthermore, the analyses of EEG evoked 
responses to external inputs showed the preservation of a range of cognitive processes: 
the detection of familiar stimuli (Perrin et al., 1999) and semantic violations (Bastuji et al., 
2002; Brualla et al., 1998; Ibanez et al., 2006), the integration of simple acoustic rules 
(Ruby et al., 2008; Strauss et al., 2015) and even the learning of novel associations (Arzi 
et al., 2012; de Lavilléon et al., 2015). Sensory information can not only be processed at a 
high level of representation but this information can also be used by non-sensory regions 
involved in the preparation of task-dependent motor plans (Kouider et al., 2014). Such 
preservation of complex and distributed processes during sleep is all the more striking 
since these studies have been performed mostly during Non-Rapid Eye-Movement 
(NREM) sleep, a state in which cortico-cortical connectivity is impaired (Massimini et al., 
2005) and consciousness greatly diminished if not absent (Yuval Nir et al., 2013). 
However, most of these studies relied on the analysis of brain responses to isolated 
words, sentences or sounds. It is yet unclear whether the sleeping brain can select one 
source of information when several are presented concomitantly.  

Allocating attentional resources, i.e. favoring the processing of one source of information 
compared to others, is indeed essential to efficiently face the crowded acoustic scenes 
that constantly surround us. When awake, this feat is achieved either through top-down 
attention, by selecting a given auditory source among others, or through bottom-up 
attention, when being attracted towards one source which is particularly relevant (Fritz et 
al., 2007). Although the underlying mechanisms are distinct, these two processes will 
work in a complementary and cooperative way. As a result, the neural representation of 
the attended information is enhanced (Ding and Simon, 2012a; Mesgarani and Chang, 
2012; O’Sullivan et al., 2014; Xiang et al., 2010). Here, we investigated whether the 
sleeping brain could favor one source of information versus another based on a high-
level criterion: its semantic relevance. 

We used a dichotic cocktail party paradigm, a classical approach to explore auditory 
attention (Cherry, 1953). Human participants wearing an electroencephalographic (EEG) 
cap listened to two different speech streams at the same time, each one played at a 
different ear. One of the two streams presented was made of real speech (short stories, 
news, monologues) and the other of pseudo-speech (also called Jabberwocky). Pseudo-
speech shares with real speech the same syntactic and phonologic properties (Hahne and 
Jescheniak, 2001) and therefore sounds much like real speech. However it is devoid of 
any meaning, contents words being replaced by pseudo-words, which are phonologically 
legal but absent from the lexicon. Participants were asked to pay attention to the real 
speech and to ignore the pseudo-speech. Focusing on the real speech is far from a trivial 
task since it implies (i) encoding both streams, (ii) separating the two streams, (iii) 
recognizing which one is the real speech, (iv) focusing and maintaining attention on the 
real speech. Here we investigated whether such processes could be successfully 
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completed during NREM sleep. Participants were first recorded while being fully awake. 
They were then authorized to fall asleep while performing the task and their neural 
responses to the acoustic stimuli were recorded during NREM sleep. Auditory 
stimulation was continuous and the task-set remained constant throughout the entire 
experiment.  

Sensory encoding and attention allocation were assessed using a novel approach called 
stimulus reconstruction (Pasley et al., 2012). We built a model mapping the EEG signal 
to the syllabic rate of auditory streams (modulations of the acoustic envelope within the 
low-frequency range). The model was then used to reconstruct stimuli envelope using the 
EEG signal. By reconstructing what participants heard, this technique allows to 
dynamically track sensory encoding and attention. Indeed, previous research has stressed 
the importance of tracking the syllabic rate for speech comprehension (Doelling et al., 
2014; Giraud and Poeppel, 2012a). The inability to reconstruct acoustic envelope from 
the EEG could therefore be interpreted as a loss in the capacity to track speech. In 
addition, when two sources are presented in competition, the attended stream is better 
reconstructed than the ignored one (Ding and Simon, 2012a; O’Sullivan et al., 2014). 
Comparing the quality of the two reconstructions could provide an insight on 
participants’ attentional focus. 

Stimulus reconstruction being performed during continuous acoustic stimulation, it 
constitutes a methodological advance compared to the standard event-related potentials 
(ERPs) approach, allowing us to study the dynamic nature of attentional engagement 
towards the environment. Furthermore, this approach allows exploring the influence of 
NREM sleep hallmarks (slow-waves, K-complexes and sleep spindles) on sensory 
encoding and attention. Indeed, these thalamo-cortical rhythms were thought to play a 
central role in the gating of sensory information to the cortex (McCormick and Bal, 
1994). Yet, their exact impact on sensory processing remains unclear. Slow-oscillations 
such as K-complexes are either seen as a protective mechanism, suppressing sensory 
information to preserve sleep (Bastien et al., 2000; Wauquier et al., 1995)  or, conversely, 
as windows of wakefulness (Destexhe et al., 2007; Halasz, 2005) allowing the sleeping 
brain to monitor its environment. Similarly, sleep spindles have been proposed as 
enabling sensory disconnection (Schabus et al., 2012). But cellular recordings show little 
impact of sleep spindles on cortical firing (Andrillon et al., 2011; Peyrache et al., 2011) 
and sensory encoding (Sela et al., 2016). 

By reconstructing competing acoustic streams with EEG, we show here that sensitivity 
to auditory information is preserved throughout NREM sleep. Importantly, we also 
found an enhancement of the meaningful stream in NREM sleep. However, this 
enhancement was predominant in light NREM sleep and, contrary to wakefulness, 
attention allocation was transient. The enhancement of the meaningful stream 
disappeared in deep NREM sleep. This difference between light and deep NREM sleep 
could be traced back to sleep micro-structure and sleep rhythms. K-complexes allowed 
the recovery of attention allocation and seemed to play a central role in opening sleepers 
to their environment since they. On the contrary NREM3 slow-waves specifically 
suppressed the relevant stream, which can be seen as a protective mechanism. Sleep 
spindles on the other hand had a limited impact on stimulus reconstruction and attention 
allocation. These results show that the mechanisms of attentional monitoring are 
maintained during some periods of sleep, and reveal the role played by sleep rhythms in 
coupling and decoupling sleepers from their environment. 
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Methods 

Audio material 

Eighty texts (N = 80) in French were selected from Wikipedia articles (www.wikipedia.org), 
news reports, tales and monologues' transcripts from movies. They were first adapted to 
a length of about 180 words. Then, the syntax and vocabulary were simplified to produce 
easily tractable texts. Using the Lexique database (New et al., 2004), a pseudo-lexicon was 
created matching all the content words present in the French texts with a given pseudo-
word. These pseudo-words were selected to ensure their similarity with the words of the 
French lexicon. French texts were then transformed in syntactically correct but 
meaningless texts (pseudo-texts) by replacing each content word with its pseudo-word 
counterpart (Fries, 1952). We therefore obtained eighty pairs of texts matched in total 
duration, syntax, word-frequency and prosody but that differed at the semantic level. 

Real (meaningful) and pseudo (meaningless) texts were then converted into speech using 
IRCAMTTS, a text-to-speech Matlab-based software (Obin, 2011). Pauses of 150ms 
were imposed between sentences to maintain a constant auditory flow. The 
corresponding audio files were digitalized at a sampling rate of 44.1kHz (total duration: 
73.63s +/- 0.04, mean +/- Standard Error of the Mean (SEM) across files). Then, the 
acoustical properties of the voice uttering the texts were manipulated using the 
IRCAMTRAX module (Roebel, 2010) for the Logic Pro software (Apple Inc., Cupertino, 
CA, USA). Two easily distinguishable voices were produced from the original neutral 
speaker by modulating the pitch and the size of the voice's vocal tract. Importantly, these 
transformations were performed after the text-to-speech procedure. Therefore, the same 
80 pairs of real (meaningful) and pseudo (meaningless) texts could be pronounced either 
by a high-pitch or low-pitch voice without other parameters such as total duration or 
prosody being altered. 

Novel pairs of texts were created for the dichotic stimulation. Each pair contained a real 
steam and a pseudo stream (created from a different real text). Pairs of real and pseudo 
streams were matched in terms of total duration and silence-to-signal ratio by increasing 
silences (portions of signal between 0.001 and -0.001 dB and longer than 50 
milliseconds) with the adequate time constant. Length corrections were then applied by 
changing sound tempo with a Matlab (Mathworks Inc., Natick, MA, USA) 
implementation of the VSOLA algorithm (Dorran and Lawlor, 2003). Lastly, acoustic 
energy was normalized across all texts by setting the root-mean-square value of the 
acoustic signal to a standard value. Thus, pair of real and pseudo-stories had indentical 
durations and equivalent acoustic energy. 

Frequency tags were also added to each sound stream by multiplying the auditory signal 
with a sine wave at a given frequency (41 or 44 Hz) with a 50% modulation depth. 
Training stimuli were not tagged. The pair of auditory streams presented in test trials 
contained each a different tag (41 or 44 Hz). These frequency tags did not prevent the 
understanding of the stories. The aim was to check whether attention could amplify the 
frequency tag present in the attended stream. However, and in accordance with a recent 
review (Varghese et al., 2015), we did not find, in wakefulness, a consistent modulation 
of these tags depending on attention allocation. This angle was therefore not further 
investigated.  
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The texts transformed into speech were used in our experiment as auditory stimuli. A 
trial refers to the full presentation of a story (diotic trials, training phase, see below) or 
pair of stories (dichotic trial, test phases) and therefore had rather long durations (1.29 
+/- 0.00 minutes). During the dichotic trials, each auditory stream (real or pseudo) was 
assigned a side (left vs. right), voice (high vs. low) and frequency tag (41 vs. 44 Hz) that 
differed from its counterpart. These parameters were randomly selected for each trial. 

 

Experimental procedure 

Participants: Twenty-nine (N = 29) French native speakers (13 females, age: 18-33) with 
self-declared normal hearing and no history of sleep disorders participated to the sleep-
study. Three participants were discarded from our analyses due to few (<1 minute of 
consolidated NREM-sleep, i.e. NREM2 or NREM3) or no sleep and two for technical 
issues. Participants were selected through questionnaires assessing their sleep habits and 
daytime sleepiness (Epworth scale: 10.97 +/- 0.14 on a scale of 24). In addition, they 
were required to sleep 30% less than usual the night before the experiment and deprived 
from stimulants the day of the recordings to increase the probability that they would fall 
sleep while hearing the acoustic stimuli. Participants were equipped with an actimeter the 
day prior to the recording session to check their compliance with sleep restriction. 
Recording sessions always occurred in the early or late afternoon to increase sleepiness 
and favor Non-Rapid Eye-Movement (NREM) sleep. The present protocol had been 
approved by the local ethical committee (Conseil d'Evaluation Ethique pour les 
Recherches en Santé, University Paris Descartes, Paris, France).  

Protocol: The day of the recording sessions, participants were equipped with high-
density electroencephalographic (EEG) nets (see below) and seated on a reclining chair 
in a dark, soundproof and magnetically shielded booth. Figure 6-1 illustrates the timeline 
of recording sessions. Participants started with a training phase during which they were 
exposed to 6 real and 6 pseudo texts played in a diotic fashion (i.e., the same text was 
presented to both ears at the same time). The training phase was self-paced.  

Following the training phase, the first part of the test phase (“wake test”) was initiated 
and the participants were presented with 8 dichotic trials: a real text was presented to one 
ear and a pseudo text to the other. Participants were asked to stay awake with eyes-closed 
during the training phase and wake test phases and were reminded to do so whenever 
drowsiness makers appeared in the EEG. Trials followed each other separated by a 4 to 
6 s jitter (random uniform distribution). After this wake phase, the sleep test phase was 
initiated: participants were put in a reclined position and were allowed to fall asleep. 
Participants were presented with dichotic auditory streams similar to the initial test phase 
but composed of novel pairs of real and pseudo stories. Stimulations went on, trial after 
trial for about 40 minutes (30 trials) with a jitter of 4 to 6 s between trials (random 
uniform distribution).  

Task instructions were rather simple. During the training phase, participants were asked 
to attentively listen to the diotic training stories. During the wake test phase (dichotic-
trials), subjects were instructed to focus on the meaningful stream and to ignore the 
pseudo-text. In the sleep test phase, participants were asked to maintain their attention 
toward the meaningful stream as long as they remained awake and to resume the task in 
case of an awakening. Participants were explicitly allowed to fall asleep in the sleep test 
phase. 
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At the end of the recording session, participants answered a multiple-choice 
questionnaire on the texts heard during the experiment as well as texts that were not 
played (one question for each text, 4 options per question, N = 80 questions). 
Participants were asked to answer to every single question even if they did not hear or 
remember the corresponding story. In addition, following each question, participants had 
to indicate whether (1) they remembered hearing the text during the experiment and (2) 
they knew the answer to the question beforehand. 

 

Figure 6-1 Experimental procedure 

Left: Each recording session was composed of two parts: the training and test phases. During the 
training and at the beginning of the test phase, participants were instructed to stay awake and 
were authorized to fall asleep during the later part of the test phase. Right: During the first part 
of the experiment (training), participants listened to either real (red) or pseudo (blue) speech 
presented diotically (same information in both ears).  The envelope of the sound and the filtered 
EEG signal (see Material and Methods) were extracted to train a linear filter (i.e. matrix of 
weights for each electrode and time-lag) mapping the EEG signal to the sound envelope. Then, 
participants went through a test phase during which two different streams (one real, one pseudo 
speech) were played (dichotic trials, different auditory information in the two ears). During the 
test phase, the linear filter was applied to the filtered EEG envelope and one reconstructed 
envelope was obtained for each trial (black curve). This envelope can be seen as a mixture of 
both auditory inputs. The reconstructed envelope was then compared to the original envelope of 
each input using Pearson's correlation method (reconstruction scores = Pearson’s coefficient). 
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Behavioral data analyses 

Responses to the questionnaire filled in by participants after the nap session were 
analyzed as follows. The mean performance scores on the questionnaire were computed 
for each participant. Questions for which participants declared that they knew the correct 
answer beforehand were discarded from further analysis (9.18 +/- 1.54 %, mean +/- 
SEM across 29 participants). The average score for each question was first computed on 
texts that participants did not hear during the experiment. All participants (including 
participants that did not sleep, N = 29) were included to estimate the chance level. Texts 
with a chance level above 50% (twice the theoretical chance level) were excluded from 
further analysis. For each participant included in the EEG analyses (N = 24), the average 
correctness was computed for the questionnaires heard in the different sleep stages 
(21.63 +/- 1.53 questions in Wakefulness, 11.65 +/- 1.71 questions in NREM sleep). 
Since participants might go through different sleep stages during a given trial, the sleep 
stage of the trial was determined as the lightest sleep stage encountered. Scores were 
compared to the theoretical chance level across participants (u-test, see also Table S 6-1). 
The scores obtained in NREM sleep suggest that participants did not remember the 
stories played during sleep contrary to stories heard while awake.  

 

EEG recordings and acoustic stimulations 

Brain responses to monaural and dichotic auditory stimuli were recorded with EEG 
using 65-electrodes gel-nets (EGI system, Electrical Geodesic Inc.). EEG signals were 
referenced online to Cz and sampled at 500Hz. Chin electromyograms (EMG) and 
electrooculograms (EOG) were extracted from sensors placed around the eyes and on 
the chin. Subjects were asked to close their eyes while listening to the auditory streams. 

Acoustic stimuli were played at about 50 dB via an Echo Fire 12 (Echo Digital Audio 
Corp., Santa Barbara, CA, USA) soundcard. To check that a precise synchronization 
between auditory stimulations and EEG recordings was preserved throughout the 
recordings, a third audio channel was associated to the real and pseudo auditory streams. 
In this additional channel, a tone was played every second and sent to the EEG 
amplifier. We later on checked that this 1s pace had been conserved (maximal observed 
lag: 2 ms, i.e. 1 sample at 500Hz). To avoid any electromagnetic contamination from 
earplugs onto EEG recordings, a non-electrical auditory system was used (RLINK Ear 
Tone 3A, 10 Ohms, Interacoustic Inc., Middelfart, Denmark). 

 

EEG and sound preprocessing 

Sleep scoring: The continuous EEG and EOG signals were re-referenced to the mastoid 
electrodes (opposite mastoid for the EOG) and bandpass filtered between 0.1 and 30 Hz 
(two-pass Butterworth filter, 5th order). The EMG signal was obtained with a local 
derivation and bandpassed between 80 and 160 Hz (two-pass Butterworth filter, 5th 
order). Data was then segmented and scored on 20-s-long windows by an experienced 
scorer (TA) and following established guidelines (Iber et al., 2007). Only a subset of 
channels (C3, C4, Fz and Pz) were used to score vigilance states along two EOG 
channels and the chin EMG. Recordings were scored as wakefulness (49.00 +/- 2.59 
minutes, mean duration +/- SEM across participants), NREM1 (9.24 +/- 0.97 minutes), 
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NREM2 (14.36 +/- 1.58 minutes) and NREM3 (5.69 +/- 1.42 minutes). None of the 
participant entered the Rapid Eye-Movements (REM) stage.  

 

Stimulus Reconstruction: The EEG signal was here re-referenced to the signal averaged 
across all electrodes (‘average referencing’). The EEG signal was then filtered between 2 
and 8 Hz with a two-pass Butterworth filter (5th order) and then down-sampled at 100Hz 
to reduce data's dimensionality. The filtered EEG signal was segmented according to 
trials onset and offset. The amplitude of the filtered EEG envelope was subsequently 
extracted by applying the Hilbert transform. In addition, for each trial, the auditory 
streams played during this trial (1 stream for the training phase, 2 streams for the test 
phases) were filtered below 8Hz with a two-pass Butterworth filter (5th order) and down-
sampled at 100Hz. The sound’s envelope was obtained again by applying the Hilbert 
transform. 

 

Stimulus Reconstruction 

Rationale: The stimulus reconstruction is an approach that allows the reconstruction of 
an acoustic stimulus based on the neural data recorded while the stimulus was played 
(Mesgarani and Chang, 2012; O’Sullivan et al., 2014; Pasley et al., 2012; Zion Golumbic 
et al., 2013). Depending on the type of data recorded, different characteristics of the 
acoustic stimuli can be reconstructed. It has been shown recently that the scalp EEG 
signal could be used to reconstruct the envelope of an acoustic stream played 
concomitantly (O’Sullivan et al., 2014). Such reconstruction of the envelope is performed 
by building a linear model between the EEG signal and the sound signal. Interestingly, 
when two auditory streams are played concomitantly, both envelopes can be 
reconstructed. When a stream is attended and the other ignored, the attended stream's 
envelope is on average better reconstructed, allowing to track participants' attention with 
a high degree of accuracy (O’Sullivan et al., 2014). We deployed here a similar 
methodology. 

Training: A first step in the stimulus reconstruction approach is to compute the linear 
model between the auditory stream and the EEG signal. The model here was trained on 
the diotic trials (1 stream played to both ears, 6 real and 6 pseudo texts for a total 
duration of 14.6 minutes). By using diotic trials, we ensured that the model was trained to 
decode sound's envelope in the absence of attentional bias. In addition, by using both 
real and pseudo texts in the training, we increase the probability that the decoders would 
be insensitive to the stimulus condition in the absence of attentional bias (see also 
control below). The linear model was optimized to map the EEG signal from each 
electrode to the sound envelope. EEG data was shifted compared to the auditory 
envelope from 0 ms to 500 ms (here referred as time-lags), which allows the integration 
of a broad range of EEG data to reconstruct each stimulus time-point (Mesgarani et al., 
2009). In practice, this means that each sample in the auditory envelope was correlated 
with the bandpass EEG envelope from all sensors and all samples between 0 and 500ms 
relatively to the auditory signal. The obtained filter (matrix of weights: sensor per time-
lags) was then used in the testing phase to reconstruct the stimuli (Figure 6-1).  

Test: In the test phase, for each trial, two stimuli were played in competition. Using the 
model, one envelope can be reconstructed from the EEG signal recorded at that time. 



Study 6 

202!

The reconstructed envelope is assumed to correspond to a noisy mixture of both 
streams' envelope. In order to determine which stream was predominantly reconstructed 
(if any), the reconstructed envelope was compared to both original envelopes using the 
Pearson correlation method. For each trial, we therefore obtained two Pearson 
correlation coefficients, one for the real text (rtext) and one for the pseudo (rpseudo) text. 
These correlation coefficients were used as an index of the quality of the stimulus 
reconstruction of the two streams. When rtext was higher than rpseudo, that is to say when 
the reconstructed envelope was more similar to the real-text envelope than the pseudo-
text one, attention was declared as being orientated to the real-text. Therefore, trials with 
rtext > rpseudo were scored as correct (1, attention oriented to the real text) and trials in 
which rtext < rpseudo were scored as incorrect (0). The decoding accuracy (Figure 6-2) is the 
average of these scores across participants. 

The reconstruction was either performed on the entire trials (see Control below) or on 
smaller windows (Figure 6-2, Figure 6-3 and Figure 6-4). Indeed, during the sleep test 
phase, participants were not necessarily in the same sleep state for the entire trial 
duration. To get a better picture of the allocation of attention during the different sleep 
stages, trials were epoched in 10-s-long windows either locked on the sleep scoring 
(Figure 6-2a-b) or on the beginning of the trial (Figure 6-2c-d). The former epoching was 
used to get reliable scores of decoding across sleep stages (Figure 6-2a-b) whereas the 
latter was used to get the dynamics of decoding during trials (Figure 6-2c-d). In the later 
epoching, 10-s-long epochs might include sleep stage transitions. In such cases, the 
epoch was attributed the lightest sleep stage present in the epoch. 

Control: In dichotic trials, the real and pseudo texts differed at the semantic level. We 
assumed that such semantic difference would not affect the ability to decode the 
envelope and that the differences observed in the dichotic trials are due to an attentional 
bias. To confirm this assumption, we verified that the model could reconstruct the real 
and pseudo texts similarly when presented in isolation (diotic trials). This was done by 
implementing a leave-one-out approach on the training data: for each participant, 5 out 
of 6 real and pseudo trials were randomly selected and used to train a model. The 
remaining real and pseudo trial (test set) were reconstructed using this model. The 
operation was iterated until all trials have been used as the test set. The corresponding 
Pearson coefficients were averaged across iterations and participants for real and pseudo 
texts. Both streams were reconstructed with highly significant correlation coefficients (p 
< 0.001, Figure S 6-1). Crucially, there was no observable difference between the real and 
pseudo texts (p = 0.41), indicating that the stimulus reconstruction approach is blind to 
the intrinsic difference between real and pseudo texts.  

 

Individual Lags, Weights and Patterns 

As said above, each time-point of the sound envelope was reconstructed by using 500ms 
of the EEG signal (time-lags). However, these different time-lags do not equally 
contribute to the stimulus reconstruction (O’Sullivan et al., 2014). To better understand 
the contribution of each lag, filters were trained on the EEG for each single time-lags. 
An envelope was then reconstructed for each trial and compared to the real and pseudo 
envelopes. A correlation coefficient was therefore obtained for each stimulus (real and 
pseudo) and individual lag. The corresponding values averaged across participants are 
shown in Figure 6-3. In all stages, three peaks of reconstruction were observed around 
100, 200 and 300 ms. The positions of the peaks were determined by searching for the 
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maximum reconstruction coefficients for each stimulus (real and pseudo) between +0ms 
and+150ms, +150ms and +250ms and +250ms and +400ms in each vigilance state. The 
position of the peaks were averaged across participants and approximated to the closest 
time-lag. The Pearson coefficients for each peak and stream were extracted on a [-30, 30] 
ms window around the peak position (Figure 6-3, bars). For each peak, the weights of 
the individual filter were extracted from the model and displayed on a topographical map 
(Figure 6-3a). According to (Haufe et al., 2014), the patterns (i.e. the spatial profile of the 
EEG activity used by the model) were extracted for each peak using the following 
formula: 

  
A = Σ

x
WΣ⌢ 

s 

−1  

where A denote the pattern, ∑x the covariance of the EEG signal, W the weight matrix at 
the individual time-lag and ∑ŝ  the covariance of the reconstruction. 

 

Spindles and Slow-waves detection 

We investigated the influence of NREM-sleep graphoelements (slow-oscillations and 
sleep spindles) on stimulus reconstruction (Figure 6-4). To do so, we relied on automated 
detection algorithms developed detailed elsewhere (Andrillon et al., 2011; Nir et al., 2011; 
Riedner et al., 2007).  

To detect slow-oscillations, the raw EEG signal was re-referenced to the average 
mastoids. For each sensor, the EEG signal was first filtered between 0.2 and 3 Hz using 
a two-pass 3rd order Butterworth filter and down-sampled at 100Hz. Peaks and troughs 
of the filtered signal were detected as zero-crossings of the first order derivative. Portions 
of signal were determined as slow-oscillations when a peak and a trough were separated 
by more than 0.25 seconds and less than 2 seconds and the through-to-peak amplitude 
was greater than 75µV. Slow-oscillations comprised here both K-complexes and slow-
waves. However, slow-oscillations detected in NREM2 had an asymmetrical profile 
characteristic of K-complexes and were often detected in isolation while slow-oscillations 
detected in NREM3 had a symmetrical profile and occurred in trains (Figure S 6-3). 
NREM2 slow-oscillations were therefore approximated to K-complexes and NREM3 
slow-oscillation to standard sleep slow-waves. 

Spindles were detected using an automated algorithm as well. The raw EEG signal was 
re-referenced to the mastoids. The EEG signal was then band-pass filtered between 11 
and 16 Hz with a two-pass Butterworth filter at the 4th order. The envelope of the signal 
within the spindle band was extracted using the Hilbert transform applied on the filtered 
signal. Spindle candidates were detected as epochs during which a given threshold was 
overcome. The threshold used to identify these candidate spindles was set for each 
sensor and participant separately as the mean plus two standard deviations of the 
envelope amplitude recorded during all NREM2 and NREM3 epochs. Spindles 
candidates longer than 2.5 seconds or shorter than 0.5 seconds were discarded as well as 
spindles during which the envelope exceeded a maximal threshold (mean + 10 SD). See 
(Andrillon et al., 2011) for a complete description of this algorithm. 
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Decoding around sleep grapho-elements 

For each detected grapho-element (slow-oscillations or sleep spindles), we applied the 
stimulus reconstruction approach with a maximum lag of 250 ms. We extracted the 
Pearson coefficients corresponding to the real and pseudo texts on sliding windows (4-s-
long, positioned every 100ms) around each events onset ([-10, 10]s, see Figure 6-4). The 
central window (t=0) was locked on the negative peak of slow-oscillations (Figure 6-4a,c) 
and on the middle of spindles (Figure 6-4b). K-complexes and spindles were detected in 
NREM2 and slow-waves in NREM3. The slow-waves and spindles were detected on the 
Cz electrode. Time-courses were smoothed using a 500-ms-wide Gaussian kernel (Figure 
6-4) for display only. Statistical tests were performed on the data prior to smoothing.  

 

Statistics 

Stimulus reconstruction scores were computed by correlating the auditory signal with the 
EEG signal. Pearson's method, a parametric assessment of the correlation between two 
signals, was used. Parametric statistics were used whenever possible (Student's t-tests for 
the comparison of two variables). Non-parametric statistics were used otherwise (Mann-
Whitney u-tests for the comparison of two variables).   

Given that participants did not have the same number of trials in each vigilance state, we 
used mixed-models to estimate the effect of different predictors (effect of the stream 
type, of sleep stages, of K-complexes or sleep spindles, …) on reconstruction scores and 
decoding accuracy (see Figure 6-2). Mixed-models analyses were performed in R (R 
Development Core Team) with the ‘lme4’ and ‘lmerTest’ R packages. Linear mixed-
models were used to examine the effect of predictors on the reconstruction scores of the 
real or pseudo-stream and general linear mixed-models to examine the effects of these 
predictors on the decoding of attention (binomial variable). The corresponding p-values 
are reported in the main text, figure legends and supplementary material. 

Time-plots typically include numerous data-points. To correct for the multiple-
comparisons problem, we used cluster-permutation statistics (Maris and Oostenveld, 
2007). In this principled approach, each cluster was defined as the time-points that 
consecutively passed a specified threshold (cluster p-value: p<0.1). The sum of the t-
values of all the time-points within the cluster constituted the cluster statistics. This 
cluster statistics was compared for each cluster with the maximum cluster statistics 
obtained after the random permutations of the conditions examined (N = 2000). From 
these permutations, we computed a Monte-Carlo p-value that corresponds to the pcluster 
reported in the main text and figures’ legend. 
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Results 

Building an unbiased model for stimulus reconstruction 

Here, we reconstructed the stimuli presented to participants using the continuous scalp 
EEG signal. More precisely, we focused on the low-frequency ([2-8] Hz) modulations of 
the acoustic envelope and we trained a model mapping the EEG envelope with the 
envelope of an acoustic stream presented in isolation (Figure 6-1, training). The auditory 
material used to train the model was made of real-speech trials (N=6, ~1 minute per 
trial) and of pseudo-speech trials (N=6, ~1 minute per trial). In the test trials, the model 
was used to reconstruct the envelope of two streams (one made of real-speech, the other 
of pseudo-speech) presented concomitantly. The model was thus trained on a distinct 
dataset (diotic stimuli, training phase) and then applied to a situation in which two 
streams were presented in competition (dichotic listening). 

We first investigated whether the model was efficient enough to reconstruct the envelope 
of stimuli in wakefulness, and whether it was biased by the nature of stimuli (i.e. real vs. 
false-speech). We used a leave-one-out approach in which the model was successively 
trained on all but one of the training trials of each condition (i.e. n-1 real-speech trials and 
n-1 pseudo-speech trials). The model was then applied to the remaining training trials (1 
real and 1 pseudo-speech trial). We computed the reconstruction scores (correlation 
between the original and reconstructed envelope, see Methods) for both types of trials 
(Figure S 6-1). Highly significant reconstruction scores were obtained for both trial types 
across participants (Pearson correlation coefficient: RREAL = 0.077, RPSEUDO  = 0.080, two-
tailed t-tests compared to 0: t(23)=11.95 and 10.20 resp., both p<0.001, N=24 
participants), demonstrating the efficacy of the model in reconstructing the envelope of 
an hitherto novel auditory stream. Crucially, there was no difference between the 
reconstruction scores of the real and pseudo-speech (two-tailed paired t-test: t(23)= -
0.84, p=0.41), demonstrating that our model was not biased towards one stimulus 
category.  

We then verified that the model trained on diotic trials could reconstruct the envelope of 
streams presented in dichotic trials. In this situation, a reconstruction score (correlation 
coefficient) is obtained for each envelope (see Methods). In wakefulness (Figure 6-2b), 
both streams (real and pseudo-speech) led to correlation coefficients significantly higher 
than 0 (Pearson correlation coefficients: RREAL = 0.045, RPSEUDO = 0.016, one-tailed t-tests 
compared to 0: t(23)=8.91 and 4.67 resp., both p<0.001), indicating that the diotic model 
can successfully reconstruct stimuli envelope even when two streams are presented 
concomitantly. 



Study 6 

206!

 

Figure 6-2 Reconstruction accuracy and decoding performance across wake and NREM sleep 

(a) Decoding of attention allocation during wakefulness (green), and NREM sleep (NREM2 and 
NREM3 stages, purple) across participants (N=24). Error-bars denote the standard error of the 
mean computed across participants in all subpanels. Stars show the significance level of the t-
tests comparing performance against the 50% chance level (***: p<0.005, **: p<0.01, *: p<0.05, 
ns: p>0.05). Note that attention could be successfully decoded in both wake and NREM sleep. 
(b) Reconstruction scores (Pearson correlation between the reconstructed and original envelopes, 
see Methods) for the real and pseudo stream in wakefulness, NREM2 (N2, light NREM sleep) 
and NREM3 (N3, deep NREM sleep). Stars between bars show the significant level of paired t-
tests comparing the real and pseudo streams’ reconstruction (across 24, 24 and 16 participants in 
wake, N2 and N3 resp., ***: p<0.005, **: p<0.01, *: p<0.05, ns: p>0.05). The stars between 
NREM2 and NREM3 values denote a significant interaction between the effect observed in 
NREM2 and NREM3 (mixed-model: p<0.05, see Methods). (c) Same as in panel a but for the 
beginning ([0, 30]s) and end ([30, 60]s) of trials separately. (d) Same as in panel c but for the 
beginning and the end of trials separately. Horizontal bars denote the interaction between the 
beginning and end of trials in N2 and N3 (mixed-model, ***: p<0.005, **: p<0.01, *: p<0.05, ns: 
p>0.05). 
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Sensory encoding and attention allocation in wake and sleep 

In dichotic trials, participants were instructed to focus on one stream (real-speech) and 
ignore the meaningless competitor (pseudo-speech). Although they could be equally 
reconstructed when presented in isolation, both real and pseudo streams had markedly 
different reconstruction scores when presented in competition (Figure 6-2b). During 
wakefulness, as previously shown (O’Sullivan et al., 2014), the attended stream (here, the 
real-speech) led to higher reconstruction scores than the unattended pseudo-speech 
(two-tailed paired t-test: t(23)=6.50, p<0.001). As a result, comparing the correlation 
coefficients for both stream on a single-trial basis (see Methods) allowed us to decode 
attention allocation with good accuracy (60.6%, two-tailed t-test comparison with 50% 
chance-level: t(23)=6.01, p<0.001). 

When examining trials presented in NREM sleep (NREM2 and NREM3 stages), we also 
obtained a significant albeit smaller decoding accuracy (52.4%, t(23)= 2.36, p<0.05), 
indicating that sleepers continued to amplify the meaningful stream. Stage NREM1 was 
not included in this analysis to ensure that the results obtained here were not due to 
transient episodes of wakefulness. Examining the reconstruction scores for the real and 
pseudo-speech stimuli in light and deep NREM sleep (resp. NREM2 and NREM3 
stages) revealed a better reconstruction of the real-speech compared to the pseudo-
speech for light NREM sleep but not for deep NREM sleep (t(23)=2.29, p <0.05 and 
t(15)=-0.74, p=0.47 resp.). A mixed-model applied to the reconstruction scores in sleep 
indicated a main effect of the stream type (p=0.003), as well as an interaction between 
stream type and sleep stage (p=0.02) but no effect of the sleep stage itself (p=0.80). This 
pattern of results is due to a gradual decline of the reconstruction score for the real-
speech from wakefulness to deep NREM sleep (paired t-test between N2 and wake: 
t(23)=4.7, p=1.10-4; N3 and wake: t(15)=4.8, p=3.10-4; Figure 6-2b). Interestingly, the 
reconstruction score of the pseudo-speech remained constant across sleep stages (paired 
t-tests between N2 or N3 and wake for pseudo-speech: all p>0.2), suggesting that sleep 
is characterized by a gradual decrease of attentional engagement rather than an overall 
decrease in sensory encoding.  

 

Within-trial dynamics of attention allocation in wake and sleep 

To better understand whether sleepers could maintain their attention over long-time 
windows (trial duration: ~1 minute), we compared the decoding of attention allocation 
between the beginning ([0, 30]s) and end ([30, 60]s) of the test trials (Figure 6-2c). In 
wakefulness, decoding accuracy was constant over the entire trial (mixed model, 
beginning/end effect: p=0.82) and above the chance-level (post-hoc t-tests: t(23)=7.46, 
p<0.001 and t(23)=5.21, p<0.001 for the beginning and end of trials resp.). In NREM 
sleep, however, attention was successfully decoded at the beginning but not at the end of 
the trials (beginning/end effect: p<0.05; post-hoc t-tests: t(23)=3.37, p<0.01 and t(23)=-
0.89, p=0.38).  

This pattern was confirmed when examining light and deep NREM sleep separately. The 
attended stream was better reconstructed at the beginning of the trials than the end 
(Figure 6-2d). Accordingly, mixed models fitted on light and deep NREM sleep 
individually showed an effect of the stream type (light: p=0.006; deep: p=0.038) and of 
the position within the trial (marginal in light NREM sleep: p=0.076; deep: p=0.004) as 
well as an interaction between these two predictors (light: p=0.039; deep: p=0.004). 
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Interestingly, although this effect did not reach significance, the real-speech tended to be 
worse reconstructed than the pseudo-speech in deep NREM sleep (t(16)=-1.67, p= 
0.11), a reversal that suggests the involvement of suppressive mechanisms (see below for 
further evidence). 

Overall, these results indicate that, contrary to wakefulness, attention could not be 
maintained throughout the entire trials during sleep and that real-speech was enhanced at 
the beginning of trials only. In addition, the pattern of results observed suggest a 
potential inhibition of the real-speech in deep NREM sleep toward the end of the trials, 
which could be interpreted as a mechanism protecting sleep against external inputs (see 
Discussion).  

 

Decoding profiles are similar across wake and sleep 

To reconstruct the stimuli envelope from the EEG signal, the model integrates EEG 
data over relatively large temporal windows (i.e. 500ms). We examined the participation 
to the stimulus reconstruction of these different time-points, by training and testing our 
model using EEG data at fixed time-lags rather (see Methods and Figure 6-3). Such 
approach allows a better understanding of how the brain dynamically integrates auditory 
information (O’Sullivan et al., 2014). When examining wake data (Figure 6-3a), we 
replicated previous findings showing that individual time-lags do not uniformly 
contribute to the stimulus reconstruction (O’Sullivan et al., 2014). Rather, three peaks 
could be individualized at around 100, 200 and 300 ms. The scalp topographies and 
patterns extracted from these peaks are concordant with the notion that auditory cortices 
play a preponderant role in reconstructing stimuli’s envelope (Figure 6-3a). Indeed 
patterns’ topographies resemble the scalp distribution of auditory evoked potentials such 
as the N1 or P2 potentials, whose neural sources have been found in primary and 
secondary auditory cortices (Näätänen and Picton, 1987; Picton, 2011).  

In light NREM sleep, the temporal profile of the stimulus reconstruction along 
individual-lags was strikingly similar to wakefulness (Figure 6-3b), suggesting that the 
same processing stages are preserved in sleep. In addition, the real-stream was better 
reconstructed than the pseudo-stream in the 2nd and 3rd peaks (significant clusters: 
[170,220] and [270,350] ms, pcluster<0.05), with a trend for the 1st peak (t(23)=2.02, 
p=0.054). In deep NREM sleep (NREM3 stage) however, the reconstruction for the real 
and pseudo streams largely overlap, illustrating the loss of attentional effect in deep 
NREM sleep. These results support the notion that auditory information is processed 
with the same dynamic from wake to sleep.  
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Figure 6-3 Spatio-temporal integration of acoustic information 

(a) Bottom: Individual models were computed for each time-lag (see Material and Methods). 
Correlation coefficients for the real (blue) and pseudo (red) speech presented during wakefulness 
were extracted for each of these time-lags and averaged across participants (N=24 participants). 
Horizontal bars show significant clusters for the comparison between the blue and red curves 
(pcluster<0.05). Three main peaks can be observed at 110 ms, 230 ms and 330 ms respectively. 
Red and blue bars show the reconstruction scores extracted for these three peaks (see Methods). 
Error-bars denote the standard error of the mean computed across participants and stars 
between bars show the significant level of the t-tests comparing the real and pseudo streams’ 
reconstruction (paired t-tests, ***: p<0.005, **: p<0.01, *: p<0.05, ns: p>0.05). Top: Scalp 
topographies of filter weights and patterns corresponding to the 3 different peaks (see Methods 
for details). Values were z-scored across electrodes to emphasize regional differences. Note that 
patterns’ topographies are typical of auditory activity as recorded with EEG. (b) Same temporal 
profile as in panel a for NREM2 trials (N2, N=24 participants) when focusing on the beginning 
of trials (see Figure 6-2). Note the similarity of the profile with wakefulness. (c) Same temporal 
profile as in panel a for NREM3 trials (N3, N=16 participants) when focusing on the beginning 
of trials. Note the overlap between the real and pseudo speech in line with the absence of 
attention allocation as shown in Figure 6-2. 

 

K-complexes, slow-waves and sleep spindles distinctively impact sensory 
encoding and attention 

NREM2 and NREM3 stages are characterized by the presence of particular sleep 
rhythms: K-complexes, slow-waves and sleep spindles. We examined their respective 
influence on sensory encoding and attention allocation. To do so, we first detected these 
events through automated algorithms (see Methods). Slow-oscillations detected in 
NREM2 were approximated to K-complexes since they tended to be detected in 
isolation and had an asymmetric profile (Figure S 6-4). On the other hand, slow-
oscillations detected in NREM3 were approximated to standard sleep slow-waves since 
they tended to appear in trains and had a more symmetrical profile. To examine the 
influence of these sleep rhythms, stimulus reconstruction was time-locked to the down-
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states of slow-oscillations (K-complexes in NREM2 and slow-oscillations in NREM3) 
and to the middle of sleep spindles (Figure 6-4).  
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Figure 6-4 Impact of sleep spindles, K-complexes and slow-waves on stimulus reconstruction 

In each panel, reconstruction scores (real-speech: blue; pseudo-speech: red) were time-locked to 
the graphoelements of interest (top: K-complexes in NREM2; middle: sleep spindles in NREM2; 
bottom: slow-waves in NREM3) and were averaged across participants (N=24, 24 and 16 resp.). 
The down-states of K-complexes and slow-waves and the middle of spindles were used as 
time=0. Shaded areas denote the standard error of the mean computed across participants. 
Curves were smoothed with a 500ms-wide Gaussian kernel for visual purposes only. Colored 
horizontal bars show the significant clusters when comparing reconstruction scores with 0 
(pcluster<0.05). Black horizontal bars show significant clusters when comparing the two 
reconstruction scores (pcluster<0.05). The average traces of K-complex and slow-waves are 
displayed on top of the corresponding panel for comparison. An archetypal spindle is also 
shown. Note the differential impact of NREM2 K-complexes and NREM3 slow-waves on 
stimulus reconstruction. 

Both streams were significantly reconstructed before K-complexes (cluster for RREAL: [-
10, -1.4] s, pcluster<0.01; for RPSEUDO: [-10, -1.9] s, pcluster<0.01) with equivalent 
reconstruction scores (Figure 6-4a). During the occurrence of K-complexes, both 
streams were no longer reconstructed which is concordant with the fact that the K-
complexes’ down-states entail a period of neuronal silencing (M. Steriade, 2003) during 
which external information is no longer encoded at the cortical level (Schabus et al., 
2012; Sela et al., 2016). Importantly, however, we found that after K-complexes, not only 
both streams were successfully reconstructed  (significant clusters for RREAL: [1.3, 10] s, 
pcluster<0.01; for RPSEUDO [6.4, 10]s, pcluster<0.05) but the real-speech had even higher 
reconstruction scores than the pseudo-speech (difference: [4.6, 9.9]s, pcluster<0.05). This 
result suggests that K-complexes trigger the recovery of wake-like attentional processes.  

The temporal profile for slow-waves in NREM3 was markedly different (Figure 6-4c). 
The real-speech was successfully reconstructed before slow-waves ([-9.5, -2.6] s,  
pcluster<0.05) whereas during slow-waves, this ability to reconstruct the real-speech was 
lost. Paradoxically, the reconstruction of the pseudo-speech stream was slightly improved 
during slow-waves and crossed our statistical threshold ([-6.8, 8.9] s, pcluster<0.01). 
Therefore, contrary to K-complexes, the real and pseudo speech were differently affected 
by slow-waves. At no point around slow-waves though, was one stream significantly 
better reconstructed from the other in link with the observed loss of attention allocation 
in deep sleep (Figure 6-2). Thus, while K-complexes show a bi-phasic effect on stimulus 
reconstruction with a decrease in reconstruction scores for both streams followed by an 
increase in reconstruction scores for both streams (and more so for the real-speech), 
slow-waves in NREM3 negatively affected the real-speech only. This biased effect of 
slow-waves could explain the partial reversal of the relationship between the real and 
pseudo-speech from light to deep NREM sleep (Figure 6-2 and Figure 6-3; see also 
Discussion). 

Sleep spindles in NREM2 had a rather moderate effect on stimulus reconstruction. 
Indeed, both streams were reconstructed during the entire [-10, 10]s window 
(pcluster<0.001). However, while the real-speech was, on average, better reconstructed than 
the pseudo-speech before sleep spindles (difference: [-10 to -4.3]s , pcluster<0.05), this 
difference disappeared during and after sleep spindles. Sleep spindles therefore seemed 
to affect moderately attention allocation but not sensory encoding. Furthermore, since 
sleep spindles and slow-oscillations often occur in association (De Gennaro and Ferrara, 
2003), we estimated their respective effect on attention allocation: the difference of 
reconstruction scores between the real and pseudo speech was extracted on 10-s-long 
windows and the presence of K-complexes or sleep spindles were used as predictors in a 
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mixed model. While the presence of K-complexes had a positive impact on the index of 
attention (p=5.10-6), there was no effect of sleep spindle on reconstruction scores 
(p=0.86; see Figure S 6-3).  
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Discussion 

Attention is preserved during NREM sleep 

Whether mechanisms of attention, leading to the amplification and monitoring of 
relevant signals in the environment, can be involved during sleep remains an unsettled 
issue. In addition, how sleep rhythms affect the coupling and decoupling (i.e. sensory 
isolation) from the environment is also unclear. Previous studies focused on the analyses 
of brain responses to single events (Atienza et al., 2001; Bastuji, 1999), making it difficult 
to address these questions. Here, investigating brain responses to multi-talker speech (a 
classical approach for testing attention allocation, (Cherry, 1953), we show that both 
attended and unattended streams are encoded in the brain and regardless of the 
vigilances state. Strikingly, attentional effects are also present during sleep, but attention 
allocation is wiped out by slow waves in deeper stages of sleep. 

Our results provide clear evidence that sleepers can pay attention to a given source of 
information (Figure 6-2) even when the criterion participants had to use to select the 
correct stream (the presence of a meaning) imposed to parse streams at a high-level of 
representation. However, such attention allocation was transient and observed only in 
light NREM. This result contrasts with the sustained attention observed in wakefulness. 
Such a transient ability to attend is reminiscent of studies showing impairment of 
hierarchical information processing in NREM sleep (Strauss et al., 2015) as well as 
physiological investigations of NREM sleep showing a break-down of integrative 
processes (Pigorini et al., 2015). Importantly, the loss of attention allocation in deep 
NREM sleep was not due to the inability to reconstruct the streams but to a decline in 
the quality of the real-speech reconstruction. Indeed, the pseudo-speech reconstruction 
was surprisingly constant across sleep stages, suggesting that sleep onset mostly affects 
the amplification of relevant information rather than its encoding.  

This interpretation is corroborated by the temporal profile of stimulus reconstruction 
(Figure 6-3). Stimulus reconstruction was maximal over 3 different temporal windows in 
wakefulness (Figure 6-3a). Interestingly, these peaks have been interpreted as reflecting 
different stage of sensory processing (O’Sullivan et al., 2014), with later peaks 
corresponding to higher levels of auditory processing. If such interpretation holds, our 
results would confirm previous findings showing an effect of attention at different levels 
of representations during wakefulness (Mesgarani and Chang, 2012; Zion Golumbic et 
al., 2013). Indeed the real-speech led to higher reconstruction score than the pseudo-
stream within each peak (Figure 6-3a). Such broad attentional effect was conserved in 
light NREM sleep (Figure 6-3b), suggesting that, as in wakefulness, attention affects all 
stages of sensory processing during sleep. In deep NREM sleep however, the real and 
pseudo speech had overlapping temporal profiles indicating that wake processing stages 
were conserved but without any attentional amplification. Such results fit well with the 
preservation of sensory encoding in NREM sleep on the one hand (Y. Nir et al., 2013) 
and on the other hand with the impairment of top-down processes (Strauss et al., 2015) 
and executive functions (Maquet, 2000; Muzur et al., 2002), which are instrumental (even 
if not necessary) in the orientation of attention (Fritz et al., 2007). 
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The role of sleep rhythms in the processing of external inputs 

While sleep is usually scored on large windows (Iber et al., 2007), an abundant literature 
suggests that its micro-structure is key to understand how sleep alters the processing of 
external inputs (Halasz, 2005; Massimini et al., 2012; McCormick and Bal, 1994). K-
complexes have been associated to sensory processing since their discovery (Loomis et 
al., 1938) but their role is debated. Indeed, K-complexes can be elicited by external 
stimulations particularly when the stimulus is relevant or infrequent. They can be 
associated with signs of arousals, and their neural source depends on the nature of the 
eliciting stimulus (see (Colrain, 2005; Halasz, 2005; Halász, 2016) for exhaustive reviews 
on the topic). Along this line, it has been proposed that K-complexes are followed by up-
states providing ‘fragments of wakefulness’ to the sleeping brain (Destexhe et al., 2007). 
However, K-complexes have also been depicted as isolated down-states (Cash et al., 
2009) protecting sleep from external disturbances (Bastien et al., 2000; Wauquier et al., 
1995).  

Our results allow conciliating these views. By taking advantage of continuous 
stimulations, we show that K-complexes suppressed sensory encoding around the 
associated down-states while favoring, after the K-complex, both sensory processing and 
attention allocation (Figure 6-4a). Thus, depending on the time-scale considered, K-
complexes can be seen as promoting or suppressing sensory processing. The use of 
isolated stimuli, frequent in ERP studies, could have dampened the manifestation of the 
‘Janus-faced’ nature of K-complexes (Halasz, 2005). 

In deep sleep, slow-oscillations occur in trains and have been shown to disrupt cortical 
processes (Pigorini et al., 2015) and the integration of information (Massimini et al., 
2005). And indeed, the impact of K-complexes on sensory processing contrasted with 
the results obtained for slow-oscillations detected in deeper stages of sleep (Figure 
6-4a,c).  NREM3 slow-waves had a negative effect on the real-speech only (Figure 6-4c). 
This could be interpreted as an active suppression of meaningful stimuli in deep NREM 
mediated by slow-waves. What could be the mechanism underlying this suppression? 
Sleep slow-waves are thought to reflect the bi-stability of cortical neurons (Vyazovskiy 
and Harris, 2013) and the associated down-states have been associated to the suppression 
of sensory information (Schabus et al., 2012; Sela et al., 2016). Since slow-waves appear 
to be more local than previously described (Nir et al., 2011) and since competing stimuli 
are thought to be encoded by separate neural networks (Ding and Simon, 2012b; 
O’Sullivan et al., 2014), it is therefore possible that slow-waves may affect one stream (i.e. 
one network) and not the other. But how would the sleeping brain choose which stream 
to suppress? We argue here for a simple use-dependent mechanism. Indeed, slow-waves 
may be triggered by local activations within the cortex (Menicucci et al., 2013). Because 
the real-speech seemed to be better processed even in sleep, the network encoding real-
speech could be more active than its pseudo-speech counterpart, which will increase the 
probability of triggering slow-waves within this network. This would explain the specific 
suppression of the real speech during slow-waves. Accordingly, the real-speech was 
slightly better reconstructed than the pseudo-speech before the slow-waves (Figure 6-4c). 

Thus, despite common generative mechanisms (Halász, 2016), K-complexes and slow-
waves could impact sensory processing differently. This difference could be explained by 
the fact that K-complexes and slow-waves entail fundamentally different synchronization 
processes, as recently proposed (Siclari et al., 2014a). According to this view, K-
complexes reflect a global phenomenon that would jointly affect both real and pseudo 
streams. Accordingly, K-complexes’ down-states appeared to transiently shut down 
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sensory processing as a whole (Figure 6-4a). In the case of a continuous stimulation 
however, the concomitant recruitment of the arousal system would favor the recovery of 
wake-like processing and attentional processes after K-complexes. On the other hand, 
slow-waves could represent local cortical synchronization processes disrupting 
information processing in a given network and in a use-dependent fashion. This 
interpretation fully accounts for our results and especially for the suppression of the 
meaningful stream in deep NREM sleep, without relying on any top-down processes 
determining which stream to suppress.  

Sleep spindles seemed to have a much weaker effect on stimulus reconstruction as they 
suppressed the attentional effect but not the ability to reconstruct the stimuli. In addition 
and contrary to K-complexes, their presence or absence could not predict the decoding 
of attention on 10-s-long windows (mixed-model: p=0.85 compared to p=7.10-6 for K-
complexes). Such results could seem at odd with their putative role in sensory 
disconnection (McCormick and Bal, 1994; Schabus et al., 2012; Yamadori, 1971). 
However, intracranial studies suggest that sleep spindles moderately affect cortical units’ 
activity (Andrillon et al., 2011; Peyrache et al., 2011) and that auditory encoding is 
preserved during sleep spindles (Sela et al., 2016). Our results further temper the view of 
spindles as a gating mechanism. 

Overall, it seems that NREM sleep rhythms could well account for the pattern of results 
observed on average in light and deep NREM. Sleep rhythms observed in NREM2 
promoted (K-complexes) or had a limited (sleep spindles) impact on sensory encoding 
and the orientation of attention, which could explain the preservation of attention 
allocation in light NREM sleep. On the contrary, slow-waves detected in NREM3 
suppressed preferentially the meaningful stream, which could explain the partial reversal 
observed in deep NREM sleep between the real and pseudo speech in terms of 
reconstruction accuracy  (Figure 6-2).  

 

An example of unconscious attention 

The results obtained here unambiguously demonstrate the preservation of attentional 
processes during sleep. Indeed, the meaningful stream was better reconstructed that the 
meaningless pseudo-speech in wakefulness and NREM sleep (Figure 6-2) although both 
streams were equally reconstructed when presented in isolation during wakefulness (Fig. 
S1). However the respective influence of top-down or bottom-up attentional processes 
(Fritz et al., 2007) cannot be here disentangled. Further investigations are needed to 
determine whether the real speech was enhanced because of task-instructions (active 
process) or due to a natural attraction to the real-speech (passive process). 

Nevertheless and whatever the exact mechanisms at play, we show here for the first time 
that the brain can focus on a particular source of information during sleep, in a state of 
reduced if not absent consciousness (Yuval Nir et al., 2013). These results are concordant 
with the studies showing a dissociation between attention and consciousness (Koch and 
Tsuchiya, 2007). This work is also concordant with studies showing that information can 
be integrated unconsciously (Mudrik et al., 2014). Interestingly, we similarly show here 
that such unconscious integration of information is both possible but more short-lived 
than during wakefulness. This could be due to the de-activation of the pre-frontal cortex 
during sleep (Muzur et al., 2002). Indeed pre-frontal areas are instrumental in maintaining 
an integrative processing of information (Dehaene et al., 2006). In addition, the loss of 



Study 6 

216!

cortico-cortical connectivity associated to NREM sleep could explain the difficulty in 
maintaining attention over long periods of time (Tononi and Massimini, 2008). Overall, 
these results could provide a novel approach to the study of attention and its relationship 
with consciousness. 
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Supplemental Figures 
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Figure S 6-1 Stimulus reconstruction is not biased by speech category 
Using the training trials (real or pseudo speech presented in isolation), we reconstructed both real 
and pseudo streams using a leave-one-out approach (see Methods). Reconstruction scores 
averaged across participants are displayed here. Error-bars denote the standard error of the mean 
across participants (N=24). Both streams were successfully reconstructed (t-tests against 0: both 
p<0.001). Crucially, there was no difference in the reconstruction scores between the real and 
pseudo speech (paired t-test: p=0.41).  
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Figure S 6-2 Spatio-temporal integration of acoustic information (2nd half of trials) 

Same information as displayed in Figure 6-3 (see legends for details) but for the second half of 
the trials. The scalp topographies of the patterns and weights are extracted on the training dataset 
and are therefore identical as in Figure 6-3. 

!
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Figure S 6-3 Impact of K-complexes and sleep spindles on the decoding of attention 

Right: Decoding accuracy averaged across participants for 10-s-long epochs showing (right) or 
not (left) a K-complex. Left: Decoding accuracy for epochs showing or not a sleep spindle. 
Error-bars denote the standard error of the mean computed across participants (N=24). Stars 
atop bars show the significance level of the t-test comparing decoding accuracy with the chance 
level (50%): ***, p<0.005; **, p<0.01; *, p<0.05; ns, p>0.05. Note that the presence of K-
complexes and sleep spindles correlated with higher (and significant) decoding accuracies. 
However, since K-complexes and sleep-spindles are temporally associated (Molle et al., 2002), a 
mixed-model taking into account the presence of K-complexes and sleep spindles showed a 
significant effect of K-complexes on decoding performance (p=7.10-6) but not of sleep spindles 
(p=0.85). 
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Figure S 6-4 Temporal profile of K-complexes and Slow-Waves 

The temporal profiles of slow-oscillations detected in NREM2 (here referred as K-complexes, 
gray curve) and in NREM3 (here referred as slow-waves, black curve) are superimposed. Slow-
oscillations were aligned to their down-state (for time and voltage). Shaded areas denote the 
standard error of the mean across slow-oscillations (N=1,079 and 2,644 for K-complexes and 
slow-waves respectively). Note the characteristic asymmetric profile of K-complexes compared 
to Slow-Waves. 
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Table S 6-1 Performance in the post-nap questionnaire on stories heard during wakefulness 
(right), NREM sleep (NREM2 and NREM3, middle) compared to unheard stories (right). 
Numbers show the average accuracy across participants (N=24, 24 and 16 resp., standard error 
of the mean is indicated in the brackets). The bottom line shows the corresponding p-values of a 
Mann-Whitney U-test comparing the performance to the theoretical chance level (25%). 
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Summary 

When we fall asleep, our awareness of the surrounding world fades. Yet, the sleeping 
brain is far from being dormant and recent research unraveled the preservation of 
complex sensory processing during sleep. In wakefulness, such processes usually lead to 
the formation of long-term memory traces, being it implicit or explicit. We examined 
here the consequences upon awakening of the processing of sensory information at a 
high level of representation during sleep. Participants were presented with words and 
pseudo-words during wake and sleep, which they were instructed to classify through left 
and right hand responses. An analysis of the electroencephalographic (EEG) signal 
revealed the preservation of lateralized motor activations in response to sounds, 
suggesting that stimuli were correctly categorized during sleep. Yet, upon awakening, 
participants did not explicitly remember words processed during sleep and failed to 
distinguish them from new words (old/new recognition test). However, both behavioral 
and EEG data indicate the presence of an implicit memory trace for words presented 
during sleep. In addition, the underlying neural signature of such implicit memories 
markedly differed from the explicit memories formed during wakefulness, in line with 
dual-process accounts of two independent systems for explicit and implicit memories. 
Thus, our results suggest that new memories can be formed in the absence of awareness 
and provide a novel approach to explore the neural implementation of explicit and 
implicit mnesic traces. 
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Introduction 

Sleepers are not disconnected from their environment during sleep. On the contrary, the 
sleeping brain can encode sensory information (Issa and Wang, 2008; Y. Nir et al., 2013), 
recognize salient or familiar sounds such as a person’s own name (Perrin et al., 1999), 
process sounds in their context and detect the violation of simple rules (oddball 
paradigm; (Czisch et al., 2009; Ruby et al., 2008; Strauss et al., 2015). Sleepers can even 
process sensory information at a high-level of representation such as the semantic level 
(Bastuji et al., 2002; Brualla et al., 1998; Ibanez et al., 2006). We recently showed that the 
sleeping brain could even build upon sensory processes and use semantic information to 
make decisions (Kouider et al., 2014). But can such processes trigger long-term memory? 
Indeed, when we are awake, experience constantly imprints on the brain. From pure 
noise (Andrillon et al., 2015a) to more complex types of sensory inputs such as words 
(Pulvermüller et al., 2001), processing a given piece of information, even passively, leads 
to the formation of a new memory trace or the strengthening of an existing one (Kolb 
and Whishaw, 1998).  

Exploring the sleeping brain’s ability to learn has been a long-lasting scientific quest 
(Emmons and Simon, 1956) but positive results are scarce. Until recently, only some 
forms of learning independent from hippocampal structures had been evidenced 
(Hennevin et al., 1995; Ikeda and Morotomi, 1996; Maho and Bloch, 1992). This 
contrasts with the abundance of results showing the crucial role of sleep in promoting 
memory consolidation (Rasch and Born, 2013) as well as studies showing how external 
stimulations can act upon this consolidation (Oudiette and Paller, 2013). To explain this 
discrepancy, the main theories on the role of sleep in memory consolidation have 
proposed that consolidation mechanisms would directly or indirectly prevent the 
formation of new memories (Diekelmann and Born, 2010; Hasselmo, 1999; Tononi and 
Cirelli, 2014). It has been proposed that memory systems (such as hippocampal 
structures) get disconnected from sensory circuits so as to prevent external input from 
interfering with the consolidation process (Rasch and Born, 2013). Alternatively, changes 
in neuromodulation occurring during sleep could impair synaptic plasticity itself and 
therefore the encoding of new memories (Hennevin et al., 2007; Tononi and Cirelli, 
2014). Yet, recent studies have shown that even hippocampal-dependent forms of 
learning were possible during sleep (Arzi et al., 2012; de Lavilléon et al., 2015), putting 
the opposition between memory consolidation and formation into question.  

To investigate brain’s ability to form memory traces during sleep, we relied on the 
classical old/new paradigm. For more than a century (Ebbinghaus, 1885), this approach 
has been used to probe recognition memory, i.e. the ability to recognize elements 
previously encountered. Recognition is a form of long-term and declarative memory 
relying on the medio-temporal lobe, which includes the hippocampus (Eichenbaum et al., 
2007; Squire et al., 2007). Accordingly, participants with bilateral lesions in these areas 
show strong deficits in recognition memory (Reed and Squire, 1997). More precisely, the 
ability to recognize a previously encountered item is thought to benefit from two 
separate systems: an explicit episodic memory (i.e. ‘remembering’) and an implicit sense 
of familiarity (i.e. ‘knowing’) (Tulving, 1985). However, it is unclear whether these two 
types of information are implemented through independent neural circuits (Aggleton and 
Brown, 2006; Manns et al., 2003; Squire et al., 2007). Part of the difficulty in 
disentangling these two forms of memory stems from the difficulty to separate them at 
the behavioral level (Malmberg, 2008). Indeed, both implicit and explicit memories 
contribute to item recognition. One potential solution consists in contrasting neural 
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correlates of recollection as a function of whether participants are aware or unaware of 
learning a specific content (Rosenthal et al., 2010).  Sleep, in this regard, represents a 
unique tool to explore the formation of memories in the absence of awareness. 

Here we investigated the formation of memory traces for words heard during Non-Rapid 
Eye-Movement (NREM) sleep. We used a paradigm in which participants were exposed 
to words and pseudo-words (phonologically valid but meaningless words) during 
wakefulness and sleep (Kouider et al., 2014). To maximize the probability that 
participants processed acoustic information during sleep, we asked participants to 
perform a task on these stimuli while falling asleep. Subjects were instructed to indicate, 
each time a stimulus was played, whether it was a real or an invented word (lexical 
decision task). The task-set and stimuli presentation were held constant throughout the 
experiment so that participants could automatize the task while being awake and pursue 
it after falling asleep. Importantly, novel, unpracticed items were presented exclusively 
during sleep (i.e., words which were not presented during the wake session), allowing to 
confirm interpretations in terms of lexico-semantic processing rather that stimulus-
response mapping (Abrams and Greenwald, 2000). In a previous article, we have shown 
the maintenance of EEG indexes of motor lateralization after stimuli onset and in 
accordance with the expected side of response, showing that participants continue to 
classify stimuli while asleep (Kouider et al., 2014). A lexical decision task was used to 
prompt participants to process items at a high level of representation, as processing 
depth is known to influence recognition memory (Craik and Tulving, 1975). Upon 
awakening, participants recognized items presented during wakefulness with high 
accuracy. However, despite having categorized the novel items while sleeping, 
participants did not explicitly remember these words. We rather unraveled the presence 
of implicit mnesic traces for words heard during sleep by relying on more-in-depth 
analyses of behavioral and EEG data. Interestingly, the EEG correlates of memory for 
words presented during sleep markedly differed from those of the words presented in 
wakefulness, which were explicitly recognized. These results reveal not only that sleepers 
can form new memories while sleeping but also pinpoint critical differences in the neural 
implementation of explicit and implicit memories. 
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Material and Methods 

Participants  

Twenty-two (22) right-handed French speakers (16 females, age ranging from 20 to 28 
years) without history of neurological or sleep disorders and with self-reported normal 
hearing participated in this study. Subjects had been selected based on their responses to 
the Epworth Sleepiness Scale (ESS) in order to target individuals who could fall asleep in 
a noisy, unfamiliar environment. Recruited participants had high but non-abnormal EES 
scores (11.95 ± 0.62, mean ± SEM, standard error of the mean). The day of the 
recordings, participants were moderately sleep deprived (30% less than their usual sleep 
time) and asked to avoid all exciting substances. This protocol has been approved by the 
local ethical committee (Conseil d'évaluation éthique pour les recherches en santé, Paris, 
France). 

 

Stimuli 

The auditory material consisted of 108 pairs of words and pseudo-words selected from 
the Lexique database (New et al., 2004). These 216 items were divided in three lists of 72 
stimuli matched for their frequency, duration and consonant-vowel structures (half CVC 
monosyllabic and half CV-CV disyllabic). Pseudo-words did not violate the 
pronunciation rules of the French language. Words were uttered by a male native French 
speaker and digitized at 44,100 Hz. The attribution of the three lists to either the wake 
period, the sleep period or the new list in the old/new recognition task was 
counterbalanced across participants. Stimuli were presented at about 50dB through loud 
speakers using the Psychtoolbox extension (Brainard, 1997) for Matlab (MathWorks Inc. 
Natick, MA, USA).  

 

Experimental Procedure 

Participants first performed a lexical decision task on the spoken words presented every 
9 seconds (nap session). Participants were instructed to indicate whether the spoken 
words existed in the French lexicon or not using response-handles placed in their left and 
right hands. The mapping between stimulus category (real or invented word) and the 
associated response side (left or right) was counterbalanced across participants. 
Participants initially performed this task for about 10 minutes with the instruction to 
remain awake and responsive. All the items of the wake list were played once during this 
initial part to ensure that all items of the wake list were processed at least once under 
optimal conditions. Participants were then placed in a reclining chair, in a dark, 
electrically and acoustically shielded cabin. They were asked to keep their eyelids closed. 
Participants were authorized to fall asleep but were instructed to keep responding to 
auditory stimuli as long as they were awake, and to resume responding in case of an 
awakening. 

Subjects’ vigilance state was assessed online using polysomnographic and behavioral data 
(see below). A novel list of words and pseudo-words was presented to participants when 
they entered the NREM2 stages (i.e. after the first spontaneous K-complex or sleep 
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spindle). The sleep list was played in NREM2 and NREM3 stages. However, only 11 
participants entered the NREM3 stage. Participants were switched back to the wake list 
whenever they showed signs of arousal. This online sleep scoring was confirmed offline 
using standard guidelines (Iber et al., 2007). Trials associated with arousals (button 
presses or increase in low-amplitude fast rhythms such as alpha oscillations or 
oscillations above 16Hz for more than 3 seconds and stable for at least 10 seconds) and 
micro-arousals (less than 3 seconds) were carefully marked and corresponding items were 
discarded from further analyses. Indeed, our goal was here to analyze the presence of 
mnesic traces to words processed during sleep and while sleep was preserved. After 
offline confirmation of the sleep scoring, 4 participants could not be included in the 
sleep analyses (Figure 7-1b) due to a low number of trials scored as sleep. One additional 
participant had less than 20 novel words presented during sleep and was discarded from 
the memory test analyses. Overall, the 17 participants included in these analyses (Fig. 2-5) 
heard each item of the wake list 4.8 ± 0.3 times on average and each item of the sleep list 
2.1 ± 0.2 times on average. 

Upon awakening, after the nap session, participants were allowed a few minutes to 
dissipate sleep inertia and then underwent a memory test. Words (but not the pseudo-
words) previously presented during the nap session were played once to participants 
(same voice, volume and experimental set-up) along with novel items (new list) and in 
random order. Participants were first asked to indicate whether they remembered having 
heard the word during the nap session (‘old’ or ‘new’). They were then asked to indicate 
their confidence in their ‘old’ vs. ‘new’ response by using a scale going from 1 (‘I am not 
sure at all’) to 7 (‘I am perfectly sure’). Responses were provided with a keyboard and 
without time pressure. Participants were instructed to keep their eyes closed and to 
remain still during the presentation of the words in order to minimize movement-related 
artifacts in the EEG signal. The memory-test was self-paced. 
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Figure 7-1 Experimental procedure and evidences for complex information processing during 
sleep 

(a) Lexical categorization task: participants (N=22) were asked to classify spoken words and 
pseudo-words while falling asleep (daytime nap). Each category (word or pseudo-word) was 
associated to a response side (left or right). Once asleep (see Methods for criterion) and unknown 
to participants, novel words and pseudo-words were presented to participants (sleep list). 
Importantly, the initial set of stimuli (wake list) was played again to participants whenever they 
awoke in order to present the elements of the sleep list during sleep only. (b) Memory test: upon 
awakening, participants (N=17) underwent a memory test during which the words presented 
during the nap session (red: wake list; blue: sleep list) were played along new words (gray: new 
list). For each word, participants were asked to indicate whether they remembered hearing the 
word during the nap session (old vs. new recognition test). They were then instructed to estimate 
their confidence in their old vs. new response using a scale from 1 (not sure at all) to 7 
(absolutely sure). (c) Lateralized Readiness Potentials (LRPs): during the nap session, we 
computed LRPs during wake (red, left) and sleep (blue, right) to determine whether participants 
performed the lexical categorization task even when unresponsive. The LRP was computed over 
right and left central electrodes (see inset and Methods) and averaged across participants. Shaded 
areas denote the standard error of the mean across participants (N=18). Horizontal bars show 
the significant clusters (pcluster<0.05). The LRP determines whether neural activity is lateralized in 
respect to the expected side of response. A LRP was preserved, albeit delayed, from wakefulness 
to sleep.  
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Behavioral analyses 

Using participants’ responses recorded in the memory-test, we computed the average 
percentage of ‘old’ and ‘new’ responses for the different lists (1st order responses, Figure 
7-2a) as well as the average confidence rating of these ‘old’ and ‘new’ responses (2nd order 
responses, Figure 7-2b) across participants. Confidence ratings were normalized by 
subtracting the average rating computed across all trials for a given participant in order to 
compensate for biases in the way participants scaled their own confidence. For the 1st 
order response, we also computed a sensitivity index: the d’ (Macmillan, 2005). The d’ 
provides an unbiased estimate of participants’ ability to discriminate two conditions (here 
old words (wake or sleep list) vs. new ones). The d’ was computed as follows: 

 

where z(x) corresponds to the z-score for proportion x; Hit corresponds to the 
proportion of correct responses for the words heard during the nap session (either wake 
or sleep list) and FA (False Alarms) corresponds to the proportions of incorrect 
responses for the novel words. 

To assess participants’ performance on the 1st and 2nd order responses, we also computed 
Receiver Operating Characteristic (ROC) curves (Figure 7-2d, (Macmillan, 2005)). Type-I 
ROC curves were computed for each participant using the 1st order responses. For each 
confidence level (from 1 to 7), we computed the average proportion of hits (‘old’ 
response when an old item was presented) and of false alarms (‘old’ response when a 
novel item was presented). Figure 7-2d (left) shows the type-I ROC curve averaged 
across participants. Type-II ROC curves were computed for each participants using 2nd 
order responses (Fleming et al., 2010; Macmillan, 2005). Each confidence level was 
analyzed in turn (from 1 to 7): for the confidence level n, 2nd order hits correspond to 
trials in which participants scored their confidence higher or equal to n while being 
correct whereas false alarms correspond to trials in which participants scored their 
confidence higher or equal to n while being incorrect. For each confidence level, we 
computed the average proportions of 2nd order hits and false alarms to build the type-II 
ROC curves. Figure 7-2d (right) shows the type-II ROC curve averaged across 
participants.  

We also extracted the area under the curves (AUC) for the type-I and type-II ROC 
curves for each participant using the ‘polyarea’ function in Matlab. AUC were compared 
with the AUC under the bisector line (0.5). Indeed, a type-I or type-II ROC curve 
overlapping the bisector line characterizes at-chance 1st or 2nd order performance, 
respectively. Leftward deviations from the bisector line characterize above-chance 
performance and rightward deviations below-chance performance. One participant did 
not have any 2nd order false alarm. Its AUC was thus put to 1 (perfect performance). 
Excluding this participant did not change the outcome of the statistical analyses 
performed on type-II ROC curves. 

 

EEG recordings 

Participants were equipped for polysomnographic recordings (electroencephalography 
(EEG), electromyography (EMG) and electrooculography (EOG)) using a 65-channels 
EEG cap and additional sensors placed on participants’ skin (Electrical Geodesic Inc.). 
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Data were acquired at 250 Hz and EEG derivations were referenced online to Cz. EOG 
were extracted by using electrodes placed close to the right and left canthi and referenced 
to the opposite mastoids. Three EMG derivations were recorded: on the chin and on the 
right and left abductor pollicis brevis (thumb flexor muscle) to record EMG activity 
associated to hand responses. EEG, EMG and EOG data were continuously recorded in 
both the nap and the ensuing memory-test. 

 

Lateralized Readiness Potentials (LRPs) 

The EEG data acquired during the nap had been previously analyzed. Details can be 
found in (Kouider et al., 2014). Briefly, continuous EEG data were re-referenced to the 
average mastoids and high-pass filtered above 0.1 Hz (two-pass Butterworth filter at the 
5th order). After a first epoching on large temporal windows centered on stimuli onset ([-
16, 16]s), EEG data were low-pass filtered below 30 Hz (two-pass Butterworth filter at 
the 5th order), epoched from -2 to 8s and corrected for baseline activity ([-2, 0]s). Trials 
passing an absolute threshold of 250 µV were rejected from further analyses. LRP were 
computed by subtracting the EEG signal over the right (electrodes 50 and 46 in the EGI 
HCGSN-64 v1 net, equivalent to C4 and CP4 in the 10/20 montage) and left (electrodes 
20 and 26 in the EGI HCGSN-64 v1 net, equivalent to C3 and CP3 in the 10/20 
montage) electrodes: 

LRP =
(C3/CP3right−hand −C3/CP3left−hand ) + (C4 /CP4 left−hand −C4 /CP4 right−hand )

2
 

LRP quantifies the lateralization of brain activity toward the expected side of response 
(Smulders et al., 2012). Since novel words were presented during sleep, and since the 
decision to prepare for the right or left responses was based on stimulus category, the 
observation of an LRP also implies that auditory information was processed at a high 
(i.e., lexico-semantic) level of representation.  

 

Event-Related Potentials (ERPs) 

Upon awakening, participants underwent a memory-test during which EEG data were 
recorded along participants’ behavioral responses. We computed ERPs time-locked to 
stimuli onset for the three lists (wake, sleep and novel words). EEG data were re-
referenced to the averaged mastoids and high-pass filtered above 0.1 Hz (two-pass 
Butterworth filter at the 5th order). The EEG signal was then epoched on temporal 
windows time-locked to stimulus onset ([-4, 4] s) and low-pass filtered below 30 Hz 
(two-pass Butterworth filter at the 5th order). Next, EEG data were epoched from -0.2 to 
1.5 s around stimulus onset and corrected for baseline activity ([-0.2 0] s). Finally, EEG 
data were de-noised using the joint joint decorrelation approach by optimizing the 
repeatability across trials (de Cheveigné and Parra, 2014). Briefly, a principal component 
analysis (PCA) was applied to the average ERP computed across all trials and for a given 
participant (i.e. regardless of the stimulus list). Components were sorted according to 
their participation to the average ERP. The first 10 components, characterized by the 
strongest mean effect relative to overall variability, were used as a bias filter on the single-
trial EEG data. EEG data were then averaged for all the trials of a given list and for each 
participant. Figure 7-3 shows the corresponding ERP traces averaged across participants. 
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Differences were observed when comparing the wake and new lists (‘P3’ and ‘Late 
Negativity’ effects) and the sleep and new lists (‘Early Negativity’ effect). 

 

Decoding 

For each participant and EEG sensor, we extracted the signal averaged over the ‘P3’ 
cluster (wake vs. new comparison) for each and every trial. The cluster was defined as a 
[0.73, 0.86] ms window post-stimulus onset on parieto-occipital electrodes (electrodes 
showing the P3 effect: p<0.05 when comparing the wake and new lists across 
participants). A leave-one-out approach was performed at the subject-level. For all 
subjects but one, the cluster data were z-scored for each channel and trials, and 
aggregated across participants. The corresponding values (training set) were then used to 
fit a linear regression classifier that was then applied to the remaining participant (test set) 
in order to predict trials’ category (wake or new). This procedure was iterated until all 
subjects had been included in the test set. The predictions were compared to the actual 
categories and a d’ was computed for each participant (Figure 7-4). The same procedure 
was applied to the sleep vs. new cluster (Figure 7-3, [0.49, 0.63] ms post-stimulus onset 
over centro-parietal electrodes). 

 

Time-frequency decomposition 

We computed the time-frequency decomposition of the EEG signal in response to 
sounds. To do so, a Fast Fourier Transform (FFT) was applied to the EEG signal on 
band-passed de-noised stimulus-locked data ([0.1, 40] Hz, [-2, 2] s) using a window of 
800ms. The average power was computed across all trials (Figure 7-5 top) or across all 
trials for a given list (Figure 7-5 bottom) and expressed as the log ratio of the power at a 
given time and frequency over the power average over the baseline for the corresponding 
frequency. We later focused on the alpha band ([8, 12] Hz) by averaging the power 
within the corresponding frequency range. 

 

Statistics 

Parametric statistics were used here (Student t-tests to compare conditions or a condition 
with chance-level, ANOVA for analyses of variance). To correct for multiple 
comparisons in time-plots and time-frequency-plots, we used a principled approach 
called ‘cluster permutation’ (Maris and Oostenveld, 2007). Each cluster was constituted 
by the samples (in one dimension (time) or two dimensions (time and frequency)) that 
consecutively passed a specified threshold (for time-plots: p<0.1; for time-frequency-
plots: p<0.01). It has been shown that the rate of type-I errors (false positives) was 
immune to the choice of this cluster-defining threshold (Maris and Oostenveld, 2007). 
The cluster statistics were chosen as the sum of the t-values of all the samples within the 
cluster. Then, we compared the cluster statistics of each cluster with the maximum 
cluster statistics of 1000 random permutations (Monte-Carlo method). From this 
comparison, we obtained a Monte-Carlo p-value: the cluster p-value (pcluster). When 
examining the presence of mnesic traces in the sleep lists, we obtained several null 
results. To check the informativeness of these null results, we computed Bayes Factors 



Chapter 3 - Learning 

235!

given the effect observed in wakefulness (Dienes, 2014). Bayes factors allowed assessing 
whether a null result is in favor of the null hypothesis or reflects data’s lack of sensitivity. 
The larger the Bayes Factor, the more the data is in favor of the null hypothesis.  
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Results 

In a recent publication, we have shown that sleepers can maintain complex and flexible 
processing of sensory information during NREM sleep (Kouider et al., 2014). Such feat 
was not accompanied by any explicit memory, contrasting with what happens when we 
are awake. Here we investigated the presence of implicit mnesic traces for words heard 
during sleep by relying on more-in-depth analyses of behavioral and EEG data. 

 

Memory traces for words heard while awake 

We first checked whether the list category (wake, sleep or new) and the list itself (i.e. 
which list was defined as the wake, sleep or new list for a given participant) had an effect 
on correctness (1st order response) and confidence rating (2nd order response). Using 
ANOVAs, we observed, for both correctness and confidence, an effect of the list 
category (F(2)=80.5 and F(2)=5.67, p=4.10-15 and p=0.007 resp.) but not of the list itself 
(F(2)=2.39 and F(2)=0.03, p=0.10 and p=0.97 resp.). There was no significant 
interaction (F(4)=0.39 and F(4)=0.60, p=0.82 and p=0.66 resp.). 

Words presented during wakefulness were explicitly recognized as ‘old’ words with a 
high degree of accuracy (83 ± 4%, Figure 7-2a). Such performance led to a high d’ index 
when contrasting these wake items with novel ones (t-test comparing with 0, t(16)=6.62, 
p=6.10-6). For the wake list still, participants attributed high levels of confidence when 
they were correctly recognizing an item (6.2 ± 0.17 over 7) and low levels of confidence 
when missing to identify an item previously heard (3.7 ± 0.40 over 7, see Figure 7-2b for 
normalized values). Such pattern of results led to type-I and type-II ROC curves clearly 
distinct from the bisector line for the wake list. Accordingly, the wake list AUCs were 
highly significant when compared to bisector’s AUC (t-test: t(16)=11.2, p=6.10-9 and 
t(16)=10.5, p=1.10-8 for the type-I and type-II ROC curves resp.). The type-I ROC curve 
in particular had an asymmetric shape that is typical of strong and explicit memory traces 
(Squire et al., 2007). Overall, participants were unsurprisingly able to accurately and 
confidently discriminate items heard while awake from new ones.  

These behavioral effects were accompanied by differences in the ERP between the wake 
and new lists (Figure 7-3). Namely, a positivity over occipito-parietal electrodes was 
observed around 700 ms when comparing the wake and new lists across participant 
(cluster on Pz: [0.72, 0.86] s, pcluster=0.026) in accordance with previously published 
results (Kayser et al., 2007; Rugg et al., 1998; Voss and Paller, 2007). This difference is 
termed the ‘P3 effect’ in the literature. Another negativity, maximal over parietal 
electrodes, was also observed later in time (cluster on Pz: [1.17, 1.40] s, pcluster=0.003) and 
is termed ‘late negativity’ in the literature (Kayser et al., 2007).  
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Figure 7-2 First and second-order responses in the recognition test 

Behavioral results for the memory test. (a) Proportion of ‘old’ and ‘new’ responses for the wake 
(red), sleep (blue) and new (gray) lists (1st order responses). Proportions are averaged across 
participants (N=17) after excluding items heard around arousals or micro-arousals for the sleep 
list. Note that participants responded to sleep items as if they were new. (b) Confidence rating 
associated to the old and new responses for the wake, sleep and new lists (2nd order responses 
averaged across participants). Ratings were normalized by subtracting for each participant the 
average confidence rating. Note the increase in confidence for sleep items in comparison to new 
items when participants categorized them as old. (c) Sensitivity index d’ averaged across 
participants for the old vs. new discrimination and computed for the wake and sleep lists 
separately. As in panel a, the null d’ reveals participants failure to distinguish sleep and new items 
in their 1st order responses. (d) Type-I and type-II ROC (Receiver Operating Characteristic) 
curves computed for the 1st order (old vs. new, left) or 2nd order (confidence rating, right) 
responses. Inset shows the area under the curves (AUC) computed for the different ROC curves 
and averaged across participants (0.5: area under the bisector line). In all subpanels, error-bars 
denote the standard error of the mean across participant. Stars atop bars denote the significance 
levels when comparing with 0 (t-tests across participants; ***: p<0.005, **: p<0.01, *: p<0.05, ns: 
p>0.05). Stars between bars show the paired comparison between bars. 
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Implicit memory traces for words heard during sleep in the absence of 
explicit recognition 

What about sleep? First of all, and as previously reported (Kouider et al., 2014), 
participants did not explicitly recognize the items presented during NREM sleep despite 
having processed them at a high-level of representation (Figure 7-1c). Indeed, the pattern 
of ‘old/new’ responses was strikingly similar to the new list (Figure 7-2a) leading to null 
d’ (t-test comparison to 0: t(16)=0.73, p=0.25). To determine whether this null result was 
informative and not reflecting data insensitiveness, we computed the Bayes Factor 
associated to the sleep effect (on d’) when considering the effect on the wake list. A 
Bayes Factor superior to 1000 indicates very strong evidence for the null hypothesis 
(Kass and Raftery, 1995).  In line with the null d’ for the sleep list, the type-I ROC curve 
for sleep items does not show a significant deviation from the bisector line (Figure 7-2d, 
left; t-test comparison to 0.5: t(16)=1.53, p=0.14; Bayes factor>1000).  

However, when examining second-order responses we observed that the sleep list did 
not lead this time to identical responses as for the new list (Figure 7-2b). Indeed, 
participants were more confident when responding that a sleep item had been previously 
presented compared to a genuinely novel word (paired t-test: t(15)=2.3, p=0.036). This 
difference suggests the presence of an implicit mnesic trace for words heard during sleep, 
positively impacting confidence. However, despite this slight increase in performance, 
participants showed rather low confidence in determining that an item from the sleep list 
was old, which results in a trend for a below-chance type-II ROC curve (AUC=0.40 ± 
0.058, t-test comparing with 0.5: t(16)=-1.8, p=0.089). When considering type-II ROC 
curves, the sleep and new lists drastically differ (the former is below the bisector line, the 
later above). This is due to the way these curves are computed and the fact that an ‘old’ 
response is considered as being correct for the sleep list and ‘incorrect’ for the new list. 
However, when re-computing the ROC curves while considering the ‘old’ response as 
being incorrect for the sleep list (i.e. when taking the point of view of the participants 
who did not have any explicit recollection of the sleep items), the sleep (unfilled blue 
dots) and new type-II ROC curves still differ, with the sleep list showing a smaller AUC 
(paired t-test comparing AUCs: t(16)=-2.36, p=0.031). Overall, 2nd order performance 
revealed the presence of an implicit memory trace, albeit weak, for sleep items in the 
absence of explicit recognition. 

 

EEG evidence for implicit memory traces for words heard during sleep 

Differences between the sleep list and the novel list were also observed when examining 
the corresponding ERPs (Figure 7-3). A centro-parietal negativity (‘early negativity’) was 
observed when comparing the sleep and novel lists (cluster on Pz: [0.48, 0.62] s, p=0.006; 
on Cz: [0.49 0.63]s, p=0.044), suggesting that the two lists were not processed identically. 
On the other hand, the P3 and the Late Negativity effects were not observed when 
comparing the sleep list with the new list, suggesting that the sleep list was not processed 
as the wake list. Interestingly, the negativity observed for the sleep lists overlapped 
spatially and temporally with the P3 positivity.  
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Figure 7-3 Event-Related Potentials to wake, sleep and new words 

The EEG signal time-locked to sound onset was averaged across participants (N=17) for the 
three lists separately (red: wake; blue: sleep; gray: new lists). Panel a shows the event-related 
potentials (ERPs) for electrode Pz and panel b for electrode Cz. Horizontal bars show the 
significant clusters for the comparison between the wake list (red bars) or the sleep list (blue bars) 
and the new list (pcluster<0.05). The scalp topographies corresponding to the different clusters are 
shown on panel c (t-values computed by comparing the signal averaged over the cluster time-
window between the wake (or sleep) and new list, non significant t-values (p-value>0.05) were 
set to 0). Note the classical posterior positivity when comparing wake (explicitly remembered) 
and new items (‘P3’) as well as the ‘late negativity’. For sleep items, an opposite negativity (‘early 
negativity’) was observed in lieu of a positivity and despite the absence of explicit recognition. 
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We further checked whether the differences observed in the ERP waveforms could allow 
us to predict stimuli category. To do so, we extracted the average voltage over the P3 
cluster and the ‘early negativity’. For each participant, we trained and tested a classifier 
using a leave-one-out approach (see Methods) to predict stimuli category based on the 
EEG signal. Figure 7-4 shows that such procedure led to above-chance levels 
discrimination for the wake vs. new lists discrimination when using the P3 cluster 
(t(16)=5.21, p=8.10-5) but not for the sleep vs. new list contrast (t(16)=1.16, p=0.26, 
Bayes factor>1000), in accordance with the absence of P3 effect for the sleep list. 
However, when using the EEG data computed over the negative cluster associated to the 
sleep list, we could predict the stimuli category better than chance when comparing the 
sleep and the new lists (t(16)=3.44, p=0.003) and when comparing the wake vs. new lists 
(t(16)=2.15, p=0.04), reflecting the overlap between the P3 and negative clusters. 

 

 

Figure 7-4 Decoding stimulus category with the EEG signal 

The EEG amplitude over the clusters observed in Figure 7-3 (‘P3’: [0.73, 0.86] s over parieto-
occipital electrodes; ‘Early Neg.’: [0.49, 0.62] s over centro-parietal electrodes) was retrieved on a 
single-trial basis for all participants. A leave-one-out approach was applied at the subject-level to 
fit a logistic regression (see Methods), which was then used to predict stimulus category (sleep vs. 
new or wake vs. new). The sensitivity index d’ of this prediction was computed for each 
participant and each contrast and averaged across participants. The red bar shows therefore the 
sensitivity of using the EEG data to predict whether a wake item was previously heard and the 
blue bars the sensitivity in predicting the sleep items. Stars atop bars show the significance level 
of the t-test testing for the null hypothesis (***: p<0.005, **: p<0.001, *: p<0.05, ns: p>0.05). 
Note that the P3 cluster allows classifying only wake items while the negative sleep vs. new 
cluster could differentiate both wake and sleep items from new ones.  

 

Finally, we examined the time-frequency decomposition of the EEG signal in response 
to the items of the different lists (Figure 7-5). When pooling all words from all lists, it 



Chapter 3 - Learning 

241!

appears that stimulus presentation modulates the EEG signal in 3 distinct frequency 
bands. Stimulus onset was followed by a synchronization within the theta band (i.e. 
increase in power for the [4, 8]Hz band) and a desynchronisation (decrease in power) 
within the alpha ([8, 12]Hz) and beta band (>16Hz). Interestingly, variation in the theta 
and alpha power has been associated with changes in recollection performance 
(Klimesch, 1999; Klimesch et al., 1997). We did not observe any difference between lists 
within the theta band. However, the new list elicited stronger alpha desynchronisation 
over occipital regions compared to the wake list (pcluster=0.02, Figure 7-5 bottom) in 
accordance with previous findings (Klimesch et al., 1997). Importantly, a similar and 
even stronger effect was observed when contrasting the wake and sleep lists 
(pcluster=0.009). Once again, the brain response to the sleep and new lists show that 
despite equivalent 1st order responses, the sleep items were not processed as novel words. 

Overall, both behavioral and EEG data reveal the presence of implicit mnesic traces for 
words heard during sleep. However, the opposite effects observed in the ERP between 
the wake and sleep lists suggest that the memory traces associated to wake and sleep 
items may qualitatively differ.  

 



Study 7 

242!

 

Figure 7-5 Alpha de-synchronization during memory recognition 

Top: Time-frequency decomposition of the EEG signal recorded at electrode Pz and for all 
trials. Power is expressed as a log ration of the baseline activity and was averaged across 
participants (N=17). The mask and contours show the significant clusters (pcluster<0.05). After 
stimuli onset, clear modulations of the power can be observed in the theta ([3-8] Hz), alpha ([8-
12] Hz) and beta (>20 Hz) bands. Bottom: Power modulation for the alpha band ([8-12] Hz) 
over electrode Pz for the different lists of stimuli (red: wake, blue: sleep, gray: new list). 
Horizontal bars show the significant cluster when comparing the wake and new lists (red: 
pcluster=0.02) or the sleep and new lists (blue: pcluster=0.009) across participants. Insets show the 
corresponding topographies for these clusters: power was averaged on the clusters’ time-window 
and t-values were computed by comparing the corresponding power for the wake (or sleep) list 
and the new one. Non-significant t-values (p>0.05, uncorrected) were set to 0. 
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Discussion 

Memory for words heard during sleep 

Until recently, scientific efforts to understand whether humans can learn while sleeping 
had remained largely inconclusive due to the paucity of positive results and doubts raised 
by methodological flaws (Bruce et al., 1970; Webb, 1990; Wood, JM, 1990). At first sight, 
our results are consistent with previous studies showing no memory for the words 
presented during sleep (Cox et al., 2014; Emmons and Simon, 1956; Wood et al., 1992). 
Indeed, while words presented during wakefulness elicited close-to-perfect explicit 
recognition (Figure 7-2) and classical ERP signatures of recollection (Figure 7-3, P3 
effect), items presented during sleep seemed to be processed as new items when 
considering these two markers (Figure 7-2 and Figure 7-4). 

However, a more detailed investigation of both behavioral and EEG data revealed 
differences between the sleep and new lists. Sleep items that were declared as previously 
encountered elicited higher confidence judgments than sleep items judged as ‘old’ (Figure 
7-2b). This difference in confidence estimation between the wake and sleep lists was 
confirmed when analyzing the type-II ROC curves (Figure 7-2d). Analyzing brain 
responses to the sleep and new lists confirmed that these two lists were not processed 
identically (Figure 7-3), with sleep items eliciting a large centro-parietal negativity around 
500ms. When extracting the EEG signal over the corresponding cluster, a classifier could 
separate novel from sleep items with above chance-performance (Figure 7-4), which 
participants themselves could not do. Differences between the sleep and new lists could 
also be evidenced when examining the stimulus-related alpha desynchronisation. The 
EEG signal contains therefore information about the fact that sleep items had been 
previously heard but participants did not use this information to perform the old/new 
task.  

 

Nature of the memory traces formed in sleep 

Although behavioral and EEG data indicate that words presented during sleep left a 
trace in participants’ brain, such traces seem quite different from the explicit memory 
formed during wakefulness. Indeed, wake items were explicitly recognized (high 1st and 
2nd order performance, Figure 7-2). On the contrary, sleep items did not lead to above 
chance 1st order performance. The memory effect was restricted, at the behavioral level, 
to 2nd order-responses. An improvement of 2nd order responses with at-chance 1st order 
responses can be interpreted as the manifestation of an unconscious (i.e. implicit) 
memory trace (Jachs et al., 2015; Rosenthal et al., 2010; Scott et al., 2014; Tulving, 1985). 

In fact, the patterns of results observed on confidence rating (increased confidence for 
sleep items correctly categorized as old compared to new one but lower confidence 
ratings compared to sleep items incorrectly categorized as new, see Figure 7-2b) could be 
interpreted as a conflict between the absence of explicit memory for sleep items and the 
presence of implicit mnesic traces. Under such conditions, when the implicit memory 
trace is weak or absent, participants would tend to process sleep items as new with a 
rather high degree of confidence. On the contrary, when the implicit trace is stronger, 
participants would declare such items as old but with a rather low degree of confidence 
due to the lack of explicit recognition. Nonetheless, these items would elicit higher 
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confidence ratings compared to incorrectly classified new items for which no implicit 
memory trace exists. 

Thus, our results could fit with the classical distinction between ‘knowing’ (explicit 
recollection) and ‘remembering’ (implicit recognition) (Tulving, 1985). According to this 
view, the explicit recollection and familiarity both contribute to recognition but recruit 
different memory systems (Rugg et al., 1998; Vilberg and Rugg, 2008; Voss and Paller, 
2007). However, disentangling the contribution of explicit and implicit memory at the 
behavioral level and in their neural signature is very complex (Malmberg, 2008; Rotello et 
al., 2004; Voss and Paller, 2007). Here we can take advantage of the fact that participants 
were in a state of minimal, if not absent, consciousness during learning. As a 
consequence and contrary to many studies in which the explicit/implicit nature of a 
stimulus is manipulated by processing depth (e.g. (Rugg et al., 1998)), we can here better 
isolate the neural activity underlying implicit memory. Interestingly, many studies showed 
quantitative rather than qualitative changes between the neural correlates of implicit and 
explicit memory (Allan et al., 1998). Here, on the contary, sleep items elicited a centro-
parietal negativity that appeared as the opposite of the classical signature of explicit 
recollection (P3 effect, Figure 7-3).  

We further checked that this centro-parietal negativity depended on the stimuli and not 
subjects’ response by focusing on sleep and new items both categorized as ‘new’ by 
participants. In such case, behavioral responses were identical for the two conditions 
(Figure 7-2a-b). Nevertheless, a similar cluster was observed over Pz ([0.48, 0.62] s, 
pcluster=0.01), suggesting that the centro-parietal negativity depends on prior exposure and 
not on participants’ choice. 

Alternatively, it has been proposed that the difference between explicit and implicit 
memory could stem from a difference in memory strength rather than different neural 
sources (Squire et al., 2007). However, such view would predict a similar, albeit weaker, 
effect for the sleep list in lieu of the observed opposite effects. While both familiarity and 
recollection could be encoded in similar structures within the medio-temporal lobe 
(Squire et al., 2007), our results suggest that they can be dissociated under certain 
conditions. 

 

Learning or consolidating during sleep? 

Sleep has often been seen as a state promoting memory consolidation to the detriment of 
memory encoding (Hasselmo, 1999; Hennevin et al., 2007; Tononi and Cirelli, 2014). It 
has been proposed that the low-level of acetylcholine in NREM sleep as well as the 
relative disconnection of the sleepers from its environment would impair the formation 
of new memories. However, recent research showed that the consolidation of memory 
during sleep does not necessarily preclude any form of hippocampus-dependent sleep-
learning. Accordingly, animals and humans can be conditioned during sleep (Arzi et al., 
2014, 2012; de Lavilléon et al., 2015; Hennevin et al., 2007, 1995). One key element 
potentially explaining the success of these studies consists in their ability to bypass 
sensory isolation by providing either olfactive information (Arzi et al., 2012), which does 
not transit by thalamic relays (Jones, 2007), or by using intracranial stimulations (de 
Lavilléon et al., 2015). Here, we similarly ensure that the stimuli were processed at a high-
level of representation by checking the preservation of task-related motor preparation 
indexes (Figure 7-1c) that can be observed if and only if the novel information is 
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correctly processed (Kouider et al., 2014). It is also important to note that we studied 
mostly light stages of NREM sleep (nap studies). It is possible that light NREM is a stage 
more favorable to the processing of external information and the formation of memory 
in opposition to deeper stages of sleep in which sensory isolation and changes in 
neuromodulation are more pronounced (Genzel et al., 2014). According to this view, the 
formation of memory during sleep is possible but is a highly constrained phenomenon 
with little effect at the behavioral level.  
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Summary 

Experience continuously imprints on the brain, at all stages of life. The traces it leaves 
behind can produce perceptual learning (Gilbert et al., 2001), which drives adaptive 
behavior to previously encountered stimuli. Recently, it has been shown that even 
random noise, a type of sound devoid of acoustic structure, can trigger fast and robust 
perceptual learning after repeated exposure (Agus et al., 2010). Here, combining 
psychophysics, electroencephalography (EEG), and modeling, we show that the 
perceptual learning of noise is associated with evoked potentials, without any salient 
physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials 
appeared whenever a memory trace was observed behaviorally. Such memory-evoked 
potentials were characterized by early latencies and auditory topographies, consistent 
with a sensory origin. Furthermore, they were generated even on conditions of diverted 
attention. The EEG waveforms could be modeled as standard evoked responses to 
auditory events (N1-P2, (Picton, 2011)), triggered by idiosyncratic perceptual features 
acquired through learning. Thus, we argue that the learning of noise is accompanied by 
the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, 
within sensory regions. Such a mechanism bridges the gap between the short-term and 
longer-term plasticity observed in the learning of noise (Agus et al., 2010; Guttman, 
1963; Kumar et al., 2014; Luo et al., 2013). It could also be key to the processing of 
natural sounds within auditory cortices (Mizrahi et al., 2014), suggesting that the neural 
code for sound source identification will be shaped by experience as well as by acoustics. 

 

Graphic summary 
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Results 

We used an experimental paradigm where listeners learnt exemplars of acoustic noise 
(Agus et al., 2010; Kumar et al., 2014; Luo et al., 2013). Although noise is not 
representative of natural sounds, it is a unique tool to probe auditory (Agus et al., 2010) 
or even visual (Gold et al., 2014; O’Toole and Kersten, 1992) perceptual learning. First, 
noise lacks semantic content, thus revealing pure perceptual learning. Also, there is 
normally no prior exposure to a specific noise exemplar. Finally, noise exemplars can 
contain tens of thousands of random samples, with no sample-to-sample predictability, 
pushing any learning mechanism to the extreme.  

The surprising ability of listeners to learn meaningless, random patterns is also relevant 
to the long-standing debate about the nature of experience-dependent changes in the 
brain: are such changes distributed or local (Gilbert et al., 2001; Thorpe, 2011)? A 
distributed code posits subtle changes in a whole population of neurons, with the 
functional benefits appearing only at the population level. For audition, perceptual 
learning has indeed been observed through distributed changes in “tonotopic” frequency 
maps, using pure tones (Fritz et al., 2003; Schreiner and Polley, 2014). As noise has a flat 
spectrum on average, a distributed code could not rely on tonotopy, but it could possibly 
recruit more complex timbre maps (Elliott et al., 2013; McDermott et al., 2013). In 
contrast, a local code posits dramatic changes at the single-neuron or small-network 
level, with small neural populations expressing the full benefit of learning (Bathellier et 
al., 2012; Mizrahi et al., 2014). For noise, such a localized code could apply, if repeated 
exposure to a random pattern created a form of ultra-selective response (Klampfl and 
Maass, 2013; Masquelier et al., 2008).  

Recently, Luo et al. (Luo et al., 2013) applied magnetoencephalography (MEG) to the 
noise-learning paradigm. They found that noise learning induced stable phase patterns in 
brain neural responses, as measured by inter-trial phase coherence (ITPC) in the 3-8 Hz 
theta range. Those results were interpreted as a distributed and holistic learning process 
(Giraud and Poeppel, 2012b; Luo and Poeppel, 2007). Strikingly, there was no effect of 
perceptual learning on event-related potentials (ERPs), which further advocated against a 
local process: if listeners learnt isolated perceptual events within the noise, those should 
be accompanied by ERPs (Gutschalk et al., 2008). However, the local account may be 
reprieved with an additional hypothesis. If learnt features were local but idiosyncratic, 
and thus activated at random times across listeners for the same noise (Agus et al., 2010; 
Kaernbach, 1993, 1992), then the associated ERPs would be impossible to observe on 
average, while ITPC would remain high. We devised a variant of the noise-learning 
paradigm to test this hypothesis. 

 

Behavioral measures of perceptual learning: diffuse and compact 
conditions.  

For half of the experiment (Figure 8-1A left), a standard noise-learning paradigm was 
used (Agus et al., 2010; Luo et al., 2013). Participants were instructed to discriminate 
trials containing continuous white noise (N) from trials made of the seamless 
concatenation of three copies of a 0.5s-long white-noise snippet (repeated noise, RN).  
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Figure 8-1 Experimental procedure and behavioral results 

A: Stimuli and experimental design for Experiment 1. In the “diffuse” condition (left), 
participants had to discriminate between no-repeat trials, made of 1.5s of running white-noise 
(N), and with-repeats trials, made by concatenating, without any discontinuity, three identical 0.5-
s long snippets of noise. For repeated noise trials (RN), a new snippet of noise was drawn for 
each trial. For reference repeated noise trials (RefRN), the exact same noise snippet re-occurred 
not only within a trial, but also across trials (illustrated here with target snippet T2). In the 
“compact” conditions, the task was the same but repeated snippets were shorter (0.2s) and 
concatenated, without any discontinuity, with 0.3s running white-noise fillers. Compact trials 
lasted 2.5s and included 5, 0.5s-long partially-repeating epochs (Supp. Procedures). B: Typical 
output of a peripheral auditory model (Spectro-Temporal Excitation Pattern, [39], see Supp. 
Methods for details) for repeated (RN/RefRN) and unrepeated (N) stimuli. The compact 
condition was used for the simulations. There are no obvious landmarks for the repeated stimuli 
in the waveform (top), average excitation pattern (right), nor spectro-temporal excitation pattern 
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(main panel). C: Behavioral performance in Experiment 1, averaged over n=42 blocks. Three 
measures were computed: sensitivity d', reaction times (RTs) and behavioral efficacy combining 
d' and RTs (Supp. Procedures). Error-bars denote standard errors of the mean (SEM) across 
blocks. Stars indicate the significance level for the RefRN vs RN comparisons (paired u-test, ns: 
p>0.05, *p<0.05, **p<0.01, ***p<0.005). RTs were faster for RefRN in the compact but not 
diffuse condition (paired u-test: p=0.21). A better performance (higher d' and behavioral efficacy, 
faster RTs) for RefRN compared to RN summarizes the amount of perceptual learning. 

Without participants’ knowledge, a third type of trial was introduced: one particular 
instance of repeated noise (reference repeated noise, RefRN) re-occurred, identically, 
over 16 trials throughout a block. A higher repetition-detection performance for RefRN 
relative to RN indicates perceptual learning (Agus et al., 2010). For the other half of the 
experiment, a change was introduced in the structure of trials containing repetitions: a 
shorter 0.2s-long white-noise snippet was repeated but seamlessly concatenated, between 
repetitions, to 0.3s fresh noises (Figure 8-1A, right). Thus, the temporal window over 
which repetition detection and perceptual learning could occur was restricted to 0.2s. 
This would induce less temporal variability in putative local EEG markers. We use the 
terms “diffuse” for fully repeating noise (Agus et al., 2010; Luo et al., 2013) and 
“compact” for partially repeating noise (Berti et al., 2000; Kaernbach, 2004). 

Behavioral measures showed clear evidence of perceptual learning in both conditions 
(Figure 8-1C). First, signal-detection analysis (Macmillan, 2005) showed a better d' 
sensitivity for RefRN compared to RN. This difference between RefRN and RN was 
absent at the beginning of blocks, that is, before learning of RefRN could occur (Figure S 
8-1A). Reaction times (RTs) were faster for RefRN than RN in the diffuse condition, and 
a higher accuracy was associated with faster responses for RefRN in both diffuse and 
compact conditions (Figure S 8-1B). This suggests that both d' and RTs indexed 
perceptual learning. We combined d' and RTs in a “behavioral efficacy” index (BE, Supp. 
Procedures). The compact condition led to lower BEs (Friedman test, p<0.001), showing 
that this condition was more difficult overall. However, the amount of learning, as 
measured by the BE difference between RefRN and RN, was the same across conditions 
(paired u-test, p=0.46). 

 

Electrophysiological markers of learning  

EEG was recorded while participants performed the task and analyses were restricted to 
the sensors most responsive to auditory stimuli (Supp. Procedures). Following (Luo et 
al., 2013), we investigated three possible neural markers of learning: ITPC (Figure 8-2A-
B), EEG power (Figure 8-2C), and ERPs (Figure 8-2D). 

For the diffuse condition (Figure 8-2, left, see legend for statistical tests), we observed 
higher ITPC for RefRNs in a [0.5, 5]Hz range. When averaging ITPC in this frequency 
range, only RefRN showed an increase compared to the N baseline. Further averaging 
ITPC over the whole stimulus duration (Figure 8-2B inset) confirmed that the effect was 
restricted to RefRN. Applying the same analyses to power responses did not reveal any 
significant difference across conditions. Finally, we estimated ERPs time-locked to 
stimuli onsets. We did not observe any difference across stimulus types. So far, results 
for ITPC, power, and ERPs fully replicate the MEG findings of (Luo et al., 2013). 
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Figure 8-2 Electrophysiological Markers 

Diffuse and compact conditions (Experiment 1) are presented on the left and right columns, 
respectively. A: Time-frequency distribution of the increase of inter-trial phase coherency (ITPC) 
for RefRN compared to N trials (t-values from uncorrected paired t-tests across 42 blocks). The 
transparency mask shows clusters surviving a Monte-Carlo permutation test (Monte-Carlo p-
value <0.05). Here and below results are averages for the 10 most responsive auditory electrodes 
(Figure S 8-3A). B. Average ITPC in the 0.5Hz to 5Hz region of interest, for RefRN (orange), 
RN (blue) and N (gray). Horizontal colored lines show significant clusters for diffuse (RefRN vs. 



Chapter 3 - Learning 

253!

N: [800, 1400]ms, Monte-Carlo p-value<0.005) and compact (RefRN vs. N: [800, 
2400]ms, Monte-Carlo p-value<0.0001; RN vs. N: [2000, 2700]ms, Monte-Carlo p-value<0.0001) 
conditions. Insets show the mean ITPC further averaged over stimulus duration.  Stars indicate 
the significance level of paired comparisons between conditions (paired t-tests, ns: p>0.05, 
*p<0.05, **p<0.01, ***p<0.005). C: Power response in the 0.5Hz to 5Hz region of interest, 
averaged across blocks. Insets show the mean power further averaged over stimulus duration. No 
significant difference could be observed between trial types. D: Evoked related potentials (ERPs, 
top) and difference waves (RefRN or RN minus N, bottom). No statistical difference was 
observed between trial types for the diffuse condition. For the compact condition, averaging 
ERPs after repeated snippets (inset) revealed larger negativities for RefRN and RN compared to 
N (paired t-tests, *p<0.05). Difference waves also showed significant clusters (Monte-Carlo p-
value<0.05, with topographies of t-values also plotted). Note that the first cluster for the RefRN 
vs. N comparisons start right after the first target onset. Error-bars on insets and shaded areas 
around curves indicate standard errors of the mean (SEM) computed across blocks. 

For the compact condition (Figure 8-2, right), the same analyses were performed. Again, 
there was an increase in ITPC for RefRN compared to N. Averaging ITPC over the low-
frequency range revealed a significant cluster for RefRN compared to N, and here, also 
for RN compared to N. As the noise snippets for RN were different from one trial to the 
next, this shows that across-trial phase patterns cannot be specific to a noise snippet. The 
power analysis did not reveal any difference across stimulus types. Finally, and crucially, 
there were clear modulations of the ERPs. Averaging ERPs after each repetition revealed 
consistent negative potentials for RefRN and RN (Figure 8-2D inset). Remarkably, 
within the RefRN trials, ERPs were observed for each presentation of the repeated 
snippet, including the very first one (before any within-trial repetition). Therefore, such 
ERPs cannot be markers of within-trial repetition only. We also observed significant 
ERPs for RN trials, but only after several within-trial presentations of the repeated 
snippet.  

In summary, ERPs were observed in response to a noise snippet if and only if the same 
snippet had been heard before, within (RN) or across (RefRN) trials. The appearance of 
ERPs was extremely rapid, as they developed within five presentations of a novel noise 
snippet in RN trials. Such time-locked ERPs occurred without any discontinuities in 
sounds' amplitude or any other short-term statistics. To illustrate this point, we ran the 
stimuli through a peripheral auditory model (Figure 8-1). The simulation showed that 
there were no obvious landmarks in RN/RefRN, at least not of the kind known to 
produce auditory ERPs before learning (Picton, 2011). To stress that the “events” 
producing the event-related potentials were related to past experience, we term such 
responses “memory-evoked potentials” (MEPs). 

 

!



Study 8 

254!

Memory-evoked potentials are sensory correlates of behavioral 
performance  

 

Figure 8-3 Correlation of neural markers to behavioral performance for the compact condition 

A: ERPs were averaged across repetition epochs ([-100, 500]ms window from target onset, 2nd 
to 4th within-trial target occurrences). Horizontal lines indicate significant clusters when 
comparing RefRN with N (orange, [128, 364]ms), RN with N (blue, negative: [72, 328]ms, 
positive: [388, 472]ms) and RefRN with RN (black, [244, 316]ms) trials (Monte-Carlo p-
values<0.05). Shaded areas indicate standard errors of the mean (SEM) across blocks. The inset 
shows the topographical map of the differences between RefRN and N expressed as t-values 
(paired t-tests on averaged ERP amplitude extracted over a [100, 400]ms window, n=42 blocks). 
Non-significant t-values (p>0.05/65, Bonferroni correction) were set to white. B: Correlation of 
Behavioral Efficacy with ERP amplitude (top), phase coherence (ITPC, middle) and EEG power 
(bottom) for RefRN (orange) and RN (blue) trials. Pearson's correlation coefficients (r) were 
computed for RefRN and RN conditions separately and displayed on scatter plots along their 
statistical significance level (ns: p>0.05, *p<0.05, **p<0.01, ***p<0.005). Orange and blue 
dashed lines show the linear fit estimated for RefRN and RN conditions respectively. C: 
Experimental conditions (RefRN vs. N (orange), RN vs. N (blue), Supp. Procedures) were 
decoded, at the single-trial level, using a logistic regression on the ERPs displayed in A. Gray area 
denotes the chance level obtained through permutations of trial types (n=1000). Decoding values 
above this gray area are higher than 95% of random values.  
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To further characterize MEPs, we averaged responses time-locked to the repeated noise 
snippets for the compact condition (Figure 8-3A). Both RefRN and RN induced clear 
MEPs with a latency of about 100ms. The MEPs’ topography was very similar to the N1 
topography (Figure S 8-3A), but their broad, mostly negative waveform differed from a 
standard N1-P2 complex (Picton, 2011). However, such topography and waveform are 
consistent with a superposition of time-jittered N1-P2 complexes (see Model). The 
MEPs were larger for RefRN compared to RN. Nonetheless, after amplitude 
normalization, the waveforms and topographies became identical (Figure S 8-3C). This 
suggests a common origin: for RN, MEPs could indicate the emergence of a mnesic trace 
towards the end of the trial, while for RefRN, the same mnesic trace would be re-
activated from the very first snippet presentation, and then reinforced by subsequent 
presentations.  

If this unified account were correct, MEPs should always correlate with behavioral 
performance. This is exactly what was found: amplitude correlated with BE for both 
RefRN and RN (Figure 8-3B). We further tested whether MEPs could differentiate 
between stimuli on a trial-by-trial basis, using a logistic regression on the MEPs 
amplitude (Figure 8-3C). We obtained significant decoding as early as 100ms post-
presentation, supporting a sensory interpretation. The decoding accuracy was modest, 
but note that all sounds in this analysis were statistically exactly the same: a single epoch 
of white noise. Still, MEPs carried information about past experience, on a trial-by-trial 
basis. 

 

Learning noise without paying attention 

So far, listeners were instructed to detect noise-repetitions, so at least part of the MEPs 
could have been caused by attentional modulation. We tested this hypothesis in a 
supplemental experiment (Figure S 8-2). Listeners were not asked to detect repetitions, 
but, rather, had to perform a distracting auditory task (detection of amplitude 
modulations) (Luo et al., 2013). In addition, RN or RefRN sequences were embedded in 
8min of continuous running noise: there was no amplitude-onset cue to signal that a new 
“learnable” sequence had begun, thus removing endogenous and exogenous attentional 
cues. Still, clear MEPs were observed, remarkably similar to those of the main 
experiment (Figure S 8-3B). 

 

A simple model of memory-evoked responses  

A possible interpretation for the MEPs is that they were triggered by acoustic events 
within the noise, which only became perceptually salient after learning. We implemented 
this idea in a simple quantitative model (Figure 8-4A). Whenever a snippet of noise had 
been heard before, we injected an ERP in the EEG waveform, with a canonical shape 
(N1-P2, (Picton, 2011)) and random onset time for each “listener” and noise. This was 
intended as an idealized version of one-shot learning: whenever the same noise would be 
heard again by the same listener, an ERP was invariably triggered and its onset time 
would remain exactly the same. But, a different noise or listener would result in an ERP 
with a different, random onset time.  
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Figure 8-4 Model simulations 

A: Illustration of the model’s architecture. Background EEG was first synthesized (gray curve, 
Supp. Procedures) and evoked potentials were added at the onsets and offsets of acoustic energy 
(stimulus-locked, dark blue). If a noise snippet had been heard before, an additional ERP was 
added (memory-locked, red), with a random onset time. The onset time was then fixed for 
subsequent presentations of the same noise snippet. The illustration for the diffuse condition 
(right) shows that, by construction, RefRNs were associated with perfectly synchronous 
potentials throughout a block, as they contained the same noise snippets across trials, whereas an 
RN trial contained only two potentials (after the first repetition epoch of each trial) with time-
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jitter across trials. 42 blocks were simulated with a Signal-to-Noise Ratio matching the empirical 
dataset (see Supp. Procedures and Figure S 8-4). B-D: Analyses of the simulated data, format as 
Figure 8-2. Inset of panel D shows the target-locked ERPs as in Figure 8-3A. Colored lines 
denote significant clusters for the RefRN vs. RN (orange) and RN vs. N (blue) comparisons 
(Monte-Carlo p-values<0.05, n=42 simulated blocks). In the insets, stars indicate the significance 
level (paired t-tests, ns: p>0.05, *p<0.05, **p<0.01, ***p<0.005). 

As a result, for RN, the evoked activity was shifted across trials and shifted across blocks, 
whereas for RefRN, the evoked activity was fixed across trials and shifted across blocks. 
We analyzed the simulated data (Supp. Procedures) in the same way as the EEG 
recordings. The model replicated all of the main findings (Figure 8-4B-D). In particular, 
no ERPs were observed in the diffuse condition, as the memory-locked N1-P2 averaged 
out across blocks, due to the 500-ms onset-time jitter. Time-locked ERPs similar to 
MEPs were observed only for the compact condition, as the 200-ms onset-time jitter was 
too short for N1-P2 components to fully overlap and cancel out. The peculiar shape of 
the MEPs itself was reproduced by the additive model (Figure 8-4D inset).  
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Discussion 

We used acoustic noise to probe the neural bases of auditory perceptual learning. Our 
results outline a simple mechanistic account of how initially nondescript, random sounds 
may acquire perceptual uniqueness. Through exposure, with or without focused 
attention, rapid plasticity creates sensory selectivity to subtle acoustic details within a 
specific noise pattern. Such details are localized in time, idiosyncratic, and only become 
salient after perceptual learning.  

This account clarifies the puzzling issue of what is learnt within a noise. Repeated noise is 
introspectively reported as containing short “rasping, clanking” perceptual events (Julesz, 
1963; Kaernbach, 1993). Behavioral data already suggested that those events differed 
across listeners for the same noise (Agus et al., 2010; Kaernbach, 1993, 1992), and thus 
could not be unambiguously traced back to acoustic landmarks. Our EEG data support 
this idea. Noise does contain short-term variations, which could be reflected by cortical 
activations (Barker et al., 2012; Steinmann and Gutschalk, 2012). However, if evoked 
potentials were due to a passive transmission of acoustic landmarks, all repeated snippets 
should have been equally signaled. Instead, we found that evoked potentials developed 
over time, correlated closely with behavior and were consistent with idiosyncratic 
perceptual learning.  

These memory-evoked potentials were interpreted as the superposition of standard N1-
P2 complexes. The N1-P2 complex has been associated to perceptual changes within 
constant-amplitude stimuli (Krumbholz et al., 2003), and it can be modulated by repeated 
exposure (Ross et al., 2013; Tremblay et al., 2014). Here, we demonstrated not only a 
modulation of N1-P2 on a much faster time scale, but also, the appearance of such an 
ERP where there was none before learning. As the planum temporale is one of the 
cortical sources of the N1-P2 complex (Näätänen and Picton, 1987), our results also 
advocates for a role of this secondary auditory structure in rapid plasticity and sensory 
memory. This is consistent with fMRI results using a noise-learning paradigm (Kumar et 
al., 2014) or, more classically, with mismatch-negativity studies (Berti et al., 2000; 
Näätänen et al., 2005).  

Computationally, the learning of discriminant patterns within noise could be achieved 
through established plasticity mechanisms such as spike-time dependent plasticity 
(STDP). In STDP models, repeated exposure to random afferent patterns almost 
inevitably leads to pattern-specific selectivity, at the single-neuron (Masquelier et al., 
2008) or small-network level (Klampfl and Maass, 2013). Experimentally, however, we 
recorded ERPs on scalp electrodes, which must involve relatively broad neural networks. 
So, was the code local or global? A possibility is that the scalp potentials were the 
outcome of a cascade of neural events, initially triggered by a sparse mnesic trace 
(Hromádka et al., 2008) and then amplified by perceptual awareness (Dehaene et al., 
2006). Indeed, perceptual awareness of a target tone embedded within a stochastic 
masker is associated with an N1-like ERP (Gutschalk et al., 2008). So, even if our 
experimental measure was at the network level, we argue that altogether the data and 
model argue for a highly local neural code for experience-dependent changes induced by 
the perceptual learning of noise.  

Functionally, sharp neural selectivity to past sensory experiences would help the auditory 
system distinguish previously heard sounds from truly novel ones. More generally, it 
could aid learning about frequently encountered natural sounds. In this respect, the 
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search for generic timbre dimensions useful for the identification of sound sources has 
proven surprisingly elusive (Agus et al., 2010; Leaver and Rauschecker, 2010; Patil et al., 
2012). The present results suggest that this may be because source identification is 
shaped as much by idiosyncratic experience as by acoustic properties.  

 

Experimental procedure  

A brief description of experimental procedures can be found in the Results section. A 
complete description can be found in the Supplemental Experimental Procedures.  
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Supplemental Information 

Participants 

Fourteen (n=14) naive volunteers participated in Experiment 1 (age: 18-30 years, 10 
females), and thirteen (n=13) different naive listeners participated in Experiment 2 (age: 
18-26 years, 10 females). In Experiment 2, one subject was discarded due to a large 
proportion of artifacts in the EEG signal (see below). All participants had self-reported 
normal hearing. They sat with eyes closed, and were asked to report within-trial 
repetitions of a noise snippet (Experiment 1, see below) or amplitude-modulated sections 
within running noise (Experiment 2, see below). They responded through response 
buttons placed in their right and left hands (Experiment 1) or with a single response 
button (Experiment 2). The experimental protocols were approved by the local ethical 
committee (Conseil d'Evaluation Ethique pour les Recherches en Santé, University Paris 
Descartes, Paris, France). 

 

Psychophysics  

We used variants of the “noise-memory” paradigm, introduced by Agus et al. (Agus et 
al., 2010).   

Experiment 1 (main experiment): Participants were asked to discriminate between 
sequences of continuously running white noise and sequences that contained seamless 
concatenations of the same, frozen noise snippet. There were three types of stimuli: (1) 
continuous running Noise (N) that contained no reoccurring patterns within or across 
trials, (2) Repeated Noises (RN) for which snippets of frozen noise were repeated within 
trials but not across trials and (3) Reference Repeated Noise (RefRN) for which 
fragments of frozen noise were repeated within and across trials. Noises were generated 
as sequences of normally distributed random numbers at a sample-rate of 44.1 kHz and a 
16-bit amplitude resolution. Repeated snippets were seamlessly concatenated: noise 
snippets could be truncated or concatenated without introducing acoustical 
discontinuities because white noise (uniquely) lacks sample-to-sample correlations. 
Sounds were presented with Matlab (MathWorks Inc. Natick, MA, USA), using the 
Psychophysics Toolbox extensions (Brainard, 1997) and were played through 
headphones (Sennheiser  HD 380 250 linear 2, Omega (Lexicon) sound-card) at 60dBA. 
There were two parts in the experiment, which differed only in terms of the details of the 
stimulus structure.  

Diffuse condition: In half of the experiment, we used noise stimuli similar to those of 
previous studies (Agus et al., 2010; Agus and Pressnitzer, 2013; Luo et al., 2013). N 
stimuli consisted of 1.5s of randomly generated white-noise (n1 and n2 in Figure 8-1A, 
left). Snippets of noise lasting 0.5s were generated in the same manner (targets T1, T2 
and T3 in Figure 8-1A, left), each presented 3 times in a continuous sequence, with no 
intervening silences, to form the RN and RefRN conditions. The RN and RefRN 
conditions differed only in that the same 0.5s noise target was used for all RefRN trials 
within a block (n=16) while a different target was generated and concatenated for each 
RN trial (n=16). The proportion of trials with and without within-trial repetitions were 
matched within a block: there were 32 N trials, 16 RN trials, and 16 RefRN trials. A 
temporal jitter of 2-3s was imposed between stimulus presentations to give participants 
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enough time to respond to the stimuli. Participants were asked to indicate the presence 
or absence of repetitions through lateralized hand responses (left vs. right). For each 
individual, the hand used to signify repetitions remained constant throughout the whole 
experiment, but which hand was used was counterbalanced across subjects. Each 
participant performed three (n=3) blocks with diffuse stimuli. Therefore, the participants 
were presented 3 RefRN each to learn. These RefRNs were different for all participants.  

Compact condition: In the other half of  Experiment 1, the types of condition (RefRN, 
RN and N) remained the same, but the stimuli's structure was changed to constrain the 
time window over which repetition detection and perceptual learning could occur: only 
0.2s of white noise (target epochs) was repeated within each 0.5s time window. In 
between repetitions, 0.3s of ever-changing white-noise fillers were concatenated (see 
Figure 8-1A, right). The advantage of this structure is that the repetition epoch is still 
0.5s, thus keeping the task relatively constant relative to the diffuse condition from the 
subject's point of view. However, repetitions were harder to detect for this compact 
structure as only two-fifths of each epoch were actually repeated. Based on pilot 
experiments (not shown) aimed at matching the difficulty of the tasks, the number of 
repetitions was increased from 3 to 5 for the compact stimuli, so the duration of all 
stimuli was increased from 1.5s to 2.5s. The other parameters (number of trials per 
condition and the number of blocks) were the same as for the diffuse stimuli. 

Experiment 2 (diverted attention): In Experiment 1, listeners were instructed to detect 
repetitions within noise. This could have encouraged them to pay more attention to the 
repeated stimuli compared to the unrepeated ones. In addition, over the course of the 
experiment, listeners could have learnt the temporal structure of trials and rhythmically 
modulated their attention accordingly. Thus, at least part of the MEPs could have been 
caused by attentional modulation of ongoing EEG activity, and not by memory per se. 
We tested this hypothesis in Experiment 2 by minimizing the attentional focus on target 
noise snippets. The repeated noise snippets had the same temporal structure as the RN 
or RefRN trials of the “compact” condition (Figure S 8-2A). However, they were now 
embedded within a continuous running noise, at random times, rather than presented in 
isolation. Thirteen new naive listeners were recruited, who had never been exposed to 
repeated noise, and who were not told about the presence of repeated noise in the 
experiment. Instead of a repetition-detection task, listeners were now instructed to report 
short bursts of amplitude-modulation (AmN) occurring randomly in the continuous 
noise. Such a distracting task minimized endogenous attention to RN or RefRN 
sequences. In addition, and unlike any previous variation of the noise-memory paradigm, 
there was not even a sound-onset cue to signal that a new “learnable” sequence had 
begun, thus removing endogenous and exogenous attentional cues altogether. RefRN 
and RN stimuli were not played over successive trials separated by silence, but were 
rather embedded in continuous running white noise, to obtain a constant-amplitude 
stimulus for 8mn (except for AmN sequences, see below). Finally, as RefRN, RN, and 
AmN were separated by a random time-jitter of 4 s to 7.5 s, listeners could hardly 
anticipate the occurrence of any of these specific events. 

AmN were constructed by multiplying 0.5s of the running white noise background with a 
40-Hz sinusoid at a modulation depth of 20%. AmN sequences represented a clear 
perceptual change and were easy to detect. The AmN sequences never occurred 
simultaneously to RN or RefRN sequences. Each participant performed 9 blocks 
containing one RefRN repeated 24 times and 24 different RN. In addition, there were 24 
AmN per block. Each block lasted about 8 minutes. Participants were allowed a break 
between blocks and at mid-block. They were asked to remain with eye-lids closed during 
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the presentation of sounds. Stimuli were played through headphones (Bayer DT 770 Pro, 
AudioFire Echo sound card) using the Psychophysics Toolbox (Brainard, 1997).  

 

Peripheral auditory model 

We ran the compact repeated stimuli (RN/RefRN) and non-repeated stimuli (N) through 
a peripheral auditory model. We used a standard Spectro-Temporal Excitation Pattern 
approach (STEP, [39]). First, the sounds were passed through a bandpass filter 
simulating outer and middle-ear pre-emphasis, transforming the flat-spectrum white 
noise into a broad bandpass spectrum. Cochlear frequency analysis was simulated by a 
bank of linear gammatone filters (N=128 filters). Temporal integration was applied on 
each filter output by applying half-wave rectification and a 100-Hz lowpass 2nd-order 
Butterworth filter. Finally, square-root compression was applied to the smoothed signals.  

 

Behavioral data analysis 

Experiment 1 (main experiment): Participants' performance was computed across 
experimental blocks (n=14 participants, 3 blocks diffuse and 3 blocks compact per 
participant, so 42 blocks total per condition). We computed the sensitivity index d' 
(Macmillan, 2005) for RefRN and RN independently to quantify the repetition-detection 
performance (see Equations 1 and 2): 

(1)  
d'RefRN= z HitRefRN( ) − z FAN( ) 

(2)  d'
RN
= z Hit

RN( ) − z FAN( )  
where z(x) corresponds to the z-score for proportion x; 
HitRefRN corresponds to the proportion of correct responses for RefRN trials,; 
HitRN corresponds to the proportion of correct responses for RN trials; FAN 
corresponds to the proportion of incorrect responses for N trials. 

Extreme performances (100%/0%) were adjusted to the equivalent of half of a single 
correct/incorrect response (Macmillan, 2005) to avoid infinite d' values. As a result, 
perfect performance on RefRN (or RN) led to a d' of 4.31 instead of +∞ (see Figure S 
8-1B). 

We first extracted reaction times (RTs) as the time lapse between stimulus offset and 
participant's response for Figure S 8-1A and Figure 8-1C. This allowed comparison 
between diffuse and compact conditions, which did not have the same duration. There 
was a negative correlation between d' and RT for RefRN trials (see Figure S 8-1B, 
Spearman's correlation: diffuse: rho=-0.31, p<0.05; compact: rho=-0.40, p<0.01; n=42 
blocks). Importantly, participants with close-to-perfect d' performance on RefRN (for 
certain blocks) still showed a sizable reduction in RTs (Figure S 8-1B) compared to N 
and RN conditions. Given this effect on both correctness (d') and rapidity (RTs), we 
decided to combine d' and RTs into a single value called “behavioral efficacy”. Similar to 
the Inverse Efficiency Score (IES (Townsend and Ashby, 1978)), our behavioral efficacy 
was defined as follows: 
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Intuitively, Behavioral efficacy is increased for high d', and if the RTs to the stimulus of 
interest were faster than the N baseline. Because efficacy requires positive RT values for 
the N / (Ref)RN ratio, we computed RTs to the onset of the stimuli for this analysis. 
Behavioral efficacy led to larger effects for RefRN compared to RN than d' alone, 
particularly in the diffuse case (Figure 8-1C).  

Finally, we also checked that differences in performance between RefRN and RN were 
truly due to perceptual learning of the RefRN, as by chance some RefRN may be 
particularly easy for the repetition-detection task. Differences between RefRN and RN in 
correctness and RTs emerged during a block (hence after learning) rather than being 
present at the beginning of the block (Figure S 8-1A). Statistical testing confirmed that 
no significant difference was present at the beginning of the block (3 first RN and 
RefRN trials, p>0.2, u-test), but there was a significant improvement in performance by 
the end (3 last RN and RefRN trials) in the compact case (diffuse: p=0.05, compact: 
p<0.05, u-test) and in RT in the diffuse case (p<0.005, u-test). 

 

Experiment 2 (diverted attention): participants were asked to detect AmN sounds. We 
computed the proportions of button presses within a [0, 1.5]s window following the 
onset of 0.5s-long AmN sequences. In addition we checked whether erroneous button 
presses would be associated with RefRN or RN sequences in a [0, 3]s window around 
RefRN or RN onsets. On average, 98% of AmN were correctly detected (SEM: 4%, 
N=12 participants). Only 0.3 and 0.4 % of RefRN and RN sounds were associated with 
button presses respectively (SEM: 0.1% and 0.2 %), showing that repeated noise snippets 
were not confounded with AmN. 

 

EEG analysis for Experiment 1 (main experiment) 

EEG recordings and pre-processing 

We used high-density electroencephalography (Electrical Geodesic Inc. system, n=65 
gel-electrodes referenced to Cz) to record neural activity while listeners performed the 
behavioral task. Impedances of scalp electrodes were kept below 15kΩ. Data were 
acquired at a sampling rate of 250 Hz. Continuous data were re-referenced off-line to the 
averaged mastoids for further analysis. EEG data was preprocessed and analyzed with 
Matlab (MathWorks Inc. Natick, MA, USA) using a combination of SPM8 (Functional 
Imaging Laboratory, Univ. College London, London, UK), EEGlab (Delorme and 
Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011) toolboxes. 

EEG data were high-pass filtered (at 0.1 Hz for Figure 8-2 analysis, at 1 Hz for target-
locked ERP (Figure 8-3) analysis in order to filter-out stimulus-locked slow potentials 
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observed in Figure 8-2, see also below) prior to epoching and low-pass filtered at 30 Hz 
on large epochs ([-10, 10]s around stimulus onset) with two-pass 5th-order Butterworth 
filters. A notch filter was also applied to reduce line-noise (50 Hz). Data were then 
epoched from -1 to 5s around sound onset and baseline-corrected ([-500, 0]ms).  

Electrode Selection 

Electrodes used in Evoked Related Potentials (ERPs) and time-frequency analyses (see 
Figure 8-2, Figure 8-3, Figure S 8-2 and Figure S 8-3) were selected based on the 
amplitude of the N1 potential measured at stimulus onset, which corresponds to a 
transition from silence to white noise (Experiment 1, Figure S 8-3A). We selected the 10 
channels (out of 65) showing the most reliable responses to stimulus onset without 
taking experimental conditions into considerations (t-values computed across 
participants and all trials: n=14 participants, n=329 to 384 trials per participant). The 
topography of t-values and the corresponding channels are shown in Figure S 8-3A and 
correspond to a classical centro-parietal cluster of electrodes (Picton, 2011). All analyses 
(Experiments 1 and 2) were performed for these auditory electrodes. Spurious trials for 
which the EEG signal passed an absolute threshold of 150µV on at least one of the 
selected electrodes were discarded from further analysis.  

ERP analysis 

Data were also de-noised using joint decorrelation (de Cheveigné and Parra, 2014) by 
means of the optimization of repeatability across trials. Joint decorrelation was applied, 
for compact and diffuse conditions separately, using the average ERPs over all trials 
(RefRN, RN and N trials) as a bias filter for a given participant. The components were 
sorted according to the power of their means over the total power. Thus, the first 
components (we selected here the first 10) were characterized by the strongest mean 
effect relative to overall variability. Data were then averaged by condition (RefRN, RN 
and N trials separately) and across blocks (n=42) for correct trials only. Statistical 
differences were assessed between RefRN (or RN) and N conditions using 
cluster/permutation statistics calculated between blocks on paired t-tests (see below).  
Significant clusters (Monte-Carlo p-value<0.05) are shown on time-plots as colored lines. 
ERPs for RefRN and RN in the compact case showed a sequence of negative potentials 
after each target. We thus further extracted the mean differences between RefRN vs. N 
and RN vs. N on 200ms windows right after each target (marked with black lines on 
Figure 8-2D). The corresponding bar graphs showing this post-target effect are displayed 
on Figure 8-2D inset and statistical differences were assessed trough paired t-tests across 
blocks (n=42, *: p<0.05, **: p<0.01, ***: p<0.005). We then computed ERPs time-
locked to repeated targets and hence during noise presentation. To do so, the EEG 
signal for all trials was averaged on [-100, 500]ms windows (baseline: [-100, 0]ms) around 
the central targets' onsets (2nd to 4th target) to avoid onset/offset effects (see Figure 
8-2D). Here, the EEG signal was high-passed above 1Hz instead of 0.1Hz prior to 
epoching to get rid of the slow sustained auditory potentials. Only the 2nd to 4th targets 
were used here to avoid contaminations from evoked potentials locked to sounds onset 
and offset. 

ERPs curves were smoothed over time (Gaussian kernel) for visual display only (not for 
statistical analysis, the values prior to smoothing were used) in Figure 8-2, Figure 8-3, 
Figure 8-4, Figure S 8-2 and Figure S 8-3 with a temporal window of 40 ms for stimulus-
locked ERPs and 20 ms for target-locked ERPs.  
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Time-frequency analysis 

We also examined whether the presence of repetitions translated into an increase in 
Inter-Trial Phase Coherency (ITPC) and Power Response in the time-frequency domain. 
To do so, the EEG signal was processed as previously described for ERPs but not de-
noised through the Joint Decorrelation algorithm. All trials were included (correct and 
incorrect responses) for the time-frequency analysis. Indeed, ITPC critically depends on 
the number of trials n (see Equation 7) and focusing on correct trials would have 
introduced confounds between conditions due to mere differences in the numbers of 
correct trials across conditions. The EEG signal for a given electrode was decomposed in 
the time-frequency domain using a Fast Fourier Transform (FFT) on 800 ms windows 
(with an FFT padding ratio of 4 and on [0, 10]Hz range). The decomposed signal can be 
expressed with a complex representation, where A(t,f) is the power of the EEG signal 
and φ(t,f) the phase of the signal s(t,f) at a given time (t) and frequency (f): 

(5) 
st, f = At, f e

i?
t, f( )  

Power response was computed by averaging across trials the absolute amplitude (At,f, see 
Equation 6) of the time-frequency decomposition at each time and frequency for a given 
block and stimulus condition. Power response was expressed as the natural logarithm of 
power over a baseline computed on a [-1000, -250] ms window. 
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The phase φt,f was similarly extracted at each time sample and frequency. It can be 
represented as a vector of length (modulus) 1 and angle (argument) φ on a trigonometric 
circle. ITPC describes how the phase of the EEG signal is reproducible across trials for a 
given condition (RefRN, RN or N) and at a given sample and a given frequency. ITPC 
was defined as the average vector length of phase vectors for a given frequency and 
sample across n trials. In practice, ITPC was computed using Euler's formula: 

(7) 
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When the signal is perfectly coherent across trials (i.e. same phase across trials whatever 
the phase value), ITPC equals 1. On the contrary, uniformly distributed phases across 
trials result in a close-to-zero ITPC for large n. ITPC is therefore restricted to the 
interval [0, 1]. ITPC was estimated per block for each experimental conditions separately. 
The number of trials used to estimate ITPC was equalized across trial types for a given 
block: the condition with the smallest number of trials in a given block was chosen as the 
reference and the same number of trials were randomly picked for the other, more 
numerous conditions. Figure 8-2A shows differences (t-value of the difference computed 
with paired t-tests) in ITPC between RefRN and N conditions for diffuse (left) and 
compact (right) stimuli across blocks (n=42). Statistical differences were controlled for 
multiple comparison using a cluster/permutation approach in the time-frequency domain 
(cluster threshold: p<0.1, Monte-Carlo p-value <0.05, n=1000 permutations). In both 
compact and diffuse conditions, a significant cluster emerged in the low-frequency range 
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([0.5, 5] Hz). We then focused on this frequency range to extract ITPC and EEG power 
(Figure 8-2B-C and Figure 8-4B-C).  We computed the average ITPC and Power 
Response on a [0.5, 5]Hz interval across blocks (n=42, see Figure 8-2B) to examine its 
temporal dynamics. As for the ERP analysis, statistical differences were assessed when 
comparing ITPC computed on RefRN (or RN) versus N using cluster/permutation 
statistics (cluster p-value threshold: 0.05, Monte-Carlo p-value: 0.05, n=1000 
permutations). Finally, ITPC (Figure 8-2B) and power response (Figure 8-2C) were 
extracted over the entire stimulus presentation window (diffuse: [0, 1500]ms; compact: 
[0, 2500]ms) so as to quantify overall differences between conditions (Figure 8-2B and 
Figure 8-2C, inset). Statistical differences were determined by the means of paired t-tests 
(n=42 blocks).  

Correlation between EEG and behavioral data 

We then examined whether the ITPC, EEG power or ERPs in response to repeated 
patterns in noise could account for the variance in behavioral performance more 
precisely than simply reflecting trial types. To do so, we looked into the correlation 
between these markers and behavioral performance within trial types. This analysis was 
restricted to the compact stimulus structure, as it led to stronger correlates for both 
phase and evoked potentials (see Figure 8-2). First, we extracted the ITPC per block for 
RefRN and RN separately ([0.5, 5]Hz on a [0, 2500]ms window for all trials and 
electrodes selected on N1 amplitude) and correlated it with the behavioral efficacy score 
(see Equations 3 and 4 and Figure 8-2). Correlation between these two variables were 
determined across blocks (n=42) using Pearson's method. Similarly, to explore the 
correlation between evoked potentials and behavioral efficacy, we extracted the 
amplitude of target-locked ERPs (Figure 8-3A) on a [100, 400]ms window. 

We then examined whether the EEG signal could differentiate between conditions at the 
single-trial level. For this purpose, we applied a logistic regression to the ERP amplitude 
over time. This method was not applied to ITPC since it cannot be estimated at the 
single-trial level. In practice, for the same subset of electrodes, the mean voltage 
amplitude was extracted for each trial from the target-locked ERP (Figure 8-3A, averaged 
on the 2nd to 4th target and over auditory electrodes) on 50 ms windows from -50 to 
450ms after target onset. This voltage was z-scored for each block separately across all 
conditions and trials and pooled across blocks. We then performed a logistic regression 
by contrasting trials with repeated noise snippets (RefRN or RN) against trials without 
repetition (N). The numbers of items per category were counter-balanced. The logistic 
regression coefficients were used to decode the trial category. To assess the reliability of 
this decoding, we computed for each time point the mean accuracy of our prediction 
when compared to the actual trial category. The chance level was determined using the 
same methodology: 1000 permutations were performed on trial categories and for each 
permutation and time-point, the corresponding accuracy was estimated. Shaded areas in 
Figure 8-3C shows the range of decoding values corresponding to 90% of these 
permutations. Therefore, all values above the shaded area are higher than 95% of 
random values (non-parametric equivalent to a one-tail p-value <0.05). 

 

EEG analysis for Experiment 2 (diverted attention) 

EEG recordings, pre-processing and electrode selection 



Chapter 3 - Learning 

267!

We used the same system and routine to record EEG (500Hz sampling rate instead of 
250Hz). Data pre-processing consisted of a high-pass filter above 0.2Hz and a low-pass 
filter below 7Hz (two-pass 5th-order Butterworth filters). The low-pass filter cut-off 
frequency was set at a low value to filter out the alpha rhythm ([8, 11]Hz). Indeed, since 
participants kept their eyes closed for minutes, the amount of alpha rhythm was high in 
some participants. A notch filter was also applied to reduce line-noise (50 Hz). Data were 
then epoched on a [-1, 3.5]s window around RefRN and RN onsets. Electrodes used in 
ERPs analysis were the same as in Experiment 1 to keep the parameters of our analysis 
as close as possible. However, comparing with Figure 8-3A, the topography of the 
evoked activity associated to RefRN and RN trials was slightly more frontal (Figure S 
8-2C and Figure S 8-3B). Spurious trials passing an absolute threshold of 150µV on 
broadband filtered data ([0.2, 30]Hz) and on at least one of the selected electrodes were 
discarded from further analysis.  

ERP analysis 

Data were here not de-noised using joint decorrelation (de Cheveigné and Parra, 2014). 
Indeed, de-noising aims at optimizing the repeatability across trials of the activity time-
locked to a particular event. Here, we precisely wanted to investigate whether there was 
indeed any repeatable activity in the EEG signal associated with snippets embedded in 
the background noise. To avoid unnecessary confounds, joint decorrelation was 
therefore not applied. EEG was thus simply averaged by condition (RefRN and RN  
trials separately) and across blocks (n=101 in 12 participants) on a [-100, 500]ms window 
around target onsets and after correcting for baseline activity ([-100, 0]ms). Blocks with 
at least 20 trials (after artifact rejection and out of 24, see above) per conditions were 
kept for this ERP analysis, leading to the rejection of 16 blocks. One participant (out of 
13) was discarded from all EEG analysis since the number of rejected trials was above 
this threshold in all blocks. Slow drifts were corrected by means of a linear de-trending 
over 240ms window (de Cheveigné and Parra, 2014). Here we used all targets (1st to 
5th). Indeed, targets were embedded in continuous white-noise and unlike Experiment 1, 
there were no evoked potentials before and after the train of targets (sound onset and 
offset potentials). All targets could be therefore included in this ERP analysis. Note that 
the high-pass filter cut-off was here lower (0.2Hz vs. 1Hz) for the same reason (no 
sustained potentials during targets presentation in Experiment 2). 

Statistical differences were assessed between RefRN (or RN) trials and baseline using 
cluster/permutation statistics calculated between blocks on paired t-tests. Significant 
clusters (Monte-Carlo p-value<0.05) are shown on time-plots as colored lines (Figure S 
8-2B, Figure S 8-3B). For Figure S 8-2B and Figure S 8-3B, ERPs curves were smoothed 
over time (Gaussian kernel) for display purposes only (for statistical analysis, the values 
prior to smoothing were used) with a temporal window of 20 ms, as in Figure 8-3. Scalp 
topographies in Figure S 8-2C and Figure S 8-3B, were obtained by extracting the t-
values of paired t-tests (RefRN vs. baseline or RN vs. baseline, across blocks) on a [200, 
300]ms post-target onset window in Figure S 8-3B and on 100ms windows centered 
around the peak of the ERP for the corresponding target and condition in Figure S 8-2C. 
The center of the time-window used in the topographies of Figure S 8-2C are displayed 
on each topography. Non-significant t-values (p>0.05, uncorrected) were set to 0. 

In order to compare MEPs obtained in RefRN and RN trials in both experiment, we 
computed the corresponding temporal profiles and scalp topographies (computed as in 
Figure 8-3A and Figure S 8-3B for experiment 1 and 2 respectively). We then normalized 
the amplitude of the MEPs across electrodes for scalp topographies (z-score across 
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sensors for each participant separately) and across time for temporal profiles (MEP 
normalized by the average amplitude on a [200, 300]ms window and baseline corrected 
between [-100, 0]ms). The corresponding normalized MEPs are shown in Figure S 8-3C. 
No significant difference were found between the RefRN and RN temporal profiles and 
topographical maps for both experiments. 

Overall, in this Experiment 2, clear ERPs were observed, which were remarkably similar 
to the ERPs obtained when listeners actively performed the repetition task, both in 
temporal profile and topography. Strikingly, significant ERPs were observed right from 
the first noise target presentation within RefRN sequences (Figure S 8-2B). Such an ERP 
therefore occurred without any amplitude discontinuity in the noise, at a totally 
unpredictable time for the listener, and without having to be actively reported. Even 
though the distracting task does not imply that listeners were not paying attention to 
other, task-irrelevant parts the noise, this could not explain the ERPs: without learning, 
the repeated sequences and their first epochs were rigorously impossible to locate. 
Therefore, the evoked-potential could not have been causally and solely induced by 
attentional modulation.  

 

Simulation 

We hypothesized that, once learnt, noise snippets would be processed in such way that 
they would trigger evoked potentials, the so-called Memory-Evoked Potentials (MEPs). 
In our hypothesis, MEPs would account for all neural correlates of perceptual learning 
described earlier (ERPs and ITPC). We tested the validity of this statement with 
simulated data reproducing the experimental conditions of Experiment 1. In our simple 
model, when a snippet of noise is repeated, rapid neural plasticity would introduce a 
selectivity for a given pattern within it. This pattern in noise would thereafter elicit 
auditory potentials. Here we chose a N1-P2 complex as the evoked potential (see 
Discussion). In order to examine whether such evoked potentials could account for both 
our ERP and ITCP results, we implemented this simple model using synthetic EEG data.  

Background EEG activity was synthesized in order to mimic human EEG spectrum at 
rest (adapted from (Yeung et al., 2007)). In short, more than 200 sinusoids were summed 
with frequencies ranging from 0 to 30Hz and amplitude matching a power profile similar 
to human EEG (see gray curve in Figure 8-4A). This background EEG was then 
perturbed by the presentation of noise stimuli following the compact and diffuse 
stimulus structures (16 N, 16 RefRN and 16 RN per simulation run, equivalent to an 
experimental block). Our model being an additive model, we simply added evoked 
potentials to the background EEG. First, stimulus-locked potentials were added for all 
stimuli (RefRN, RN and N). These potentials were composed of canonical P1-N1-P2 
complexes (see Equation 8) injected at stimulus onset and offset along with a sustained 
potential (SustPot, see Equation 9) in between, in order to mimic EEG response to 
sounds (see Figure 8-2D). They were modeled as follows: 

(8)  
P1/N1/P2=

exp −a x − t
P1( )

2( )
b

− exp −c x − t
N1( )

2( )+
exp −d x − t

P2( )
2( )

e  
where x ∈ [0, 500]ms, tP1=50ms, tN1=180ms, tP2=200ms, a=10000, b=5, c=200, 
d=106, e=1.8. 
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 (9)  

SustPot
x∈ 0.2, t1max[ ] s =

1

log x +t1( )

SustPot
x∈ t1max, t2max[ ] s =

a

1+exp −b x − t2( )( )
+SustPot

t1max

 
where t2max=1500ms, t1max=400ms, t1=1400ms, t2=200ms, a=1.4, b=30 for the 
diffuse case; t2max=2500ms, t1max=400ms, t1=1400ms, t2=200ms, a=1.4, b=30 for 
the compact case. 

The resultant is plotted in blue in Figure 8-4A (diffuse case). Second, memory-locked 
potentials were injected for RefRN and RN trials for each repeated target after its first 
presentation (case of a perfect observer and learner). For RN, this corresponds to the 
second target of every trial, for RefRN to the second target of the first trial within a given 
simulation run. These MEPs were modeled as a N1-P2 complex: 

(10)  
N1/P2= exp −c x − t

N1( )
2( )+

exp −d x − t
P2( )

2( )
e  

where x ∈ [0, 500]ms, tN1=180ms, tP2=200ms, c=200, d=106, e=1.8. 

The resultant is plotted in red in Figure 8-4A for three repetitions of a learnt target. 
Importantly, for a given target, the onset of the N1/P2 complex was randomly chosen 
(uniform distribution) over the entire length of the target (0.2s for compact, 0.5s for 
diffuse conditions) with respect to target onset. However, this timing was held constant 
for a particular target as illustrated in Figure 8-4A (right). As a consequence, MEPs were 
injected at a fixed interval (0.5s) during a given noise containing repeated snippets. In 
addition, the timing of these MEPs would differ from trial to trial in the RN type but not 
for RefRN trials within a simulation run (block). Finally, in the diffuse case and across 
blocks, MEP-onsets would spread over half a second (length of a repeated target) while 
they would be constrained to 200ms windows in the compact case.  

Once our synthetic data set had been simulated (42 simulation runs equivalent to 
experimental blocks in Experiment 1), we performed the exact same analysis as described 
above for ERPs, Power Response and IPTC analysis to the exception that here only one 
EEG channel was synthesized. Statistical analyses were also kept identical. Results are 
shown in Figure 8-4. Note that by considering an ideal observer and learner, our model 
did not feature any randomness except from ongoing background EEG and onset of 
MEPs. In particular, our model did not implement imperfect performance in repetition-
detection and learning. Yet, all experimental results were replicated. One aspect of the 
model, replicating the data but perhaps less intuitively obvious, is the lack of effect in 
average power responses (Figure 8-2C), combined with a significant correlation between 
power and BE (Figure 8-3B). In an additive model, memory-evoked potentials should be 
reflected in EEG power. Manipulating the Signal-to-Noise Ratio in our model confirmed 
significant effects in power, but at a higher signal-to-noise ratio than the one extracted 
from our empirical data set. 

Indeed, the relative amplitude of the N1/P2 complex compared to the amplitude of the 
background EEG signal (Signal-to-Noise Ratio, SNR) appeared to substantially influence 
the emergence of phase coherence, power response or ERPs associated to RefRN and 
RN (see Figure S 8-4). For our simulated data set as analyzed in Figure 8-4, we tried to 
remain as close as possible to our EEG recordings. To do so we chose the SNR of the 
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simulated data set that matched as closely as possible the SNR of our empirical data set. 
To estimate our empirical SNR, we extracted the magnitude of the difference between 
RefRN and N conditions in the target-locked ERPs (Figure 8-3A). More precisely, we 
extracted the t-value of the difference between RefRN and N target-locked ERPs 
(compact stimuli, ERPs averaged over a [100, 400]ms window) in our EEG data set by 
means of a paired t-test across blocks. Then, we estimated the SNR of simulated data 
sets (42 simulation runs per data set) at different SNR levels (20 iterations per SNR level, 
SNR from 0.1 (low) to 2 (high)). For each simulated data set, the magnitude of the ERP 
effect was estimated similarly to the EEG data as explained above. Figure S 8-4A (right) 
shows the t-values computed at the different SNR levels (orange curve) as well as the 
empirical t-value (blue dashed line). A SNR of 1.8 (black vertical line of Figure S 8-4) 
appeared to match the empirical SNR best and was used in Figure 8-4.  

Following the same principle, we also examined the influence of the SNR on ITPC and 
power response effects in our simulation. To do so, we computed the effect sizes of the 
differences between RefRN vs. N (orange), RN vs. N (blue) and RefRN vs. RN (green) 
conditions in the ITPC, ERPs and power response analysis at different SNR (Figure S 
8-1, 42 simulation runs per iteration, 20 iterations per SNR level). For ERPs, we 
replicated the operations described in the previous paragraph (in the diffuse case, the 
ERP amplitude was extracted on a [500, 1500]ms window after stimulus onset). For 
ITPC and Power Response, we extracted the averaged ITPC/Power Response for low 
frequencies ([0.5, 5]Hz) and over the entire stimulus presentation window (diffuse: [0, 
1500]ms, compact: [0, 2500]ms) for each block and trial type. We then computed the t-
values corresponding to the comparisons (paired t-tests across 42 simulation runs) 
between RefRN vs. N, RN vs. N and RefRN vs. RN conditions for each SNR (20 t-
values for each SNR level). Effects in EEG power emerged at high SNR (SNR>3, 
p<0.05) in accordance with the additive nature of our model. 

 

Statistics 

Non-parametric statistics were used (Wilcoxon rank-test (u-test) to compare conditions, 
Friedman test for analyses of variance, and Spearman's method for correlations) when 
data were not normally distributed; parametric statistics were used otherwise (Student t-
test to compare conditions, ANOVAs for analyses of variance, Pearson's method for 
correlations). Normality was checked by means of a Kolmogorov-Smirnov test.  

To correct for multiple comparisons, we used a cluster-permutation statistics approach 
(Maris and Oostenveld, 2007). This approach aims at dealing with the issue of multiple 
comparisons in a principled manner. Each cluster was constituted by the samples (in a 
1D (time-plots) or 2D (time-frequency) space) that consecutively passed a specified 
threshold (here, p<0.05 except for Figure 8-2A time-frequency cluster/permutation: 
p<0.1). The cluster statistics were chosen as the sum of the t-values of all the samples 
within the cluster. Then, we compared the cluster statistics of each cluster with the 
maximum cluster statistics of 1000 random permutations. We displayed on the Figure 
8-2 to Figure 8-4 (colored lines on time-plots, unmasked sample on time-frequency plots) 
the significant clusters that passed a threshold Monte-Carlo p-value of 0.05.  
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Supplemental Figures  

!

Figure S 8-1 Further behavioral characteristics of perceptual learning 

A: Percent correct (bottom) and reaction times (RTs, top) in repetition detection for both 
stimulus conditions (left: diffuse, right: compact structures), computed at the beginning (first 3 
trials) and end (last 3 trials) of each block (n=42). Bars denote standard errors of the mean (SEM) 
across blocks. The p-values for the comparison between RefRN and RN are paired u-tests. RTs 
were computed from stimulus offset, to better compare compact and diffuse conditions that had 
different stimulus durations The difference between RN and RefRN only arises at the end of the 
block, after learning. B: Correlation between median reaction times (RTs) and d' computed across 
blocks (n=42 for compact (squares) and diffuse stimuli (circles)). Here, RTs were computed from 
stimuli onset. Stimuli offsets are shown with black dotted lines (diffuse: 1.5s, compact: 2.5s). 
Correlation was assessed by means of the Spearman's rank correlation method for RefRN 
(orange) and RN (blue) and for each condition separately. Corresponding Spearman's rho and 
significance levels (ns: p>0.05, *: p<0.05; **: p<0.01) are displayed. Note the negative correlation 
between median RT and performances, for RefRN only. 
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Figure S 8-2 Evoked potentials with diverted attention and continuous stimulation 

A: Stimuli and experimental design for the experiment with diverted attention. Here, RefRN and 
RN sequences (same structure as “compact” stimuli in the main experiment) were embedded at 
random times within a continuous running white noise, with no discontinuity in either amplitude 
or short-term statistics. Participants were not informed about RefRN nor RN. Rather, they were 
instructed to detect short bursts of amplitude modulation imposed on the running noise (AmN, 
modulation frequency: 40Hz, depth: 20%, duration: 0.5s). B: ERP time-courses (top) computed 
for each target position (1st to 5th) for RefRN and RN trials (n=101 blocks in 12 participants). 
Shaded areas around curves indicate standard errors of the mean (SEM) across blocks (n=101). 
Colored lines indicate significant clusters when comparing RefRN (orange) and RN (blue) with 
baseline (0), or RefRN with RN (gray) (Monte-Carlo p-value<0.05, cluster-permutation). C: 
Topographical maps of the differences between RefRN (or RN) and baseline (0) were expressed 
as t-values (paired t-tests, 100ms windows centered around the negative peak of the ERP as 
computed above, the center of the window is detailed for each map). Non-significant t-values 
(p>0.05, uncorrected) were set to white. 
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Figure S 8-3: Further characteristics of memory-evoked potentials and comparison with standard 
auditory evoked-potentials 

A: Auditory Evoked Potentials (AEPs, left) locked on stimulus onset and computed across 
subjects (n=14) for all trials in the main experiment. A clear N1 is observed at around 90ms. The 
black vertical line shows the time window used to extract N1 amplitude (72-96ms). The time 
curve was smoothed using a Gaussian kernel of 40ms for display purposes only. Right: 
Topography of N1 amplitude. A large centro-parietal negativity is observed, typical of auditory 
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responses. Gray circles show the electrodes with the most consistent N1 (10 lowest t-values 
computed with two-sided t-tests comparing the ERP amplitude between [72, 96]ms and a [-50, 
0]ms baseline across participants). Those electrodes were defined as auditory channels and used 
for the analyses of Figure 8-2, Figure 8-3, Figure S 8-2, Figure S 8-3. B: In the diverted attention 
experiment, ERPs (left) were averaged across repetitions ([-100, 500]ms window, 1st to 5th 
within-trial target occurrences) and blocks (n=101 blocks in 12 participants, see Supp. 
Procedures). Note the similarity with Figure 8-3. Colored lines indicate significant clusters when 
comparing RefRN (orange) and RN (blue) with baseline (0), or RefRN with RN (gray) (Monte-
Carlo p-value<0.05, cluster-permutation). Right: Topographical maps of the differences between 
RefRN (or RN) and baseline (0) expressed as t-values (paired t-tests on averaged ERP amplitude 
extracted over a [200, 300]ms window). Non-significant t-values (p>0.05, uncorrected) were set 
to white. C: The amplitude of MEP was normalized for each condition and experiment 
independently. After normalization, the time-course and scalp topographies of MEPs were 
identical (no significant difference) for RefRN and RN, suggesting identical underlying neural 
mechanisms. Shaded-areas (A-B) and dashed lines (C) show standard errors of the mean (SEM) 
across blocks (B-C, n=101) or participants (A, n=14). 
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Figure S 8-4 Effect sizes for ERP, ITPC and Power Response in simulated data at different 
signal-to-noise ratios 

Effect sizes were computed on simulated data, as described in the Supp. Procedures, but for 
different levels of signal-to-noise ratio (SNR, n=20 iterations for each SNR). The left column 
shows the results for the diffuse condition and the right column for the compact condition. The 
t-values were computed by means of a paired t-test across simulated runs (n=42 for each 
iteration) between RefRN and N conditions (orange), RN and N (blue) and RefRN and RN 
(green). The gray shaded areas show the non-significant interval of t-values (p>0.05, n=42 
simulation runs). The black vertical solid line shows the SNR used in Figure 8-4 corresponding to 
the ERP effect size extracted from our empirical data (blue dashed line on top right panel). Note 
the absence of ERP effect in the diffuse case even for large SNR. ITPC effects were significant at 
lower SNR rate than Power Response effects (e.g. for SNR=1.8, significant effect for ITPC but 
not power, see also Figure 8-4). Error-bars denote the standard-error of the mean (SEM) 
computed across 20 simulated iterations for each SNR level. 
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Summary 

!

There is extensive evidence that sleep promotes the consolidation of existing memories. 
Yet, whether new memory representations can be formed during sleep remains unclear. 
Here, to track the formation of novel memories during human sleep, we used 
electroencephalographic (EEG) markers of perceptual learning for acoustic noise. In 
REM-sleep and light NREM-sleep, repeated exposure to novel noises led to EEG 
markers of perceptual learning. In addition, the learning occurring in REM-sleep, and 
especially tonic REM-sleep, led to subsequent performance improvements in 
wakefulness. In deep NREM-sleep, the effects of repeated exposure were strikingly 
different: EEG indexes of learning observed in lighter NREM stages were absent and 
subsequent perceptual learning in wakefulness was specifically impaired for those sounds 
heard during NREM-sleep. This suppressive effect was associated with slow-waves. 
Overall, new memory traces can be either formed or suppressed depending on sleep 
stage, suggesting an interplay between synaptic potentiation and down-scaling during 
sleep. 
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Introduction 

Humans typically spend a third of their time sleeping (Kleitman, 1987). Taking advantage 
of this apparent idle time to learn new information has turned from an ancient fantasy 
(Huxley, 1932) to a scientific quest (Bruce et al., 1970). An abundant literature has already 
demonstrated the importance of sleep in the consolidation of existing memories 
(Diekelmann and Born, 2010; P Peigneux et al., 2001; Rasch and Born, 2013; Walker and 
Stickgold, 2006). However, the learning of novel information during sleep has proven 
difficult to establish, even when such information would be easily learnt during 
wakefulness (Bruce et al., 1970; Emmons and Simon, 1956; Wood et al., 1992). Indeed, 
successful demonstrations tended to be restricted to hippocampal-independent forms of 
learning, such as fear- or delay-conditioning (Beh and Barratt, 1965; Fifer et al., 2010; 
Ikeda and Morotomi, 1996; Maho and Hennevin, 2002), which are rudimentary enough 
to be implemented by basic neural networks (Carew and Sahley, 1986). Attempts to 
probe more complex forms of sleep-learning, e.g. situations requiring hippocampal 
structures, have often led to null results (Hennevin et al., 2007; Simon and Emmons, 
1956; Wood et al., 1992).  

A common interpretation is that the difficulty to learn novel information during sleep is 
due to a blockade of sensory information at the thalamic level (McCormick and Bal, 
1994). Learning, as a consequence, would be prevented by the unavailability of sensory 
information in structures fed by thalamic relays. Indeed, the few notable exceptions 
having demonstrated hippocampus-dependent (Arzi et al., 2014, 2012)earning in sleep 
have bypassed thalamic relays. These studies relied either on olfactive information that 
does not transit through the thalamus (Arzi et al., 2014, 2012), or on endogenously 
generated activations (de Lavilléon et al., 2015), or on direct stimulations of 
hippocampal cells (Maho and Bloch, 1992).  

However, while sensory information can be indeed blocked at the thalamic level in Non-
Rapid Eye-Movement (NREM) sleep, this blockade seems restricted to the co-
occurrence of sleep-spindles or periods of neuronal silencing (Schabus et al., 2012). In 
fact, sensory encoding in primary cortices turns out to be remarkably preserved during 
NREM and REM-sleep (Issa and Wang, 2008; Y. Nir et al., 2013). From a functional 
perspective, many aspects of sensory processing remain conserved in the sleeping brain: 
sounds deviating from standards can be detected (Sculthorpe et al., 2009; Strauss et al., 
2015) and even higher-level information such as the semantic meaning of words can be 
extracted (Brualla et al., 1998; Ibanez et al., 2006). Recently, we found that not only can 
sensory information be processed up to the semantic level, but also that this information 
can be routed to non-sensory areas dealing with motor preparation (Kouider et al., 2014). 

If sensory information can reach the cortex and if it can be successfully processed at 
various levels of representation during sleep, why is this information not remembered? 
One potential explanation could be that memory systems are mainly engaged in 
consolidation of existing memories, and thus decoupled from the thalamocortical loops 
conveying external information (Diekelmann and Born, 2010). Beside the impairment of 
memory at the systemic level, it has also been hypothesized that sleep, and especially 
NREM-sleep, was unfavorable to learning at the synaptic level (Tononi and Cirelli, 2014). 
Specifically, the decrease of Acetylcholine (ACh) during NREM-sleep would impair 
synaptic plasticity (Pawlak, 2010; Seol et al., 2007). One crucial prediction of this 
hypothesis is that low-level of ACh would prevent learning in NREM-sleep, even when 
the processing of sensory information is preserved. In REM-sleep, which is characterized 
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by higher levels of ACh (Jones, 2005), learning may be possible whenever sensory 
disconnection can be overcome. 

To address all of these open questions, we investigated the perceptual learning of 
acoustic noise (Agus et al., 2010) during different sleep stages. The learning of noise is a 
challenging task: participants have to detect seamlessly embedded repeating patterns 
within fully random sounds (Figure 9-1). Nevertheless, during wakefulness, performance 
increases with exposure to a particular pattern, reflecting a powerful form of perceptual 
learning (Agus et al., 2010; Agus and Pressnitzer, 2013). The paradigm has several useful 
characteristics for the present purposes. First, the noise patterns to be learnt are 
guaranteed to have never been heard before, thus targeting the formation of novel 
memories rather than consolidation. Second, this form of learning is unsupervised and 
was observed even in the absence of directed attention (Andrillon et al., 2015a; Luo et al., 
2013), so it has a chance to appear during sleep. Third, EEG markers of learning, closely 
correlated to behavior, have been found during wakefulness (Andrillon et al., 2015a), so 
learning can be assessed during sleep. Finally, and importantly, this form of complex 
learning reflects hippocampal-dependent memory, as it recruits a network including 
hippocampal structures together with sensory cortices (Kumar et al., 2014). 

By using the EEG markers during sleep, we show that sleepers learn novel noises in light 
NREM sleep and REM sleep. Moreover, the noises learnt during REM-sleep were better 
discriminated upon subsequent wakefulness. Strikingly, we show that the exact same 
exposure during deep NREM sleep had opposite effects: upon subsequent awakening, 
the noises heard during NREM sleep were considerably more difficult to learn than 
novel noises. We could track the plasticity processes to specific sleep events: the positive 
effect of learning during REM-sleep was driven by phases of tonic REM-sleep (i.e. 
without Rapid Eye-Movements), while the negative effect of NREM-sleep was driven by 
the amount of slow-waves. These results are consistent with the notion that REM-sleep 
and lighter stages of NREM-sleep are accompanied by synaptic potentiation, while deep 
NREM sleep causes synaptic down-scaling.  
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Results 

The noise-memory paradigm 

In this study we used a variant of the noise-memory paradigm (Agus et al., 2010). Our 
protocol was divided in three separate phases (Figure 9-1). In the “wake-learning” phase, 
participants (N = 20) were asked to discriminate acoustic white noise (N stimuli) from 
white noise with embedded repeated patterns, those patterns being simply “frozen” 
snippets of white noise (RefRN and RN stimuli). Each participant was exposed to 5 
different targets that repeated within trials and also reoccurred across trials (RefRN 
targets), along targets that only repeated within trials (RN targets). A higher target-
detection performance for RefRN (within and across-trials repetitions) relative to RN 
(within-trial repetitions only) indicates perceptual learning (Agus et al., 2010; Agus and 
Pressnitzer, 2013; Andrillon et al., 2015a). In the “sleep-learning” phase, participants 
were authorized to sleep. When sleeping, they were exposed to similarly structured albeit 
longer stimuli (see Methods). 
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Figure 9-1 Noise memory paradigm in wake and sleep  

(a-b) Stimuli and expected results. Participants (N = 20) were instructed to discriminate between 
trials made of running white noise (N) and trials that contained a repeated pattern, made by the 
seamless concatenation of short (0.2s) noise segments (targets) interleaved with 0.3s fresh white-
noise fillers. Most targets were presented in one trial and one trial only (RN: within-trial 
repetition). Unknown to listeners, a small number of targets was recurrently presented across 
trials (RefRN, within and across-trial repetition). RefRN and RN had identical structure. They 
differed only regarding to the amount of exposure to the target. Participants' ability to 
discriminate RN from N trials evidences short-term memory for the novel repeated target. A 
better discrimination for RefRN compared to RN trials additionally indicates longer-term 
memory processes (panel a, right). In panel b, the left column shows an example of successive 
trial conditions and the right column shows expected responses. “YES” and “NO” responses 
were balanced across a block. (c) Full-night recordings. Each recording session started with a 
“wake-learning” phase, during which participants were instructed to remain awake and 
discriminate between trials with or without a repeating pattern. 5 unique, randomly generated 
RefRN were used in the “wake-learning” phase for each participant. The “sleep-learning” phase 
started during the night. Participants were laying in a bed while being continuously exposed to 
white-noise stimuli. They were instructed to continue performing the discrimination when awake 
but were allowed to sleep. Different sets of unique RefRN targets were used depending on 
participants' vigilance states (wake, Non-Rapid Eye-Movement (NREM) and REM sleep). The 
vigilance state was determined online by the experimenter. NREM and REM stimuli were 
constructed identically as in the “wake-learning” phase, except for their duration (6s instead of 
3.5s, see Methods). Finally, participants were tested upon awakening (“Memory-Test”) on all 
RefRN targets heard during the wake-learning and sleep-learning phases, along with 5 novel 
RefRN. Each RefRN target was played in a separate block along new RN and N trials. 

Importantly, different sets of RefRN targets were selected depending on the participant’s 
sleep stages: 5 different RefRN targets were used for NREM sleep, and another 5 
different RefRN targets were used for REM sleep. Finally, upon awakening after their 
full-night sleep, participants underwent a “memory-test” during which they were 
presented with all types of RefRN targets: the 5 targets heard during wake, the 5 targets 
heard during NREM-sleep, and the 5 targets heard during REM-sleep. We also included 
5 novel RefRN targets in the memory test, to establish the baseline for perceptual 
learning during the block.  

This paradigm allowed us examining two intertwined questions: (i) Are participants able 
to detect the repetition of a given noise snippet (RN vs. N contrast) even during sleep? 
(ii) Is recurrent exposure facilitating such detection (RefRN vs. RN contrast)? The first 
contrast quantifies short-term memory processes (within-trial, time-scale of a few 
seconds) while the second contrast probes longer-term memory processes (across-trials, 
time-scale of minutes or hours; Figure 9-1a). The RefRN vs. N contrast reflects the joint 
effects of all memory processes.  

 

Behavioral and EEG evidence for perceptual learning in wakefulness 

We first focused on the “wake-learning” phase. Behaviorally, participants reliably 
detected the presence of repeated noise targets in both the RefRN and the RN 
conditions as revealed by the sensitivity index d' (Macmillan, 2005). Importantly, RefRN 
were associated with an increased sensitivity (d') and decreased reaction-times (RTs) 
compared to RN trials, despite identical acoustical structures (Figure 9-2a).  
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Figure 9-2 Behavioral and electrophysiological indexes of perceptual learning in wakefulness 

(a) Behavioral indexes of memory for noise. Participants could discriminate RN and RefRN from 
noise as indicated by the positive sensitivity (d', top). In addition, performance was better for 
RefRN compared to RN: d' was increased while reaction times (RTs, middle) was decreased for 
RefRN. We combined these two variables into a Behavioral Efficiency (BE, bottom) index. 
Error-bars show the SEM across participants (N = 20). Statistical significance was assessed by 
means of paired t-tests (d', BE) or u-tests (RT) across participants. Stars atop bars refer to the 
comparison between the corresponding condition (RefRN or RN) and 0 (d') while stars between 
bars refer to the RefRN vs. RN comparison (here and below: p < 0.005: ***; p < 0.01: **; p < 
0.05: *). (b) Target-locked Event-Related Potentials (ERPs). Averaged EEG activity time-locked 
to the position of targets onset for RefRN (orange), RN (blue) and N (gray) trials during the 
“wake-learning” phase. Despite the absence of any obvious discontinuity in the acoustic signal, 
clear evoked-potentials were observed for RefRN and RN targets compared to the N baseline. 
Shaded areas denote the SEM across participants (N = 20). Horizontal bars show significant 
cluster for the RefRN vs. N (orange) and RN vs. N (blue) comparisons (pcluster<0.005). The inset 
shows the scalp topographies of t-values corresponding to the RefRN vs. N cluster. White dots 
show the central electrodes used in panels b-d. (c) Stimulus-locked Inter-Trial Phase Coherence 
(ITPC). An increase in ITPC around the target presentation rate ([1.5, 3.5] Hz) was observed for 
RefRN and RN trials compared to N, mostly toward the end of the stimulus presentation 
window trials (horizontal bars: significant clusters as in panel b, pcluster<0.05). As in panel b, 
shaded areas denote SEM across participants. (d) Averaging ITPC over significant clusters (left; 
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orange: RefRN vs. RN; blue: RN vs. N) revealed higher ITPC values for RefRN values compared 
to RN (one-tailed paired t-test). ITPC was correlated with BE (right, Pearson's correlation 
coefficients displayed on the correlation plot). Error-bars denote the SEM across participants. 

 

We combined these two variables into a Behavioral Efficiency (BE, see Methods) index 
(Andrillon et al., 2015a). Overall, behavioral results in the wake-learning phase confirm 
clear perceptual learning for repeated white-noise snippets. 

EEG responses to repeated targets confirmed previous findings (Andrillon et al., 2015a). 
We observed event-related potentials (ERPs) locked to the to repeated noise snippets 
(Figure 9-2b, RefRN vs. RN cluster: [200, 400] ms post-target, RN vs. N: [200, 410] ms, 
pcluster<0.005). These ERPs arose within ongoing noise, in the absence of any obvious 
acoustic landmark (Figure S 9-1), but they still resembled standard event-related auditory 
evoked potentials (AEPs; Figure S 9-4a; (Picton, 2011)). As the event triggering the 
potential emerges through learning, we term them Memory-Evoked Potentials (MEPs; 
(Andrillon et al., 2015a)). Learning and the MEPs also translated into an increase in 
Inter-Trial Phase Coherency (ITPC; (Luo et al., 2013)). The ITPC increase was observed 
around the target presentation rate (2Hz, Figure S 9-2a) and was maximal in central 
electrodes (Figure S 9-2b). Focusing on this ITPC region of interest ([1.5, 3.5] Hz), we 
observed an increase in ITPC for RefRN and RN compared to N trials (Figure 9-2c, RN 
vs. N: [2.2, 3.1] s post stimulus-onset, RefRN vs. N cluster: [2.3, 3.8] s, both pclusters<0.05). 
Averaging ITPC over the clusters showed greater values for RefRN compared to RN 
(Figure 9-2d, one-tailed paired t-test: p < 0.05). In addition, ITPC correlated well with 
the behavioral index of learning BE (Figure 9-2d, Pearson's correlation coefficient: r = 
0.55, p < 0.001).  

 

Modulation of sleep rhythms by repeated exposure to noise patterns 

When the noise patterns are presented during sleep, a first question is whether sleepers 
maintain the ability to discriminate between the different stimulus types. As they were 
not providing behavioral responses during sleep, we relied on the analysis of brain 
responses and EEG markers of learning.  

We first investigated whether stimulus-locked responses differed across conditions. As 
depicted in Figure 9-3, sound onsets produced evoked potentials typical of the sleep 
stage investigated. In NREM2 and NREM3 stages, sound onsets were followed by 
evoked K-complexes and sleep spindles, the hallmarks of NREM-sleep (Loomis et al., 
1938, 1935). As these components were evoked by sound onsets relative to silence, and 
thus before any target presentation, equivalent responses were observed across all 
stimulus conditions. In contrast, towards the end of the stimulus presentation window, 
we observed condition-specific modulations. In NREM2, RefRN trials were 
characterized by a decrease in power for slow-waves (< 5 Hz) and sleep-spindles ([11, 16] 
Hz) (Figure 9-3b). These modulations were not accompanied by signs of awakening 
(increase within the α ([8, 10] Hz) or β ([20, 40] Hz) ranges). This could be interpreted as 
a condition-dependent and network-specific modulation of sleep depth. 



Chapter 3 - Learning 

285!

 

Figure 9-3 Brain responses to acoustic noise during sleep 

(a) Time-frequency decomposition of the EEG signal recorded on Cz in response to RefRN 
(left), RN (middle) and N (right) trials in NREM2 (top), NREM3 (middle) and REM (bottom) 
sleep stages. Power is time-locked to stimulus onsets, averaged across participants (N = 20) and 
expressed in dB compared to a pre-stimulus baseline (SI). Magenta contours correspond to 
significant modulations compared to baseline activity (cluster-permutation, pcluster<0.05). (b) 
Average activity in time-frequency bands typically associated to NREM (δ-power, < 5 Hz 
(corresponding to evoked KC: K-complexes,); σ-power, [11, 16] Hz (corresponding to Sp.: sleep-
spindles)) and REM rhythms (θ: [4, 8] Hz). The power-responses were averaged over these 
frequency bands for NREM2 (top: σ, middle: δ) and REM-sleep (bottom: θ). Between-conditions 
differences are illustrated with horizontal bars (cluster-permutation test, pcluster<0.05, orange: 
RefRN vs. N, blue: RN vs. N). NREM2 was characterized by a decrease in σ and δ power, REM 
by an increase in θ power. The scalp distribution of the t-values of the RefRN vs. N comparison 
when averaging the power in the corresponding frequency band and over a [0.8, 5.5] s window 
are displayed on the side. The gray contour shows the scalp distribution of the MEPs observed in 
wakefulness (Figure 9-2b). Note the overlap between the scalp distributions of the effects 
observed in sleep. 

Supporting this interpretation is the central scalp distribution of the effect (Figure 9-3b), 
which differs from the typical distribution of slow-wave and sleep-spindle power (Figure 
S 9-4c). Linear regressions (Figure S 9-3) across RefRN, RN and N showed that the 
effect was condition specific, with a gradual decrease (RefRN < RN < N) of sleep-
spindles (β = 0.38, p < 0.05) and slow-waves power (β = 0.24, p = 0.056). In NREM3, 
all of these effects vanished. In particular, linear regressions in NREM3 were not 
significant. Comparisons between the two sleep states lead to significant differences 
between the two models (χ-test, p < 0.001). Thus, repeated exposure to a noise snippet 
seemed to locally lighten sleep in NREM2, but had no obvious effect on sleep markers in 
NREM3. 
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In REM-sleep, sounds robustly modulated the EEG signal within the θ band ([4, 8] Hz), 
which is characteristic of REM sleep ((Buzsáki, 2006), see also Figure S 9-4). When 
comparing RefRN with N, we observed an increase in θ power ([2.45, 4.15] s, pcluster < 
0.01). Again, this effect was maximal at central electrodes (Figure 9-3b). However, 
compared to NREM2, the direction of the effect was reversed: θ power increased when 
the target RefRN was presented, whereas sleep-spindles and slow waves power decreased 
in NREM2. Still, the results show again a local modulation of sleep rhythms by repeated 
exposure to a noise snippet during REM sleep. 

EEG markers of perceptual memory during sleep 

In addition to the modulation of sleep rhythms, we investigated whether repeated 
exposure to noise snippets during sleep was accompanied by learning-specific MEPs, as 
in wakefulness. We averaged EEG responses to RefRN, RN and N stimuli, time-locked 
to target onsets (see Methods; Figure 9-4). Again, we compared the different sleep stages. 
In NREM2, RefRN trials elicited evoked-potentials similar to wake MEPs, with a similar 
central negative deflection ([305, 405] ms, pcluster < 0.05). In NREM3, evoked-potentials 
associated to the repetition of noise snippets were also observed albeit only marginally 
significantly (RefRN vs. N cluster: [130, 300] ms, pcluster = 0.052). In addition, the evoked 
activity in NREM3 no longer resembled MEPs: the negative deflection observed in wake 
and NREM2, interpreted as an auditory N1 ((Andrillon et al., 2015a), was replaced by a 
positive deflection with a central scalp distribution (Figure 9-4, middle). Interestingly, 
such changes mirror the established transformations observed in AEPs from wake to 
NREM-sleep ((Picton, 2011), Figure S 9-4a).  

 

Figure 9-4 Evoked-activity to repeated noise snippets during sleep 

Target-locked Event-Related Potentials (ERPs) in NREM2 (left), NREM3 (middle) and REM 
(right) stages of sleep for RefRN (orange) or RN (blue) trials compared to N trials. Central 
electrodes were used (circles on scalp topographies). Note the resemblance between the NREM2 
ERPs and the MEPs observed in wakefulness (Figure 9-2b). Horizontal bars show significant 
clusters (pcluster<0.05; the NREM3 positive cluster was marginally significant: pcluster = 0.052) 
for the RefRN vs. N difference (orange; no RN vs. N difference). Insets: scalp distribution of t-
values (RefRN vs. N, paired t-tests) over temporal windows corresponding to the 
abovementioned clusters. The gray contour shows the scalp distribution of the MEPs observed 
in wakefulness (Figure 9-2b). 
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In REM, RefRN trials differed from N trials ([280, 390] ms, pcluster < 0.05). The 
temporal shape of the evoked potential was different from typical MEPs (Figure 9-4, 
right). Again, this temporal profile was consistent with the established transformations of 
auditory potentials from wake to REM-sleep, with a decrease of N1 amplitude in favor 
of P1 and P2 potentials ((Atienza et al., 2001); Figure S 9-4a). 

Overall, the sleeping brain was able to discriminate RefRN trials from N trials in light 
NREM2 and REM sleep. This shows that complex memory processes, such as those 
needed to distinguish one particular noise snippets from all others, were to some extent 
preserved. However, the associated EEG activity (target-locked ERPs) was qualitatively 
different across sleep stages.  

 

Opposite effects upon awakening of exposure during NREM and REM 
sleep 

Do the EEG markers of exposure during sleep translate into perceptual learning upon 
awakening? To answer this question, we examined, during the memory-test, whether 
behavioral performance for those sounds heard during sleep was affected. We computed 
BE separately for the 4 different lists of RefRN targets: wake, NREM, REM or new 
RefRN. We focused on the RefRN vs. RN contrast (BERefRN – BERN) as this is the more 
stringent index of longer-term perceptual learning. An issue we encountered was that 
new RefRN could be learnt rapidly during wakefulness, especially as participants were 
now trained. So, previously-heard RefRNs may be learnt as well, even if past exposure 
had no effect. Ideally, analyzing the very first trial would minimize the issue, but this is 
not statistically robust. We restricted our analysis to the first 3 trials out of 8 (Methods, 
Figure 9-5a left). Thus, participants showed significantly higher initial performance for 
those RefRNs heard during wakefulness (paired t-test: p < 0.01) as well as those heard 
during REM sleep (p < 0.01), compared to RN. As expected before learning, there was 
no initial advantage for new RefRN (p = 0.12), but the modest trend suggested that 
perceptual learning might have already started. This limitation might explain the 
marginally significant differences between the wake or REM lists and the new list (BE 
RefRN – RN: wake vs. new: p = 0.09, REM vs new: p = 0.07, one-tailed t-test).  
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Figure 9-5 Impact of prior exposure on behavioral performance upon awakening 

(a) Behavioral efficacy indexes of long-term memory (RefRN - RN) computed for the beginning 
(left, 3 first trials) or the entire (right) “Memory-Test” blocks. BE was computed separately for 
the RefRN heard during wakefulness, REM, NREM or for the novel RefRN introduced in the 
“memory-test”. Error-bars denote the SEM across participants (N = 20) and stars atop bars 
indicate the results of the statistical tests (t-tests against 0, p < 0.005: ***; p < 0.01: **; p < 0.05: 
*, ns: p≥0.05). Performance is better for RefRN sounds heard during wake and REM sleep at the 
beginning of “Memory-Test” blocks. For the whole test analysis, all conditions improve as 
participants could learn even new RefRNs during the block, with the notable exception of 
RefRN sounds heard during NREM sleep: those were not learnt even after the whole test. (b) 
Correlation between the REM sleep long-term memory index (BERefRN - BERN) and the 
number of trials played in REM-sleep (left), tonic REM sleep (middle) and phasic REM sleep 
(right) across participants. (c) Correlation between the NREM sleep long-term memory index and 
the number of trials played in NREM sleep (NREM2+NREM3, left), NREM3 (middle) and 
NREM2 (right) across participants. For panels b and c, Pearson's correlation coefficients are 
displayed on each correlation plot (p < 0.05: *, ns: p≥0.05). Open circles (panel c, N = 2 over 20) 
were considered as outliers (SI) and were not included in the computation of the correlation 
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coefficients. Dotted lines show the linear fit for pairs of variables with significant correlation. 
Note the opposite patterns between NREM and REM sleep. 

For those RefRN heard during NREM-sleep, there was no trace of improvement due to 
prior exposure (p = 0.57). We further computed a Bayes factor, a non-parametric 
method for testing the plausibility of the null hypothesis (Dienes, 2014; Kass and Raftery, 
1995). We found a Bayes factor of 8.1, which is taken as substantial evidence for the null 
hypothesis. This null effect, strikingly, was further strengthened when analyzing 
behavioral data over the entire memory test, with a large Bayes Factor of 34.07. This is 
remarkable, as over the entire test, performance increased for all conditions including the 
novel RefRNs, which were learnt from scratch (Figure 9-5a, right). Of all lists of RefRNs, 
only the NREM3 list did not show any advantage over RN over the whole memory test 
(all differences NREM3 with other list p < 0.05). This pattern of results was conserved 
even when discarding RefRNs from the NREM and REM lists that have been presented 
around micro-awakenings (see SI; Figure S 9-5). This suggest a strong suppressive effect 
of exposure during NREM3: not only sounds heard during this sleep phase were not 
learnt during sleep, but they were also harder to learn upon awakening compared to 
sounds that were statistically identical but never heard before.  

We further tested how finer sleep characteristics of REM and NREM sleep impacted 
behavioral performance upon awakening (Figure 9-5b-c). For the REM list and across 
subjects, we found a positive correlation between the increase in performance and the 
number of trials played in REM sleep (Pearson r = 0.49, p < 0.05). For the NREM list, 
and across subjects, there was a negative correlation between performance and the 
number of trials played in NREM sleep (Pearson r = -0.55, p < 0.05). A stepwise 
regression analysis comparing the influence of NREM stages (NREM 1-3) showed that 
only the number of trials played in deep-sleep (NREM3) was predictive of the 
performance upon awakening (β = -0.50, p < 0.05). A similar analysis in REM-sleep 
comparing the respective influence of tonic and phasic REM-sleep (tREM and pREM 
respectively) indicated that only the number of tREM trials was predictive of the increase 
in performance upon awakening (β = 0.48, p < 0.05). 

We replicated this highly specific pattern of results when considering an EEG marker of 
learning (Figure 9-6a-b). The EEG learning index (RefRN – RN difference in ITPC) was 
positively correlated with the proportion of tonic REM trials in REM sleep (r = 0.51, 
p<0.05), while it was negatively correlated with the proportion of NREM3 trials in 
NREM sleep (r = -0.53, p < 0.05). Thus, upon awakening, both behavioral performance 
and brain activity demonstrate an opposite effect of sound exposure during REM and 
NREM sleep. 
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Figure 9-6 Impact of prior exposure and sleep rhythms on phase coherence upon awakening 

EEG index (Inter-Trial Phase Coherence, ITPC) quantifying long-term memory (ITPCRefRN – 
ITPCRN) for RefRN sounds heard during REM and NREM sleep, computed over the whole 
“Memory-Test” blocks. (a) Left: Correlation between the magnitude of the REM sleep EEG 
index (z-scored across participants) and the proportion of trials in tonic REM sleep (left). Right: 
Correlation between the magnitude of the NREM sleep EEG index and the proportion of 
NREM3 trials within NREM sleep. As for the behavioral index (Figure 9-5b-c), there was a 
positive correlation between REM sleep learning and the prevalence of tonic REM sleep, and a 
negative correlation between NREM sleep learning and the prevalence of NREM3 sleep. (b) 
Correlation between the magnitude of the EEG index (z-scored across participants) for the 
RefRN heard in NREM and the proportion of trials containing slow-waves (left) or sleep-
spindles (right; circles: slow spindles; diamonds: fast spindles). Note the negative correlation 
between the EEG learning index and the proportion of trials associated to slow-waves on one 
hand and the positive correlation with the proportion of trials associated with slow spindles on 
the other hand. Pearson's correlation coefficients are displayed on each correlation plot (p < 
0.005: ***; p < 0.01: **; p < 0.05: *, ns: p≥0.05) and dotted lines show the linear fit between the 
pairs of variables. 

 

Slow waves dynamically suppress memories in deep NREM sleep 

Even within NREM sleep, exposure seemed to have opposite effects depending on sleep 
stage. EEG markers suggested learning in NREM2 (Figure 9-4). However, behavioral 
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(Figure 9-5c) and EEG (Figure 9-6a) indexes of learning suggested a suppression during 
NREM3. More precisely, there was a negative correlation between the EEG index of 
learning upon awakening and the percentage of trials containing slow waves overnight 
(Figure 9-6b; r = -0.49, p < 0.05). When mapping the correlation onto scalp sensors, the 
effect was maximal both at frontal electrodes, where slow waves are most prevalent, and 
at central electrodes, where the effect of learning was observed in wakefulness (Figure S 
9-6).  

A hypothesis consistent with all of those observations would be that the suppressive 
effect of NREM3 exposure was mediated by slow oscillations, which increase in density 
from NREM2 to NREM3. This was tested by tracking the amount of learning over the 
course of the night, using EEG markers of learning. First, ITPC was compared with the 
overall power in the δ band (< 5 Hz), a good proxy for slow waves density. We found a 
clear negative correlation between δ power and ITPC for RefRN trials (Figure 9-7, r = -
0.1, p < 0.005) but, crucially, not for RN trials (r = -0.03, p = 0.3). The link between slow 
waves and EEG markers was thus specific to longer-term memory processes.  

 

 

Figure 9-7 The learning index is dynamically correlated with slow-wave power in NREM sleep 

(a) Correlation between ITPC values computed for RefRN trials (z-scored per sleep-cycle, see SI) 
and δ (< 5 Hz) power (N = 76 cycles in 18 participants). Data were binned for illustrative 
purpose. The Pearson's correlation coefficient is displayed on the graph (***: p < 0.005) as well 
as the regression line between the two variables, both estimated on un-binned data. (b) Evolution 
of long-term memory index (ITPC, RefRN over RN ratio computed on fixed windows) and δ-
power within sleep cycles. Cycle-durations were normalized to average cycles with different 
durations and the position within a cycle is expressed as a percentage of total duration. δ-power 
was normalized by the value at the beginning of each cycle (100%). Note that, at the beginning of 
sleep cycles (typically light NREM), there was evidence for perceptual learning (RefRN>RN, 
pcluster<0.05), which is consistent with Figure 9-3 and Figure 9-4. This advantage disappeared 
with the increase in δ-power and the deepening of NREM-sleep, which consistent with Figure 
9-5 and Figure 9-6. (c) Pearson's correlations coefficients between ITPC and δ-power for RefRN 
(orange) and RN (blue) computed and averaged across sleep-cycles (n = 76 cycles). Pearson's 
coefficients were significantly negative for RefRN (one-tailed t-test, p < 0.05) but not RN trials. 

Sleep being structured into cycles characterized by a gradual descent from light to deep 
NREM-sleep, we examined whether the negative correlation between ITPC and δ power 
over the entire night was also maintained within individual sleep cycles. To do so, we 
normalized the sleep cycles' durations (see Methods, N = 76 cycles in 18 participants) 
and examined the time course of δ power and ITPC. A clear increase in δ power was 
visible within the cycle progression, corresponding to the transition from lighter stages of 
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NREM to NREM3 (Figure 9-7b). At the beginning of the cycles, higher ITPC were 
observed for RefRN compared to RN (ratio RefRN/RN > 100%, pcluster < 0.05). This is 
suggestive of learning in light NREM sleep, as previously shown by other analyses 
(Figure 9-3 and Figure 9-4). Later in the sleep cycle, the advantage for RefRN decreased 
and was eventually cancelled out, closely mirroring an increase in δ power and slow 
waves density (Figure S 9-7). Moreover, the negative correlation between ITPC and δ 
power was observed within-cycles for RefRN but not for RN trials (Figure 9-7c). This is 
strong evidence of a dynamic involvement of slow oscillations in the suppressive effects 
of exposure during NREM3 sleep. 

 

Slow spindles mediate learning in light NREM sleep 

Which mechanism could subserve the facilitating effects on learning during light NREM 
sleep (NREM2)? We discovered a strong and positive correlation between the percentage 
of trials containing slow frontal spindles and the amount of EEG markers of learning 
upon awakening (ITPC RefRN – RN; r = 0.65, p < 0.005, Figure 9-6b, right). 
Importantly, there was no correlation when considering fast centro-parietal spindles (r = 
0.02, p=0.9). In addition, although slow spindles are maximal at frontal electrodes, the 
correlation between learning and spindles incidence was maximal at central electrodes, 
overlapping again with the effects of learning observed in wakefulness and NREM2 
(Figure S 9-6). Slow-spindles could therefore play a role in potentiating learning during 
NREM-sleep. 

 

Tonic REM sleep favors perceptual learning 

When examining the effect of sleep exposure on perceptual learning upon awakening, 
REM sleep had a positive impact (Figure 9-5). This positive effect of REM sleep 
significantly correlated with the amount of time spent in tonic REM sleep but not in 
phasic REM sleep (Figure 9-6). To further explore this potential dissociation, we 
computed the size of the effect observed overnight in the θ band (Figure 9-3) and the 
magnitude of evoked potentials (Figure 9-4), for all trials in REM sleep, then split for 
trials in tonic REM (tREM) or phasic REM (pREM).  

 

Figure 9-8 Tonic REM sleep is more favorable to learning than phasic REM sleep 
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Left: Magnitude of the ERPs illustrated in Figure 9-4 (RefRN vs. N cluster in REM-sleep) 
computed for all trials in REM sleep and trials in tonic (tREM) or phasic REM-sleep (pREM, see 
Methods). Middle: Similar analysis for the θ-band effect observed in REM sleep (Figure 9-3). 
Error-bars denote the SEM across participants (N = 20) and stars atop bars indicate the results 
of the statistical tests (t-tests against 0, p < 0.005: ***, p < 0.01: **, p < 0.05: *, ns: p≥0.05). Note 
the preservation of the effects observed for all trials in tREM but not pREM. Right: Auditory-
evoked potentials computed at stimulus-onset (and irrespective of experimental conditions) for 
all REM-sleep trials, tREM and pREM-sleep trials. Note the enhancement of the P2 component 
in tREM-sleep, which is reminiscent of the increased P2 component associated to RefRN trials in 
Figure 9-4. 

Figure 9-8 shows that effects were equivalent or greater in tREM compared to REM but 
disappeared in pREM. Interestingly, tREM and pREM could not be differentiated based 
on overall θ power ([4, 8] Hz, t-test p = 0.20). However, there were marked differences 
in the auditory potentials associated to sound-onset (i.e. irrespective of stimulus-type): 
tREM was characterized by an enhancement of the P2 auditory potential compared to 
pREM (Figure 9-8, right), similar to the potential that was increased in MEPs by the 
presence of RefRN targets (Figure 9-4). Considered altogether, these results suggest a 
profound functional difference between tREM and pREM, at least for auditory 
processing. This is consistent with previous demonstrations of an increased sensitivity to 
sensory information in tREM compared to pREM (Sallinen et al., 1996).  
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Discussion 

We developed a paradigm that tracked the formation and long-term maintenance of new 
perceptual memories across vigilance states. Our results revealed a sharp distinction 
between REM and deep NREM sleep. Presentation of acoustic stimuli during REM 
induced learning, while presentation of the same stimuli during deep NREM induced a 
suppressive effect. Both learning and suppression transferred to subsequent wakefulness, 
behaviorally and for EEG markers. A more detailed examination of EEG markers during 
the night further specified the vigilance states that favored or, in contrast, suppressed 
learning. The suppressive effect was primarily driven by periods of deep, slow-wave 
NREM3 sleep, whereas lighter, NREM2 sleep allowed for some perceptual learning. For 
REM-sleep, perceptual learning was primarily driven by tonic REM.  

 

The learning of novel perceptual information is possible in light NREM 
sleep 

NREM-sleep is classically characterized by high-arousal thresholds (Rechtschaffen et al., 
1966) and sleepers' unresponsiveness to external stimulations. Does such 
unresponsiveness imply unconnectedness (Sanders et al., 2012)? The notion of a thalamic 
gating (McCormick and Bal, 1994) has been challenged by numerous studies showing 
faithful encoding of information (Issa and Wang, 2008; Y. Nir et al., 2013) or complex 
information processing in NREM-sleep (Bastuji, 1999; Bastuji et al., 2002; Campbell, 
2000; Hennevin et al., 2007). Interestingly, however, the large-scale integration of 
information remains largely reduced compared to wakefulness (Casali et al., 2013; 
Massimini et al., 2005) so NREM sleep has been argued to prevent synchronous 
processing across distributed brain regions (Tononi and Massimini, 2008). But even 
large-scale integration may be preserved, at least to a certain extent: we recently showed 
that, when subjects fall asleep while performing a complex task linking auditory signals to 
semantic categories and motor preparation, distributed processes can be continued in 
NREM2 sleep (Kouider et al., 2014). Here, we extended these findings by providing the 
first compelling evidence for the learning of complex and novel sensory information 
during NREM2 sleep (i.e. light NREM-sleep). In NREM2, we observed evoked 
potentials for recurrently presented noise snippets (Figure 9-4) as well as an increase in 
phase coherence across trials (Figure 9-7), demonstrating sleepers’ ability to form new 
representations for initially nondescript noises. Such a form of learning involves a 
network of brain regions comprising secondary auditory cortices and the hippocampus 
(Kumar et al., 2014), suggesting that rather extensive networks can be recruited and 
coordinated in NREM-sleep, despite the loss of awareness and responsiveness. The 
resemblance between NREM2 evoked potentials and classical N1-P2 complexes 
(Andrillon et al., 2015a) further advocates the involvement of a distributed network, 
since the N1-P2 complexes are thought to be generated in primary and secondary 
auditory cortices (Picton, 2011). 

Such a preservation of complex information processing could be supported by local 
modulations of sleep-depth, a phenomenon called local sleep. Indeed, it has been shown 
that sleep is not a monolithic phenomenon but that different brain regions can show 
different activity patterns (Nir et al., 2011; Peter-Derex et al., 2015). In particular, some 
brain regions can recover wake-like activity in the absence of awakening at the scalp level 
(Nobili et al., 2012). Interestingly, in NREM2, auditory “events” in the form of 
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recurrently presented noises were accompanied by the presence of evoked potentials 
resembling wake responses (Figure 9-4). This contrast with the evoked-potentials 
observed in NREM3 and classical auditory evoked potentials reported for NREM sleep 
(Figure S 9-4a). Thus, the presence of wake-like activity in NREM2 could be interpreted 
as the recovery of some local wake-like processing in the context of global NREM sleep 
(no increase in α or γ power on scalp recordings). The association of these wake-like 
potentials with a region-specific decrease in the magnitude of NREM-sleep oscillations 
(δ and σ power; Figure 9-3) further strengthens this interpretation. Overall, our data 
argue that sleep-depth may be flexibly modulated depending on sensory input, to allow 
for the timely recovery of wake-like information processing and learning. 

 

In NREM sleep, memories are formed or suppressed depending on 
sleep depth 

An unexpected finding was that exposure to novel information in deep phases of NREM 
sleep not only failed to improve participants' performance upon awakening, but rather, 
impaired their ability to learn this exact same information when awake again (Figure 
9-5a). Furthermore, during the night, learning observed in light NREM2 was suppressed 
in deep NREM3 (Figure 9-7). This suggests a highly specific suppressive influence of 
deep NREM sleep on learning. Such a contrast between light and deep NREM-sleep is 
consistent with a qualitative distinction between these two sleep stages in relation to 
neural plasticity (Genzel et al., 2014). In this view, light NREM-sleep favors synaptic 
potentiation, while deep NREM-sleep promotes synaptic down-scaling.  

Could sleep rhythms such as slow oscillations and sleep spindles fully account for this 
light vs. deep NREM dissociation? In our study, frontal sleep spindles were positively 
correlated with the positive learning effect (Figure 9-6b and S6). Along this line, 
numerous studies have demonstrated the link between sleep spindles and memory 
consolidation (Diekelmann and Born, 2010). In addition, in vitro studies showed that 
neuronal activations mimicking sleep spindles could induce Long-Term Potentiation 
(LTP) and hence synaptic plasticity (Rosanova, 2005). We also found that slow-waves 
were negatively correlated with memory formation (Figure 9-6b and Figure 9-7). This is 
consistent with the idea that slow waves could trigger Long-Term Depression (LTD) 
(Czarnecki et al., 2007). However, sleep spindles are typically nested within slower 
oscillations, which argue against diametrically opposed roles (Mölle and Born, 2011; 
Staresina et al., 2015). In addition, both rhythms are present in light and deep NREM 
sleep and therefore cannot fully explain the differential impact of these sleep stages on 
learning. 

We thus propose that a contextual change from light to deep NREM-sleep explains the 
observed differences. Indeed, it has been recently shown that sleep rhythms such as sleep 
spindles and slow-oscillations undergo transformations from light to deep NREM-sleep 
(Siclari et al., 2014a). In particular, slow-oscillations decrease in amplitude, slope, spatial 
expanse, but increase in density (Figure S 9-7). Two types of synchronization processes 
have been proposed to account for these changes. In light NREM sleep subcortico-
cortical processes, potentially stimulus-driven, would occur (type-I slow-waves, 
corresponding approximately to K-complexes), leading to high-amplitude, steep and 
widespread slow-waves. These type-I waves could be associated to activations of the 
arousal system, restoring some ability to process sensory information and to form new 
memory traces. In deep NREM sleep however, slow waves (type-II) would arise from 
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local cortico-cortical synchronization processes independently from external stimulations 
or arousal. The type-II waves could in turn favor synaptic downscaling, leading to the 
deep-NREM suppressive effect we observed. We therefore verified whether the EEG 
learning index computed overnight (ITPCRefRN / ITPCRN) correlated with several slow-
waves parameters (density, slope, number of negative peaks and spatial expanse, Figure S 
9-7). Interestingly, the suppression effect was paralleled with the emergence of more 
numerous but more local, and putatively cortico-cortical, slow-waves. 

 

In REM-sleep, tonic episodes promote the learning of novel information 

In REM-sleep, evoked-potentials were observed when novel information was presented 
several times (RN & RefRN; Figure 9-4). The presence of such evoked-potentials, in the 
absence of any salient feature within the acoustic signal, already indicates in itself that 
complex auditory processing and learning are possible in REM sleep. REM-sleep 
exposure also improved performance upon awakening, confirming this view (Figure 9-5 
and Figure 9-6). Although the evoked potentials observed in REM sleep displayed a 
different shape to wake responses (Figure 9-2b), they were comparable to the typical 
auditory-evoked potentials observed in REM sleep (Figure S 9-4a), with a disappearance 
of the N1 component but a preservation of the P2 component (Picton, 2011). Recurrent 
exposure (RefRN) enhanced specifically the P2 potential, as is the case for perceptual 
learning in wakefulness (Tremblay et al., 2014). We also observed an increase in θ power 
for learnt trials (RefRN) in REM-sleep (Figure 9-3), which is reminiscent of the 
enhancement of θ oscillations during the encoding of new memories (Rutishauser et al., 
2010). It is therefore possible that perceptual learning in REM sleep recruits similar 
neural mechanisms as during wakefulness. 

Our results are consistent with previous research showing that sensory 
processing(Atienza and Cantero, 2001; Sallinen et al., 1996; Sculthorpe et al., 2009) and 
the learning of new associations (Arzi et al., 2012; Hennevin et al., 2007, 1995) are 
possible during REM sleep. However, such results seem at odd with the relatively low 
incorporation of external stimulations to the dream scenery (Nir and Tononi, 2010). To 
reconcile these observations, it is worth noting that, here, the effects on ERPs and θ 
oscillations were observed in tREM but not pREM phases (Figure 9-8). This result is in 
line with previous findings of increased sensitivity to sensory information in tREM 
compared to pREM (Sallinen et al., 1996). Interestingly, dream reports seem more vivid 
in pREM (Berger and Oswald, 1962) although this relationship has been debated 
(Molinari and Foulkes, 1969). It is therefore possible that, in pREM, the brain is more 
isolated from sensory inputs (Wehrle et al., 2007) due to the processing of endogenously 
generated sensory information (i.e. dream contents; (Andrillon et al., 2015b; De Carli et 
al., 2015)). On the contrary, tREM would be more permeable to external sensory 
information. Thus, in REM sleep, the bottleneck limiting learning would be the sleepers’ 
connectedness to their environment. Finally, it is particularly interesting to note the 
difference between pREM and tREM in the learning-induced P2 component (Figure 9-4) 
or even the standard auditory P2 (Figure 9-8). The magnitude of the P2 component 
could be used as a proxy to quantify sensory permeability during REM-sleep. 
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A unified view of the role of sleep in memory 

From a mechanistic point of view, we yet have to explain why REM sleep or light 
NREM sleep favor learning while deep NREM sleep suppresses the possibility of 
subsequent learning. What could account for such a dramatic reversal of function across 
phases of sleep? Drastic changes in the level of neuromodulators across sleep phases 
(McCarley, 2007; Siegel, 2004) could be responsible for such a reversal. In particular, 
Acetylcholine (ACh) drops in slow-waves sleep compared to both wakefulness and REM 
sleep (Jones, 2005; Marrosu et al., 1995). Such a drop could affect the brain’s ability to 
learn since ACh can control the polarity of Spike-Timing Dependent Plasticity (STDP; 
(Pawlak, 2010; Seol et al., 2007)). Interestingly, modeling showed that synthetic neuronal 
networks endowed with STDP could learn and almost inevitably learned recurrent 
random inputs (Klampfl and Maass, 2013; Masquelier et al., 2008). An ACh-dependent 
modification of the STDP rule could therefore tentatively account for our results. Under 
higher levels of ACh (wake, REM-sleep, light NREM-sleep), learning occurs through the 
potentiation of the specific synapses recruited by the recurrent acoustic signal (Klampfl 
and Maass, 2013). Under low-levels of ACh (deep NREM-sleep), the same synapses 
would, on the contrary, be down-scaled, so not only would learning not occur, but the 
subsequent re-activation of the network upon wakefulness would be suppressed and 
future learning would be more difficult. We do not suggest any functional role for this 
suppressive effect; rather, it seems an inevitable byproduct of the synaptic down-scaling 
needed for homeostatic purposes (Tononi and Cirelli, 2014).   

Finally, although we investigated the formation of new memories during sleep rather 
than the consolidation of existing ones, our work is still relevant for the vast literature on 
memory consolidation. Indeed, both acquisition and consolidation may rely on similar 
synaptic plasticity mechanisms (Diekelmann and Born, 2010; Tononi and Cirelli, 2014). 
We provide here a comprehensive and unified model of the role of sleep in memory, in 
which (i) content-specific consolidation occurs in light NREM-sleep and REM-sleep 
through phasic and global events such as type-I slow-waves (approximately K-
complexes) and sleep-spindles (Diekelmann and Born, 2010) ,(ii) general down-scaling of 
synaptic weights would take place in deep NREM-sleep, enabling synaptic 
renormalization (Tononi and Cirelli, 2014). Such synaptic pruning could be mediated by 
local slow-waves trains (Nere et al., 2013) under conditions of low ACh levels (Tononi 
and Cirelli, 2014). Our model can also account for the possibility to improve a given 
memory by playing, overnight, a sound paired to the information learnt during 
wakefulness (Targeted Memory Reactivation, TMR; (Oudiette and Paller, 2013)). Phasic 
events would play again a central role in allowing the consolidation of the re-activated 
information by organizing hippocampo-cortical communications (Diekelmann and Born, 
2010). Such view implies that TMR would be more efficient in NREM2 than NREM3. 
Accordingly, Oudiette et al. reported that TMR efficiency was negatively correlated with 
δ power (Oudiette et al., 2013). We conclude that our results and interpretations are 
consistent with a large body of previous experimental data, and provide a simple but 
comprehensive framework on the role of sleep in memory.  
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Experimental Procedure 

Participants 

20 right-handed subjects (11 females, age 20-31) with no history of neurological or sleep 
disorders participated to this study, which had been approved by the local ethics 
committee (Comité de Protection des Personnes, Ile-de-France I, Paris, France). Sleep 
habits matched the general population standards (SI). 

 

Noise-memory paradigm 

We used a variant (Andrillon et al., 2015a) of the noise-memory paradigm (Agus et al., 
2010). In this paradigm (Figure 9-1), participants were instructed to discriminate between 
2 types of acoustic noise: fresh white-noise stimuli deprived of any repeating sequence 
(N: noise, no repetition) and white-noise stimuli in which a sequence (target) is repeated 
within a trial (RN: repeated-noise, within-trial repetition). Unknown of participants, some 
targets were randomly selected to be recurrently presented throughout the experiment 
(RefRN: reference repeated-noise, within and across trials repetitions). 

 

Protocol Outline 

On the day of recordings (Figure 9-1c), participants were first familiarized with acoustic 
noise with or without repeating patterns. Then, participants underwent a “wake-learning” 
phase during which they were asked to discriminate stimuli with or without repetitions 
while remaining awake. They were then put to bed while being exposed to structurally 
identical but longer stimuli (“sleep-learning” phase, see below for stimuli details). After 
the night and upon awakening, participants were tested on previously heard stimuli 
(“memory-test”) along novel ones. Participants were instructed to remain awake and to 
respond to stimuli during the wake-learning and memory-test phases while keeping eyes-
closed. In the sleep-learning phase, they were allowed to sleep but were instructed to 
keep responding to the stimuli as long as they remained awake. 

 

Stimuli 

Acoustic stimuli were generated as random sequences of normally distributed values. The 
outcome is called white noise and is characterized by a flat spectrum, constant envelope 
amplitude and no sample-to-sample predictability (Figure S 9-1). In the “wake-learning” 
phase, N stimuli were made of 3.5s of fresh white-noise without any repeating pattern 
within and across trials (Figure 9-1b). RN stimuli included a 0.2s white-noise target that 
was copied identically 5 times within the trial. The target was interleaved with fresh 
white-noise fillers to keep the same duration as for N trials (3.5s). Repeated targets were 
randomly generated for each participant and used only once for RN trials. Targets were 
spaced every 0.5s (presentation frequency: 2Hz) starting from 0.8s after stimulus onset. 
RefRN stimuli were identical to RN stimuli in their structure but the repeating target was 
chosen among a set of arbitrarily selected targets (Figure 9-1a, N = 5 per participants). A 
fourth type of stimuli (Reference Noise, RefN) was introduced to balance the number of 
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trials with and without repeating patterns. In these trials, there was no within-trial 
repetition of a target. However, we injected the RefRN targets every 0.5s. These trials 
were not included in further analysis. Participants were not told about the presence of 
RefRN trials. 

In the “sleep-learning” phase, similarly structured stimuli were used. However, different 
sets of RefRN targets were played in NREM (N = 5) and REM (N = 5) sleep according 
to an online assessment of vigilance states. In addition, the number of within-trial 
repetition was increased (from 5 to 10) in NREM and REM-sleep (duration: 6s instead of 
3.5s in wakefulness). Whenever participants showed signs of awakening during the night, 
the wake set of RefRNs were played. NREM targets were presented after NREM2 onset, 
therefore in NREM2 and NREM3 stages predominantly.  

Finally, in the “memory-test” phase, participants were tested on all RefRN targets 
presented in the wake and sleep-test along 5 new RefRN. Each RefRN was tested in a 
separate 5-minutes block along freshly generated RN and N trials. There were 8 
presentations of each stimulus conditions. Block-order was randomized. The number of 
within-trial repetition was set to 5 as in the “wake-learning” phase. 

 

Electrophysiological recordings 

Electroencephalographic (EEG, 10-20 montage), electroocculographic (EOG), 
electromyograhpic (EMG) and electrocardiographic (ECG) data were continuously 
recorded along video monitoring (SI). Participants were constantly monitored during 
both wake and sleep. During the sleep-test, a given set of RefRN (wake, NREM or 
REM) was selected according to participant's vigilance state.  

 

Sleep assessment and sleep rhythms detection 

Vigilance states were assessed online using standard guidelines (Iber et al., 2007) by an 
experienced scorer (TA) and confirmed off-line by two scorers (TA, and DL) blind to 
experimental conditions (see Table S 9-1 for a summary). The spectral profiles of sleep 
stages were in accordance with the literature (Figure S 9-4b-c). In NREM-sleep slow-
waves and sleep-spindles were detected using algorithms detailed elsewhere (Andrillon et 
al., 2011; Nir et al., 2011). Spatial distributions of average densities are shown in Figure S 
9-6. 

 

Behavioral data and analysis 

Participants were instructed to indicate the presence or absence of repetitions through 
handles placed in their right and left hand (response mapping counterbalanced across 
participants). For each stimulus, we recorded participants' response (if any) as well as 
reaction times (RTs). Leaning on previously published results (Andrillon et al., 2015a), we 
computed participants' sensitivity d' (Macmillan, 2005) when discriminating RefRN from 
N trials or RN from N trials. RTs and d’ can be combined in a Behavioral Efficiency 
(BE) index, used here to titrate the amount of learning (SI). The RefRN vs. RN contrast 
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focuses on long-term memory (across-trial) while the RN vs. N trials targets short-term 
memory (within-trial; Figure 9-1a).  

EEG preprocessing and analysis 

EEG data were epoched around stimuli onsets and bandpass-filtered (stimulus-locked 
Event-Related Potentials (ERPs): [0.1, 40] Hz, target-locked ERPs: [1, 40] Hz). Notch 
filtering at 50Hz was applied to reduce line noise. Spurious trials were discarded. Time-
frequency decomposition of the EEG signal was estimated to extract both power 
(absolute power or modulation over baseline activity) and inter-trial phase coherency 
(ITPC) in response to a given stimulus category. Complete details are provided in SI. 
Based on previous studies (Andrillon et al., 2015a; Luo et al., 2013), we used ITPC in 
RefRN and RN trials to estimate the amount of learning in absence of behavior. Target-
locked ERPs were also used to assess perceptual learning. Unless stated otherwise, 
analyses were performed on central electrodes (Cz, C3, C4), which correspond to the 
strongest auditory responses. 

 

!

!!

!
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Supplemental Experimental Procedures 

Subjects and Sleep Study 

20 right-handed subjects (11 females, age 20-31 years) with no history of neurological or 
sleep disorders participated to this study. They filled in questionnaires about their sleep 
habits and had an interview with a sleep specialist prior to recordings. They were also 
monitored for 7-10 days prior to the recording session through actigraphy and sleep 
diaries to ensure stable sleep/wake rhythms. The day of the recordings, participants were 
familiarized with the stimuli used in our protocol (white-noise acoustic stimuli). They 
were equipped for polysomnographic recordings and performed an initial test-phase 
while remaining awake (“wake-learning” phase: 41 ± 1 minutes, mean ± standard error of 
the mean (SEM) across participants) consisting in the detection of repetitions in the 
acoustic noise (see below). They were then put to bed and asked to perform the same 
task as long as they were awake. Stimuli were continuously presented over the whole 
night (“sleep-learning” phase: 494 ± 20 minutes). Finally, upon spontaneous awakening, 
participants underwent a “memory-test” without being explicitly told so; i.e., they 
continued detecting repetitions within noise trials (89 ± 2 minutes). Polysomnographic 
equipments were removed at the end of the memory-test. This protocol had been 
approved by our local ethics committee (Comité de Protection des Personnes Île-de-
France I, Université Paris-Decartes, Paris, France). 

 

Stimuli and noise-memory paradigm 

We used a variant of the noise-memory paradigm (Agus et al., 2010), which had been 
optimized for Electroencephalographic (EEG) recordings (Andrillon et al., 2015a). Each 
recording session was separated in 3 different phases (Figure 9-1c). In the initial “wake-
learning” phase, participants were instructed to discriminate: (i) noise stimuli (N, 
duration: 3.5s), i.e. acoustic stimuli made of ever-changing white-noise, (ii) repeated-noise 
(RN) stimuli in which a 0.2s white-noise target was presented 5 times to listeners (Figure 
9-1b). In RN trials, the noise targets were interleaved with ever-changing white-noise 
fillers to keep stimulus duration similar to N trials (3.5s). The first target was presented 
0.8s after stimulus onset and targets were presented every 0.5s. Both target and fillers 
being made of white-noise (no sample-to-sample predictability), such concatenation is 
seamless as illustrated in Figure S 9-1 (no change in sound envelope for example). 
Repeated noise targets differed from one trial to the other. In this condition, we 
therefore introduced a repetition of the same piece of acoustic information within but 
not across trials (Figure 9-1b). A different set of RN targets was presented to each 
participant (Figure 9-1a). Unknown to participants, another set of repeated targets (N = 
5 for each participant) were randomly selected to be recurrently presented across the 
entire “wake-learning” phase. Such trials were termed Reference Repeated-Noise 
(RefRN) stimuli and correspond to the presentation of the same targets both within and 
across trials. Classically (Agus et al., 2010; Agus and Pressnitzer, 2013; Andrillon et al., 
2015a; Luo et al., 2013), RefRN trials are associated with improved repetition-detection 
performance compared to RN trials. From the perspective of participants, RefRN and 
RN trials differed only through prior exposure. Thus, the difference in performance 
between RefRN and RN trials can be used to titrate long-term perceptual learning 
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(Figure 9-1a, right). In addition, the ability to differentiate RN trials from N trials may 
also involve the rapid formation of memory to noise (Andrillon et al., 2015; Figure 9-1a, 
right). Lastly, a fourth type of stimuli (Reference Noise, RefN) was introduced to balance 
the number of trials with and without repeating patterns. In these trials, there was no 
within-trial repetition of a target but the RefRN targets were introduced every 0.5s. 
These RefN trials were not further analyzed.  

Response-handles were attached to participants' hands who were instructed to indicate 
the presence of a repeating pattern by pressing the right or left handle (the ‘response-side 
/ stimulus-condition’ mapping was counterbalanced across subjects). Response-side (first 
button press after stimulus onset) and reaction times (RTs) were recorded for further 
analysis. Participants were instructed to remain awake and to respond to stimuli during 
the whole “wake-learning” phase while keeping eyes-closed. Stimuli were played every 
5.5 to 7.5 s (jitter: uniform distribution) with a break every 64 trials.  

In the “sleep-learning” phase, similar stimuli were used. N and RN trials were freshly 
generated for each N or RN trial. However, different sets of RefRN targets were played 
in periods of wakefulness (same as the “wake-learning” phase), NREM- (N = 5) and 
REM-sleep (N = 5) according to an online assessment of vigilance states (Figure 9-1c). 
In practice, when participants were awake, only the RefRN containing the wake targets 
were played (wake RefRN). In NREM-sleep (NREM2 and 3) the NREM set of RefRN 
was played to participants. And in REM-sleep, the REM set was used. Each time 
participants awoke, the RefRN set was set back to wake RefRN targets. In addition, for 
this sleep-learning phase, the duration of stimuli was increased (6 s instead of 3.5 s in 
wakefulness) in order to double (10 vs. 5) the number of within-trial repetitions in 
RefRN and RN trials. Yet, the general structure (0.2s-long targets separated by 0.3s-long 
white-noise fillers) was conserved. Participants were instructed to respond to stimuli as 
long as they would remain awake and to resume responding in case of an awakening. 
They were remembered to do so by the experimenter, in case of prolonged awakening 
without responses. Stimuli were played every 6.5 to 9.5 s in wake and every 9 to 12 s in 
sleep (jitter: uniform distribution). 

Finally, in the “memory-test” phase, participants were tested on all RefRN targets 
presented in the “wake-learning” and “sleep-learning” phases (N = 5 wake, NREM and 
REM RefRN targets per participant) along 5 new RefRN targets. Task instructions 
remained the same (detection of repetitions in noise) and participants were not informed 
of the presence of previously presented noises. Each RefRN was tested in a separate 5-
minutes block along freshly generated RN and N trials. The order of presentations of 
wake, NREM, REM and new RefRN was randomized. Stimuli were played every 5.5 to 
7.5 s. Participants were instructed to remain awake and to respond to stimuli in the entire 
“memory-test”. However, in some cases, participants failed to indicate the presence or 
absence of repetitions. “Memory-test” blocks with more than 20% trials without 
responses were excluded from our analysis (17 out of 400 blocks in 20 participants).  

All stimuli were randomly generated to create acoustic white-noise (sampled at 44100 
Hz). Each stimulus is therefore made of thousands of normally distributed numbers. 
White-noise stimuli have a flat spectrum on average, constant amplitude envelope and 
are deprived of short-term regularities (no sample-to-sample predictability) or salient 
features making the detection of any pattern very difficult (Figure S 9-1). In addition, 
since stimuli were randomly generated, prior exposure can be precisely controlled since 
the probability, for each participant, to have encountered the exact same noise-segments 
before the experiment is close to 0. The white-noise learning paradigms provide 
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therefore a unique opportunity to investigate the learning of novel sensory information. 
Stimuli were presented to participants using the PyschToolbox extension (Brainard, 
1997) for Matlab (Mathworks Inc., Natick, MA, USA) and were played through a loud-
speaker (soundcard: Echo Indigo, Echo Digital Sound Corp., Santa Barbara, CA, USA) 
placed near the bed and at 50dB to ensure comfortable listening conditions while 
minimally disturbing sleep. 

 

Contrasts of interest and expected results 

As thoroughly discussed recently (Andrillon et al., 2015a), the noise-memory paradigm 
allows exploring the rapid formation of memory to noise at different time-scales. The 
fact that listeners could discriminate between RN trials and N trials demonstrates their 
ability to detect the re-occurrence of a nondescript noise segment embedded in running 
noise after only few presentations (max: 5 in the “wake-learning” phase) and despite the 
statistical similarity between targets and fillers. Therefore the RN vs. N contrast reveals 
the formation of a form of short-term memory to noise (Figure 9-1a, right). On the 
contrary, RefRN and RN stimuli have identical structures (Figure 9-1b). They only differ 
through participants’ prior exposure. Improvement in repetition-detection performance 
for RefRN compared to RN trials can only be explained by the formation of long-term 
memory to noise (time-scales of minutes or hours; Figure 9-1a, right). Such long-term 
learning of acoustic noise has been confirmed by several studies (Agus et al., 2010; Agus 
and Pressnitzer, 2013; Andrillon et al., 2015a; Luo et al., 2013). Importantly, Agus and 
colleagues showed that such learning was preserved after 2 weeks of time (Agus et al., 
2010). Finally, the RefRN vs. N contrast focuses on the cumulative effect of short- and 
long-term memory. Overall, when focusing on EEG or behavioral indexes of repetition-
detection, we expect the pattern of results described in Figure 9-1a (right): a difference in 
both the RN vs. N contrast (short-term memory) and RefRN vs. RN contrast (long-term 
memory) when the brain is in a state favorable to learning.  

 

Electrophysiological recordings 

Participants were equipped for polysomnographic recordings according to the ASSM 
guidelines. We continuously recorded electroencephalographic (EEG, N = 19 
derivations, 10-20 montage), electroocculographic (EOG, N = 2 derivations, placed 
above and under the right and left canthus resp.), electromyograhpic (EMG, 1 derivation 
on the chin and 2 derivations on right and left abductor pollicis brevis (thumb flexor 
muscle) in order to record muscle activity associated to hand-responses), 
electrocardiographic (ECG, N = 1 derivation) data in parallel with video monitoring. To 
ensure the reliability of data collection through hours of recordings, AgCl electrodes were 
attached to participants' scalp using an adhesive past (EC2, Natus Neurology Inc., 
Middleton, WI, USA) amplified through a B1IP or B2IP MEDATEC amplifier (Medical 
Data Technology SPRL, Bruxelles, Belgique). This technique, while minimizing 
electrodes displacement, limits the number of channels that can be recorded. EEG 
electrodes were re-referenced to the averaged mastoids offline and EOG electrodes were 
referenced to the opposite mastoids. EEG, ECG and EMG data were recorded at a 
200Hz sampling-rate. Impedances of scalp electrodes were generally below 5kΩ. An 
external channel was used to synchronize EEG data with stimuli presentation times.  



Study 9 

304!

Participants were constantly monitored during both wake and sleep. As explained above, 
during the “sleep-learning” phase, a given set of RefRN (wake, NREM or REM) was 
selected according to participant's vigilance state. To do so, the vigilance state was 
assessed online using standard guidelines (Iber et al., 2007) by an experienced scorer 
(TA) and confirmed offline by two scorers (TA, and DL) blind to experimental 
conditions (see below and Table S 9-1).  

!

Behavioral indexes of perceptual learning 

To behaviorally assess listeners’ ability to detect the presence of repeating noise 
segments, we computed their sensitivity to the presence of these repetitions by means of 
a d’ index (Macmillan, 2005). The d’ index has the advantage to take into consideration 
participants’ biases for one response (presence of repetitions) or the other (absence), 
facilitating the averaging across participants. Thus, a significant deviation from 0 
indicates participants’ ability to reliably discriminate the two conditions of interest at the 
group level. d' indexes were computed for RefRN and RN conditions independently and 
for each participant (see Equations 1 and 2): 

(1)  d'
Re fRN = z(HitRe fRN ) − z(FAN )  

(2)  d'
RN
= z(Hit

RN
) − z(FA

N
) 

where z(x) corresponds to the z-score for proportion x, HitRefRN corresponds to the 
proportion of correct responses for RefRN trials, HitRN corresponds to the proportion of 
correct responses for RN trials,  FAN corresponds to the proportion of incorrect 
responses for N trials. Extreme performances (100%/0%) were adjusted to the 
equivalent of half of a single correct/incorrect response (Macmillan, 2005) to avoid 
infinite d' values. As previously shown, RefRN trials were associated to higher d’ indexes 
compared to RN trials (Figure 9-2a, top). 

Reaction times (RTs) captured also the formation of memory traces to noise. Typically, 
RefRN trials lead to faster responses, often anticipating the end of the stimulus 
presentation window (< 3.5 s; Figure 9-1a, middle). We therefore combined the 
improvement in response accuracy and rapidity using the Behavioral Efficiency (BE) 
index, which we recently developed in a similar experimental context (Andrillon et al., 
2015a). Inspired by the Inverse Efficiency Score (Townsend and Ashby, 1978), BE was 
defined as follows: 
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where RTs for RefRN and RN trials were computed from stimuli onsets. Intuitively, BE 
is increased for high d', and if the RTs to the stimulus of interest were faster than the N 
baseline. BE was higher for RefRN trials compared to RN trials (Figure 9-2a, bottom). 
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Behavioral data were analyzed in the “wake-learning” (Figure 9-2a) and “memory-test” 
(Figure 9-5) phases but not in the “sleep-learning” phases due to the absence of 
behavioral response during sleep. Trials without responses were not included in 
behavioral analyses. In the “sleep-learning” phase, RefRN targets were presented 
according to participants’ vigilance state. However, in the course of the night, some of 
these RefRN have been presented around micro-awakenings, as assessed by a double 
offline scoring (N = 38 over 100 RefRN targets in NREM-sleep and 18 over 100 in 
REM-sleep). However, the isolated presentation of NREM targets during wake can 
hardly explain the suppressive effects observed for NREM targets. Nevertheless, to 
avoid this confound and to make sure that the positive effect for REM targets could not 
be due to these awakenings, BE was computed when excluding all NREM or REM 
RefRN heard during wakefulness (Figure S 9-5), which led to identical results as in Figure 
9-5. 

 

Polysomnographic data preprocessing 

Polysomnographic data were analyzed using a combination of SPM (Functional Imaging 
Laboratory, Univ. College London, London, UK), FieldTrip (Oostenveld et al., 2011) 
and EEGlab (Delorme and Makeig, 2004) toolboxes running on Matlab (Mathworks 
Inc., Natick, MA, USA).  

Offline sleep scoring: EEG, EOG, EMG and ECG data were preprocessed according to 
established guidelines. EEG data was high-pass filtered above 0.1 Hz and then low-pass 
filtered below 30 Hz (5th order two-pass Butterworth filters). EMG data were band-pass 
filtered between [60, 80] Hz (5th two-pass Butterworth filter). In addition, EEG, EOG, 
EMG and ECG were notch-filtered around 50Hz to reduce line-noise. Fz, C3, C4, Pz 
EEG derivations were used to score sleep along ECG and chin EMG derivations. As 
described above, vigilance states were assessed online using standard guidelines (Iber et 
al., 2007) by an experienced scorer (TA) and confirmed offline on 20s-long windows by 
two scorers (TA and DL) blind to experimental conditions. Tonic and phasic periods of 
REM-sleep were scored offline, using the presence of Rapid-Eye Movements (REMs) on 
EOG derivations as a criterion for phasic REM-sleep (pREM). 20s-long windows in 
REM-sleep without any REM but presenting otherwise the markers of REM-sleep (near-
absent chin EMG tonus, absence of alpha oscillations or NREM sleep graphoelements 
such as K-complexes and sleep-spindles, presence of saw-tooth waves and theta 
oscillations) were considered as tonic REM-sleep (tREM). Table S 9-1 gives a summary 
of this scoring across participants. 

 

Sleep cycles identification: Sleep cycles were individualized using participants’ hypnograms (97 
cycles in 18 participants, 5.6 ± 0.2 per participant, mean ± SEM). Sleep cycles having 
different durations (86 ± 3.6 minutes), we normalized cycles’ length to be able to average 
variables of interest across cycles (N = 18 bins). The progression within the cycles was 
therefore expressed in percentage of the total duration (Figure 9-7 and Figure S 9-7). 76 
cycles in 18 participants were eventually included in the analysis, the others not having 
enough RefRN or RN trials (at lest 20 trials per condition and per bin, see below). Two 
participants were not included in the sleep-cycle analysis due to the difficulty of clearly 
identifying sleep-cycles. 
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Sleep rhythms detection: Slow-waves and sleep-spindles were detected in NREM sleep using 
algorithms that have been presented in details elsewhere (Andrillon et al., 2011; Nir et al., 
2011). Scalp distributions of the densities of detected events are shown in Figure S 9-6. 
For each slow-wave we extracted its onset, peak-to-peak amplitude (amplitude), down-
to-up state slope (slope), number of negative peaks and spatial expanse (i.e. for a given 
channel of reference, here Cz, and for each slow-wave, the proportion of channels 
showing also a slow-wave in a 100 ms window centered on the reference slow-wave’s 
starting point). For each spindle, we computed its frequency by extracting the peak in 
power (estimated through a Fast-Fourier Transform, FFT) within a [11, 16] Hz window. 
Spindles with a frequency below 13 Hz were declared slow-spindles and spindles with a 
frequency above 13 Hz, fast-spindles (Andrillon et al., 2011). It is worth noting that the 
slow-wave detection well replicated recent findings on the changes in slow-waves 
properties from light to deep NREM (Siclari et al., 2014; Figure S 9-7) while the spindle 
detection replicated the known frontal distribution of slow-spindles and centro-parietal 
distribution of fast-spindles (De Gennaro and Ferrara, 2003). In particular, the density of 
slow waves and the number of negative peaks robustly increased during sleep cycles (r = 
0.95 and 0.88 resp., p < 0.001) while their slope or spatial expanse decreased (r = -0.89 
and -0.95 resp., p < 0.001). In parallel, we computed the EEG learning index (ITPCRefRN 
/ ITPCRN, Figure S 9-7). The learning index negatively correlated with slow waves 
density (Pearson correlation: r = -0.67, p < 0.005) and the number of negative peaks (r = 
-0.61, p < 0.01), which is concordant with the correlation with δ-power (Figure 9-7). 
Importantly, the learning index was positively correlated to the slow-waves slope (r = 
0.55, p < 0.05) and spatial expanse, (r = 0.65, p < 0.005).  

In order to compute the percentage of trials associated with slow-waves, fast and slow 
sleep spindles (Figure 9-6b), we examined, for each trial in NREM2 and 3 stages, 
whether a slow-wave or fast or slow sleep-spindle was detected during the presentation 
of the stimulus. Each time we used an electrode of reference (green dot in Figure S 9-6) 
that corresponds to the electrode with the highest density for the corresponding 
graphoelement (slow-waves and slow spindles: Fz; fast spindles: Pz). 

EEG preprocessing: EEG data was first high-pass filtered above 0.1 Hz (5th order two-pass 
Butterworth filter) and then epoched on large temporal windows ([-14, 14] s) around 
stimulus onsets. EEG data was then low-pass filtered below 20 Hz (5th order two-pass 
Butterworth filter) and a notch-filter at 50 Hz was also applied to reduce line-noise. A 
second epoching on shorter windows was performed ([-2, 7] s). Data was corrected for 
baseline activity after each epoching by subtracting pre-stimulus activity for each EEG 
derivation. Minimal artifact rejection was applied here: trials for which the maximal 
absolute value of the EEG signal in at least one of the central electrodes (C3, C4, Cz) 
was higher than a given threshold were excluded from our analyses. Brain dynamics 
drastically changing from wake to sleep, the thresholds differed across vigilance states 
(wake and REM: 80 µV, NREM2-3: 150 µV). In this study, we focused mainly on central 
electrodes (C3, C4 and Cz in the 10-20 montage) since these electrodes showed the 
largest responses to noise (Picton, 2011) and noise-repetition (Andrillon et al., 2015a). All 
analyses were performed on these electrodes except when stated otherwise. 
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Electrophysiological (EEG) indexes of perceptual learning 

Event-Related Potentials (ERPs) analyses: We focused on either stimulus-locked (Figure S 
9-4) or target-locked (Figure 9-2, Figure 9-4) ERPs. Stimulus-locked ERPs show EEG 
potentials triggered by the transition from silence to noise irrespective of experimental 
conditions. Indeed, we here focused on the Late Auditory Evoked Potentials (AEPs, 
(Picton, 2011)) occurring within the first 500 ms following stimulus onset and therefore 
before any presentation of a RefRN or RN target (starting at 800 ms). As classically 
observed, these AEPs present stereotypical and state-dependent profiles (Picton, 2011). 

We also computed target-locked ERPs. For target-locked ERPs, the EEG signal was 
high-pass filtered above 1Hz instead of 0.1Hz to get rid of slow-drifts. These ERPs had 
the particularity to be computed within the stimulus presentation window. White-noise 
being deprived of significant fluctuations in acoustic energy of salient perceptual 
landmarks that usually trigger ERPs (e.g. silence-to-noise transition in the case of AEPs), 
any deviation from the N condition for RefRN and RN trials can be interpreted as an 
indication that the brain had detected the presence of the repeated noise segment. We 
termed the ERPs associated to repeated targets Memory-Evoked Potentials (MEPs) to 
emphasize the fact that they parallel perceptual learning (Andrillon et al., 2015a). 
Comparing AEPs and MEPs can provide means to explore the neural mechanisms 
underlying MEPs and in particular whether they share common generators. Target-
locked ERPs were first averaged from the 2nd to last target (wake trials: 4 targets per trial; 
sleep trials: 9) for each trial and then averaged across trials for each participant and 
condition. 

Time-Frequency analyses: Time-frequency decompositions were performed using the 
EEGlab toolbox (Delorme and Makeig, 2004) on the EEG data epoched around 
stimulus onsets (Figure 9-3). We employed the wavelet method. For a given scalp sensor, 
we obtained the decomposed signal (st,f) for each time point (t) and frequency (f) in its 
complex representation: 

(5)  st, f = At , fe
iϕ t , f  

where A(t,f) is the power of the EEG signal and φ(t,f) its phase at given time and 
frequency. 

Power response for each condition and vigilance state was computed by averaging across 
the corresponding trials the absolute amplitude (Figure 9-3). Power response was 
normalized by pre-stimulus-onset activity and expressed on a log-scale: 

(6)  Powert, f = log(
mean(At, f )

mean(Abaseline, f )
) 

 

Inter-trial phase coherency (ITPC) was also computed using wavelets. We focused on a 
frequency band ([1.5, 3.5] Hz) around stimulus presentation (2 Hz) based on previous 
studies (Andrillon et al., 2015a; Luo et al., 2013) and the “wake-learning” phase (see 
Figure S 9-2). ITPC describes how the phase of the EEG signal is reproducible across 
trials for a given condition and participant. Thus, high ITPC values across participants 
indicate that each participant exhibited a reproducible phase for the corresponding time 
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and frequency (for a given condition), even if the particular phase differed between 
participants. To compute ITPC, we extracted the phase of the signal for each time and 
frequency (φt,f) and averaged it across trials (n) using Euler’s formula: 

(7)  ITPCt , f = (
1

n
( cos(ϕt, f ))

2
+

n

∑
1

n
( sin(ϕt , f ))

2
)

n

∑  

 

The presence of ERPs and the increase in ITPC are tightly linked: ERPs (and MEPs) 
lead to higher ITPC values since they have a reproducible shape across trials. We recently 
showed that the increase in ITPC associated to noise-learning could be explained by the 
presence of MEPs (Andrillon et al., 2015a). However, ITPC has several advantages 
compared to ERPs: (i) it allows targeting a certain frequency range (Figure S 9-2); (ii) 
contrary to ERPs, it is not affected by high-amplitude physiological events (such as slow-
waves) or artifacts; (iii) it can capture non-time locked activity (see Andrillon et al., 2015 
for a comparison between ERPs and ITPC in the context of the noise-memory 
paradigm). We therefore focused on ITPC rather than ERPs to compute an EEG index 
of perceptual learning (Figure 9-5, Figure 9-6 and Figure 9-7). 

Such EEG index was particularly useful during sleep where behavioral responses are 
abolished, preventing the computation of any behavioral index of learning. To make sure 
that ITPC captured the variation in behavioral performance across participants and 
represented a good proxy for behavioral performance, we verified that our EEG (ITPC) 
and behavioral (BE) indexes correlated with each other (‘wake-learning” phase, Figure 
9-2d). For Figure 9-5 and Figure 9-6, we computed ITPC on identical time and frequency 
windows for RefRN and RN trials so as to better compare these conditions (ITPC was 
averaged on [1, 3.8] s and [1.5, 3.5] Hz windows over central electrodes which is in line 
the clusters observed in Figure S 9-2). In Figure 9-7 and Figure S 9-7, we targeted a 
narrower frequency range around 2Hz for ITPC ([1.5, 2.5] Hz), which was made possible 
by the increase in stimuli duration during sleep (time window: [0.8, 5.5]). 

Lastly, as can be noted in the Equation 7, ITPC depends on the number n of trials on 
which it is computed. We kept this number identical across conditions: for each 
participant and experimental phase, the condition with the smallest number of trials was 
chosen as the reference and trials were randomly picked for the other, more numerous 
conditions. During the night, ITPC was computed by dividing all sleep-cycles into fixed 
windows of 20 stimuli presentations (either RefRN and RN). This was done by cycle to 
avoid averaging data from different cycles. These fixed windows were slid trial-by-trial. 
Thus, if a cycle contained n RefRN trials, we obtained n-19 ITPC values that were then 
binned in 18 bins for each cycle (Figure 9-7b). ITCP and slow-wave power were 
computed on Cz only for Figure 9-7. 

To obtain the power spectra displayed in Figure S 9-4, we used a Fast-Fourier Transform 
(FFT) and extracted the power for all trials altogether (and not per condition). We then 
averaged it in time across the entire epoch ([-2, 7] s). 
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Statistics 

Parametric statistics were used (Student t-tests to compare pairs of variables, Pearson's 
method for correlations) when variables were normally distributed (Kolmogorov-
Smirnov test). Otherwise, we used non-parametric statistics (Wilcoxon rank-test (u-test) 
to compare conditions and Spearman's method for correlations) when data were not 
normally distributed. For Figure 9-5c, two data points were excluded from the 
correlation analysis since considered as outliers (the corresponding ITPC values 
(ITPCRefRN - ITPCRN) were outside the mean ± 2 standard-deviations range). 

Statistics used for time and time-frequency plots were corrected for multiple 
comparisons by means of a cluster-permutation approach (Maris and Oostenveld, 2007). 
The rational is the following: each cluster was constituted by the samples (in a 1D (time-
plots) or 2D (time-frequency) space) that consecutively passed a specific threshold (here, 
p < 0.05 except for Figure 9-7b where p < 0.01). The cluster statistics were chosen as the 
sum of the t-values of all the samples within the cluster. Then, we compared the cluster 
statistics of each cluster with the maximum cluster statistics of 1000 random 
permutations and obtained a non-parametric p-value (pcluster). Significant clusters are 
displayed as horizontal bars or contours on plots, pcluster are reported in the main text and 
figures’ legends. 
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Figure S 9-1 Modeled cochlear representation of RefRN/RN and N stimuli 

Output of a peripheral auditory model (Spectro-Temporal Excitation Pattern, (Moore, 2003)) for 
noise exemplars either presenting repeated segments (RN/RefRN, top) or not (N, bottom). The 
model simulates the cochlear filter, providing an estimate of the information transmitted to the 
central nervous system. In the RefRN/RN condition, the positions of repeated segments are 
indicated with black horizontal bars. 

!



Chapter 3 - Learning 

311!

!

!

!

!

Figure S 9-2 Noise-repetitions are associated with an increase in Inter-Trial Phase Coherency 
(ITPC)  

(a) Time-frequency decomposition of the difference in ITPC between RefRN (top) or RN 
(bottom) and N trials. ITPC was computed over central electrodes (C3, C4, Cz: white circles in 
panel b) and averaged across participants (N = 20) for the “wake-learning” phase (participants 
awake and responsive). Purple contours show clusters surviving a Monte-Carlo permutation test 
(pcluster < 0.05). (b) Scalp topographies of ITPC values for the RefRN (top) and RN (bottom) 
conditions when averaged over the corresponding clusters in panel a. Gray circles show, for 
comparison, the distribution of the RefRN vs. N effect observed in evoked-potentials (Memory-
Evoked Potentials, MEP, see Figure 9-2b).  

!
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Figure S 9-3 Condition-dependent modulations of sleep-depth observed in NREM2 disappear in 
NREM3  

(a) Power increase within the δ (< 5 Hz) and σ bands ([11, 16] Hz) for the RefRN, RN and N 
conditions. The power responses were computed on a [1, 5.5] s window locked to stimulus 
onsets (see Figure 9-3) and average across participants (N = 20) for NREM2 and NREM3 trials 
separately. Error-bars indicate the standard error of the mean (SEM) across participants. A linear 
model was fitted for all subpanels (RefRN / RN  / N) and the regression coefficients (β) are 
displayed for each sleep stage and frequency band. Stars atop bars indicate the significance level 
for the RefRN vs. N or RN vs. N comparisons (paired t-tests, no star: p > 0.05, (*): p < 0.05) 
while stars aside β indicate the significance level of the linear regression (ns: p>0.05, (.): p < 0.1, 
(*): p < 0.05). Finally, we compared the linear models estimated for NREM2 and NREM3 stages 
for each frequency band separately. Highly significant p-values (***: p < 0.001) suggest a 
complete disappearance of the effects observed in NREM2 with the transition to NREM3 rather 
than a mere decrease in effects’ magnitude. 

!
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Figure S 9-4 Differences in Auditory-Evoked Potentials (AEPs) and spectral profiles across sleep 
stages  

(a) Electroencephalographic (EEG) signal time-locked to stimuli onset and averaged across 
participants (N = 20) for the “sleep-learning” phase. Stimuli were collapsed across experimental 
conditions. Curves show the Event-Related Potentials (ERPs) associated to the silence-to-noise 
transition across participants. Note the canonical evoked potentials (Auditory-Evoked Potentials, 
AEPs, Picton, 2011). These AEPs differed between vigilance states. 1st row: Wake AEP with 
typical N1 and P2 components; 2nd row: NREM2 AEP with the N1 component replaced by a 
high-amplitude positive component; 3rd row: NREM3 AEP similar as NREM2; 4th row: REM 
AEP characterized by the disappearance of the N1 component bringing the preserved P1 and P2 
components out. Shaded areas around curves indicate the standard error of the mean (SEM) 
computed across participants. Insets show the scalp topographies of the component marked with 
a black horizontal bars. Note that given the time-window considered, these AEPs only reflect the 
silence-to-noise transition since the window ends before the presentation of repeated targets. (b) 
Power spectra computed across participants for the “sleep-learning” phase using a Fast-Fourier 
Transform (FFT). Power was normalized and expressed in decibels (dB). Note several deviations 
from the 1/f trend. These increases in certain frequency bands depend on the vigilance state: 
wake was characterized by an increase within the α band ([8, 10] Hz) and β band ([20, 40] Hz), 
NREM sleep by an increase within the δ band (< 5 Hz) and σ band ([11, 16] Hz) and REM-sleep 
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by an increase within the θ band ([4, 8] Hz). (c) Scalp distributions of the power in different 
frequency bands for the appropriate vigilance state (wake: α, β; NREM: δ, σ; REM: θ). Power 
was z-scored across sensors in order to stress the differences in the spatial distribution of these 
brain rhythms. (d) Power averaged across the abovementioned frequency bands and for each 
vigilance state for electrode Cz. As classically observed, the transition from wake to NREM2 is 
characterized by the disappearance of α and β rhythms replaced by an increase in δ and σ bands 
corresponding to the apparition and multiplication of NREM-sleep hallmarks that are slow-
waves and sleep-spindles. Transition to REM-sleep is characterized by the partial recovery of α 
and β rhythms as well as the emergence of strong θ oscillations. Thus the vigilance states here 
investigated correspond to drastically different brain states.  
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Figure S 9-5 The positive effect of REM-sleep and negative effect of NREM-sleep in the 
“memory-test” is conserved when excluding sleep RefRN trials heard around (micro-)awakenings 

Figure 9-4a shows the RefRN vs. RN contrast on the behavioral efficiency (BE) index computed 
in the “memory-test” that participants underwent upon awakening. In particular, we showed in 
Figure 9-4a an increase in performance for RefRN items heard in REM-sleep. To check that this 
effect is not due to the few RefRN targets that were presented around (micro-)awakenings, the 
very same analysis was performed, this time excluding these items (see SI). BE was computed 
separately for RefRN heard during wakefulness, REM, NREM or new RefRN. Error-bars denote 
the SEM across participants (N = 20) and stars atop bars indicate the results of the statistical 
tests (t-tests against 0, p < 0.005: ***; p < 0.01: **; p < 0.05: *, ns: p≥0.05). Note that the exact 
same pattern of results was observed as in Figure 9-4a ruling out the possibility that our effect is 
driven by such RefRN targets.  

!

!

!

!
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Figure S 9-6 Correlations between slow-waves, fast and slow spindles overnight and the EEG 
learning index upon awakening 

1st row: scalp distribution of slow-waves (left), slow-spindles (spindle frequency: [11, 13] Hz, 
middle) and fast-spindles (spindle frequency: [13, 16] Hz, right) densities as detected using 
dedicated algorithms (see SI for details). Note the typical frontal predominance of slow-waves 
and slow spindles and the centro-parietal predominance of fast spindles. Green dots show the 
electrodes with the highest densities: Fz for slow-waves and slow spindles, Pz for fast spindles. 
2nd row: scalp distribution of Pearon’s correlation coefficients computed between the EEG 
learning index (ITPCRefRN - ITPCRN) and slow-waves (left), slow-spindles (middle) and fast 
spindles (right) densities (across participants). Non-significant (p>0.05, uncorrected) coefficients 
were set to 0. Note that the EEG learning index was positively correlated with the density of 
slow-waves and negatively correlated with frontal spindles over regions known to be involved in 
noise-learning during wakefulness (gray circles showing the distribution of the RefRN vs. N 
effect observed in evoked-potentials in wakefulness, Figure 9-2b). Importantly these distributions 
were not centered on the peak of the scalp distribution for the corresponding sleep rhythms. 
There was no significant correlation between fast spindles and the EEG learning index (all p > 
0.05).  
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Figure S 9-7 Slow-waves characteristic are modified from light to deep NREM-sleep 

1st row: Evolution along sleep cycles of some properties of the slow-waves detected in NREM 
sleep (NREM2-3, N = 76 in 18 participants, see SI). Seep cycles were binned in order to 
normalize their length. Progression within the cycles is expressed in percentage (see also Figure 
9-7). While density and the number of negative peaks increased within cycles, the slope and 
spatial expanse (i.e. proportion of sensors affected by a given slow-waves, see SI) decreased. 2nd 
row: Correlations between the slow-waves parameters and the EEG learning index (ITPCRefRN 
/ ITPCRN) computed as in Figure 9-7b. The learning index was negatively correlated with slow-
waves’ density and the number of negative peaks but positively correlated with slow-waves slope 
or spatial expanse. Thus, the suppressive effect observed in deep NREM-sleep corresponds to 
the appearance of more numerous but also more local slow-waves (type-II slow-waves, Siclari et 
al., 2014). Pearson’s correlation coefficients were computed between each slow-waves parameter 
and cycle-progression (top) or ITPC (bottom) and are displayed on each graph. Dotted lines 
show linear regressions between the pairs of variable. Stars indicate the significance level of the 
correlation coefficients (*: p < 0.05, **: p < 0.01, ***: p < 0.005).  
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 Wake NREM REM total 

  NREM1 NREM2 NREM3 tREM pREM  

duration 220 50.1 200 110 49.2 29.8 659 

(min.) (9.4) (4.7) (8.4) (6.8) (3.3) (3.4) (8.7) 

% 33 7.5 30 16 7.4 4.4  

 (1.31) (0.73) (1.18) (0.90) (0.52) (0.49)  

Table S 9-1 Results of the sleep scoring 

Sleep was scored as wakefulness, NREM (Non-Rapid-Eye Movement) sleep stage 1 (NREM1), 
NREM-sleep stage 2 (NREM2), NREM-sleep stage 3 (NREM3), tonic REM-sleep (tREM) and 
phasic REM-sleep (pREM) according to established guidelines (Iber et al., 2007). Numbers refer 
here to the average across participants (N = 20). Numbers in brackets refer to the standard error 
of the mean computed across participants. The “wake-learning” and “memory-test” phases were 
here included (entire recording session), which explain the extent of the wake periods. 
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During my doctoral work, I have attempted to study sleep from physiology to cognition 
and from single-units recordings to whole-brain activity. I have used sleep as an 
experimental tool to manipulate consciousness but also focused on sleep in itself. 
Despite the variety of approaches developed, all the studies presented here emphasize 
the importance of considering sleep as a dynamic process. Local aspects of sleep in time 
and space are to be investigated in order to understand sleep’s mechanisms and 
functions. Thus, sleep and wake, rather than being two mutually exclusive states, are 
better represented as a gradient whose balance is self-regulated.  

Here, I will discuss the functional implications of sleep’s local aspects illustrated in 
Studies 1 to 3. I will present wake and sleep as a continuum rather than immiscible states. 
A direct consequence is that intrusions of sleep rhythms in the awake brain will affect 
behavior. Conversely, intrusions of wake activity in the sleeping brain could allow for the 
recovery of wake-like processing.  

And indeed, I presented in Studies 4 to 6 how the sleeping brain can complexly process 
external information, as when awake. But the sleeping brain is not completely pervasive 
to external output either. I will thus discuss the potential mechanisms allowing the 
coupling or decoupling of the sleeping brain with its environment. 

Finally, in Studies 7 to 9, I investigated whether the sleeping brain could learn new 
information while sleeping. While possible, such learning contrasts with the rapidity and 
automaticity of mnesic processes occurring when we are awake. I will discuss the 
different theoretical proposals that could explain this contrast and propose a synthetic 
account of the role of sleep in memory and plasticity.   
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Local sleep and its functional consequences 

Slow-waves: the hallmark of NREM sleep or neuronal fatigue? 

Slow-waves are an iconic EEG pattern. Among the first brain rhythms to be identified 
(Loomis et al., 1935), only a few years after the invention of the EEG (Berger, 1929), 
they are the largest non-pathological neural events that can be recorded on the scalp, 
with peak-to-peak amplitudes exceeding 100µV. The mechanisms underlying these waves 
have been extensively investigated in the past, notably in the laboratory of Mircea 
Steriade (Mircea Steriade, 2003). Slow-waves are the resultant of neurons’ bi-stable 
membrane potential ((Steriade et al., 2001), Figure 10-1) and are characterized by a down-
state (or OFF period corresponding to the silencing of neuronal assemblies) followed by 
an up-state (during which units recover wake-like activation levels). These down and up-
states typically alternate every second in deep NREM sleep when slow-waves trains are 
continuous (a form of sleep often referred as Slow-Wave Sleep (SWS)).  

 

Figure 10-1 Slow-waves, from single neurons to cortical networks 

At the network level, slow-waves are characterized by positive and negative peaks alternating 
every second or so. This 1Hz oscillation translates into ON and OFF states at the neuronal 
population level, during which vast neuronal assemblies are silenced (OFF states) or get activated 
(ON states) in synchrony. These ON and OFF states (also referred as UP and DOWN sates) are 
clearly visible at the level of the single neuron. Neurons’ membrane potentials oscillate indeed 
between two values. The UP period allows the emission of action potentials while the DOWN 
state represent a period of hyperpolarization in which no action potential can be initiated. From 
(Vyazovskiy and Harris, 2013). 

I will not dive here into the details of the generation of slow-oscillations (see (Mircea 
Steriade, 2003)). Briefly, slow-waves are thought to be the result of a modification of the 
excitation/inhibition balance in cortical networks. The activations of neurons is 
accompanied by the build-up of slow adaptative currents, which would ultimately force 
the neurons in an hyperpolarized silent state (Compte et al., 2003). This bistable dynamic 
seems to be established by changes in the level of critical neuromodulators such as 
Acetylcholine (Riekkinen et al., 1991). The emergence of slow-waves would be therefore 
due to a global change in brain chemistry, which could explain why the brain falls in 
NREM sleep as a whole.  
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However, recent research has tempered the relationship between NREM sleep and slow-
waves. Indeed, slow-waves have been found in other states than NREM sleep: in 
wakefulness after prolonged sleep deprivation (Vyazovskiy et al., 2011) and recently in 
the superficial layers of primary cortices in REM sleep (Funk et al., 2016). Although the 
mechanisms underlying the presence of slow-waves outside NREM sleep are currently 
unknown, these findings reveal that slow-waves cannot be seen as a signature of NREM 
sleep, and are not uniquely triggered by the changes in neuromodulation occurring at 
NREM sleep onset. Rather slow-waves might be seen as a marker of neuronal fatigue. 
According to the ‘excitable model’ and as presented above, down-states are triggered 
following the build-up of hyperpolarizing conductances. Down-states can therefore be 
seen as a consequence of the up-states. It is therefore possible that prolonged periods of 
sustained activity (i.e. wakefulness) would also affect the excitation/inhibition balance at 
the cell level and increase the probability that an OFF state would occur (Vyazovskiy and 
Harris, 2013). According to this view, neuronal bi-stability could be achieved through 
both systemic changes and local changes in the excitation-inhibition balance. Slow-waves 
can therefore be seen as a use-dependent process (Tononi and Cirelli, 2014).  

Numerous experimental studies are concordant with the view that slow-waves are 
modulated in a use-dependent fashion. First, slow-wave activity (SWA) has often been 
taken as a proxy for homeostatic pressure (Borbely and Achermann, 1999): the more an 
individual has been awake, the larger the SWA. Reversely the more an individual has 
been asleep, the lesser the SWA and the shorter are the OFF periods (Riedner et al., 
2007; V. V. Vyazovskiy et al., 2009). Second, the time spent awake is not the only 
predictor of SWA. Rather, SWA depends on prior activity in a use-dependent fashion 
and can be locally modulated (which provides a powerful control for effects related to 
the circadian cycle and time spent awake). Huber and colleagues showed, in a seminal 
study, that cerebral regions involved in a motor learning task will express larger amounts 
of SWA than regions that were not involved in the extensive practice of the task (Huber 
et al., 2004)6. A mirror-study has shown that the immobilization of an arm led to a 
reduction of SWA in the corresponding somatosensory areas (Huber et al., 2006). These 
activity-dependent modulations of slow-waves could again be interpreted within the 
framework of the ‘excitable model’, with a use-dependent modification of the 
excitation/inhibition balance at the single-unit level during the wake period (Vyazovskiy 
and Harris, 2013). 

 

From local to global or from global to local? 

This link between prior activity and the occurrence of slow-waves could explain the 
emergence of slow-waves during wakefulness as well as the fact that the modulation of 
SWA can be local. But a paradox remains: slow-waves appear to be more global in early 
NREM sleep and more local in later NREM sleep (Siclari et al., 2014a). If SWA builds 
upon previous wakefulness, the reverse should be observed. Sleep onset should be 
characterized by the apparition first of local slow-waves becoming more and more global. 
However, when recording sleep onset, the first slow-waves to be seen are usually the 
largest. An interaction between the homeostatic and circadian processes (see 
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6 Importantly, this regional increase in SWA was predictive of the performance gain upon awakening, 
which links slow-waves not only to the prior period of wakefulness but to the restoration or improvement 
in the ensuing period of wakefulness. 
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Introduction, (Borbély, 1982)) could explain this complex pattern. Local slow-waves 
would occur after prolonged wakefulness due to the homeostatic pressure (see 
Introduction). But we usually go to bed before reaching such a state of sleep deprivation. 
We typically fall asleep at a given time of the day in accordance with our circadian 
rhythms. At sleep onset, the circadian process would thus introduce a global change in 
the chemistry of the brain, favoring the apparition of large and global slow-waves. Then, 
these slow-waves will get more and more local with the dissipation of the homeostatic 
pressure.  

 

Local slow-waves and information processing 

During slow-waves, neurons go silent for an instant. Such hyperpolarized state logically 
affects brain’s internal computations. In a very important study, Vlad Vyazovskiy and 
colleagues showed that the occurrence of local slow-waves impairs the behavior in a task-
dependent fashion (Vyazovskiy et al., 2011). The generalization of such down-states is 
likely to prevent any complex processing of information in NREM sleep (see p325-326). 
Reversely, the fact that slow-waves can be local could provide periods in which some 
brain regions are not affected by slow-oscillations (Nobili et al., 2012), allowing them to 
recover wake-like processing abilities. Of course, since we used scalp EEG recordings, 
we cannot directly test this hypothesis in our data since (i) slow-waves recorded on the 
scalp are likely to be global events (Study 1, (Nir et al., 2011)), (ii) scalp EEG recordings 
are not precise enough for us to know whether a given brain region is not affected by a 
slow-wave. However, we observed in independent datasets (Studies 5 and 9) that the 
processing of external information was paralleled by a local decrease in slow-wave or 
spindle power. Importantly, the timing of these modulations corresponded to the timing 
of the EEG indexes of information processing and the scalp distribution overlapped 
with the areas involved in these sensory processes. It is therefore possible that this local 
lightening of sleep depth, in time and space, traduces a form of local sleep allowing 
sensory processes to be completed. 

However, we face here again a paradox. As we said earlier, slow-waves tend to be more 
global at sleep onset and more local afterwards (Siclari et al., 2014a). Yet, we found in 
Studies 5 and 9 that indexes of responsiveness to the environment were stronger at the 
beginning of NREM sleep cycle and disappeared with slow-waves becoming more 
numerous but more local. First of all, it should be reminded that in light NREM sleep, 
although slow-waves comprise mostly K-complexes which are global but discrete events, 
the vast majority of light NREM sleep is deprived of slow-waves (>80% by definition 
(Iber et al., 2007)). We showed in Study 5 that the integrated processing of information 
was possible only when such slow-waves were absent. Second, the apparition of local 
slow-waves in deep NREM sleep does not mean that sleep is lighter. On the contrary, in 
deep NREM sleep, slow-waves are more numerous, appear in trains, SWA is higher but 
slow-waves tend to be more local (Siclari et al., 2014a). This spatial fragmentation of 
slow-waves could be due to the breakdown of cortico-cortical connectivity taking place 
in NREM sleep (Massimini et al., 2005). This loss of connectivity would similarly impair 
the processing of information in brain regions not showing slow-waves. Thus, the 
relationship between local sleep and information processing is complex and a difference 
should be drawn between ‘systemic’ local sleep (that could stem from a loss of 
connectivity within the brain) and induced local sleep (that could traduce a stimulus-
driven local awakening allowing information processing). 
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The case of sleep spindles 

Sleep spindles, a waxing-and-waving oscillations between 11 and 16 Hz and lasting for 
0.5 to 2 s on average, is also a distinctive feature of NREM sleep (De Gennaro and 
Ferrara, 2003). As slow-waves, sleep spindles were thought to be rather global events. 
Indeed, sleep spindles are a thalamo-cortical oscillation whose pacemaker is in the 
thalamus (Mircea Steriade, 2003). Thalamic nuclei having widespread projections to the 
cortex, sleep spindles were thought to appear synchronously over the entire neocortex. 
In Study 2, we showed that this was not necessarily the case (Andrillon et al., 2011). As 
slow-waves, sleep spindles can be local. As slow-waves (Massimini et al., 2004), sleep 
spindles travel, potentially reflecting the traveling of spindle oscillations within the 
thalamus (Andrillon et al., 2011). We argued in Study 2 that sleep spindles actually reveal 
thalamo-cortical connectivity and how the various thalamic nuclei project to the cortex.  

Thus, contrary to slow-oscillations, the spatial expanse of sleep spindles does not reflect 
different synchronization processes at the cortical level. Rather, local aspects of sleep 
spindles recorded in cortical areas (spatial expanse, frequency) could reflect the activity of 
the thalamic nuclei projecting to them (Andrillon et al., 2011). The predominance of slow 
spindles in frontal areas could be therefore due to (i) the fact that anterior thalamic nuclei 
project predominantly in frontal areas (Jones, 2007), and to (ii) the fact that anterior 
thalamic nuclei have a slightly hyperpolarized membrane potential that would affect 
spindle frequency (McCormick and Bal, 1997; Mircea Steriade, 2003). Likewise, different 
generators at the thalamic level could explain the presence of local and global spindles. 
Indeed, thalamic relay cells can be divided in core and matrix cells, i.e., cells projecting 
rather focally on a given cortical regions or cells projecting broadly respectively (Jones, 
2007). Thus, the differential involvement of core and matrix cells could give rise to local 
or global spindles.  

The fact that sleep spindles properties seem to mostly reflect the activity of the 
underlying thalamic generator rather than properties of the cortical regions in which it is 
expressed is of importance when considering the function of sleep spindles. Depending 
on which thalamic nuclei and which cell type is involved in the generation of a spindle, 
the spindle oscillation could target a focal or broader cortical network. The ability to 
target and produce spindles locally advocate for their role in the active consolidation and 
transfer of memories form the hippocampal storage to the neo-cortex (Diekelmann and 
Born, 2010), which was harder to conceive with global spindles. Accordingly, we found 
that spindles correlated with the learning of new information during sleep (Study 9), 
which resonate with the many studies showing a correlation between memory 
consolidation this time and sleep spindles (Rasch and Born, 2013). Such potential 
involvement in both memory formation and consolidation could point toward a more 
general involvement of sleep spindles in synaptic plasticity, as demonstrated in vitro 
(Rosanova, 2005). 

On the other hand, the fact that sleep spindles are mainly local events temper the notion 
that spindles serve to isolate sleepers from their environment (McCormick and Bal, 1994; 
Schabus et al., 2012; Yamadori, 1971) (see (De Gennaro and Ferrara, 2003) for a critical 
review). While global spindles could indeed block sensory information at the thalamic 
level (Schabus et al., 2012), more local spindles could allow a partial relay of the incoming 
sensory information. Consistent with this idea, we observed in Study 6 that sleep spindles 
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moderately affected our ability to reconstruct auditory inputs from brain activity. This 
result is not surprising when considering how little cortical units’ firing rate is affected by 
the occurrence of sleep spindles (Contreras and Steriade, 1996; Peyrache et al., 2011) (in 
Study 2, we observed rather a phase-locking of neuronal discharges to the spindle phase 
(Andrillon et al., 2011; Peyrache et al., 2011)). A recent study from Yuval Nir’s group 
showed that even when a spindle was detected within the primary auditory cortex, the 
encoding of external information was preserved (Sela et al., 2016). Thus, contrary to 
slow-waves, sleep spindles, local or global, could have in the end little effect on sensory 
processing. 
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Gating sensory information during sleep 

Breaching the thalamic gate 

The fact that sleepers get disconnected from their environment is perhaps the most 
striking consequence of sleep. Stimuli that would generally trigger a behavioral response 
leave the sleeper absolutely still and somewhat vulnerable. ‘How’ and ‘why’ such 
disconnection occurs has been on the spotlight of sleep research for decades. In the 90s, 
McCormick and Bal proposed the so-called ‘Thalamic Gating Hypothesis’ (McCormick 
and Bal, 1994). Their proposal was both straightforward and elegant: first, most of 
sensory input are relayed through the thalamus before reaching the cortex (Jones, 2007); 
second, NREM sleep is characterized by a modification in the activity of cortico-thalamic 
loops (Mircea Steriade, 2003); thus, the thalamus could gate external input in NREM 
sleep. Such pivotal role of the thalamus could have also explained the loss of 
consciousness associated with NREM sleep since the contemporary ‘Dynamic Core 
Hypothesis’ (Tononi and Edelman, 1998) attributed a central role to thalamo-cortical 
loops in the emergence of consciousness.  

Investigation of the brain response to external inputs during sleep have proved to be 
inconclusive for a long time: many studies reported reduced responses to external stimuli 
during sleep, while many other showed their preservation (see (Hennevin et al., 2007) for 
a review). But a recent set of well-controlled studies reported a faithful encoding of 
auditory information (compared to wakefulness) during NREM and REM sleep (Issa and 
Wang, 2008; Y. Nir et al., 2013; Sela et al., 2016), although with some potential 
distortions (Issa and Wang, 2011). The investigation of cerebral responses to sounds at 
the whole-brain level helped clarifying the scope and limits of thalamic gating. Indeed, 
fMRI and EEG data showed that sensory information can be encoded and processed 
passed the thalamus (Atienza et al., 2001; Bastuji, 1999; Hennevin et al., 2007; Portas et 
al., 2000). Nonetheless, external input could be effectively blocked at the thalamic level 
whenever they co-occur with sleep spindles or down-states of slow-oscillations (Schabus 
et al., 2012; Yamadori, 1971) although these results may conflict with single-cell 
recordings (Sela et al., 2016). Overall, empirical evidence indicates that the thalamic 
gating can be breached during sleep.  

An interesting question is whether sensory disconnection can be modulated. It is quite 
common to experience exceptionally light sleep before an important and stressing event 
(professional meeting, travel). This deterioration of sleep quality can lead to objective or 
subjective7 sleep insomnia (Attarian, 2004). Interestingly, this can be accompanied by a 
decrease in delta power (i.e. SWA, (Dijk, 2010)) and the presence of alpha ([8-11]Hz) or 
beta (>20Hz) oscillations superimposed with slow-waves (alpha-delta sleep, (Hauri and 
Hawkins, 1973)). Such pattern of activity is called ‘hyperarousal’ (Perlis et al., 1997; 
Riemann et al., 2010). Although the associated mechanisms are unknown, it can be 
interpreted as a failure of the brain to stop endogenous and exogenous processing. Such 
abnormal maintenance of brain excitability could explain the increased level of alpha and 
beta rhythms. It could also explain the subjective feeling of not having slept. 
Interestingly, a direct prediction of the hyperarousal model is that the processing of 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

7 Also called sleep state misperception or paradoxical insomnia, subjective insomnia refers to the feeling of 
not having slept in contradiction with objective sleep assessment such as polysomnographic or actigraphic 
recordings (Attarian, 2004). 
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external information should be facilitated during sleep in these individuals. Accordingly, 
when recording participants during the full-night paradigm presented in this manuscript, 
I observed that some participants were able to overtly respond (i.e. press the response 
buttons) even in NREM2 without showing other signs of arousal in the 
polysomnographic recordings. Interestingly, these participants reported episodes of 
subjective insomnia8. The small number of such cases does not allow drawing any 
definite conclusion but this angle may be further investigated in the future. The coupling 
of ERP indices of responsiveness with the extraction of brain signal’s complexity (as in 
Study 5) would indicate whether increased processing abilities are associated with 
increased complexity and perhaps even awareness of the stimuli being presented. More 
generally, it would be of great interest to explore the inter-individual differences in the 
ability to process external information (or on the contrary to isolate from it) during sleep. 

Such a modulation of sleepers’ connectedness is what we eventually tried to achieve 
when using our induction paradigm (see Studies 4-7,9). Indeed, in these studies, 
participants initiated the task (that we wanted to investigate in sleep) while being awake. 
The reason was two-fold. First, we aimed at bypassing the pre-frontal de-activation 
taking place in sleep so that participants only had to continue the task initiated in 
wakefulness (while their cognitive abilities were optimal) rather than to initiate the task 
while being already asleep (Kouider et al., 2014). Second and more importantly here, we 
wanted to prime participants to pay attention to external stimuli. Task instructions 
stressing the fact that stimuli would be played during sleep and that participants were 
expected to respond to them whenever possible, our assumption was that the 
experimental setting would increase the probability that sleepers would process the 
acoustic stimuli (Wood, JM, 1990). Although our data argue in favor of this hypothesis, it 
remains to be further tested.  

 

Neuronal bi-stability impairs information processing 

In the previous section, we have seen that the thalamic gating of sensory information 
could be breached during sleep. Yet, we are usually not aware of what happens in our 
surrounding environment when we sleep. How is such sensory isolation performed if 
sensory information does reach the cortex? An alternative hypothesis posits the existence 
of a cortical gating rather than a thalamic gating. Such hypothesis is based on the 
TMS/EEG studies developed by Marcello Massimini and colleagues (Massimini et al., 
2009a, 2009b). In these studies, volunteers were stimulated through TMS pulses. Such 
pulses transiently perturb brain activity and this perturbation is recorded through the 
EEG. The idea here is that the imposed electrical activity will percolate in the brain 
following the brain effective connectivity at the moment of the stimulation. TMS pulses 
can therefore reveal how information can propagate in a given state. Interestingly, the use 
of a massive and non-physiological perturbation such as a TMS pulse can better unravel 
the ‘open tracks’ present in the brain than a sensory stimulation that will be constrained 
by its modality (i.e. auditory stimulation will say little on the connectivity within the visual 
system).   

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8 These participants were not included in the final analyses. The recording session had to be terminated, 
participants complaining that auditory stimulations prevented them from sleeping. 
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These TMS/EEG studies evidenced a breakdown of functional connectivity after sleep 
onset (Massimini et al., 2009b, 2005). More precisely, stimulation initiated in a given 
brain area tended to stay within this area, which contrasts with the long-range 
propagations observed in wakefulness. This can be interpreted as a reduced cortico-
cortical connectivity. How does this relate to the processing of sensory information? As 
the TMS pulses, it is likely that sensory information will have a reduced ability to 
propagate within the cortex during NREM sleep. Thus, even if sensory information can 
breach the thalamic gate and reach the primary sensory cortices, it will tend to stay there, 
preventing the further processing of information. This could explain why sleepers are not 
aware of sensory information during sleep, in fact, why they are not conscious at all 
(Tononi and Massimini, 2008). 

What is the mechanisms preventing the cortical cross-talk in NREM sleep? As others 
before, I will argue that slow-waves are mainly responsible for this breakdown of cortical 
connectivity (Massimini et al., 2012). Indeed, as discussed earlier, slow-waves entail OFF 
periods during which vast neuronal assemblies are silenced. Such periodic (or transient) 
silencing would stop any computation that would have been in progress, preventing the 
integrated processing of information in time and space, just as TMS pulses are limited in 
their propagation in time and space. Accordingly, we found in Study 5 that, when down-
states were absent, acoustic information could be processed up to the decision level, that 
is to say, across a distributed set of brain regions and on a temporal window of few 
seconds. These processes were stopped by the occurrence of down-states. Similarly, the 
group of Marcello Massimini has recently found that slow-waves break deterministic 
processes (that is to say causal relationship between computational processes), a 
phenomenon that would again prevent the integration of information (Pigorini et al., 
2015). 

Interestingly, down-states are often evoked by external stimulation and were thus often 
seen as a mechanisms protecting the sleeper from external stimulations (Bastien et al., 
2000; Wauquier et al., 1995). In Study 5, we analyzed more in depth the dynamic of brain 
responses to sounds and its consequences on the further processing of information. In 
NREM sleep, we observed that sound onset was followed by an initial positive potential 
in the EEG (P200), often interpreted as a marker of local stimulus-dependent excitability 
(Laurino et al., 2014). And indeed, this P200 correlated positively with markers of 
responsiveness when down-states were absent. Interestingly, this correlation was 
reversed when down-states followed the P200. One interpretation is that the P200 can 
trigger down-states in a certain proportion of trials. Indeed, it has been shown that 
down-states are preceded by a transient excitation (Menicucci et al., 2013). According to 
this idea, in NREM sleep, the brain offers a bistable mode whereby the stimulus-evoked 
excitation is followed or not by a down-state. The down-state (when elicited) will in turn 
gate sensory processes. It is worth pointing that contrary to the P200, the down-state (or 
N550) is not modality-dependent but originate mostly in frontal cortices (Colrain et al., 
1999; Laurino et al., 2014; Riedner et al., 2007). Thus, the P200 would not only trigger an 
associated suppressive mechanism, but this suppressive mechanisms will occur in frontal 
areas, which will efficiently prevent awakening and awareness of the stimulation. Indeed, 
frontal areas are known to play a central role in the broadcasting of information within 
the cortex (Dehaene, 2014; Dehaene et al., 2006). 

But what determines whether a down-state will be evoked by the stimulus? Just as 
spontaneous bi-stability, this evoked bi-stability will be under the control of the 
homeostatic and circadian processes (Borbély, 1982; Vyazovskiy and Harris, 2013). 
Accordingly, we found a reduced ability to process information from light to deep 
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NREM sleep, but a recovery of these processing abilities toward the end of the sleep 
cycles, when sleep depth and homeostatic pressure lighten (Study 5). Thus, NREM sleep 
can be seen as a state where sensory stimulation will induce a competition between 
excitation and inhibition and where the completion of sensory processes will depend 
toward which side the balance topples. The preservation of processing abilities in light 
NREM sleep would also make sense in the light of the reduced sleep inertia associated to 
this state in case of an awakening (Tassi and Muzet, 2000). Such reduced sleep inertia 
would allow the individual to appropriately react to a potentially relevant stimulus, 
contrary to deeper stages of NREM sleep. 

But this interpretation of evoked oscillations as a protective mechanisms from external 
stimulation seems to contradict not only previous findings (Destexhe et al., 2007; Halasz, 
2005) but also the results of Study 6, in which we found that information processing and 
attention allocation were enhanced after K-complexes (after a transient suppression). I 
will argue though that the results of Study 5 (showing a suppression of sensory processes 
when K-complexes are evoked) and Study 6 (in which the processing of information 
seem enhanced after K-complexes) can be interpreted within the same framework. 
Indeed, I have focused so far on experimental settings in which acoustic stimuli were 
played in isolation and argued that processing of stimuli is blocked whenever a down-
state is elicited. In Study 6, the stimulation was continuous. Interestingly, down-states are 
usually followed by up-states, which may represent, according to Alain Destexhe and 
colleagues (Destexhe et al., 2007), ‘fragments’ of wakefulness within sleep. In the case of 
continuous stimulation, acoustic information is therefore presented to the sleeper during 
such up-states, potentially enabling the processing of information. And indeed, Manuel 
Schabus and colleagues showed that the sleeping brain was more sensitive to sensory 
information in the up-state of slow-oscillations (Schabus et al., 2012).  

These considerations can actually lead to an ecological model of how the brain regulates 
the monitoring of its surrounding environment during sleep. Indeed, the brain faces a 
dilemma when asleep: how to benefit from the restorative consequences of slow-wave 
sleep without being forced in a state of unresponsiveness when a potential threat 
materializes. Peter Halász sees K-complexes as a central element in this regulation of 
sleep in face of external perturbations (Halász, 2016). Accordingly, I here argue that K-
complexes could help solving this issue in an optimal way. Thus, in the case of isolated 
perturbations, a K-complex would shut down the processing of these perturbing inputs 
in order to preserve sleep (see above). But the suppression is followed by an up-state, 
which will allow processing acoustic information, in case the initial sound (which elicited 
the K-complex is the first place) is followed by another sound. Indeed, relevant stimuli 
(like a predator approaching or someone calling) are not expected to happen in isolation. 
On the contrary, stimuli worth being processed would happen in succession. For these 
potentially interesting stimuli, the sleepers would actually put themselves in the position 
of processing them.  

!

Dreams gate sensory information in REM sleep? 

In REM sleep, the brain is also disconnected from its environment. Thus, despite the 
associated recovery of consciousness and a brain activity close to wakefulness (Yuval Nir 
et al., 2013), external stimuli are rarely incorporated to the flow of conscious thoughts 
that constitute our dreams (Nir and Tononi, 2010). Responsiveness to external stimuli is 
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abolished and arousal thresholds are high (Ermis et al., 2010). So, if REM sleep 
resembles so much wakefulness, how is sensory disconnection achieved? The exact 
mechanisms are yet unknown but few recent studies can help proposing potential 
mechanisms. 

In a recent study (Funk et al., 2016), Funk and colleagues recorded LFP within the 
superficial layers of primary sensory cortices and, surprisingly, observed that slow-waves 
occur not only in NREM sleep but also in REM sleep in these layers specifically. This 
discovery (despite decades of physiological investigation of sleep) is both surprising and 
of high interest for sensory disconnection. Indeed, the superficial layers of the primary 
cortices represent the main point of entry of sensory information after the thalamic relay 
(Jones, 2007). Therefore, these slow-waves could perturb the transmission of sensory 
information to the neo-cortex, establishing an early cortical gating. In parallel, since REM 
sleep is characterized by a recovery of cortico-cortical connectivity (as evidenced by 
TMS/EEG studies, (Massimini et al., 2010)), the integration of information within the 
isolated cortex could explain the occurrence of conscious thoughts (dreams) isolated 
from the external world (see Introduction). 

However, these slow-waves cannot fully explain the sensory disconnection. First, their 
impact on the encoding of incoming stimuli by primary cortices is unknown as well as 
the underlying mechanisms (do they entail periods of neuronal silencing?). Second, 
several studies showed that external inputs do actually reach the cortex during REM 
sleep (Edeline et al., 2001; Y. Nir et al., 2013; Peña et al., 1999) and that some ability to 
process sensory information is preserved (Bastuji, 1999; Hennevin et al., 2007). The 
cortex in REM sleep is therefore not completely disconnected from its environment. 
Accordingly, we showed in Studies 5 and 9 that sensory information could be processed 
and learnt in REM sleep. But, if sensory information reaches the cortex during REM 
sleep and if cortical activity favors the integrated processing of information, why are we 
not aware of these external stimulations? 

The results obtained in Study 5 could shed a new light on this question. We indeed found 
that EEG markers of response preparation (and thus of the completion of the stimulus 
processing) negatively correlated with the complexity of the brain signal (as estimated 
through the Lempel-Ziv algorithm (Schartner et al., 2015; Ziv and Lempel, 1977)). This 
is the opposite of what we found in wakefulness and even NREM sleep. Interestingly, 
complexity has been proposed as a proxy for measuring levels of consciousness. Using 
complexity, different teams have been able to track the modulation of consciousness 
levels during sleep and anesthesia and in patients with disorders of consciousness 
(Abásolo et al., 2015; Casali et al., 2013; Sarasso et al., 2015; Schartner et al., 2015). The 
fact that complexity negatively correlates with the ability to process external information 
in REM sleep could mean that the consciousness level antagonizes with sensory 
processing in REM sleep specifically. A potential mechanism could be a competition for 
brain computing resources between the endogenously generated contents (i.e. dreams) 
and the exogenous information (i.e. stimuli). The inability to process information in 
REM sleep would therefore stem from a form of ‘informational gating’.  

Such a competition has been proposed by Yuval Nir and Giulio Tononi who argue that 
REM sleep would be characterized by the dominance of top-down over bottom-up 
signaling, which would isolate sleepers and conscious contents from external inputs (Nir 
and Tononi, 2010). However, direct evidence for the dominance of top-down 
information in REM sleep is still missing. But the presence of slow-waves in primary 
cortices could participate to the attenuation of bottom-up perturbations (Funk et al., 
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2016). In Study 5, we further showed that higher complexity (and perhaps higher 
consciousness levels) means less connectedness to the environment. Such view would 
explain the preserved encoding and basic information processing in REM sleep in the 
absence of integration to the dream scenery. It could also explain why the processing of 
external information is paradoxically more limited in REM sleep compared to light 
NREM sleep (Study 5). Overall, sensory disconnection could be achieved by two 
complementary mechanisms in REM sleep: (i) a low-level but partial gating of sensory 
information within primary cortices, (ii) a high-level cornering of computational 
resources by endogenous dream contents. 

In Study 9, we have also found differences in the processing of information between 
tonic and phasic REM sleep. Namely, the occurrence of eye-movements in REM sleep 
(phasic REM sleep) was accompanied by a reduced ability to process external 
information. This result is in line with previous findings showing an attenuation of 
responses to external sounds in phasic REM sleep (Wehrle et al., 2007), higher arousal 
thresholds (Ermis et al., 2010) and less processing abilities (Sallinen et al., 1996). 
Interestingly, Funk and colleagues reported an increase in the REM slow-waves in phasic 
REM sleep (at least in the visual cortex) (Funk et al., 2016). In parallel, we found in Study 
3 that eye-movements in REM sleep were accompanied by epochs of visual-like activity 
in high-order visuo-mnesic areas (medio-temporal lobe) usually involved in visual 
awareness (Andrillon et al., 2015b). It is therefore possible that phasic REM sleep is 
characterized by an increase in the two gating mechanisms described above: (i) an 
increase in slow-waves which would gate sensory information at an early stage of 
processing, (ii) an increase in the generation of endogenous contents which would 
monopolize high-order areas9.  

 

Dreams as a hallucination of reality? 

I will conclude on this section with the strange case of RSBD patients (REM Ssleep 
Behavior Disorder, (Mahowald and Schenck, 2000)). These patients suffer from an 
absence of the paralysis of skeletal muscles that normally take place in REM sleep. As a 
consequence, these patients enact their dreams while they sleep, with dramatic 
consequences for themselves or the people they sleep with. Interestingly, these patients 
use elements of their environment and incorporate them in their motor actions while 
being in the same time so intensely immerged in their dream that they can hurt others or 
themselves. For example, while dreaming of a fight, a RBD patient can use elements of 
his10 bedroom to attack or defend himself. And yet, when they awake, they typically ask 
who or what caused such a mess in their bedroom. 

In all appearances trifling, this kind of observations suggests that elements of the external 
world are actually integrated in the dream scenery. However, these elements are not 
integrated as such but in a hallucinated form (a well-known friend can become a foe, a 
harmless night-table object a weapon and so on). Assuming that, apart form the lack of 
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9 However, such mechanisms do not necessarily imply that high-order contents are generated in a top-
down fashion. Indeed PGO waves emitted by the brainstem are known to trigger eye-movements in REM 
sleep (Mouret et al., 1963), and endogenous contents gating the processing of external information could 
well be orchestrated by the brainstem as proposed by Allan Hobson (Hobson, 1990). 
10 The vast majority of these RSBD patients are males. 
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muscular paralysis, RSBD patients exhibit normal sleep, this observation could help re-
thinking the isolation from the external world occurring REM sleep. It is possible that 
external information is actually incorporated in the dream scenery during REM sleep but 
in a transformed way preventing the ability to process this information for what it is. It 
also possible that the decoupling from the environment is specific to sensory systems (in 
order to prevent external inputs from interfering with memory consolidation for 
example) but do not affect motor output and the sensory close-loops that are recruited 
during the production and control of movements. 

Thus, external information in REM sleep could be processed at two levels: (i) at a low-
level of representation involving non-conscious information processing (for example 
grasping or locomotion movements involving the cerebellum (for RSDB patients), 
sensory encoding and basic auditory processing involving primary and secondary cortices 
(in the sleepers we recorded)), (ii) at a high-level of representation in which the object is 
however represented as something else. REM sleep could therefore be seen as a state in 
which the brain is actually connected to its environment but processes it in a hallucinated 
way.  

 

!

Dream as a hallucination of reality 

Painting from Salvador Dali entitled ‘Dream, Caused by the Flight of a Bee (Around a Pomegranate, a 
Second Before Waking Up)’ (1944). Dali reproduced a dream of his wife, Dala, which he thought 
was caused by the sound of a bee’s flight. Modern science tends to dismiss such view by saying 
that external information is not incorporated in the dream scenery. Perhaps however such 
external stimuli are not integrated as such in our dreams but in an unpredictable way, such as a 
bee being transformed in a roaring tiger. Under such circumstances, we would ignore that an 
external stimuli would have been integrated in the dream. 
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Sleep, memory and plasticity 

Remembering past events is crucial in our lives and it is thus not surprising if memory 
has been intensely studied in neuroscience. Memory can be divided in three distinct 
processes: (i) encoding (i.e. the formation of a new memory within the brain), (ii) 
consolidation (i.e. the strengthening and re-organization of mnesic traces) and (iii) 
retrieval (i.e. the access to a stored memory) (see (Eichenbaum, 2008)). In theory, only 
encoding and retrieval are necessary for memory. But the brain is not a simple memory 
system (when considering long-term memory). On the contrary, the number of items 
that can be learnt in the course of a life is incredibly large. This implies efficient encoding 
processes, which were modestly illustrated in Study 8. Despite the plethora of memory 
stored in our brains, we can still retrieve a particular trace rapidly and without apparent 
effort. As famously depicted by Marcel Proust11, the memory just appears to our mind. 
Consolidation is key to conceive a system that can both efficiently encode and retrieve 
memory. Trough the strengthening of memories and their reorganization, consolidation 
can facilitate recollection (“There must be time for the processes of organization and 
assimilation (of memory) to take place” (Burnham, 1903)). I will discuss here mostly the 
involvement of sleep in the consolidation process, but I will also review experimental 
data showing that encoding and retrieval can also occur during sleep. 

  

The role of sleep in memory 

Since the antiquity, a link between sleep and memory consolidation has been suspected. 
For instance, the roman rhetorician Quintilian stated in the first century A.D.: 

“[it] is a curious fact, of which the reason is not obvious, that the interval of a single night 
will greatly increase the strength of the memory… 

Whatever the cause, things which could not be recalled on the spot are easily coordinated the 
next day, and time itself, which is generally accounted one of the causes of forgetfulness, 

actually serves to strengthen the memory.” 

Hermann Ebbinghaus, the pioneer of the scientific study of memory accordingly 
observed that forgetting was reduced after sleep compared to wakefulness. Sleep can 
therefore be seen as a ‘time that serves to strengthen memory’ contrary to the waking life 
that rather prompts us to forget; a fact that has been illustrated by Jenkins and 
Dallenbach who showed that recall (of learnt syllables) decreased with time spent awake, 
but stabilized when participants slept (Jenkins and Dallenbach, 1924). These observations 
have fueled countless investigations of the link between sleep and memory. The 1,358 
references of the Rasch and Born review on the topic illustrate this intense focus (Rasch 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

11 “No sooner had the warm liquid mixed with the crumbs touched my palate than a shudder ran through 
me and I stopped, intent upon the extraordinary thing that was happening to me. An exquisite pleasure had 
invaded my senses, something isolated, detached, with no suggestion of its origin. And at once the 
vicissitudes of life had become indifferent to me, its disasters innocuous, its brevity illusory – this new 
sensation having had on me the effect which love has of filling me with a precious essence; or rather this 
essence was not in me it was me. ... Whence did it come? What did it mean? How could I seize and 
apprehend it? ... And suddenly the memory revealed itself.” Marcel Proust, In the search of lost time (1906-
1922) 
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and Born, 2013). But the mechanisms behind the protective effect of sleep are still 
debated.  

One element that could explain the lack of consensus on the consolidation mechanisms 
at play during sleep is the variety of processes assembled in the term ‘memory’. Indeed, 
memory is classically divided into declarative and non-declarative memory (Eichenbaum, 
2008). The former is associated with awareness and relies heavily on the medio-temporal 
lobe (MTL), a set of brain structures comprising the hippocampus. The latter 
encompasses heterogeneous memory system, such as motor skills or certain forms of 
conditioning, and are implemented in various brain systems that do not depend on the 
MTL. Does sleep affect these different types of memory in the same way? Are 
consolidation mechanisms dependent on the dedicated memory systems? On the other 
hand, sleep is also a diverse process (see Introduction). Do REM and NREM sleep act 
upon memory in the same way? The richness of sleep and of memory may explain the 
diversity of ideas on the role of sleep in memory. However, recent research has polarized 
mostly on two proposals: the active consolidation hypothesis (Diekelmann and Born, 
2010) and the  synaptic homeostasis hypothesis (Tononi and Cirelli, 2006). I will here 
provide a synthesis of these views, often presented as conflicting. 

 

Sleep and the preservation from interference  

One of the first accounts attempting to explain the protective role of sleep in memory 
focused on interference. In his seminal series of experiment on himself, Hermann 
Ebbinghaus showed that time was associated with a decrease in the number of items of a 
list he could recall (Ebbinghaus, 1885). John McGeoch later hypothesized that the more 
time passes, the more one experiences new situations and memorizes new things that will 
ultimately interfere with the maintenance or retrieval of previously stored memories 
(McGeoch, 1932). According to this idea, we forget not because of a natural decay of 
memories but because of the very fact that our brains are ceaseless learners. Sleep 
therefore has been initially seen as sheltering memory for the interference occurring 
during wakefulness, preventing the “obliteration of the old by the new’’ (Jenkins and 
Dallenbach, 1924). In this view, the role of sleep is purely passive. Such view could be 
related to Jeremy Siegel’s proposal to consider sleep as an adaptive form of rest (Siegel, 
2009), whereby sleep would represent a state in which animals save energy and prevent a 
ceaseless encoding of new memories. But accumulating evidence argue for an active role 
of sleep in memory consolidation (Ellenbogen et al., 2006b; Stickgold and Walker, 2005). 
For example, Ellebogen and colleagues demonstrated that sleep protected memories pro-
actively (Ellenbogen et al., 2006a). The fact that sleep protects memories against future 
interferences argues against a purely passive role. 

Nevertheless, the notion of sleep protecting from interference can be reprieved when 
considering that sleep enables the consolidation of memories.  Indeed, consolidation can 
be harmed by interference. As said above, consolidation is usually thought to entail two 
components: the strengthening of mnesic traces and their re-organization (Dudai, 2004). 
The strengthening of mnesic traces is thought to rely on the replay of learnt information. 
Memories are stored in the brain through synaptic connections (Kandel, 2000). Synaptic 
strength (i.e. how reliable is the link between two neurons) increases with use (Mayford 
et al., 2012). Therefore, the re-activation of a given trace will consequently strengthen the 
trace. However, if other processes such as the processing of external information co-
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occur with the re-activation of a given memory, the consolidation process may be 
perturbed and the memory de-stabilized (see (Ellenbogen et al., 2006b)). Similarly, if 
sensory processing interferes with the re-organization of memory (for example, the 
transfer of long-term memories from the hippocampal to the neo-cortical storage), 
consolidation can be impaired. 

Therefore, it has been proposed that sleep would represent the ideal situation to 
consolidate existing memories. Indeed, the sleeping brain being isolated from the 
external world (to a certain extent), consolidation processes would be more efficient 
during sleep (Mednick et al., 2011). Such ‘opportunistic’ view of the role of sleep in 
memory consolidation could explain the stabilization of memory over the sleep period, 
however it denies any specificity in the role of sleep in memory. Rather, sleep would 
represent a context more favorable to memory consolidation. Contradicting this view 
however, many studies have stressed the importance of sleep stages and sleep rhythms in 
the consolidation of memory (see (Ellenbogen et al., 2006b) for a brief overview), which 
argue in favor of the existence of consolidation mechanisms specific to sleep. SWA 
activity in particular has been linked with memory improvement. Are sleep rhythms 
participating to the consolidation of memory in a specific way? 

 

Active replay…  

When rats run in a maze, some cells in the hippocampus fire in a precise order for a 
given trajectory. These cells are called ‘place cells’. A place cell fires whenever the rat is in 
a particular portion of space (Moser, 2014). Thus, the firing pattern of place cells can 
retrace the path taken by the rat. Interestingly, place cells can orderly fire even when the 
rat is not moving. Such events are called replay. These replays often occur during sharp 
wave-ripples (SPW-R12: (Vanderwolf, 1969)) in a temporally condensed fashion. Wilson 
and McNaughton showed in 1994 that replay also occurs during sleep (Wilson and 
McNaughton, 1994). In addition such replay depends on wake experience (Skaggs and 
McNaughton, 1996): a particularly important track would have greater chance to be 
replayed in sleep. Finally, the suppression of these replays impaired later performance 
(Girardeau et al., 2009). These results provided support to the notion that sleep 
promotes consolidation through the active replay of memory traces. But, as said above, 
replay also occurs during wake. So what is special about replays occurring during sleep? 

SPW-R in sleep are nested with sleep rhythms: slow-waves and sleep spindles (Staresina 
et al., 2015). This observation is the basis of the active consolidation (or ‘synaptic 
embossing’) hypothesis (Diekelmann and Born, 2010; Ribeiro, 2004) (see Figure 10-2). 
According to this hypothesis, sleep oscillations would represent a temporal window 
during which mnesic traces are replayed in the hippocampus and transferred to the 
cortex for long-term storage. And indeed, coordinated replay in the neo-cortex and 
hippocampus has been observed in link with slow-oscillations (Daoyun Ji and Wilson, 
2007). The consolidation mechanism would here be specific to sleep and more precisely 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

12 Sharp-wave ripples (SPW-R) refer to a transient hippocampal rhythm occurring in both awake rest and 
sleep. It has been observed in both rodents and humans. SPW-R accompany the replay of place cells and 
are therefore thought to be involved in memory consolidation and retrieval. See (Buzsáki, 2015) for a 
review. 
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NREM sleep since slow-waves and spindles are not normally seen in other vigilance 
states. 

The importance for memory of the re-activation of place cells in sleep has been recently 
illustrated by the group of Karim Benchenane (de Lavilléon et al., 2015). They showed 
that pairing the firing of a given place cell with a rewarding electrical pulse modified 
behavior upon awakening, with the animal moving preferentially to the spatial area coded 
by the place cell conditioned in sleep. Thus, sleep represents a period in which 
neuroplastic changes can occur either in terms of memory consolidation or formation. 
Such proposal is all the more elegant since it also provides a mechanism preventing 
interference during the consolidation and transfer of memory. As we have seen earlier, 
external information could be blocked during spindles (Dang-Vu et al., 2010; Schabus et 
al., 2012) although recordings at the cellular level temper this view (Sela et al., 2016).  

Replays have also been evidenced, albeit more rarely, in REM sleep (e.g. (Louie and 
Wilson, 2001)), which is concordant with the smaller impact of REM sleep deprivation 
on memory consolidation compared to NREM sleep. However, PGO waves, which are a 
signature of REM sleep (see Introduction), have been linked to experience-dependent 
neuroplastic changes occurring in REM sleep (Hobson, 2009). Accordingly, PGO waves 
have larger amplitude or increase in frequency after learning (Datta, 2000; Sanford et al., 
2001). It has thus been proposed that PGO waves would play a role in the consolidation 
of existing memories. First, PGO waves could help isolating the sleeper from the 
surrounding environment by decoupling the brain from peripheral external input 
(Hobson, 2009). Our results in Studies 3 and 9 are concordant with this view since we 
showed that (i) eye-movements (that are typically generated by PGO waves) are 
associated with sensory-like activations which could represent a form of replay 
(Andrillon et al., 2015b), (ii) processing of external information was observed in tonic 
REM sleep (where PGO waves are less frequent) but not in phasic REM sleep. In 
addition, despite the smaller amount of evidence showing replay in sleep, genes 
intervening in synaptic plasticity are more expressed in REM sleep (Ribeiro et al., 2002) 
and neuromodulators promoting synaptic potentiation such as Acetylcholine have 
secretion levels close to wakefulness in REM sleep (Jones, 2005; Pawlak, 2010; Seol et al., 
2007). Overall, while studies typically emphasize the role of SWS in active consolidation, 
REM sleep could also participate to the consolidation of existing memories.  

 

Figure 10-2 The active consolidation hypothesis 
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A: During Slow-Wave Sleep, memories stored in the hippocampus are re-activated which allows 
their strengthening and transfer to the long-term neo-cortical store. B: Replay of learnt memories 
occur during sharp-wave ripples. These ripples are themselves nested in spindle oscillations 
generated in the thalamus and spindles often occur on the up-states of neo-cortical slow-
oscillations. Thus NREM sleep rhythms organize the condensed replay of information within the 
hippocampus and its potential transfer toward the neo-cortex. From (Rasch and Born, 2013). 

However, criticisms have been raised regarding the occurrence of active consolidation 
through replay during sleep. First of all, replay occurs in wakefulness and suppression of 
SPW-R during rest also impairs memory (Ego-Stengel and Wilson, 2010) putting the 
specificity of such mechanisms into question. To this regard, a study following on the 
work of Girardeau and colleagues (on the impairment of memory with SPW-R 
suppression), but now targeting sleep spindles, could help understanding whether the 
nesting of SPW-R during sleep spindle is important for memory consolidation. Critics 
have also pointed the fact that these studies focused mostly on the murine model and 
spatial memory. Similar replay in Humans have not yet been evidenced (that is to say, the 
replay of neuronal assemblies in a condensed manner during SPW-R). Replay has been 
observed through MEG and fMRI data (see (Rasch and Born, 2013) for a review) but the 
temporal resolution of these techniques necessarily points out to a different kind of 
replay. And the different temporal scale of these ‘human’ replays would imply different 
mechanisms. Indeed, non-condensed memories cannot be replayed during SPW-R, 
which typically last for about 100ms. These replays might reveal other consolidation 
mechanisms than the ones observed for the consolidation of spatial memories in rodents. 

In addition, while the active consolidation hypothesis provides an elegant framework for 
the consolidation of spatial memory, it is unclear how such mechanisms would generalize 
to other types of memory. Indeed, if the consolidation of a given trajectory in a maze 
could benefit for the replay of this trajectory while sleeping, what about the consolidation 
of memories that are not temporally encoded such as a the memory of a face, a visual 
scene? Finally, the active consolidation hypothesis supposes the reversal of the cortico-
hippocampal dialogue from the hippocampus to the cortex compared to wakefulness 
where encoding is predominant (and information flows from the cortex to the 
hippocampus) (Hasselmo, 1999; Rasch and Born, 2007). However such reversal remains 
to be convincingly shown (see (Tononi et al., 2006; Tononi and Cirelli, 2014)). 

 

… or general down-scaling? 

Another model, the Synaptic Homeostasis Hypothesis (Tononi and Cirelli, 2012, 2006), 
proposes a seemingly opposed view on the role of plasticity in sleep-dependent memory 
consolidation. According to such view, sleep is a state in which the formation and 
consolidation of memories is less likely to happen (see Figure 10-3). Rather, Cirelli and 
Tononi argue that synaptic down-scaling take place during sleep, and that sleep promotes 
forgetting rather than learning. Indeed, when awake the sleeping brain constantly learn 
which represents a challenge for the neural system in the long run since: (i) synapses are 
costly to create and maintain, (ii) the brain is a finite system and synapses cannot be 
created indefinitely, (iii) a ceaseless increase in synapses and synaptic strength would 
diminish the neural signal-to-noise ratio and therefore the quality of stored memories. 
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Jorge Luis Borges vividly described the burden of memorizing without being able to 
forget13: 

“He was, let us not forget, almost incapable of general, platonic ideas. It was not only 

difficult for him to understand that the generic term dog embraced so many unlike specimens 

of differing sizes and different forms; he was disturbed by the fact that a dog at three-fourteen 

(seen in profile) should have the same name as the dog at three-fifteen (seen from the front).” 

“My memory, sir, is like a garbage disposal.” 

As for the active consolidation hypothesis, synaptic homeostasis has been backed by 
numerous studies (see (Tononi and Cirelli, 2014)). At the synaptic level, AMPAR 
receptor, which are particularly involved in synaptic potentiation, decrease during NREM 
sleep compared to wakefulness (Vyazovskiy et al., 2008). The reduction observed in 
SWA throughout a night could be a direct consequence of synaptic down-scaling 
(Vyazovskiy et al., 2008). With less synaptic contacts overall, slow-waves would turn 
smaller (Olcese et al., 2010). Gene expression seems also to be in favor of synaptic 
depression during NREM sleep since gene coding for proteins involved in synaptic 
potentiation are more expressed in wakefulness and REM sleep (Cirelli, 2009; Ribeiro et 
al., 2002). Finally, there is also evidence that sleep affect the brain at the structural level 
(Bellesi et al., 2015). Importantly, in adolescent mice, the number of dendritic spines 
reduces after sleep which correspond to a suppression of the number of synaptic 
contacts after sleep (Maret et al., 2011).  

 

Figure 10-3 The synaptic homeostasis hypothesis 

A: During wakefulness, there is a net increase in synaptic strength due to the constant interaction 
with the environment. As a result, the costs associated to the maintenance and formation of 
synaptic contacts increase. During sleep, a homeostatic regulation of synaptic weights would 
allow a net decrease in synaptic strength and avoid the escalation of metabolic costs. B: 
According to this hypothesis, sleep would also be an ideal state for the normalization of synaptic 
weights. Indeed, during wakefulness, brain activity is determined by the interaction with the 
environment and the sampling of memories is therefore biased by the environmental context. 
During sleep on the other hand, sensory disconnection is achieved through reduced 
noradrenergic activity, allowing a comprehensive sampling of memories (old and new) and 
therefore an unbiased normalization of synaptic weights. Adapted from (Tononi and Cirelli, 
2014). 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

13 Jorge Luis Borges, Funes the memorious (1942) 
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What are the mechanisms of synaptic depression and why does it paradoxically lead to 
memory consolidation? Tononi and Cirelli proposed a central role of slow-waves and 
changes in neuromodulation in the general down-scaling of synaptic weights. Indeed, 
NREM sleep is characterized by low levels of acetylcholine and both NREM and REM 
sleep show reduced noradrenergic activations (Jones, 2005; Siegel, 2004). Interestingly, 
acetylcholine and noradrenaline are known to be involved in synaptic plasticity 
(Rasmusson, 2000; Sara, 2009). Low levels of acetylcholine in particular have been shown 
to reverse the polarity of STDP (spike-time dependent plasticity) from long-term 
potentiation to long-term depression (Pawlak, 2010; Seol et al., 2007). The role of slow-
waves would consist in randomly but exhaustively re-activate neural assemblies (during 
up-states), what Tononi and Cirelli call a comprehensive sampling of stored memories 
(Figure 10-3). The replay would be here general rather than targeting specific memories 
(for example recent, emotional or rewarding memories (Perogamvros and Schwartz, 
2013)). In addition, the re-activation would lead here to a general decrease of the synaptic 
weights: the Hebbian rule (Hebb, 1949) being transformed from “what fire together, 
bind together” to “what fire together, unbind”. 

What would be the consequence of such synaptic normalization? According to modeling 
studies (Hashmi et al., 2013; Nere et al., 2013), the leveling of synaptic weights would 
erase weak memories and decrease the strength of the strong ones (without erasing them 
completely). At the level of the system however, such overall decrease in synaptic weight 
increases the signal-to-noise ratio associated to the surviving memories. Thus, synaptic 
homeostasis could both satisfy energy saving principles and the role of sleep in memory 
consolidation. However, direct evidence showing the suppression of memories during 
sleep are lacking. In Study 9, we show nonetheless that SWS is associated to the 
suppression of new memories formed in light NREM sleep and that this suppression is 
tightly linked to the amount of slow-waves in support of the synaptic homeostasis 
hypothesis. 

The role of sleep in forgetting is not only limited to NREM sleep and to the synaptic 
homeostasis hypothesis. Crick and Mitchison (Crick and Mitchinson, 1983) and Walker 
(Walker, 2009) proposed that sleep was important to erase useless component of a 
memory. For example, after burning myself with a hot pan, the memory that hot pans 
hurt could be seen as quite useful and worth storing in the long term. However, 
remembering the context in which I got burnt (where, which pan…) is less useful. 
According to these authors, REM sleep could therefore help the erasure of parasite 
memories or of emotional components of memory. The later argument is supported by a 
reduced amygdala activation during recollection of emotional memories after REM sleep 
(Sterpenich et al., 2007; van der Helm et al., 2011). But other studies found the reverse 
pattern (see (Rasch and Born, 2013) for a review) leaving this potential role of REM 
sleep unsettled.  

 

Sleep and memory: a synthesis 

When summarizing the active consolidation and the synaptic homeostasis hypotheses, it 
seems that the former posits the consolidation of memory through selective replay and 
the latter the opposite, a general down-scaling of memories’ strength. At first so, it seems 
that if one is proven right, the other must be wrong. Nevertheless, both hypotheses are 
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supported by compelling empirical data (Diekelmann and Born, 2010; Rasch and Born, 
2013; Tononi and Cirelli, 2014, 2012). 

Recently, Lisa Genzel and colleagues proposed a synthesis of the two hypotheses 
(Genzel et al., 2014) (see Figure 10-4). Their analysis mostly relies on the observation that 
evidence for active consolidation and synaptic homeostasis often come from different 
experimental settings. Indeed, it appears that scientists studying active consolidation 
mostly focused on light sleep, while the upholders of synaptic homeostasis have 
examined the consequence of entire nights (including therefore light and deep NREM 
sleep). Genzel and colleagues argue that such differences in the experimental approach 
could explain diametrically opposed conclusions. Namely, according to these authors, 
synaptic potentiation and depression could both occur in NREM sleep but at a different 
time. Potentiation would take place in light NREM sleep, mediated by global events such 
as K-complexes. On the other hand, in deep NREM sleep (also referred as Slow-Wave 
Sleep), cortical activity would be dominated by local slow-waves that would trigger 
synaptic depression. 

 

Figure 10-4 A synthesis of active consolidation and synaptic homeostasis  

During wakefulness, memories are encoded in a hippocampo-cortical network. In light NREM 
sleep (A), phasic global events predominate that would organize the hippocampal replay of learnt 
information and its consolidation. Sleep spindles would isolate the neo-cortex from the 
hippocampus and trigger local cortical plastic processes (B). As a consequence, memories will 
become more and more dependent of cortical networks and less and less dependent of the 
hippocampus. In deep NREM sleep (C), local slow-waves are preponderant and organize the 
local down-scaling of synaptic weights. Strongest memories are conserved. These memories are 
to be found mostly in the cortical storage while the hippocampus storage is freed for future 
learning. From (Genzel et al., 2014).  
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This framework is of high interest since it proposes an elegant synthesis of the two main 
hypotheses on the role of sleep in memory. It is backed by experimental data (see 
(Genzel et al., 2014)). A comparable proposal has been modeled by the group of Sidarta 
Ribeiro (Blanco et al., 2015), where they show that alternation of synaptic downscaling 
during SWS and synaptic potentiation at the transition between SWS and REM sleep (i.e. 
in light sleep) maximize the effect of synaptic embossing. Another study (Perrett et al., 
2001) showed that both synaptic depression and potentiation occur during 1Hz electric 
stimulation of cortical neurons. However, the authors observed that depression offset 
potentiation when stimulations are regular (i.e. like slow-wave trains in SWS) but 
potentiation dominates when they are transient (i.e. like in light NREM sleep). 

To this date, however direct evidence showing synaptic potentiation in light NREM sleep 
and depression in deep NREM sleep is missing. We believe that the results obtained in 
Study 9 go in this direction (although the technique used here, EEG, do not allow to 
directly link our results with mechanisms at the cellular level). Indeed, when presenting 
human volunteers with recurring white-noise snippets, fast and automatic learning 
processes occur (Agus et al., 2010; Andrillon et al., 2015a; Luo et al., 2013) that are 
thought to rely on neuroplastic phenomena like STDP (Klampfl and Maass, 2013; 
Masquelier et al., 2008). The presentation of recurring white-noise snippets can therefore 
be used to probe synaptic plasticity within the human brain (Study 8). 

We used this approach in a full-night experiment (Study 9) and observed that NREM 
sleep had, overall, a suppressive effect of memory, contrary to REM sleep and 
wakefulness. Indeed, after exposure in REM sleep and wakefulness, detection of 
recurring white-noise snippets was facilitated. Strikingly, participants’ performance was 
worst for sounds heard in NREM sleep than for novel sounds. Behavioral data collected 
upon awakening were supported by electrophysiological indexes of learning, showing 
that perceptual learning was possible in REM sleep but was suppressed in deep NREM 
sleep. However, learning was observed in light NREM sleep. The suppression of 
memories for noise in deep NREM sleep was tightly associated with the occurrence of 
continuous (deep NREM sleep) but more local slow-waves. On the contrary, sleep 
spindles (which are more frequent in light NREM sleep and which are often associated 
to K-complexes) correlated positively with perceptual learning. Overall, our results 
support the notion of interplay between synaptic potentiation and down-scaling in 
NREM sleep depending on sleep depth. 

But what could explain such reversal? We propose in Study 9 that a contextual change 
could account for the reversal of neuroplastic processes form light to deep NREM sleep 
(rather than a change of the associated mechanisms). Indeed, the learning of noise was 
not only observed in light NREM sleep and wakefulness but also in REM sleep. Contrary 
to slow-wave sleep, REM sleep is characterized by levels of acetylcholine that are close to 
wakefulness (Jones, 2005), which is known to favor synaptic potentiation (Pawlak, 2010; 
Seol et al., 2007). A change in the level of neuro-modulators could also impact the 
synchronization processes at play during NREM sleep with more global events occurring 
in light NREM sleep and rather local slow-waves in deep NREM sleep, as recently 
proposed (Siclari et al., 2014a). 

Thus, we argue that a change in the level of acetylcholine could explain the different 
outcome observed in deep NREM sleep on the one hand and light NREM and REM 
sleep on the other hand. In light NREM sleep, the levels of acetylcholine could be high 
enough to allow for synaptic potentiation. In addition, global slow-oscillations that are 
the hallmark of light NREM sleep (such as K-complexes) are thought to involve arousal-
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promoting structures (Siclari et al., 2014a), among which are cholinergic structures 
(Schwartz and Roth, 2008). Global slow-oscillations could therefore provide windows 
within NREM sleep during which synaptic potentiation can take place. Similarly, sleep 
spindles have been found to trigger synaptic potentiation in vitro depending on the phase 
of slow-oscillations (Rosanova, 2005). Thus, the nesting of hippocampal replays through 
global oscillations could enable the consolidation of replayed information (or the learning 
of new information when presented at that time) even if the context (NREM sleep) is 
globally unfavorable to synaptic potentiation. 

In deep NREM sleep however, the level of acetylcholine being at its lowest, the polarity 
of synaptic plasticity would be reversed. In addition, slow-waves would be mostly local 
and would not recruit arousal-promoting structures anymore (Siclari et al., 2014a). The 
re-activation of neural networks would therefore lead to synaptic down-scaling rather 
than up-scaling. This is in line with our findings, since we observed that memories 
formed in light NREM sleep were suppressed with increasing sleep depth, in close 
association with the emergence of more numerous but more local slow-waves (Study 9).  

While the consolidation in light NREM sleep would target replayed memories stored in 
the hippocampus (and therefore supposes a form of selection of the information to be 
consolidated like newly formed memories), the stochastic nature of local slow-waves in 
deep NREM sleep would allow the comprehensive sampling of all memories stored in 
the cortical storage as proposed by Tononi and Cirelli. The reason why we observed a 
suppression of memory to noise would be therefore a side-effect of these down-scaling 
mechanisms: since we imposed (through acoustic stimulations) the (re)-activation of a 
given network (corresponding to the sound played) in deep NREM sleep, the 
corresponding network was down-selected. 

Of course, other neurotransmitters would act in synergy with the Acetylcholine (Pawlak, 
2010). Noradrenaline for example has a key role in the orientation of attention, sensory 
processing and synaptic plasticity (Berridge and Waterhouse, 2003; Sara, 2009). However, 
noradrenaline, considered in isolation, could not account for our pattern of results since 
it reaches its lowest level during REM-sleep (a state in which learning is possible as 
shown in Study 9). Yet, noradrenaline could facilitate learning during sleep by favoring 
sensory processing and could explain why stimulations during light NREM-sleep have a 
greater impact on memory than in REM-sleep (Arzi et al., 2012).  

The synthesis presented here is very close to the framework proposed by Genzel and 
colleagues (Genzel et al., 2014). However, these authors toned down the role of sleep 
spindles in the active consolidation of memories. And indeed, direct evidence is missing 
showing and a causal involvement of sleep spindles in the strengthening and transfer of 
replayed memories. However, numerous correlations have been found between memory 
consolidation and sleep spindles (see (Diekelmann and Born, 2010; Rasch and Born, 
2013) for reviews and Study 9). Sleep spindles were also shown to trigger synaptic 
potentiation in vitro (Rosanova, 2005). True, sleep spindles have a relatively moderate 
impact on cortical units’ firing rate (Andrillon et al., 2011; Contreras and Steriade, 1996; 
Peyrache et al., 2011) but cortical units’ appeared to be phase-locked to spindles 
oscillations (Andrillon et al., 2011; Peyrache et al., 2011) which could organize the 
transfer of relevant information form the hippocampus to the neo-cortex. 
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Manipulating memory during sleep 

Recently, more and more studies investigated whether external stimulation (acoustic or 
electric) could act upon the consolidation processes occurring during sleep. For example, 
Ngo and colleagues showed that the entrainment of slow-oscillations had a positive 
impact on subsequent performance in a memory task (Ngo et al., 2013). In parallel, 
Delphine Oudiette and Ken Paller proposed the Targeted Memory Reactivation (TMR) 
approach, which consists in pairing a memory with a neutral sound during encoding in 
wakefulness and to replay the associated sound during NREM sleep (Oudiette and Paller, 
2013). The idea is that the paired sound will increase the probability that the associated 
memory gets re-activated during sleep and thus consolidated. The aim is here to 
influence the brain in consolidating a given memory, through external stimulutions. 

Supporting the TMR, a new study showed that playing a sound right after the cued 
stimulus cancels the effect of TMR (Schreiner et al., 2015). This could be interpreted as a 
disruption, through the presentation of an additional stimulus, of the replay. 
Interestingly, Oudiette and colleagues found a negative correlation between delta power 
and the impact of TMR, which is concordant with the idea that active consolidation 
would be predominant in lighter stages of NREM sleep (Oudiette et al., 2013). Given the 
framework presented above, it can also be expected that TMR would be the most 
efficient when associated to slow-oscillations, as shown recently (Batterink et al., 2016). 
However, according to our model, TMR would be diminished if not reversed in deep 
NREM sleep, a prediction that could be easily tested and controlled for in future 
experiments. Thus, the synthesis proposed above for sleep’s role in memory and 
plasticity could also apply to these intervening approaches. 



!
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Concluding remarks 

I hope that throughout this manuscript I will have done the richness of sleep justice. As 
sleep is a many-faced phenomenon, it can be examined at various levels: from the 
physiology of simple neurons to more philosophical considerations. After having 
dedicated these past few years to studying sleep, I am still impressed by the profusion of 
things we know and things we still ignore. Indeed, as recent research has proven, there is 
still much to understand about sleep. First, the question of its function is still debated. 
Second, the mechanisms involved in the well-known restorative effects of sleep have 
generated often-conflicting models. Third, even at the physiological level and despite 
decades of careful investigation of sleep’s physiology, new discoveries can be made, such 
as the recent discovery of slow-waves in REM sleep. 

In the course of my doctoral research, I mostly focused on the main observable effect of 
sleep: the associated loss of responsiveness. Leaning on the work of our predecessors, we 
confirmed that the sleeping brain is only partially disconnected from its environment and 
that some monitoring of external information can be achieved while we sleep. Strikingly, 
we showed that sleepers could complete tasks that should necessitate being awake, as one 
might have thought at first. To understand how such complex processing of external 
input are possible, we explored the mechanisms allowing the sleeping brain to pay 
attention to its environment or, on the contrary, isolate from it. We propose a model in 
which sleep is self-regulated: perturbations can be counter-balanced by a stimulus-evoked 
suppression of sensory information in order to preserve sleep.  

In this doctoral work, I also investigated whether sleepers could benefit from the time 
spent asleep. Indeed, modern societies often see sleep as an idle time that one could try 
to benefit from. Using the time spent asleep to learn new information has been an old 
human fantasy14, as well as a scientific quest. We showed that sleep and memory share a 
complex relationship and that opposite effects can be observed depending on sleep 
stages. Importantly, we corroborated the notion that sleep is important to strengthen 
existing memories, but also to forget. Along this line, I believe that this work can provide 
useful insights for the growing interest in sleep optimization. Companies and products 
are being launched which aim at improving sleep quality or memory consolidation. These 
endeavors are often based on the assumption that the mechanisms by which we benefit 
from sleep are well established. As it appears, they are not and care must be taken when 
trying to manipulate sleep, in order to prevent harmful consequences. 

Finally, I hope that this research will prove useful and pave the way for further efforts in 
‘unlock[ing] the mystery of the three pounds of matter that sits between our ears’15. The 
exploration of inter-individual differences (pathological or not) in the way sleeping brains 
process external information could prove of high interest, both for fundamental and 
clinical research. I also hope that the experimental tools and studies developed here will 
participate to the broader investigation of consciousness and the understanding of how 
brain activity constrains our perception of the world. Since in the end, awake or asleep, 
we are nothing but our brains.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

14 I have been countlessly reminded of Aldous Huxley’s ‘Brave New World’ (1932) over the past three years, 
which I unfortunately did not have the chance to read yet.   
15 Barack Obama, President of the United States of America, April 3rd 2013. 



 

345!

 
 
 
Annexes 

!

!

Annex A: General-audience article written for the Conversation16 and dealing with Study 
4. The article was republished in several newspaper or websites such as the Washington 
Post17. 

Annex B: General-audience article. French version of Annex A, written for the French 
edition of the Conversation. 

Annex C: General-audience article written for the French edition of the Conversation 
and dealing with Study 3. 

 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

16 www.theconversation.com 
17 www.washingtonpost.com/posteverything/wp/2014/09/17/your-brain-actually-makes-decisions-while-
you-sleep/ 
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 Annex A: 
Brains can make decisions while we sleep – here 

they are in action 

Thomas Andrillon & Sid Kouider 
The Conversation, September 17 2014 

  
Doing the shopping, kind of. Pedro Simoes 

The idea that during sleep our minds shut down from the outside world is ancient and 
one that is still deeply anchored in our view of sleep today, despite some everyday life 
experiences and recent scientific discoveries that would tend to prove our brains don’t 
completely switch off from our environment. 

On the contrary, our brains can keep the gate slightly open. For example, we wake up 
more easily when we hear our own name or a particularly salient sound such as an alarm 
clock or a fire alarm compared to equally loud but less relevant sounds. 

In research published in Current Biology we went one step further to show that complex 
stimuli can not only be processed while we sleep but that this information can be used to 
make decisions, similarly as when we’re awake. 

Our approach was simple: we built on knowledge about how the brain quickly automates 
complex chores. Driving a car, for example, requires integrating a lot of information at 
the same time, making rapid decisions and putting them into action through complex 
motor sequences. And you can drive all the way to home without remembering anything, 
as we do when we say we’re on automatic pilot. 

When we’re asleep, the brain regions critical for paying attention to or implementing 
instructions are deactivated, of course, which makes it impossible to start performing a 
task. But we wanted to see whether any processes continued in the brain after sleep onset 
if participants in an experiment were given an automatised task just before. 
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To do this, we carried out experiments in which we got participants to categorise spoken 
words that were separated into two categories: words that referred to animals or objects, 
for example “cat” or “hat” in a first experiment; then real words like “hammer” versus 
pseudo-words (words that can be pronounced but are found nowhere in the dictionary) 
like “fabu” in a second one. 

Participants were asked to indicate the category of the word that they heard by pressing a 
left or right button. Once the task became more automatic, we asked them to continue to 
respond to the words but they were also allowed to fall asleep. Since they were lying 
down in a dark room, most of them fell asleep while words were being played. 

At the same time we monitored their state of vigilance thanks to EEG electrodes placed 
on their head. Once they were asleep, and without disturbing the flow of words they 
were hearing, we gave our participants new items from the same categories. The idea 
here was to force them to extract the meaning of the word (in the first experiment) or to 
check whether a word was part of the lexicon (in the second experiment) in order to be 
able to respond. 

Of course, when asleep, participants stopped pressing buttons. So in order to check 
whether their brains were still responding to the words, we looked at the activity in the 
motor areas of the brain. Planning to press a button on your left involves your right 
hemisphere and vice-versa. By looking at the lateralisation of brain activity in motor 
areas, it is possible to see whether someone is preparing a response and toward which 
side. Applying this method to our sleepers allowed us to show that even during sleep, 
their brains continued to routinely prepare for right and left responses according to the 
meaning of the words they were hearing. 

Even more interesting, at the end of the experiment and after they woke up, participants 
had no memory of the words they heard during their sleep though they recalled the 
words heard while they were awake very well. So not only did they process complex 
information while being completely asleep, but they did it unconsciously. Our work 
sheds new light about the brain’s ability to process information while asleep but also 
while being unconscious. 

This study is just the beginning. Important questions have yet to be answered. If we are 
able to prepare for actions during sleep, why is it that we do not perform them? What 
kind of processing can or cannot be achieved by the sleeping brain? Can sentences or 
series of sentences be processed? What happens when we dream? Would these sounds 
be incorporated into the dream scenery? 

But most importantly, our work revives that age-old fantasy of learning during our sleep. 
It is well known that sleep is important to consolidate previously learned information or 
that some basic form of learning like conditioning can take place while we are asleep. But 
can more complex forms of learning take place and what would be the cost in terms of 
what sacrifices the brain would make to do this? 

Sleep is important for the brain and total sleep deprivation leads to death after about two 
to four weeks. Indeed, it should be borne in mind that sleep is a crucial phenomenon and 
universal to all animals. We proved here that sleep is not an all-or-none state, not that 
forcing our brain to learn and do things during the night would be ultimately beneficial in 
the long run. 
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Annex B: 
Pendant que nous dormons, notre cerveau 

travaille 

Thomas Andrillon & Sid Kouider 
The Conversation France, September 20 2015 

 
Endormis, nous accomplissions des tâches de façon inconsciente. Vera Kratochvil/Pixabay 

Une intuition répandue veut que le cerveau soit comme isolé pendant le sommeil et 
perde de sa sensibilité au monde extérieur. Cependant, tant nos expériences de la vie 
quotidienne que de récentes découvertes scientifiques mettent en difficulté cette idée. 
Comment expliquer par exemple que nous puissions nous réveiller plus facilement en 
entendant notre prénom ou un autre bruit particulièrement significatif comme une 
alarme de réveil ou une alarme incendie, si le cerveau dormant n’est pas sensible à cette 
information et capable de la reconnaître comme importante ? 

Dans une étude parue l’an dernier dans la revue Current Biology, nous avons entrepris 
d’aller plus loin dans la mise en évidence de traitements sophistiqués effectués par le 
cerveau pendant le sommeil. Nous avons pu montrer que non seulement une 
information auditive complexe pouvait être traitée par le cerveau, mais que cette 
information pouvait être utilisée pour prendre une décision, à l’instar de l’éveil. 

Notre approche se base sur les connaissances acquises quant à la capacité du cerveau à 
automatiser des tâches complexes. Conduire une voiture par exemple requiert 
l’intégration de multiples informations sensorielles, des prises de décisions rapides ainsi 
que leur mise en œuvre via la production de mouvements synchrones. Pourtant, il arrive 
que l’on conduise jusqu’à chez soi sans même s’en rendre compte ! 

Lorsque nous dormons, certaines régions du cerveau logées dans le cortex préfrontal et 
qui ont un rôle central dans l’orientation de l’attention ou la compréhension des 
consignes sont désactivées, rendant impossible le démarrage d’une tâche. Nous nous 
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sommes concentrés sur la possibilité qu’une tâche déjà commencée et automatisée au 
réveil puisse être poursuivie pendant le sommeil. 

 

Classer des mots 

Pour cela, nous avons conduit deux expériences dans lesquelles des volontaires devaient 
écouter et catégoriser des mots. Dans la première expérience, il fallait discriminer des 
noms d’objets (par exemple, «  chapeau ») de noms d’animaux (« chat »). Dans la 
seconde, des vrais mots (« marteau ») par rapport à des mots inventés (« flipu »). Les 
participants devaient indiquer la catégorie du mot en pressant un bouton à droite ou à 
gauche. Une fois l’exercice automatisé, nous avons demandé aux participants de le 
poursuivre, mais cette fois-ci en leur permettant de s’endormir. Confortablement allongés 
dans une pièce obscure, la plupart d’entre eux se sont assoupis en écoutant les mots. 

Dans le même temps, l’état de vigilance des participants a fait l’objet d’un suivi grâce à 
des capteurs électroencéphalographiques placés sur leur tête. Une fois endormit, et sans 
modifier le rythme de l’expérience, nous avons transmis aux participants une liste de 
mots inédits, mais appartenant toujours aux mêmes catégories. L’idée était ici de pousser 
les participants à accéder à la catégorie sémantique ou lexicale des mots pour pouvoir 
répondre. 

Endormis, les participants ne répondaient plus. Afin de vérifier que le cerveau continuait, 
lui, à réagir aux mots, nous avons examiné l’activité cérébrale dans les aires motrices 
situées dans chaque hémisphère au sommet du crâne. En effet, prendre la décision 
d’appuyer à gauche implique l’aire motrice droite et inversement. En quantifiant la 
latéralisation de l’activité cérébrale dans les aires motrices, il est donc possible de savoir si 
une personne prépare une réponse et laquelle. Appliquant cette méthode aux dormeurs, 
nous avons pu montrer que même pendant le sommeil, le cerveau continue à préparer 
des réponses en fonction des instructions données à l’éveil et de la catégorie des mots. 

À la fin de l’expérience, les participants étaient réveillés et devaient effectuer un exercice 
de mémoire. De façon tout à fait étonnante, alors que des mots entendus à l’éveil étaient 
reconnus, les participants n’avaient aucun souvenir des mots entendus pendant le 
sommeil. Ainsi, non seulement ces participants ont pu classer ces mots, mais ils l’ont fait 
de manière « inconsciente ». 

Depuis la publication de cette étude, nous avons poursuivi nos efforts dans cette 
direction et confirmé nos premiers résultats. Mais de nombreuses questions restent 
encore à élucider. Pourquoi les participants endormis n’appuyaient-ils pas sur le bouton si 
leur cerveau préparait des réponses ? Quels types de traitement peuvent ou ne peuvent 
pas être effectués pendant le sommeil ? Des phrases entières peuvent-elles être traitées ? 
Qu’arrive-t-il quand nous rêvons ? Peut-on incorporer des éléments étrangers dans les 
rêves ? 

 

Apprendre en dormant 

Ces travaux ravivent également le vieux rêve (ou la crainte ancienne) que l’on puisse un 
jour apprendre ou faire apprendre pendant le sommeil. Les scientifiques ont déjà 
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démontré le lien entre le sommeil et la consolidation des souvenirs créés pendant la 
journée. Des formes simples d’apprentissage par conditionnement ont également été 
mises en lumière lorsque l’on est endormi. Plus récemment, des études chez l’homme et 
l’animal ont réussi à implanter dans le cerveau des associations, des mémoires nouvelles 
pendant le sommeil (associer l’odeur de cigarette à un son déplaisant chez des fumeurs 
par exemple). Des formes plus complexes d’apprentissage seraient-elles possibles ? 

Si le sommeil est un phénomène universel c’est parce qu’il est essentiel à notre survie. 
Nous avons montré dans notre étude que le sommeil n’était pas un état de « tout ou rien 
». Mais l’activité cérébrale a un coût : faire en sorte que le dormeur effectue des 
opérations pendant son sommeil pourrait ne pas être sans conséquence sur le long terme. 
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Annex C: 
Les mouvements oculaires pendant le sommeil : 

une fenêtre sur les rêves ? 

Thomas Andrillon 
The Conversation France, September 20 2015 

!
What happens behind the eyelids when we sleep?!

Une nuit tranquille. Dans la pièce voisine, une personne dort, équipée de capteurs. Le 
corps est immobile. L’enregistrement indique un tonus musculaire faible, une respiration 
profonde, un pouls lent. Pourtant, depuis quelques minutes, l’activité cérébrale du 
dormeur a changé. Alors que de grandes ondes lentes étaient auparavant visibles sur 
l’écran de contrôle de l’électroencéphalogramme, le cerveau montre désormais une 
activité proche de l’éveil. Soudain, le pouls et la respiration s’accélèrent. Derrière les 
paupières closes du dormeur, on peut voir ses yeux bouger. Réveillées à cet instant, les 
personnes rapportent en général le souvenir d’un rêve, des images, des émotions. Un 
cerveau éveillé dans un corps endormi, tel est le sommeil paradoxal. 

Ce sommeil, différent du sommeil dit « lent » où les rêves se font rares, se reconnaît à ces 
mouvements oculaires rapides qui l’accompagnent, d’où son nom en anglais : sommeil 
REM (Rapid Eye-Movement). Depuis 80 ans et l’invention des premières techniques 
d’enregistrement cérébral, ces mouvements oculaires pendant le sommeil ont suscité bien 
des questions : sont-ils en rapport avec la scène rêvée ? 

À l’éveil, nos yeux bougent sans cesse pour appréhender les alentours. L’œil a en effet ses 
limites : seul le centre de la rétine permet une vision nette et en couleurs. Les 
mouvements oculaires permettent de déplacer ce centre dans le champ visuel et 
d’explorer au mieux notre environnement. Entre chaque mouvement, donc entre chaque 
image ainsi formée sur la rétine, l’information visuelle, floue et peu informative, est 
inhibée. Ainsi, la vision est une série de captures d’images plus qu’un flux continu. Mais 
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alors, pourquoi observe-t-on ces mouvements oculaires pendant le sommeil, lorsque les 
yeux sont clos et qu’il n’y a rien à voir ? 

 

L’étoffe des rêves 

Les mouvements oculaires exploreraient-ils une scène rêvée ? Construite par le cerveau 
mais tout aussi visuelle que notre vie éveillée  ? Une telle proposition a d’importantes 
implications. Non seulement elle contredit l’hypothèse souvent avancée que les rêves ne 
sont qu’une (re)construction faite au réveil, mais elle précise « l’étoffe dont sont faits les 
rêves ». Bien que séduisante, cette hypothèse, dite du balayage (scanning hypothesis) a 
longtemps été controversée. 

Il y a en effet d’autres explications possibles. Notamment, ces mouvements oculaires 
pourraient traduire un changement physiologique sans rapport avec le contenu des rêves. 
De la même façon que les hommes connaissent des érections (elles se produisent 
pendant 80 % du temps de sommeil paradoxal) sans pour autant que cela soit toujours en 
relation avec un contenu onirique érotique. Par ailleurs, n’oublions pas que les aveugles 
de naissance ou encore des animaux sans vision comme les taupes produisent de tels 
mouvements oculaires. 

Depuis quelques années pourtant, la piste du balayage semble étayée par l’observation 
clinique. Lorsque la paralysie du sommeil paradoxal est abolie (cela arrive aux personnes 
affectées par le syndrome dit du trouble du comportement en sommeil paradoxal ou 
TCSP), les mouvements effectués par ces dormeurs concordent avec les mouvements 
oculaires ainsi qu’avec le récit du rêve. Ainsi, si l’on parvenait à lever la paralysie 
musculaire liée au sommeil paradoxal, il est possible que nous nous agiterions comme des 
pantins dans nos lits. Mais sommes-nous de simples poupées de chiffon dans notre 
sommeil ou des marionnettes sensibles ? 

 

Réponse neuronale 

Dans une étude récente publiée dans la revue Nature Communications, nous avons tenté 
d’explorer cette question en examinant l’activité cérébrale associée à ces mouvements 
oculaires pendant l’éveil et le sommeil. Pour cela, nous avons analysé des enregistrements 
de neurones uniques et de populations de neurones chez des individus humains atteints 
d’épilepsie et temporairement implantés d’électrodes intracrâniennes, dans le cadre de 
leur traitement. 

Nous avons comparé les réponses des neurones aux mouvements oculaires effectués 
pendant l’éveil et le sommeil paradoxal. Ces réponses ont également été comparées aux 
réponses associées à la présentation d’images sans mouvement oculaire. En effet, les 
régions cérébrales prises en compte (amygdale, hippocampe…) ont un rôle central dans 
la reconnaissance des objets et l’exploration visuelle. 

Il apparaît que les mouvements oculaires ont des effets similaires, à l’éveil comme 
pendant le sommeil, sur l’organisation de l’activité de ces aires visuelles et mnésiques. À 
l’échelle individuelle, certains neurones réduisent leur activité juste avant les mouvements 
oculaires et l’augmentent juste après : cela constituerait la base du traitement séquentiel 
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de l’information visuelle. De plus, la hiérarchie cérébrale semble être conservée de l’éveil 
au sommeil : les neurones les plus sélectifs (permettant la reconnaissance d’images très 
spécifiques comme la Tour Eiffel, par rapport à des neurones moins sélectifs s’activant 
pour les bâtiments en général) sont ceux qui s’activent le plus tardivement. 

À l’échelle des populations de neurones, les oscillations électriques dans la bande de 
fréquences autour de 4-8 Hertz (dites oscillations thêta) notamment impliquées dans 
l’exploration visuelle et la mémoire, sont comme remises à zéro suite aux mouvements 
oculaires. À l’éveil comme pendant le sommeil. 

Enfin, non seulement l’organisation de l’activité cérébrale pendant les mouvements 
oculaires est conservée de l’éveil au sommeil, mais elle est similaire à celle associée à la 
visualisation d’images sans mouvement oculaire. En revanche, cette activité ne se 
retrouve pas à l’éveil lorsque des mouvements oculaires sont réalisés dans l’obscurité. 
Que nous dormions ou que nous explorions notre environnement, tout se passe comme 
si les mouvements oculaires conservaient la même fonction. 

Il semble que les mêmes processus cérébraux sous-tendant la vision se reproduisent 
pendant le sommeil. Les mouvements oculaires pourraient donc ouvrir une fenêtre sur 
les rêves : ils indiqueraient, certes de façon imparfaite, quand des images sont visualisées. 
Des neuro-scientifiques sont déjà parvenus à décoder des éléments de rêve via l’imagerie 
cérébrale. Ici, les séquences de mouvements oculaires pourraient être utilisées pour 
détecter la survenue de cauchemars récurrents et réveiller le dormeur à temps. Les 
applications concrètent d’une telle découverte sont bien sûr encore lointaines. Reste le 
plaisir d’en savoir un peu plus sur la nature des rêves. 
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Résumé 

Tous les soirs, nous nous endormons; 
tous les matins, nous nous réveillons. 
De ce qui advient entre temps nous 
gardons peu de souvenirs . Les 
pe r sonne s q u i nou s en t ou ren t 
pourraient nous dire que nous avons 
bougé, parlé, ri ou crié, que les 
émotions les plus vives ont pris le 
contrôle de notre corps sans pour 
autant avoi r la i ssé le moindre 
souvenir. Ou encore, les personnes 
qui nous entourent ont pu bouger, 
parler, rire ou crier sans que nous 
nous en rendîmes compte le moins du 
monde. Ou au contra i re, nous 
p o u v o n s é m e r g e r d e l a p l u s 
fantastique des aventures dans un lit 
pourtant bien calme, bercé par le 
calme tic-tac de l’horloge. Il semble 
que le sommeil opère une dissociation 
complète entre ce qui arrive dans 
notre environnement immédiat et dans 
notre esprit, sans pour autant que la 
chose éveille en nous la moindre 
alarme. À tout moment qui plus est, 
nous pouvons nous révei l ler e t 
reprendre consc ience de no t re 
env i ronnemen t de f açon quas i 
instantanée. Curieusement, il semble 
que certains sons aient une plus 
grande facilité à nous réveiller que 
d ’ a u t r e s . S o m m e s - n o u s d o n c 
complètement déconnectés de notre 
environnement quand nous dormons ? 
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Abstract 

Every night we fall asleep and every 
morning we wake up. From what 
happens in the meantime, little is 
remembered. Others may say that we 
have moved, talked, laughed or cried, 
that the strongest and most vivid 
emotions took control of our body 
without leaving the faintest memory 
behind. Or others may have moved, 
talked, laughed or cried without our 
slightest notice. On the contrary, we 
can emerge from the most fantastic 
adventure in a quiet bed, cradled by 
a peaceable ticking clock. Without 
causing us much alarm, it seems that 
sleep entails a dissociation between 
what happens in our environment and 
within our mind. Yet, at any moment, 
we can wake up and immediately 
r e g a i n c o n s c i o u s n e s s o f t h e 
surrounding world. Interestingly, it 
seems that certain sounds are more 
likely to awake us than others. Thus, 
are we completely disconnected from 
our environment when we sleep? 
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