M. Alejandra, M. Defrance, O. Sand, C. Herrmann, A. et al., Regulatory sequence analysis tools, Nucleic Acids Res, vol.43, pp.1-50, 2015.

S. Alicia, L. Carlos, D. B. Krimer, J. B. Schvartzman, and P. Hernández, Transcription termination factor reb1p causes two replication fork barriers at its cognate sites in fission yeast ribosomal DNA in vivo, Mol. Cell. Biol, vol.24, pp.1-398, 2004.

T. Aparicio, E. Guillou, J. Coloma, G. Montoya, and J. Méndez, The human GINS complex associates with Cdc45 and MCM and is essential for DNA replication, Nucleic Acids Research, vol.37, issue.7, pp.7-2087, 2009.
DOI : 10.1093/nar/gkp065

B. Apostol, G. , and C. , Copy number and stability of yeast 2??-based plasmids carrying a transcription-conditional centromere, Gene, vol.67, issue.1, pp.59-68, 1988.
DOI : 10.1016/0378-1119(88)90008-X

J. T. Arigo, K. L. Carroll, J. M. Ames, and J. L. And-corden, Regulation of Yeast NRD1 Expression by Premature Transcription Termination, Molecular Cell, vol.21, issue.5, pp.641-51, 2006.
DOI : 10.1016/j.molcel.2006.02.005

J. T. Arigo, D. E. Eyler, K. L. Carroll, and J. L. And-corden, Termination of Cryptic Unstable Transcripts Is Directed by Yeast RNA-Binding Proteins Nrd1 and Nab3, Molecular Cell, vol.23, issue.6, pp.841-51, 2006.
DOI : 10.1016/j.molcel.2006.07.024

V. Bacikova, J. Pasulka, K. Kubicek, and R. Stefl, Structure and semi-sequence-specific RNA binding of Nrd1, Nucleic Acids Research, vol.42, issue.12, pp.12-8024, 2014.
DOI : 10.1093/nar/gku446

G. Badis, E. T. Chan, H. Van-bakel, P. Lourdes, D. Tillo et al., A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters, Molecular Cell, vol.32, issue.6, pp.878-87, 2008.
DOI : 10.1016/j.molcel.2008.11.020

A. D. Basehoar, S. J. Zanton, and B. Pugh, Identification and Distinct Regulation of Yeast TATA Box-Containing Genes, Cell, vol.116, issue.5, pp.699-709, 2004.
DOI : 10.1016/S0092-8674(04)00205-3

S. Beaudenon, M. Huacani, G. Wang, M. Dp, and J. Huibregtse, Rsp5 ubiquitin-protein ligase mediates DNA damage-induced degradation of the large subunit of RNA polymerase II in saccharomyces cerevisiae, Mol. Cell. Biol, vol.19, pp.10-6972, 1999.

N. M. Berbenetz, C. Nislow, and G. W. Brown, Diversity of Eukaryotic DNA Replication Origins Revealed by Genome-Wide Analysis of Chromatin Structure, PLoS Genetics, vol.37, issue.9, pp.9-1001092, 2010.
DOI : 10.1371/journal.pgen.1001092.s014

N. L. Bogenschutz, J. Rodriguez, and T. Tsukiyama, Initiation of DNA Replication from Non-Canonical Sites on an Origin-Depleted Chromosome, PLoS ONE, vol.24, issue.12, pp.12-114545, 2014.
DOI : 10.1371/journal.pone.0114545.t002

M. T. Bohnsack, D. Tollervey, and S. Granneman, Identification of RNA Helicase Target Sites by UV Cross-Linking and Analysis of cDNA, Meth. Enzymol, vol.511, pp.275-88, 2012.
DOI : 10.1016/B978-0-12-396546-2.00013-9

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.30, issue.15, pp.2114-2134, 2014.
DOI : 10.1093/bioinformatics/btu170

URL : https://academic.oup.com/bioinformatics/article-pdf/30/15/2114/17143152/btu170.pdf

S. Buratowski, S. Hahn, L. Guarente, and P. Sharp, Five intermediate complexes in transcription initiation by RNA polymerase II, Cell, vol.56, issue.4, pp.549-61, 1989.
DOI : 10.1016/0092-8674(89)90578-3

B. B. Burugula, C. Jeronimo, R. Pathak, J. W. Jones, F. Robert et al., Histone Deacetylases and Phosphorylated Polymerase II C-Terminal Domain Recruit Spt6 for Cotranscriptional Histone Reassembly, Molecular and Cellular Biology, vol.34, issue.22, pp.22-4115, 2014.
DOI : 10.1128/MCB.00695-14

URL : http://mcb.asm.org/content/34/22/4115.full.pdf

D. A. Bushnell, K. D. Westover, R. E. Davis, and R. D. Kornberg, Structural Basis of Transcription: An RNA Polymerase II-TFIIB Cocrystal at 4.5 Angstroms, Science, vol.303, issue.5660, pp.5660-983, 2004.
DOI : 10.1126/science.1090838

H. Bussemaker, H. Li, and E. Siggia, Regulatory element detection using correlation with expression, Nature Genetics, vol.27, issue.2, pp.167-71, 2001.
DOI : 10.1038/84792

J. E. Butler and J. Kadonaga, The RNA polymerase II core promoter: a key component in the regulation of gene expression, Genes & Development, vol.16, issue.20, pp.2583-92, 2002.
DOI : 10.1101/gad.1026202

M. Cai, D. , and R. , Yeast centromere binding protein CBF1, of the helixloop-helix protein family, is required for chromosome stability and methionine prototrophy, Cell, vol.61, pp.3-437, 1990.

R. Carlo and J. H. Brickner, Transcription factors dynamically control the spatial organization of the yeast genome, Nucleus, vol.7, issue.4, pp.369-74, 2016.

K. L. Carroll, R. Ghirlando, J. M. Ames, and J. L. And-corden, Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements, RNA, vol.13, issue.3, pp.361-73, 2007.
DOI : 10.1261/rna.338407

K. L. Carroll, D. A. Pradhan, J. A. Granek, N. D. Clarke, and J. L. And-corden, Identification of cis Elements Directing Termination of Yeast Nonpolyadenylated snoRNA Transcripts, Molecular and Cellular Biology, vol.24, issue.14, pp.14-6241, 2004.
DOI : 10.1128/MCB.24.14.6241-6252.2004

M. Castelnuovo, S. Rahman, E. Guffanti, V. Infantino, F. Stutz et al., Bimodal expression of PHO84 is modulated by early termination of antisense transcription, Nature Structural & Molecular Biology, vol.7, issue.7, pp.7-851, 2013.
DOI : 10.1101/sqb.2010.75.036

S. Celniker, K. Sweder, F. Srienc, J. Bailey, and J. Campbell, Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.4, issue.11, pp.11-2455, 1984.
DOI : 10.1128/MCB.4.11.2455

D. Chasman, N. Lue, A. Buchman, L. Jw, Y. Lorch et al., A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator., Genes & Development, vol.4, issue.4, pp.4-503, 1990.
DOI : 10.1101/gad.4.4.503

J. Cherry, E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley et al., Saccharomyces Genome Database: the genomics resource of budding yeast, Database issue, pp.700-705, 2012.
DOI : 10.1093/nar/gkr1029

A. C. Cheung and P. Cramer, Structural basis of RNA polymerase II backtracking, arrest and reactivation, Nature, vol.273, issue.7337, pp.7337-249, 2011.
DOI : 10.1074/jbc.273.35.22595

J. Colin, T. Candelli, O. Porrua, J. Boulay, C. Zhu et al., Roadblock Termination by Reb1p Restricts Cryptic and Readthrough Transcription, Molecular Cell, vol.56, issue.5, pp.667-80, 2014.
DOI : 10.1016/j.molcel.2014.10.026

URL : https://doi.org/10.1016/j.molcel.2014.10.026

N. Conrad, S. Wilson, E. Steinmetz, M. Patturajan, D. Brow et al., A yeast heterogeneous nuclear ribonucleoprotein complex associated with RNA polymerase II, Genetics, vol.154, issue.2, pp.557-71, 2000.

M. Cui, M. A. Allen, A. Larsen, M. Macmorris, M. Han et al., Genes involved in pre-mRNA 3'-end formation and transcription termination revealed by a lin-15 operon Muv suppressor screen, Proceedings of the National Academy of Sciences, vol.279, issue.34, pp.43-16665, 2008.
DOI : 10.1074/jbc.M403927200

D. M. Czajkowsky, J. Liu, J. L. Hamlin, and Z. Shao, DNA Combing Reveals Intrinsic Temporal Disorder in the Replication of Yeast Chromosome VI, Journal of Molecular Biology, vol.375, issue.1, pp.1-12, 2008.
DOI : 10.1016/j.jmb.2007.10.046

D. , M. K. Wang, T. Gordon, D. Gifford, D. K. Stormo et al., An improved map of conserved regulatory sites for saccharomyces cerevisiae, BMC Bioinformatics, vol.7, p.113, 2006.

L. David, W. Huber, M. Granovskaia, J. Toedling, C. J. Palm et al., A highresolution map of transcription in the yeast genome, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.14-5320, 2006.

J. A. Davis, Y. Takagi, R. D. Kornberg, and F. A. Asturias, Structure of the Yeast RNA Polymerase II Holoenzyme, Molecular Cell, vol.10, issue.2, pp.409-424, 2002.
DOI : 10.1016/S1097-2765(02)00598-1

D. Seta, F. Ciafré, S. Marck, C. Santoro, B. Presutti et al., The ABF1 factor is the transcriptional activator of the l2 ribosomal protein genes in saccharomyces cerevisiae, Mol. Cell. Biol, vol.10, pp.5-2437, 1990.

S. Dengl and P. Cramer, Torpedo nuclease rat1 is insufficient to terminate RNA polymerase II in vitro, J. Biol. Chem, vol.284, pp.32-21270, 2009.
DOI : 10.1074/jbc.m109.013847

URL : http://www.jbc.org/content/284/32/21270.full.pdf

A. Dershowitz, M. Snyder, M. Sbia, J. H. Skurnick, L. Y. Ong et al., Linear Derivatives of Saccharomyces cerevisiae Chromosome III Can Be Maintained in the Absence of Autonomously Replicating Sequence Elements, Molecular and Cellular Biology, vol.27, issue.13, pp.13-4652, 2007.
DOI : 10.1128/MCB.01246-06

J. Diffley, Global regulators of chromosome function in yeast, Antonie van Leeuwenhoek, vol.262, issue.1-2, pp.25-33, 1992.
DOI : 10.1128/MCB.10.4.1743

J. Diffley and J. Cocker, Protein-DNA interactions at a yeast replication origin, Nature, vol.357, issue.6374, pp.169-72, 1992.
DOI : 10.1038/357169a0

J. Diffley, J. Cocker, S. Dowell, and A. Rowley, Two steps in the assembly of complexes at yeast replication origins in vivo, Cell, vol.78, issue.2, pp.303-319, 1994.
DOI : 10.1016/0092-8674(94)90299-2

S. Donovan, J. Harwood, L. Drury, and J. Diffley, Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast, Proceedings of the National Academy of Sciences, vol.122, issue.5, pp.11-5611, 1997.
DOI : 10.1083/jcb.122.5.993

M. L. Eaton, K. Galani, S. Kang, S. P. Bell, M. et al., Conserved nucleosome positioning defines replication origins, Genes & Development, vol.24, issue.8, pp.748-53, 2010.
DOI : 10.1101/gad.1913210

URL : http://genesdev.cshlp.org/content/24/8/748.full.pdf

S. Egloff, Role of Ser7 phosphorylation of the CTD during transcription of snRNA genes, RNA Biology, vol.9, issue.8, pp.1033-1041, 2012.
DOI : 10.1016/j.cell.2011.11.057

S. Egloff, M. Dienstbier, M. , and S. , Updating the RNA polymerase CTD code: adding gene-specific layers, Trends in Genetics, vol.28, issue.7, pp.7-333, 2012.
DOI : 10.1016/j.tig.2012.03.007

C. Esnault, G. Yad, S. Brun, J. Soutourina, N. Van-berkum et al., Mediator-Dependent Recruitment of TFIIH Modules in Preinitiation Complex, Molecular Cell, vol.31, issue.3, pp.337-383, 2008.
DOI : 10.1016/j.molcel.2008.06.021

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, Real-time observation of the initiation of RNA polymerase II transcription, Nature, vol.525, pp.7568-274, 2015.

E. A. Feldmann and R. Galletto, The DNA-Binding Domain of Yeast Rap1 Interacts with Double-Stranded DNA in Multiple Binding Modes, Biochemistry, vol.53, issue.48, pp.48-7471, 2014.
DOI : 10.1021/bi501049b

L. Feng, B. Wang, J. , and A. , Cdc6 Stimulates Abf1 DNA Binding Activity, Journal of Biological Chemistry, vol.11, issue.3, pp.1298-302, 1998.
DOI : 10.1016/S0092-8674(00)80526-7

URL : http://www.jbc.org/content/273/3/1298.full.pdf

B. Fermi, M. C. Bosio, and G. Dieci, Multiple roles of the general regulatory factor Abf1 in yeast ribosome biogenesis, Current Genetics, vol.284, issue.1, 2016.
DOI : 10.1074/jbc.M806830200

B. Fermi, M. C. Bosio, and G. Dieci, Promoter architecture and transcriptional regulation of abf1-dependent ribosomal protein genes in saccharomyces cerevisiae, Nucleic Acids Res, vol.44, pp.13-6113, 2016.

Y. Field, N. Kaplan, F. Yvonne, I. K. Moore, E. Sharon et al., Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals, PLoS Computational Biology, vol.77, issue.11, pp.11-1000216, 2008.
DOI : 10.1371/journal.pcbi.1000216.s007

N. Fong, K. Brannan, B. Erickson, H. Kim, M. A. Cortazar et al., Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity on RNA Polymerase II Termination Suggest Widespread Kinetic Competition, Molecular Cell, vol.60, issue.2, pp.256-67, 2015.
DOI : 10.1016/j.molcel.2015.09.026

G. Fourel, T. Miyake, P. A. Defossez, R. Li, and E. Gilson, General Regulatory Factors (GRFs) as Genome Partitioners, Journal of Biological Chemistry, vol.18, issue.44, pp.44-41736, 2002.
DOI : 10.1093/nar/25.21.4250

A. Gambus, G. A. Khoudoli, R. C. Jones, and J. Blow, MCM2-7 form double hexamers at licensed origins in xenopus egg extract, J. Biol. Chem, vol.286, pp.13-11855, 2011.

M. Ganapathi, M. J. Palumbo, S. A. Ansari, Q. He, K. Tsui et al., Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast, Nucleic Acids Research, vol.39, issue.6, pp.6-2032, 2011.
DOI : 10.1093/nar/gkq1161

L. Gauthier, R. Dziak, D. J. Kramer, D. Leishman, X. Song et al., The role of the carboxyterminal domain of RNA polymerase II in regulating origins of DNA replication in saccharomyces cerevisiae, Genetics, vol.162, issue.3, pp.1117-1146, 2002.

G. Ghazal, J. Gagnon, P. E. Jacques, J. R. Landry, F. Robert et al., Yeast RNase III Triggers Polyadenylation-Independent Transcription Termination, Molecular Cell, vol.36, issue.1, pp.99-109, 2009.
DOI : 10.1016/j.molcel.2009.07.029

URL : https://doi.org/10.1016/j.molcel.2009.07.029

S. Granneman, G. Kudla, E. Petfalski, and D. Tollervey, Identification of protein binding sites on u3 snoRNA and pre-rRNA by UV crosslinking and high-throughput analysis of cDNAs, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.24-9613, 2009.

B. Gu, D. Eick, and O. Bensaude, CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo, Nucleic Acids Research, vol.41, issue.3, pp.3-1591, 2013.
DOI : 10.1093/nar/gks1327

R. K. Gudipati, T. Villa, J. Boulay, and D. Libri, Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice, Nature Structural & Molecular Biology, vol.154, issue.8, pp.8-786, 2008.
DOI : 10.1038/35097110

L. Haracska, R. E. Johnson, L. Prakash, and S. Prakash, Trf4 and Trf5 Proteins of Saccharomyces cerevisiae Exhibit Poly(A) RNA Polymerase Activity but No DNA Polymerase Activity, Molecular and Cellular Biology, vol.25, issue.22, pp.22-10183, 2005.
DOI : 10.1128/MCB.25.22.10183-10189.2005

C. T. Harbison, D. Gordon, T. I. Lee, N. J. Rinaldi, K. D. Macisaac et al., Transcriptional regulatory code of a eukaryotic genome, Nature, vol.18, issue.7004, pp.7004-99, 2004.
DOI : 10.1093/bioinformatics/15.7.607

P. D. Hartley and H. D. Madhani, Mechanisms that Specify Promoter Nucleosome Location and Identity, Cell, vol.137, issue.3, pp.445-58, 2009.
DOI : 10.1016/j.cell.2009.02.043

URL : https://doi.org/10.1016/j.cell.2009.02.043

H. Haruki, J. Nishikawa, and U. Laemmli, The Anchor-Away Technique: Rapid, Conditional Establishment of Yeast Mutant Phenotypes, Molecular Cell, vol.31, issue.6, 2008.
DOI : 10.1016/j.molcel.2008.07.020

M. Hawkins, R. Retkute, C. A. Müller, N. Saner, T. U. Tanaka et al., High-Resolution Replication Profiles Define the Stochastic Nature of Genome Replication Initiation and Termination, Cell Reports, vol.5, issue.4, pp.1132-1173, 2013.
DOI : 10.1016/j.celrep.2013.10.014

D. Z. Hazelbaker, S. Marquardt, W. Wlotzka, and S. Buratowski, Kinetic Competition between RNA Polymerase II and Sen1-Dependent Transcription Termination, Molecular Cell, vol.49, issue.1, pp.55-66, 2013.
DOI : 10.1016/j.molcel.2012.10.014

URL : https://doi.org/10.1016/j.molcel.2012.10.014

Y. Hochberg and Y. Benjamini, More powerful procedures for multiple significance testing, Statistics in Medicine, vol.63, issue.7, pp.811-819, 1990.
DOI : 10.1093/biomet/69.3.493

F. Holstege, U. Fiedler, and H. Timmers, Three transitions in the RNA polymerase II transcription complex during initiation, The EMBO Journal, vol.16, issue.24, pp.24-7468, 1997.
DOI : 10.1093/emboj/16.24.7468

F. Holstege, P. Van-der-vliet, and H. Timmers, Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH, EMBO J, vol.15, pp.7-1666, 1996.

J. Houseley and D. Tollervey, The Many Pathways of RNA Degradation, Cell, vol.136, issue.4, pp.763-76, 2009.
DOI : 10.1016/j.cell.2009.01.019

J. Hsin, A. Sheth, and J. Manley, RNAP II CTD Phosphorylated on Threonine-4 Is Required for Histone mRNA 3' End Processing, Science, vol.432, issue.7018, 2011.
DOI : 10.1038/nature03154

R. Huang and D. Kowalski, A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome, EMBO J, vol.12, pp.12-4521, 1993.

K. L. Huisinga and B. Pugh, A Genome-Wide Housekeeping Role for TFIID and a Highly Regulated Stress-Related Role for SAGA in Saccharomyces cerevisiae, Molecular Cell, vol.13, issue.4, pp.573-85, 2004.
DOI : 10.1016/S1097-2765(04)00087-5

G. O. Hunter, M. J. Fox, R. , S. W. Gogol, M. Fleharty et al., Phosphatase Rtr1 Regulates Global Levels of Serine 5 RNA Polymerase II C-Terminal Domain Phosphorylation and Cotranscriptional Histone Methylation, Molecular and Cellular Biology, vol.36, issue.17, pp.17-2236, 2016.
DOI : 10.1128/MCB.00870-15

A. Imbalzano, K. Zaret, K. , and R. , Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA, J. Biol. Chem, vol.269, pp.11-8280, 1994.

M. Jenks, W. , O. T. , R. , and D. , Properties of an Intergenic Terminator and Start Site Switch That Regulate IMD2 Transcription in Yeast, Molecular and Cellular Biology, vol.28, issue.12, pp.12-3883, 2008.
DOI : 10.1128/MCB.00380-08

C. Jiang and B. Pugh, A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome, Genome Biology, vol.10, issue.10, pp.10-109, 2009.
DOI : 10.1186/gb-2009-10-10-r109

L. John, J. Houseley, C. Saveanu, E. Petfalski, E. Thompson et al., RNA degradation by the exosome is promoted by a nuclear polyadenylation complex, Cell, vol.121, issue.5, pp.713-737, 2005.

I. Kamenova, L. Warfield, and S. Hahn, Mutations on the DNA Binding Surface of TBP Discriminate between Yeast TATA and TATA-Less Gene Transcription, Molecular and Cellular Biology, vol.34, issue.15, pp.15-2929, 2014.
DOI : 10.1128/MCB.01685-13

K. , O. , Y. , S. Baker, and R. , Role of the saccharomyces cerevisiae general regulatory factor CP1 in methionine biosynthetic gene transcription, Mol. Cell. Biol, vol.15, issue.4, pp.1879-88, 1995.

C. Kilchert, S. Wittmann, and L. Vasiljeva, The regulation and functions of the nuclear RNA exosome complex, Nature Reviews Molecular Cell Biology, vol.127, issue.4, pp.227-266, 2016.
DOI : 10.1371/journal.pgen.1004630

J. Kim, S. Wei, J. Lee, H. Yue, L. et al., Single-Molecule Observation Reveals Spontaneous Protein Dynamics in the Nucleosome, The Journal of Physical Chemistry B, vol.120, issue.34, 2016.
DOI : 10.1021/acs.jpcb.6b06235

M. Kim, S. H. Ahn, N. J. Krogan, J. F. Greenblatt, and S. Buratowski, Transitions in RNA polymerase II elongation complexes at the 3??? ends of genes, The EMBO Journal, vol.23, issue.2, pp.354-64, 2004.
DOI : 10.1038/sj.emboj.7600053

M. Kim, N. J. Krogan, L. Vasiljeva, O. J. Rando, E. Nedea et al., The yeast rat1 exonuclease promotes transcription termination by RNA polymerase II, Nature, vol.432, pp.7016-517, 2004.

M. Kim, L. Vasiljeva, O. J. Rando, A. Zhelkovsky, C. Moore et al., Distinct Pathways for snoRNA and mRNA Termination, Molecular Cell, vol.24, issue.5, pp.723-757, 2006.
DOI : 10.1016/j.molcel.2006.11.011

URL : https://doi.org/10.1016/j.molcel.2006.11.011

B. Knight, S. Kubik, B. Ghosh, M. J. Bruzzone, M. Geertz et al., Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription, Genes & Development, vol.28, issue.15, pp.15-1695, 2014.
DOI : 10.1101/gad.244434.114

URL : http://genesdev.cshlp.org/content/28/15/1695.full.pdf

A. Korde, J. M. Rosselot, and D. Donze, Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae, Genetics, vol.196, issue.2, pp.427-465, 2014.
DOI : 10.1534/genetics.113.160093

K. Kubicek, H. Cerna, P. Holub, J. Pasulka, D. Hrossova et al., Serine phosphorylation and proline isomerization in RNAP II CTD control recruitment of Nrd1, Genes & Development, vol.26, issue.17, pp.17-1891, 2012.
DOI : 10.1101/gad.192781.112

S. Kubik, M. J. Bruzzone, P. Jacquet, J. L. Falcone, J. Rougemont et al., Nucleosome Stability Distinguishes Two Different Promoter Types at All Protein-Coding Genes in Yeast, Molecular Cell, vol.60, issue.3, pp.422-456, 2015.
DOI : 10.1016/j.molcel.2015.10.002

O. I. Kulaeva, F. K. Hsieh, H. W. Chang, D. S. Luse, and V. M. Studitsky, Mechanism of transcription through a nucleosome by RNA polymerase II, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1829, issue.1, pp.76-83, 2013.
DOI : 10.1016/j.bbagrm.2012.08.015

S. Kurtz and D. Shore, RAP1 protein activates and silences transcription of mating-type genes in yeast., Genes & Development, vol.5, issue.4, pp.616-644, 1991.
DOI : 10.1101/gad.5.4.616

L. , M. A. Greenleaf, and A. L. , Cotranscriptional association of mRNA export factor yra1 with c-terminal domain of RNA polymerase II, J. Biol. Chem, vol.286, pp.42-36385, 2011.

L. , M. K. Cheeseman, and I. M. , The molecular basis for centromere identity and function, Nat. Rev. Mol. Cell Biol, 2015.

W. Lang, B. Morrow, Q. Ju, J. Warner, and R. Reeder, A model for transcription termination by RNA polymerase I, Cell, vol.79, issue.3, 1994.
DOI : 10.1016/0092-8674(94)90261-5

W. Lang and R. Reeder, The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.13, issue.1, pp.649-58, 1993.
DOI : 10.1128/MCB.13.1.649

W. Lang and R. Reeder, Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p., Proceedings of the National Academy of Sciences, vol.92, issue.21, pp.9781-9786, 1995.
DOI : 10.1073/pnas.92.21.9781

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nature Methods, vol.9, issue.4, pp.357-366, 2012.
DOI : 10.1093/bioinformatics/btp352

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322381/pdf

A. Lardenois, Y. Liu, T. Walther, F. Chalmel, B. Evrard et al., Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6, Proceedings of the National Academy of Sciences, vol.9, issue.19, pp.3-1058, 2011.
DOI : 10.1186/1471-2105-9-86

URL : https://hal.archives-ouvertes.fr/hal-00682830

J. Lipford and S. Bell, Nucleosomes Positioned by ORC Facilitate the Initiation of DNA Replication, Molecular Cell, vol.7, issue.1, pp.21-30, 2001.
DOI : 10.1016/S1097-2765(01)00151-4

Y. Lorch, L. Jw, and R. Kornberg, Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones, Cell, vol.49, issue.2, pp.203-213, 1987.
DOI : 10.1016/0092-8674(87)90561-7

I. A. Lucas and M. Raghuraman, The Dynamics of Chromosome Replication in Yeast, Curr. Top. Dev. Biol, vol.55, pp.1-73, 2003.
DOI : 10.1016/S0070-2153(03)01001-9

B. M. Lunde, M. Hörner, and A. Meinhart, Structural insights into cis element recognition of non-polyadenylated RNAs by the Nab3-RRM, Nucleic Acids Research, vol.39, issue.1, pp.337-383, 2011.
DOI : 10.1093/nar/gkq751

W. Luo, A. W. Johnson, and D. L. Bentley, The role of Rat1 in coupling mRNA 3'-end processing to transcription termination: implications for a unified allosteric-torpedo model, Genes & Development, vol.20, issue.8, pp.954-65, 2006.
DOI : 10.1101/gad.1409106

A. Lustig, S. Kurtz, and D. Shore, Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length, Science, vol.23, issue.5973, pp.4980-549, 1990.
DOI : 10.1038/310157a0

M. , B. Edler, K. Barberis, and A. , RNA polymerase II and III transcription factors can stimulate DNA replication by modifying origin chromatin structures, Nucleic Acids Res, vol.29, pp.22-4570, 2001.

H. Mak, L. Pillus, and T. Ideker, Dynamic reprogramming of transcription factors to and from the subtelomere, Genome Research, vol.19, issue.6, pp.1014-1039, 2009.
DOI : 10.1101/gr.084178.108

D. L. Makino, B. Schuch, E. Stegmann, M. Baumgärtner, C. Basquin et al., RNA degradation paths in a 12-subunit nuclear exosome complex, Nature, vol.9, issue.7563, 2015.
DOI : 10.1038/nmeth.2089

C. Malabat, F. Feuerbach, L. Ma, C. Saveanu, and A. Jacquier, Quality control of transcription start site selection by nonsense-mediatedmRNA decay, Elife, vol.4, 2015.

Y. Marahrens and B. Stillman, A yeast chromosomal origin of DNA replication defined by multiple functional elements, Science, vol.255, issue.5046, pp.5046-817, 1992.
DOI : 10.1126/science.1536007

S. Marquardt, D. Z. Hazelbaker, and S. Buratowski, Distinct RNA degradation pathways and 3' extensions of yeast non-coding RNA species, Transcription, vol.12, issue.3, pp.3-145, 2011.
DOI : 10.1016/j.molcel.2006.02.005

S. Marquardt, E. Renan, N. Pho, J. Wang, L. Churchman et al., A Chromatin-Based Mechanism for Limiting Divergent Noncoding Transcription, Cell, vol.157, issue.7, pp.1712-1735, 2014.
DOI : 10.1016/j.cell.2014.04.036

URL : https://doi.org/10.1016/j.cell.2014.06.038

J. A. Martens, L. Laprade, W. , and F. , Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene, Nature, vol.151, issue.6991, pp.6991-571, 2004.
DOI : 10.1128/MCB.24.2.561-572.2004

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet.journal, vol.17, issue.1, pp.10-12, 2011.
DOI : 10.14806/ej.17.1.200

M. D. Mayan, RNAP-II Molecules Participate in the Anchoring of the ORC to rDNA Replication Origins, PLoS ONE, vol.102, issue.1, p.53405, 2013.
DOI : 10.1371/journal.pone.0053405.s004

A. Mayer, M. Heidemann, M. Lidschreiber, A. Schreieck, M. Sun et al., CTD Tyrosine Phosphorylation Impairs Termination Factor Recruitment to RNA Polymerase II, Science, vol.33, issue.6, pp.6089-1723, 2012.
DOI : 10.1016/j.molcel.2009.02.018

A. Mayer, M. Lidschreiber, M. Siebert, K. Leike, J. Söding et al., Uniform transitions of the general RNA polymerase II transcription complex, Nature Structural & Molecular Biology, vol.14, issue.10, pp.10-1272, 2010.
DOI : 10.1093/nar/gkn535

J. Mellor, W. Jiang, M. Funk, J. Rathjen, C. Barnes et al., CPF1, a yeast protein which functions in centromeres and promoters, EMBO J, vol.9, pp.12-4017, 1990.

L. Milligan, A. , H. V. Clémentine, D. Tuck, A. Petfalski et al., Strand???specific, high???resolution mapping of modified RNA polymerase II, Molecular Systems Biology, vol.12, issue.6, p.6, 2016.
DOI : 10.15252/msb.20166869

P. Mitchell, E. Petfalski, A. Shevchenko, M. Mann, and D. Tollervey, The Exosome: A Conserved Eukaryotic RNA Processing Complex Containing Multiple 3??????5??? Exoribonucleases, Cell, vol.91, issue.4, pp.457-66, 1997.
DOI : 10.1016/S0092-8674(00)80432-8

C. Moehle and A. Hinnebusch, Association of RAP1 binding sites with stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae., Molecular and Cellular Biology, vol.11, issue.5, pp.2723-2758, 1991.
DOI : 10.1128/MCB.11.5.2723

J. C. Morales, P. Richard, A. Rommel, F. J. Fattah, E. A. Motea et al., Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair, Nucleic Acids Research, vol.42, issue.8, pp.4996-5006, 2014.
DOI : 10.1093/nar/gku160

A. L. Mosley, S. G. Pattenden, M. Carey, S. Venkatesh, J. M. Gilmore et al., Rtr1 Is a CTD Phosphatase that Regulates RNA Polymerase II during the Transition from Serine 5 to Serine 2 Phosphorylation, Molecular Cell, vol.34, issue.2, pp.168-78, 2009.
DOI : 10.1016/j.molcel.2009.02.025

S. E. Moyer, P. W. Lewis, and M. R. Botchan, Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase, Proceedings of the National Academy of Sciences, vol.18, issue.23, pp.27-10236, 2006.
DOI : 10.1101/gad.1255204

H. Neil, C. Malabat, . Yves, Z. Xu, L. M. Steinmetz et al., Widespread bidirectional promoters are the major source of cryptic transcripts in yeast, Nature, vol.320, issue.7232, pp.7232-1038, 2009.
DOI : 10.1128/MCB.13.1.543

C. Newlon, I. Collins, A. Dershowitz, A. Deshpande, S. Greenfeder et al., Analysis of Replication Origin Function on Chromosome III of Saccharomyces cerevisiae, Cold Spring Harbor Symposia on Quantitative Biology, vol.58, issue.0, pp.58-415, 1993.
DOI : 10.1101/SQB.1993.058.01.048

V. Nguyen, C. Co, L. , and J. , Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms, Nature, vol.274, issue.6841, pp.6841-1068, 2001.
DOI : 10.1074/jbc.274.36.25927

R. Niedenthal, M. , S. Wilmen, A. Hegemann, and J. , Cpf1 protein induced bending of yeast centromere DNA element I, Nucleic Acids Research, vol.21, issue.20, pp.4726-4759, 1993.
DOI : 10.1093/nar/21.20.4726

C. A. Nieduszynski, J. Blow, and A. D. Donaldson, The requirement of yeast replication origins for pre-replication complex proteins is modulated by transcription, Nucleic Acids Research, vol.33, issue.8, pp.2410-2430, 2005.
DOI : 10.1093/nar/gki539

C. A. Nieduszynski, Y. Knox, and A. Donaldson, Genome-wide identification of replication origins in yeast by comparative genomics, Genes & Development, vol.20, issue.14, pp.1874-1879
DOI : 10.1101/gad.385306

M. Pal, A. S. Ponticelli, and D. S. Luse, The Role of the Transcription Bubble and TFIIB in Promoter Clearance by RNA Polymerase II, Molecular Cell, vol.19, issue.1, pp.101-110, 2004.
DOI : 10.1016/j.molcel.2005.05.024

G. Papai, M. K. Tripathi, C. Ruhlmann, J. H. Layer, P. Weil et al., TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation, Nature, vol.25, issue.7300, pp.7300-956, 2010.
DOI : 10.1128/MCB.18.2.1003

J. Park, M. Kang, and M. Kim, Unraveling the mechanistic features of RNA polymerase II termination by the 5???-3??? exoribonuclease Rat1, Nucleic Acids Research, vol.43, issue.5, pp.5-2625, 2015.
DOI : 10.1093/nar/gkv133

P. K. Patel, B. Arcangioli, S. P. Baker, A. Bensimon, R. et al., DNA Replication Origins Fire Stochastically in Fission Yeast, Molecular Biology of the Cell, vol.17, issue.1, pp.308-324, 2006.
DOI : 10.1091/mbc.E05-07-0657

URL : http://www.molbiolcell.org/content/17/1/308.full.pdf

E. L. Pearson, M. , and C. L. , Dismantling promoter-driven RNA polymerase II transcription complexes in vitro by the termination factor rat1, J. Biol. Chem, vol.288, pp.27-19750, 2013.

V. Pelechano, W. Wei, and L. M. Steinmetz, Extensive transcriptional heterogeneity revealed by isoform profiling, Nature, vol.458, issue.7447, pp.7447-127, 2013.
DOI : 10.1038/nature07667

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705217/pdf

Y. Pilpel, P. Sudarsanam, and G. Church, Identifying regulatory networks by combinatorial analysis of promoter elements, Nature Genetics, vol.29, issue.2, pp.153-162, 2001.
DOI : 10.1038/ng724

R. Planta, P. Gonçalves, W. Mager, O. Porrua, F. Hobor et al., Global regulators of ribosome biosynthesis in yeast In vivo SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination, Biochem. Cell Biol. EMBO J, vol.73, issue.31, pp.11-12, 1995.

O. Porrua and D. Libri, A bacterial-like mechanism for transcription termination by the Sen1p helicase in budding yeast, Nature Structural & Molecular Biology, vol.511, issue.7, pp.884-91, 2013.
DOI : 10.1016/B978-0-12-396546-2.00012-7

H. Qiu, C. Hu, and A. G. Hinnebusch, Phosphorylation of the Pol II CTD by KIN28 Enhances BUR1/BUR2 Recruitment and Ser2 CTD Phosphorylation Near Promoters, Molecular Cell, vol.33, issue.6, pp.752-62, 2009.
DOI : 10.1016/j.molcel.2009.02.018

R. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing

M. K. Raghuraman and I. Liachko, Sequence determinants of yeast replication origins In The Initiation of DNA Replication in, pp.123-143

P. Rani, J. A. Ranish, and S. Hahn, RNA Polymerase II (Pol II)-TFIIF and Pol II-Mediator Complexes: the Major Stable Pol II Complexes and Their Activity in Transcription Initiation and Reinitiation, Molecular and Cellular Biology, vol.24, issue.4, pp.4-1709, 2004.
DOI : 10.1128/MCB.24.4.1709-1720.2004

S. Reed, M. Akiyama, B. Stillman, and E. Friedberg, Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair, Genes & Development, vol.13, issue.23, pp.3052-3060, 1999.
DOI : 10.1101/gad.13.23.3052

R. Reeder, P. Guevara, and J. And-roan, Saccharomyces cerevisiae RNA polymerase i terminates transcription at the reb1 terminator in vivo, Mol. Cell. Biol, vol.19, pp.11-7369, 1999.

D. Reinberg and R. J. Sims, de FACTo Nucleosome Dynamics, Journal of Biological Chemistry, vol.155, issue.33, pp.23297-301, 2006.
DOI : 10.1016/S1097-2765(01)00176-9

URL : http://www.jbc.org/content/281/33/23297.full.pdf

A. Reiter, S. Hamperl, H. Seitz, P. Merkl, P. Jorge et al., The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast, The EMBO Journal, vol.464, issue.16, pp.16-3480, 2012.
DOI : 10.1007/978-1-60327-461-6_4

R. Reja, V. Vinayachandran, S. Ghosh, and B. Pugh, Molecular mechanisms of ribosomal protein gene coregulation, Genes & Development, vol.29, issue.18, pp.18-1942, 2015.
DOI : 10.1101/gad.268896.115

D. Remus, F. Beuron, G. Tolun, J. D. Griffith, E. P. Morris et al., Concerted Loading of Mcm2???7 Double Hexamers around DNA during DNA Replication Origin Licensing, Cell, vol.139, issue.4, pp.719-749, 2009.
DOI : 10.1016/j.cell.2009.10.015

H. S. Rhee and B. Pugh, Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution, Cell, vol.147, issue.6, pp.1408-1427, 2011.
DOI : 10.1016/j.cell.2011.11.013

URL : https://doi.org/10.1016/j.cell.2011.11.013

H. S. Rhee and B. Pugh, Genome-wide structure and organization of eukaryotic pre-initiation complexes, Nature, vol.27, issue.7389, pp.7389-295, 2012.
DOI : 10.1016/j.molcel.2007.07.013

P. Rhode, K. Sweder, K. Oegema, and J. Campbell, The gene encoding ARS-binding factor I is essential for the viability of yeast., Genes & Development, vol.3, issue.12a, pp.12-1926, 1989.
DOI : 10.1101/gad.3.12a.1926

A. G. Rondón, H. E. Mischo, J. Kawauchi, and N. J. Proudfoot, Fail-Safe Transcriptional Termination for Protein-Coding Genes in S. cerevisiae, Molecular Cell, vol.36, issue.1, pp.88-98, 2009.
DOI : 10.1016/j.molcel.2009.07.028

A. Rowles, S. Tada, and J. Blow, Changes in association of the xenopus origin recognition complex with chromatin on licensing of replication origins, J. Cell. Sci, vol.112, pp.2011-2019, 1999.

K. Roy, J. Gabunilas, A. Gillespie, D. Ngo, and G. Chanfreau, Common genomic elements promote transcriptional and DNA replication roadblocks, Genome Research, vol.26, issue.10, pp.10-1363, 2016.
DOI : 10.1101/gr.204776.116

URL : http://genome.cshlp.org/content/26/10/1363.full.pdf

S. , M. Fong, N. Rosonina, E. Yankulov, K. Brothers et al., 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II, Genes Dev, vol.11, pp.24-3306, 1997.

S. , M. Fong, N. Yankulov, K. Ballantyne, S. Pan et al., The c-terminal domain of RNA polymerase II couples mRNA processing to transcription, Nature, vol.385, pp.6614-357, 1997.

S. Sainsbury, C. Bernecky, and P. Cramer, Structural basis of transcription initiation by RNA polymerase II, Nature Reviews Molecular Cell Biology, vol.18, issue.3, pp.129-172, 2015.
DOI : 10.1016/j.str.2012.02.023

C. Santocanale, K. Sharma, and J. Diffley, Activation of dormant origins of DNA replication in budding yeast, Genes & Development, vol.13, issue.18, pp.18-2360, 1999.
DOI : 10.1101/gad.13.18.2360

P. Schaughency, J. Merran, and J. And-corden, Genome-Wide Mapping of Yeast RNA Polymerase II Termination, PLoS Genetics, vol.14, issue.10, pp.10-1004632, 2014.
DOI : 10.1371/journal.pgen.1004632.s014

A. Schreieck, A. D. Easter, S. Etzold, K. Wiederhold, M. Lidschreiber et al., RNA polymerase II termination involves C-terminal-domain tyrosine dephosphorylation by CPF subunit Glc7, Nature Structural & Molecular Biology, vol.63, issue.2, pp.175-184, 2014.
DOI : 10.1126/science.1158441

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3917824/pdf

D. Schulz, B. Schwalb, A. Kiesel, C. Baejen, P. Torkler et al., Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis, Cell, vol.155, issue.5, pp.1075-87, 2013.
DOI : 10.1016/j.cell.2013.10.024

T. Seki and J. Diffley, Stepwise assembly of initiation proteins at budding yeast replication origins in vitro, Proceedings of the National Academy of Sciences, vol.14, issue.8, pp.26-14115, 2000.
DOI : 10.1038/35007110

L. A. Selth, S. Sigurdsson, and J. Svejstrup, Transcript Elongation by RNA Polymerase II, Annual Review of Biochemistry, vol.79, issue.1, pp.271-93, 2010.
DOI : 10.1146/annurev.biochem.78.062807.091425

C. C. Siow, S. R. Nieduszynska, C. A. Müller, and C. A. Nieduszynski, OriDB, the DNA replication origin database updated and extended, Database issue, pp.682-688, 2012.
DOI : 10.1093/nar/gkr1091

URL : https://academic.oup.com/nar/article-pdf/40/D1/D682/9478513/gkr1091.pdf

T. M. Søgaard and J. Svejstrup, Hyperphosphorylation of the c-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator, J. Biol. Chem, vol.282, pp.19-14113, 2007.

J. Soutourina, S. Wydau, Y. Ambroise, C. Boschiero, and M. Werner, Direct Interaction of RNA Polymerase II and Mediator Required for Transcription in Vivo, Science, vol.292, issue.5523, pp.6023-1451, 2011.
DOI : 10.1126/science.1059493

URL : https://hal.archives-ouvertes.fr/cea-00819232

M. M. Spain, S. A. Ansari, R. Pathak, M. J. Palumbo, R. H. Morse et al., The RSC Complex Localizes to Coding Sequences to Regulate Pol II and Histone Occupancy, Molecular Cell, vol.56, issue.5, pp.653-66, 2014.
DOI : 10.1016/j.molcel.2014.10.002

URL : https://doi.org/10.1016/j.molcel.2014.10.002

E. Steinmetz and D. Brow, Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1., Molecular and Cellular Biology, vol.16, issue.12, pp.12-6993, 1996.
DOI : 10.1128/MCB.16.12.6993

E. Steinmetz and D. Brow, Control of pre-mRNA accumulation by the essential yeast protein Nrd1 requires high-affinity transcript binding and a domain implicated in RNA polymerase II association, Proceedings of the National Academy of Sciences, vol.251, issue.3, pp.12-6699, 1998.
DOI : 10.1006/jmbi.1995.0438

M. Stephen and D. A. Brow, Saccharomyces cerevisiae sen1 helicase domain exhibits 5'-to 3'-Helicase activity with a preference for translocation on DNA rather than RNA, J. Biol. Chem, vol.290, pp.38-22880, 2015.

H. Suh, S. B. Ficarro, U. B. Kang, Y. Chun, J. A. Marto et al., Direct Analysis of Phosphorylation Sites on the Rpb1 C-Terminal Domain of RNA Polymerase II, Molecular Cell, vol.61, issue.2, pp.297-304, 2016.
DOI : 10.1016/j.molcel.2015.12.021

S. Tanaka, D. Halter, M. , L. Reszel, B. Thoma et al., Transcription through the yeast origin of replication ARS1 ends at the ABFI binding site and affects extrachromosomal maintenance of minichromosomes, Nucleic Acids Research, vol.22, issue.19, pp.19-3904, 1994.
DOI : 10.1093/nar/22.19.3904

M. Thiebaut, J. Colin, H. Neil, A. Jacquier, B. Séraphin et al., Futile Cycle of Transcription Initiation and Termination Modulates the Response to Nucleotide Shortage in S. cerevisiae, Molecular Cell, vol.31, issue.5, pp.671-82, 2008.
DOI : 10.1016/j.molcel.2008.08.010

M. Thiebaut, K. Elena, M. Rougemaille, J. Boulay, and D. Libri, Transcription Termination and Nuclear Degradation of Cryptic Unstable Transcripts: A Role for the Nrd1-Nab3 Pathway in Genome Surveillance, Molecular Cell, vol.23, issue.6, pp.853-64, 2006.
DOI : 10.1016/j.molcel.2006.07.029

URL : https://hal.archives-ouvertes.fr/hal-00130929

D. M. Thompson, P. , and R. , Cytoplasmic Decay of Intergenic Transcripts in Saccharomyces cerevisiae, Molecular and Cellular Biology, vol.27, issue.1, pp.92-101, 2007.
DOI : 10.1128/MCB.01023-06

A. Tudek, T. Candelli, and D. Libri, Non-coding transcription by RNA polymerase II in yeast: Hasard or n??cessit???, Biochimie, vol.117, pp.28-36, 2015.
DOI : 10.1016/j.biochi.2015.04.020

A. Tudek, O. Porrua, T. Kabzinski, M. Lidschreiber, K. Kubicek et al., Molecular Basis for Coordinating Transcription Termination with Noncoding RNA Degradation, Molecular Cell, vol.55, issue.3, pp.467-81, 2014.
DOI : 10.1016/j.molcel.2014.05.031

E. Van-dijk, C. Chen, Y. Gourvennec, S. Kwapisz, M. Roche et al., XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast, Nature, vol.7, issue.7354, pp.7354-114, 2011.
DOI : 10.1128/MCB.7.5.1602

J. Van-helden, B. André, J. , and C. , Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies, J. Mol. Biol, vol.281, pp.5-827, 1998.

L. Vasiljeva and S. Buratowski, Nrd1 Interacts with the Nuclear Exosome for 3??? Processing of RNA Polymerase II Transcripts, Molecular Cell, vol.21, issue.2, pp.239-287, 2006.
DOI : 10.1016/j.molcel.2005.11.028

L. Vasiljeva, M. Kim, H. Mutschler, S. Buratowski, and A. Meinhart, The Nrd1???Nab3???Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain, Nature Structural & Molecular Biology, vol.257, issue.8, pp.8-795, 2008.
DOI : 10.1093/nar/22.22.4673

W. , O. T. Loya, T. J. Head, P. E. Horton, J. R. et al., Amyloid-like assembly of the low complexity domain of yeast nab3, Prion, vol.9, issue.1, pp.34-47, 2015.

S. Webb, R. D. Hector, G. Kudla, and S. Granneman, PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast, Genome Biology, vol.15, issue.1, pp.1-8, 2014.
DOI : 10.1038/nature12121

R. J. Wellinger and V. A. Zakian, Everything You Ever Wanted to Know About Saccharomyces cerevisiae Telomeres: Beginning to End, Genetics, vol.191, issue.4, pp.1073-105, 2012.
DOI : 10.1534/genetics.111.137851

URL : http://www.genetics.org/content/genetics/191/4/1073.full.pdf

S. West, N. Gromak, and N. J. Proudfoot, Human 5??? ??? 3??? exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites, Nature, vol.11, issue.7016, pp.7016-522, 2004.
DOI : 10.1073/pnas.122246099

S. Wilkening, V. Pelechano, A. I. Järvelin, M. M. Tekkedil, S. Anders et al., An efficient method for genome-wide polyadenylation site mapping and RNA quantification, Nucleic Acids Res, vol.41, pp.5-65, 2013.
DOI : 10.1093/nar/gkt364

URL : https://academic.oup.com/nar/article-pdf/41/12/6370/3452346/gkt364.pdf

G. M. Wilmes and S. P. Bell, The B2 element of the Saccharomyces cerevisiae ARS1 origin of replication requires specific sequences to facilitate pre-RC formation, Proceedings of the National Academy of Sciences, vol.14, issue.11, pp.1-101, 2002.
DOI : 10.1073/pnas.92.6.2224

M. D. Wilson, M. Harreman, and J. Svejstrup, Ubiquitylation and degradation of elongating RNA polymerase II: The last resort, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1829, issue.1, pp.151-158
DOI : 10.1016/j.bbagrm.2012.08.002

S. Wiltshire, S. Raychaudhuri, and S. Eisenberg, An Abf1p C-terminal region lacking transcriptional activation potential stimulates a yeast origin of replication, Nucleic Acids Research, vol.25, issue.21, pp.4250-4256, 1997.
DOI : 10.1093/nar/25.21.4250

W. Wlotzka, G. Kudla, S. Granneman, and D. Tollervey, The nuclear RNA polymerase II surveillance system targets polymerase III transcripts, The EMBO Journal, vol.457, issue.9, pp.1790-803, 2011.
DOI : 10.1038/nature07728

URL : http://emboj.embopress.org/content/embojnl/30/9/1790.full.pdf

F. Wyers, M. Rougemaille, G. Badis, J. C. Rousselle, M. E. Dufour et al., Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase, Cell, vol.121, issue.5, pp.725-762, 2005.
DOI : 10.1016/j.cell.2005.04.030

URL : https://doi.org/10.1016/j.cell.2005.04.030

Z. Xu, W. Wei, J. Gagneur, F. Perocchi, C. Sandra et al., Bidirectional promoters generate pervasive transcription in yeast, Nature, vol.35, issue.7232, pp.7232-1033, 2009.
DOI : 10.1038/nature07728

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766638/pdf

K. Yankulov, I. Todorov, P. Romanowski, D. Licatalosi, K. Cilli et al., MCM Proteins Are Associated with RNA Polymerase II Holoenzyme, Molecular and Cellular Biology, vol.19, issue.9, pp.9-6154, 1999.
DOI : 10.1128/MCB.19.9.6154

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC84545/pdf

R. M. Yarrington, S. M. Richardson, L. Huang, C. R. Boeke, and J. D. , Novel Transcript Truncating Function of Rap1p Revealed by Synthetic Codon-Optimized Ty1 Retrotransposon, Genetics, vol.190, issue.2, pp.523-558, 2012.
DOI : 10.1534/genetics.111.136648

S. Yu, J. B. Smirnova, E. C. Friedberg, B. Stillman, M. Akiyama et al., ABF1-binding Sites Promote Efficient Global Genome Nucleotide Excision Repair, Journal of Biological Chemistry, vol.10, issue.2, pp.966-73, 2009.
DOI : 10.1074/jbc.273.11.6292

URL : http://www.jbc.org/content/284/2/966.full.pdf

S. Yu, O. Tom, E. C. Friedberg, R. Waters, R. et al., The yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA that is required for nucleotide excision repair, DNA Repair, vol.3, issue.3, pp.3-277, 2004.
DOI : 10.1016/j.dnarep.2003.11.004

D. Zenklusen, D. R. Larson, and R. H. Singer, Single-RNA counting reveals alternative modes of gene expression in yeast, Nat. Struct. Mol. Biol, vol.15, pp.12-1263, 2008.

G. E. Zentner, S. Kasinathan, B. Xin, R. Rohs, and S. Henikoff, ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo, Nat Commun, vol.6, issue.8733, 2015.

H. Zhang, F. Rigo, and H. G. Martinson, Poly(A) Signal-Dependent Transcription Termination Occurs through a Conformational Change Mechanism that Does Not Require Cleavage at the Poly(A) Site, Molecular Cell, vol.59, issue.3, pp.437-485, 2015.
DOI : 10.1016/j.molcel.2015.06.008

Z. Zhang, J. Fu, and D. S. Gilmour, CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3'-end processing factor, Pcf11, Genes & Development, vol.19, issue.13, pp.13-1572, 2005.
DOI : 10.1101/gad.1296305

Z. Zhang and D. S. Gilmour, Pcf11 Is a Termination Factor in Drosophila that Dismantles the Elongation Complex by Bridging the CTD of RNA Polymerase II to the Nascent Transcript, Molecular Cell, vol.21, issue.1, pp.65-74, 2006.
DOI : 10.1016/j.molcel.2005.11.002

M. Bohnsack, D. Tollervey, and S. Granneman, Identification of RNA Helicase Target Sites by UV Cross-Linking and Analysis of cDNA, Meth. Enzymol, vol.511, pp.275-288, 2012.
DOI : 10.1016/B978-0-12-396546-2.00013-9

L. Churchman and J. Weissman, Nascent transcript sequencing visualizes transcription at nucleotide resolution, Nature, vol.14, issue.7330, pp.368-373, 2011.
DOI : 10.1101/gr.849004

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880149/pdf

J. Colin, T. Candelli, O. Porrua, J. Boulay, C. Zhu et al., Roadblock Termination by Reb1p Restricts Cryptic and Readthrough Transcription, Molecular Cell, vol.56, issue.5, pp.667-680, 2014.
DOI : 10.1016/j.molcel.2014.10.026

URL : https://doi.org/10.1016/j.molcel.2014.10.026

G. Fourel, T. Miyake, P. Defossez, R. Li, and E. Gilson, General Regulatory Factors (GRFs) as Genome Partitioners, Journal of Biological Chemistry, vol.18, issue.44, pp.41736-41743, 2002.
DOI : 10.1093/nar/25.21.4250

S. Granneman, G. Kudla, E. Petfalski, and D. Tollervey, Identification of protein binding sites on U3 snoRNA and pre-rRNA by UV cross-linking and high-throughput analysis of cDNAs, Proceedings of the National Academy of Sciences, vol.9, issue.19, pp.9613-9618, 2009.
DOI : 10.1101/gad.9.19.2433

I. Greger and N. Proudfoot, Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae, The EMBO Journal, vol.17, issue.16, pp.4771-4779, 1998.
DOI : 10.1093/emboj/17.16.4771

H. Haruki, J. Nishikawa, and U. Laemmli, The Anchor-Away Technique: Rapid, Conditional Establishment of Yeast Mutant Phenotypes, Molecular Cell, vol.31, issue.6, pp.925-932, 2008.
DOI : 10.1016/j.molcel.2008.07.020

A. Korde, J. Rosselot, and D. Donze, Intergenic Transcriptional Interference Is Blocked by RNA Polymerase III Transcription Factor TFIIIB in Saccharomyces cerevisiae, Genetics, vol.196, issue.2, pp.427-438, 2014.
DOI : 10.1534/genetics.113.160093

URL : http://www.genetics.org/content/genetics/196/2/427.full.pdf

H. Neil, C. Malabat, Y. Aubenton-carafa, Z. Xu, L. Steinmetz et al., Widespread bidirectional promoters are the major source of cryptic transcripts in yeast, Nature, vol.320, issue.7232, pp.1038-1042, 2009.
DOI : 10.1128/MCB.13.1.543

O. Porrua, F. Hobor, J. Boulay, K. Kubicek, D. 'aubenton-carafa et al., SELEX reveals novel sequence and structural determinants of Nrd1-Nab3-Sen1-dependent transcription termination, The EMBO Journal, vol.457, issue.19, pp.3935-3948, 2012.
DOI : 10.1038/nature07728

P. Schaughency, J. Merran, and J. Corden, Genome-Wide Mapping of Yeast RNA Polymerase II Termination, PLoS Genetics, vol.14, issue.10, p.1004632, 2014.
DOI : 10.1371/journal.pgen.1004632.s014

D. Schulz, B. Schwalb, A. Kiesel, C. Baejen, P. Torkler et al., Transcriptome Surveillance by Selective Termination of Noncoding RNA Synthesis, Cell, vol.155, issue.5, pp.1075-1087, 2013.
DOI : 10.1016/j.cell.2013.10.024

T. Simms, S. Dugas, J. Gremillion, M. Ibos, M. Dandurand et al., TFIIIC Binding Sites Function as both Heterochromatin Barriers and Chromatin Insulators in Saccharomyces cerevisiae, Eukaryotic Cell, vol.7, issue.12, pp.2078-2086, 2008.
DOI : 10.1128/EC.00128-08

O. Valerius, C. Brendel, K. Düvel, and G. Braus, Locus, Journal of Biological Chemistry, vol.134, issue.24, pp.21440-21445, 2002.
DOI : 10.1007/BF00340197

M. Wilson, M. Harreman, and J. Svejstrup, Ubiquitylation and degradation of elongating RNA polymerase II: The last resort, Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, vol.1829, issue.1, pp.151-157, 2013.
DOI : 10.1016/j.bbagrm.2012.08.002

R. Yarrington, S. Richardson, L. Huang, C. Boeke, and J. , Novel Transcript Truncating Function of Rap1p Revealed by Synthetic Codon-Optimized Ty1 Retrotransposon, Genetics, vol.190, issue.2, pp.523-535, 2012.
DOI : 10.1534/genetics.111.136648