P. Dobriansky, R. Suzman, and R. Hodes, Why population aging matters: A global perspective, National Institute on Aging National Institutes of Health, 2007.

R. Lanza, R. Langer, and J. Vacanti, Principles of tissue engineering: Academic press, 2011.

R. Skalak and C. Fox, Tissue engineering, Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Societ, 1988.
DOI : 10.1109/IEMBS.1993.979045

R. Langer and J. Vacanti, Tissue engineering, Science, vol.260, issue.5110, pp.920-926, 1993.
DOI : 10.1126/science.8493529

R. Daher, N. Chahine, A. Greenberg, N. Sgaglione, and D. Grande, New methods to diagnose and treat cartilage degeneration, Nature Reviews Rheumatology, vol.85, issue.11, pp.599-607, 2009.
DOI : 10.2106/00004623-200300002-00015

J. Carvalho, P. De-carvalho, D. Gomes, and A. De-goes, Innovative Strategies for Tissue Engineering. Rosario Pignatello Advances in biomaterials science and biomedical applications INTECH 2013, pp.295-313

J. Cooley, Apparatus for electrically dispersing fluids 1902. US Patent

W. Morton, Method of Dispersing Fluids, 1902. US Patent Specification

A. Formhals, Process and apparatus for preparing artificial threads US Patent Specification, 1934.

D. Reneker, A. Yarin, H. Fong, and S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning, Journal of Applied Physics, vol.87, issue.9, pp.4531-4578, 2000.
DOI : 10.1002/(SICI)1099-0488(19991215)37:24<3488::AID-POLB9>3.0.CO;2-M

K. Graham, M. Ouyang, T. Raether, T. Grafe, B. Mcdonald et al., Polymeric nanofibers in air filtration applications, Fifteenth Annual Technical Conference & Expo of the American Filtration & Separations Society, pp.9-12

K. Yun, A. Suryamas, F. Iskandar, L. Bao, H. Niinuma et al., Morphology optimization of polymer nanofiber for applications in aerosol particle filtration, Separation and Purification Technology, vol.75, issue.3, pp.340-345, 2010.
DOI : 10.1016/j.seppur.2010.09.002

S. Lee and S. Obendorf, Use of Electrospun Nanofiber Web for Protective Textile Materials as Barriers to Liquid Penetration, Textile Research Journal, vol.34, issue.3, pp.696-702, 2007.
DOI : 10.1007/s00244-004-0127-8

S. Lee, K. Obendorf, and S. , Developing protective textile materials as barriers to liquid penetration using melt-electrospinning, Journal of Applied Polymer Science, vol.49, issue.4, pp.3430-3437, 2006.
DOI : 10.1520/STP14437S

B. Ding, M. Wang, Y. J. Sun, and G. , Gas Sensors Based on Electrospun Nanofibers, Sensors, vol.66, issue.3, pp.1609-1633, 2009.
DOI : 10.1016/j.compscitech.2006.03.012

URL : http://www.mdpi.com/1424-8220/9/3/1609/pdf

S. Ramakrishna, K. Fujihara, W. Teo, Y. T. Ma, Z. Ramaseshan et al., Electrospun nanofibers: solving global issues, Materials Today, vol.9, issue.3, pp.40-50, 2006.
DOI : 10.1016/S1369-7021(06)71389-X

J. Miao, M. Miyauchi, T. Simmons, J. Dordick, and R. Linhardt, Electrospinning of Nanomaterials and Applications in Electronic Components and Devices, Journal of Nanoscience and Nanotechnology, vol.10, issue.9, pp.5507-5526, 2010.
DOI : 10.1166/jnn.2010.3073

I. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process???A review, Journal of Materials Processing Technology, vol.167, issue.2-3, pp.283-93, 2005.
DOI : 10.1016/j.jmatprotec.2005.06.053

K. Shalumon, K. Anulekha, S. Nair, S. Nair, K. Chennazhi et al., Sodium alginate/poly(vinyl alcohol)/nano ZnO composite nanofibers for antibacterial wound dressings, International Journal of Biological Macromolecules, vol.49, issue.3, pp.247-54, 2011.
DOI : 10.1016/j.ijbiomac.2011.04.005

D. Liang, B. Hsiao, and B. Chu, Functional electrospun nanofibrous scaffolds for biomedical applications, Advanced Drug Delivery Reviews, vol.59, issue.14, pp.1392-412, 2007.
DOI : 10.1016/j.addr.2007.04.021

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2693708/pdf

S. Agarwal, J. Wendorff, and A. Greiner, Use of electrospinning technique for biomedical applications, Polymer, vol.49, issue.26, pp.5603-5624, 2008.
DOI : 10.1016/j.polymer.2008.09.014

K. Lee, L. Jeong, Y. Kang, S. Lee, and W. Park, Electrospinning of polysaccharides for regenerative medicine, Advanced Drug Delivery Reviews, vol.61, issue.12, pp.1020-1052, 2009.
DOI : 10.1016/j.addr.2009.07.006

M. Li, M. Mondrinos, M. Gandhi, F. Ko, A. Weiss et al., Electrospun protein fibers as matrices for tissue engineering, Biomaterials, vol.26, issue.30, pp.5999-6008, 2005.
DOI : 10.1016/j.biomaterials.2005.03.030

W. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology, vol.17, issue.14, p.89, 2006.
DOI : 10.1088/0957-4484/17/14/R01

G. Taylor, Electrically Driven Jets, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.313, issue.1515, pp.453-75, 1969.
DOI : 10.1098/rspa.1969.0205

F. Li, Y. Zhao, and Y. Song, Core-Shell Nanofibers: Nano Channel and Capsule by Coaxial Electrospinning, Nanofibers, vol.2010, pp.419-457
DOI : 10.5772/8166

URL : http://www.intechopen.com/download/pdf/8656

S. Theron, A. Yarin, E. Zussman, and E. Kroll, Multiple jets in electrospinning: experiment and modeling, Polymer, vol.46, issue.9, pp.2889-99, 2005.
DOI : 10.1016/j.polymer.2005.01.054

L. Yeo and J. Friend, Electrospinning carbon nanotube polymer composite nanofibers, Journal of Experimental Nanoscience, vol.31, issue.2, pp.177-209, 2006.
DOI : 10.1002/elps.200500329

D. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, vol.7, issue.3, p.216, 1996.
DOI : 10.1088/0957-4484/7/3/009

D. Li and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel?, Advanced Materials, vol.16, issue.14, pp.1151-70, 2004.
DOI : 10.1002/adma.200400719

V. Beachley and X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length, Materials Science and Engineering: C, vol.29, issue.3, pp.663-671, 2009.
DOI : 10.1016/j.msec.2008.10.037

A. Touny, J. Lawrence, A. Jones, and S. Bhaduri, Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers, Journal of Materials Research, vol.25, issue.05, pp.857-65, 2010.
DOI : 10.1557/JMR.2010.0122

L. Huang, K. Nagapudi, P. Apkarian, R. Chaikof, and E. , Engineered collagen???PEO nanofibers and fabrics, Journal of Biomaterials Science, Polymer Edition, vol.44, issue.9, pp.979-93, 2001.
DOI : 10.1002/app.1992.070440213

C. Mit?uppatham, M. Nithitanakul, and P. Supaphol, Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter, Macromolecular Chemistry and Physics, vol.43, issue.17, pp.2327-2365, 2004.
DOI : 10.1002/macp.200400225

N. Amiraliyan, M. Nouri, and M. Kish, Effects of some electrospinning parameters on morphology of natural silk-based nanofibers, Journal of Applied Polymer Science, vol.46, issue.1, pp.226-260, 2009.
DOI : 10.1002/app.29808

C. Carrizales, S. Pelfrey, R. Rincon, T. Eubanks, A. Kuang et al., Thermal and mechanical properties of electrospun PMMA, PVC, Nylon 6, and Nylon 6,6, Polymers for Advanced Technologies, vol.46, issue.2, pp.124-154, 2008.
DOI : 10.1016/j.polymer.2005.04.021

X. Zong, K. Kim, D. Fang, S. Ran, B. Hsiao et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, vol.43, issue.16, pp.4403-4415, 2002.
DOI : 10.1016/S0032-3861(02)00275-6

V. Jacobs, R. Anandjiwala, and M. Maaza, The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers, Journal of Applied Polymer Science, vol.87, issue.5, pp.3130-3136, 2010.
DOI : 10.1080/00405160701407176

N. Lavielle, A. Popa, M. De-geus, A. Hébraud, G. Schlatter et al., Controlled formation of poly(??-caprolactone) ultrathin electrospun nanofibers in a hydrolytic degradation-assisted process, European Polymer Journal, vol.49, issue.6, pp.1331-1337, 2013.
DOI : 10.1016/j.eurpolymj.2013.02.038

P. Gupta, C. Elkins, T. Long, and G. Wilkes, Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer, vol.46, issue.13, pp.4799-810, 2005.
DOI : 10.1016/j.polymer.2005.04.021

M. Mckee, G. Wilkes, R. Colby, and T. Long, Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters, Macromolecules, vol.37, issue.5, pp.1760-1767, 2004.
DOI : 10.1021/ma035689h

J. Deitzel, J. Kleinemeyer, D. Harris, B. Tan, and N. , The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, vol.42, issue.1, pp.261-72, 2001.
DOI : 10.1016/S0032-3861(00)00250-0

S. Ramakrishna, K. Fujihara, W. Teo, T. Lim, and Z. Ma, An introduction to electrospinning and nanofibers: World Scientific, 2005.
DOI : 10.1142/5894

T. Subbiah, G. Bhat, R. Tock, S. Parameswaran, and S. Ramkumar, Electrospinning of nanofibers, Journal of Applied Polymer Science, vol.98, issue.2, pp.557-69, 2005.
DOI : 10.1002/masy.19981270119

Q. Pham, U. Sharma, and A. Mikos, Electrospinning of Polymeric Nanofibers for Tissue Engineering Applications: A Review, Tissue Engineering, vol.12, issue.5, pp.1197-211, 2006.
DOI : 10.1089/ten.2006.12.1197

C. Buchko, L. Chen, Y. Shen, and D. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer, vol.40, issue.26, pp.7397-407, 1999.
DOI : 10.1016/S0032-3861(98)00866-0

S. Tripatanasuwan, Z. Zhong, and D. Reneker, Effect of evaporation and solidification of the charged jet in electrospinning of poly(ethylene oxide) aqueous solution, Polymer, vol.48, issue.19, pp.5742-5748, 2007.
DOI : 10.1016/j.polymer.2007.07.045

C. Casper, J. Stephens, N. Tassi, D. Chase, and J. Rabolt, Controlling Surface Morphology of Electrospun Polystyrene Fibers:?? Effect of Humidity and Molecular Weight in the Electrospinning Process, Macromolecules, vol.37, issue.2, pp.573-581, 2004.
DOI : 10.1021/ma0351975

R. Dersch, T. Liu, A. Schaper, A. Greiner, and J. Wendorff, Electrospun nanofibers: Internal structure and intrinsic orientation, Journal of Polymer Science Part A: Polymer Chemistry, vol.23, issue.4, pp.545-53, 2003.
DOI : 10.1002/pola.10609

C. Kuo, C. Wang, and W. Chen, Highly-Aligned Electrospun Luminescent Nanofibers Prepared from Polyfluorene/PMMA Blends: Fabrication, Morphology, Photophysical Properties and Sensory Applications, Macromolecular Materials and Engineering, vol.129, issue.12, pp.999-1008, 2008.
DOI : 10.1002/mame.200800224

D. Li, Y. Wang, and Y. Xia, Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays, Nano Letters, vol.3, issue.8, pp.1167-71, 2003.
DOI : 10.1021/nl0344256

H. Yan, L. Liu, and Z. Zhang, Alignment of electrospun nanofibers using dielectric materials, Applied Physics Letters, vol.95, issue.14, p.143114, 2009.
DOI : 10.1016/S0032-3861(01)00336-6

V. Chaurey, P. Chiang, C. Polanco, Y. Su, F. Chia et al., Interplay of Electrical Forces for Alignment of Sub-100 nm Electrospun Nanofibers on Insulator Gap Collectors, Langmuir, vol.26, issue.24, pp.19022-19028, 2010.
DOI : 10.1021/la102209q

D. Li, Y. Wang, and Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films, Advanced Materials, vol.16, issue.4, pp.361-367, 2004.
DOI : 10.1002/adma.200306226

R. Jalili, M. Morshed, and S. Ravandi, Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers, Journal of Applied Polymer Science, vol.14, issue.6, pp.4350-4357, 2006.
DOI : 10.1002/app.24290

D. Li, G. Ouyang, J. Mccann, and Y. Xia, Collecting Electrospun Nanofibers with Patterned Electrodes, Nano Letters, vol.5, issue.5, pp.913-919, 2005.
DOI : 10.1021/nl0504235

A. Zuchelli, D. Fabiani, C. Gualandi, and M. Focarete, An innovative and versatile approach to design highly porous, patterned, nanofibrous polymeric materials, Journal of Materials Science, vol.26, issue.18, pp.4969-75, 2009.
DOI : 10.1142/5894

D. Zhang and C. J. , Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures, Nano Letters, vol.8, issue.10, pp.3283-3290, 2008.
DOI : 10.1021/nl801667s

J. Rafique, Y. J. Yu, J. Fang, G. Wong, and K. , Electrospinning highly aligned long polymer nanofibers on large scale by using a tip collector, Applied Physics Letters, vol.91, issue.6, 2007.
DOI : 10.1016/j.polymer.2004.11.075

P. Katta, A. M. Ramsier, R. Chase, and G. , Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector, Nano Letters, vol.4, issue.11, pp.2215-2223, 2004.
DOI : 10.1021/nl0486158

M. Kakade, S. Givens, K. Gardner, K. Lee, D. Chase et al., Electric Field Induced Orientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers, Journal of the American Chemical Society, vol.129, issue.10, pp.2777-82, 2007.
DOI : 10.1021/ja065043f

Y. Liu, X. Zhang, Y. Xia, and H. Yang, Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers, Advanced Materials, vol.56, issue.22, pp.2454-2461, 2010.
DOI : 10.1042/bj2191057

H. Wang, H. Tang, J. He, and Q. Wang, Fabrication of aligned ferrite nanofibers by magnetic-field-assisted electrospinning coupled with oxygen plasma treatment, Materials Research Bulletin, vol.44, issue.8, pp.1676-80, 2009.
DOI : 10.1016/j.materresbull.2009.04.006

D. Yang, B. Lu, Y. Zhao, and X. Jiang, Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning, Advanced Materials, vol.37, issue.21, pp.3702-3708, 2007.
DOI : 10.1081/MA-120014850

J. Matthews, G. Wnek, D. Simpson, and G. Bowlin, Electrospinning of Collagen Nanofibers, Biomacromolecules, vol.3, issue.2, pp.232-240, 2002.
DOI : 10.1021/bm015533u

S. Moon and R. Farris, How is it possible to produce highly oriented yarns of electrospun fibers?, Polymer Engineering & Science, vol.45, issue.10, pp.1530-1535, 2007.
DOI : 10.1002/pen.20874

D. Reneker and A. Yarin, Electrospinning jets and polymer nanofibers, Polymer, vol.49, issue.10, pp.2387-425, 2008.
DOI : 10.1016/j.polymer.2008.02.002

URL : https://doi.org/10.1016/j.polymer.2008.02.002

G. Mathew, J. Hong, J. Rhee, D. Leo, and C. Nah, Preparation and anisotropic mechanical behavior of highly-oriented electrospun poly(butylene terephthalate) fibers, Journal of Applied Polymer Science, vol.15, issue.3, pp.2017-2038, 2006.
DOI : 10.1002/app.23762

P. Kiselev and J. Rosell-llompart, Highly aligned electrospun nanofibers by elimination of the whipping motion, Journal of Applied Polymer Science, vol.4, issue.3, pp.2433-2474, 2012.
DOI : 10.3144/expresspolymlett.2010.2

K. Kim, K. Lee, K. Myung, H. Yo, and H. Kim, The effect of molecular weight and the linear velocity of drum surface on the properties of electrospun poly(ethylene terephthalate) nonwovens, Fibers and Polymers, vol.39, issue.2, pp.122-129, 2004.
DOI : 10.1016/S0032-3861(99)00250-5

E. Zussman, D. Rittel, and A. Yarin, Failure modes of electrospun nanofibers, Applied Physics Letters, vol.82, issue.22, pp.3958-60, 2003.
DOI : 10.1021/ma60035a005

M. Edwards, G. Mitchell, S. Mohan, and R. Olley, Development of orientation during electrospinning of fibres of poly(??-caprolactone), European Polymer Journal, vol.46, issue.6, pp.1175-83, 2010.
DOI : 10.1016/j.eurpolymj.2010.03.017

D. Blond, W. Walshe, K. Young, F. Blighe, U. Khan et al., Strong, Tough, Electrospun Polymer-Nanotube Composite Membranes with Extremely Low Density, Advanced Functional Materials, vol.35, issue.17, pp.2618-2642, 2008.
DOI : 10.1021/ja048648p

H. Na, Q. Li, H. Sun, C. Zhao, and X. Yuan, Anisotropic mechanical properties of hot-pressed PVDF membranes with higher fiber alignments via electrospinning, Polymer Engineering & Science, vol.101, issue.7, pp.1291-1299, 2009.
DOI : 10.1002/pen.21368

D. Reneker, A. Yarin, E. Zussman, and H. Xu, Electrospinning of Nanofibers from Polymer Solutions and Melts, Advances in Applied Mechanics, vol.41, pp.43-195, 2007.
DOI : 10.1016/S0065-2156(07)41002-X

Z. Sun, J. Deitzel, J. Knopf, X. Chen, G. Jr et al., The effect of solvent dielectric properties on the collection of oriented electrospun fibers, Journal of Applied Polymer Science, vol.13, issue.4, pp.2585-94, 2012.
DOI : 10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H

R. Kessick, J. Fenn, and G. Tepper, The use of AC potentials in electrospraying and electrospinning processes, Polymer, vol.45, issue.9, pp.2981-2985, 2004.
DOI : 10.1016/j.polymer.2004.02.056

A. Theron, E. Zussman, and A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres, Nanotechnology, vol.12, issue.3, pp.384-90, 2001.
DOI : 10.1088/0957-4484/12/3/329

N. Bhattarai, D. Edmondson, O. Veiseh, F. Matsen, and M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility, Biomaterials, vol.26, issue.31, pp.6176-84, 2005.
DOI : 10.1016/j.biomaterials.2005.03.027

L. Carnell, E. Siochi, N. Holloway, R. Stephens, C. Rhim et al., Aligned Mats from Electrospun Single Fibers, Macromolecules, vol.41, issue.14, pp.5345-5354, 2008.
DOI : 10.1021/ma8000143

S. Cho, B. Kim, T. An, and G. Lim, Replicable Multilayered Nanofibrous Patterns on a Flexible Film, Langmuir, vol.26, issue.18, pp.14395-14404, 2010.
DOI : 10.1021/la102467u

Y. Orlova, N. Magome, L. Liu, Y. Chen, and K. Agladze, Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue, Biomaterials, vol.32, issue.24, pp.5615-5639, 2011.
DOI : 10.1016/j.biomaterials.2011.04.042

F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, vol.26, issue.15, pp.2603-2613, 2005.
DOI : 10.1016/j.biomaterials.2004.06.051

H. Tong and M. Wang, Electrospinning of Aligned Biodegradable Polymer Fibers and Composite Fibers for Tissue Engineering Applications, Journal of Nanoscience and Nanotechnology, vol.7, issue.11, pp.3834-3874, 2007.
DOI : 10.1166/jnn.2007.051

C. Vaquette and J. Cooper-white, Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration, Acta Biomaterialia, vol.7, issue.6, pp.2544-57, 2011.
DOI : 10.1016/j.actbio.2011.02.036

Y. Ner, C. Asemota, J. Olson, and G. Sotzing, Nanofiber Alignment on a Flexible Substrate: Hierarchical Order from Macro to Nano, ACS Applied Materials & Interfaces, vol.1, issue.10, pp.2093-2100, 2009.
DOI : 10.1021/am900382f

Y. Wu, Z. Dong, S. Wilson, and R. Clark, Template-assisted assembly of electrospun fibers, Polymer, vol.51, issue.14, pp.3244-3252, 2010.
DOI : 10.1016/j.polymer.2010.04.039

N. Lavielle, A. Hébraud, C. Mendoza-palomares, A. Ferrand, N. Benkirane-jessel et al., Structuring and Molding of Electrospun Nanofibers: Effect of Electrical and Topographical Local Properties of Micro-Patterned Collectors, Macromolecular Materials and Engineering, vol.7, issue.10, pp.958-68, 2012.
DOI : 10.2174/157341311794653703

Z. Ding, A. Salim, and B. Ziaie, Selective Nanofiber Deposition through Field-Enhanced Electrospinning, Langmuir, vol.25, issue.17, pp.9648-52, 2009.
DOI : 10.1021/la901924z

D. Zhang and C. J. , Patterning of Electrospun Fibers Using Electroconductive Templates, Advanced Materials, vol.16, issue.21, pp.3664-3671, 2007.
DOI : 10.1002/adma.200700896

Y. Wang, L. Hao, G. Wang, T. Yin, B. Wang et al., Electrospinning of Polymer Nanofibers with Ordered Patterns and Architectures, Journal of Nanoscience and Nanotechnology, vol.10, issue.3, pp.1699-706, 2010.
DOI : 10.1166/jnn.2010.2149

J. Seo, G. Arumugam, S. Khan, and P. Heiden, Comparison of the Effects of an Ionic Liquid and Triethylbenzylammonium Chloride on the Properties of Electrospun Fibers, 1 - Poly(lactic acid), Macromolecular Materials and Engineering, vol.293, issue.1, pp.35-44, 2009.
DOI : 10.1002/mame.200800198

G. Arumugam, S. Khan, and P. Heiden, Comparison of the Effects of an Ionic Liquid and Other Salts on the Properties of Electrospun Fibers, 2 - Poly(vinyl alcohol), Macromolecular Materials and Engineering, vol.219, issue.1, pp.45-53, 2009.
DOI : 10.1080/00222349708220422

X. Ye, X. Huang, and Z. Xu, Nanofibrous mats with bird???s nest patterns by electrospinning, Chinese Journal of Polymer Science, vol.28, issue.5, pp.130-137, 2012.
DOI : 10.1007/s10118-010-9188-5

G. Yan, J. Yu, Y. Qiu, X. Yi, J. Lu et al., Self-Assembly of Electrospun Polymer Nanofibers: A General Phenomenon Generating Honeycomb-Patterned Nanofibrous Structures, Langmuir, vol.27, issue.8, pp.4285-4294, 2011.
DOI : 10.1021/la1047936

S. Thandavamoorthy, N. Gopinath, and S. Ramkumar, Self-assembled honeycomb polyurethane nanofibers, Journal of Applied Polymer Science, vol.42, issue.5, pp.3121-3125, 2006.
DOI : 10.1098/rspa.1969.0205

D. Ahirwal, A. Hébraud, R. Kádár, M. Wilhelm, and G. Schlatter, From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams, Soft Matter, vol.6, issue.11, pp.3164-72, 2013.
DOI : 10.1021/nn203817t

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-91, 2005.
DOI : 10.1016/j.biomaterials.2005.02.002

J. Uecker, G. Tepper, and J. Rosell-llompart, Ion-assisted collection of Nylon-4

G. Kim and W. Kim, Highly porous 3D nanofiber scaffold using an electrospinning technique, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.27, issue.1, pp.104-114, 2006.
DOI : 10.1016/j.colsurfb.2003.12.004

J. Nam, Y. Huang, S. Agarwal, and J. Lanutti, Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity, Tissue Engineering, vol.13, issue.9, pp.2249-57, 2007.
DOI : 10.1089/ten.2006.0306

M. Leong, M. Rasheed, T. Lim, and K. Chian, In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique, Journal of Biomedical Materials Research, Part A, vol.91, pp.231-271, 2009.

S. Srouji, T. Kizhner, E. Suss-tobi, E. Livne, and E. Zussmann, 3-D Nanofibrous electrospun multilayered construct is an alternative ECM mimicking scaffold, Journal of Materials Science: Materials in Medicine, vol.24, issue.3, pp.1249-55, 2008.
DOI : 10.1002/jbm.a.30330

R. Tzezana, E. Zussman, and S. Levenberg, A Layered Ultra-Porous Scaffold for Tissue Engineering, Created via a Hydrospinning Method, Tissue Engineering Part C: Methods, vol.14, issue.4, pp.281-289, 2008.
DOI : 10.1089/ten.tec.2008.0201

B. Blakeney, A. Tambralli, J. Anderson, A. Andukuri, D. Lim et al., Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold, Biomaterials, vol.32, issue.6, pp.1583-90, 2011.
DOI : 10.1016/j.biomaterials.2010.10.056

W. Teo and S. Ramakrishna, Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite, Composites Science and Technology, vol.69, issue.11-12, pp.1804-1821, 2009.
DOI : 10.1016/j.compscitech.2009.04.015

Z. Hou, G. Li, H. Lian, and J. Lin, One-dimensional luminescent materials derived from the electrospinning process: preparation, characteristics and application, Journal of Materials Chemistry, vol.48, issue.2, pp.5254-76, 2012.
DOI : 10.1002/anie.200900885

J. Xie, M. Macewan, W. Ray, W. Liu, D. Siewe et al., Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications, ACS Nano, vol.4, issue.9, pp.5027-5063, 2010.
DOI : 10.1021/nn101554u

M. Mao, J. He, Y. Liu, X. Li, and D. Li, Ice-template-induced silk fibroin???chitosan scaffolds with predefined microfluidic channels and fully porous structures, Acta Biomaterialia, vol.8, issue.6, pp.2175-84, 2012.
DOI : 10.1016/j.actbio.2011.12.025

L. Csaderova, E. Martines, K. Seunarine, N. Gadegaard, C. Wilkinson et al., A Biodegradable and Biocompatible Regular Nanopattern for Large-Scale Selective Cell Growth, Small, vol.9, issue.23, pp.2755-61, 2010.
DOI : 10.1091/mbc.4.9.953

M. Dalby, N. Gadegaard, R. Tare, A. Andar, M. Riehle et al., The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder, Nature Materials, vol.6, issue.12, pp.997-1003, 2007.
DOI : 10.1016/j.febslet.2004.07.055

J. He, Y. Liu, X. Hao, M. Mao, L. Zhu et al., Bottom-up generation of 3D silk fibroin???gelatin microfluidic scaffolds with improved structural and biological properties, Materials Letters, vol.78, pp.102-107, 2012.
DOI : 10.1016/j.matlet.2012.03.051

D. Kim, H. Lee, Y. Lee, J. Nam, and A. Levchenko, Biomimetic Nanopatterns as Enabling Tools for Analysis and Control of Live Cells, Advanced Materials, vol.273, issue.41, pp.4551-66, 2010.
DOI : 10.1002/jbm.a.30989

C. Lee, H. Shin, I. Cho, Y. Kang, I. Kim et al., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast, Biomaterials, vol.26, issue.11, pp.1261-70, 2005.
DOI : 10.1016/j.biomaterials.2004.04.037

Z. Yin, X. Chen, J. Chen, W. Shen, H. Nguyen et al., The regulation of tendon stem cell differentiation by the alignment of nanofibers, Biomaterials, vol.31, issue.8, pp.2163-75, 2010.
DOI : 10.1016/j.biomaterials.2009.11.083

X. Zong, H. Bien, C. Chung, L. Yin, D. Fang et al., Electrospun fine-textured scaffolds for heart tissue constructs, Biomaterials, vol.26, issue.26, pp.5330-5338, 2005.
DOI : 10.1016/j.biomaterials.2005.01.052

S. Panseri, C. Cunha, J. Lowery, D. Carro, U. Taraballi et al., Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections, BMC Biotechnology, vol.8, issue.1, p.39, 2008.
DOI : 10.1186/1472-6750-8-39

J. Xie, M. Macewan, X. Li, S. Sakiyama-elbert, and Y. Xia, Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties, ACS Nano, vol.3, issue.5, pp.1151-1160, 2009.
DOI : 10.1021/nn900070z

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2765554/pdf

J. Stitzel, J. Liu, S. Lee, M. Komura, J. Berry et al., Controlled fabrication of a biological vascular substitute, Biomaterials, vol.27, issue.7, pp.1088-94, 2006.
DOI : 10.1016/j.biomaterials.2005.07.048

C. Lee, A. Singla, and Y. Lee, Biomedical applications of collagen, International Journal of Pharmaceutics, vol.221, issue.1-2, pp.1-22, 2001.
DOI : 10.1016/S0378-5173(01)00691-3

L. Solchaga, J. Dennis, V. Goldberg, and A. Caplan, Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage, Journal of Orthopaedic Research, vol.74, issue.2, pp.205-218, 1999.
DOI : 10.3109/10520293809111367

J. Middleton and A. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, vol.21, issue.23, pp.2335-2381, 2000.
DOI : 10.1016/S0142-9612(00)00101-0

F. Van-natta, J. Hill, and W. Carothers, ??-Caprolactone and its Polymers, Journal of the American Chemical Society, vol.56, issue.2, pp.455-462, 1934.
DOI : 10.1021/ja01317a053

P. Bordes, E. Pollet, and L. Avérous, Nano-biocomposites: Biodegradable polyester/nanoclay systems, Progress in Polymer Science, vol.34, issue.2, pp.125-55, 2009.
DOI : 10.1016/j.progpolymsci.2008.10.002

M. Woodruff and D. Hutmacher, The return of a forgotten polymer???Polycaprolactone in the 21st century, Progress in Polymer Science, vol.35, issue.10, pp.1217-56, 2010.
DOI : 10.1016/j.progpolymsci.2010.04.002

O. Coulembier, P. Degée, J. Hedrick, and P. Dubois, From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(??-malic acid) derivatives, Progress in Polymer Science, vol.31, issue.8, pp.723-770, 2006.
DOI : 10.1016/j.progpolymsci.2006.08.004

S. Kehoe, X. Zhang, and D. Boyd, FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy, Injury, vol.43, issue.5, pp.553-72, 2012.
DOI : 10.1016/j.injury.2010.12.030

A. Cipitria, A. Skelton, T. Dargaville, P. Dalton, and D. Hutmacher, Design, fabrication and characterization of PCL electrospun scaffolds???a review, Journal of Materials Chemistry, vol.93, issue.1, pp.9419-53, 2011.
DOI : 10.1016/j.biomaterials.2008.06.022

D. Hutmacher and S. Cool, Concepts of scaffold-based tissue engineering???the rationale to use solid free-form fabrication techniques, Journal of Cellular and Molecular Medicine, vol.6, issue.4, pp.654-69, 2007.
DOI : 10.1016/j.biomaterials.2007.01.002

O. Ishii, M. Shin, T. Sueda, and J. Vacanti, In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix???like topography, The Journal of Thoracic and Cardiovascular Surgery, vol.130, issue.5, pp.1358-63, 2005.
DOI : 10.1016/j.jtcvs.2005.05.048

H. Yoshimoto, Y. Shin, H. Terai, and J. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering, Biomaterials, vol.24, issue.12, pp.2077-82, 2003.
DOI : 10.1016/S0142-9612(02)00635-X

I. Engelberg and J. Kohn, Physico-mechanical properties of degradable polymers used in medical applications: A comparative study, Biomaterials, vol.12, issue.3, pp.292-304, 1991.
DOI : 10.1016/0142-9612(91)90037-B

L. Van-der-schueren, D. Schoenmaker, B. Kalaoglu, Ö. , D. Clerck et al., An alternative solvent system for the steady state electrospinning of polycaprolactone, European Polymer Journal, vol.47, issue.6, pp.1256-63, 2011.
DOI : 10.1016/j.eurpolymj.2011.02.025

Z. Ma, Z. Mao, and C. Gao, Surface modification and property analysis of biomedical polymers used for tissue engineering, Colloids and Surfaces B: Biointerfaces, vol.60, issue.2, pp.137-57, 2007.
DOI : 10.1016/j.colsurfb.2007.06.019

D. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials, vol.21, issue.24, pp.2529-2572, 2000.
DOI : 10.1016/S0142-9612(00)00121-6

L. Xiao, B. Wang, G. Yang, and M. Gauthier, Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications, Biomedical Science, Engineering and Technology, vol.11, 2012.
DOI : 10.5772/23927

B. Benicewicz and P. Hopper, Review : Polymers for Absorbable Surgical Sutures???Part II, Journal of Bioactive and Compatible Polymers, vol.32, issue.49, pp.64-94, 1991.
DOI : 10.1177/088391158600100106

B. Gupta, N. Revagade, and J. Hilborn, Poly(lactic acid) fiber: An overview, Progress in Polymer Science, vol.32, issue.4, pp.455-82, 2007.
DOI : 10.1016/j.progpolymsci.2007.01.005

J. Lunt and A. Shafer, Polylactic Acid Polymers from Com. Applications in the Textiles Industry, Journal of Coated Fabrics, vol.29, issue.3, pp.191-205, 2000.
DOI : 10.1177/152808370002900304

J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers, Polymer Degradation and Stability, vol.59, issue.1-3, pp.145-52, 1998.
DOI : 10.1016/S0141-3910(97)00148-1

R. Rasal, A. Janorkar, and D. Hirt, Poly(lactic acid) modifications, Progress in Polymer Science, vol.35, issue.3, pp.338-56, 2010.
DOI : 10.1016/j.progpolymsci.2009.12.003

O. Martin and L. Averous, Poly(lactic acid): plasticization and properties of biodegradable multiphase systems, Polymer, vol.42, issue.14, pp.6209-6228, 2001.
DOI : 10.1016/S0032-3861(01)00086-6

B. Schlosshauer, E. Müller, B. Schröder, H. Planck, and H. Müller, Rat Schwann cells in bioresorbable nerve guides to promote and accelerate axonal regeneration, Brain Research, vol.963, issue.1-2, pp.321-327, 2003.
DOI : 10.1016/S0006-8993(02)03930-6

D. Barone, J. Raquez, and P. Dubois, Bone-guided regeneration: from inert biomaterials to bioactive polymer (nano)composites, Polymers for Advanced Technologies, vol.45, issue.5, pp.463-75, 2011.
DOI : 10.1002/(SICI)1097-4636(19990615)45:4<285::AID-JBM2>3.0.CO;2-2

A. Janorkar, A. Metters, and D. Hirt, Modification of Poly(lactic acid) Films:?? Enhanced Wettability from Surface-Confined Photografting and Increased Degradation Rate Due to an Artifact of the Photografting Process, Macromolecules, vol.37, issue.24, pp.9151-9160, 2004.
DOI : 10.1021/ma049056u

J. Brady, D. Cutright, R. Miller, G. Battistone, and E. Hunsuck, Resorption rate, route of elimination, and ultrastructure of the implant site of polylactic acid in the abdominal wall of the rat, Journal of Biomedical Materials Research, vol.5, issue.2, pp.155-66, 1973.
DOI : 10.1002/jbm.820070204

A. Reed and D. Gilding, Biodegradable polymers for use in surgery ??? poly(glycolic)/poly(Iactic acid) homo and copolymers: 2. In vitro degradation, Polymer, vol.22, issue.4, pp.494-502, 1981.
DOI : 10.1016/0032-3861(81)90168-3

D. Puppi, N. Detta, A. Piras, F. Chiellini, D. Clarke et al., Development of Electrospun Three-arm Star Poly(??-caprolactone) Meshes for Tissue Engineering Applications, Macromolecular Bioscience, vol.23, issue.8, pp.887-97, 2010.
DOI : 10.1089/ten.2004.10.1510

J. Lowery, N. Datta, and G. Rutledge, Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(??-caprolactone) fibrous mats, Biomaterials, vol.31, issue.3, pp.491-504, 2010.
DOI : 10.1016/j.biomaterials.2009.09.072

K. Kwon, I. Kidoaki, S. Matsuda, and T. , Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential, Biomaterials, vol.26, issue.18, pp.3929-3968, 2005.
DOI : 10.1016/j.biomaterials.2004.10.007

E. Lee, S. Teng, T. Jang, P. Wang, S. Yook et al., Nanostructured poly(??-caprolactone)???silica xerogel fibrous membrane for guided bone regeneration, Acta Biomaterialia, vol.6, issue.9, pp.3557-65, 2010.
DOI : 10.1016/j.actbio.2010.03.022

C. Hsu and S. N. Shivkumar, N,N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(??-caprolactone) Nanofibers, Macromolecular Materials and Engineering, vol.289, issue.4, pp.334-374, 2004.
DOI : 10.1002/mame.200300224

T. Uyar and F. Besenbacher, Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity, Polymer, vol.49, issue.24, pp.5336-5379, 2008.
DOI : 10.1016/j.polymer.2008.09.025

Y. Orlova, N. Magome, L. Liu, Y. Chen, and K. Agladze, Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue, Biomaterials, vol.32, issue.24, pp.5615-5639, 2011.
DOI : 10.1016/j.biomaterials.2011.04.042

T. Dvir, B. Timko, D. Kohane, and R. Langer, Nanotechnological strategies for engineering complex tissues, Nature Nanotechnology, vol.300, issue.1, pp.13-22, 2011.
DOI : 10.1038/scientificamerican0509-72

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059057/pdf

M. Stevens and J. George, Exploring and Engineering the Cell Surface Interface, Science, vol.310, issue.5751, pp.1135-1143, 2005.
DOI : 10.1126/science.1106587

URL : https://doi.org/10.1016/j.bpj.2010.12.1248

W. Bae, H. Kim, D. Kim, S. Park, H. Jeong et al., 25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy, Advanced Materials, vol.25, issue.5, pp.675-700, 2013.
DOI : 10.1021/la900339u

B. Geiger, J. Spatz, and A. Bershadsky, Environmental sensing through focal adhesions, Nature Reviews Molecular Cell Biology, vol.8, issue.1, pp.21-33, 2009.
DOI : 10.1590/S0100-879X2003000800001

C. Bettinger, R. Langer, and J. Borenstein, Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function, Angewandte Chemie International Edition, vol.17, issue.30, pp.5406-5421, 2009.
DOI : 10.1002/anie.200805179

K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials, vol.21, issue.7, pp.667-81, 2000.
DOI : 10.1016/S0142-9612(99)00242-2

C. Chen, M. Mrksich, S. Huang, G. Whitesides, and D. Ingber, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, pp.1425-1433, 1997.
DOI : 10.1126/science.276.5317.1425

Q. Cheng, B. Lee, K. Komvopoulos, and S. Li, Engineering the Microstructure of Electrospun Fibrous Scaffolds by Microtopography, Biomacromolecules, vol.14, issue.5, pp.1349-60, 2013.
DOI : 10.1021/bm302000n

Y. Liu, L. Zhang, H. Li, S. Yan, J. Yu et al., Electrospun Fibrous Mats on Lithographically Micropatterned Collectors to Control Cellular Behaviors, Langmuir, vol.28, issue.49, pp.17134-17176, 2012.
DOI : 10.1021/la303490x

I. Ortega, A. Ryan, P. Deshpande, S. Macneil, and F. Claeyssens, Combined microfabrication and electrospinning to produce 3-D architectures for corneal repair, Acta Biomaterialia, vol.9, issue.3, pp.5511-5531, 2013.
DOI : 10.1016/j.actbio.2012.10.039

D. Hamilton, B. Chehroudi, and D. Brunette, Comparative response of epithelial cells and osteoblasts to microfabricated tapered pit topographies in vitro and in vivo, Biomaterials, vol.28, issue.14, pp.2281-93, 2007.
DOI : 10.1016/j.biomaterials.2007.01.026

D. Soscia, S. Sequeira, R. Schramm, K. Jayarathanam, S. Cantara et al., Salivary gland cell differentiation and organization on micropatterned PLGA nanofiber craters, Biomaterials, vol.34, issue.28, pp.6773-84, 2013.
DOI : 10.1016/j.biomaterials.2013.05.061

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3755621/pdf

L. Ghasemi-mobarakeh, M. Prabhakaran, P. Balasubramanian, J. G. Valipouri, A. Ramakrishna et al., Advances in Electrospun Nanofibers for Bone and Cartilage Regeneration, Journal of Nanoscience and Nanotechnology, vol.13, issue.7, pp.4656-71, 2013.
DOI : 10.1166/jnn.2013.7186

A. Parfitt, Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone, Journal of Cellular Biochemistry, vol.13, issue.3, pp.273-86, 1994.
DOI : 10.1007/978-3-642-77991-6

G. Guille, M. Mosser, G. Helary, C. Eglin, and D. , Bone matrix like assemblies of collagen: From liquid crystals to gels and biomimetic materials, Micron, vol.36, issue.7-8, pp.602-610, 2005.
DOI : 10.1016/j.micron.2005.07.005

U. Ripamonti and . Biomimetism, Biomimetism, biomimetic matrices and the induction of bone formation, Journal of Cellular and Molecular Medicine, vol.12, issue.363, pp.2953-72, 2009.
DOI : 10.1242/jcs.1987.Supplement_8.18

M. Rumpler, A. Woesz, J. Dunlop, J. Van-dongen, and P. Fratzl, The effect of geometry on three-dimensional tissue growth, Journal of The Royal Society Interface, vol.25, issue.5, pp.1173-80, 2008.
DOI : 10.1016/j.msec.2005.01.014

C. Bidan, K. Kommareddy, M. Rumpler, P. Kollmannsberger, Y. Bréchet et al., How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth, PLoS ONE, vol.310, issue.5, p.36336, 2012.
DOI : 10.1371/journal.pone.0036336.s004

URL : https://hal.archives-ouvertes.fr/hal-00805013

C. Bidan, K. Kommareddy, M. Rumpler, P. Kollmannsberger, P. Fratzl et al., Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds, Advanced Healthcare Materials, vol.1, issue.1, pp.186-94, 2013.
DOI : 10.1002/term.24

J. George, Y. Kuboki, and T. Miyata, Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds, Biotechnology and Bioengineering, vol.93, issue.3, pp.404-415, 2006.
DOI : 10.1093/oxfordjournals.jbchem.a002824

Y. Goh, I. Shakir, and R. Hussain, Electrospun fibers for tissue engineering, drug delivery, and wound dressing, Journal of Materials Science, vol.23, issue.4, pp.3027-54, 2013.
DOI : 10.1007/s10856-012-4577-7

T. Sill and H. Von-recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials, vol.29, issue.13, pp.1989-2006, 2008.
DOI : 10.1016/j.biomaterials.2008.01.011

A. Tamayol, M. Akbari, N. Annabi, A. Paul, A. Khademhosseini et al., Fiber-based tissue engineering: Progress, challenges, and opportunities, Biotechnology Advances, vol.31, issue.5, pp.669-87, 2013.
DOI : 10.1016/j.biotechadv.2012.11.007

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631569/pdf

N. Lavielle, A. Hébraud, G. Schlatter, L. Thöny-meyer, R. Rossi et al., Simultaneous Electrospinning and Electrospraying: A Straightforward Approach for Fabricating Hierarchically Structured Composite Membranes, ACS Applied Materials & Interfaces, vol.5, issue.20, pp.10090-10097, 2013.
DOI : 10.1021/am402676m

Z. Daming and C. Jiang, Electrospinning of three-dimensional nanofibrous tubes with controllable architectures, Nano Letters, vol.8, pp.3283-3290, 2008.

D. Li, Y. Wang, and Y. Xia, Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films, Advanced Materials, vol.16, issue.4, pp.361-367, 2004.
DOI : 10.1002/adma.200306226

D. Zhang and J. Chang, Patterning of Electrospun Fibers Using Electroconductive Templates, Advanced Materials, vol.16, issue.21, pp.3664-3671, 2007.
DOI : 10.1002/adma.200700896

Z. Ding, A. Salim, and B. Ziaie, Selective Nanofiber Deposition through Field-Enhanced Electrospinning, Langmuir, vol.25, issue.17, pp.9648-52, 2009.
DOI : 10.1021/la901924z

C. Rogers, G. Morris, T. Gould, R. Bail, S. Toumpaniari et al., A novel technique for the production of electrospun scaffolds with tailored three-dimensional micro-patterns employing additive manufacturing, Biofabrication, vol.6, issue.3, p.35003, 2014.
DOI : 10.1088/1758-5082/6/3/035003

D. Luká?, A. Sarkar, L. Martinová, K. Vodsed-'álková, D. Lubasová et al., Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century), Textile Progress, vol.3, issue.2, pp.59-140, 2009.
DOI : 10.2478/s11532-007-0021-0

Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Potential of Nanofiber Matrix as Tissue-Engineering Scaffolds, Tissue Engineering, vol.11, issue.1-2, pp.101-110, 2005.
DOI : 10.1089/ten.2005.11.101

W. Li, C. Laurencin, E. Caterson, R. Tuan, and F. Ko, Electrospun nanofibrous structure: A novel scaffold for tissue engineering, Journal of Biomedical Materials Research, vol.13, issue.4, pp.613-634, 2002.
DOI : 10.1016/0738-081X(95)00078-T

L. Madden, D. Mortisen, E. Sussman, S. Dupras, J. Fugate et al., Proangiogenic scaffolds as functional templates for cardiac tissue engineering, Proceedings of the National Academy of Sciences, vol.225, issue.3, pp.15211-15217, 2010.
DOI : 10.1002/dvdy.10169

URL : http://www.pnas.org/content/107/34/15211.full.pdf

A. Salgado, O. Coutinho, and R. Reis, Bone Tissue Engineering: State of the Art and Future Trends, Macromolecular Bioscience, vol.4, issue.8, pp.743-65, 2004.
DOI : 10.1002/mabi.200400026

Q. Pham, U. Sharma, and A. Mikos, Electrospun Poly(??-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:?? Characterization of Scaffolds and Measurement of Cellular Infiltration, Biomacromolecules, vol.7, issue.10, pp.2796-805, 2006.
DOI : 10.1021/bm060680j

K. Shalumon, K. Chennazhi, S. Nair, and R. Jayakumar, High Thick Layer-by-Layer 3D Multiscale Fibrous Scaffolds for Enhanced Cell Infiltration and It's Potential in Tissue Engineering, Journal of Biomedical Nanotechnology, vol.9, issue.12, pp.2117-2139, 2013.
DOI : 10.1166/jbn.2013.1702

X. Chen, X. Fu, J. Shi, and H. Wang, Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments, Nanomedicine: Nanotechnology, Biology and Medicine, vol.9, issue.8
DOI : 10.1016/j.nano.2013.04.013

T. Kim, H. Chung, and T. Park, Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles, Acta Biomaterialia, vol.4, issue.6, pp.1611-1620, 2008.
DOI : 10.1016/j.actbio.2008.06.008

W. Teo, S. Liao, C. Chan, and S. Ramakrishna, Remodeling of Three-dimensional Hierarchically Organized Nanofibrous Assemblies, Current Nanoscience, vol.4, issue.4, pp.361-370, 2008.
DOI : 10.2174/157341308786306080

B. Blakeney, A. Tambralli, J. Anderson, A. Andukuri, D. Lim et al., Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold, Biomaterials, vol.32, issue.6, pp.1583-90, 2011.
DOI : 10.1016/j.biomaterials.2010.10.056

L. Jin, Z. Feng, T. Wang, Z. Ren, S. Ma et al., A novel fluffy hydroxylapatite fiber scaffold with deep interconnected pores designed for three-dimensional cell culture, J. Mater. Chem. B, vol.32, issue.1, p.129, 2014.
DOI : 10.1016/j.biomaterials.2011.05.015

Z. Wang, Y. Cui, J. Wang, X. Yang, Y. Wu et al., The effect of thick fibers and large pores of electrospun poly(??-caprolactone) vascular grafts on macrophage polarization and arterial regeneration, Biomaterials, vol.35, issue.22, pp.5700-5710, 2014.
DOI : 10.1016/j.biomaterials.2014.03.078

B. Baker, A. Gee, R. Metter, A. Nathan, R. Marklein et al., The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers, Biomaterials, vol.29, issue.15, pp.2348-58, 2008.
DOI : 10.1016/j.biomaterials.2008.01.032

K. Wang, M. Zhu, T. Li, W. Zheng, L. Xu et al., Improvement of Cell Infiltration in Electrospun Polycaprolactone Scaffolds for the Construction of Vascular Grafts, Journal of Biomedical Nanotechnology, vol.10, issue.8, pp.1588-98, 2014.
DOI : 10.1166/jbn.2014.1849

M. Leong, M. Rasheed, T. Lim, and K. Chian, In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique, Journal of Biomedical Materials Research Part A, vol.91, pp.231-271, 2009.

M. Simonet, O. Schneider, P. Neuenschwander, and W. Stark, Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template, Polymer Engineering & Science, vol.25, issue.12, pp.2020-2026, 2007.
DOI : 10.1016/j.polymer.2005.04.021

M. Kim and G. Kim, Highly porous electrospun 3D polycaprolactone/??-TCP biocomposites for tissue regeneration, Materials Letters, vol.120, pp.246-50, 2014.
DOI : 10.1016/j.matlet.2014.01.083

S. Nedjari, S. Eap, A. Hébraud, C. Wittmer, N. Benkirane-jessel et al., Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organisation, Macromolecular Bioscience, 2014.
DOI : 10.1002/mabi.201400226

C. Wittmer, A. Hébraud, S. Nedjari, and G. Schlatter, Well-organized 3D nanofibrous composite constructs using cooperative effects between electrospinning and electrospraying, Polymer, vol.55, issue.22, pp.5781-5788, 2014.
DOI : 10.1016/j.polymer.2014.08.044

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, pp.5474-91, 2005.
DOI : 10.1016/j.biomaterials.2005.02.002

S. Ankam, B. Teo, M. Kukumberg, and E. Yim, High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment, Organogenesis, vol.4, issue.3, pp.128-170, 2013.
DOI : 10.1002/bit.23232

K. Gupta, D. Kim, D. Ellison, C. Smith, A. Kundu et al., Lab-on-a-chip devices as an emerging platform for stem cell biology, Lab on a Chip, vol.6, issue.23, pp.2019-2050, 2010.
DOI : 10.1002/jbm.a.32116

L. Markert, J. Lovmand, M. Foss, R. Lauridsen, M. Lovmand et al., Identification of Distinct Topographical Surface Microstructures Favoring Either Undifferentiated Expansion or Differentiation of Murine Embryonic Stem Cells, Stem Cells and Development, vol.18, issue.9, pp.1331-1373, 2009.
DOI : 10.1089/scd.2009.0114

H. Unadkat, M. Hulsman, K. Cornelissen, B. Papenburg, R. Truckenmüller et al., An algorithm-based topographical biomaterials library to instruct cell fate, Proceedings of the National Academy of Sciences, vol.13, issue.1, pp.16565-70, 2011.
DOI : 10.1089/ten.2005.0513

S. Ankam, M. Suryana, L. Chan, A. Moe, B. Teo et al., Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage, Acta Biomaterialia, vol.9, issue.1, pp.4535-4580, 2013.
DOI : 10.1016/j.actbio.2012.08.018

A. Moe, M. Suryana, G. Marcy, S. Lim, S. Ankam et al., Microarray with Micro- and Nano-topographies Enables Identification of the Optimal Topography for Directing the Differentiation of Primary Murine Neural Progenitor Cells, Small, vol.25, issue.19, pp.3050-61, 2012.
DOI : 10.1523/JNEUROSCI.3249-05.2005

C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Electrospun Nanofiber Fabrication as Synthetic Extracellular Matrix and Its Potential for Vascular Tissue Engineering, Tissue Engineering, vol.10, issue.7-8, pp.1160-1168, 2004.
DOI : 10.1089/ten.2004.10.1160

F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials, vol.26, issue.15, pp.2603-2613, 2005.
DOI : 10.1016/j.biomaterials.2004.06.051

X. Zhu, W. Cui, X. Li, and J. Y. , Electrospun Fibrous Mats with High Porosity as Potential Scaffolds for Skin Tissue Engineering, Biomacromolecules, vol.9, issue.7, pp.1795-801, 2008.
DOI : 10.1021/bm800476u

H. Lee, S. Nam, K. Son, and W. Koh, Micropatterned Fibrous Scaffolds Fabricated Using Electrospinning and Hydrogel Lithography: New Platforms to Create Cellular Micropatterns, Sensors and Actuators B: Chemical, vol.148, issue.2, pp.504-514, 2010.
DOI : 10.1016/j.snb.2010.05.032

S. Nedjari, S. Eap, A. Hébraud, C. Wittmer, N. Benkirane-jessel et al., Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organisation
DOI : 10.1002/mabi.201400226

P. Wallin, C. Zanden, B. Carlberg, H. Erkenstam, N. Liu et al., A method to integrate patterned electrospun fibers with microfluidic systems to generate complex microenvironments for cell culture applications, Biomicrofluidics, vol.246, issue.2, p.24131, 2012.
DOI : 10.1016/j.biomaterials.2010.08.021

P. Wutticharoenmongkol, N. Sanchavanakit, P. Pavasant, and P. Supaphol, Preparation and Characterization of Novel Bone Scaffolds Based on Electrospun Polycaprolactone Fibers Filled with Nanoparticles, Macromolecular Bioscience, vol.205, issue.1, pp.70-77, 2006.
DOI : 10.1002/mabi.200500150

L. Francis, J. Venugopal, M. Prabhakaran, V. Thavasi, E. Marsano et al., Simultaneous electrospin???electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration, Acta Biomaterialia, vol.6, issue.10, pp.4100-4109, 2010.
DOI : 10.1016/j.actbio.2010.05.001

D. Gupta, J. Venugopal, S. Mitra, G. Dev, V. Ramakrishna et al., Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts, Biomaterials, vol.30, issue.11, pp.2085-94, 2009.
DOI : 10.1016/j.biomaterials.2008.12.079

L. Hench, Bioceramics: From Concept to Clinic, Journal of the American Ceramic Society, vol.6, issue.1, pp.1487-510, 1991.
DOI : 10.1016/0142-9612(86)90064-5

URL : http://ceramics.org/wp-content/uploads/2009/03/hench_bioceramics.pdf

S. Kim, S. Park, M. Jeon, O. , Y. Choi et al., Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials, vol.27, issue.8, pp.1399-409, 2006.
DOI : 10.1016/j.biomaterials.2005.08.016

E. Thian, X. Li, J. Huang, M. Edirisinghe, W. Bonfield et al., Electrospray deposition of nanohydroxyapatite coatings: A strategy to mimic bone apatite mineral, Thin Solid Films, vol.519, issue.7, pp.2328-2359, 2011.
DOI : 10.1016/j.tsf.2010.11.035

J. Huang, S. Jayasinghe, S. Best, M. Edirisinghe, R. Brooks et al., Electrospraying of a nano-hydroxyapatite suspension, Journal of Materials Science, vol.39, issue.3, pp.1029-1061, 2004.
DOI : 10.1023/B:JMSC.0000012937.85880.7b

J. Huang, S. Best, W. Bonfield, R. Brooks, N. Rushton et al., In vitro assessment of the biological response to nano-sized hydroxyapatite, Journal of Materials Science: Materials in Medicine, vol.15, issue.4, pp.441-446, 2004.
DOI : 10.1023/B:JMSM.0000021117.67205.cf

A. Muthutantri, J. Huang, and M. Edirisinghe, Novel method of preparing hydroxyapatite foams, Journal of Materials Science: Materials in Medicine, vol.25, issue.213, pp.1485-90, 2008.
DOI : 10.1017/CBO9781139878326.004

H. Kim, J. Song, and H. Kim, Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration, Advanced Functional Materials, vol.64, issue.12, pp.1988-94, 2005.
DOI : 10.1902/jop.1993.64.11s.1129

I. Donati and S. Paoletti, Material properties of alginates. Alginates: biology and applications, pp.1-53, 2009.

H. Daemi and M. Barikani, Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles, Scientia Iranica, vol.19, issue.6, pp.2023-2031, 2012.
DOI : 10.1016/j.scient.2012.10.005

J. Rowley, G. Madlambayan, and D. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials, vol.20, issue.1, pp.45-53, 1999.
DOI : 10.1016/S0142-9612(98)00107-0

M. Dvir-ginzberg, I. Gamlieli-bonshtein, R. Agbaria, and S. Cohen, Liver Tissue Engineering within Alginate Scaffolds: Effects of Cell-Seeding Density on Hepatocyte Viability, Morphology, and Function, Tissue Engineering, vol.9, issue.4, pp.757-66, 2003.
DOI : 10.1089/107632703768247430

N. Bhattarai, Z. Li, D. Edmondson, and M. Zhang, Alginate-Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties, Advanced Materials, vol.5, issue.11, pp.1463-1470, 2006.
DOI : 10.1002/jbm.a.30449

S. Alborzi, L. Lim, and Y. Kakuda, Electrospinning of Sodium Alginate-Pectin Ultrafine Fibers, Journal of Food Science, vol.13, issue.5, pp.100-107, 2010.
DOI : 10.1111/j.1750-3841.2009.01437.x

C. Saquing, C. Tang, B. Monian, C. Bonino, J. Manasco et al., Alginate???Polyethylene Oxide Blend Nanofibers and the Role of the Carrier Polymer in Electrospinning, Industrial & Engineering Chemistry Research, vol.52, issue.26, pp.8692-704, 2013.
DOI : 10.1021/ie302385b

J. Porter, T. Ruckh, and K. Popat, Bone tissue engineering: A review in bone biomimetics and drug delivery strategies, Biotechnology Progress, vol.20, issue.3 Part 1, pp.1539-60, 2009.
DOI : 10.2106/00004623-199405000-00004

R. Ng, R. Zang, K. Yang, N. Liu, and S. Yang, Three-dimensional fibrous scaffolds with microstructures and nanotextures for tissue engineering, RSC Advances, vol.17, issue.27, pp.10110-10134, 2012.
DOI : 10.1039/b613511k

Q. Zhang, J. Welch, H. Park, C. Wu, S. W. Marijnissen et al., Improvement in nanofiber filtration by multiple thin layers of nanofiber mats, Journal of Aerosol Science, vol.41, issue.2, pp.230-236, 2010.
DOI : 10.1016/j.jaerosci.2009.10.001

T. Krishnamoorthy, V. Thavasi, G. M. Subodh, and S. Ramakrishna, A first report on the fabrication of vertically aligned anatase TiO2 nanowires by electrospinning: Preferred architecture for nanostructured solar cells, Energy & Environmental Science, vol.8, issue.8, pp.2807-2819, 2011.
DOI : 10.1039/b800660a

S. Soliman, S. Pagliari, A. Rinaldi, G. Forte, R. Fiaccavento et al., Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning, Acta Biomaterialia, vol.6, issue.4, pp.1227-1264, 2010.
DOI : 10.1016/j.actbio.2009.10.051

M. Simonet, N. Stingelin, J. Wismans, C. Oomens, A. Driessen-mol et al., Tailoring the void space and mechanical properties in electrospun scaffolds towards physiological ranges, J. Mater. Chem. B, vol.43, issue.3, pp.305-318, 2014.
DOI : 10.1021/ma901530r

I. Shim, W. Suh, S. Lee, S. Lee, S. Heo et al., Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation, Journal of Biomedical Materials Research Part A, vol.28, issue.2, pp.595-602, 2009.
DOI : 10.1002/jbm.a.32109

D. Zhang and J. Chang, Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures, Nano Letters, vol.8, issue.10, pp.3283-3290, 2008.
DOI : 10.1021/nl801667s

Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama et al., Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric, Materials Letters, vol.63, issue.9-10, pp.754-760, 2009.
DOI : 10.1016/j.matlet.2008.12.042

T. Reis, I. Correia, and A. Aguiar-ricardo, Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs, Nanoscale, vol.416, issue.16, pp.7528-7564, 2013.
DOI : 10.1016/j.ijpharm.2011.06.047

D. Sun, C. Chang, S. Li, and L. Lin, Near-Field Electrospinning, Nano Letters, vol.6, issue.4, pp.839-881, 2006.
DOI : 10.1021/nl0602701

URL : http://www.me.berkeley.edu/~lwlin/me118/papers/paper9.pdf

Y. Huang, N. Bu, Y. Duan, Y. Pan, H. Liu et al., Electrohydrodynamic direct-writing, Nanoscale, vol.20, issue.24, pp.12007-12024, 2013.
DOI : 10.1039/c0jm00484g

H. Kim, M. Lee, K. Park, S. Kim, and L. Mahadevan, Nanopottery: Coiling of Electrospun Polymer Nanofibers, Nano Letters, vol.10, issue.6, pp.2138-2178, 2010.
DOI : 10.1021/nl100824d

P. Dalton, C. Vaquette, B. Farrugia, T. Dargaville, T. Brown et al., Electrospinning and additive manufacturing: converging technologies, Biomater. Sci., vol.1, issue.2, pp.171-85, 2013.
DOI : 10.1016/j.polymer.2007.08.002

S. Theron, E. Zussman, and A. Yarin, Experimental investigation of the governing parameters in the electrospinning of polymer solutions, Polymer, vol.45, issue.6, pp.2017-2047, 2004.
DOI : 10.1016/j.polymer.2004.01.024

M. Silberstein, C. Pai, G. Rutledge, and M. Boyce, Elastic???plastic behavior of non-woven fibrous mats, Journal of the Mechanics and Physics of Solids, vol.60, issue.2, pp.295-318, 2012.
DOI : 10.1016/j.jmps.2011.10.007

J. Bryers, C. Giachelli, and B. Ratner, Engineering biomaterials to integrate and heal: The biocompatibility paradigm shifts, Biotechnology and Bioengineering, vol.62, issue.32, pp.1898-911, 2012.
DOI : 10.1002/jbm.10313

L. Madden, D. Mortisen, E. Sussman, S. Dupras, J. Fugate et al., Proangiogenic scaffolds as functional templates for cardiac tissue engineering, Proceedings of the National Academy of Sciences, vol.225, issue.3, pp.15211-15217, 2010.
DOI : 10.1002/dvdy.10169

URL : http://www.pnas.org/content/107/34/15211.full.pdf

S. Nedjari, G. Schlatter, and A. Hébraud, Thick electrospun honeycomb scaffolds with controlled pore size, Materials Letters, vol.142, p.2014
DOI : 10.1016/j.matlet.2014.11.118

S. Nedjari, S. Eap, A. Hébraud, C. R. Wittmer, N. Benkirane-jessel et al., Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organization, Macromolecular Bioscience, vol.41, issue.11, pp.1580-1589, 2014.
DOI : 10.1080/00405160902904641

C. R. Wittmer, A. Hébraud, S. Nedjari, and G. Schlatter, Well-organized 3D nanofibrous composite constructs using cooperative effects between electrospinning and electrospraying, Polymer, vol.55, issue.22, pp.5781-5787, 2014.
DOI : 10.1016/j.polymer.2014.08.044

S. Nedjari, A. Hébraud, and G. Schlatter, Organized assembly of electrospun nanofibers: from 1D to 3D " Book chapter under press in Electrospinning: Principles, possibilities and practice, p.1849735565, 2014.

S. Nedjari, S. Eap, A. Hébraud, N. Benkirane-jessel, and G. Schlatter, Micro-weaving of honeycomb nanofibrous membranes : application to bone regeneration Posters: Best poster price: S, Istanbul Textile Congress, vol.30

. Schlatter, Micro-tissage de membranes nanofibreuses : application à la régénération osseuse, 41 ème Colloque National du GFP, 2012.

. Best-poster-price:-s, S. Nedjari, A. Eap, N. Hébraud, G. Benkirane-jessel et al., 3D Micro-weaving of honeycomb of electrospun nanofibers: application to bone regeneration, Conference « Electrospinning, Principles, Practice and Possibilities, pp.21-22, 2012.

S. Nedjari, C. R. Wittmer, S. Eap, A. Hébraud, N. Benkirane-jessel et al., 3D micro-weaving of electrospun nanofibers: Design and fabrication of nanostructured biochips for tissue engineering applications, Journées Nationales des Nanosciences et des Nanotechnologies, pp.4-6, 2013.