P. Bhaumik and P. L. Dhepe, Solid acid catalyzed synthesis of furans from carbohydrates Catalysis Reviews, pp.36-112, 2016.

D. Murzin and T. Salmi, Catalysis for Lignocellulosic Biomass Processing: Methodological Aspects Catalysis Letters, pp.676-689, 2012.
DOI : 10.1007/s10562-012-0812-6

S. Van-de-vyver, J. Geboers, and P. A. Jacobs, Recent Advances in the Catalytic Conversion of Cellulose, ChemCatChem, vol.12, issue.1, pp.82-94, 2011.
DOI : 10.1039/c0gc00192a

R. Van-putten, J. C. Van-der-waal, and E. De-jong, Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources, Chemical Reviews, vol.113, issue.3, pp.1499-1597
DOI : 10.1021/cr300182k

M. Besson, P. Gallezot, and C. Pinel, Conversion of Biomass into Chemicals over Metal Catalysts, Chemical Reviews, vol.114, issue.3, pp.1827-1870
DOI : 10.1021/cr4002269

URL : https://hal.archives-ouvertes.fr/hal-01057461

P. Gallezot, Conversion of biomass to selected chemical products, Chem. Soc. Rev., vol.167, issue.4, pp.1538-1558
DOI : 10.1016/j.cattod.2010.10.100

URL : https://hal.archives-ouvertes.fr/hal-00700173

A. Mukherjee, M. Dumont, and V. Raghavan, Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities, Biomass and Bioenergy, vol.72, pp.143-183
DOI : 10.1016/j.biombioe.2014.11.007

S. Perez and K. Mazeau, Conformation, structures, and morfologies of celluloses

Z. Zhang, Chapter 3 -Emerging Catalysis for 5-HMF Formation from Cellulosic Carbohydrates" in "New and Future Developments in Catalysis

J. Li, D. Ding, and L. Deng, Catalytic Air Oxidation of Biomass-Derived Carbohydrates to Formic Acid, ChemSusChem, vol.13, issue.7, pp.1313-1318
DOI : 10.1039/c1gc15434f

J. C. Serrano-ruiz, D. J. Braden, and R. M. West, Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen, Applied Catalysis B: Environmental, vol.100, issue.1-2, pp.184-189, 2010.
DOI : 10.1016/j.apcatb.2010.07.029

T. Heinze, Chemical Functionalization of Cellulose" in "Polysaccharides. Structural diversity and functional versatility, p.551, 2005.

I. Russian, Chemistry of wood and its derivatives, Z.A. Rogovin, N.N. Shorygina, p.679, 1953.

I. Russian, V. I. Azarov, A. B. Burov, and A. V. Obolenskaya, Chemistry of wood and sinetic polymers: university course Saint-Petersburg, publishing house of Saint-Peterburg Wood Technical Academy, p.682, 1999.

J. S. Kim, Y. Y. Lee, and T. Kim, A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass, Bioresource Technology, vol.199, pp.42-48
DOI : 10.1016/j.biortech.2015.08.085

N. Mosier, C. Wyman, and B. Dale, Features of promising technologies for pretreatment of lignocellulosic biomass, Bioresource Technology, vol.96, issue.6, pp.673-686, 2005.
DOI : 10.1016/j.biortech.2004.06.025

R. Singh, A. Shukla, and S. Tiwari, A review on delignification of lignocellulosic biomass for enhancement of ethanol production potential" Renewable Sustainable Energy Rev, pp.713-728, 2014.

D. Y. Murzin, E. V. Murzina, and A. Tokarev, Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials" Catalysis Today, pp.169-176, 2015.
DOI : 10.1016/j.cattod.2014.07.019

Y. Zheng, J. Zhao, and F. Xu, Pretreatment of lignocellulosic biomass for enhanced biogas production" Progress in Energy and Combustion Science, pp.35-53, 2014.

R. Singh, B. B. Krishna, and J. Kumar, Opportunities for utilization of non-conventional energy sources for biomass pretreatment, Bioresource Technology, vol.199, pp.398-407
DOI : 10.1016/j.biortech.2015.08.117

N. S. Mosier, A. Sarikaya, and C. M. Ladisch, Characterization of Dicarboxylic Acids for Cellulose Hydrolysis" Biotechnology progress, pp.474-480, 2001.

V. A. Stolyarova, S. A. Apostolov, and S. E. Barbash, New handbook of chemist and technologist. Raw materials and products of industry of organic and inorganic substanses, Saint-Petersburg, p.1142, 2002.

D. Murzin, . Yu, I. L. Simakova, ?. ?. ??????, and ?. ????????, Catalysis in biomass transformations Catalysis in industry, pp.8-40, 2011.

W. E. Kaar and M. T. Holtzapple, Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover, Biomass and Bioenergy, vol.18, issue.3, pp.189-199, 2000.
DOI : 10.1016/S0961-9534(99)00091-4

G. G. Silva, M. Couturier, and J. G. Berrin, Effects of grinding processes on enzymatic degradation of wheat straw, Bioresource Technology, vol.103, issue.1, pp.192-200
DOI : 10.1016/j.biortech.2011.09.073

G. S. Foo and C. Sievers, Synergistic Effect between Defect Sites and Functional Groups on the Hydrolysis of Cellulose over Activated Carbon, ChemSusChem, vol.48, issue.3, pp.534-543
DOI : 10.1016/j.carbon.2009.11.050

J. Pang, A. Wang, and M. Zheng, Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures" Chemical Communications, pp.6935-6937, 2010.

E. Nakayama and K. Okamura, Influence of a Steam Explosion and Microwave Irradiation on the Enzymatic Hydrolysis of a Coniferous Wood, Mokuzai Gakkaishi, vol.35, issue.3, pp.251-260, 1989.

L. P. Ramos, C. Breuil, and J. Saddler, Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis, Applied Biochemistry and Biotechnology, vol.31, issue.1, pp.34-35, 1992.
DOI : 10.1007/BF00257614

W. G. Glasser, he potential role of lignin in tomorrow's wood utilization technologies, Forest Products Journal, vol.31, issue.3, pp.24-29, 1981.

A. Whittaker and D. Mingos, Electromagnetic Energy, J. Microwave Power, vol.29, issue.4, 1994.

N. Kardos and J. Luche, Sonochemistry of carbohydrate compounds" Carbohydrate Research, pp.115-131, 2001.

V. G. Yachmenev, N. R. Bertoniere, and E. J. Blanchard, Intensification of the bio-processing of cotton textiles by combined enzyme/ultrasound treatment, Journal of Chemical Technology & Biotechnology, vol.3, issue.5, pp.559-567, 2002.
DOI : 10.1177/004051759806800401

R. K. Dasari, E. Berson, and R. , The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries, Appl Biochem Biotechnol, vol.137, pp.140-141, 2007.

A. I. Yeh, Y. C. Huang, and S. Chen, Effect of particle size on the rate of enzymatic hydrolysis of cellulose" Carbohydrate Polymers, pp.192-199, 2010.

M. Ishiguro and T. Endo, Addition of alkali to the hydrothermal???mechanochemical treatment of Eucalyptus enhances its enzymatic saccharification, Bioresource Technology, vol.153, issue.0, pp.322-326
DOI : 10.1016/j.biortech.2013.12.015

M. Schwanninger, J. C. Rodrigues, and H. Pereira, Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose" Vibrational Spectroscopy, 2004.

W. Deng, Q. Zhang, and Y. Wang, Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids" Catalysis Today, pp.31-41, 2014.

J. Geboers, S. Van-de-vyver, and R. Ooms, Chemocatalytic conversion of cellulose: opportunities, advances and pitfalls" Catalysis Science&Technology, pp.714-726, 2011.

W. Deng, Q. Zhang, and Y. Wang, Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals, Dalton Transactions, vol.18, issue.80, pp.9817-9831
DOI : 10.1002/chem.201103262

S. E. Davis, M. S. Ide, and R. J. Davis, Selective oxidation of alcohols and aldehydes over supported metal nanoparticles" Green Chemistry, pp.17-45, 2013.

C. Moreau, M. N. Belgacem, and A. Gandini, Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers, Topics in Catalysis, vol.27, issue.1-4, pp.11-30
DOI : 10.1023/B:TOCA.0000013537.13540.0e

H. Hustede and E. S. Haberstroh, Gluconic Acid" in "Ulmann's Encyclopedia Industrial Chem Hans Jorgen Arpe, pp.449-456, 1989.

C. Fellay, P. J. Dyson, and G. Laurenczy, A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst, Angewandte Chemie International Edition, vol.118, issue.21, pp.3966-3968, 2008.
DOI : 10.1016/B978-0-444-88316-2.50009-7

X. Liu, S. Li, and Y. Liu, Formic acid: A versatile renewable reagent for green and sustainable chemical synthesis, Chinese Journal of Catalysis, vol.36, issue.9, pp.1461-1475
DOI : 10.1016/S1872-2067(15)60861-0

M. Weber, J. T. Wang, and S. Wasmus, Formic Acid Oxidation in a Polymer Electrolyte Fuel Cell, Journal of The Electrochemical Society, vol.143, issue.7, pp.158-160, 1996.
DOI : 10.1149/1.1836961

F. Jin, Z. Zhou, and T. Moriya, Controlling Hydrothermal Reaction Pathways To Improve Acetic Acid Production from Carbohydrate Biomass" Environmental Science & Technology, 2005.
DOI : 10.1021/es048867a

F. Jin, J. Yun, and G. Li, Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures" Green Chemistry, pp.612-615, 2008.

A. T. Quitain, M. Faisal, and K. Kang, Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes, Journal of Hazardous Materials, vol.93, issue.2, pp.209-220, 2002.
DOI : 10.1016/S0304-3894(02)00024-9

L. Calvo and D. Vallejo, Formation of Organic Acids during the Hydrolysis and Oxidation of Several Wastes in Sub- and Supercritical Water, Industrial & Engineering Chemistry Research, vol.41, issue.25, 2002.
DOI : 10.1021/ie020441m

N. Taccardi, D. Assenbaum, and M. E. Berger, Catalytic production of hydrogen from glucose and other carbohydrates under exceptionally mild reaction conditions" Green Chemistry, 2010.

E. G. Zhizhina, K. I. Matveev, and V. Russkikh, Catalytic Synthesis of 1,4-Naphtho-and 9,10- Anthraquinones According to the Diene Synthesis Reaction for Pulp and Paper Industry" Chemistry for Sustainable Development, pp.47-51, 2004.

R. Wolfel, N. Taccardi, and A. Bosmann, Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen" Green Chemistry, pp.2759-2763, 2011.

J. Albert, R. Wolfel, and A. Bosmann, Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators, Energy & Environmental Science, vol.33, issue.7, pp.7956-7962
DOI : 10.1021/ic00083a023

M. T. Pope, Heteropoly and Isopoly Oxometalates, 1983.
DOI : 10.1007/978-3-662-12004-0

E. Rafiee and H. Jafari, A practical and green approach towards synthesis of dihydropyrimidinones

D. V. Evtuguin, C. Neto, and J. Pedrosa-de-jesus, Bleaching of kraft pulp by oxygen in the presence of polyoxometalates, Journal of Pulp and Paper Science, vol.24, issue.4, pp.133-140, 1998.

A. A. Shatalov, D. V. Evtuguin, and C. Neto, Cellulose degradation in the reaction system O2/heteropolyanions of series [PMo(12?n)VnO40](3+n)?" Carbohydrate Polymers, 2000.

D. Mantzavinos, A. G. Livingston, and R. Hellenbrand, Wet air oxidation of polyethylene glycols; mechanisms, intermediates and implications for integrated chemical-biological wastewater treatment, Chemical Engineering Science, vol.51, issue.18, pp.4219-4235, 1996.
DOI : 10.1016/0009-2509(96)00272-2

G. D. Mcginnis, S. E. Prince, and C. J. Biermann, Wet oxidation of model carbohydrate compounds" Carbohydrate Research, pp.51-60, 1984.

J. Bregeault, Transition-metal complexes for liquid-phase catalytic oxidation: some aspects of industrial reactions and of emerging technologies, Dalton Trans., vol.1, issue.25, pp.3289-3302, 2003.
DOI : 10.1002/(SICI)1521-3773(19980518)37:9<1198::AID-ANIE1198>3.0.CO;2-Y

R. Neumann, Activation of Molecular Oxygen, Polyoxometalates, and Liquid-Phase Catalytic Oxidation" Inorganic Chemistry, pp.3594-3601, 2010.
DOI : 10.1021/ic9015383

I. V. Kozhevnikov and K. I. Matveev, Heteropolyacids in Catalysis, Russian Chemical Reviews, vol.51, issue.11, 1982.
DOI : 10.1070/RC1982v051n11ABEH002941

M. T. Pope and A. Müller, Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines, Angewandte Chemie International Edition in English, vol.30, issue.1, pp.34-48, 1991.
DOI : 10.1002/anie.199100341

P. Mars and D. W. Van-krevelen, Oxidations carried out by means of vanadium oxide catalysts, The Proceedings of the Conference on Oxidation ProcessesOxidations carried out by means of vanadium oxide catalysts, pp.41-59, 1954.
DOI : 10.1016/S0009-2509(54)80005-4

I. V. Kozhevnikov and K. Matveev, Homogeneous catalysts based on heteropoly acids (review), Applied Catalysis, vol.5, issue.2
DOI : 10.1016/0166-9834(83)80128-6

A. M. Khenkin and R. Neumann, by an Electron Transfer and Oxygen Transfer Reaction Mechanism, Journal of the American Chemical Society, vol.130, issue.44, pp.14474-14476, 2008.
DOI : 10.1021/ja8063233

E. Aakel, L. Launay, F. Atlamsani, and A. , Efficient and selective catalytic oxidative cleavage of [small alpha]-hydroxy ketones using vanadium-based HPA and dioxygen, Chemical Communications, issue.21, pp.2218-2219, 2001.

D. V. Evtuguin, C. Neto, and J. Rocha, Oxidative delignification in the presence of molybdovanadophosphate heteropolyanions: Mechanism and kinetic studies Applied Catalysis A: General, pp.123-139, 1998.

O. A. Kholdeeva, A. V. Golovin, and R. I. Maksimovskaya, Oxidation of 2,3,6-trimethylphenol in the presence of molybdovanadophosphoric heteropoly acids, Journal of Molecular Catalysis, vol.75, issue.3, pp.235-244, 1992.
DOI : 10.1016/0304-5102(92)80128-4

L. I. Kuznetsova, R. I. Maksimovskaya, and K. Matveev, The mechanism of redox-conversions of tungstovanadophosphoric heteropolyanions, Inorganica Chimica Acta, vol.121, issue.2, pp.137-145, 1986.
DOI : 10.1016/S0020-1693(00)84512-0

Y. Izumi, M. Ono, and M. Kitagawa, Silica-included heteropoly compounds as solid acid catalysts" Microporous Materials, pp.255-262, 1995.
DOI : 10.1016/0927-6513(95)00059-3

I. Kozhevnikov, Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions, Chemical Reviews, vol.98, issue.1, pp.171-198, 1998.
DOI : 10.1021/cr960400y

Y. Yu, X. Lou, H. , and W. , Some Recent Advances in Hydrolysis of Biomass in Hot-Compressed Water and Its Comparisons with Other Hydrolysis Methods " Energy Fuels, pp.46-60, 2008.

O. Bobleter, Hydrothermal degradation and fractionation of saccharides

P. Yang, N. Kobatashi, and A. Fukuoka, Recent Developments in the Catalytic Conversion of Cellulose into Valuable Chemicals, Chinese Journal of Catalysis, vol.32, issue.5, pp.716-722, 2011.
DOI : 10.1016/S1872-2067(10)60232-X

A. Loppinet-serani and C. Aymonier, Chapter 7 -Hydrolysis in Near-and Supercritical Water for Biomass Conversion and Material Recycling A2 -Anikeev, Vladimir" in "Supercritical Fluid Technology for Energy and Environmental Applications" Maohong Fan, pp.139-156, 2014.

I. Pavlovi?, Z. E. Knez, and M. ?kerget, Hydrothermal Reactions of Agricultural and Food Processing Wastes in Sub- and Supercritical Water: A Review of Fundamentals, Mechanisms, and State of Research, Journal of Agricultural and Food Chemistry, vol.61, issue.34, pp.8003-8025, 2013.
DOI : 10.1021/jf401008a

H. Weingartner and E. Franck, Supercritical Water as a Solvent, Angewandte Chemie International Edition, vol.44, issue.99, 2005.
DOI : 10.1002/anie.200500097

S. S. Toor, L. Rosendahl, and A. Rudolf, Hydrothermal Liquefaction of Biomass, pp.2328-2342, 2011.
DOI : 10.1007/978-3-642-54458-3_9

A. G. Carr, R. Foster, and N. R. , A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds, Chemical Engineering Journal, vol.172, issue.1
DOI : 10.1016/j.cej.2011.06.007

A. Kruse and E. Dinjus, Hot compressed water as reaction medium and reactant: Properties and synthesis reactions, J. Supercrit. Fluids, vol.39, 2007.
DOI : 10.1016/j.supflu.2006.12.006

W. L. Marshall and E. Franck, Ion product of water substance, 0???1000?????C, 1???10,000 bars New International Formulation and its background, Journal of Physical and Chemical Reference Data, vol.10, issue.2, pp.295-304, 1981.
DOI : 10.1063/1.555643

A. Onda, T. Ochi, and K. Yanagisawa, Selective hydrolysis of cellulose into glucose over solid acid catalysts" Green Chemistry, pp.1033-1037, 2008.

K. Chandler, F. Deng, and A. K. Dillow, Alkylation Reactions in Near-Critical Water in the Absence of Acid Catalysts, Industrial & Engineering Chemistry Research, vol.36, issue.12, pp.5175-5179, 1997.
DOI : 10.1021/ie9702688

M. Sasaki, B. Kabyemela, and R. Malaluan, Cellulose hydrolysis in subcritical and supercritical water" The Journal of Supercritical Fluids, pp.261-268, 1998.

M. Sasaki, Z. Fang, and Y. Fukushima, Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water, Industrial & Engineering Chemistry Research, vol.39, issue.8, pp.2883-2890, 2000.
DOI : 10.1021/ie990690j

Y. Zhao, W. Lu, and H. Wang, Combined Supercritical and Subcritical Process for Cellulose Hydrolysis to Fermentable Hexoses, Environmental Science & Technology, vol.43, issue.5, pp.1565-1570, 2009.
DOI : 10.1021/es803122f

T. L. Rogalinski, K. Albrecht, T. Brunner, and G. , Hydrolysis kinetics of biopolymers in subcritical water, The Journal of Supercritical Fluids, vol.46, issue.3, pp.335-341, 2008.
DOI : 10.1016/j.supflu.2007.09.037

T. Rogalinski, T. Ingram, and G. Brunner, Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures, The Journal of Supercritical Fluids, vol.47, issue.1, pp.54-63, 2008.
DOI : 10.1016/j.supflu.2008.05.003

K. Kim, I. L. Eom, S. Cho, and S. , Applicability of sub- and supercritical water hydrolysis of woody biomass to produce monomeric sugars for cellulosic bioethanol fermentation, Journal of Industrial and Engineering Chemistry, vol.16, issue.6
DOI : 10.1016/j.jiec.2010.09.010

M. Sasaki, T. Adschiri, and K. Arai, Production of Cellulose II from Native Cellulose by Near- and Supercritical Water Solubilization, Journal of Agricultural and Food Chemistry, vol.51, issue.18, pp.5376-5381, 2003.
DOI : 10.1021/jf025989i

T. Z. Minowa, F. Ogi, and T. , Cellulose decomposition in hot-compressed water with alkali or nickel catalyst, The Journal of Supercritical Fluids, vol.13, issue.1-3, pp.253-259, 1998.
DOI : 10.1016/S0896-8446(98)00059-X

B. M. Kabyemela, T. Adschiri, and R. M. Malaluan, Glucose and Fructose Decomposition in Subcritical and Supercritical Water: Detailed Reaction Pathway
DOI : 10.1021/ie9806390

S. Asghari, F. Yoshida, and H. , Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from

S. Fructose-in and . Water, Industrial & Engineering Chemistry Research, pp.2163-2173, 2006.

Y. Matsumura, S. Yanachi, and T. Yoshida, Glucose Decomposition Kinetics in Water at 25 MPa in the Temperature Range of 448?673 K" Industrial & Engineering Chemistry Research, 2006.

A. A. Peterson, F. Vogel, and R. P. Lachance, Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies, Energy & Environmental Science, vol.37, issue.1, pp.32-65, 2008.
DOI : 10.1016/S0926-860X(02)00656-7

A. Jr, M. J. Mok, W. S. Richards, and G. , Mechanism of formation of 5-(hydroxymethyl)-2- furaldehyde from d-fructose and sucrose" Carbohydrate Research, pp.91-109, 1990.

B. M. Kabyemela, T. Adschiri, and R. M. Malaluan, Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water" Industrial & Engineering Chemistry Research, pp.1552-1558, 1997.

Z. Srokol, A. Bouche, and A. Van-estrik, Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds" Carbohydrate Research, 2004.

N. Shi, Q. Liu, and T. Wang, One-Pot Degradation of Cellulose into Furfural Compounds in Hot Compressed Steam with Dihydric Phosphates, ACS Sustainable Chemistry & Engineering, vol.2, issue.4, 2014.
DOI : 10.1021/sc400515x

P. Daorattanachai, P. Khemthong, and N. Viriya-empikul, Conversion of fructose, glucose, and cellulose to 5-hydroxymethylfurfural by alkaline earth phosphate catalysts in hot compressed water" Carbohydrate Research, pp.58-61, 2012.

A. G. S?na?, S. Uskan, B. Güllü, and M. , Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose, The Journal of Supercritical Fluids, vol.50, issue.2, pp.121-127, 2009.
DOI : 10.1016/j.supflu.2009.05.009

Y. W. Zhao, H. Lu, W. W. , and H. , Combined supercritical and subcritical conversion of cellulose for fermentable hexose production in a flow reaction system, Chemical Engineering Journal, vol.166, issue.3, pp.868-872, 2011.
DOI : 10.1016/j.cej.2010.11.058

A. S. Amarasekara, Acid Hydrolysis of Cellulose and Hemicellulose" in "Handbook of Cellulosic Ethanol, Ananda S. Amarasekara. -Beverly, pp.247-281, 2013.

J. Saeman, Kinetics of Wood Saccharification -Hydrolysis of Cellulose and Decomposition of Sugars in Dilute Acid at High Temperature" Industrial & Engineering Chemistry, pp.43-52, 1945.

E. A. Immergut and B. G. Ranby, Heterogeneous Acid Hydrolysis of Native Cellulose Fibers

L. Kupiainen, J. Ahola, and J. Tanskanen, Distinct Effect of Formic and Sulfuric Acids on Cellulose Hydrolysis at High Temperature" Industrial & Engineering Chemistry Research, 2012.

V. Soldi, Stability and degradation of polysaccharides" in "Polysaccharides. Structural diversity and functional versatility, pp.395-406, 2005.

P. Lenihan, A. Orozco, and E. O-'neill, Dilute acid hydrolysis of lignocellulosic biomass, Chemical Engineering Journal, vol.156, issue.2, pp.395-403
DOI : 10.1016/j.cej.2009.10.061

G. Bustos, J. Ramírez, and G. Garrote, Modeling of the Hydrolysis of Sugar Cane Bagasse with Hydrochloric Acid, Applied Biochemistry and Biotechnology, vol.104, issue.1, pp.51-68, 2003.
DOI : 10.1385/ABAB:104:1:51

J. Tian, J. Wang, and S. Zhao, Hydrolysis of cellulose by the heteropoly acid H3PW12O40, Cellulose, vol.150, issue.3, pp.587-594
DOI : 10.1007/978-3-642-72575-3

M. A. Abeer, H. A. Zeinab, and A. I. Atef, Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis, Bioresource Technology. 2010, vol.101, issue.12, pp.4446-4455

A. S. Amarasekara and B. Wiredu, Aryl sulfonic acid catalyzed hydrolysis of cellulose in water, Applied Catalysis A: General, vol.417, issue.418, pp.417-418
DOI : 10.1016/j.apcata.2011.12.048

P. Laopaiboon, A. Thani, and V. Leelavatcharamas, Acid hydrolysis of sugarcane bagasse for lactic acid production Bioresour Technology, pp.1036-1043, 2010.

B. C. Saha, L. B. Iten, and M. A. Cotta, Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol, Process Biochemistry, vol.40, issue.12, pp.3693-3700, 2005.
DOI : 10.1016/j.procbio.2005.04.006

Q. Xiang, Y. Y. Lee, and P. O. Pettersson, Heterogeneous Aspects of Acid Hydrolysis of ??-Cellulose, Applied Biochemistry and Biotechnology, vol.107, issue.1-3, pp.505-514, 2003.
DOI : 10.1385/ABAB:107:1-3:505

L. V. Gurgel, K. Marabezi, and M. D. Zanbom, Dilute Acid Hydrolysis of Sugar Cane Bagasse at High Temperatures: A Kinetic Study of Cellulose Saccharification and Glucose Decomposition. Part I: Sulfuric Acid as the Catalyst, Industrial & Engineering Chemistry Research, vol.51, issue.3, pp.1173-1185
DOI : 10.1021/ie2025739

Q. Xiang, J. S. Kim, and Y. Lee, A Comprehensive Kinetic Model for Dilute-Acid Hydrolysis of Cellulose, Applied Biochemistry and Biotechnology, vol.106, issue.1-3, pp.337-352, 2003.
DOI : 10.1385/ABAB:106:1-3:337

A. E. Abasaeed, Y. Y. Lee, and J. Watson, Effect of transient heat transfer and particle size on acid hydrolysis of hardwood cellulose, Bioresource Technology, vol.35, issue.1, pp.15-21, 1991.
DOI : 10.1016/0960-8524(91)90077-W

R. D. Fagan, H. E. Grethlein, and A. O. Converse, Kinetics of the acid hydrolysis of cellulose found in paper refuse" Environmental Science & Technology, pp.545-547, 1971.

M. S. Feather and J. Harris, Dehydration Reactions of Carbohydrates°" inAdvances in Carbohydrate Chemistry and Biochemistry, 1973.

W. S. Mok, M. J. Antal, G. H. Varhegyi, A. P. Kieboom, and H. Van-bekkum, Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose" Industrial & Engineering Chemistry ResearchThe Conversion of Fructose and Glucose in Acidic Media: Formation of Hydroxymethylfurfural" Starch -Stärke, pp.95-101, 1986.

T. Vom-stein, P. Grande, and F. Sibilla, Salt-assisted organic-acid-catalyzed depolymerization of cellulose" Green Chemistry, pp.1844-1849, 2010.

Y. Sun, L. Lin, and C. Pang, Hydrolysis of Cotton Fiber Cellulose in Formic Acid" Energy & Fuels, pp.2386-2389, 2007.

S. Van-de-vyver, J. Thomas, and J. Geboers, Catalytic production of levulinic acid from cellulose and other biomass-derived carbohydrates with sulfonated hyperbranched poly(arylene oxindole)s" Energy & Environmental Science, pp.3601-3610, 2011.

C. L. Hill and C. M. Prosser-mccartha, Homogeneous catalysis by transition metal oxygen anion clusters" Coordination Chemistry Reviews, pp.407-455, 1995.
DOI : 10.1016/0010-8545(95)01141-b

Y. Ogasawara, S. Itagaki, and K. Yamaguchi, Saccharification of Natural Lignocellulose Biomass and Polysaccharides by Highly Negatively Charged Heteropolyacids in Concentrated Aqueous Solution, ChemSusChem, vol.81, issue.4, pp.519-525, 2011.
DOI : 10.1021/ja01526a073

K. Shimizu, H. Furukawa, and N. Kobayashi, Effects of Br??nsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose, Green Chemistry, vol.284, issue.10, pp.1627-1632, 2009.
DOI : 10.1039/b913737h

M. Cheng, T. Shi, and H. Guan, Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst, Applied Catalysis B: Environmental, vol.107, issue.1-2, pp.104-109, 2011.
DOI : 10.1016/j.apcatb.2011.07.002

F. Chambon, F. Rataboul, and C. Pinel, Cellulose hydrothermal conversion promoted by heterogeneous Br??nsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid, Applied Catalysis B: Environmental, vol.105, issue.1-2, pp.171-181, 2011.
DOI : 10.1016/j.apcatb.2011.04.009

S. Suganuma, K. Nakajima, and M. Kitano, H, COOH, and OH Groups, Journal of the American Chemical Society, vol.130, issue.38, pp.12787-12793, 2008.
DOI : 10.1021/ja803983h

A. Onda, T. Ochi, and K. Yanagisawa, Hydrolysis of Cellulose Selectively into Glucose Over Sulfonated Activated-Carbon Catalyst Under Hydrothermal Conditions, Topics in Catalysis, vol.17, issue.6-7, 2009.
DOI : 10.1007/978-3-642-72575-3

F. Guo, Z. Fang, and C. C. Xu, Solid acid mediated hydrolysis of biomass for producing biofuels" Progress in Energy and Combustion Science, pp.672-690, 2012.

M. Toda, A. Takagaki, and M. Okamura, Biodiesel made with sugar catalyst, Nature, vol.11, issue.7065, pp.178-178, 2005.
DOI : 10.1021/cm980605i

S. Shen, C. Wang, and Y. Han, Influence of reaction conditions on heterogeneous hydrolysis of cellulose over phenolic residue-derived solid acid, Fuel, vol.134, issue.0, pp.573-578
DOI : 10.1016/j.fuel.2014.06.023

K. Fukuhara, K. Nakajima, and M. Kitano, Structure and Catalysis of Cellulose-Derived Amorphous Carbon Bearing SO3H Groups, ChemSusChem, vol.33, issue.6, pp.778-784, 2011.
DOI : 10.1016/0008-6223(94)00124-I

A. H. Van-pelt, O. A. Simakova, and S. M. Schimming, Stability of functionalized activated carbon in hot liquid water, Carbon, vol.77, pp.143-154
DOI : 10.1016/j.carbon.2014.05.015

Z. Yang, R. Huang, and W. Qi, Hydrolysis of cellulose by sulfonated magnetic reduced graphene oxide, Chemical Engineering Journal, vol.280, pp.90-98
DOI : 10.1016/j.cej.2015.05.091

S. Suganuma, K. Nakajima, and M. Kitano, Synthesis and acid catalysis of cellulose-derived carbon-based solid acid" Solid State Sciences, pp.1029-1034, 2010.

D. Lai, L. Deng, and J. Li, Hydrolysis of Cellulose into Glucose by Magnetic Solid Acid, ChemSusChem, vol.49, issue.1, pp.55-58, 2011.
DOI : 10.1002/anie.201000655

H. Guo, X. Qi, and L. Li, Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid, Bioresource Technology, vol.116, pp.355-359
DOI : 10.1016/j.biortech.2012.03.098

S. Dora, T. Bhaskar, and R. Singh, Effective catalytic conversion of cellulose into high yields of methyl glucosides over sulfonated carbon based catalyst, Bioresource Technology, vol.120, 2012.
DOI : 10.1016/j.biortech.2012.06.036

S. Li, Z. Gu, and B. E. Bjornson, Biochar based solid acid catalyst hydrolyze biomass, Journal of Environmental Chemical Engineering, vol.1, issue.4, pp.1174-1181
DOI : 10.1016/j.jece.2013.09.004

M. Kitano, D. Yamaguchi, and S. Suganuma, H, COOH, and OH Groups, Langmuir, vol.25, issue.9, pp.5068-5075, 2009.
DOI : 10.1021/la8040506

K. Nakajima and M. Hara, H Groups as a Solid Br??nsted Acid Catalyst, ACS Catalysis, vol.2, issue.7, pp.1296-1304
DOI : 10.1021/cs300103k

O. P. Taran, E. M. Polyanskaya, and O. L. Ogorodnikova, Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples, Catalysis in Industry, vol.2, issue.4, pp.381-386, 2011.
DOI : 10.1134/S2070050410040136

URL : https://hal.archives-ouvertes.fr/hal-00866472

S. Shen, B. Cai, and C. Wang, Preparation of a novel carbon-based solid acid from cocarbonized starch and polyvinyl chloride for cellulose hydrolysis, Applied Catalysis A: General, vol.473, pp.70-74
DOI : 10.1016/j.apcata.2013.12.037

P. L. Dhepe and A. Fukuoka, Cellulose Conversion under Heterogeneous Catalysis, ChemSusChem, vol.18, issue.12, pp.969-975, 2008.
DOI : 10.1007/978-3-642-72575-3

M. Yabushita, H. Kobayashi, and J. Y. Hasegawa, Entropically Favored Adsorption of Cellulosic Molecules onto Carbon Materials through Hydrophobic Functionalities, ChemSusChem, vol.105, issue.5, 2014.
DOI : 10.1021/cr9904009

B. Girisuta, L. P. Janssen, and H. J. Heeres, A kinetic study on the decomposition of 5- hydroxymethylfurfural into levulinic acid" Green Chemistry, pp.701-709, 2006.

B. Hahn-hägerdal, K. Skoog, and B. Mattiasson, The utilization of solid superacids for hydrolysis of glycosidic bonds in di-and polysaccharides: A model study on cellobiose, sucrose, and starch, European Journal of Applied Microbiology and Biotechnology, vol.6, issue.2, pp.344-348
DOI : 10.1007/BF00499501

R. P. Swatloski, S. K. Spear, and J. D. Holbrey, Dissolution of Cellose with Ionic Liquids, Journal of the American Chemical Society, vol.124, issue.18, pp.4974-4975, 2002.
DOI : 10.1021/ja025790m

H. Guo, Y. Lian, and L. Yan, Cellulose-derived superparamagnetic carbonaceous solid acid catalyst for cellulose hydrolysis in an ionic liquid or aqueous reaction system" Green Chemistry, 2013.

H. Kobayashi, M. Yabushita, and T. Komanoya, High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid, ACS Catalysis, vol.3, issue.4, pp.581-587
DOI : 10.1021/cs300845f

H. Kobayashi, T. Komanoya, and K. Hara, Water-Tolerant Mesoporous-Carbon-Supported Ruthenium Catalysts for the Hydrolysis of Cellulose to Glucose, ChemSusChem, vol.48, issue.4, pp.440-443
DOI : 10.1002/cssc.200900296

T. Komanoya, H. Kobayashi, and K. Hara, Catalysis and characterization of carbonsupported ruthenium for cellulose hydrolysis Applied Catalysis A: General, pp.188-194, 2011.

H. Kobayashi, T. Komanoya, and S. K. Guha, Conversion of cellulose into renewable chemicals by supported metal catalysis Applied Catalysis A: General, pp.409-410, 2011.

T. M. Yurieva, L. M. Plyasova, and O. V. Makarova, Mechanisms for hydrogenation of acetone to isopropanol and of carbon oxides to methanol over copper-containing oxide catalysts, Journal of Molecular Catalysis A: Chemical, vol.113, issue.3, pp.455-468, 1996.
DOI : 10.1016/S1381-1169(96)00272-5

L. Shuai and X. Pan, Hydrolysis of cellulose by cellulase-mimetic solid catalyst, Energy & Environmental Science, vol.12, issue.5, pp.6889-6894
DOI : 10.1016/j.solidstatesciences.2010.02.038

R. Pal, T. Sarkar, and S. Khasnobis, Amberlyst-15 in organic synthesis, ARKIVOC. 2012, vol.2012, issue.1, pp.570-609
DOI : 10.1002/chin.201243262

A. Takagaki, C. Tagusagawa, and K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst, Chemical Communications, vol.10, issue.42, pp.5363-5365, 2008.
DOI : 10.1016/S1387-1811(02)00279-2

H. Cai, C. Li, and A. Wang, Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid, Applied Catalysis B: Environmental, vol.123, issue.124, pp.123-124
DOI : 10.1016/j.apcatb.2012.04.041

K. Y. Nandiwale, N. D. Galande, and P. Thakur, One-Pot Synthesis of 5- Hydroxymethylfurfural by Cellulose Hydrolysis over Highly Active Bimodal Micro

C. Jiang, X. Zhong, and Z. Luo, An improved kinetic model for cellulose hydrolysis to 5- hydroxymethylfurfural using the solid SO42-/Ti-MCM-41 catalyst" RSC Advances, pp.15216-15224, 2014.

K. Tanabe, Catalytic application of niobium compounds Catalysis Today, 2003.

F. Yang, Q. Liu, and M. Yue, Tantalum compounds as heterogeneous catalysts for saccharide dehydration to 5-hydroxymethylfurfural, Chemical Communications, vol.346, issue.15, 2011.
DOI : 10.1002/adsc.200303212

F. Yang, Q. Liu, and X. Bai, Conversion of biomass into 5-hydroxymethylfurfural using solid acid catalyst, Bioresource Technology, vol.102, issue.3, pp.3424-3429, 2011.
DOI : 10.1016/j.biortech.2010.10.023

A. Chareonlimkun, V. Champreda, and A. Shotipruk, Catalytic conversion of sugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2 and mixed-oxide TiO2???ZrO2 under hot compressed water (HCW) condition, Bioresource Technology, vol.101, issue.11, pp.4179-4186, 2010.
DOI : 10.1016/j.biortech.2010.01.037

M. Watanabe, Y. Aizawa, and T. Iida, Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473K: Relationship between reactivity and acid???base property determined by TPD measurement, Applied Catalysis A: General, vol.295, issue.2, pp.150-156, 2005.
DOI : 10.1016/j.apcata.2005.08.007

L. Hu, L. Lin, and Z. Wu, Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts, Applied Catalysis B: Environmental, vol.174, issue.175, pp.225-243
DOI : 10.1016/j.apcatb.2015.03.003

C. Tagusagawa, A. Takagaki, and A. Iguchi, Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst, Angewandte Chemie International Edition, vol.256, issue.6, pp.1128-1132
DOI : 10.1016/S1387-1811(02)00279-2

H. Wang, C. Zhang, and H. He, Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions, Journal of Environmental Sciences, vol.24, issue.3, pp.473-478
DOI : 10.1016/S1001-0742(11)60795-X

A. Chareonlimkun, V. Champreda, and A. Shotipruk, Reactions of C5 and C6-sugars, cellulose, and lignocellulose under hot compressed water (HCW) in the presence of heterogeneous acid catalysts, Fuel, vol.89, issue.10, pp.2873-2880, 2010.
DOI : 10.1016/j.fuel.2010.03.015

J. A. Bootsma and B. H. Shanks, Cellobiose hydrolysis using organic?inorganic hybrid mesoporous silica catalysts Applied Catalysis A: General, pp.44-51, 2007.
DOI : 10.1016/j.apcata.2007.03.039

A. Takagaki, C. Tagusagawa, and K. Domen, Glucose production from saccharides using layered transition metal oxide and exfoliated nanosheets as a water-tolerant solid acid catalyst, Chemical Communications, vol.10, issue.42, pp.5363-5365, 2008.
DOI : 10.1016/S1387-1811(02)00279-2

D. Lai, L. Deng, and Q. Guo, Hydrolysis of biomass by magnetic solid acid, Energy & Environmental Science, vol.10, issue.9, pp.3552-3557, 2011.
DOI : 10.1016/j.catcom.2009.04.020

V. Degirmenci, D. Uner, and B. Cinlar, Sulfated Zirconia Modified SBA-15 Catalysts for Cellobiose Hydrolysis Catalysis Letters, pp.33-42, 2011.
DOI : 10.1007/s10562-010-0466-1

URL : https://link.springer.com/content/pdf/10.1007%2Fs10562-010-0466-1.pdf

A. Takagaki, M. Nishimura, and S. Nishimura, Hydrolysis of Sugars Using Magnetic Silica Nanoparticles with Sulfonic Acid Groups" Chemical Letters, pp.1195-1197, 2011.

A. Fukuoka and P. L. Dhepe, Catalytic Conversion of Cellulose into Sugar Alcohols, Angewandte Chemie International Edition, vol.1, issue.31, pp.5161-5163, 2006.
DOI : 10.1007/978-3-642-72575-3

S. Zhao, M. Cheng, and J. Li, One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Br??nsted???Lewis???surfactant-combined heteropolyacid catalyst, Chemical Communications, vol.31, issue.7, 2011.
DOI : 10.1021/ar9700163

S. Zhao, M. Cheng, and J. Li, One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Br??nsted???Lewis???surfactant-combined heteropolyacid catalyst, Chemical Communications, vol.31, issue.7, pp.2176-2178, 2011.
DOI : 10.1021/ar9700163

Z. Fang, F. Zhang, and H. Zeng, Production of glucose by hydrolysis, p.423

M. Sasaki, B. Kabyemela, and R. Malaluan, Cellulose hydrolysis in subcritical and supercritical water, The Journal of Supercritical Fluids, vol.13, issue.1-3, pp.1-3, 1998.
DOI : 10.1016/S0896-8446(98)00060-6

D. Klinger and H. Vogel, Influence of process parameters on the hydrothermal decomposition and oxidation of glucose in sub- and supercritical water, The Journal of Supercritical Fluids, vol.55, issue.1, pp.259-270, 2010.
DOI : 10.1016/j.supflu.2010.06.004

S. E. Jacobsen and C. E. Wyman, Cellulose and hemicellulose hydrolysis models for application to current and novel pretreatment processes, Applied Biochemistry and Biotechnology, vol.84, issue.1, pp.81-96, 2000.
DOI : 10.1007/978-1-4612-1392-5_6

I. A. Malester, M. Green, and G. Shelef, Kinetics of dilute acid hydrolysis of cellulose originating from municipal solid wastes" Industrial & Engineering Chemistry Research, 1992.

J. Franzidis, A. Porteous, and J. Anderson, The acid hydrolysis of cellulose in refuse in a continuous reactor" Conservation & Recycling, pp.215-225, 1982.

J. Bouchard, G. Garnier, and P. Vidal, Characterization of depolymerized cellulosic residues" Wood Science and Technology, pp.159-169, 1990.

N. Abatzoglou, J. Bouchard, and E. Chornet, Dilute acid depolymerization of cellulose in aqueous phase: Experimental evidence of the significant presence of soluble oligomeric intermediates

G. Sribala and R. Vinu, Unified Kinetic Model for Cellulose Deconstruction via Acid Hydrolysis, Industrial & Engineering Chemistry Research, vol.53, issue.21, pp.8714-8725
DOI : 10.1021/ie5007905

J. Bouchard, N. Abatzoglou, and E. Chornet, Characterization of depolymerized cellulosic residues" Wood Science and Technology, pp.343-355, 1989.
DOI : 10.1007/bf00229051

L. Negahdar, I. Delidovich, and R. Palkovits, Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism, Applied Catalysis B: Environmental, vol.184, pp.285-298
DOI : 10.1016/j.apcatb.2015.11.039

D. W. Rackemann and W. O. Doherty, The conversion of lignocellulosics to levulinic acid, Biofuels, Bioproducts and Biorefining, vol.23, issue.2
DOI : 10.1021/ef900259h

A. H. Conner, B. F. Wood, and C. G. Hill, Cellulose: Structure, Modification and Hydrolysis, pp.281-296, 1986.

A. Bahari, M. N. Baig, and G. A. Leeke, Subcritical water mediated hydrolysis of cider spent yeast: Kinetics of HMF synthesis from a waste microbial biomass" Industrial Crops and Products, pp.137-144, 2014.

H. Niu, N. Shah, and C. Kontoravdi, Modelling of amorphous cellulose depolymerisation by cellulases, parametric studies and optimisation, Biochemical Engineering Journal, vol.105, pp.455-472
DOI : 10.1016/j.bej.2015.10.017

D. A. Cantero, M. D. Bermejo, and M. J. Cocero, Governing Chemistry of Cellulose Hydrolysis in Supercritical Water, ChemSusChem, vol.17, issue.182, pp.1026-1033
DOI : 10.1039/C4GC01359J

T. M. Aida, K. Tajima, and M. Watanabe, Reactions of d-fructose in water at temperatures up to 400??C and pressures up to 100MPa, The Journal of Supercritical Fluids, vol.42, issue.1, pp.110-119, 2007.
DOI : 10.1016/j.supflu.2006.12.017

E. Anet, Degradation of carbohydrates. V. Isolation of intermediates in the formation of 5-(Hydroxymethyl)-2-furaldehyde, Australian Journal of Chemistry, vol.18, issue.2, pp.240-248, 1965.
DOI : 10.1071/CH9650240

I. V. Delidovich, A. N. Simonov, and O. P. Taran, Catalytic Formation of Monosaccharides: From the Formose Reaction towards Selective Synthesis, ChemSusChem, vol.6, issue.7, pp.1833-1846
DOI : 10.1021/ol049141m

D. Wit, G. Kieboom, A. P. Van-bekkum, and H. , Enolisation and isomerisation of monosaccharides in aqueous, alkaline solution" Carbohydrate Research, pp.157-175, 1979.

A. N. In-russian-smirnov, Main classes of ogranic sompounds. Part IV. Cabohydrates

A. J. Angyal, The Lobry de Bruyn-Alberda van Ekenstein Transformation and Related Reactions" in "Glycoscience: Epimerization, Isomerization and Rearrangement Reactions of Carbohydrates" A.F. Stütz, pp.1-14, 2001.

J. Horvat, B. Klaid, and B. Metelko, Mechanism of levulinic acid formation, Tetrahedron Letters, vol.26, issue.17, pp.2111-2114, 1985.
DOI : 10.1016/S0040-4039(00)94793-2

W. N. Haworth, E. L. Hirst, and V. S. Nicholson, CCI.-The constitution of the disaccharides. Part XIII. The [gamma]-fructose residue in sucrose, Journal of the Chemical Society, 1927.

L. Rigal and A. Gaset, Direct preparation of 5-hydroxymethyl-2-furancarboxaldehyde from polyholosides: a chemical valorisation of the Jerusalem artichoke (Helianthus tuberosus L.), Biomass, vol.3, issue.2, pp.151-163, 1983.
DOI : 10.1016/0144-4565(83)90003-3

E. Anet, Degradation of Carbohydrates. II. The Action of Acid and Alkali on

. Deoxyhexosones, Australian Journal of Chemistry, pp.295-301, 1961.

M. S. Feather and J. Harris, On the mechanism of conversion of hexoses into, p.5

M. Furaldehyde and . Acid, Carbohydrate Research, pp.304-309, 1970.

V. Timokhin, B. , A. Baransky, V. , D. Eliseeva et al., Levulinic acid in organic synthesis, Russian Chemical Reviews, vol.68, issue.1, pp.73-84, 1999.
DOI : 10.1070/RC1999v068n01ABEH000381

E. F. Anet, 3-Deoxyglycosuloses (3-Deoxyglycosones) and the Degradation of Carbohydrates" inAdvances in Carbohydrate Chemistry" L. Wolfrom Melville, pp.181-218, 1964.

G. C. Luijkx, F. Van-rantwijk, and H. Van-bekkum, Hydrothermal formation of 1,2,4- benzenetriol from 5-hydroxymethyl-2-furaldehyde and d-fructose" Carbohydrate Research, pp.131-139, 1993.

G. R. Akien, L. Qi, and I. Horvath, Molecular mapping of the acid catalysed dehydration of fructose, Chemical Communications, vol.93, issue.47, pp.5850-5852
DOI : 10.1021/ja00749a025

S. K. Patil and C. R. Lund, Formation and Growth of Humins via Aldol Addition and Condensation during Acid-Catalyzed Conversion of 5-Hydroxymethylfurfural" Energy & Fuels, 2011.

T. M. Aida, Y. Sato, and M. Watanabe, Dehydration of d-glucose in high temperature water at pressures up to 80 MPa" The Journal of Supercritical Fluids, pp.381-388, 2007.

A. V. Pestunov, A. O. Kuzmin, and D. A. Yatsenko, Mechanical activation of pure and being contained in biomass cellulose in different mills, J. of Siberian Federal University Chemistry. 2015, vol.8

S. Park, J. O. Baker, and M. E. Himmel, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnology for Biofuels, vol.3, issue.1, 2010.
DOI : 10.1186/1754-6834-3-10

URL : https://biotechnologyforbiofuels.biomedcentral.com/track/pdf/10.1186/1754-6834-3-10?site=biotechnologyforbiofuels.biomedcentral.com

V. F. Odyakov and E. G. Zhizhina, A novel method of the synthesis of molybdovanadophosphoric heteropoly acid solution" Reaction. Kinetics and Catalysis Letters, pp.21-28, 2008.

V. F. Odyakov, E. G. Zhizhina, and R. Maksimovskaya, Synthesis of molybdovanadophosphoric heteropoly acid solutions having modified composition Applied Catalysis A: General, pp.126-130, 2008.

V. F. Odyakov, E. G. Zhizhina, and R. I. Maksimovskaya, ???????? ? ???????, p.733, 1995.

E. G. Zhizhina and V. F. Odyakov, Physicochemical properties of catalysts based on aqueous solutions of Mo???V???phosphoric heteropoly acids, Applied Catalysis A: General, vol.358, issue.2, 2009.
DOI : 10.1016/j.apcata.2009.02.021

W. Klaus and G. Nolze, Powder Cell -a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns, Journal of Applied Crystallography, vol.29, pp.301-303, 1996.

J. Tauc, R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium, physica status solidi (b), vol.24, issue.2, pp.627-637, 1966.
DOI : 10.1002/pssb.19660150224

O. P. Taran, E. M. Polyanskaya, and O. L. Ogorodnikova, Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solution: I. Surface properties of the oxidized sibunit samples, Catalysis in Industry, vol.2, issue.4, pp.381-386, 2010.
DOI : 10.1134/S2070050410040136

URL : https://hal.archives-ouvertes.fr/hal-00866472

H. P. Boehm, Chemical Identification of Surface Groups Advances in Catalysis, 1966.

C. A. Toles, W. E. Marshall, and M. M. Johns, Granular activated carbons from nutshells for the uptake of metals and organic compounds, Carbon, vol.35, issue.9, pp.1407-1414, 1997.
DOI : 10.1016/S0008-6223(97)00073-0

I. Russian, P. Poludek-fabini, and T. Beyrich, Organic analysis, p.119, 1981.

B. Girisuta, L. P. Janssen, and H. J. Heeres, Kinetic Study on the Acid-Catalyzed Hydrolysis of Cellulose to Levulinic Acid" Industrial & Engineering Chemistry Research, pp.1696-1708, 2007.

L. Mestres, M. L. Martínez-sarrión, and O. Castaño, Phase Diagram at Low Temperature of the System ZrO 2 /Nb 2 O 5 " Zeitschrift für anorganische und allgemeine Chemie, 2001.

G. Peng, X. Wang, and X. Chen, Zirconia-supported niobia catalyzed formation of propanol from 1,2-propanediol via dehydration and consecutive hydrogen transfer, Journal of Industrial and Engineering Chemistry, vol.20, issue.5, pp.2641-2645
DOI : 10.1016/j.jiec.2013.11.042

J. Datka, A. M. Turek, and J. M. Jehng, Acidic properties of supported niobium oxide catalysts: An infrared spectroscopy investigation, Journal of Catalysis, vol.135, issue.1, pp.186-199, 1992.
DOI : 10.1016/0021-9517(92)90279-Q

T. Onfroy, G. Clet, and M. Houalla, Correlations between Acidity, Surface Structure, and Catalytic Activity of Niobium Oxide Supported on Zirconia, The Journal of Physical Chemistry B, vol.109, issue.30, pp.14588-14594, 2005.
DOI : 10.1021/jp0517347

URL : https://hal.archives-ouvertes.fr/hal-00162507

D. Klinger and H. Vogel, Influence of process parameters on the hydrothermal decomposition and oxidation of glucose in sub- and supercritical water, The Journal of Supercritical Fluids, vol.55, issue.1, pp.259-270, 2010.
DOI : 10.1016/j.supflu.2010.06.004

K. Tanabe and T. Yamaguchi, Acid-base bifunctional catalysis by ZrO2 and its mixed oxides Catalysis Today, pp.185-198, 1994.
DOI : 10.1016/0920-5861(94)80002-2

D. Prasetyoko, Z. Ramli, and S. Endud, Characterization and Catalytic Performance of Niobic Acid Dispersed over Titanium Silicalite Advances in Materials Science and Engineering, p.345895, 2008.

T. Tanaka, H. Nojima, and H. Yoshida, Preparation of highly dispersed niobium oxide on silica by equilibrium adsorption method" Catalysis Today, pp.297-307, 1993.

V. A. Likholobov, B. Centi, . T. Wichterlováa, and . Bell, Catalysis by Novel Carbon-Based Materials" in "Catalysis by unique metal ion structures in solid matrices from science to application, pp.295-306, 2001.

N. B. Shitova, N. M. Dobrynkin, and A. S. Noskov, Formation of Ru???M/Sibunit Catalysts for Ammonia Synthesis, Kinetics and Catalysis, vol.45, issue.3, pp.414-421
DOI : 10.1023/B:KICA.0000032178.09743.3f

E. Rodríguez-castellón, A. Jiménez-lópez, and D. Eliche-quesada, Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization" Fuel, 2008.

S. X. Zhuang, M. Yamazaki, and K. Omata, Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts II. Catalytic reduction of NO and SO2 by CO, Applied Catalysis B: Environmental, vol.31, issue.2, pp.133-143, 2001.
DOI : 10.1016/S0926-3373(00)00275-7

A. F. Sanders, A. M. De-jong, and V. H. De-beer, Formation of cobalt???molybdenum sulfides in hydrotreating catalysts: a surface science approach, Applied Surface Science, vol.144, issue.145, pp.144-145, 1999.
DOI : 10.1016/S0169-4332(98)00831-9

Y. Okamoto and T. Imanaka, Interaction chemistry between molybdena and alumina: infrared studies of surface hydroxyl groups and adsorbed carbon dioxide on aluminas modified with molybdate, sulfate, or fluorine anions, The Journal of Physical Chemistry, vol.92, issue.25, pp.7102-7112, 1988.
DOI : 10.1021/j100336a015

D. B. Hibbert and R. H. Campbell, Flue gas desulphurisation: Catalytic removal of sulphur dioxide by carbon monoxide on sulphided La1-xSrxCoO3. II. Reaction of sulphur dioxide and carbon monoxide in a flow system Applied Catalysis, pp.289-299, 1988.

J. Janaun and N. Ellis, Role of silica template in the preparation of sulfonated mesoporous carbon catalysts Applied Catalysis A: General, pp.25-31, 2011.

A. Takagaki, M. Toda, and M. Okamura, Esterification of higher fatty acids by a novel strong solid acid" Catalysis Today, pp.157-161, 2006.

J. F. Moulder, W. F. Stickle, and P. E. Sobol, Handbook of X-Ray Photoelectron Spectroscopy, ): Physical Electronics Division, p.261, 1992.

D. Y. Zemlyanov, A. Nagy, and R. Schlögl, The reaction of silver with NO/O2, Applied Surface Science, vol.133, issue.3, pp.171-183, 1998.
DOI : 10.1016/S0169-4332(98)00190-1

J. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV, Journal of Electron Spectroscopy and Related Phenomena, vol.8, issue.2, pp.129-137, 1976.
DOI : 10.1016/0368-2048(76)80015-1

R. T. Morrison and R. N. Boyd, Organic Chemistry, Tetrahedron, vol.10, issue.1-2
DOI : 10.1016/0040-4020(60)85017-X

O. P. Taran, E. M. Polyanskaya, and O. L. Ogorodnikova, Sibunit-based catalytic materials for the deep oxidation of organic ecotoxicants in aqueous solutions. II: Wet peroxide oxidation over oxidized carbon catalysts, Catalysis in Industry, vol.3, issue.2, pp.161-169, 2011.
DOI : 10.1134/S2070050411020152

URL : https://hal.archives-ouvertes.fr/hal-01401478

Y. S. Jang and S. Lee, Recent Advances in Biobutanol Production, Industrial Biotechnology, vol.11, issue.6, pp.316-321
DOI : 10.1089/ind.2015.0023

Y. Jiang, J. Liu, and W. Jiang, Current status and prospects of industrial bio-production of n-butanol in China, Biotechnology Advances, vol.33, issue.7, pp.1493-1501
DOI : 10.1016/j.biotechadv.2014.10.007

P. P. Lin, L. Mi, and A. H. Morioka, Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum, Metabolic Engineering, vol.31, pp.44-52
DOI : 10.1016/j.ymben.2015.07.001

J. Liu, H. Qi, and C. Wang, Model-driven intracellular redox status modulation for increasing isobutanol production in Escherichia coli, Biotechnology for Biofuels, vol.22, issue.10
DOI : 10.1016/j.ymben.2013.12.005

A. Morone and R. A. Pandey, Lignocellulosic biobutanol production: Gridlocks and potential remedies" Renewable and Sustainable Energy Reviews, pp.21-35, 2014.
DOI : 10.1016/j.rser.2014.05.009

Y. H. Zhang, Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges, Biotechnology Advances, vol.33, issue.7, pp.1467-1483
DOI : 10.1016/j.biotechadv.2014.10.009

O. Bobleter and G. Bonn, The hydrothermolysis of cellobiose and its reaction-product d-glucose, Carbohydrate Research, vol.124, issue.2
DOI : 10.1016/0008-6215(83)88454-7

G. R. Ponder and G. Richards, Pyrolysis of inulin, glucose and fructose" Carbohydrate Research, pp.341-359, 1993.
DOI : 10.1016/0008-6215(83)85012-5

K. D. Baugh and P. L. Mccarty, Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. Monosaccharide and furfurals hydrothermal decomposition and product formation rates, Biotechnology and Bioengineering, vol.65, issue.1, pp.50-61, 1988.
DOI : 10.1002/recl.19460650410

G. Bonn and O. Bobleter, Determination of the hydrothermal degradation products of D-(U-14C)

D. Glucose, U-14C) fructose by TLC, Journal of Radioanalytical Chemistry, vol.79, issue.2, 1983.

O. Bobleter, W. Schwald, and R. Concin, Hydrolysis of Cellobiose in Dilute Sulpuric Acid and Under Hydrothermal Conditions, Journal of Carbohydrate Chemistry, vol.32, issue.3, pp.387-399, 1986.
DOI : 10.1016/S0021-9673(00)80322-2

T. M. Aida, K. Tajima, and M. Watanabe, Reactions of d-fructose in water at temperatures up to 400 °C and pressures up to 100 MPa, The Journal of Supercritical Fluids, vol.42, issue.1, 2007.