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Summary  

 

In this Ph.D. project, I study the functional link between epithelial polarity and Delta-Notch 

signaling in the context of zebrafish neural tube morphogenesis. Delta-Notch signaling is of 

primordial importance for embryonic development and adult tissue homeostasis. Accordingly, 

faulty Notch signaling is implicated in several pathologies. While it is well established that 

endocytic transport of Delta ligands is essential for Notch signaling, the reason for this 

requirement remains mysterious. Recent findings suggest that Delta undergoes two sequential 

rounds of endocytosis, the first of which promotes basal-to-apical ligand transcytosis. This might 

enable Delta to interact with apically localized Notch receptors and induce their activation 

through a second endocytosis-dependent process. 

In the course of investigating the role of endocytosis in DeltaD trafficking, I inhibited the function 

of an E3-ubiquitin ligase Mindbomb (Mib) that is essential for endocytosis of DeltaD ligands and 

activation of Notch signaling. Surprisingly, I found that Mib loss-of-function led to a loss of apico-

basal polarity in the neuroepithelium of the embryonic spinal cord. I further explored this 

phenotype and showed that the activity of the entire Notch signaling pathway is actually 

required for the establishment of apico-basal polarity in the zebrafish neural tube. Indeed, 

inhibition of Notch ligands and downstream transcriptional activators Rbpja and Rbpjb resulted 

in a disruption of apico-basal polarity. Moreover, ectopic activation of Notch ensued a complete 

rescue of apico-basal polarity in Mib loss of function embryos. Through a temporal analysis, I 

have further been able to show that Notch signalling is required for the earliest steps of 

establishment of neuroepithelial apico-basal polarity.  Mib mutant embryos fail to upregulate the 

transcription of the apical polarity proteins Crumbs1 and Crumbs2a in the course of neural tube 

formation, suggesting that Notch signalling might act upstream of polarity complexes.  

The apico-basal polarization of the zebrafish neural tube has been show to involve a special 

type of cell division, the so-called C-divisions that are oriented divisions and take place across 

the forming neural tube midline. C-divisions are known to be regulated by the planar cell polarity 

(PCP) pathway.  Strikingly, we found that the Notch signaling component Mib affects C-divisions 

through an effect on PCP. Remarkably, this effect of Mib on PCP is independent of its role in 

Notch signaling. Zebrafish gastrulation are characterized to have highly oriented cell divisions 

along the anterior-postrior axis. These seterotypical-oriented cell divisions are PCP dependent.  



 

 

ii 

 

To our surprise, Mib depleted embryos displayed alterations in their division orientation. These 

results indicate a novel role of Mib in the regulation of PCP signaling. Altogether, this study 

revealed a dual role of Mib in the epithelial morphogenesis of the zebrafish neural tube.  

 

Keywords: Zebrafish, Neural tube morphogenesis, Delta-Notch signaling, and Planar cell 

polarity 
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Résumé 

 

Au cours de ce projet de thèse, j’ai étudié le lien fonctionnel entre la morphogénèse épithéliale 

et la signalisation Delta-Notch, dans le cadre de la formation du tube neural chez le poisson-

zèbre. La signalisation Delta-Notch est primordiale pour le développement embryonnaire et le 

maintien de l’homéostasie des tissus adultes. Ainsi, sa perte de fonction est associée à des 

pathologies variées. Tandis qu’il est établit que le transport endocytique du ligand Delta est 

essentiel à la signalisation Notch, la raison de cette nécessité demeure inconnue. Des 

découvertes récentes suggèrent que Delta subit deux cycles séquentiels d’endocytose, dont le 

premier permet une transcytose du ligand du pôle basal à l’apical.  Cela permettrait à Delta 

d’interagir avec les récepteurs Notch situés à l’apical, et d’induire leur activation à travers le 

deuxième cycle d’endocytose.  

Dans le but d’étudier le rôle de l’endocytose dans le transport de Delta D, j’ai inhibé la fonction 

de l’E3-ubiquitine ligase Mindbomb (Mib), essentielle pour l’endocytose du ligand Delta D et 

l’activation de la signalisation Notch. De façon inattendue, j’ai observé suite à la perte-de-

fonction de Mib une perte de la polarité apico-basale dans le neuro-épithélium de la moelle 

épinière embryonnaire. L’analyse plus poussée de ce phénotype m’a ensuite permis de montrer 

que l’activité de l’intégralité de la signalisation Notch est requise pour l’établissement de la 

polarité apico-basale dans le tube neural de poisson-zèbre. En effet, l’inhibition des ligands de 

Notch et des activateurs transcriptionnels situés en aval, Rbpja et Rbpjb, résulte en l’interruption 

de la polarité apico-basale. De plus, l’activation ectopique de Notch entraîne un sauvetage 

complet de la polarité apico-basale dans les embryons déplétés pour Mib. Grâce à une analyse 

temporelle, j’ai été capable de montrer que la signalisation Notch est requise dans les étapes 

les plus précoces de l’établissement de la polarité apico-basale du neuro-épithélium du tube 

neural. Le mutant Mib échoue à activer la transcription de protéines de polarité apicale 

Crumbs1 et Crumbs2a au cours de la formation du tube neural, ce qui suggèrerait que la 

signalisation Notch agit en amont des complexes de polarité.  

La mise en place de la polarité apico-basale dans le tube neural du poisson-zèbre a été 

montrée comme impliquant un type particulier de division cellulaire, la C-division. Celle-ci 

consiste en une division orientée, qui prend place perpendiculairement à la ligne médiane du 

tube neural en formation. Les C-divisions sont connues comme étant régulées par la voie de 
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signalisation de la polarité planaire (Planar Cell Polarity, PCP). De façon surprenante, nous 

avons montré que le composant de la signalisation Notch, Mib, affecte les C-divisions à travers 

la signalisation PCP. Cet effet de Mib sur la PCP est indépendant de son rôle sur la 

signalisation Notch. Un autre évènement bien décrit, dépendant de la signalisation PCP est 

l’orientation stéréotypique des divisions cellulaires au cours de la gastrulation. A notre surprise, 

les embryons déplétés pour Mib présentent une altération de l’orientation de leurs divisions 

dans ce cas. Ces résultats indiquent un rôle inédit de Mib dans la régulation de la signalisation 

PCP. Généralement, cette étude révèle un double-rôle de Mib dans la morphogénèse 

épithéliale du tube neural du poisson-zèbre.  

 

Mots clés: Poisson zèbre, Morphogénèse, Tube neural, Signalisation Delta/Notch, Polarité 

planaire 
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MAGUK   Members Associated Guanylate Kinase homologues 

Mam    Mastermind 

MDCK    Madine-Darby Canine Kidney 

Mfng    Manic Fringe 

MHP    Median hinge point 

Mib    Mindbomb 

ML    medio-lateral 

Msn    Misshapen 

MT    Microtubule 

NECD    Notch extracellular domain 

Neur    Neuralized 

Ngn1   Neurogenin1 

NICD    Notch intracellular domain 

NLS    Nuclear localization signal 

Nok    Nagie oko 

Nrarp    Notch regulated ankyrin repeat protein 

NRR    Negative regulatory region 

NT    N-terminal 

Ofut-1   Protein O-fucosyl transferase-1 

Ome    Oko meduzy 

Pals1   Protein associated with Lin7 
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Papc    Paraxial protocadherin 

PAR or Pard   Partitioning-defective 

PATJ    Pals1 Associated- Tight Junction 

PB1   Phox and Bem1D 

PCP   Planar cell polarity 

PDZ    PSD95-Dlg1-ZO1 

Pk   Prickle 

PtdIns(3, 4, 5)P3 Phosphatidyl-Inositol-(3, 4, 5)-phosphate 

PtdIns(4, 5)P2  Phosphatidyl-Inositol-(4, 5)-phosphate 

PTEN    Phosphatase and Tensin homologue  

PTK    Protein tyrosine kinase 

RAM    Rbpj-associated molecule 

Rfng    Radical Fringe 

Rok2    Rho kinase 2 

Scrib    Scribble 

Slb   Silberblick 

SOP    Sensory organ precursor 

TACE   TNF-α converting enzyme 

TGF-β    Transforming growth factor-beta 

TJs   Tight junctions  

Tri    Trilobite 

Vang/Stbm  VanGogh/Strabismus 

ZO1   Zonula occludens-1 
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Introduction 

 

The development of an organism requires tight coordination of many processes such as cell 

division, morphogenesis, and patterning. An enormous amount of research has been directed to 

identify the molecules that take part in these processes for proper embryonic development. 

Three important aspects of embryonic morphogenesis correspond to cell shape, cell to cell 

communication and cell movement, which are not just interrelated but their strict spatial and 

temporal coordination is essential for proper organ formation. In this Ph.D. thesis, I have 

explored a dual role of the Notch signaling component Mindbomb in the context of zebrafish 

neural tube morphogenesis. First, it takes part in the regulation apico-basal polarity of the 

neuroepithelium by promoting Delta/Notch signaling. Secondly, Mib plays a Notch-independent 

role in the regulation of planar cell polarity.  

In the following section, I start by introducing Delta-Notch signaling and its major roles in 

developmental contexts. I then proceed to describe general mechanisms of tube formation and 

the specific morphogenesis of the zebrafish neural tube. Thereafter, I explain the establishment 

of apico-basal polarity and planar cell polarity.    

1 Delta-Notch signaling 

The Notch pathway is an evolutionarily conserved signaling pathway, which is crucial for proper 

embryonic development. Notch signaling regulates tissue homeostasis and maintenance of 

stem cells in adults (Artavanis-Tsakonas et al., 1995; Gridley, 1997). The pathway was originally 

identified in Drosophila, where the first mutant allele gave rise to a notched wing. Since then, 

proteins of the Notch pathway have been discovered in many species and studied extensively in 

flies, worms, and mammals. Various roles of Notch signaling have been discovered so far 

including cell fate specification, patterning, and morphogenesis (Bray, 2006; Fiúza and Arias, 

2007). The importance of Notch signaling during development and in adults is highlighted by the 

findings that several diseases are associated with irregular Notch signaling. Mutation in the 

genes encoding Notch signaling components are linked to three inherited diseases in humans 

namely Alagille syndrome, spondylocostal dysostosis, and cerebral autosomal dominant 

arteriopathy with subcortical infarcts and leukoencephalopathy (Gridley, 2003). Aberrant Notch 

signaling has also been studied in the context of various types of tumor pathogenesis such as 

human prostate cancer and cervical cancer (Allenspach et al., 2002). 
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1.1 Developmental functions of the Delta-Notch signaling pathway 

Notch signaling allows a cell to communicate with its neighboring cells. The Notch signaling 

pathway is crucial for many developmental events such as neurogenesis and somitogenesis. 

Notch signaling does so through varied processes: lateral inhibition, binary cell fate decision, 

and by delimiting boundaries (Gridley, 1997).  

 

1.1.1 Lateral Inhibition 

One of the best-characterized functions of Notch is a process called lateral inhibition through 

which a fine pattern of distinct cell types is created. The term lateral inhibition is derived from the 

observation that during development, among a cluster of cells that have an equal potential to 

acquire certain cell fate, only one adopts the fate while it actively inhibits that acquisition of the 

same fate in its lateral neighbors (Figure 1). 

 

 

Figure 1: Lateral inhibition 

Lateral inhibition in neurogenesis make sure that within a proneural cluster, a single cell will 
become a neuron (bright green) and inhibit its neighbouring cells from acquiring a neural 
fate.  
 

 

Lateral inhibition has been well studied during Drosophila neurogenesis in sensory organ 

precursor (SOP) cells. During development, several groups of ectodermal cells with a neural 

potential emerge that are known as proneuronal clusters. In proneuronal clusters, lateral 

inhibition is mediated by few neurogenic genes. The primarily important neurogenic genes are 

Delta, Notch, Suppressor of Hairless, and the genes of the Enhancer of Split complex (E(spl)-

C), which were first described in Drosophila for processing regulatory signals that is necessary 

for cell commitment to an epidermal rather than neural fate (Technau and Campos-Ortega, 

1987). Notch signaling activity inhibits the future neural fate. One of the cells within the pro-
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neuronal cluster acquires the neural fate by expressing higher levels of Delta that inhibits 

neighboring cells from acquiring the same fate. In Drosophila, patterns of bristles are created by 

lateral inhibition (Parks et al., 1997). When Notch signaling is impaired, cells failed to have 

lateral inhibition and henceforth, more and more cell acquire neurogenic fate, resulting in severe 

developmental defects (Itoh et al., 2003).   

 Molecular mechanism of lateral inhibition  

In vertebrates, Delta ligands are expressed in the neurogenic domain of the neural plate (Chitnis 

et al., 1995). In this neurogenic domain, cells express a transcription factor Neurogenin1 (Ngn1) 

that encodes a basic helix-loop-helix protein (bHLH). Expression of ngn1 is modulated by Delta-

Notch signaling that suggest that ngn1 is the target of lateral inhibition. Indeed, misexpression of 

Ngn1 results in the formation of ectopic neurons in neuroectoderm (Blader et al., 1997). In 

addition, Ngn1 also modulates the expression of Delta. A vertebrate homologue of E(spl)-C 

proteins, Hairy enhancer of split related-4 (Her4), acts as a target of Notch to suppress 

neurogenesis (Takke et al., 1999 a zebrafish homologue of the Drosophila neurogenic gene 

E(spl), is a target of NOTCH signalling). Ngn1 activates Delta expression, which in turn 

activates Notch in neighboring cells; Notch activation further drives expression of her4 that 

consecutively inhibit expression of ngn1. Therefore, when a cell express ngn1, it acquires the 

ability to inhibit ngn1 and delta expression in neighboring cells, thus preventing them from 

differentiating as neurons.  

 

1.1.2 Asymmetric cell divisions  

Notch signaling controls binary cell fate choices that form patterns in the organism. Binary cell 

fate choices occur through two mechanisms. First, cells communicate with each other through 

an inhibitory feedback loop in proneural clusters during lateral inhibition (described above). 

Second, cells acquire a specific neural identity through asymmetric cell divisions that rely on cell 

polarization (Blader et al., 1997). 

 Asymmetric distribution of cell fate determinants during mitosis determines the cell fate of the 

daughter cells (Figure 2). During Drosophila neurogenesis, asymmetric distribution of Notch 

signaling-regulators such as Numb and Neur, determines the identity of the daughter cells as 

signal sending or signal receiving cell (Bardin et al., 2004). This asymmetric segregation of 
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regulators of Notch signaling is governed by polarity proteins e.g. Bazooka (Par3), par6, aPKC 

and Inscuteable (Schober et al., 1999). 

 

Figure 2: Asymmetric cell division  

Asymmetric cell division distributes regulators of Notch signalling unequally between the two 
daughter cells. Because of this asymmetric segregation of Notch-regulators, one cell will 
present Notch ligands that will activate Notch receptors in its sibling. These daughter cells 
acquire different cell fate through binary cell fate decision.  

 

In C.elegans and Sea urchin, Notch signaling is indispensable for cell fate specification during 

early embryogenesis and specification of the germ layers (Good et al., 2004; Sherwood and 

McClay, 1997). Another example of binary cell fate choice is the role of Notch in the 

maintenance of stem cell populations. Notch signaling mediates a decision whether a cell 

should differentiate or stay in a quiescent state in a given stem cell population (Chiba, 2006).   

1.1.3 Delimiting Boundaries  

Notch signaling is crucial for boundary formation in invertebrates and vertebrates.  During the 

formation of the dorsal-ventral (DV) boundary of the Drosophila wing Notch activity is 

constrained to the DV boundary (de Celis and Bray, 1997). Notch loss-of-function results in the 

loss of wing marginal tissue, while ectopic activity of Notch results in extra wing tissue (Kim et 

al., 1996). Notch signaling also participates in boundary formation during vertebrate 

somitogenesis. Mesoderm is segmented into somites through a wave of oscillatory gene 

expression, called the segmentation clock. Several Notch components oscillate within the 

presomitic mesoderm.  In the zebrafish, coordinated oscillatory expression of the bHLH 

repressors her1 and her7 is required for the segmentation of the paraxial mesoderm (Wahi et 

al., 2014). In mammals, lunatic fringe, which is a homologue of the Drosophila boundary-specific 
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molecule fringe, modulates Notch signaling to regulate inter-somitic boundary formation, as well 

as rostro-caudal patterning of the somites (Evrard et al., 1998). Another example of the role of 

Notch signaling in boundary formation is the segmentation of the Zebrafish hindbrain (Pasini et 

al., 2001).  

1.2 Notch receptors  

1.2.1 Structure of Notch receptors 

Notch receptors are ~300-kDa single pass transmembrane proteins, which are composed of 

several functional units (Figure 3). Notch receptors are multidomain proteins that are conserved 

in virtually all metazoans.  In mammals, there are four Notch receptors named Notch-1, Notch-2, 

Notch-3 and Notch-4. In Zebrafish, Notch receptors are referred to as Notch1 Notch 2a, Notch 

2b and Notch3. Typically, Notch receptors are synthesized as large precursor glycoproteins, 

which are processed by a furin-like protease at the so-called S1 site into two non-covalently 

associated subunits during maturation.  

 

 

Figure 3: Domain organization of Notch receptors.  

The transmembrane Notch receptor comprises mainly two domains: Notch extracellular 
domain (NECD) and Notch intracellular domain (NICD). Epidermal Growth Factor (EGF) 
repeats are shown in green, followed by the Negatively Regulatory Region (NRR) that 
consists of three Lin-Notch Repeats (LNR) and two heterodimerization domains (HD). The 
NRR maintains the receptor in its resting conformation when it is not bound to a ligand. NICD 
consists of the RBPJk-Associated Molecule (RAM) domain that binds CSL; a Nuclear 
Localisation Signal (NLS) with ankyrin repeats; the transactivation domain (TAD) and EP 
domain that bind the histone acetylase p300. The EP domain is included in the RE/AC 
(repression/activation) region that is responsible for the Notch receptor’s ability to repress or 
activate target gene promoters. Finally, at the C-terminal end a destabilizing Proline 
Glutamate Serine Threonine-rich motif PEST and Glutamate rich sequence OPA motif are 
located.   
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The Notch extracellular domain (NECD) comprises of an N-terminal EGF repeats that are 

important for binding to the ligand. Notch receptors are usually resistant to activating proteolysis 

until ligand binding occurs. The EGF repeats are followed by the negative regulatory region 

(NRR) that ensures that Notch become activated if it is not bound to a ligand (Gordon et al., 

2009). Two domains of NICD are involved in its interaction with the transcriptional mediator 

protein CSL: the Rbpj-associated molecule (RAM) domain and a cluster of ankyrin repeats 

(ANK). The Ank domain is a highly conserved motif that mediates binding with other proteins 

(Lubman et al., 2004).  

 

1.2.2 Regulation of Notch receptor activity 

1.2.2.1 Notch glycosylation  

The activation of Notch signaling is highly regulated through various posttranslational 

modifications (Figure 4). Prior to localization at the cell membrane, the Notch receptor is 

cleaved at the S1 site in the extracellular domain by a calcium dependent furin-like protease to 

produce a mature heterodimeric Notch (hNotch) receptor in the trans-Golgi network (Logeat et 

al., 1998). The EGF-repeats in NECD are further glycosylated with glycans such as o-fucose, o-

glucose glycans and N-glycans  (Stanley, 2007). Several studies show that depletion of the 

protein O-fucosyl transferase-1 (Ofut-1) results in inactive Notch receptors and produces 

various defects associated with loss-of-Notch signaling in flies (Haines and Irvine, 2003), 

zebrafish (Appel et al., 2003), and in mammals (Lu and Stanley, 2006). O-fucosylation of Notch 

is therefore required for Notch signaling. A possible role of O-fucosylation could be that it 

promotes a stable cell surface expression of Notch receptors by modulating the trafficking of the 

receptor between the ER and the cell membrane (Sasamura et al., 2007).   

The transfer of N-acetyl glucosamine (GlcNAc) to fucose on Notch is also required for Notch 

activity. In Drosophila, the glycosyl transferase responsible for this event is Fringe (Fng). In 

mammals, there are three Fringe genes, Lunatic Fringe (Lfng), Manic Fringe (Mfng) and Radical 

Fringe (Rfng) (Stanley, 2007). Studies in flies and mammals reveal that Fringe acts in the Golgi 

as a glycosyltransferase enzyme that modifies the EGF motifs of Notch and alters the ability of 

Notch to interact with its ligand Delta (Brückner et al., 2000; Moloney et al., 2000). Modification 

of O-fucose by Fringe affects the strength of Notch-ligand binding so that different Notch 

signaling outputs arise (Yang et al., 2005). For example, in the Drosophila wing disc Notch 

activation occurs at the dorsal-ventral interface by Fringe. Fringe inhibits Serrate signaling in the 
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dorsal cells and prevents it from signaling in ventral cells. However, Fringe promotes Delta 

signaling in ventral cells, allowing it to send signals to the dorsal side. This restricts Notch 

signaling to a stripe of cells at the dorsal-ventral boundary (Haines and Irvine, 2003). Similarly, 

in mammals, the vertebrate fringe homologue, lunatic fringe modulates somite segmentation 

and patterning (Evrard et al., 1998).  

Modification of Notch by Fringe is followed by the addition of β1, 4-galactose to 

GlcNAcβ(1,3)Fuc-O dissacharide by Galactosyl-transferase (Moloney et al., 2000). Again, this 

modification of the Notch receptor regulates Notch activity since mice lacking β4GalT-1 have a 

poor expression of several Notch targets genes at mid-gestation and these embryos have an 

extra lumbar vertebra (Chen et al., 2006). 

 

1.2.2.2 Notch endocytosis and trafficking  

Notch is continuously internalized into early endosomes, further sorted to other endocytic 

compartments including recycling endosomes, multivesicular bodies/late endosomes, and 

lysosomes (Figure 4). These endocytic steps play a critical role in the regulation of Notch 

activity. The first evidence that endocytosis is crucial for the regulation of Delta/Notch signaling 

emerged from a study of Dynamin-dependent endocytosis in Drosophila (Seugnet et al., 1997). 

Since then several molecules have been identified that are important for the endocytic trafficking 

of Notch receptors molecules such as Numb, a cytoplasmic protein, Sanpodo, a transmembrane 

protein and several ubiquitin interacting proteins.  

 Ubiquitination  

Several E3- ubiquitin ligase have been identified that are required for the Notch endocytosis and 

sorting.  Deltex is a RING finger-E3 ligase that binds to NICD via Ank repeats. In the Drosophila 

wing, overexpression of Deltex led to the excessive accumulation of Notch in endocytic vesicles. 

In addition, Deltex is also been found to interact with Kurtz, the β-arrestin homologue in flies. It 

is suggested that Kurtz might facilitate the endocytosis of Notch-Deltex complex that further 

mediates the degradation of Notch receptor (Mukherjee et al., 2005). 

In Drosophila, Notch signaling is restricted by the activity of two Nedd4 family proteins, 

Suppressor of deltex [Su(dx)] (Itch in mammals) and DNedd4. Su(dx) modulates the sorting of 

Notch within the early endosome towards an ubiquitin-enriched subdomain that is further 

transferred late endosomes (Wilkin et al., 2004).  Another study in flies showed that Nedd4 



Introduction 

 

  8  

antagonizes Notch signaling by promoting the degradation of Notch and Deltex (Sakata et al., 

2004). These ubiquitin modifications may control the time that the receptor is located on the cell 

surface and hence remains accessible for ligands. 

 ESCRT-dependent regulation of Notch activity  

 

The Endosomal Sorting Complex Required for Transport (ESCRT) regulates the sorting of 

ubiquitinated membrane proteins from early endosomes into multivesicular bodies en route to 

the degradative compartment of late endosomes/lysosomes. Drosophila mutants lacking 

different ESCRT components display excessive cell proliferation defects due to excessive 

signaling from Notch proteins that could not be properly recycled or degraded (Thompson et al., 

2005; Vaccari and Bilder, 2005). Lethal (2) giant discs (lgd) that encodes a C2-containing 

phospholipid binding protein that interacts with the ESCRTIII complex and regulates ligand-

independent activation of Notch (Childress et al., 2006). 

 

 

Figure 4: Processing and trafficking of Notch  

Notch receptor molecules (purple) are produced in the endoplasmatic reticulum where they 
interact with O-fucosyl transferase (O-fut in green) before being transported to the Golgi. In 
the Golgi, Notch is further processed by Furin-like proteases that mediate the so-called S1 
cleavage, glycosylated (e.g. by Fringe), and ultimately sent to the plasma membrane. 
Following its endocytosis Notch is trafficked through multivesicular bodied towards lysosomal 
degradation. Ubiquitin ligases such as Deltex and Itch/NEDD4/Su(dx), Syntaxins and ESCRT 
proteins regulate different aspects of Notch trafficking. (Bray, 2006). 
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 Numb mediated endocytosis 

Numb, a protein-segregating determinant in flies has been shown to be involved in endocytosis. 

Numb interacts with α-adaptin, a component of the adapter protein-2 (AP2) complex that links 

cargoes to the clathrin coats of endocytic transport vesicles. Numb interacts with α-adaptin and 

Notch to recruit Notch into endocytic vesicles (Berdnik et al., 2002). In the context of the 

asymmetric cell divisions of the Drosophila SOP cells, Numb acts as a Notch-inhibitor that is 

asymmetrically segregated into one of two daughter cells. Numb has moreover been shown to 

interact with the transmembrane protein Sanpodo that is crucial for the Numb-mediated 

asymmetric trafficking of Notch (O'Connor-Giles and Skeath, 2003). 

 

1.3 Notch ligands  

1.3.1 Structure of DSL ligands 

Notch receptors are activated through binding to type-1 cell–surface proteins of the Delta-

Serrate-Lag2 (DSL) family of ligands (Figure 5). DSL ligands have a large extracellular domain 

with multiple tandem Epidermal Growth Factor (EGF) repeats. The N-terminal (NT) DSL domain 

and the first two EGF repeats are necessary for DSL ligands to bind Notch receptors (Parks et 

al., 2006; Shimizu et al., 1999). A conserved motif called Delta and OSM-11-like (DOS) domain 

within the first two EGF repeats contributes to ligand binding. The NT domain is further split into 

N1 and N2. N1 is a region with six conserved cysteine residues while N2 is a cysteine-free 

region.   

 

The fly homologues of Delta and Serrate in mammals are called either Delta-like (Dll) or 

Serrate-like. There are three Delta-like or serrate like proteins: Dll1, Dll2 and Dll3. Additionally, 

there are two different serrate-like ligands in mammals referred as Jagged-1 and Jagged-2 

(Jag-1 or Jag-2). The number of EGF repeats in Jag-1 and Jag-2 is almost doubled compared 

to Dll ligands. In addition, they carry an additional cysteine-rich-region (CR) which is absent in 

Dll ligands. In the zebrafish, there are four Delta ligands namely Delta A, Delta B, Delta C and 

Delta D.  Usually, the intracellular parts of different DSL ligands share sequence homologies. 

Some ligands to however lack a C-terminal PDZ domain that is required to interact with 

cytoskeleton (D'Souza et al., 2010) and lysine residues that are potential sites for modification 

by E3-ubiqutin ligases (D'Souza et al., 2008). 
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Figure 5: Protein structure of DSL ligands  

The extracellular domain comprises an N-terminal (NT) domain (yellow) followed by a DSL 
domain (red) and several tandem EGF repeats (blue and purple). Additional DOS motifs 
(green) allows ligands to bind Notch. The NT domain is further subdivided in two N1 and N2 
domains that do or do not contain cysteine residues respectively. Unlike Delta, Serrate and 
Jagged ligands have an extra cysteine-rich region (pink).  The intracellular domain of few 
ligands comprises a carboxy terminal PSD-95/Dlg/ZO-1-ligand (PDZL) motif that has a Notch 
signaling independent role. (D'Souza et al., 2010) 

 

1.3.2 Regulation of DSL ligand activity 

Not only Notch receptors, but also their DSL ligands undergo proteolytic cleavages by ADAM 

metalloproteases and γ-secretase enzymes that modulate the strength and duration of Notch 

signaling and produce soluble intracellular domains of the ligands (Zolkiewska, 2008). After, 

ADAM-mediated processing, ligands are then targeted by presenilin dependent γ-secretase 

activity (Ikeuchi and Sisodia, 2003), which generates an intracellular DSL fragment. All DSL 

ligands contain positively charged residues that can serve as a nuclear localization signal 
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(NLS). Therefore, it is possible that the cleaved intracellular fragment then translocates to the 

nucleus, to regulate gene expression (Zolkiewska, 2008). Indeed, a study in mice reports that 

the soluble intracellular domain of Dll1 binds the transcriptional mediators of transforming 

growth factor-beta (TGF-β) signaling Smad2, Smad3 and Smad4. Thus, Dll1 mediates TGF-β 

signaling through binding to Smads and plays an important role for bi-directional Notch signaling 

(Hiratochi et al., 2007).  

Moreover, posttranslational modification of Notch receptors via glycosylation also alters Notch-

ligand activity (Stanley, 2007). Endocytosis and trafficking of DSL ligands within the signal-

sending cell are also essential requirements for the activation of Notch receptor.  In the absence 

of endocytosis, the ligands accumulate at the cell surface where they are unable to activate 

Notch (Itoh et al., 2003; Nichols et al., 2007; Parks et al., 2000). The endocytosis of DSL ligands 

is regulated by ubiquitination, which regulates ligand signaling activity and cell surface 

expression (Le Borgne and Schweisguth, 2003). The intracellular domains of Dll1, Dll4, Jag1 

and Jag2 encompass several lysine residues that can provide potential ubiquitination sites. 

Several studies show that two structurally distinct RING-containing E3 ligases, Neuralized 

(Neur) and Mindbomb (Mib), promote ligand endocytosis by ubiquitylation (Itoh et al., 2003; Lai 

et al., 2005; Le Borgne et al., 2005), for details refer section 1.5.  

 

1.4 Downstream signal transduction of Notch signaling  

1.4.1 CSL-dependent Notch signalling  

The Notch pathway mediates several processes such as nervous system development through 

juxtacrine signaling. The Notch receptor on the signal-receiving cell binds with a DSL ligand 

located on the signal-sending cell at its extracellular domain (NECD), which triggers a series of 

proteolytic cleavages of Notch.  Firstly, a member of the disintegrin and metalloproteases 

(ADAM), TNF-α converting enzyme (TACE) cleaves Notch at the juxtamembrane region in the 

course of the so-called S2 cleavage. The intramembranous protease γ-Secretase then cleaves 

Notch within the transmembrane domain during an event known as the S3 cleavage. The S3-

cleavage releases the Notch intracellular domain (NICD) from the plasma membrane, which 

then translocates into the nucleus. In the nucleus, NICD directly interacts with DNA binding 

proteins of the CBF1/ Supressor of hair-less/Lag-1 (CSL; in vertebrate called as Rbpj) family to 

drive the expression of Notch target genes (Artavanis-Tsakonas et al., 1995).  
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Figure 6: Overview of Notch signal transduction 

The Notch receptor that is present on the signal receiving cell, binds a DSL family ligand that 
is present on the opposing signal sending cell through its extracellular domain. For the 
effective interaction with Notch, Delta requires internalization via E3-ubiquitin ligase 
Mindbomb (Mib) dependent endocytosis. Upon ligand binding, Notch undergoes a series of 
cleavages: the S2 cleavage by the ADAM protease TACE and the S3 cleavage by γ-
secretase. The S3 cleavage releases the NICD, which is then transported to the nucleus. In 
the nucleus, NICD associates with CSL, Mastermind and transcriptional co-regulators to 
mediate the transcription of Notch target genes. 
 
 

In the absence of NICD, CSL interacts with a histone deacetylase containing co-repressor 

complex to repress the transcription of Notch target genes (Kao et al., 1998). However, binding 

of NICD with CSL, replaces the co-repressor complex with a transcriptional activation complex 

that includes NICD, Mastermind (Mam) and a histone acetyltransferase such as p300. This 

transcriptional activation complex then turns on the activity of Notch target genes. Notch target 

genes include notch regulated ankyrin repeat protein (nrarp) and bHLH genes e.g. 

hairy/enhancer of split (hes) and hes-related proteins (hey/hrt/herp) (Artavanis-Tsakonas and 

Muskavitch, 2010; Lubman et al., 2004). A schematic overview of the CSL-dependent Notch 

pathway (canonical Notch signaling) is shown in Figure 6. 
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1.4.2 CSL-independent Notch signalling 

There are growing evidences that Notch can signal in CSL-independent way, referred as 

noncanonical Notch signaling that can be either ligand-dependent or independent (Figure 7).  

 

 

Figure 7: Noncanonical Notch signaling 

Non-canonical Notch signaling occurs in a CSL-independent way. The Notch intracellular 
domain does not relocate into nucleus, instead binds other molecules to perform a special 
task (Andersen et al., 2012). 
 

 

Unlike the canonical Notch pathway, mediators of non-canonical Notch signaling are poorly 

known. Some of the earliest evidence for non-canonical Notch signaling came from in vitro 

studies where increased Notch levels perturbed the differentiation of myoblast (C2C12) cells 

into muscle cells without interacting with CBF1 or upregulating endogenous HES-1 expression 

(Nofziger et al., 1999; Shawber et al., 1996). The most well studied and evolutionary conserved 

non-canonical Notch function is to regulate Wnt/ β-catenin signaling. Ligand/CSL-independent 

Notch signaling is frequently associated with an antagonism of Wnt/β-catenin signaling 

(Brennan et al., 1999). Few studies have also reported a function of Notch in regulating small 

GTPases such as R-Ras, independently of CSL-transcription (Hodkinson et al., 2007; Ohata et 

al., 2011).  
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1.5 The role of Delta-ligand endocytosis for Delta-Notch signaling  

1.5.1 E3-ubiquitin ligase dependent endocytosis of DSL ligands 

Over the past two decades, several studies have emphasized the role of ubiquitylation for the 

regulation of Notch signaling (Lai, 2004). The process of ubiquitylation occurs in several steps 

that ultimately result in the addition of the 76 amino-acid ubiquitin polypeptide to a substrate 

protein(Weissman, 2001). First, ubiquitin is activated in an ATP-dependent way through an 

ubiquitin-activating enzyme E1. Afterwards, an ubiquitin-conjugating E2 enzyme obtains the 

ubiquitin from E1. In final step, an E3 ubiquitin ligase that comprises an E2 docking site and a 

substrate recognition domain transfers ubiquitin from the E2 to the E3-defined substrate 

(Weissman, 2001).    

Two structurally distinct RING-finger containing E3-ligases, Neuralized (Neur) and Mindbomb 

(Mib), have been shown to influence Notch signaling by mediating Notch-ligand endocytosis. 

Neuralized monoubiquitylates Delta to promote endocytosis of Delta. Neur-depleted cells 

accumulate Delta on the surface and fail to trigger lateral inhibition, suggesting a role of Neur-

dependent Delta endocytosis in the activation of Notch receptors (Pavlopoulos et al

In zebrafish, mindbomb (mib) encodes for an E3-ubiquitin ligase that has Delta for its substrate. 

Mindbomb is recognized to have similar function in zebrafish that Neur has, as above 

mentioned, in Drosophila. Mib promotes the endocytosis of Delta ligands that is required for 

efficient activation of Notch. Mib loss-of-function embryos exhibit a neurogenic phenotype due to 

the failure of Notch signaling (Itoh et al., 2003).   

 

In mammals, there are two Neur proteins, Neur1 and Neur2, and two Mib proteins, Mib1 and 

Mib2. Mib ubiquitination is responsible for DSL ligand endocytosis that activates Notch 

signaling. Neur functions downstream of Mib to direct lysosomal degradation of internalized 

ligands and thereby, regulate the level of ligand available for Notch activation (Song et al., 

2006). In mice, Neur and Mib do not appear to be functionally alike in modulating Notch 

signaling. Only the disruption of Mib1 in mice produces the known Notch phenotypes such as 

defects in neurogenesis, somitogenesis, and skin morphogenesis and Notch embryonic 

lethality. Neur1 and Neur2 are dispensable for normal neurogenesis in mice, but Mib1 mutant 

embryos have a strong neurogenic phenotype in the brain and neural tube (Koo et al., 2005; 

Koo et al., 2007). A study in zebrafish suggests that Mib1 and Mib2 could potentially exert 

redundant activities (Zhang et al., 2007). Mib2 is however not strongly expressed during 
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embryonic development; therefore, Mib1 is essential in Notch-dependent embryonic processes 

(Koo et al., 2007). All these studies present evidence that endocytosis is essential for Delta-

Notch signaling; however the reason for this requirement is still poorly known.  

 

1.5.2 Why is Delta endocytosis required for Notch signalling? 

Presently, the two models are proposed to explain the requirement of Delta endocytosis for 

Notch signaling: the pulling force model and the ligand activation model.  

 Ligand activation model 

The ligand activation model is based on the assumption that a newly synthesized ligand 

molecule brought to the plasma membrane is not competent to activate Notch and therefore, 

requires endocytosis, trafficking and recycling back to the cell surface to get ability to signal. 

The internalization of ligands may target them to a specialized Epsin-dependent endocytic 

compartment where they undergo an activating modification. Following recycling back to 

plasma membrane, the newly modified activated ligand can now effectively activate Notch 

(Emery et al., 2005; Wang and Struhl, 2004). Among the possibilities that have been 

envisaged for Delta-activating modifications are the clustering of ligands as well their re-

insertion into specific membrane domain (Parks et al., 2000). 

 Pulling force model 

The pulling force model assumes that ligand binding alone is not enough to induce the 

activating proteolytic S2-cleavage of Notch and therefore, endocytosis of ligand is 

necessary to bring upon conformational changes in Notch (Gordon et al., 2008). 

Accordingly, endocytosis-defective ligands bind Notch, but are unable to activate Notch 

signaling (Nichols et al., 2007). The proteolytic S2-cleavage of Notch has moreover been 

shown to be accompanied the Delta-mediated trans-endocytosis of NECD into the signal-

sending cell (Nichols et al., 2007; Parks et al., 2000). This suggest that ligand endocytosis 

could exert a physical force on Notch that triggers the release and internalization of NECD. 

In particular, it has been proposed that ligand endocytosis could be required to pull on 

Notch and expose the ADAM S2-cleavage site for activating proteolysis (Nichols et al., 

2007). Accordingly, a recent study using optical tweezers has provided direct physical 
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evidence that clathrin/epsin/actin-dependent endocytosis exerts a mechanical pulling force 

on Notch receptors (Meloty-Kapella et al., 2012).   

It is however important to note that the ligand activation and pulling force models may not be 

mutually exclusive. A study in human cell culture suggests indeed that Notch activation actually 

requires two subsequent rounds of endocytosis: A first round of ligand endocytosis and 

recycling would target Dll1 to a lipid-raft like microdomain where it could bind Notch receptor. A 

subsequent second ligand internalization would then actually lead to receptor activation maybe 

by exerting a physical force on the receptor molecule (Heuss et al., 2008). 

 

1.5.3 Transcytosis of Delta ligands in epithelial cells 

In the context of the development of the nervous system of both vertebrates and invertebrates, 

Delta/Notch signaling is often deployed in the context of apico-basally polarized neuro-epithelial 

cells. Most interestingly, a study by the group of Roland Le Borgne has led to the suggestion, 

that the requirement for Delta endocytosis is directly linked to the apico-basal transport of ligand 

molecules: In Neur mutants, when Delta endocytosis is inhibited, ligand molecules accumulate 

at the basolateral side of neuroepithelial cells, whereas Notch molecules localize apically. This 

led to the proposal that Delta endocytosis would be required to redirect Delta ligands from their 

initial baso-lateral site of secretion to the apical cell surface in order to allow them to interact 

with apically localized receptor molecules. In accordance with this model, Benhra and 

colleagues showed that Neur promotes basal to apical transcytosis of Delta in polarized 

Madine-Darby Canine Kidney (MDCK) cell culture cells (Benhra et al., 2010).  

The importance of apico-basal ligand trafficking for Notch signaling is further underscored by the 

finding that the Actin-related protein 2/3 (ARP2/3) complex ensures a basal to apical transport of 

endocytosed Delta to an apical actin-rich structure (Rajan et al., 2009). In Drosophila, an 

endosomal recycling regulator Rab11 (Emery et al., 2005) and the exocyst component Sec15 

(Jafar-Nejad et al., 2005) have moreover been shown to regulate Delta internalization and 

recycling. Interestingly, Rab11 and Sec15 have both been shown to affect basal-to-apical 

transcytosis of Delta ligands in mammalian epithelial cells (Oztan et al., 2007).  

Altogether, these finding suggest that a first round of endocytosis may ensure the basal-to-

apical transport of Delta ligands in accordance with the ligand activation model. This will allow to 

present Delta ligands on the apical surface where they can interact with Notch receptors. A 
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second round of endocytosis of ligands from the apical surface would then exert a pulling force 

on Notch receptors to induce proteolytic cleavage and activate Notch (Figure 8).  

 

 

Figure 8: Epithelial transcytosis model 

Transcytosis transports molecules via endocytic internalization, intracellular transport and 
exocytic re-secretion. The transcytosis of Delta molecules occurs in three steps: DeltaD 
molecules that are assumed to be localized at the basolateral membrane initially get 
internalized (1), the Delta carrying endosomes are then recycled to the apical membrane 
where apically located Notch can interact with the Delta molecule (2). In the final step (3), 
after the binding with Notch receptor, Delta may again be endocytosed and relocalized.  
 

 

While Benhra et al (Benhra et al., 2010) have been able to provide evidence for Delta ligand 

trans-endocytosis in MDCK cell culture, it has not yet been possible to visualize the occurrence 

and dissect the physiological relevance of this process in vivo. The initial aim of my Ph.D. was 

to take advantage of novel live imaging assays that have been established in my host laboratory 

for the live imaging of endogenous Delta ligands (for details see Results section 1) to analyze 

the potential importance of Delta ligand trans-endocytosis for the regulation of neurogenic 

Delta/Notch signaling in the Zebrafish spinal cord.  

While the initial aim of my work was hence to study the importance of apico-basal polarity for 

the regulation of Notch signaling, experiments performed right at the beginning of my Ph. D. led 

me to show that conversely, Notch signaling itself is required for the establishment of the apico-
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basal polarity of the neuro-epithelium. In the light of this entirely unexpected novel finding, I 

devoted my PhD to the investigation of the role of Notch signaling in the regulation of apico-

basal polarity in the context of the neural-tube morphogenesis. Therefore, in the following 

sections, I will first introduce the general mechanisms of epithelial tube morphogenesis and then 

describe the cell biological mechanisms involved in the establishment of both apico-basal and 

planar cell polarity.  
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2. Morphogenesis of tubular organs  

 

Morphogenesis is the process of how an organism develops its shape. It is one of the 

fundamental aspects of embryonic development driving processes such as gastrulation, somite 

formation, and neurulation. In 1917, D'Arcy W. Thompson explained that certain animal body 

shapes are created by growth rates differing in directionality, e.g. the spiral shell of a snail 

(Thompson, 1917). Later, in 1952, Alan Turing studied the diffusion of activating and 

deactivating growth signals to set up patterns in development. Morphogenesis requires the 

coordinated movements of many cells (Turing, 1952); furthermore, these movements must be 

coordinated with the other fundamental processes of embryogenesis, such as proliferation, 

differentiation, and spatial patterning.  

Epithelial cells can form tubes that are notably progenitors of alimentary canals and the central 

nervous system and generally an elementary unit of several organ designs. Morphogenesis of 

most tubes can be divided in five different categories (Figure 9). Wrapping and budding are the 

two mechanisms where the tube arises from a polarized epithelium. Wrapping occurs when a 

part of an epithelial sheet invaginates and twists until the edges of the invaginating tissue meet 

and fuse together, forming a tube that is parallel to the plane of the sheet such as during neural 

tube formation in the chick embryo  (Colas and Schoenwolf, 2001).  

In budding, cells move out in orthogonal direction from the plane of the epithelium and form a 

tube when this bud eventually grows. The formation of branches in human lungs and Drosophila 

tracheal system are typical examples of tubulation that occurs via budding (Metzger and 

Krasnow, 1999). In contrast to the above-mentioned mechanisms, the tube can also be 

generated from a cluster of cells (cavitation and cord hollowing) or an individual cell (cell 

hollowing) that may not be polarized but eventually polarize as the tube forms. During cavitation, 

cells organized in a thick cylindrical cluster form a central cavity by eliminating cells from the 

center of the mass. The mammalian female reproductive track and the amniotic cavity in 

vertebrates form typically by cavitation (Coucouvanis and Martin, 1995). In contrast, in cord 

hollowing, cells assembled in a thin cylindrical cord create a lumen between cells, without 

eliminating cells such as during gut formation in C. elegans (Leung et al., 1999). Cell hollowing 

however, is different from the other processes as the lumen forms within the cytoplasm of an 

individual cell rather than a group of cells, such as the formation of capillaries by the endothelial 
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cells in vertebrates and terminal cells of the Drosophila tracheal system (Lubarsky and 

Krasnow, 2003).   

  

 

Figure 9: Morphological processes of tube formation 

A tube can be formed by different mechanism: In wrapping, a part of an epithelial sheet 
invaginates and curls until the two ends meet and fuse together. During budding, a small 
group of cells moves out from an existing sheet and forms a tube as the bud grows. In 
cavitation and cord hollowing, a central cavity forms in a cylindrical mass of cells with or 
without elimination of cells from the centre respectively. Finally, in cell hollowing a cavity 
forms in an individual cell (Lubarsky and Krasnow, 2003). 

   

2.1 Neurulation: forming a neural tube  

One of very important morphogenetic event for embryonic development is neurulation, which 

generates the neural tube that is the precursor of the brain and spinal cord. Neural tube defects 

(NTD) account for major congenital anomalies in babies, which are the leading cause of death 

under one year of age. In humans, the most common NTD are myelomeningocele and 

anencephaly, which results from a failed neural-tube closure (Detrait et al., 2005).  In mouse, 
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more than 80 mutant genes have been identified which disrupt neurulation and give rise to 

neural tube defects. The corresponding genes belong to several signaling pathways such as the 

planar cell polarity pathway and the sonic hedgehog pathway that regulate different cellular 

processes ranging from the initiation of neural tube closure, neural fold elevation, fusion of the 

neural folds to several other cranial neurulation specific events. This indicates that strict 

coordination between these different cellular processes is essential for proper neurulation (Copp 

and Greene, 2010; Copp et al., 2003). Hence, it is crucial to understand the morphogenetic 

mechanism underlying the formation of the neural tube.  

 

 

Figure 10: The early events of mouse neurulation along the developing spinal cord. 

Neural fold elevation differs at different developmental stages and differs in morphology along 
the different levels of the body axis after the initial neural fold bending. (a) In the early stages 
of spinal neurulation at E8.5, the neural plate bends only at the Median hinge point (MHP) at 
the upper spine. (b), while at early E9.5, as closure progresses to thoracic level, bending 
occurs at the MHP and the DorsoLateral Hinge Point (DLHP). (c) At E10, when the lower 
spine is forming, MHP bending is lost and the neural plate bends solely at DLHPs (Copp et 
al., 2003). 

 

Neurulation occurs through two distinctive primary and secondary phases. Primary neurulation 

creates the brain and the anterior part of the spinal cord from an epithelial cell sheet termed the 

neural plate. In mammals and several other vertebrates, the neural tube forms by the ‘wrapping’ 

mechanism where the neural plate creases inward until the edges meet and fuse together 

(Copp et al., 2003). In contrast, secondary neurulation creates the posterior part of the spinal 

cord from the tail bud in which a solid rod of mesenchymal cells transforms into an epithelial 

tube. The tube forms by ‘hollowing’ out of the interior of a solid cylindrical mass of precursor 

cells (Criley, 1969). Studies in mouse and several other vertebrates have shown that at the start 

of primary neurulation the neural plate bends and then continuously folds inwards at one point in 
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the plate. Further, the two edges of the neural plate meet at the dorsal midline, fuse with each 

other through epithelial adhesion and remodeling, and thus create a tube-like structure (Figure 

10).   

 

 

Figure 11: Variation of primary neurulation. 

The neural plate may use different mechanisms to form the neural tube. (a) The 
neuroepithelium may roll to form the neural tube; e.g. Xenopus brain and a part of the mouse 
spinal cord develop typically via rolling; (b) and (c) Another strategy to form the neural tube is 
a bending of the neuroepithelium at defined hinge points (single or multiple), such as in the 
mouse and chick spinal cord. (d) Finally, the neural plate may sink inwards to form a solid 
structure of cells termed the neural keel. This is apparent in the Xenopus spinal cord and 
during Zebrafish neurulation (Lowery and Sive, 2004).   

 

Different vertebrate species undergo different processes to generate neural tube as shown in 

Figure 11. Surprisingly, the same animal can make use of these different strategies at different 

stages or at different anterior-posterior locations of the neural tube. For example in mouse in the 

cranial region neural fold bending is different from that in the spinal region. In the cranial region, 

neural folds initially elevate at the median hinge point (MHP) and curl up to meet and fuse 

together. In contrast to cranial closure, spinal folds bending occurs at two points: the median 

hinge point (MHP) and then at dorsolateral hinge points (DLHPs), which brings the folds 

towards each other. Different combinations of bending points can be applied as the closure 

progresses along the spinal axis. For instance, during mouse neurulation the neural plate bends 

only at the MHP in the upper spine at E8.5 (Figure 10 a), as closure progresses to thoracic 

level, bending occurs at MHP and DLHP at early E9.5 (Figure 10 b). Further, at E10 stage, in 

the lower spine, MHP bending is lost and the neural plate bends only at DLHPs (Figure 10 c)  

(Shum and Copp, 1996).  
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2.2 Neural tube morphogenesis in the Zebrafish model system  

2.2.1 Advantages of the model system 

Danio rerio, commonly named zebrafish, is a small tropical fresh water fish from Southeast Asia. 

This species acquired the status of a model system to study many aspects of embryonic 

development when introduced by George Streisinger and colleagues at the university of Oregon 

in the early 1980s (Streisinger et al., 1981). Zebrafish is a vertebrate model system and 

therefore has more resemblance to humans than the other invertebrate model systems like flies 

and worms. Zebrafish gained popularity because of its ex-utero reproduction and optical 

transparency in early developmental stages. This allows studying the complex processes of 

organogenesis and gene expression with much more ease through imaging with single cell 

resolution. Moreover, this small fish is inexpensive and can be maintained easily under 

laboratory conditions. Its development is rapid, and a healthy female can lay 100s of eggs on a 

weekly interval.  

Large-scale forward genetic screening techniques further made zebrafish a very successful 

model system for developmental genetics (Mullins et al., 1994). These screens generated a 

large number of mutants through insertional mutagenesis with retroviruses (Amsterdam et al., 

1999) and chemical mutagens (Haffter et al., 1996). The availability of antisense morpholino-

based gene inhibition procedures made zebrafish moreover suitable for targeted gene 

knockdown experiments. More recently, Hwang and colleagues established the use of the 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) / Cas9 nuclease system 

to induce targeted genetic modifications in zebrafish embryos (Hwang et al., 2013). The 

CRISPR/Cas9 system has been reported to target and modifie genomic loci in zebrafish with 

high efficiencies in somatic and germ cells (Jao et al., 2013) and can serve as a powerful tool 

for efficient reverse genetics (Shah et al., 2015). 

2.2.2 General mechanism of the neural tube morphogenesis in zebrafish 

Zebrafish neurulation appears different from neurulation in amphibians and amniotes. One 

reason is that a neural groove and neural folds are not formed; rather the neural plate sinks 

down to form the neural keel. Secondly, the lumen is formed through cavitation (Schmitz et al., 

1993). The neural tube in the anterior trunk region originates from a multi-layered columnar 

neuroepithelium (Clarke, 2009). Neural plate cells at this stage of development are not 
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connected through junctional complexes, suggesting they may not be fully epithelial 

(Geldmacher-Voss et al., 2003). However, despite the lack of a clear epithelial architecture 

several studies suggest that to form the neural keel the neural plate cells moves inward as an 

organized cell layer just like in amniotes. Due to this inward folding, cells from the contralateral 

sides of the neural plate are juxtaposed at the midline.  In addition, neural plate cells display an 

elongated epithelial-like morphology. Because the neural tube is generated from epithelial-like 

cells that undergoes a folding process, neurulation in the zebrafish is believed to incorporate 

few elements of ‘primary neurulation’ observed in other vertebrates (Lowery and Sive, 2004; 

Papan and Campos-Ortega, 1994). However, zebrafish neurulation exhibits the peculiarity that 

as cells of the neural keel and neural rod divide at the apical side of the neuro-epithelium, one of 

the daughter cells crosses the neural tube midline (i.e. the site of formation of the future lumen) 

and incorporates into the contralateral half on the neural tube, resulting in bilaterally distributed 

cell clones. These Crossing-divisions are therefore termed “C-divisions” (for details see Section 

3.4.2 and 0). This clearly distinguishes zebrafish neurulation from other vertebrates (Kimmel et 

al., 1994).  

 

The steps involved in the zebrafish neural tube formation are the following (Figure 12):  

 

 The neural plate (Figure 12 a) sinks inward towards the dorsal-mid plane (Figure 12 b); 

cells interdigitate and intercalate to the collateral side of the neural plate, between 6 to 

10 somite stages and form a solid structure termed the neural keel (Figure 12 c, d).  At 

the neural keel stage, C-divisions at the dorsal midline give rise to a bilateral distribution 

of cell clones with mirror symmetric apico-basal polarity (Tawk et al., 2007).   

 During 10-14 somite stages, the keel rounds up to form the neural rod, a cylindrical 

mass of cells that lacks a lumen (Figure 12 e).  

 The neurocoel, lumen of the neural tube, forms through cavitation when the 

neuroepithelial cells retract their apical processes from the midline (Figure 12 f). 

Neurocoel formation starts at the 17-18 somite stage in the ventral neural tube, 

progresses to the dorsal side and is completed by 30 somites (Papan and Campos-

Ortega, 1994). 

Following neurocoel formation, the lumen must expand in order to complete neural tube 

formation. The osmoregulatory ion pump ATPase Na+/K+ transporting alpha1 polypeptide 

(Atp1a1) is critical for lumen expansion to create an osmotic gradient to drive water flow into 
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the closed brain ventricles after their morphogenesis (Lowery and Sive, 2005). A study 

showed that lumen expansion is driven by hydrostatic pressure where the Claudin family of 

transmembrane tight junction proteins and Na+/K+ ion channels together determine 

paracellular tightness.  Zhang and colleagues showed that during brain ventricle expansion, 

Claudin5a seals the tight junctions of the neuroepithelium and maintains the fluid pressure 

that depends on Atp1a1 activity (Zhang et al., 2010). These studies also emphasize that the 

function of the Crumbs complex (An apical polarity complex, for description see section 3.1 

below) is indispensable for lumen expansion via regulating epithelial integrity. 

 

 

Figure 12: Zebrafish neurulation  

Epithelial-like columnar cells form the neural plate (a). Neural plate cells further move inwards 
(b) and form the neural keel (c, d), which then transforms into the neural rod (e). After the 
formation of the apical luminal neural tube midline, the neural rod opens up to form a lumen 
and thus create the neural tube (f). A cell in red illustrates the cellular behaviour during 
midline-crossing C-divisions. 
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2.3 Cellular mechanisms of neural tube morphogenesis  

During neurulation, neuroepithelial cells undergo several changes in their shapes. The 

elongation of neural plate cells can be considered the first change in cell shape.  The 

neuroepithelial cells extend along their apico-basal axis to form a sheet of columnar cells 

(Schoenwolf and Powers, 1987). The microtubule cytoskeleton appears to drive cell elongation 

partly along with the actin-binding protein Shroom3. Especially, redistribution of γ-tubulin to the 

apical side is found to be important for correct apico-basal cell elongation (Lee et al., 2007).  

The apical constriction of cells is a second way that brings changes in cell shape that has 

commonly been observed in the folding of epithelial sheets. In primary neurulation, bending at 

the MHP and DLHPs requires apical constriction of cells, which is regulated by Shroom (Haigo 

et al., 2003). In zebrafish, as junctional proteins are not present at the neural plate and keel 

stages, there are no typical apical constrictions of neuroepithelial cells. The closest process to 

apical constriction is an apical protrusion activity that allows cells to intercalate to the 

contralateral side of the neural rod. N-cadherin plays an important role in cellular 

rearrangements and intercalation during neural keel formation (Hong and Brewster, 2006).     

Beyond the shape adopted by individual cells, cell division is critical for normal embryonic 

development. In mouse, several mutants have been identified that are related to abnormal cell 

cycle progression and cell proliferation, such as the humpty dumpty and the curly tail mutants. 

These mutants display different neural tube defects (Copp and Greene, 2010). During zebrafish 

neural tube development, specialized midline crossing C-divisions (refer sections 3.4 and 4.4 for 

details) are important for the proper lumen formation along with the epithelial polarity  

Another, crucial requisite for epithelial morphogenesis is the establishment of polarity. Epithelial 

cells exhibit apico-basal polarity, where the apical side faces the lumen of the tube. In addition, 

epithelial cells also exhibit planar cell polarity (PCP), in which specialized structures (for e.g. 

Drosophila wing hairs) are oriented within the plane of the epithelial sheet. In the following 

section, I will explain in detail the establishment of polarity i.e. apico-basal polarity exhibited by 

each cell individually (see section 3) and planar cell polarity that is the polarization of a cluster of 

cells within the plane of cell sheet (refer to section 4).    
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3 Apico-basal polarity  

Cellular polarity is one of the fundamental necessities for morphogenesis. Polarity is defined as 

asymmetry in cell shape or function. Polarity can arise due to the polar distribution of molecules 

or uneven mechanical properties. Cellular polarity defines many crucial functions in different cell 

types, for instance axonal guidance in polarized neurons. Within the tissue, polarized cells form 

a highly organized array of cells that form a particular shape of the organ, which is important for 

the organ functionality and structure.   

 

 

Figure 13: Cell polarization in a tubular epithelium 

Epithelial tubes are made up of adjoining cells with strong adherence to each other. These 
cells display apico-basal polarity. At the interface between the apical and baso-lateral 
membrane domains, tight junctions and adherence junctions provide cell-to-cell adherence. 
The basal membrane interacts with the extracellular matrix while the apical membrane 
faces the lumen or the central canal (Bryant and Mostov, 2008). 

 

An epithelium is a contiguous sheet of cells where each cell exhibits apico-basal polarity. The 

apical surface provides the luminal side of an organ, e.g. the central canal in the brain and 

spinal cord. In contrast, the basal lamina faces the basement membrane and extracellular 

matrix. The lateral side connects to adjacent cells through special junction proteins and cell-to-

cell adhesion molecules (Figure 13) (Bryant and Mostov, 2008). Most embryonic epithelia 

consist of a single layer of cells and are usually classified based on cell shape: a squamous 

epithelium is composed of flattened cells, a columnar epithelium of elongated cells, and a 

cuboidal epithelium of cells of equal width and height.  

Structurally, epithelial cells possess molecularly distinguished compartments, which allow them 

to differentiate between the interior and the exterior of the organism. This subcellular 

organization is referred to as apico-basal polarity. The integrity of epithelial apico-basal polarity 

is critical for many cellular processes and tissue architecture. In fact, the core polarity proteins 

lethal giant larvae (lgl), discs-large (dlg) and Scribble (Scrib) were first discovered as tumor 
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suppressor genes in Drosophila (Bilder et al., 2000).  Several studies have shown that 

dysregulation of epithelial cell-to-cell adhesion is associated with many type of cancers (Nguyen 

and Massagué, 2007). Low levels of the tight junction molecules Zonula occludans-1 (ZO1) and 

Mupp-1 are associated with poor prognosis in patients with breast cancer (Martin et al., 2004). 

All these studies highlight the need for an in-depth understanding of epithelial establishment and 

maintenance.  

 

3.1 Apico-basal polarity proteins and their localization  

The polarity protein complexes along with junction proteins are required for cellular polarity in all 

epithelia. Each plasma membrane domain has a distinct protein composition that gives it distinct 

properties. The core polarity proteins form three main complexes named the Par complex, the 

Crumbs complex and the Scribble complex (Figure 14). The Par and Crumbs complexes usually 

localize at the apical domain whereas the Scribble complex localizes at the baso-lateral domain.  

On the apical side, adjacent cells connect to each other through intracellular junctions: tight 

junctions and adherence junctions.These polarity genes were first discovered in C. elegans 

(Kemphues et al., 1988) and Drosophila (Bilder et al., 2000; Tepaß and Knust, 1990). Later on, 

homologous proteins were discovered in many species including mammals (Goldstein and 

Macara, 2007).  

 

3.1.1 The Par Complex 

Partitioning-defective (PAR or Pard) proteins were first identified in C. elegans as determinants 

of asymmetric cell division, where par mutations leads to defects in the asymmetric localization 

and segregation of cytoplasmic P-Granules (i.e. germline-specific perinuclear RNA granules) 

during early germ cell divisions (Kemphues et al., 1988). The Par complex encompasses mainly 

four proteins: Par3, Par6, atypical protein kinase C (aPKC) and the small GTPase CDC42 

(Figure 14). Par6 and Par3 carry several protein-protein interaction domains including a PDZ 

domain and a Cdc42/Rac interactive binding (CRIB) domain which allow these proteins to bind 

each other and several other proteins including the Crumbs complex proteins. Binding of 

Crumbs with Par6 through its PDZ domain allows recruiting Par6 at the apical membrane (Hurd 

et al., 2003). Par6 functions as an adaptor to link Par3 to aPKC and to the Cdc42 GTPase. 

However, Par6 can also directly bind aPKC through the Phox and Bem1D (PB1) domain. These 
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interactions are found to be important for the formation and maintenance of tight junctions in 

epithelial MDCK cells (Joberty et al., 2000).   

 

 

Figure 14: Localized assembly of apico-basal proteins in Drosophila and vertebrate 

epidermal cells 

The three core cellular polarity complexes that are crucial for apico-basal polarity in 
epithelial cells are shown: the Par complex: Par3, Par6, aPKC (Cdc42 is not shown in 
figure); the Crumbs complex (Crumbs, PALS1 and PATJ) and the Scribble complex (Lgl1/2, 
Scribble and DLG). The Par complex localizes at the level of the tight junctions (TJ), the 
Crumbs complex localizes to or just above the TJs and the Scribble complex localizes at 
the lateral membrane (Macara, 2004). 

 

Par3 acts as a scaffolding protein and through its PDZ domain makes a complex with 

Phosphatase and Tensin homologue (PTEN). This interaction is essential for the localization of 

PTEN at the junctional membrane (Feng et al., 2008). Another apical protein aPKC is a 

Serine/Threonine kinase and its phosphorylation of several proteins including Par3 is essential 

for downstream polarity events (Iden and Collard, 2008). Indeed, disruption of the complex 

results in severe damage to apico-basal polarity and tight junction structural integrity (Suzuki et 

al., 2002). Several studies have shown that Cdc42 which is a small GTPase belonging to the 

Rho family has a central role in cellular polarity in various systems. It regulates not just actin and 

microtubule cytoskeletons but also signalling pathways and endocytosis, all of which are crucial 

for the establishment and maintenance of epithelial organization and polarity  (Etienne-

Manneville, 2004).  

 

3.1.2 The Crumbs complex 

The Crumbs complex consists of three types of proteins: Crumbs (Crb), Protein associated with 

Lin7 (Pals1) and Pals1 Associated- Tight Junction (PATJ) (Figure 14 Localized assembly of 

apico-basal proteins in a Drosophila and vertebrate epidermal cell). Pals1 and Patj are both 
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cytoplasmic scaffolding proteins, whereas Crumbs is a transmembrane protein. Crb was first 

discovered in Drosophila as an important regulator of epithelial polarity (Tepaß and Knust, 

1990).  

 

The Crumbs complex is often located more apical than the Par complex, however it can interact 

with tight junctions (Schlüter et al., 2009). Likewise, Crumbs complex proteins interact with each 

other and target many proteins to the apical membrane, such as Occludins, ZO1 and aPKC, 

which then regulate tight junction biogenesis (Roh et al., 2003). It has been found that the 

Crumbs complex member Pals1 stabilizes the Par complex at the apical membrane by directly 

interacting with Par6 (Hurd et al., 2003). Conversely, the Par complex may also modify the 

Crumbs complex directly or indirectly via adherence junction proteins to stabilize it at the apical 

membrane (Tanentzapf and Tepass, 2003). Beyond establishing apical polarity, the Crumbs 

complex also helps to maintain epithelial integrity through its interaction with D-Moesin (an actin 

binding protein) and Actin to recruit Spectrin skeletal components to the apical membrane 

(Médina et al., 2002).  

3.1.3 The Scribble Complex 

The Scribble complex comprises mainly three proteins that are Lethal giant larvae (Lgl), Discs 

large (Dlg) and Sribble (Scrib). The Scribble complex proteins localize to the basal/lateral 

membrane and regulate molecular integrity and size of the apical membrane (Tepass et al., 

2001). The main function of the Scribble complex is to antagonize the Par complex and 

therefore retain lateral identity (Tanentzapf and Tepass, 2003; Yamanaka et al., 2006). A 

fascinating connection of Lgl with Syntaxin (a SNARE protein) involves intracellular vesicular 

transport, which indicates that Lgl may contribute to epithelial polarity by regulating basolateral 

exocytosis (Müsch et al., 2002).  

3.1.4 Junction proteins  

The tight junctions are located at the apical side to form a barrier between cells and control 

paracellular flow. Tight junctions are composed of the transmembrane proteins Occludin and 

Claudin, the cytoplasmic scaffolding proteins ZO-1, 2, 3, and the Junctional Adhesion Molecule 

(JAM) family of proteins (Hartsock and Nelson, 2008). Occuludin and Claudin proteins have two 

main functions. First, to separate apical and basolateral proteins and secondly, to prevent 

mixing of paracellular fluids and allow selective ion movements between the cells by regulating 
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permeability (Tang and Goodenough, 2003; Tsukita et al., 2001). ZO (1, 2, and 3) are members 

of the MAGUK (Members Associated Guanylate Kinase homologues) family of proteins. These 

proteins contain PDZ and SH3 binding domains, which allow them to bind many proteins 

including both adherence junction and tight junction components and provide a link between 

these proteins. Additionally, these scaffolding proteins can also interact with the cytoskeleton of 

the cell (Hartsock and Nelson, 2008). In MDCK cells, JAM has been shown to be associated 

with the vertebrate orthologue of Par3, Atypical PKC Isotype-Specific Interacting 

Protein/Partition defective-3 (ASIP/Par3) (Itoh et al., 2001). 

 

The adherence junctions lay a little basal to tight junctions and perform multiple tasks such as 

formation and stabilization of cell-cell adhesion, regulating the actin cytoskeleton and 

intracellular signaling. Adherence junction proteins include the transmembrane Ca2+ dependent 

Cadherins (E-cadherin and N-cadherin) and the members of the Catenin family p120-catenin, α- 

and β-catenin. E-cadherin is a single pass membrane protein that interacts with the other 

polarity proteins and mediates cell-to-cell adherence through its extracellular domain. The 

Catenins link the Cadherins to the actin cytoskeleton to stabilize cell-cell contact either directly 

or through Actin-binding proteins. An in-vitro study shows that β-catenin binds Dynein and forms 

a complex together with the adherence junction protein E-cadherin. This multimolecular 

complex allows a crosstalk between the microtubule and Actin networks that is important the 

epithelial integrity (Ligon et al., 2001). Adherence junctions are essential for epithelial integrity; 

however being dynamic, they allow rearrangement of cells within the sheet through various 

mechanisms like the interaction of Cadherin with the Actin-cytoskeleton, endocytosis, and 

recycling of Cadherins, and the cooperation of Cadherins with other adhesion proteins 

(Nishimura and Takeichi, 2009). 

 

3.2 Establishment of cellular polarity  

The establishment of cellular polarity is a fundamental attribute of many cell types that enables 

them to exert their specialized functions in an organ. The cells that are initially isotropic need to 

break their symmetry in order to attain the polarized structure. The process of symmetry 

breaking can be a random stochastic process or a highly organized event that is triggered by an 

external cue. Once the symmetry is broken several other factors play their part in a 

simultaneous fashion: Polarity proteins get assembled to their confined locations; the 

cytoskeleton is rearranged into a polarized network and several regulatory signalling molecules 
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are trafficked around the membrane domains to establish polarity (Macara, 2004). Another 

important requisite for proper structural and functional epithelia is the binding of individual cells 

in a sheet, a task performed by adhesion molecules between the adjacent cells. However, 

gluing the cells together is not enough. The formation of polarized cells also relies on their ability 

to grow and be retained within the sheet. This is achieved through a strict control over mitotic 

spindle orientation during cell division.  

3.2.1 Symmetry breaking  

The first step for the establishment of polarity is to generate asymmetry in the cell. This can be 

achieved by a cascade of extrinsic spatial cues that mediate cell-to-cell and cell-to-substratum 

adhesion. Adhesion between cells is primarily mediated by E-cadherin and adhesion of cells to 

the extracellular matrix (ECM) is mainly accomplished by Integrin adhesion receptors. The 

interaction between these adhesion receptors and their extracellular ligand molecules generates 

the primary spatial cues which determine the site of contact with the plasma membrane. These 

sites of contact and non-contact are nothing but the precursor areas of the basolateral and 

apical membrane domain respectively (Yeaman et al., 1999). Several studies have been carried 

out to understand these spatial cues, especially in 2-D and 3-D cell culture models.  However, 

the 3-D cell culture system provides a better opportunity to understand the initial symmetry 

breaking event it more accurately mimics the in vivo conditions. The asymmetry can be 

generated in the 3-D cell culture system as early as the first cell division, as polarity 

determinants accumulate on the cleavage plane of dividing cells (Jaffe et al., 2008; Martin-

Belmonte et al., 2007). Another example where cell-cell contact may provide the break in 

symmetry is shown in the calcium-dependent repolarization of epithelial cells. As E-cadherin is a 

calcium dependent adherence junction component, a calcium switch can control the assembly 

and disassembly of polarity proteins and the initial contact of cells (Ebnet et al., 2004).  

 

Cells also interact with ECM components like Laminin and Collagens. MDCK cells, which are 

grown on a Collagen-coated surface, secrete Laminin from the basolateral side and make 

basement membrane in a sheet. A study in MDCK cells showed that the Laminin-dependent 

assembly of basement membrane induces the orientation of apico-basal polarity through 

interaction with β-Integrin and a small GTPase Rac1A. Here, β-Integrin lies upstream of Rac1. 

Inhibition of β-Integrin prevents Laminin organization at the basal membrane and thereby 

prevents orientation of polarity (Yu et al., 2005). 
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All cells have a fine meshwork of Actin cytoskeleton, which is composed of Actin filaments and 

molecular motors and various Actin-binding proteins. This dynamic structure is capable of fast 

assembly and disassembly of proteins at the cortex. Molecular motors such as myosin create a 

tension which keeps the cell in a certain shape. It is likely that any local changes in the tension 

and relaxation of the Actin-Myosin framework can drive the first step of symmetry breaking. This 

mechanical instability can occur spontaneously or in response to an external factor which gives 

rise to the initial polarization of the cell (Paluch et al., 2006). However, a stimulus that may 

trigger asymmetry can also be intracellular. One such example is in dividing yeast during 

cytokinesis, where astral microtubules send signals to the polar cortex to release cortical 

tension locally at the plane of division. This brings an asymmetry in mitotic spindle orientation, 

where equatorial astral microtubules are denser at the cleavage furrow that induces the cell 

polarization (Burgess and Chang, 2005).  

There have also been studies indicating that the spontaneous stochastic variation in the stability 

and localization of polarity proteins can give rise to polarity (Sohrmann and Peter, 2003). In 

yeast, a membrane scaffolding protein Bem1p mediates assembly of Cdc42-GEF (Guanine 

exchange factor) and a Cdc42 effector kinase PAK. This complex amplifies clusters of Cdc42 at 

random sites in the cell to break symmetry and to induce polarization (Kozubowski et al., 2008). 

 

3.2.2 Confining polarity proteins to their location 

Once symmetry has been broken, the next step is to assemble polarity proteins at their specific 

sites. To understand the localized assembly of polarity proteins and to find out which proteins 

accumulate first and induce polarization, several studies have been done so far. Bilder and 

colleagues showed that during Drosophila embryogenesis, the polarity complexes function as a 

single regulatory unit to control apical polarity. They proposed that on one hand, Scrib prevents 

the Par3 homologue Bazooka (Baz) from promoting apical characteristics, and therefore allows 

basolateral development. On the other hand, Crb upholds Baz at the apical membrane by 

antagonizing Scrib. The fine tuning of the activities of the Crb and Scrib complexes therefore 

governs the establishment of proper polarity (Bilder et al., 2003).  

In mammalian epithelial cells (MTD-1A), primordial adherence junctions form at the site of cell-

to-cell contact where E-cad and ZO1 accumulate and further are followed by the assembly of 

Par3 and aPKC (Suzuki et al., 2002). In contrary to this, during Drosophila cellularization, 

Par3/Baz appears to be the first protein to accumulate at the apical domain. This apical 
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accumulation of Baz is independent of adherence junctions. Indeed, E-cad is then recruited to 

the cortex through Baz (Harris and Peifer, 2004). These studies suggest that despite the fact 

that polarity protein complexes are conserved among species the way they get confined to their 

landmark locations can be different. This variability accounts not just for the precise order of 

their assembly, but also for the mechanistic cues through which they are processed.  

 

3.2.3 Reorganization of the cytoskeleton  

The establishment of polarity in a cell also relies on cytoskeletal rearrangements. This not just 

reinforces the initial site of asymmetry, but also retains it. At cell-to-cell or cell-to-matrix contact 

sites tight junctions/adherence junctions (TJs/AJs) mediate localized assembly of specialized 

cytoskeleton and signalling molecules. Binding with the cytoskeleton strengthens adherence 

junctions. Besides, these local interactions can bring local or global changes in the spatial 

organizations of cortical proteins and microtubules (Drubin and Nelson, 1996). Several small 

GTPases play a very important part at this step such as Arp2/3 which modulates the Actin 

cytoskeleton at the landmark sites, resulting in Actin-polymerization and remodelling (Fukata 

and Kaibuchi, 2001).   

The cytoskeleton plays a key role in both establishing and maintaining neuronal polarity. An 

active turnover of Actin filaments occurs in future axon in comparison to future dendrites. This 

initiates the establishment of polarity in a neuron much before the morphological polarization 

occurs (Tahirovic and Bradke, 2009). In wound healing assays, Integrins are activated by their 

interaction with the ECM at the leading edge of the cell, resulting in a cascade of signalling 

events. This further activates Cdc42 which then recruits the Par complex through the 

microtubule motors Dynein and thereby induces polarity (Etienne-Manneville and Hall, 2001). 

3.2.4 Generating apico-basal domains 

Another essential process subsequent to the stabilization of junctional proteins, localized 

assembly of polarity proteins and cytoskeletal rearrangements is the trafficking of proteins to 

specific membrane domains. Indeed, Par complex proteins are found to be one of the important 

regulators of endocytosis (Goldstein and Macara, 2007), therefore suggesting a potential 

mechanism for how different membrane domains are generated during the establishment of 

apico-basal polarity. For instance, the Par complex proteins interact with the endocytic protein 

Numb. aPKC has notably been shown to regulate Numb function by phosphorylating it and thus 



Introduction 

 

  35  

contributing to the regulation of Numb-mediated Integrin endocytosis and membrane trafficking, 

which is important for the generation of polarity in migratory cells (Nishimura and Kaibuchi, 

2007). Par3 may also play a crucial role in asymmetric segregation of Phophatidyl Inositides 

(PtdIns), which is important for cell polarization (Feng et al., 2008).  

 

3.3 Maintenance of polarity  

Once the apico-basal polarity of a cell is established, the next big thing is to maintain this status. 

In some cell types such as neurons and epithelial cells, it is absolutely essential to stabilize 

polarity to maintain their differentiation state and functional activity. Studies so far have revealed 

mainly two mechanisms that maintain cellular polarity. The first one is that the Actin 

cytoskeleton acts in a dynamic manner to allow endocytosis that helps membrane domains to 

keep the amount of certain molecules constant. Mutation in the proteins, which are implicated in 

endocytosis of polarity proteins, such as Syntaxin and Rab results in epithelial polarity defects 

(Lu and Bilder, 2005).  

The second mechanism reveals the action of microtubules in reinforcing the initially established 

polarity by undergoing a dramatic rearrangement from a radial centrosomal array to non-

centrosomal array. In columnar epithelia, non-centrosomal microtubules become aligned along 

the apico-basal axis, predominantly with minus ends at the apical pole and plus ends at the 

basal pole. In contrast to the basolateral proteins, apical proteins are trafficked in a microtubule-

dependent fashion (Li and Gundersen, 2008).  

In addition, apical and basolateral protein complexes antagonize each other to prevent the 

mixing of the components of each other’s respective membrane domains.  The Par complex 

protein aPKC phosphorylates the Scribble complex protein Lgl and therefore prevents its 

localization at the apical membrane (Betschinger et al., 2003). In a similar fashion, Lgl then 

competes with Par3 for binding to the Par6-aPKC complex. This inhibits the Par complex and 

thus facilitates the disassembly of apical proteins (Yamanaka et al., 2006). In flies, the Par3 

homologue Baz functions redundantly with the Crumbs complex to maintain apical polarity at 

mid to late embryogenesis. In addition to this, Lgl and Crb also functions in a competitive 

manner to maintain the basolateral and apical domains respectively (Tanentzapf and Tepass, 

2003). Such mutually exclusive interactions ensure that each polarity complex is confined to its 

actual domain only and does not overlap with the other ones.    
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Maintenance and establishment of apical and basolateral domains also depend on the activity of 

PTEN at the apical surface. PTEN is a lipid phosphatase which removes phosphate from 

Phosphatidyl-Inositol-(3, 4, 5)-phosphate (PtdIns (3, 4, 5)P3) and generates Phosphatidyl-

Inositol-(4, 5)-phosphate (PtdIns(4, 5)P2) at the apical membrane. This apically segregated 

PtdIns(4, 5)P2 recruits Cdc42 to the apical membrane through the scaffold protein Annexin2. 

The newly recruited Cdc42 then assembles the Par complex, and via cytoskeletal 

rearrangements stabilizes the apical surface (Martin-Belmonte et al., 2007).  

In addition to this, dedicated vesicular transport destined to apical and basolateral domains also 

contributes to maintain polarity. For example in cultured MDCK cells, the small GTPase 

molecule Rab8 has been found to be important for regulating the transport of polarity proteins to 

the basolateral membrane (Huber et al., 1993).   

 

3.4 Apico-basal polarity in the context of zebrafish neural tube 

morphogenesis  

As previously discussed, zebrafish can be a good model to study the morphgenesis of the 

neural tube. Epithelial polarity establishment has been described to be essential for neurulation.  

Several studies have revealed the importance of apico-basal polarity for proper neural tube 

lumen formation during zebrafish neurulation. One such study shows that pard6-γb mutants 

exhibit defects in mitotic spindle orientation in the forming neural tube (Munson et al., 2008). 

Similarly, zebrafish aPKC mutants display numerous defects in several organs including the 

digestive track, eye and neural tube. For example, mutants display the formation of multiple 

lumens in the neural tube and faulty spindle orientation in dividing cells of the retina (Belting and 

Affolter, 2007; Horne-Badovinac et al., 2001). The par complex protein Pard3 has also been 

shown to be crucial for the separation of eye field during retinal development (Wei et al., 2004) 

and for centrosome positioning during neurulation (Hong et al., 2010). Likewise, a crumbs gene 

homologue oko meduzy (ome) and related crumbs parologues are necessary for defining 

several features of apical membranes such as the size of the apical membrane in photoreceptor 

cells and cilia length in renal and otic vesicle epithelia (Omori and Malicki, 2006). Another study 

revealed that in zebrafish n-cadherin and nagie oko (nok, zebrafish Pals1 homologue) mutants, 

disruption of apico-basal polarity and junctional integrity perturbs retinal neurogenesis 

(Yamaguchi et al., 2010). Therefore, it is quite important to advance our knowledge about how 

apico-basal polarity in zebrafish neuroepithelium is established and understand how it 

contributes to neural tube lumen formation. In the following sections I will discuss our current 
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understanding of Zebrafish neurulation with a particular emphasis on the regulation of apico-

basal polarity.  

3.4.1 Localized assembly of polarity proteins during neural tube formation  

The structure of the neural plate in amniotes is well characterized and known to be a single cell 

layered columnar epithelium (Colas and Schoenwolf, 2001). In early developmental stages, 

apical and basal polarity is inherited from the epiblast cells, where epithelial polarity was already 

present (Greene and Copp, 2009).  In contrary to this, the zebrafish neural plate appears to lack 

typical apico-basal polarity until late neural keel stages when a central nervous system (CNS) 

midline (Box 1) is established.  

During Zebrafish neurulation, a number of studies have shown that neuroepithelial cells polarize 

in a gradual way. Neural progenitors in zebrafish are known to undergo progressive 

epithelialization. The neural plate comprises two cell layers. Deep cells are columnar and 

attached with the basement membrane and superficial cells lie underneath the enveloping layer. 

During the neural plate/keel stages, as deep and superficial cells from the two sides converges 

towards dorsal midline, they generate active membrane protrusions that help cells to intercalate 

to the contralateral side of the midline. A study proposed that N-cadherin is required for the 

stabilization of these protrusions and loss-of-function of N-cadherin led to the failure of 

intercalations (Hong and Brewster, 2006).  

Box 1: The CNS midline: an operational definition 

In the context of the present manuscript, I will be using the term “midline” to refer to the apical 

side of the neuroepithelial cells where apical polarity determinants accumulate. The midline is 

the precursor of the future lumen. In wild-type tissue, the midline coincides with the geometric 

centerline where the two contralateral sides of the CNS meet.  

 

Similarly, another study also showed that the tight junction-associated protein ZO1 and the 

adherence junction protein N-cadherin gradually become stabilized at 15 somite stage that is 

followed by another complex of Nok (the zebrafish Pals1 homologue) and Lin7c (a scaffolding 

protein associated with the Crumbs complex) proteins (Yang et al., 2009). The midline 

localization of these proteins is then further refined over time so that by the neural rod and 

neural tube stages these polarity proteins become localized to the emerging apical surface 
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(Geldmacher-Voss et al., 2003; Munson et al., 2008; Tawk et al., 2007; Yang et al., 2009). In 

contrast, the basal marker Glial fibrillary acidic protein (GFAP) is exclusively expressed at the 

basal extremes of neuroprogenitors cells (Tawk et al., 2007). 

 

3.4.2 Polarized cell divisions during neurulation  

In zebrafish neurulation, following mediolateral convergence, neural progenitors successively 

undergo a uniquely characterized and highly stereotyped medio-laterally oriented cell divisions. 

These divisions result in a deposition of one daughter cell on either side of the midline (Ciruna 

et al., 2006; Concha and Adams, 1998; Tawk et al., 2007). As one of the two daughter cells 

crosses the midline, these divisions are called midline crossing divisions or C-divisions. The 

daughter cell that remains on the ipsilateral side, stays connected to the basal membrane 

through a thin projection while the other daughter cell that crosses the midline has to establish 

the connection to the basal membrane of the contralateral side (Tawk et al., 2007). 

 

 
 

Figure 15: Subcellular distribution of Pard3 during neural tube morphogenesis 

A schematic of transverse section of the zebrafish neural tube showing mirror-symmetric C-
divisions during the morphogenesis of neural tube. Apical localization of Pard3 is shown in 
green and basal localization of GFAP is shown is blue. At the right side, a time-lapse 
sequence showing Pard3-GFP accumulation throughout a C-division; Pard3-GFP is 
distributed across the cleavage plane and inherited at the apical tips of the two daughter cells. 
The midline is shown in yellow. The right side image is adapted from (Tawk et al., 2007). 
 

These specialized C-divisions were considered to be a driving force in the morphogenesis of the 

neural tube and for the establishment of apico-basal polarity. As, C-dividing cells generate 

mirror symmetric apico-basal polarity while integrating into the contralateral sides of the neural 

tissue. Tawk and colleagues showed that during C-divisions, Pard3 accumulates at the 

cleavage furrow of these dividing cells and after cytokinesis remains enriched at the apical end 

of the daughter cells (Figure 15). Therefore, they suggested that C-divisions are crucial for the 

neural tube midline formation and the establishment of apico-basal polarity. In division-blocked 
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(over the period of C-divisions) wild-type embryos, however, cells are still able to generate a 

lumen with largely normal apico-basal polarity (Buckley et al., 2013; Ciruna et al., 2006). Hence, 

it appears that the localization of apical proteins at the forming midline can occur in a division-

independent fashion. Therefore, to understand the molecular mechanisms through which neural 

progenitors cells acquire apico-basal polarity needs further investigation. It should however be 

noted that even if C-divisions are found to be dispensable for apico-basal polarity, they provide 

a morphogenetic advantage during lumen formation (Buckley et al., 2013). ………… 

Epithelial cells are also polarized within the plane of epithelium i.e. orthogonal to the apico-basal 

polarity, a polarisation termed planar cell polarity. An important study presented evidence that 

C-divisions are dependent on the Planar Cell Polarity (PCP) pathway that is crucial for the 

neural tube morphogenesis (Ciruna et al., 2006). In the next section, therefore, I will introduce 

the components and functions of the planar cell polarity pathway.  
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4 Planar cell polarity 

Vertebrate embryogenesis incorporates numerous collective and individual cell movements. 

Neurulation and its associated tissue movements, for instance convergence and extension 

movements are among such processes.  In addition, stereotypical oriented cell divisions 

contribute importantly to morphogenesis. The planar cell polarity (PCP) pathway has been 

found to be crucial for oriented cell movements and divisions.  While studying the function of 

Notch signaling in the regulation of apico-basal polarity we observed that the loss-of-function of 

the Notch signaling component Mindbomb led to a PCP mutant like phenotypes. This 

observation led me to investigate a potential link of Notch signaling with PCP signaling. In the 

following section, I will discuss the components and function of the PCP pathway, with a 

particular emphasis on zebrafish neural tube development.   

 

4.1 The Planar Cell polarity Pathway in Drosophila 

In multicellular organisms, epithelial cells are not only polarized along the apico-basal axis, but 

also within the epithelial plane, a phenomenon called planar cell polarity (PCP). Two features 

describe PCP best: First, cells cooperatively align their respective individual polarity. Secondly, 

this polarized alignment occurs in a particular orientation with respect to the overall organization 

of the tissue, indicating the existence of global cues. The signaling molecules that are in charge 

of regulating the establishment and maintenance of planar cell polarity form the PCP signaling 

pathway. 

Gubb and Garca-Bellido first described the PCP signaling pathway in the Drosophila adult wing 

as a small set of genes that controls the polarity of cuticular hairs and bristles(Gubb and García-

Bellido, 1982). In the Drosophila, each cell has a hair that points posteriorly on the body surface 

and distally on the appendages (Figure 16) (Eaton, 2003). In flies, the abdomen, the eye and 

the bristles of the notum are among other well-studied systems for PCP.  In the Drosophila eye, 

each ommatidium has eight photoreceptor cells that are arranged in an oriented pattern (Strutt, 

2003).  

PCP signaling pathways consist of three functional modules: a global directional cue module, a 

core module, and one of many tissue specific effector modules. Table 1 gives a summary of the 

PCP signaling components and a model of establishing planar polarity is shown in Figure 16. 
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Figure 16: PCP in the Drosophila wing 

(a). Wild-type wing showing nearly parallel alignment of wing hairs pointing distally; (b). Global 
disruption of wing hair alignment in VanGogh (Vang) mutant; (c). Subcellular localization of 
PCP proteins in the Drosophila wing epithelium. Proteins localize at proximal or distal faces 
(Wang and Nathans, 2007).  

 

 

 A global module links the direction of polarization and the tissue axis. The main 

components belonging to this module are the atypical Cadherins Fat (Ft) and Dachsous 

(Ds), and the Golgi resident protein Four-jointed (Fj) (Figure 17). The primary function of the 

global module in PCP is to translate tissue-wide transcription gradients into subcellular 

gradients of one or more key signaling molecules along the tissue axis. Ds and Ft are 

expressed in oppositely oriented gradients that form heterodimers linking the surfaces of 

adjacent cells. This interaction provides directional information, which is then converted into 

oriented subcellular asymmetries that are interpreted by downstream signal transducers. 

The golgi resident protein Fj acts as an ectokinase on both Ft and Ds to make Ft a stronger 

ligand and Ds a weaker ligand. Therefore, the graded expression of Ft and Ds results in a 

larger fraction of Ft-Ds heterodimers in one orientation relative to the other. The mutant 

phenotype of Ft, Ds and Fj in Drosophila, includes cells that are capable to polarize with 

respect to their neighbors, but fail to acquire a global polarity within the tissue (Cho and 

Irvine, 2004).  
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Figure 17: A modular model of PCP in Drosophila 

The linear model (represented by blue arrows) postulates that the global module shown in (a). 
acts through the core module (b). that in turn acts at the tissue-specific level. Wing cells are 
depicted with properly oriented wing hairs (c). The bypass model (Red arrow) suggests that 
the global module can act independently from the core module, generating a signal that can 
be directly interpreted by the tissue (Bayly and Axelrod, 2011). 
 

 

 A core module is responsible for generating sub-cellular asymmetry and acts to coordinate 

polarization between adjacent cells (Figure 17). Members of the core module mainly include 

the seven-pass-transmembrane protein Frizzled (Fz), the multi-domain protein Dishevelled 

(Dsh), the Lim domain protein Prickle (Pk), the four-pass-transmembrane protein Vang 

Gogh/Strabismus (Vang/Stbm), the Ankyrin repeat protein Diego (Dgo) and the seven-pass-

transmembrane atypical Cadherin Flamingo/Starry night (Fmi/Stan). These proteins localize 

and communicate with each other at the cell boundaries, recruiting a group of interaction 

partners to the distal side and another to the proximal side and mutually excluding the 

oppositely oriented complexes, thereby aligning the polarity of adjacent cells. Fz and Dsh 

additionally function in the Wnt signaling pathway that involves GSK-3, Axin, and β-Catenin. 
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Therefore, the PCP pathway is also known as the non-canonical Wnt pathway, distinguished 

from the canonical Wnt/β-Catenin pathway (Cadigan and Nusse, 1997). 

 

 There are several tissue specific effector modules that work downstream of the core and 

global modules. These downstream mediators receive the polarity information from the core 

PCP complexes to give rise to morphological asymmetries in the tissue.  

 

 

Components Gene description/Function 

Core  module 

Frizzled (Fz) 
Seven pass transmembrane domains, Wnt receptor; recruits 

Dsh and Dgo to the membrane 

Dishevelled (Dsh) 
Cytoplasmic protein having scaffolding abilities; binds Fz, Pk, 

Vang and Dgo 

Prickle (Pk) 
Cytoplasmic protein, recruited to the membrane by Vang; 

interacts with Dsh, Vang and Dgo 

Van Gogh/Strasbismus 

(Vang) 

4-pass transmembrane protein, binds Pk, Dsh and Dgo 

Diego (Dgo) Cytoplasmic Ank repeat protein; binds Dsh, and Vang 

Flamingo/Starry night 

(Fmi/Stan) 

Cadherin with seven pass transmembrane receptor features, 

Homophilic cell adhesion 

Global module 

Fat (Ft) Atypical Cadherin, binds Ds 

Four jointed Fat (Fj) Type II transmembrane protein, Golgi resident luminal kinase 

Dachsous (Ds) Atypical cadherin, binds Ft 

 

Table 1: PCP signaling pathway components in Drosophila (Maung and Jenny, 2011). 

 

4.2 Planar cell polarity in vertebrates 

In vertebrates, PCP signaling has been found to operate in several contexts, such as 

morphogenetic movements during anterior-posterior axis elongation (convergent-extension, 

CE), polarization of skin and hair follicles, and positioning of motile and sensory cilia. 

Convergent- extension movements during vertebrate gastrulation play a major role in carving 

the embryonic body. CE movements are essential for various polarized cell behaviors, including 
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directed cell migration and mediolateral/radial cell intercalation.  In this section, I will explain first 

the molecules that regulate PCP-dependent processes in vertebrates, then go on to discuss the 

importance of CE movements, and oriented cell divisions for vertebrate embryonic 

development.  

 

4.2.1 The Wnt/PCP pathway in vertebrates  

Wnt signaling activates several pathways that are categorized as either canonical (Wnt- β-

catenin pathway) or β-catenin independent noncanonical pathways. The Wnt/PCP pathway is 

one of the non-canonical Wnt pathways. While PCP has been studied extensively in Drosophila, 

no fly Wnt ligand has been found to be implicated in PCP signaling. In contrast, some Wnt 

ligands mediate PCP signaling in vertebrates. A summary of the most important Wnt/PCP core 

components in vertebrates is shown in Table 2. 

 Core components 

Like in Drosophila, Fz and Dvl are also core components of Wnt/PCP signaling in 

vertebrates. Fz2 and Fz7 act as Wnt5 and Wnt11 receptor during CE in zebrafish and 

Xenopus (Djiane et al., 2000; Heisenberg et al., 2000; Kilian et al., 2003). In Xenopus, a 

mutated Dishevelled (Dsh/Dvl) and a dominant negative form of Wnt11 (dn-Wnt11) revealed 

their functional role in the correct elongation of the body-axis. Additionally, fine-tuning of Dsh 

is required for the polarization of cells undergoing mediolateral cell intercalation during 

Xenopus CE movements (Wallingford et al., 2000). In zebrafish, silberblick (slb)/Wnt11 

activity is required for cells to undergo correct convergent extension movements during 

gastrulation (Heisenberg et al., 2000). 

Trilobite/Vangl2 and Pk are also found to serve in Wnt/PCP signaling in vertebrates. In 

mouse, Looptail (Lp) mutants exhibit neural plate closure defects. The Lp locus was 

identified as a homologue related to flies Vang/Stbm and therefore, named Vangl2 (Kibar et 

al., 2001). Trilobite (Tri) depletion causes CE defects in Xenopus (Goto and Keller, 2002) 

and zebrafish (Jessen et al., 2002). In zebrafish, tri mutants display a shortened body axis 

and a fusion of the eyes at pharyngula stages that is enhanced in silberblick (slb) 

(Heisenberg and Nüsslein-Volhard, 1997) and knypek (kny)(Marlow et al., 1998) mutants. 

Similarly, Pk loss-of-function and gain-of-function causes CE defects (Carreira-Barbosa et 

al., 2003).  
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Three flamingo (fmi) homologs in vertebrates belong to a class of adhesion G-Protein 

Coupled Receptors (GPCRs). Fmi comprises a Cadherin repeat containing extracellular 

domain and a seven pass transmembrane domain. The vertebrate Flamingo homologues 

Celsr1a and Celsr1b further regulate CE movements during zebrafish gastrulation (Curtin et 

al., 2003; Formstone and Mason, 2005).  

 Other components 

 

Ds and Ft homologues have been described in mice but their exact role has not yet been 

thoroughly investigated.  In zebrafish and Xenopus, Glypican4, a protein belonging to the 

GPI-linked heparin-sulfate-proteoglycan family, is suggested to be a Wnt co-receptor along 

with Fz in the Wnt/PCP pathwayv(Ohkawara et al., 2003) and controls cell polarity during 

gastrulation movements in zebrafish (Topczewski et al., 2001). In addition, vertebrate 

homologues of diego, diversin/inversin (div/inv) have been also described (Simons et al., 

2005).  In mammals, an additional role of the basolateral polarity protein Scribble has been 

identified in the regulation of PCP, where transheterozygous scrib:vangl2 embryos exhibit a 

disruption in the polarization of stereocilia bundles in the mouse cochlea (Montcouquiol et 

al., 2003).  

 

Table 2: Major components of the PCP signaling pathway in vertebrates (Wang and 
Nathans, 2007) 
 

 

Components Gene description/Function 

Frizzled-7 (Fz7) Seven pass transmembrane domains, Wnt receptor;  

Disheveled (Dsh/Dvl) Cytoplasmic scaffolding protein  

Prickle1, Prickle 2 (Pk) Cytoplasmic protein with LIM and PET domains 

VanGogh like-2/Trilobite (Vangl2/Tri) 4-Pass transmembrane protein 

Celsr1, Celsr2 
Atypical Cadherin, seven pass transmembrane 

protein 

Wnt11/Silberblick (Slb) Secreted Wnt glycoprotein 

Wnt5b/Pipetail (Ppt) Secreted Wnt glycoprotein 

Ryk Wnt co-receptor 

Diversin Ankyrin repeat protein 

Scribble Scaffolding protein 
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4.2.2 Downstream effectors of vertebrate Wnt/PCP signaling 

The Wnt/PCP pathway integrates polarity cues that are provided through core and global 

module proteins. These planar cues are transplated into tissue-specific readouts such as hair 

follicle orientation in mammals or convergent-extension movements during gastrulation in 

several vertebrates. The tissue specific readouts rely on genes that are commonly called 

secondary PCP genes or PCP effectors. These genes do not necessarily have a function that is 

restricted to the PCP pathway. Many of these genes act to modulate cytoskeleton machinery.  

Few examples of these tissue specific effector genes are discussed here.  

 

Components  Description/function 

Daam1 Formin-homology domain protein 

RhoA Small GTPase 

Rho kinase 2 (Rok2) Serine/Threonine Kinase, RhoA effector 

Jun N-terminal kinase (JNK) Serine/Threonine Kinase 

Inturned (In) Putative PDZ domain protein 

Fuzzy (Fy) 4-pass transmembrane protein 

Misshapen (Msn) STE20-like protein kinase 

Paraxial protocadherin (papc) Protocadherin  

Table 3: Wnt/PCP effectors in vertebrates (Wang and Nathans, 2007) 

 

During vertebrate gastrulation, the scaffolding protein Dsh/Dvl acts in the Wnt/PCP pathway 

through its PDZ and/or Dishevelled, Egl-10 and Pleckstrin (DEP) domain. daam1, which 

encodes a formin homology protein binds Dsh through the PDZ and DEP domains and activates 

RhoA upon binding to it (Habas et al., 2001). In Xenopus, Daam1 controls CE movements by 

the activation of RhoA and Rac (Habas et al., 2003); however, Daam has not been found to be 

mandatory for PCP in flies (Matusek et al., 2006). Downstream of Wnt11 and Wnt5b, there is a 

specific activity of the Rho family of small GTPases in the regulation of CE movements.  Studies 

in Xenopus and zebrafish have shown that Rok2 acts downstream of Wnt11 (Jessen et al., 

2002), while Wnt5a needs the Jun N-terminal Kinase (JNK) (Yamanaka et al., 2002). This 

pathway may also involve the transcriptional activation of target genes such as papc (Medina et 

al., 2004).  

Other effectors identified in vertebrates include inturned (in), fuzzy (fy) and misshapen (msn). In 

zebrafish, In and Fy cooperate with the core module proteins Fz-Dvl to regulate ciliogenesis by 
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coordinating apical actin assembly in cells with motile cilia (Park TJ et al., 2006). Inhibition of 

msn, which encodes a STE20-like serine/threonine protein kinase, results in an epiboly defect. 

This is mainly caused by the depletion of actin cable formation at the leading edge of the 

enveloping layer (EVL) cells that is a major driving force for epiboly movements (Köppen et al., 

2006). Table 3 below summarizes these and other effectors described in vertebrates. 

 

 

Figure 18: Model of the Wnt/PCP pathway during CE in Zebrafish and Xenopous  

This model is composed of at least three major branches mediating CE. First, in the centre, 
the secreted ligand Wnt11, possibly aided by Glypican-4 binds the receptor Fz7 and activates 
Dsh. Daam1 utilizes the PDZ and DEP domains of Dsh to activate the downstream effectors 
RhoA and Rok to control the actin-cytoskeleton. Daam1 can also activate Rac which in turn 
induces JNK. Alternatively, as shown in the second branch (right side of the model), Wnt5 can 
bind the receptor Ror2 and activate JNK. Activated JNK, subsequently transcriptionally 
activates the protocadherin papc, a functional mediator for CE. The third branch (left side of 
the model) includes the other components of the core module. Our current knowledge is 
limited about this branch whether these proteins acts upon the cytoskeleton through their own 
effectors or whether they individually/collectively influence the other two streams. (Tada and 
Kai, 2009) 

 

From a molecular point of view, the vertebrate PCP pathway is unlikely to be a linear pathway, 

especially in the context of gastrulation and neurulation. The description of a hypothetical model 

for CE movements in vertebrates shown in Figure 18 comprises at least three branches: (1) 

Wnt11-Fz-Dsh, (2) Wnt5-Ror2-JNK, and (3) Other core PCP components (Tada and Kai, 2009). 
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 The Wnt11 ligand binds the receptor Fz7 and activates Dsh. Glypican promotes Wnt11 

binding. The PCP effector protein Daam1 binds Dsh through its PDZ and DEP domains. 

This interaction further activates the downstream effector RhoA that in turn stimulates Rok to 

regulate the actin-cytoskeleton that is important for CE movements. Alternatively, Daam1 

can act upon Rac that further activates JNK. Alternatively, Wnt5b binds Ror2 that activates 

JNK. Activation of JNK induces the transcription of the target gene papc that encodes a 

protocadherin that acts as a functional mediator for CE movements.  

 

 Other components of the core module including Vangl2, Celsr, Scrib, and Pk might interact 

with the Wnt/Fz-Dsh module. However, it is not well known whether they facilitate the Wnt-

Fz-Dsh stream or directly influence the cytoskeleton. Inversin contributes to CE movements 

in Xenopus gastrulation while inhibiting the canonical Wnt pathway by targeting Dsh for 

degradation. Thus, Inversin (Inv) acts a molecular switch between different Wnt signaling 

cascades (Simons et al., 2005).  

 

4.2.3 A new addition to the Wnt/PCP pathway: Ryk 

In the course of my study, I observed that Mib (an E3-ubiquitin ligase that is an important 

component of the Notch pathway) loss-of-function embryos display PCP mutant-like phenotypes 

(see Results section for details). This raised the question, how Mib could be related to the PCP 

pathway. Recently a study in C. elegans reported that Mib interacts with the Receptor related to 

tyrosine kinase (Ryk) to promote its ubiquitination and to activate Wnt/β-catenin signaling 

(Berndt et al., 2011). This is an interesting link as previously several other studies from flies to 

mammals have described Ryk as an important component of the PCP pathway. Ryk has been 

shown to act as a Wnt-co receptor, whose activity is likely to signal independently of Frizzled-

activated pathways (Inoue et al., 2004; Lu et al., 2004; Yoshikawa et al., 2003).  

 

Structurally, Ryk comprises a transmembrane domain, an extracellular domain with five 

potential N-linked glycosylation sites (similar to the Wnt inhibitory factor 1 Wif1) and an 

intracellular fragment with multiple domains including a protein tyrosine kinase (PTK) domain 

(Hovens et al., 1992). Ryk has been identified as key guidance receptor in axonal guidance in 

mice, where Wnt5a acts as a chemo-repulsive ligand for Ryk to drive callosal axons towards the 

contralateral brain hemisphere (Keeble et al., 2006).  
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Although most studies have proposed antagonizing roles of Ryk and Fz in Wnt-mediated 

developmental processes, such as Wnt5b-driven Drosophila salivary gland migration (Harris 

and Beckendorf, 2007), synergies between Ryk and Fz have also been reported. For example, 

Ryk promotes Fz-dependent signaling in Xenopus, where knockdown of Ryk leads to 

gastrulation defects with compromised Wnt11-induced Fz7 and Dvl endocytosis (Kim et al., 

2008).  

 

In zebrafish, Ryk acts downstream of Wnt5b. Ryk-deficient embryos display defects in Wnt5b-

induced directional cell movements at gastrulation (Lin et al., 2010). The same study showed 

that Ryk, unlike Fz, needs a Wnt5b stimulation to recruit Dvl to the cell membrane, suggesting 

that Fz and Ryk act in separate pathways.  Andre and colleagues revealed another important 

link between Ryk and the Wnt/PCP pathway. They showed that Ryk interacts with Vangl2 

genetically and biochemically, and this interaction is induced by Wnt5a. In vangl2 heterozygous 

mutant mouse embryos, Ryk depletion results in classic PCP defects including an open neural 

tube (Andre et al., 2012). Another study by Macheda and colleagues confirmed the potential 

role of Ryk in Wnt/PCP signaling during mammalian neuronal development (Macheda et al., 

2012). Therefore, Ryk is an important candidate that could provide insights about how Mib is 

linked to PCP signaling.  

 

4.3 Convergent-Extension and the Wnt/PCP pathway 

The vertebrate Wnt/PCP pathway has been shown to regulate different morphogenetic 

movements such as convergent-extension (CE). CE is a crucial process through which tissues 

undergo narrowing along one axis and simultaneous extension along the orthogonal axis. These 

movements occur in both epithelial and mesenchymal tissues during embryogenesis in 

invertebrates and vertebrates, and play major roles in shaping the body plan (Irvine and 

Wieschaus, 1994). The first identified and best-studied example of CE movements in 

development is body axis elongation during Xenopus gastrulation (Keller, 2002). Generally, CE 

movements are characterized by collective movements of cells towards the dorsal side of the 

gastrula, promoting hence the elongation of the future antero-posterior body axis. The 

combination of collective cell movements and cell intercalations triggers a narrowing of the 

body-axis along its medio-lateral (ML) axis that is termed convergence, and a concomitant 

elongation along the anterior-posterior (AP) axis termed extension. CE thus includes two kinds 

of movements (Figure 19): First, a collective cell migration that is the coordinated movements of 
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a highly cohesive sheet of cells and involves no neighbor exchange. Here, the cells at the 

leading edge are highly polarized and give rise to various types of protrusions, such as 

lamellipodia and blebs. Second, cell intercalations promote the oriented exchange of 

neighboring cells.  

 

 

Figure 19: Convergent-extension movements in Zebrafish 

During cell intercalation, cells orient along the Medio-Lateral (ML) axis and intercalate to 

redistribute their position along the Antero-Posterior (AP) axis of the tissue. At the left side, 

the forming notochord of a 9.5 hpf zebrafish embryo is shown, where cells along the ML axis 

undergo convergence. At the right side, the same embryo is shown at 10.2 hpf. While, 

convergence movements narrowed down the ML axis, the AP axis is elongated. Adapted from 

(Glickman et al., 2003; Tada and Heisenberg, 2012). 

 

During early zebrafish gastrulation, prechordal plate progenitor cells undergo collective cell 

migration from the germ ring margin towards the animal pole, hence elongating the body axis.  

Moreover, convergence movements occur during gastrulation as mesendodermal progenitor 

cells collectively migrate towards the dorsal region. While getting closer to the forming body 

axis, the cells polarize along their ML axis and display progressively coordinated and oriented 

convergence movements. At the same time, mesendodermal cells near the notochord begin ML 

intercalations and radial cell intercalations that contribute to the elongation of the posterior body 
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axis. Thus, collective mesoendodermal cell migration and intercalation are both crucial features 

of CE movements during zebrafish gastrulation (Sepich et al., 2005).  

Wnt/PCP signaling has been shown to be of prime importance for convergent-extension 

movements by controlling cell movement persistency and ML cell polarization during cell 

intercalations (Heisenberg et al., 2000; Jessen et al., 2002; Sepich et al., 2005; Topczewski et 

al., 2001). In addition, inhibition of Wnt/PCP signaling alters cell polarization and cohesion of 

prechordal plate progenitors (Ulrich et al., 2005).   

 

4.4 Oriented cell divisions and Wnt/PCP signaling 

4.4.1 Oriented cell divisions during zebrafish gastrulation  

 

 

 

Figure 20: Cell division orientation during zebrafish gastrulation 

During gastrulation and the beginning of neurulation, cell divisions are highly oriented. The 
orientation of cell division of the epiblast cells at the level of the dorsal midline is shown 
here. At the beginning of gastrulation, cell divisions occur at random directions that become 
more oriented towards the antero-posterior (AP) axis at around 60% epiboly. Later, as 
neurulation begins, the axis of cell division changes from AP to medio-lateral (Concha and 
Adams, 1998).  

 

In Drosophila sensory bristle precursor cells, PCP is responsible for orienting asymmetric cell 

divisions (Bellaïche et al., 2004). Similarly, Wnt/PCP signaling has been shown to be important 

for orienting cell divisions in the zebrafish dorsal epiblast cells during gastrulation. These cells 

divide along the AP axis (Figure 20), and this stereotypical orientation of dividing cells is 

compromised in Wnt/PCP mutant embryos (Gong et al., 2004). Another study showed that 

zebrafish maternal zygotic double mutants for Fz7a and Fz7b (MZFz7a/b) exhibit impaired CE 

movements and displayed defects in body axis elongation and gastrula stage cell division 

orientation (Quesada-Hernández et al., 2010).  Recently, a study revealed that the Anthrax toxin 

receptor 2a (Antxr2a) interacts with the Wnt/PCP pathway via RhoA and its effector Rock2, 
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regulating hence the formation of a cortical actin-cap that is oriented along the AP axis 

(Castanon et al., 2013) 

 

4.4.2 Oriented cell divisions during zebrafish neurulation 

In zebrafish, during gastrulation cells divide parallel to the AP axis. When neurulation starts, cell 

division orientation shifts from AP to ML axis with a 90°rotation in the mitotic spindle 

(Geldmacher-Voss et al., 2003). This transition occurs at the bud stage and when the neural 

plate converges to form, the neural keel (3-6 somites) cells divide predominantly with parallel to 

the ML axis. During the progression of neural keel and neural rod formation, dividing cells also 

become restricted to the region close to the dorsal midline (Figure 21) (Concha and Adams, 

1998). These divisions, also exhibit the unique characteristic that the dividing cells deposit one 

daughter cell on the contralateral side of the neural keel/neural rod. These cross-midline 

divisions of neural progenitors are therefore termed C-divisions. 

 

 

 

Figure 21: Cell division orientation during zebrafish neurulation 

The orientation of cell division during neurulation vary as a function of both time and 
distance from the dorsal midline. During neurulation, the orientation of dorsal cell divisions 
switches from antero-posterior to medio-lateral. This is first visible at the neural plate stage, 
where cells divide primarily close to the dorsal midline (bud to 3 somites). Gradually 
divisions occur throughout the neural plate as the neural plate forms the neural keel. 
Subsequently, as neurulation continues, cell divisions become more restricted to the region 
close to the dorsal midline (dm) (Concha and Adams, 1998).  
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Orientation of C-divisions  

As previously mentioned, Concha and Adams presented the first study describing the 

orientation of C-divisions during zebrafish neurulation (Concha and Adams, 1998).  The rotation 

in the mitotic spindle is responsible for orienting the C-dividing neural progenitors along the ML 

direction (Geldmacher-Voss et al., 2003). Wnt/PCP signaling is critical for the stereotypical ML 

orientation of the C-divisions and for the neural rod midline formation. Quesada-Hernandez and 

colleagues revealed a role of Fz7 signaling for the orientation of C-divisions. They showed that 

maternal zygotic double mutant embryos for fz7a and fz7b (MZfz7a/b), display a significant 

reduction in the stereotypical orientation of dividing neural progenitors in the forming neural rod, 

resulting in a severely affected neural tube morphology with the branched midline and 

disorganized lumen (Quesada-Hernández et al., 2010). 

 

Location of the C-divisions  

As stated above, C-divisions occur across the forming midline parallel to the ML axis at the 

neural keel and neural rod stages. These developmental stages are characterized by the 

following two events:   

 C-divisions occur parallel to the ML axis, across the forming midline. Interestingly this 

location also coincides with the apical domain of the dividing cells. Hence, there is an 

intriguing possibility that apico-basal polarity of neural progenitors and their C-divisions 

influence each other. (see section 3.4)  

 

 A second event is that the neural plate converges towards the midline and elongates along 

the AP axis to form the neural keel and subsequently, the neural rod. These convergent-

extension movements are PCP signaling dependent as described in section 4.3. As C-

divisions occur at the time when the neural plate is undergoing convergent-extension, PCP 

signaling also influences C-divisions. Indeed, Ciruna and colleagues showed that 

polarization of dividing cells along the AP is required prior to mitosis, and that Wnt/PCP 

signaling is responsible for such polarization. They used a candidate approach to identify 

VangGogh-like 2/Strabismus (Vangl2/Stbm) as a key molecule involved in this process. 

They showed that in maternal zygotic trilobite mutant (MZtri) embryos, neural keel cells fail 

to polarize, which further disrupts intercalation and bilateral distribution of (potentially) C-

dividing daughter cells. This ultimately leads to defects in midline formation, in this case the 
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formation of two ectopic neural tube midlines, one in each lateral half of the folding neural 

plate (Ciruna et al., 2006). Similarly, Tawk and colleagues also showed that in MZtri 

mutants, delayed convergent-extension movements are responsible for defects in neural 

tube midline formation (Figure 22) (Tawk et al., 2007).  

 

 

Figure 22: Double midline formation in zebrafish MZtri mutants. 

In comparison to wild type (a), maternal zygotic trilobite mutants (MZtri) (b) exhibits delayed 
convergent-extension of neural plate cells. The delay in convergence causes the cells to 
undergo cell division in more lateral locations, rather than at the centre of the folding neural 
plate. This, results in two populations of C-dividing cells that give rise to two ectopic, more 
laterally situated midlines.   
  

5 Scientific context of the study  

Epithelial polarity on cellular (apico-basal polarity) and tissular (planar cell polarity) are the 

crucial factors for the proper morphogenesis of the neural-tube. How signalling pathways for 

instance Notch signalling pathway, contribute to the organ morphogeneis through regulating 

polarity is a fascinating field to be explored. Though, I started the project with the aim to 

understand the transcytosis of Delta ligands for the Notch signalling (Results-section 1). This 

study mainly culminated in two major findings: Firstly, Delta-Notch signalling is required to 
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establish apico-basal polarity in the zebrafish neural tube (Results-section 2). Secondly, the 

Notch signalling component Mindbomb plays an additional role in PCP signalling that is 

independent of its well known function (endocytosis of Delta ligand) in Notch signalling (Results-

section 3). Furthermore, I attempt to understand that C-dividing cells might communicate with 

each other through Notch signalling (Results-section 4).  
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 Results 
 

While it is well established that Delta ligand endocytosis is required for Notch receptor 

activation, the actual reason for this requirement remains unknown. A number of recent studies 

have proposed that, in the context of apico-basally polarized neuro-epithelial cells, Delta 

endocytosis and intracellular transcytosis could be required to bring together basally secreted 

Delta ligands and apically localized Notch receptors (Benhra et al., 2010; Heuss et al., 2008; 

Wang and Struhl, 2004). Transcytosis transports molecules via endocytic internalization, 

intracellular transport, and exocytic re-secretion thus ensuring the intracellular translocation of 

membrane-bound molecules between the apical and baso-lateral compartments of epithelial 

cells. The initial aim of my Ph.D. project was to study the potential role of the intracellular 

transcytosis and apico-basal transport of Delta ligands for Notch signaling in the zebrafish 

nervous system. During the course of my study, I observed however that conversely, Notch 

signaling itself is important for the establishment of apico-basal polarity in the zebrafish neural 

tube. In addition, I surprisingly discovered a unique role of the Notch signaling component 

Mindbomb (Mib) in planar cell polarity (PCP) that is independent of its function of Notch 

signaling.  

Below, I will first summarize my results regarding DeltaD trafficking and transcytosis. I will then 

describe the results related to apico-basal polarity and Notch signaling. Finally, I will show the 

results related to the role of Mib in planar cell polarity.  

1 Trafficking of DeltaD ligands in the zebrafish nervous system 

1.1 Live imaging of endogenous DeltaD ligand transcytosis 

The proposed model of vectorial DeltaD transcytosis involves two subsequent trafficking steps: 

First, a basal-to-apical transendocytosis that translocates Delta ligands from their initial site of 

secretion at the baso-lateral membrane to the apical cell surface. Second, an endocytic 

internalization of Delta ligands from the apical cell surface that may potentially promote Notch 

receptor activation (Benhra et al., 2010). To study the trafficking of endogenous DeltaD ligands 

along the apico-basal axis a functional DeltaD transcytosis assay was developed in our lab 

(Figure 23).  
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In this assay, an unlabeled primary antibody recognizing endogenous DeltaD is first injected 

outside of the neural tube, i.e. facing the basolateral side of the epithelium. In a second step, a 

specialized fluorescent secondary antibody is then injected into the apical neural tube lumen. 

Following the baso-lateral internalization and the basal-to-apical transcytosis of DeltaD ligands, 

the piggybacked primary antibody becomes exposed to the luminal secondary antibody. 

Consequently, the second round of apical DeltaD endocytosis results in the internalization of the 

fluorescent secondary antibody into the cells of the neuro-epithelium. 

 

 
Figure 23:  Visualizing transcytosis of DeltaD ligands in vivo 

A DeltaD primary antibody is injected at the basal side of the neural tube and a fluorescently 
labelled secondary antibody at the apical side (a). The basal-to-apical transcytosis of DeltaD 
and a subsequent second round of apical ligand endocytosis result in the internalisation of the 
fluorescent secondary antibody into neuro-epithelial cells (b).   

 

1.2 The initial site of secretion of DeltaD is limited to the basolateral 

domain in the zebrafish ear  

According to the vectorial transcytosis model proposed by Benhra and colleagues, neuro-

epithelial Delta ligands are initially localized at the basolateral domain, from where they would 

then be internalized and transported via Mindbomb (Mib) mediated endocytosis to the apical 

side to interact with apically localized Notch receptor molecules. The founding postulate of this 

model is therefore that Delta secretion is initially restricted to the baso-lateral cell surface. The 

aim of my first series of experiments was to test whether this does indeed apply to Zebrafish 

DeltaD. In order to identify the initial site of DeltaD secretion, I analyzed DeltaD localisation in 

embryos that lack the activity of the E3 Ubiquitin ligase Mindbomb (Mib) that is required for 

endocytic DeltaD internalization; in these embryos DeltaD can no more be internalized and 

ligands are therefore expected to accumulate a their initial site of secretion. DeltaD was 

detected in intracellular, potential endocytic, structures in the neuroepithelial cells of the ear in 

wild-type embryos, especially near to the apical membrane (Figure 24). When endocytosis of 
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DeltaD was inhibited using a morpholino against Mib (Itoh et al., 2003), DeltaD ligands 

accumulated on the basolateral membrane and no intracellular presence of DeltaD carrying 

endosomes were found (Figure 24 j-r). This shows that the initial site of secretion of DeltaD 

ligands in the otic vesicle neuro-epithelium is the basolateral membrane, in potential accordance 

with the vectorial transcytosis model.  

 

Figure 24: DeltaD trafficking in the zebrafish ear 

Lateral view confocal images of 24 hpf wild-type (a-i) and Mib morphant (j-r) embryos at the 
level of the ear. 
(a) DeltaD is detected in intracellular dots, near to the apical membrane.  
(b) F-actin labelling shows the structure of the whole ear.  
(c) Apical membrane is marked by aPKC.  
(d) Merge. The box shows the area that is magnified in images e to i.  
(e-g) A magnified view of DeltaD (e), F-actin (f) and aPKC (g) expressions.   
(h-i) Merge images of F-actin (red)-DeltaD (green), and merge images of aPKC (blue)-DeltaD 
(green). No. of wild-type embryos were analyzed = 10 
(j) Delta localized just at the basolateral membrane upon inhibition of Mib. 
(k) f-actin staining in Mib morphant shows the normal architecture of the ear.  
(l) Apical membrane is labelled with aPKC. 
(m) Merge image. The box shows the area that is magnified in images n to r. 
(n-p) A magnified view shows the expression of DeltaD at the basolateral membrane (n), F-
actin staining (o), and aPKC localization at the apical membrane (p). 
(q-r) Merged image of F-actin and DeltaD (q) shows that in Mib morphant, DeltaD localization 
is limited to the basolateral membrane. Merged image of aPKC and DeltaD (r) confirms that 
there is no colocalization between DeltaD and aPKC. No. of Mib morphant analyzed with the 
phenotype = 8/10 
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1.3 DeltaD secretion may not be restricted to the baso-lateral 

membrane in the zebrafish neural-tube 

The functional Delta ligand transcytosis assay that has been developed in our lab (Figure 23) 

was initially developed in the context of the zebrafish neural tube. To further asses if the 

vectorial transcytosis model is also valid in this part of the nervous system, I further checked the 

subcellular localization of DeltaD molecules in the neural tube. In the zebrafish neural tube, 

DeltaD is detected in intracellular endocytic structures in the neuroepithelial cells of wild-type 

embryos (Figure 25 a-h) (Itoh et al., 2003; Kressmann et al., 2015). To find out the initial site of 

secretion of DeltaD ligands, I again inhibited the function of Mib.  

To our surprise, we found that upon strong inhibition of Mib function, apico-basal polarity was 

lost in the neural tube (next section). Therefore, I reduced the dose of the morpholino and found 

that under hypomorphic conditions, apico-basal polarity was still intact. However, in contrast to 

the inner ear, DeltaD accumulated on both the apical and baso-lateral membranes of neural 

tube cells (Figure 25 e-j). In addition, a small amount of DeltaD is still observed in intracellular 

endocytic structures. The observation that DeltaD accumulates on both the apical and baso-

lateral domain in Mib morphants, suggests that in the neural tube, the initial secretion of DeltaD 

may possibly not be limited to the basolateral domain. Interestingly, my observations in the inner 

ear and the neural tube suggest that the trafficking of DeltaD, and therefore potentially the 

regulation of Delta/Notch signaling are modulated differentially in a tissue context dependent 

manner.  
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Figure 25: The initial site of secretion of DeltaD ligands is not restricted to the 

basolateral domain in the neural tube 

Dorsal view confocal image of 24 hpf wild-type (a-d) and Mib morphant (e-j) embryos at the 
level of anterior spinal cord.  
(a) DeltaD staining shows intracellular dots in the neuroepithelial cells in wild-type embryos. 
(b) Phalloidin staining labels the F-actin to outline cells.  
(c) The par complex protein aPKC labels the apical membrane in the spinal cord of wild-type 
embryos. aPKC labelling allows to show a uniform midline in the wild-type embryo.  
(d) The merge image of WT embryo shows DeltaD in blue, F-actin in red and aPKC in green.  
No. of wild-type embryos analysed=15 
(e) Embryos injected with a low dose of Mib morphant (500 µM) embryo, a higher amount of 
DeltaD is expressed that localized mainly on the cell membrane and in small amount also in 
intracellular dots. 
(f) F-actin staining shows the normal tissue morphology.  
(g) aPKC localized to the apical membrane just like in wild-type embryo under these 
conditions.  
(h) A box with dotted line shows the area that corresponds to the image (i) and (j).  
(i) DeltaD (green) molecules colocalize with F-actin (red) at the neural tube midline in Mib 
morphants. The white arrow shows the colocalization of F-actin with DeltaD at the apical 
membrane.  
(h) DeltaD (green) molecules colocalize with aPKC (blue) at the apical membrane in Mib 
morphant. DeltaD is present at the apical membrane (white arrow), overlapping with aPKC.   
No. of Mib embryos analysed with the phenotype=18/20 
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2 Notch signaling regulates establishment of apico-basal polarity 

in the zebrafish neural tube 

2.1 Loss-of-function of Mindbomb perturbs apico-basal polarity in the 

neural tube 

 

 

Figure 26: Embryo injected with higher dose of Mib morpholino exhibit loss of apico-

basal polarity in the zebrafish spinal cord.  

Dorsal view confocal image of 24 hpf wild-type (a-d) and Mib loss-of-function (e-h) embryos at 
the level of anterior spinal cord.   
(a-d) DeltaD staining shows DeltaD containing intracellular dots in the neuroepithelial cells in 
wild-type embryos (a). Phalloidin staining labels the F-actin to outline cells (b). The par complex 
protein aPKC labels the apical membrane in the spinal cord of wild-type embryos. aPKC 
labelling shows a uniform midline in the wild-type embryo (c). The merge image of WT embryo 
(d) No. of wild-type embryos analyzed=15 
(e-h) A Mib loss-of-function embryo that is injected with the morpholino against Mib at 1000 µM. 
DeltaD staining in this embryo shows a massive expression of DeltaD that is localized on cell 
membrane (e), F-actin staining in Mib embryos shows a disruption of the cellular morphology as 
compared to the wild-type embryo. The cells are more round as compared to the elongated 
cellular structures in wild-type cells. In addition, there is no midline visible here (f). The apical 
accumulation of aPKC is lost in Mib morphant (g), merged image (h). No. of Mib morphant 
showed apico-basal polarity defects=11/14 
 

 

While investigating the role of endocytosis in DeltaD trafficking, I inhibited the function of Mib, 

which is essential for endocytosis of DeltaD ligands and activation of Notch signaling. To our 

surprise, we discovered that when a sufficiently high dose of a morpholino against Mib is used, 
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this led to the perturbation of apico-basal polarity in the spinal cord (Figure 26). These embryos 

exhibited a loss of apical accumulation of aPKC (Figure 26 g). The neuro-epithelial cells in the 

neural tube have a columnar shape, which is achieved by elongating the cell body along the 

apico-basal axis. We observed that in Mib morphants, neuro-epithelial cells were more roundish 

than elongated (Figure 26 f). Thus, Mib inhibition disrupts polarity and morphology of the neural 

tube (Figure 26 f).  

 

 

Figure 27: Mib mutant (Mib
ta52b

 -/-) exhibits loss of apico-basal polarity  

Dorsal image of a 24 hpf Mib homozygous mutant and Wild-type sibling embryo.   
(a-d) DeltaD expression in a wild-type sibling embro shows DeltaD carrying endosomes as 
intracellular dots (a). F-actin staining in sibling embryos displays a proper neural-rod 
formation and well-formed somites (b). aPKC localized at the apical membrane and the 
neural rod midline in sibling (c), Merged image (d). No. of wild-type sibling embryos 
analyed=15 
(e-h) Mib

ta52b
 -/- embryo, DeltaD is massively overexpressed (e), F-actin staining shows the 

disruption of the neuroepithelial morphology in the spinal cord of the Mib
ta52b

 -/- embryo (f). 
In Mib

ta52b
 -/- embryo, apical expression of aPKC is lost (g). Merge image of Mib

ta52b
 -/- 

embryo (h). No. of Mib
ta52b

 embryos analysed with the loss of apico-basal polarity= 14/15 
  

 

In recent years, there has been a concern regarding the use of morpholinos because of their 

potential off-target effects and toxicity (Kok et al., 2015). Therefore, it was important to repeat the 

experiment in Mindbomb mutants. I used the Mibta52b mutant strain that is having a point mutation 

in the Ring finger domain (van Eeden et al., 1996). This point mutation causes the substitution of 

an amino acid from Methionine to Arginine and gives a neurogenic phenotype (Itoh et al., 2003).  I 

incrossed Mibta52b fish to get homozygous mutant embryos and then stained them for DeltaD, F-
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actin and aPKC (Figure 27 e-h), along with their siblings (Figure 27 a-d).  We found that Mibta52b 

homozygous embryo for mutant allele displayed a complete loss of apico-basal polarity where 

aPKC expression was missing (Figure 27 g) and the overall morphology of the neural tube was 

disrupted (Figure 27 f, h). Mibta52b homozygous mutant embryos were identified based on the 

DeltaD staining that was massively overexpressed in homozygous mutant (-/-) embryo as 

compared to the heterozygous mutant (+/-) or wild-type (+/+) siblings (Figure 27 a, d).  These 

result shows that Mib is important for the apico-basal polarity of the zebrafish neural tube.  

 

 

 

Figure 28: Pard3 expression in wild type versus Mib morphant embryos.  

A GFP fusion construct of Pard3, an apical polarity protein, is injected in 24 hpf wild-type (a-d) 
embryo and in Mib morphant (e-h) embryos.  
(a-c) The dorsal view of the spinal cord shows that Pard3-GFP localizes at the apical membrane 
in a wild-type embryo (a). F-actin staining (b) and Merge image (c). No. of wild-type embryos 
analyzed=8 
(d-f) Pard3-GFP localization is disrupted at the apical membrane in Mib depleted embryo. The 
Pard3-GFP shows diffused cytoplasmic and a little amount of expression in form of intracellular 
and membrane dots (d). F-actin staining outlines cells (e). Merge image (f). No. of Mib morphant 
embryos analyzed with the defect in apical accumulation of Pard3-GFP =7/8 

 

It has been shown that disruption of neuro-epithelial polarity result in the disruption of intercellular 

junctions and the mislocalisation of several apical polarity proteins that are members of the Par 

and the Crumbs complex (Cappello et al., 2006; Imai et al., 2006; Ohata et al., 2011). As we 

found that Mib is important for apico-basal polarity in the zebrafish neural tube, we next 

investigated the localisation of several polarity proteins in Mib-depleted conditions. Firstly, the 

expression of the Par complex protein Pard3 was observed by using a Pard3-GFP fusion 
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construct (Tawk et al., 2007). In Wild-type embryos, Pard3-GFP is enriched at the apical 

membrane (Figure 28 a-d). However, in Mib morphant embryo Par3-GFP failed to accumulate at 

the apical midline (Figure 28 e-h).  

 

 

Figure 29: Crumbs expression is completely absent in Mib
ta52b

 homozygous mutant 

embryos. 

Dorsal view images of 24 hrs embryos show the expression of the apical polarity protein Crumbs 
by antibody staining in Mib

ta52b
 homozygous mutant and wild-type sibling embryos. 

(a-d) Crumbs expression at the apical membrane in wild-type sibling (a).  F-actin staining (b).  
Similar to Crumbs, aPKC is localized at the apical membrane (c). A merge image is shown in 
(d). No. of wild-type sibling embryos =13 
(e-h) In comparison to wild-type sibling, apical localization of Crumbs proteins is lost in Mib

ta52b
 

homozygous mutant embryo (e). F-actin (f), and aPKC (g) expression in Mib
ta52b

 -/- mutant is 
shown. No. of Mib

ta52b
 -/- embryos with the loss of Crumbs=10/11  

 

Previously, negative regulation of Notch by Crumbs protein has been genetically shown in 

Drosophila, where through a feedback loop Notch induces Crumbs (Herranz et al., 2006). Another 

sudy in zebrafish showed that Crumbs family proteins bind to the extracellular domain of Notch 

(Ohata et al., 2011). These studies show that Notch and Crumbs interact with each other. 

However, not much is known if Notch signaling acts upstream of the Crumbs complex to regulate 

apico-basal polarity. To explore this, firstly I checked the expression of Crumbs in loss-of-function 
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Mib embryos. For this purpose, I used an antibody against Crumbs, that allowed me to see the 

expression of endogenous Crumbs protein in the neural tube. In comparison to the wild-type 

sibling (Figure 29 a-d), Crumbs protein is not detected in the neural tube of Mib homozygous 

mutant (Figure 29 e-h).  

In addition to the polarity complexes themselves, junctionals protein are very important for the 

establishment and maintenance of apico-basal polarity. I found that in Mib-depleted embryos, the 

adherence junction complex protein Zonula occludens 1 (ZO1) also lost its expression at the 

apical membrane (Figure 30). We next asked whether Mib has a Notch independent or Notch 

dependent role in the regulation of apico-basal polarity of the neural tube. 

 

 

Figure 30: Mib homozygous mutant embryos lose the expression of an adherence-

junction complex protein ZO1.  

In comparison to a wild-type sibling (a), ZO1 staining shows the loss of ZO1 protein in a Mib
ta52b

 
-/- embryo (d) at 24 hpf.  F-actin staining allows visualizing cells and the overall neural tube 
structure in wild-type sibling (b) and Mib

ta52b
 homozygous mutant (e). Merge images shows F-

actin in red and ZO1 in green for wild-type sibling (c) and Mib
ta52b

 -/- (f). No. of wild-type sibling 
embryos=5 and Mib

ta52b 
embryos showing the loss of ZO1=5/5. 
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2.2 Notch signaling is required for apico-basal polarity in the neural 

tube 

A recent study in Drosophila suggests a distinct role of the E3-ubiquitin ligase Neuralized (Neur) 

in epithelial polarity that is independent of its known function in Notch signalling (Chanet and 

Schweisguth, 2012). Previously, it has been shown that Neur is required for the endocytosis of the 

Delta ligand in Drosophila (Pavlopoulos et al., 2001), similar to the function of Mib in zebrafish. To 

find out whether in the regulation of zebrafish neural tube apico-basal polarity, Mib plays a Notch-

independent role, I inhibited different components of the Notch signaling pathway. I began with 

the double knockdown of DeltaA and DeltaD ligands, by injecting a morpholino against DeltaA in 

DeltaD (aei) homozygous mutant embryos (van Eeden et al., 1996). DeltaA/DeltaD depleted 

embryos showed apico-basal polarity defects and failed to form an apical midline (Figure 31).  

 

 

Figure 31: Notch ligands are indispensable for apico-basal polarity 

Dorsal view of the spinal cord in a wild-type embryo at 24 hpf that is stained for DeltaD (a), 
F-actin (b), aPKC (c). Merge image (d). No. of wild-type embryos analyzed =15 
Dorsal view of spinal cord in an aei -/- (DeltaD) mutant embryo injected with DeltaA (DlA) 
morpholino. DeltaD staining shows absence of DeltaD molecules (e).  Staining for F-actin (f) 
and aPKC (g) shows the disrupted neuroepithelial morphology and loss of apico-basal 
polarity, No. of aei -/- with DlA morpholino embryos with the apico-basal polarity defects 
=13/15 

 

 

We then blocked the function of γ-secretase by pharmacological inhibitors LY411575 (Fauq et al., 

2007) and DAPT (Geling et al., 2002).  Inhibition of γ-secretase prevents the S3-cleavage of 
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Notch receptor and therefore the release of NICD that is necessary for the activation of Notch 

signaling.  We found that embryos with inhibited γ-secretase activity presented defects in apico-

basal polarity. These embryos displayed a loss of the apical accumulation of aPKC and a 

perturbation of apical neural tube midline formation (Figure 32). These results confirm a potential 

role of Notch signaling in the regulation of epithelial polarity.  

 

 

Figure 32: γ-Secretase is required for apico-basal polarity 

A wild-type embryo with normal apico-basal polarity in the spinal cord, stained for DeltaD (a), F-
actin (b) and aPKC (c) at 24 hpf. Merge is shown in (d). No. of wild-type embryos analyzed = 8 
γ-secretase inhibitor LY411575 treated embryo shows a loss of apico basal polarity. DeltaD 
staining (e) shows no significant increase in DeltaD expression. F-actin (f) and aPKC (g) staining 
display the perturbation of apico-basal polarity upon inhibition of γ-secretase. Merge image is 
shown in (d). No. of LY411575 drug treated embryos with the apico-basal polarity defects =6/8 
Experiment was performed by Li. Xiang.  
 

 

Thereafter, we assumed that if Notch signaling regulates apico-basal polarity, then introducing a 

constitutively activate form of Notch (NICD) (Iso et al., 2001) in a Notch signaling impaired embryo 

should restore apico-basal polarity. Indeed, when I injected Mib morphant embryos with the Notch 

intracellular domain (NICD) RNA, it led to the complete rescue of apico-basal polarity (Figure 33). 
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Figure 33: Activated Notch restores apico-basal polarity 

A dorsal view confocal image at the level of anterior spinal cord of a 24 hpf Mib morphant 
embryos (a-d). Mib depleted embryo shows overexpression of DeltaD (a), and loss of apico-
basal polarity (b-d). No. of Mib morphant embryos analysed = 10/10.  
When activated Notch (NICD) is introduced in a Mib depleted embryo this leads to the complete 
rescue of apico-basal polarity (g). DeltaD expression is still upregulated (e) and F-actin staining 
is shown in (f). No. of rescued embryo=14/17 

 

 

A previous study has reported that R-ras dependent noncanonical Notch signaling plays an 

important role in the maintenance of apico-basal polarity in the zebrafish neural tube (Ohata et al., 

2011). Therefore, I next checked if canonical Notch signaling is required for apico-basal polarity in 

the zebrafish neural tube. To find out this, I made a double knockdown by using morpholinos 

against the transcriptional mediators of Notch signaling RbpjA and Rbpjb (Sieger et al., 2003) that 

are known as CSL in mammals and suppressor of hairless in Drosophila. Just like other Notch 

signaling components, loss-of-function of RbpjA and RbpjB gave apico-basal polarity defects 

where the accumulation of aPKC at the apical midline was perturbed (Figure 34).   

 

Altogether, my results show that canonical Notch signaling is required for apico-basal polarity in 

the zebrafish neural tube. Next, we asked whether Notch signaling is required for the 

establishment or for the maintenance of apico-basal polarity.  
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Figure 34: Transcriptional mediators of Notch signalling are required for apico-basal 

polarity.  

Dorsal view of the spinal cord of Wild-type embryo at 24 hpf, stained with DeltaD (a), F-actin 
(b) and aPKC (c). Merge is shown (d). No. of wild-type embryo analyzed =8 
Double knockdown of RbpjA and RbpjB via morpholinos causes a disruption of apico-basal 
polarity. DeltaD staining shows a slightly upregulated DeltaD (e). The neural tube is having 
partially disrupted morphology showed by F-actin staining (f) and loss of apical expression of 
aPKC (g). No. of double morphants analysed with the disruption of apico-basal polarity = 4/7 

 

2.3 Notch signaling is required for the initial establishment of apico-

basal polarity  

Our previous observations show that Notch signaling is required for apico-basal polarity. Though 

how and when is Notch signaling required for apico-basal polarity, remain the questions. Previous 

studies in zebrafish and the embryonic stem cell-derived neural rosette system have suggested a 

role of Notch signaling in the maintenance of epithelial polarity (Main et al., 2013; Ohata et al., 

2011). To see if Notch signaling is required for the maintenance or the establishment of the 

polarity, I performed long-term time-lapse imaging experiments to visualize the dynamic 

morphogenesis of the spinal cord. This allowed us to see the transition from the neural plate to 

the neural keel and the gradual formation of the neural rod (Figure 35). At the late keel stage, the 

two ends of the neural tissue converge towards each other, cells intercalate to the contralateral 

side of the forming neural rod, and the CNS midline starts to appear (Figure 35 d and e, Movie 1). 

In contrast, in Mib morphant embryos tissue only a stretch of neural tube midline becomes visible 

in the ventral neural tube but is then rapidly lost afterwards. (Figure 35 g, Movie 2).  
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Figure 35: Morphogenesis from the neural plate to the neural rod in a wild-type versus 

Mib depleted embryo 

Images from a time-lapse video to see the dynamic morphogenesis from the neural plate to the 
neural-rod at the level of anterior spinal cord. These transversal view images show the neural 
tissue (neural plate to neural rod), the underlying notochord (N) and the somites (S).   
Morphogenesis of the neural-plate (a) into neural keel (b, c) and then into neural rod (d, e) in 
wild-type embryo. At the late neural keel, when the two sides of the neural tissue completely 
converge towards each other, a tissue midline starts to appear. Further, the neural rod is 
formed. In comparison to wild-type, Mib morphant embryo (f-j) shows the midline transiently on 
the ventral side shown by a yellow arrowhead (i). The midline never forms completely and 
disappears very soon. By the neural-rod stage, the morphology of the neural-rod is completely 
disrupted (j, j’). No. of wild-type time-lapse movies = 6 and Mib morphant with the loss of apico-
basal polarity are=3/4.  
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There could be two explanations for this observation: First, apical-basal polarity is initially 

established (at least in the ventral neural tube) but in the absence of Notch signaling, 

maintenance of polarity is affected causing hence the collapse of apico-basal polarity. Secondly, 

as I used Mib morpholinos to inhibit Notch signaling, it is possible that it did not inhibit Notch 

signaling completely. Therefore, to explore this possibility, I did a careful temporal analysis of 

Mibta52b mutants (which display a stronger polarity phenotype when compared to mutants) and 

fixed them at different stages to analyze the appearance of markers of apico-basal polarity.  In 

wild-type embryos, the apical neural tube midline appears around 12 somites (14 hpf) as polarity 

protein such as aPKC starts to accumulate at the midline, a process that is completed by the 14 

somite stage (Figure 36). Contrary to this, in Mib homozygous mutant embryos, the midline never 

appears (Figure 36 e-h, n-p, u-x).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Notch signalling is required for the initial establishment of apico-basal polarity 

Mib
ta52b 

mutant embryos and wild type sibling embryos are stained for DeltaD (a, e), F-actin (b, f) 
and aPKC (c, g) at 10 somites stage. The midline is not yet established and there is no 
expression of aPKC in homozygous mutant or wild-type sibling embryos.  Merge mages are 
shown in (d) and (h).  
At the 12 somite stage, F-actin staining shows the presence of an early midline in wild-type 
sibling embryo (j). In addition, aPKC starts to accumulate along the forming midline (k). 
However, the homozygous mutant embryo shows no sign of midline formation (m-p). Merge 
mages (l, p).  
In a wild-type sibling embryos (q-t) the midline is completely formed by 14 somite stage (r), 
along with the accumulation of the aPKC at the midline (s). Mib

ta52b 
homozygous embryos, still at 

the 14 somites do not form the midline (v). There is no aPKC in the mutant embryo (w). Merge 
mages (t, x). 
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A quantification of this experiments shows that none of the Mib homozygous mutants embryos 

ever display an occurrence of apical midline formation and accumulation of polarity proteins at the 

apical membrane (Figure 37), Therefore, in contrast to the previously mentioned studies, our 

results suggests that Notch signaling is actually necessary for the establishment of the neural 

tube apico-basal polarity. Our results suggest that Notch signaling is needed for the establishment 

of apioc-basal polarity. Henceforth, I investigated how Notch signaling regulate the establishment 

of apico-basal polarity by observing the transcript of polarity complex proteins.  

 
 
 

 

Figure 37: Mib mutants fail to establish apico-basal polarity 

(a)  Bar diagram showing that at 10 somites stage, none of the control (wild-type sibling) or 
mutant embryos is having midline as determined by the acpical enrichment of F-actin and 
aPKC. (b) At the 12 somites stage, 100% Wild-type sibling embryos have midline judged by 
apical accumulation of F-actin and 60% embryos also have apical accumulation of aPKC at the 
midline. None of the Mib homozygous mutant have a midline at 12 somites stage. (c) In all the 
14 somites stage wild-type sibling embryos, midline is present and aPKC enriched apically. 
Mib

ta52b
 homozygous mutant fail to establish midline. n=no. of embryos that were analyzed.     

 

2.4 Notch signaling regulates transcription of the crumbs genes 

How does Notch signaling affect polarity proteins? Several studies previously showed interactions 

of polarity proteins with Notch receptors. In 2011, Ohata and colleagues showed that in zebrafish 

neural development, non-canonical Notch signalling maintains neuroepithelial polarity. In this 

context, the Crumbs complex protein Moe acts upstream of Notch and negatively regulate Notch 

by binding to its extracellular domain (Ohata et al., 2011).  

In mammalian neural development, Notch is positively regulated by the PAR complex protein 

Pard3 and aPKC, promoting apical neuroepithelial identity (Bultje et al., 2009; Smith et al., 2007). 

These studies emphasize that Notch can be positively or negatively regulated by apico-basal 

polarity proteins.  
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Figure 38: Mib  loss-of-function affects crumbs complex transcription 

In situ hybridization images of 24 hpf wild-type (WT) embryos shows the highly elevated crb1 
expression in the brain and spinal cord (a-d), which is diminished in the spinal cord of the 
Mib

ta52b
 mutant (e-h). No. of wild-type sibling embryos analyzed= 7, and No. of Mib

ta52b
 mutant 

with the loss of crb1 transcription=6/6. 
In comparison to the wild-type embryo (i-l), crb2a expression is lost in the spinal cord of the 
Mib

ta52b
 mutant embryos (m-p).Red arrowheads shows the expression of crb1 and crb2a 

around hind brain, and yellow arrowheads indicate anterior spinal cord. No of wild-type sibling 
embryos=6, No. of Mib

ta52b
 mutant with the loss of crb2a transcription=6/6 

 

 

Our results show that the polarity proteins Crumbs, aPKC and Pard3 are lost in Notch-depleted 

conditions. This suggests that Notch might function upstream of the apico-basal polarity 

machinery. To investigate this, I performed in situ hybridization assays to visualize the effect of 

Notch signalling depletion on the transcription of apico-basal polarity genes. In 24 hpf wild-type 

embryos, crumbs1 (crb1) is expressed in the brain and all along the spinal cord (Figure 38 a-d). In 

Mibta52b mutant embryo crb1 expression is greatly reduced in the spinal cord (Figure 38 e-h). 

Similarly, in 24 hpf wild-type embryos, crb2a is expressed in the eye, the brain, and the spinal 

cord (Figure 38 i-l). In Mibta52b mutant embryos, crb2a expression is reduced in the eyes and brain 

and lost in the spinal cord (Figure 38 m-p).   
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Next, I examine the expression of the Par complex proteins pard6-gb and pard3. I found that 

pard3 is expressed ubiquitously in the nervous system of 24 hpf wild-type embryo (Figure 39 a-d), 

but was found to be heavily reduced in the brain and the spinal cord in Mibta52b mutant embryos 

(Figure 39D e-h).  Finally, pard6-gb transcript is present in the eyes, the brain and the spinal cord 

in 24 hpf wild-type embryos (Figure 39 i-l). In mib loss-of-function embryos, pard3 expression was 

severely reduced in the brain and the spinal cord (Figure 39 m-p).   

 

 

 

Figure 39: Mib Loss-of-function affects Par complex transcription 

In situ hybridization images of 24 hpf embryos show a Pard3 transcript pattern in wild-type (a-d), 
which is reduced in the spinal cord of Mib

ta52b
 mutant (no. of embryos=5/5) embryos (e-h). 

Similarly, Pard6-gb transcript in brain, and spinal cord is shown in wild-type embryos (i-l). In 
Mib

ta52b
 Pard6-gb expression (m-p) is decreased in the brain and lost in the spinal cord (no. of 

embryos=5).  

 

Our previous results have suggested that Notch signaling is important for the establishment of 

polarity between the 12 to 14 somites stage (14-16 hpf). We supposed that if Notch signaling is 

essential to regulate the transcription of apical polarity genes, then in wild-type embryos there 

should be an upregulation of the transcription of polarity genes, concomitant with the 
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establishment of polarity. Therefore, I checked if we see an upregulation of the crumbs and par 

complex genes at the 14 somites stage. Indeed I found that the transcriptional expression of crb1 

(Figure 40 a, b) and crb2a (Figure 40 e, f) is upregulated between the 6 and 14 somites stages 

(Figure 40 c, d, g, h). In contrast, pard6-gb is expressed at similar levels at 6 and 14 somites 

stages (Figure 40 i-l).  

 

 

Figure 40: Transcriptional of polarity genes during early spinal cord morphogenesis 

(a-b) In wild-type, there is almost no transcriptional expression of crb1 at the level of the spinal 
cord in 6 somites stage embryos. Whole mount in-situ hybridization images showing dorsal (a) 
and lateral (b) views. No. of embryos (crb1) at 6 somite stage were analysed = 6. 
(c-d) Transcriptional expression of crb1 upregulates at the 14 somites stage. No. of embryos 
with upregulated crb1=6/6  
(e-f) Similar to crb1, there is no transcriptional expression of crb2a at the level of the spinal cord 
at the 6 somites stage. No. of embryos (crb2a) were at 6 somites stage=7.  
(g-h) Transcriptional expression of crb2a (g, h) also upregulates in the spinal cord at 14 somites 
stage in wild-type embryo. No. of embryos with upregulated crb2a=7/7.  
(i-l) However, there is already trascrptional activity of pard6-gb at the 6 somites stage in the 
spinal cord. 
(k-l) pard6-gb transcription expression do not differ significantly at the 14 somites stage. 
N(pard6-gb) at 6 somites stage=10 embryos and No. of embryos with upregulated pard6-gb=5/5  

 

This was an interesting observation that genes of the different polarity complexes differ by their 

temporal expression dynamics. Therefore, we speculated that Notch signaling might regulate 
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specifically the transcription of the crumbs genes. For this, I checked the transcriptional 

expression of crb1, crb2a and pard6-gb at the 14-somites stage in Mibta52b mutant embryos. In-

situ hybridization at the 14 somites stage shows Mib mutants display a severely reduced 

transcription of crb1 and crb2a, whereas pard6-gb was not much affected (Figure 42). This 

suggests that Notch signaling regulates in particular the transcription of crumbs genes.  

 

Figure 41: Transcription of polarity genes during early spinal cord morphogenesis in Mib 

mutant.    

Whole mount in-situ hybridization dorsal view images showing (a) the transcript of crb1 in wild-
type sibling (no. of embryos=13) and (d) Mib mutant (no. of embryos=5/5).The transcription of 
crb1 is failed to upregulate in a Mib

ta52b
 mutant embryo.  

(b) crb2a in wild-type sibling (no. of embryos=10) and (e) mib mutant (no. of embryos=8/8). 
Similar to crb1, crb2a also do not upregulate at 14 somites stage in a Mib

ta52b
 mutant embryo. 

(c) pard6-gb in wild-type sibling (no. of embryos=5) and in (f) Mib
ta52b

 mutant at the 14 somites 
stage (no. of embryos=5/5). In contrast to crb1 and crb2a, pard6-gb transcription is upregulated 
at the 14 somites stage in a Mib

ta52b
 mutant embryo. 

 

As we found that Mib loss-of-function Notch signaling caused a decrease in the transcription of 

crumbs genes, this suggests that Notch signaling might functions upstream of apical protein 

complexes. To make this observation strong, I examined the expression pattern of the crumbs 

genes when Notch signaling is hyper-activated. For this I injected wild-type embryos with a 

constitutively activated form of Notch i.e. Notch-intra-cellular-domain (NICD) RNA. Indeed, NICD-

injected embryos showed an elevated expression levels of crb1 (Figure 42 e-h) and crb2a (Figure 

42 m-p) in comparison to wild-type embryos (Figure 42 a-d, i-l). It should however be noted that 
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the injection of activated Notch was sufficient to enhance the expression of crumbs genes in their 

endogenous expression domains, but not to induce their ectopic expression.  

 

Figure 42: Activated Notch upregulates the transcription of crumbs genes  

Whole mount in situ hybridization images at 24 hpf stage. Lateral view of the whole embryo (a, 
e, i, m); lateral view of the head (b, f, j, n); lateral view of the spinal cord (c, g, k, n); Dorsal view 
of the spinal cord (d, h, l, p).  
(a-d) crb1 transcript in wild-type embryo 
(e-h) crb1 expression is elevated upon Notch activation through NICD RNA injection.  
(i-l) crb2a transcriptional expression in wild-type embryo 
(m-p) When Notch signalling is overexpressed by introducing NICD RNA, crb2a expression is 
increased. No. of embryos analyzed=5 for each condition. 

 

Our results shows that Mib depletion affect transcriptional expression of the crumbs and the par 

apical polarity complex genes. Mib is shown to be negatively regulated by the basolateral protein 

Par1, inducing neuronal differentiation (Ossipova et al., 2009). It would be interesting to see if Mib 

also regulate the expression of basolateral marker Mark2b (Par1 in mammals) through a feedback 

loop. Therefore, I further analysed the transcriptional expression of mark2b in Mib mutant 

embryos. I found that, both at 14 somites stage and 20 somites stage expression of mark2b does 

not change in Mibta52b (-/-) embryos (Figure 42 b, d), in comparison to their wild-type siblings 

(Figure 42 a, c). Altogether, our results suggest that Notch signalling modulate apico-basal 

polarity through apical polarity complex, particularly the crumbs complex. 
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-  

Figure 43: Transcription of the basolateral polarity gene mark2b 

(a-b) In situ hybridization image showing dorsal view of the mark2b transcript in wild-type sibling 
embryos at 14 somites (a) and 20 somites (b). No. of embryos=5/5 
(c-d) mark2b transcriptional expression in Mib

ta52b 
mutant embryos at 14 somites (c) and 20 

somites (d). No. of embryos=5/5. At both 14 and 20 somites stage, transcription of mark2b does 
not change in Mib

ta52b
 mutant embryo.  

 

3 Mindbomb is required for planar cell polarity   

 

3.1 Mindbomb loss-of-function perturbs C-divisions  

Establishment of apico-basal polarity is essential for the proper formation of the neural tube 

lumen. The zebrafish neural plate lacks typical apico-basal polarity until the late neural keel 

stages, when the neural tube midline has begun to form. The specialized C-division that takes 

place across the midline during this period, were considered to be a driving force for the 

establishment of polarity as Pard3-GFP accumulates at the abscission plane of C-dividing cells, 

which coincides with the forming midline (Tawk et al., 2007). However, more recently other 

studies have presented evidence against an obligatory role of C-divisions for apico-basal polarity 

establishment (Buckley et al., 2013; Žigman et al., 2011).  
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Figure 44: Midline crossing C-divisions in wild-type embryos  

(a) Gap43GFP injections in one of the two cells, at the 2-cell stage embryo allows GFP labelling 
of the cells in half of the neural plate.  
(b) A schematic representation of the spinal cord morphogenesis from the neural plate to the 
neural rod. Image adapted from  (Kimmel et al., 1995). 
(c-f) Transversal view of the neural tube morphogenesis. The images are taken at different time 
points from a time-lapse video. No. of time lapse of wild-type embryos= 5 
(c) Transversal view of the neural plate with one side labelled with Gap43GFP. Right-hand side 
image shows the merge of Gap43GFP with the bright-field view.  
(d) Transversal view of the early neural keel formation.  
(e) During the neural keel stage, cells starts to form projections medially around the region 
where prospective midline would form.   
(f) During the neural keel and the neural rod stages, in order to C-divide, cells shift their bodies 
to the tissue centre and round up as they enter mitosis.  
(g) At the neural rod stage, due to the C-divisions, a homogenous distribution of cells from both 
sides occurs. Here, this is visible by Gap43GFP labelled green cells and unlabelled black cells 
that are equally distributed to the contra-lateral sides of the neural rod. A midline also appears at 
this time.   
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In my study, I found that the in the absence of Notch signalling, neural tube cells lose apico-basal 

polarity. Therefore I questioned, how Notch signalling affects C-divisions that orchestrate mirror 

symmetric apico-basal polarity in the neural tube?  To answer this, I choose to follow the dynamic 

process of C-divisions during neural tube morphogenesis, using confocal time-lapse microscopy. 

A simple experimental setup was used, where a fluorescent membrane label (Gap43GFP RNA) 

was injected into one cell of a two cell stage embryo (Movie 3, Figure 44 a). If injected properly, 

Gap43GFP would label only one side of the CNS. Wild-type embryos showed that the half-

labelled neural plate (Figure 44 c) starts to form mediolateral protrusions (Figure 44 d). Soon, the 

cells that are extending mediolateral protrusions shift their cell bodies medially, and start to round 

up at the start of the prophase. After the C-divisions, the more medial daughter cells move across 

the neural tube midline and elongate to cover the full apico-basal extent of the contra-lateral side 

of the neural tube epithelium (Figure 44 e-g).  

To investigate the regulation of C-divisions by Notch signaling, I analyzed C-division in Mib loss-

of-function embryo. Hereby, I injected Mib morpholino at the one cell stage and Gap43GFP in one 

of the two cells at the two cell stage embryo (Movie 4, Figure 45 a). Surprisingly, I found that in 

Mib-depleted embryos, cells do not form medial protrusions but stick together to stay on the 

ipsilateral side. Therefore, cells failed to have medially occurring C-divisions (Figure 45 c-e). 

Several studies have shown that in the zebrafish neural tube, C-divisions depends on the PCP 

pathway. PCP plays important roles, first in orienting the mitotic spindle of cells (Quesada-

Hernández et al., 2010) and second, in the regulation of convergent extension movements of the 

neural plate (Ciruna et al., 2006).  

Therefore, I next investigated, if the Mib ‘non-crossing’ phenotype resembles PCP loss-of-function 

conditions. Indeed, in embryos deficient for Vangl2, a component of the PCP pathway, neural 

plate cells do not cross to the contralateral side (Movie 5, Figure 46 a-e). This is very similar to 

what we observed in Mib morphants. In addition, in agreement with previous studies (Ciruna et 

al., 2006; Tawk et al., 2007), vangl2 morphants began to form a duplicated neural tube with a 

bifurcating midline (Figure 46 e). This later phenotype was however not observed in Mib 

morphants, as the loss of apico-basal polarity prevented us from visualizing the apical neural tube 

midline. Altogether, these results shows that the Notch signaling component Mib is important for 

the PCP-driven C-divisions. This further inspired us to investigate whether Mib plays part in other 

PCP-dependent processes as well such as convergent-extension during gastrulation and neural-

tube morphogenesis.   
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Figure 45: C-divisions do not occur in Mib loss-of-function embryo  

(a) Experimentally, Mib morpholino is injected at the one cell stage embryo to get ubiquitous 
effect of morpholino and Gap43GFP is injected in one of the two cells, at the 2-cells stage 
embryo to allow GFP labelling of the cells in half of the neural plate.  
(b). A schematic representation of the neural plate morphogenesis from the neural plate to the 
neural rod in the context of this experiment. Image is adapted from (Geldmacher-Voss et al., 
2003; Kimmel et al., 1995) 
(c-f) Transversal view of the neural tube morphogenesis. The images are taken at the different 
time points from a time-lapse video. No. of time lapse movies of Mib morphant embryos with the 
non crossing phenotype=4/4 
(c) Transversal view of the neural plate with only one side labelled with Gap43GFP. Right-hand 
side image shows the merge of Gap43GFP with the bright-field view. The white dotted line 
shows the tissue centre.   
(d) The neural plate starts to move inward in order to form the neural keel.   
(e) During the neural keel stage, cells do not form any projections medially at the tissue centre. 
(f) Transversal view the late neural keel, cells still do not form any projection to reach to the 
contralateral side of the tissue. Instead cells stays at the ipsilateral side.  
(g) Transversal view of the neural rod stage of Mib morphant shows that cells do not cross to the 
contralateral side.  
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Figure 46: Vangl2 morphant embryos shows ectopic midline formation and lack of 

midline crossing.  

(a) Transversal view of the neural plate of Vangl2 morphant embryo that is injected at the two 
cells simultaneously with Gap43GFP and Gap43RFP mRNA, in order to label half CNS with 
RFP and other half with GFP. The images are taken from a time-lapse at the level of anterior 
spinal cord.  
(b-d) The neural plate transforms into the neural keel. The red and green cells do not 
interdigitate into each other’s side.   
(e) Ectopic midlines form at the lateral sides of the neural rod (yellow arrows), rather than a 
single midline at the tissue centre.  In merged image the ectopic midlines are shown by dotted 
yellow lines and tissue centre by a white dotted line.  No. of time lapse movies of vangl2 
morphant embryos with the noncrossing phenotype=3/3 
 

  

3.2 Mindbomb-depleted embryos exhibit convergent-extension defects  

My previous results showed that Mib depleted embryo failed to have C-division that take place 

across the mediolateral axis. C-divisions during zebrafish neurulation are depended on the PCP 

pathway. The PCP pathway mainly contributes to the process of C-divisions by bringing close the 

two sides of the neuroepithelium and this is done by the convergent-extension movement. 

Therefore, there is a possibility that Mib depletion affects PCP-dependent convergent extension 
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and hence causes the failure of C-divisions. To explore this possibility, I looked for convergent-

extension defects during gastrulation and neurulation.   

 

 

Figure 47: Mib loss-of-function embryos exhibit a broader neural tube.  

(a) A confocal line scan at the level of first somite shows the transversal view of wild-type 
embryo at the10 somites stage.  
(b-c) Line scan showing the transversal view of Vangl2 mutant (b) and Mib (c) mutant.   
(d). A schamatic representation of width and height measurement in the neural rod.  
(e) Quantification of the neural-rod broadening by measurement of width to height ratio shows  
that Mib morphants have the broader neural rod than wild-type. Error bars are standard error of 
the mean. No. of wild-type embryos=6, No. of vangl2 mutant embryos=14, and No. of Mib 
mutant embryos=7. 
 

To determine convergent-extension defects, I measured the width-to-height ratio of the neural 

tube at the 10 somites stage in Vangl2 and Mib morphant embryos to observe convergent-

extension defects. Due to the delay in convergent extension movements, PCP-defective embryos 

possess a shorter and less extended body axis and therefore, the neural tissue (Neural 

keel/rod/tube) size is wider than in wild-type embryos. I found that, indeed, Mib mutant embryos 

(Figure 47 c) show a broader neural tissue than wild-type embryos (Figure 47 a), just like vangl2 

loss-of-function embryos (Figure 47 b).  
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Figure 48: Mib depleted embryos display a shorter body axis 

(a-c) Transmitted light lateral view images of wild-type (a), Vangl2 morphant (b), and Mib 
morphant (c) embryos at the tailbud stage. The angle between anterior and posterior ends are 
shown by yellow lines.  
(d) Quantification of body axis elongation by measurement of angle between anterior and 
posterior extents, shows the reduction in body axis elongation in Mib morphants similar to 
Vangl2 morphants. Error bars are the standard error of the mean. 
  

One classical way to examine convergent-extension defects during gastrulation is to measure the 

angle between the anterior and posterior extremities of the elongating body axis at the end of 

gastrulation (tail bud stage). PCP mutants are known to exhibit a shortened and broadened body 

axis. Lateral views of the bud stage Vangl2 morphant embryos shows a reduced angle between 

the head and the tail (Figure 48 b), in comparison to wild-type embryos (Figure 48 a). Similar to 

Vangl2, Mib-depleted embryos also displayed a shortened body axis i.e. a reduced axis extension 

angle (Figure 48 c, d). This suggests that Mib morphants also present convergent-extension 

defects.  Convergent-extension defects at gastrulation were further confirmed in Mibta52b mutants 

(Figure 49).   

Altogether, these results suggest that Mib is important for PCP-regulated convergent-extension 

movements. Another, important role of the PCP pathway is in the regulation of stereotypical 

division orientation during gastrulation and neurulation. I have earlier shown that Mib affects PCP-

dependent C-divisions. There could be two ways to affect C-divisions, first by perturbing 
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convergent-extension movement, and second by affecting the division orientation of the 

neuroepithelial cells. I have already shown that Mib is important for convergent-extension. I next 

investigated if Mib is also required for stereotypical division orientation during gastrulation.   

 

Figure 49: Mib mutant embryos show a shorter body axis.  

(a-b) Transmitted light lateral view images of a wild-type sibling embryo (a) and a Mib 
homozygous mutant at the tailbud stage. The angle between anterior and posterior extent of the 
body axis are shown by yellow lines. 
(c) Embryos were grown till 48 hpf and Mib

ta52b
 (-/-) embryos were selected based on the white-

tail phenotype.  
(d) Quantification of the body axis elongation by measuring the angle between anterior and 
posterior ends of the body. n= no. of embryos. Error bars are the standard error of the mean.  

 

3.3 Mindbomb loss-of-function leads to disoriented divisions during 

zebrafish gastrulation   

Stereotypical cell division orientation plays a key role in neural rod midline formation during 

zebrafish neurulation (Quesada-Hernández et al., 2010). My earlier results showed that Mib 

affects C-divisions during neurulation and convergent-extension during Zebrafish gastrulation and 

neurulation, two processes that are dependent on PCP. I further asked if Mib also affects 

stereotypical division orientation during zebrafish gastrulation, another PCP-dependent process.  
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Figure 50: Mib loss-of-function embryo exhibit alterations in sterotypical division 

orientation during gastrulation.  

(a) Orientation of the mitotic plane of epiblast cells with respect to the anterior-posterior axis in a 
Tg:H2A-GFP transgenic control embryo. The division planes of dividing cells are shown by 
green lines.  
(b) Orientation of the mitotic plane of epiblast cells with respect to the anterior-posterior axis in a 
Tg:H2A-GFP transgenic embryo injected with Mib morpholino. The division planes of dividing 
cells are shown by red line.  
(c) Polar graphs showing the frequency distribution of angles between the division axis and the 
anterior-posterior (A-P) axis in wild-type control embryos. No. of wild-type embryos=5 and 
cells=260 
(d) Polar graphs showing the frequency distribution of angles between the division axis and the 
A-P axis in Mib morphant embryos. No. of Mib morphant embryos=4 and cells=220 
The bidirectional arrow on the side shows the A-P axis. 

 

During gastrulation, stereotypical cell division orientation contributes to body-axis elongation by 

positioning the daughter cells along the axis of elongation. In wild-type embryos the mitotic 

spindle is actively oriented along the anterior-posterior axis in the dorsal epiblast cells, a process 

that is disrupted in PCP mutants (Gong et al., 2004). Therefore, I carried out confocal imaging to 

analyse if Mib depletion also led to a disruption of division orientation in dorsal epiblast cells. 

Imaging was performed as described by Gong and colleagues. We found that, indeed, Mib 

morphant embryos displayed alterations in their division orientation i.e. epiblast cells no longer 

divide in an anterior-posterior oriented fashion (Figure 50 a). Quantifications of division orientation 

in wild-type and Mib morphant embryos are shown in Figure 50 (b, c). Altogether, these results 

shows that the Notch signalling component Mib is important for PCP-driven convergent-extension 

movements and oriented cell-divisions.  
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3.4 Mindbomb’s role in PCP is independent of its function in Notch 

signaling  

Several studies have shown that Notch pathway can contribute to several PCP driven processes 

e.g. photoreceptor cell fate determination during eye development in flies (Capilla et al., 2012; 

Strutt et al., 2002). We found that inhibition of the Notch signaling component Mindbomb lead to a 

disruption of C-divisions, convergent-extension defects and failures in stereotypical division 

orientation during gastrulation and neurulation. Therefore, next we asked ourselves whether the 

function of Mib in PCP is independent of its role in Notch signaling or whether overall Notch 

signaling contributes to PCP. First, I introduced a constitutively active-form of Notch (NICD) in Mib 

morphants, and measured the angle of body axis extension at the end of gastrulation. I found that 

introducing activated Notch could not rescue Mid-dependent convergent-extension defects 

(Figure 51 a-d).  

In addition, I performed a similar rescue experiment to analyze the effect of Notch signaling on C-

divisions.  This experiment was based on the assumption that if Notch signaling were not required 

for C-divisions, introducing a constitutively active form of Notch would rescue the neural tube 

apico-basal polarity but not PCP-driven C-divisions. In this scenario, Mib loss-of-function embryos 

should produce a bifurcating double lumen just like other PCP mutants. The experimental scheme 

was to inject Mib morpholino and NICD RNA at the one cell stage along with a red membrane 

marker, (Gap43RFP), followed by the injection of a green membrane label (Gap43GFP) at the two 

cell stage (Figure 52 a). This complete (RFP) and half-labeling (GFP) of the neural tube allowed 

us to visualize the occurrence of midline-crossing C-divisions as well the whole structure of the 

neural tube (Figure 52 b).   
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Figure 51: Activated Notch does not rescue the convergent-extension defects of Mib 

morphant embryos.  

(a) Transmitted light lateral view image of wild-type embryo.  
(b) Transmitted light lateral view image of Mib morphant embryo. 
(c) Transmitted light lateral view image of MIb morphant embryo injected with NICD mRNA. 
(a-d) The anglea between the anterior and the posterior ends are shown by yellow lines.  
(e) Quantification of body axis elongation by measurement of angle between the anterior and 
the posterior ends shows that introducing an activated form of Notch in Mib morphant does not 
rescue convergent-extension defects. Error bars are standard error of the mean. n= no. of 
embryos.  
  

 

Indeed, we found that introducing Notch in Mib morphants could not rescue the crossing 

phenotype, and cells (in green) lingered on the ipsilateral side (Movie 6, Figure 52 b-f). However, 

introducing activated Notch in Mib morphants could rescue apico-basal polarity, leading hence to 

the formation of a bifurcating double lumen in the two halves of the nervous system (Figure 52 f). 

Overall, these results show that Mib plays an additional role in the PCP pathway that is 

independent of its well-known function in Notch signaling.  
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Figure 52: Constitutively activate Notch restores apico-basal polarity but not midline 

crossing of spinal cord cells 

(a) A one cell stage embryo is injected with Mib morpholino and activated Notch (NICD RNA). In 
addition, Gap43RFP RNA in injected to label the cells of the whole embryo. At the two cell 
stage, one of the cells is injected with Gap43GFP to label only half of the neural tube. 
(b) A transversal confocal image of the neural plate shows half GFP and full RFP labelling of the 
neural-plate. 
(c-d) Morphogenesis of the neural plate into the neural keel. Green cells do not cross the tissue 
centre.  
(e) A yellow arrow shows the initiation of midline formation at the lateral side. Green cells still do 
not cross to the contralateral side.  
(f) Formation of the neural rod. Ectopic midlines (indicated by yellow dotted lines) form at the 
lateral sides. The tissue centre is represented by a white dotted line. No. of time lapse movies 
with=2/2 
 
 

3.5 Mindbomb convergent-extension defects are rescued by a PCP 

downstream mediator.  

Our results suggest that Mib plays a role in PCP signalling and is required for PCP-dependent 

convergent-extension movements. To further ensure the participation of Mib in PCP signalling, I 

wondered if the Mib loss-of-function phenotype can be rescued by a PCP protein. Thereby, I took 
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a candidate approach and performed experiments with several PCP proteins. In recent years, a 

role for Rho family GTPases downstream of Wnt/PCP has been demonstrated in a variety of 

morphogenetic processes associated with zebrafish development (Schlessinger et al., 2009).  

Thereby, I injected rhoA (a small GTPase) mRNA in Mib loss-of-function embryos. Interestingly, 

anterior-posterior body axis shortening is rescued by RhoA (Figure 53 a-e). Taken together, these 

results strongly indicate a role of Mib in PCP signalling.  

 

 

Figure 53: RhoA rescues the convergent-extension defects of Mib morphants.  

(a) Transmitted light lateral view image of a wild-type embryo.  
(b) Transmitted light lateral view image of a Mib morphant embryo. 
(c) Transmitted light lateral view image of a wild-type embryo injected with RhoA mRNA. 
(d) Transmitted light lateral view image of a Mib morphant embryo injected with RhoA mRNA. 
(a-d) The angle between the anterior and the posterior ends is shown by yellow lines.  
(e) Quantification of body axis elongation by measurement of the angle between the anterior 
and the posterior extent of the body axis shows that RhoA rescues the convergent-extension 
defects of Mib morphants. Error bars are standard error of the mean. n= no. of embryos 
 
 

3.6 Mib might interact with Ryk to affect planar cell polarity  

Our results shows that Mib loss-of-function affects PCP signaling. We next asked how Mib 

specifically contributes to the regulation of the PCP pathway. A recent study in C. elegans has 

shown the interaction of Mib with the Receptor related to tyrosine kinase (Ryk) to activate Wnt/β-

catenin signaling (Berndt et al., 2011).  In zebrafish, Ryk is shown to be a Wnt co-receptor. Ryk 
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deficiency led to several gastrulation defects (Lin et al., 2010).  Hence, Ryk gives an interesting 

opportunity to determine how Mib contributes to the Wnt/PCP pathway.  

 

To explore if Mib and Ryk interact with each other, I co-injected a hypomorphic dose of Mib and 

Ryk morpholinos. Under these conditions, single knockdown of Mib or Ryk has no effect on planar 

cell polarity and therefore, only single midline is formed these embryos (Figure 54 a-h). On the 

other hand, when Ryk and Mib morpholinos were coninjected, two midline starts to appear. This 

initial observation suggests that Ryk might interact with Mib and link Mib to the PCP pathway. 

 

 

Figure 54: Mib interaction with Ryk  

(a-d) Dorsal confocal image of an embryo injected with Mib morpholino with a hypomorphic dose 
of 500 µM. DeltaD (a), F-actin (b), aPKC (c) and Merge (d). No. of embryos=5 
(e-h) Dorsal confocal image of an embryo injected with Ryk morpholino with a hypomorphic 
dose of 500 µM. DeltaD (e), F-actin (f), aPKC (g) and Merge (h). No. of embryos=5 
(i-l) Dorsal confocal image of an embryo injected with Mib and Ryk morpholinos with a 
hypomorphic dose of 500 µM of each shows the ectopic midline formation. DeltaD (i), F-actin (j), 
aPKC (k) and Merge (l). Ryk+Mib moprphant embryos analysed with midline defects=5/8 

 

4 Cell autonomy of Mib mutant phenotypes 

C-division are an important process during the morphogenesis of the zebrafish neural tube. 

During C-divisions, Pard3-GFP localize at the apical end of the cells and generates two daughter 

cells with mirror symmetric apico-basal polarity, suggesting a role of C-divisions in establishing 
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apico-basal polarity (Tawk et al., 2007). However, further studies have shown, when C-division 

were inhibited, neuroepithelial cells are still able to polarized (Buckley et al., 2013; Quesada-

Hernández et al., 2010). Hence, other mechanisms must contribute to the establishment of 

midline polarity.  

Our observations that Notch signalling is important for apico-basal polarity and Mib is having a 

Notch-independent function in regulating C-divisions, led us to a hypothesis that C-dividing sister 

cells might interact with each other via Notch signalling to send signals across the midline to 

establish polarity. In order to determine whether extrinsic or intrinsic factors are important for 

certain developmental processes, cells can be transplanted into a different environment. 

Therefore, it is a suitable technique to study the importance of Notch signalling for C-dividing 

cells. To analyse if transplanted cells are able to C-divide normally and project all along the extent 

of the apico-basal axis, I used membrane-GFP (Gap43GFP) to label donor cells. Secondly, to 

determine if transplanted cells can polarize itself in the host environment, I injected donor 

embryos with Pard3-GFP mRNA. We observed that Gap43GFP wild-type cells transplanted into 

wild-type host behaved normally and elongated themselves along the apico-basal extent of the 

neuroepithelium (Figure 55 a-d).  

Similarly, Pard3-GFP labelled donor were able to deposit Pard3-GFP at the apical end of the cells 

that lies at the midline. We observed two kinds of transplanted cells, around 69% of cells we 

analysed probably went through C-division, as the two sister cells connect to each other at the 

apical end, where Pard3-GFP accumulates (Figure 55 e-g). Secondly, 31% of cells were found to 

be single cells on either side of the neural tube that is having no sister cells on the contralateral 

side (Figure 55 h-j). These single cells are, however, able to deposit Pard3-GFP at the apical tips. 

This also suggests that not necessarily all cells undergo C-divisions in the zebrafish neural tube 

and moreover, this observation supports the argument that C-divisions alone are not essential for 

apico-basal polarity. 

Next, I transplanted Gap43GFP or Pard3-GFP injected Mib mutant cells into the wild-type 

embryos. In this condition, transplanted cells cannot act as Delta ligand-presenting cells. 

However, surrounding wild-type cells can trigger Notch signalling in the transplanted cells. We 

found that Mib loss-of-function donor cells, injected with Gap43GFP could C-divide and elongate 

themselves (Figure 56 a-d). Similarly, Pard3-GFP injected Mib mutant cells accumulated Pard3-

GFP at the apical midline (Figure 56 e-h). These results shows that Mib-deficient transplanted 
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cells behave like wild-type cells in a wild-type surrounding. Importantly, this experiment argues 

against a potentially relevant Delta/Notch signalling event between mitotic sister cells.  

 

Figure 55: C-dividing cells in wild-type embryos 

Dorsal views of the neural tube at the level of anterior spinal cord.   
(a-d) Wild-type donor cells injected with Gap43GFP RNA (a), transplanted into a wild-type host 
that is stained for F-actin (b) and Zs-4(c) for the detection of Crumbs proteins. N= 2 embryos, 23 
cells. 
(e-g) Wild-type donor cells injected with Pard3-GFP RNA (e), transplanted into a wild-type host 
that is stained for F-actin (f). Transplanted cells that have undergone C-division, appeared in 
pairs, one cell to each side of the neural-tube. Pard3GFP accumulated at the apical tip of the 
cells.  
(h-j) Wild-type donor cells injected with Pard3-GFP RNA (h), transplanted into a wild-type host 
that is stained for F-actin (i). Transplanted cells appeared as single cells that have not 
undergone C-division, but also accumulate Pard3-GFP at the apical tip of the cell.  
N=13 embryos, 102 cells. A pie chart shows that out of 102 transplanted cells, 69% have C-
divisions and 31% were single cells.  
  

 

In a third set of transplantation experiments, Gap43GFP or Pard3-GFP mRNA was injected in 

wild-type donor cells that were transplanted into Mib mutant host embryos. In this case, 

Gap43GFP labelled transplanted cells were unable to adopt a typical columnar cell morphology 

(Figure 56 i-l).  Donor cells with Pard3-GFP showed no sign of polarization, and Pard3-GFP is 
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seen as only as a diffuse signal. Additional Crumbs staining showed a complete absence of 

Crumbs in transplanted cells (Figure m-p).     

 

Figure 56: The spinal cord cells do not polarize in cell autonomous way 

(a-d) Mib mutant donor cells injected with Gap43GFP RNA (a), transplanted into a wild-type host 
that is stained for F-actin (b) and crumbs(c). Mib mutant cell stretch itself to elongate along the 
apico-basal extent of the neuroepithelium. N=6 embryos, 27 cells  
(e-h) Mib mutant donor cells injected with Pard3-GFP RNA (e), transplanted into a wild-type host 
that is stained for F-actin (f) and Crumbs (g). Mib mutant cell in Wild-type environment, are able 
to C-divide and accumulate Pard3-GFP at the apical end of the daughter cells. N=13 embryos, 
127 cells. 67% of the cells could C-divide, and around 33% cells have not undergone C-division.  
(i-l) Wild-type donor cells injected with Gap43GFP RNA (i), transplanted into a Mib mutant host 
that is stained for F-actin (j) and Crumbs (k). Wild-type transplanted cells in Notch-signalling 
depleted surrounding do not divide and do not exhibit a normal neuroepithelial cell morphology. 
N= 3 embryos, 8 cells 
(m-p) Wild-type donor cells injected with Pard3-GFP RNA (m), transplanted into a Mib mutant 
host that is stained for F-actin (n) and Crumbs (o). Wild-type transplanted cells in Notch-
signalling depleted surrounding do not polarise. N=6 embryos, 30 cells 
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In summary, these results suggest that neuroepithelial cells do not have cell autonomy to polarize 

themselves. Surrounding cells can induce apico-basal polarity in Mib-depleted transplanted cells. 

The question remains if the rescuing Delta/Notch signal originates from surrounding cells sitting 

next to the mutant cells on the ipsilateral side of the neural tube, or on the contralateral side, or on 

both sides. As wild-type cells do not exhibit cell autonomy in a Mib mutant host, this suggests that 

C-dividing cells do not interact with each other via Notch signalling.  

 

5 Conclusion  

In summary, my work produced several original findings. First, I found that DeltaD trafficking and 

links between Delta/Notch signaling and apico-basal polarity vary according to the developmental 

context: While Delta/Notch signaling is required for the establishment of apico-basal polartiy in the 

neural tube; it is dispensable for this same process in the inner ear.    

In the course of studying the importance of apico-basal trafficking of Delta ligands for Notch 

signaling, I discovered that Notch signaling itself is important for apico-basal polarity in the 

zebrafish neural tube as Mib loss-of-function led to a complete loss of apico-basal polarity in the 

neuro-epithelium. I further showed that this phenotype is due to the failure of overall Notch 

signaling rather than a Notch-independent function of Mib: First, inhibition of Notch ligands and 

downstream transcriptional activators Rbpja and Rbpjb resulted in a loss of apico-basal polarity. 

Secondly, ectopic activation of Notch ensures a complete rescue of apico-basal polarity in Mib 

loss of function embryos. Through a temporal analysis, I further showed that the Notch signalling 

is required for the earliest steps of establishment of neuro-epithelial apico-basal polarity.  

Furthermore, I found that Notch signalling acts upstream of the Crumbs complex to regulate 

apico-basal polarity. This was evident by the downregulation of crumbs expression in Mib loss-of-

function embryos. 

Another striking result of this study is that the Notch signaling component Mib affects C-divisions 

through an effect on PCP and convergent extension movements. Remarkably, this effect of Mib 

on PCP is independent of its role in Notch signaling. I further showed that Mib-depleted embryos 

display alterations in cell-division orientation during gastrulation. Orientation of cell division is 

strictly dependent on the PCP pathway, thus indicating a novel role of Mib in the regulation of 

PCP signaling. In support of this, the convergent extension defects of Mib-depleted embryos can 

be rescued by the PCP downstream mediator RhoA.  
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Thus, Mib plays a dual role in the zebrafish neural tube development. On one hand, by 

participating in Notch signaling it regulates the apico-basal polarity of the neural tube. On the 

other hand, Mib takes part in PCP signaling to contribute to the regulation of morphogenetic 

movements and stereotypical division orientations. Altogether, this Ph.D. thesis presents a 

functional link between Delta/Notch signaling components and the cellular and tissular polarity of 

the neuroepithelium that is critical for the proper neural tube morphogenesis. A future study will 

aim to identify the precise mechanism through which Mib functions in PCP signaling.
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General Discussion and Perspectives 

 

In this thesis, I uncovered a dual role of the E3-ubiquitin ligase Mindbomb in zebrafish neural 

tube morphogenesis. I started this project with the initial aim to explore the dynamic process of 

apico-basal trafficking and transcytosis of Delta ligands in vivo and to characterize the 

significance of apico-basal transport of Delta ligands for the activation of Notch signaling. 

However, during the first year, I found that conversely, Notch signaling itself is crucial for apico-

basal polarity of the neural tube. Moreover, I found an unexpected novel role of the Notch 

signaling component Mindbomb (Mib) in planar cell polarity. Thus, my study reveals a dual role 

of Mib in the regulation of apico-basal and planar cell polarity that is crucial for the proper neural 

tube morphogenesis. In the following, I will discuss the different findings that have emerged 

from my PhD work. 

I. Trafficking of Delta ligands is differentially regulated in a tissue-

context dependent manner  

Epithelial cells present distinct functional apical and basolateral compartments. Although, it is 

well established that endocytosis of Delta ligands is essential for Delta-Notch signalling (Itoh et 

al., 2003), the actual reason for this requirement remains unclear. Using a trans-filter cell culture 

assay, Benhra and colleagues showed that Delta endocytosis ensures a basal-to-apical 

transcytosis of ligand molecules that is likely to be essential for productive ligand-receptor 

interactions (Benhra et al., 2010). My initial aim was to address the vectorial transcytosis model 

proposed by Benhra and colleagues, in the zebrafish neural tube. In my attempt to investigate 

the importance of endocytic trafficking for Delta-Notch signalling, I inhibited the function of the 

E3 ubiquitin ligase Mindbomb (Mib), using both antisense morpholinos and genetic mutants 

(Itoh et al., 2003). The analysis of Mib-depleted embryos led to the surprising observation that 

the apico-basal transport of DeltaD ligands is differentially regulated in different parts of the 

nervous system (Figure 57). 

The transcytosis model of Benhra and colleagues postulates that Delta ligands are initially 

secreted to the baso-lateral cell surface, from where they are then relocalized towards the apical 

cell surface (Benhra et al., 2010). In accordance with this model, we observed that in the ear of 

Mib-depleted embryos DeltaD ligands accumulate at the basolateral membrane (Figure 24).  
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Figure 57: Model of differential regulation of DeltaD trafficking in the neural tube and 

the ear    

(A) In the wild-type neural tube, DeltaD ligands are observed at both apical and basolateral 
domains in potential endocytic compartments. Upon inhibition of Mib, endocytosis of DeltaD 
ligands is blocked and therefore they remain at their initial site of secretion. In Mib loss-of-
function embryo, DeltaD ligands are observed at both apical and basolateral domain.  
(B) In the ear of Mib loss-of-function embryos, DeltaD ligands are found only at the basolateral 
domain, suggesting DeltaD ligands are secreted primarily at the basolateral membrane. 

 

On the contrary, we found that in the spinal cord DeltaD accumulated on both apical and 

basolateral membranes upon partial inhibition of Mib. This suggests that the initial site of 

localization and secretion of delta ligands may not be restricted to the basolateral membrane 

(Figure 25). It would be very interesting to understand this differential regulation of deltaD 

trafficking in different part of the nervous system.  A future study dedicated to the identification 

of the cellular regulators important for the internalization, the endocytic sorting and the 

intracellular transport of DeltaD ligand molecules in the ear versus the neural tube could provide 

important insights into the differential regulation of Delta trafficking in the two systems.  
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II. Notch signalling is important for the establishment of apico-basal 

polarity in the neural tube. 

To study the importance of Delta ligand trafficking for Notch signaling, I inhibited the function of 

the E3 ubiquitin ligase Mindbomb (Mib). Using a high dose of Mib morpholino, I discovered that 

loss of function Mib led to the complete loss of apico-basal polarity in the spinal cord. This was 

evident by the loss of apical protein aPKC expression. In addition, the morphology of the neural 

tube was disrupted, and cells became round, and form rosette-like structure rather than 

adopting an elongated columnar cell shape (Figure 26). This was confirmed by observing a 

similar and even stronger phenotype in Mibta52b mutant (Figure 27). My observations therefore 

suggest a role of Mib in the regulation of neural tube apico-basal polarity. Recently a study in 

Drosophila has reported a crucial role of the E3-ubiquitin ligase Neuralized in the regulation of 

epithelial polarity that is independent of its function in Notch signaling (Chanet and Schweisguth, 

2012). Neuralized has been previously shown to be essential for the endocytosis of Delta in flies 

(Pavlopoulos et al., 2001), similar to the function of Mib in zebrafish. Therefore, an obvious 

question was if overall Notch signaling is required to regulate apico-basal polarity, or like 

Neuralized, Mib also plays a Notch-independent role in apico-basal polarity. 

In order to answer this I inhibited different components of the Notch pathway. First, inhibition of 

DeltaA ligands by morpholino in DeltaD mutant embryos caused a loss of apico-basal polarity 

that is similar (albeit somewhat weaker) to the one observed in Mib loss-of-function embryos 

(Figure 31). Secondly, the blocking of γ-secretase (using the pharmacological inhibitors DAPT 

and LY411575) that prevents the release of NICD and therefore activation of Notch signaling, 

also led to the loss of apico-basal polarity (Figure 32). Furthermore, ectopic activation of Notch 

by introducing a constitutive active form of Notch (NICD) (Iso et al., 2001), resulted in a 

complete rescue of apico-basal polarity in Mib loss-of-function embryos (Figure 33). These 

results indicate that overall Notch signaling is important for neural tube apico-basal polarity.  

While a previous study suggested a role of noncanonical Notch signaling in the late 

maintenance of apico-basal polarity (Ohata et al., 2011), my subsequent results suggested that 

conversely the establishment of apico-basal polarity depends on canonical Notch signaling. I 

showed this by inhibiting the downstream transcriptional activators of Notch signaling RbpjA and 

RbpjB (Supressor of hairless Su(H) in Drosophila and CSL in mammals) that resulted in loss of 
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apico-basal polarity (Figure 34). These results altogether suggest that canonical Notch signaling 

is important for regulating apico-basal polarity in the neural tube of zebrafish.  

How does Notch signaling contribute to the apico-basal polarity of the Zebrafish neural tube? In 

contrary to amniotes, the neuro-epithelial cells of zebrafish neural plate appear to lack typical 

apico-basal polarity, which only gradually appears at the late neural keel stage. During the 

neural plate/keel stages, deep and superficial cells from the two sides of the neural plate 

converge towards the tissue centre, form the neural keel and then the neural rod. At the neural 

rod stage, a morphologically recognizable midline of the neural tube (corresponding to the 

apical surface of the future neural tube lumen) becomes visible at the site of apposition of the 

cells from the two halves of the nervous system and becomes the site of localization of apical 

polarity proteins (Hong et al., 2010; Yang et al., 2009). 

In order to understand the temporal regulation of polarity establishment, I performed a strict time 

course analysis of zebrafish neural tube development (Figure 36). I found that at 12-somites (14 

hpf), polarity proteins start to accumulate at the midline of the neural tube in wild-type embryos. 

However, there was no accumulation of apical proteins in Mib mutants (Figure 37).  This result 

suggests that Notch signaling regulates the establishment of apico-basal polarity. While 

previous studies have unraveled late roles of Notch signaling in the maintenance of apico-basal 

polarity in the zebrafish neuroepithelium (Ohata et al., 2011) and in mouse neural rosettes (Main 

et al., 2013), my work identifies a novel function of Notch signaling in polarity establishment.  

 

In the murine developing neocortex, Par3 enhances Notch activity and inhibits the differentiation 

of neuroepithelial cells (Bultje et al., 2009). In Drosophila, Crumbs negatively regulates Notch 

signaling, and through a feedback loop, Notch induces crumbs (Herranz et al., 2006). In 

zebrafish, however, it has been shown that Crumbs binds to the extracellular domain of Notch 

and inhibits its activity (Ohata et al., 2011). These putative feedback loops may represent 

important linkage between the apico-basal polarity proteins and Notch signaling. In the context 

of this study, we found that depletion of Mib diminished the apical accumulation of Pard3 and 

Crumbs (Figure 28, and Figure 29).  

 

Ohata and colleagues showed in their study that Crumbs binds the extracellular domain of 

Notch and inhibits Notch signaling. In association with another Crumbs complex protein, Mosaic 

eyes, noncanonical Notch signaling regulates the maintenance of apico-basal polarity (Ohata et 
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al., 2011). In my study, I found that transcription of polarity genes require Notch signaling 

(Figure 40). In addition, through in-situ hybridization experiments I showed that in loss-of-

function Mib embryos, in particular crumbs expression is lost at the transcriptional level (Figure 

41). This suggests that Notch might act upstream of the Crumbs complex. What is now needed 

is to show if Crumbs misexpression can rescue the Notch loss-of-function phenotype.   

III. Mindbomb is required for planar cell polarity   

Midline crossing C-divisions are one of the key features of zebrafish neurulation. The C-

divisions that take place during neural keel and neural rod stages, generate two daughter cells 

with mirror symmetric apico-basal polarity. The apical polarity protein Pard3 accumulates at the 

cleavage furrow and is inherited by the two daughters equally at the abscission plane that 

coincides with the forming neural tube midline. After the division, the two daughter cells stretch 

themselves along the prospective apico-basal extent of the neuro-epithelium and form 

projections that reach the basal membrane, and remain connected at the apical tip, where 

Pard3 localizes (Tawk et al., 2007). Therefore, C-divisions were considered as the driving force 

for establishing apico-basal polarity in the zebrafish neuroepithelium. However, more recently 

other studies have presented evidence against the obligatory role of C-divisions for apico-basal 

polarity establishment (Buckley et al., 2013; Žigman et al., 2011), but still considered that C-

division provide a morphogenetic advantage to the embryo (Buckley et al., 2013).  

 

In my study, I found that Pard3 apical accumulation is lost when Mib is inhibited (Figure 28), 

therefore, it was interesting to know if Mib affected C-divisions. For this I carried out a time-

lapse recording of neural tube morphogenesis, where membrane GFP was injected to mark only 

half of the nervous system. This resulted in a very surprising observation that in Mib loss-of-

function embryos, C-divisions were severely perturbed (Figure 45). Several studies have shown 

that C-divisions are planar cell polarity (PCP) dependent (Ciruna et al., 2006; Quesada-

Hernández et al., 2010; Tawk et al., 2007).  In maternal zygotic mutants for a PCP core 

component, Vangl2/Trilobite, cells from the two sides of the neural rod never cross to the 

contralateral side. Instead C-divisions incorrectly take place at the lateral sides of the neural rod, 

leading to the ectopic generation of a bifurcating double neural tube midline (Ciruna et al., 

2006). Thus Mib loss-of-function, gives a phenotype that is similar to the vangl2 mutant with 

respect to the loss of the midline crossing behaviour of neural keel/rod cells (Figure 46). 
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However, we did not observe a double neural midline in Mib loss-of-function embryos, since Mib 

depleted embryo also exhibit apico-basal polarity defects.   

PCP signalling is required to direct intercalative behaviour of C-dividing cells along the medio-

lateral axis by mediating convergent-extension movements (Ciruna et al., 2006).  Therefore, 

there is a possibility that Mib depletion affects PCP, which then causes the failure of C-divisions. 

Accordingly, we found that Mib loss-of-function led to convergent-extension defects, resulting in 

embryos displaying a shorter body axis at the tail-bud stage (Figure 48) and a broadening of the 

central nervous system during neurulation (Figure 47). Furthermore, PCP signaling has been 

implicated in orienting the mitotic spindle along the medio-lateral axis of the dividing cells (C-

divisions) during neurulation (Quesada-Hernández et al., 2010) and along the anterior-posterior 

axis during the gastrulation (Gong et al., 2004). My analysis of stereotypical cell division 

orientation during gastrulation led to the observation that Mib depletion indeed led to the 

alteration in cell-division orientation (Figure 50). The RhoA small GTPase protein has been 

identified as a downstream effectors of PCP signaling (Schlessinger et al., 2009). I further 

provided evidence in support of the role of Mib in PCP by rescuing the convergent-extension 

defects in Mib loss-of-function embryos through introducing RhoA mRNA (Figure 53). 

The PCP and Notch pathways have been reported to be interrelated. In Drosophila, Notch 

signalling has been shown to contribute to PCP-dependent processes such as R3/R4 

photoreceptor cell fate determination during eye development (Cooper and Bray, 1999; Strutt et 

al., 2002). Conversely, PCP signalling coordinates the spatial activity of the Notch pathway by 

regulating the endocytosis of Notch receptor during Drosophila leg development (Capilla et al., 

2012). Thereby, I addressed the question if Mib loss-of-function affects PCP through Notch 

signalling. I found that introducing an activated form of Notch in Mib-depleted embryos did not 

rescue convergent-extension phenotypes (Figure 51). Moreover, time-lapse recording showed 

that introducing activated Notch in Mib morphants rescues the apico-basal polarity of the neural 

tube but fails to rescue the crossing of cells to the contralateral side. Interestingly, Notch 

signalling rescued Mib morphants present a bifurcating dual neural tube midline that is remindful 

of the phenotypes of the vangl2 mutant (Figure 52). This clearly shows that 1) Notch signalling 

regulates apico-basal polarity, and 2) Mib has a Notch-independent role in PCP signalling 

(Figure 58).  
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Figure 58: C-divisions in wild-type and PCP-affected conditions. 

(A) In wild-type C-divisions occur along the medio-lateral (ML) axis (Black arrows) and deposit 
one daughter cell on the contralateral side. Pard3 accumulates at the abscission plane that 
coincides with the geometrical tissue center (Red dotted line) where the neural tube midline 
forms (Green dashed line).  
(B) When activated Notch is introduced in Mib loss-of-function embryos, C-divisions do not 
occur along the ML axis at the tissue center. Divisions take place at the lateral sides of the 
neural rod, and as activated Notch restores apico-basal polarity, it gives rise to a dual neural 
tube midline (Green dashed line). Black arrows show that division orientation is changed and 
is perpendicular to the geometrical midline of each neural tube half.  

 

IV. How does Mindbomb contribute to the PCP pathway? 

We uncovered a novel role of Mib in the regulation of PCP-driven processes such convergent-

extension movements and stereotypical division orientation. How Mib acts in PCP signaling is 

still unknown to us. Mib is an E3-ubiquitin ligase; therefore, it is possible that Mib takes part in 

the trafficking of one or more components of the PCP pathway. Several studies have reported 

that cellular levels of PCP components are modulated by the activity of E3-ubiquitin ligases. In 

Drosophila, the junctional pool of Flamingo and Dishvelled is regulated by Cullin-3/Diablo/ketch 

E3-ubiquitin ligase complex (Strutt et al., 2013) and Cullin1(Cul1)/SkpA/Supernumerary  

limbs(Slimb) regulates the stability of the peripheral membrane components Prickle (Pk) during 

wing development (Cho et al., 2015; Strutt et al., 2013). In mice the E3-ubiquitin ligases 

Smurf1/Smurf2 are important for neural tube closure and regulate PCP signalling by mediating 

A 

B 
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the degradation of Prickle (Narimatsu et al., 2009).  Therefore, it would be interesting to explore 

if Mib also regulates the recycling and/or degradation of PCP components through its ubiquitin 

activity.  

In C. elegans, MIb has shown to interact with a wnt co-receptor Ryk that promotes activation of 

Wnt/ β-catenin signaling (Berndt et al., 2011). Interestingly, Ryk has been shown to involve in 

Wnt/PCP pathway in vertebrates (Macheda et al., 2012). Similarly, another elegant study in 

zebrafish shows that Ryk acts downstream of Wnt5b (Lin et al., 2010) and make a complex with 

vangl2 in mammals (Andre et al., 2012). All these study suggest that Ryk is a promising 

candidate that could link Mib to the PCP signaling.  

Our initial observation that partial inhibition of Mib and Ryk together results in synergistic PCP 

phenotypes suggests that Mib might interact with Ryk to affect PCP (Figure 54). To determine if 

Mib mediates endocytosis of Ryk, we will use a Ryk-eGFP fusion construct to analyze the 

subcellular localization of Ryk in Mib loss-of-function conditions.  

V. Do C-dividing cells communicate with each other through Notch 

signaling? 

 During normal neural tube morphogenesis, Pard3-GFP accumulates at the abscission plane of 

cells undergoing mirror symmetric C-division (Tawk et al., 2007). However, cells are able to 

polarize roughly at the right place even without cell division, though the midline organization is 

not quite as precise (Buckley et al., 2013). Therefore, a second mechanism, other than cell 

division, must exist to target apical proteins to the right place within a cell at the right time. We 

hypothesized that cells on one side of the neural rod may contact cells on the opposite side to 

thus define a proper neural tube midline that lies at the tissue centre. Our observation that no C-

divisions take place in Mib loss-of-function embryos, suggested that C-dividing cells might be 

interacting to each other through Notch signalling. To explore this possibility, I performed 

transplantation experiments to see the behaviour of a wild-type cell in a Notch-signalling 

depleted environment and the behaviour of Mib mutant cells in wild-type surroundings. We 

found that a mutant cell behaves normally in wild-type surrounding; however, wild-type cell do 

not polarize in the mutant environment (Figure 56). This suggest that cells do not function cell 

autonomously in the establishment of polarity and that surrounding cells contribute to the 

behaviour and polarity of a cell. As mutant cells are able to C-divide, it is more likely that Notch 

signaling acts between neighbouring cells. It would be interesting to see, how a Notch signaling 
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depleted cell would respond in a division blocked wild-type surrounding and vice versa. 

Therefore, further work needs to be done to find out the complete mechanism regarding the 

cross-talk of Notch signaling between the neighbouring and C-dividing cells.  

VI. Conclusion  

We found a novel role of Notch signalling in the establishment of apico-basal polarity. In 

addition, I showed that the Notch signalling component Mib participates in planar cell polarity. 

Thus, this study uncovers a dual role of Mib in the regulation of cellular and tissue polarity in the 

context of zebrafish neural tube morphogenesis. A future study to investigate the mechanism of 

action of Mib in planar cell polarity may further provide useful insights into the endocytic 

regulation of PCP components.  
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Materials and Methods 

1 Fish lines and crossing   

Wild-type and transgenic zebrafish were maintained under standard conditions (Westerfield, 

2000) on a 14-hour photoperiod at 28-28.5 °C in the Institute of Biology fish facility. Embryos 

were obtained by crossing adult fish.  Females and males can be identified based on their body 

shape and color. A healthy female has a big white belly and its color is bluish and silver grey. A 

male is usually thinner and yellowish golden in color. A female is generally able to lay eggs at 

morning in a 3 hours time window after the light is on at 8:30 AM. As the time of the production 

of fertilized eggs needs to be controlled according to the experiment, fish were also alternatively 

maintained in light-cycle cabinets where lights switch on at 11:30 AM. Eggs were obtained by 

separate pairing of a male with a female in a crossing cage. The crossing cages contain neatly 

fitting inlays with a mesh bottom that separates the adult zebrafish from the eggs. This is 

necessary, because the adult zebrafish would eat the eggs. Furthermore, the inlay itself can be 

subdivided into two compartments using a divider. If female and male are kept in separate 

compartments overnight, they can mate only if the divider is removed. This way the time of eggs 

production was controlled.  This is very important for experiments such as microinjections, 

where early (zygote or one cell stage) embryos are needed with a synchronized development.  

Wild-type and transgenic strains that were used in this study is listed below.  

Fish Strain Gene References 

AB Wild-type  

Tubingen (TÜ) Wild-type  

AB/ TÜ Wild-type  

Tupfel long fin (TL) Wild-type  

AeiAR33 deltaD (Latimer et al., 2002) 

Mibta52b mindbomb (van Eeden et al., 1996) 

Vangl2m209 vangogh like-2 (Stemple et al., 1996) 

Tg(Histone2A-GFP)  (Pauls et al., 2001) 

Table 4: List of wild-type and transgenic zebrafish strains 
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2 Identification and genotyping of transgenic strains  

2.1 Fin-clipping of adult fish  

Fin-clipping is performed in order to isolate genetic material from individual fish for the purpose 

of genotyping. A small amount of tissue is clipped from the end of the tail in order to extract 

DNA that will be used for further analysis such as PCR. If done correctly, the caudal fin 

regenerates within two weeks.  

Preparations:  

All surfaces and materials used for tissue collection should be sterile. Therefore, surfaces and 

the tools used for the procedure were cleaned with ethanol prior to set up. PCR strips were 

labelled to transfer the clipped tissue into the PCR tubes. To anesthetize fish Tricaine (Ethyl 3 

aminobenzoatec methylenesulfate; Sigma-Aldrich) 1.5 mM at pH 7.0 stock solution was 

prepared.  

Procedure:  

Fish were first anesthetized by immersion in 8-12 ml of tricaine stock solution in 200 ml water. 

The dose of tricaine can be different depending on the age of fish, so tricaine dose was tested 

gradually. A longer immersion in tricaine can be fatal for fish; therefore, it is important to take 

care of anesthesia time. Ideally, Fish should regain consciousness within a minute. Fish was 

taken with the plastic spoon with the tail protruding out of the spoon. A piece of tail was cut with 

the help of a surgical scissor. Very little tissue is sufficient to extract DNA, so no more than 50% 

of the fin area should be removed. This procedure should take less than one minute and should 

not result in bleeding. Fish are then immediately transferred to a container with fresh system 

water and monitored continuously until they have recovered. Upon immersion in fresh water, 

fish usually regain swimming ability within few minutes. 

2.2 DNA preparation for the genotyping of individual embryo  

- Dechorionated embryos were transferred to 0.5 or 1,5ml Eppendorf tubes using a glass 

Pasteur pipet 

- Supernatant was taken off with Pasteur pipet and 50 µl of DNA prep buffer was added.  

- Additionaly, embryos can be freezed in liquid nitrogen and stored at –80°C before 

proceeding further. 

- Embryos were heated for 10min to 98°C, then cooled down to 55°C. 
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- Further,  Proteinase K was added to a final concentration of 1 mg/ml and incubated for 

overnight at 55°C 

- Next morning, PK was inactivated by heating for 10 min to 98°C 

- The lysed DNA was then centrifuged for two mins at full speed and transferred to a clean 

Eppendorf tube. 

 

DNA Prep Buffer 

1.5 mM MgCl2 

10 mM Tris-HCl pH 8.3 

50 mM KCl 

0.3% Tween 20 

0.3% NP40 

 

2.2.1 Mibta52b genotyping  

To determine the presence of Mibta52b and WT alleles in a single PCR reaction, the following 

method was used:  

This PCR is done with four primers. 

Mib4P genP5 (generic forward primer for the Mibta52b amplicon): ACAGTAACTAAGGAGGGC 

Mib4P WT rv (specific reverse primer for the Mib WT allele): AGATCGGGCACTCGCTCA 

Mib4P MUT fw (specific forward primer for the Mibta52b allele):  CAGCTGTGTGGAGACCGCAG 

Mib4P genP3 (generic reverse primer for the Mibta52b amplicon): CTTCACCATGCTCTACAC 

 

- Primers Mib4P genP5 and Mib4P genP3 amplify a 705 bp fragment for all genotypes (in 

theory, actually practically this band is most often barely visible). 

- Primers Mib4P genP5 and Mib4P WT rv amplify a 303 bp fragment for fish carrying the WT 

allele. 

- Primers Mib4P MUT fw and Mib4P genP3 amplify a 402 bp fragment for fish carrying the 

Mibta52b allele. 

 

To Assemble 20 µl PCR reactions: 

First in each tube, 1 µl undiluted DNA from the ProteinaseK digestion was added, followed by 

the addition of 19 µl of ice-cold PCR mix: 
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4 µl GoTaq Flexi Buffer (Promega) 

1.2 µl MgCl2 from GoTaq G2 kit (25 mM stock) 

0.4 µl dNTP (from mix with each dNTP at 10 mM) 

0.4 µl Primer Mib4P genP5 (from 10 µM stock) 

0.4 µl Primer Mib4P WT rv (from 10 µM stock) 

0.4µl Primer Mib4P MUT fw (from 10 µM stock) 

0.4µl Primer Mib4P genP3 (from 10 µM stock) 

0.1 µl GoTaq 

Qsp 19 µl H2O (11.7 µl) 

PCR Program: 

Initial denaturation 2min 95° 

10 cycles  

30s Denaturation 95° 

30s Annealing 65° 

30s Annealing 55° 

60s Elongation 72° 

25 cycles 

30s Denaturation 95° 

30s Annealing 55° 

60s Elongation 72° 

 

Final extension 5 min 72° 

Final hold 4° 

 

15 µl of PCR product was run on a 2% agarose gel. 

 

2.2.2 Vangl2m209 genotyping  

Vangl2m209 genotyping was done as described before (Gao et al., 2011). The following primers 

were used: 

WT   Fwd  GTGTGTCTGCCTGTGTCTTACT   

  Rev             GATAAACTCCTCCCCCAGGT 

Mutant            Fwd  GTGTGTCTGCCTGTGTCTTACA 

                       Rev  GATAAACTCCTCCCCCAGGT 
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To assemble 25 μl PCR reaction: 

5.0 μl of 1:10 diluted fin-clipped DNA was used as a template for each reaction.  

5.0 μl GoTaq Flexi Buffer (Promega)  

0.5 μl  Fwd WT/mutant primer  

0.5 μl Rev WT/mutant primer     

0.5 μl dNTPs (from mix with each dNTP at 10 mM)  

0.125 μl Go Taq Pol   

13.3 μl H2O    

 

PCR program 

Initial denaturation 2 min 95°  

35 cycles   

30s Denaturation 95° 

30s Annealing 55°           

60s Elongation 72° 

 

Final extension 5 min 72° 

Final hold 4° 

15 µl of PCR product was run on a 2% agarose gel. 

3 Preparing RNA for microinjections  

3.1 Plasmid digestion 

In a 1.5ml Eppendorf tube 5 to 10 µg of plasmid DNA was digested with the appropriate 

restriction enzyme in a reaction volume of 250 µl and incubated for 2 hrs at the 37°C. Digested 

DNA was further cleaned up as explained below.   

3.2 Plasmid clean-up 

Digested DNA was further cleaned up and all the process was performed using gloves and 

RNAse free tips and reagents. DNA was purified using a phenol chloroform extraction that was 

followed by concentration and desalting on Amicon ultracentrifugation devices (Milipore). 

- In 1.5 ml eppondorf tube 250 µl of Phenol/Chloroform/Isoamylalcohol was added and then 

vortexed and centrifuged for 1 min at full speed 
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- The upper aqueous phase was transferred to a new 1.5 ml Eppendorf tube and 250 µl 

Chloroform was added, vortexed and centrifuged 1 min at full speed. 

- Again the upper aqueous phase was transferred to a new 1.5 ml Eppendorf tube and 

centrifuged for 1 min at full speed and further put in an Amicon Ultra 50K column (to avoid to 

carry over any chloroform onto the Amicon microfiltration device) and centrifuged for 7 min 

at 14000 g. 

- Amicon column was then washed by adding 200 µl water, centrifuged 7 min at 14000 g. 

- The microfiltration device was made upside down into a new collection tube, centrifuged 2 

min at 1000 g. 

- The collected purified DNA was checked for linearization and DNA quantity by running 1 µl 

of DNA on an agarose gel.  

3.3 SP6 RNA synthesis 

RNA synthesis was performed using the mMessage Machine SP6 kit from Ambion, followed by 

a phenol/chloroform purification and precipiation with Isopropanol. 

To set up a 10 µl reaction the following composition was used: 

3 µl linearized DNA 

1 µl Reaction buffer (Ambion kit) 

5 µl 2x dNTP-Mix (Ambion kit) 

1 µl SP6 RNA polymerase (Ambion kit) 

Incubated 2 to 4 hrs at 37°C  

 

- After the incubation 0.5 µl DNAse I (Ambion kit) was added to digest template DNA for 20 

min at 37°C. 

- Then 25 µl Ammonium Acetate (Ambion kit) was added to stop the activity of DNAse I. 

-  214 µl of sterile RNAse free water was added to make the volume 250 µl 

 

Further, the following method was used to purify the prepared RNA. 

- 250 µl Phenol/Chloroform/Isoamylalcohol was added, vortexed and centrifuged for 1 min at 

full speed 

- The upper aqueous phase was shifted in a new 1.5 ml Eppendorf tube and 250 µl 

Chloroform added, vortexed and centrifuged for 1 min at full speed 
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- The upper aqueous phase was shifted in a new 15 ml Eppendorf tube, 250 µl Isopropanol 

added that was  mixed shortly and left for precipitating for at least 20 min at – 20°C 

- Then, it was centrifuged for 20 min at full speed at 4°C. Supernatant was discarded and 

RNA pellet was washed with 200 µl 70% Ethanol. Again centrifuged for 5 min at full speed 

and after discarding the supernatant, the RNA pellet was left for drying.  

- The pellet was resuspended in 10 µl of sterile water from the Ambion kit and stored at           

– 20°C.  

For RNA quantification, 0.5 µl RNA with 49.5 µl of water was mixed and the optical density (OD) 

was measured at the spectrophotometer to quantify.  

To check the RNA quality, 0.5 µl was run on an agarose gel for 30 min maximum so that the 

RNA may not get degraded.  

 

3.4 Microinjections  

3.4.1 Dechorionation of embryos  

At early stages of development zebrafish embryos can be easily dechorionated by pronase 

digestion of the chorion, which is composed of glycoproteins. Right after fertilization embryos 

were treated with 150 µl of 10 mg/ml pronase (Sigma) per petridish (Ø 35 cm) and washed with 

water as soon as the first embryo is observed that left the chorion.  The petridish then was 

carefully submerged into a 250 ml beaker containing clean water. The water from the beaker 

was then decanted as much as possible and fresh water was added letting it run through the 

wall of the tilted beaker. The movement of the embryos by water stream helps embryos to 

dechorinate themselves. This washing step was repeated 2-3 times more and dechorinated 

embryos were transferred into agarose-coated petridishes using a glass pipettes. An alternative 

to enzymatic dechorionation with pronase is manual dechorionation with forceps 

3.4.2 Preparation of injection solutions  

Injection solutions for RNA were prepared by diluting the desired concentration of RNA in 0.1 M 

KCl 0.2% Phenol Red. The injection solutions for morpholinos were prepared diluting the 

desired concentration of morpholinos in Danieau (1x)-0.2% Phenol red.   
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Gene Concentration Sequence Reference 

mindbomb  1000 μM  

 

GCAGCCTCACCTGTAGGCGCACTGT 

(splice Morpholinos exon/intron 1) 

(Itoh et al., 2003) 

deltaA 250 μM 
CTTCTCTTTTCGCCGACTGATTCAT 

(Matsuda and Chitnis, 

2009) 

rbpjA 125 μM GCGCCATCTTCACCAACTCTCTCTA This study 

rbpjB 125 μM GCGCCATCTTCCACAAACTCTCACC This study 

vangl2 100 μM GTACTGCGACTCGTTATCCATGTC (Park and Moon, 2002) 

ryk 1000 μM GGCAGAAACATCACAGCCCACCGTC This study 

Table 5: List of morpholinos 

  

Gene Concentration Stage Reference 

pCS2-Gap43GFP 
20 ng/μl 1 cell  

(Concha et al., 2003) 
30 ng/μl 2-8 cell 

pCS2-Gap43RFP 
20 ng/μl 1 cell  

30 ng/μl 2-8 cell 

pCS2-Pard3-GFP 
100 ng/ μl                                    1 cell (Geldmacher-Voss et al., 2003) 

350 ng/ μl 16-32 cell 

Myc-Notch-Intra-pCS2 50 ng/ μl 1 cell (Takke et al., 1999) 

pCS2-RhoA 125 ng/ μl 1 cell (Castanon et al., 2013) 

Table 6: List of DNA constructs  

 

3.4.3 Injections 

Microinjections in zebrafish embryos were carried out manually, without micromanipulator. To 

ensure a homogenous distribution of the injected material, it is important to inject embryos as 

early as possible.  For the ubiquitous expression, RNA and morpholinos were injected to the 

first blastomere. For mosaic labelling, RNA was injected into a single blastomere at the 16 to 32 

cell stages. For the time-lapse imaging of the neural tube morphogenesis embryos were 

injected with Gap43GFP RNA at one cell stage. For the midline-crossing movies, Gap43GFP 

RNA was injected into one of the two cells at the two cells stage.  

The embryos were injected with the injection solutions using a pressure microinjector (Femtojet 

Eppendorf). Special injection needles were prepared of glass capillaries (World Precision 

Instruments, outer diameter 1 mm) by using a needle puller (Sutter Instruments). 
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The injection solution were loaded in needle through microloaders (Eppendorf). The volume of 

the injection solution were estimated by a drop having diameter of 0.15 mm (approximately 1.76 

nL in volume) on a 0.01mm x 1mm calibration slide (Meiji Techno). During and after the injection 

session, embryos were grown in 0.3x Danieau buffer. 

30x Danieau buffer Stock 

NaCl    1740 mM  

KCl    21 mM  

MgSO4•7H2O    12 mM  

Ca(NO3)2   18 mM  

HEPES buffer  150 mM 

 

Above mentioned reagents were dissolved in distilled water and pH was adjusted to 7.6.  

4 Whole mount immunohistochemistry 

- Embryos were fixed in 4% paraformaldehyde in PEM (PEM-PFA) for 1.5 hours, with gentle 

shaking at room temperature, or overnight at 4°C. Further, embryos were postfixed in PEM-

PFA with 0.2% Triton for 30 minutes at room temparature (RT).  

- After postfixation embryos were then washed 3x 5 mins in PEMT (PEM+ 0.2% Triton), 1x10 

mins in PEMT+ 50mM NH4Cl and then for 3x5min in PEMT.  

- Embryos were then preincubated in blocking solution (PEMT + 2% BSA) for three to four 

hours on RT.  

- Embryos were incubated in primary antibody (Antibody + PEMT+ 2% BSA) 3 to 4 hours at 

RT, followed by multiple washes in PEMT.  

- Embryos were then incubated in secondary preincubation in PEMT+2%BSA with 2% serum 

(such as Normal goat serum for the secondary antibodies that are from goat) at RT for 2 

hours or at 4°C for overnight.  

- Following this, embryos were incubated in secondary antibody in PEMT+ 2% BSA +2% 

Serum for 3-6 hours at RT.  

- Finally embryos were washed  5 to 6 times in PEMT with gentle shaking and further stored 

in 50% Mowiol/ PEMT    
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Specific reagents: 

PEM:  The following reagents were dissolved in ddH2O with the final concentration given below: 

   Na-Pipes         80 mM 

EGTA               5 mM  

MgCl2   1 mM  

pH was adjusted to 7.4 with HCl  

 

PEMT   PEM + 0.2% TritonX100 

NH4Cl   2.5 M stock solution 

 

Name Product Concentration Company 

TRITC- Phalloidin  1:250 Sigma (D9542) 

DAPI  1:5000 Sigma (P1951) 

NGS (Normal goat 

serum) 

 1:50 Jackson Immunoresearch 

 

Goat@Rabbit-Cy5 Secondary 

Antibody 

1:250 Jackson Immunoresearch 

 

Goat@Mouse-

Alexa488 

Secondary 

Antibody 

1:500 Invitrogen 

Mouse@zDeltaD Primary Antibody 

IgG1 

1:500 Abcam (ab73331) 

(Itoh et al., 2003) 

Rabbit@aPKC Primary Antibody 1:250 Santa Cruz (sc-216) 

(Cui et al., 2007) 

Mouse@ZO-1 Primary Antibody 

IgG1kappa 

1:500 Invitrogen (1A12) 

(Köppen et al., 2006) 

Mouse@ZS-4 

(Crumbs) 

Primary Antibody 1:500 ZIRC 

(Vihtelic and Hyde, 2000) 

Mouse@HuC/D Primary Antibody 1:500 Invitrogen (16A11) 

(Fornaro et al., 2003) 

Table 7: List of reagents for immunocytochemistry. 
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5 In situ hybridization on Zebrafish whole mount embryos 

5.1 Making in-situ probes by PCR method 

The following primers were used for preparing probes:  

 

Gene  Primers sequence 

Crumbs1 
Forward gcttatcgataccgtcgacTGTACCACCAGCCCATGTCATA 

Reverse TAATACGACTCACTATAGGGcctcatcacagttttgacccac 

Crumbs2a 
Forward gcttatcgataccgtcgacTGAGAGTGCCCCCTGCCTTAAT 

Reverse TAATACGACTCACTATAGGGacagtcacagcggtagc 

Pard3 
Forward GATCCAGGCAAAAACGCGAGAGATTCG 

Reverse TAATACGACTCACTATAGGGgaagtagtcggcataacc 

Pard6-gb 
Forward GACTACAGCAACTTTGGCACCAGCACTCT 

Reverse TAATACGACTCACTATAGGGgtgatgactgtgccatcctcctc 

Mark2b 

(Par1) 

Forward ATCTATGCTCAGCAGTGCAGAGAAGTCGGAGA 

Reverse TAATACGACTCACTATAGGGcgtttcatgggagtcatgtggtgc 

T7-promoter sequence (in bold letters) is added to the reverse primer to make antisense probe. 

 

PCR 

5 μl of 1:10 diluted Fin-clipped DNA was used as the template.     

10 μl Herculase buffer (Agilant technologies)   

2 μl dNTPs (from mix with each dNTP at 25 mM)     

1.25 μl Forward primer   

1.25 μl Reverse primer   

1 μl Herculase II enzyme   

29.5 μl H2O     

 

PCR program:  For 30 cycles 

10 cycles  

30s Denaturation 95° 

30s Annealing 65° 

30s Annealing 55° 

60s/kb Elongation 68° 
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25 cycles 

30s Denaturation 95° 

30s Annealing 55° 

60s/kb Elongation 68° 

Final extension 10 min at 68° 

PCR products were sent to sequencing to confirm the probe sequence.  

5.2 Synthesis of the probe 

The method was developed by the Christine & Bernard Thisse lab.   

 

Transcription of Probe antisense RNA: 

1 µg PCR product 

4 µl 5x transcription buffer (Stratagene) 

2 µl NTP-DIG (Boehringer) 

12.5 Units T3- or T7-RNA-Polymerase (Stratagene) 

1 µl RNAse inhibitor (Boehringer) 

H20 qsp 20 µl. 

2 hrs at 37°C 

Digestion of DNA template 

2 µl RNAse free DNAse I was added to digest the DNA template and incubated for 15-30 

minutes at 37°C. 

Reaction stop and precipitation: 

- To stop the reaction following reagents were added one after the other and it is important to 

add them precisely in this order only.  

        EDTA 0,5M pH 8.0       1 µl 

  LiCl 4M                         2.5 µl 

  Cold EtOH 100%    75 µl 

- Stored for 30 mins at – 80°C (or overnight at -20°C) 

- Centrifuged for 30 mins at maximum speed (in refrigerated centrifuge) 

- Washed with 100 µl sterile 70% EtOH, and then centrifuged for 5 mins at maximum speed. 

- Dry pellet (air or vacuum), and resuspend the pellet in 50 µl H20 or TE10/1  

- RNA quality and quantity was checked by loading 1µl RNA on an agarose gel. 
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5.3 Hybridization on zebrafish embryos 

- Embryos were fixed in 4%paraformaldehyde in PBS at 4 °C overnight with gentle shaking.  

- Embryos were then dehydrated in 100% methanol and stored at –20 °C for minimum 2 

hours.  

- Embryos were further rehydrated through a methanol series :  

            1 x 5 min   75% MeOH - 25% PBS 

 1 x 5 min   50% MeOH - 50% PBS 

 1 x 5 min   25% MeOH - 75% PBS 

 4 x 5 min   PBST    

(PBS1x / tween20 0.1%: 10ml of tween20 20% stock solution for 2 L of PBST) 

- After rehydration, embryos were digested with 1 µg/ml Proteinase K. The duration of 

digestion depends on the the embryonic stage. 

Proteinase K digestion times: 

2-6 somites: 2 min 

14-20 somites: 4 min 

24h: 10 min 

- Embryos were refixed in 4% PFA-PBST for 20 mins, followed by 5x 5mins washes with 

PBST.   

- Next to this, embryos were incubated in hybridization buffer (Hyb) for 3-6 hours at 70 °C.  

- Then probes diluted in prewarmed Hyb buffer added to the embryos and left overnight at 

70 °C.  

- The following day embryos were washed in the following solution:  

 

1 x fast washing with 100% Hyb at 70°C 

15 min 75% Hyb - 25% 2x SSC at 70°C 

15 min 50% Hyb - 50% 2x SSC at 70°C 

15 min 25% Hyb – 75% 2x SSC at 70 °C 

15 min 2x SSC at 70°C 

2 x 30 min with SSCx0.2 at 70°C 

10 min 75% 0.2x SSC- 25% PBST at RT 

10 min 50% 0.2x SSC- 50% PBST at RT 

10 min 25% 0.2x SSC- 75% PBST at RT 

10 min PBST at room temperature 
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- Embryos were put in blocking solution (PBST + 2% Sheep Serum) for 2 hours at RT then 

the anti-DIG antibody (1 :10000) diluted in PBST+2% BSA was added to the embryos and 

left overnight at 4 °C with gentle agitation.  

- The next day embryos were washed with staining solution and then the staining was 

revealed using NBT/BCIP. Embryos were kept in the dark at RT until the staining is visible.  

- The staining was stopped by washing in 3x 5 mins in PBST and then replacing PBST by 

PBS pH 5.5 with 1 mM EDTA. Embryos were incubated in Tris-Glycine pH 2.2 for few hours 

to overnight and stored in 80% Glycerol and 20% Tris-Glycine.  

- Embryos were mounted on glass slide in 80% glycerol and images were taken on a 

dissecting microscope (Leica MZ205FA and Leica MZFLIII). 

5.4 Preparations of reagents 

SSC 20x stock solution 

NaCl                  175.3 g (3 M) 

Cirtic acid trisodium salt  88.2 g (300 mM) 

Dissolved in 1 L of distilled water pH was adjusted to 7.0.  

 

Hybridization mix (HM) 

- tRNA and Heparine were added for prehybridization and hybidization only. 

- 1 ml of HM was prepared per in situ reaction (0.7 ml prehyb + 0.2 ml hyb) 

 

Formamide   25 ml 

SSC x20   12.5 ml 

Heparine 5 mg/ml  0.5 ml 

tRNA 50 mg/ml  0.5 ml 

tween20 20%   0.25 ml 

Citric acid 1M   0.46 ml 

Sterile water   10.7 ml 

 

staining buffer 

100 mM Tris/HCL pH 9,5  

50 mM MgCl2  

100 mM NaCl  
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0,1% tween20  

3 x 5 min Tris pH 9.5 

Staining Solution  

22.5 µl NBT 

17.5 µl BCIP 

5 ml Tris pH 9.5 solution 

And to be kept in the dark. 

 

NBT stock  

50 mg of Nitro Blue Tetrazolium in 0.7 ml of Dimethylformamide anhydrous + 0.3 ml H20 

 

BCIP stock 

50 mg of 5-Bromo4-Chloro3-IndoylPhosphate in 1 ml of Dimethylformamide anhydrous 

6 Zebrafish cell transplantations  

6.1 Preparations of the transplantations mould and needles 

- A simple mould for casting dishes for transplantation was prepared by gluing together 

microscopic slide in order to get wells for individual embryos. This mould was put in the lid of 

a 90 mm petri dish and was covered with 2% agarose in 1x Danieau. For 15 mins this was 

left for solidifying and then the mould was removed. Excess of agarose was cut off using a 

subcutaneous needle. Usually two moulds were casted for a session of transplantation.  

- Transplantation needles were made using glass capillaries, and by scratching a diamond 

pen a blunt mouth opening was achieved. The needle was filled with 1x Danieau with 5% 

Pen/Strep and screwed tight into the holder of the oil-filled transplantation apparatus.  

 

6.2 Transplantation  

- Transplantion dish were filled with 1x Danieau + 5% Pen/Strep.  

- Donor embryos were placed in wells 1-3-5-7… and host embryos were placed in wells 2-4-

6-8.  

- After the cells were transplanted, donors were either discarded or processed for genotyping. 

In case, they needed to be genotyped like Mibta52b donor embryos, they were directly put into 

PCR tubes that contain DNA prep buffer.  
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- After the transplantation, host embryos were shifted from the transplantation dish to a new 

petri dish coated with 2% agarose in 0.3x Danieau and filled with 0.3% Danieau + 5% 

Pen/Strep.  

6.3 Required consumables and equipment 

- Transplantation needles that were pulled from thin wall capillaries without inner filament. 

- 65 mm Petri dishes coated with 2% agarose in 0.3x Danieau 

- 0.3 x Danieau media with 5% Pen/Strep 

- 1x Danieau with 5% Pen/Strep 

- Short Pasteur pipette 

- Mineral oil (Trinity Biotec) 

- 8.5 cm diameter petridishes 

- Dissection scope with diascopic illumination  

- Transplantation setup (Sutter instruments) 

- Diamond pen  

- 1 Pipette pump 

- 200 µl pipette with 200 µl tips.  

6.4 Cell transplantation experimental details 

- Wild-type or Mibta52b embryos were used for transplants. Donor embryos were labelled by 

injection of GAP43GFP (50 ng/µl), a cell membrane marker, or Pard3-GFP (100 ng//µl) at 

the one-cell stage. Host embryos were collected, dechorinated and incubated at 28.5 °C in 

parallel with the donor embryo.  

- All cell transplantations were carried out at blastula or early gastrula stages. Both donor and 

host embryos were of the same age (Figure 59).  

- Approximately 20-30 cells were extracted from the donor embryo and drawn into the 

micropipette by turning the micrometer drive. Cells were then expelled into the host embryo 

by turning the micrometer device in the opposite direction.   

- Transplanted embryos were grown till 24 hpf and then fixed. Further, embryos were stained 

with TRITC-phalloidin to label F-actin in order to label all cells and thus show the location of 

transplanted cells withinn the spinal cord.  
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Figure 59: Cell transplantation  

A. Transplantions of cells from Gap43GFP or Pard3GFP injected donor embryos to Wild-type 
or Mib

ta52b 
mutant embryos at the blastula stage. The green cells in host embryo show the 

approximate location of transplantation. 
B. Transplanation of cells at the gastrulation stage.  
(Images are adapted from(Kimmel et al., 1995). 

 

7 Confocal Microscopy  

7.1 Mounting embryos  

 

Embryos were mounted in 0.75% low melting agarose (Sigma) in a glass bottom dish as shown 

in Figure 60 A (MatTek corporation). Live embryos older than 18 hpf were anesthetized with 

tricaine (Sigma Aldrich) using approximately a 1:20 dilution of the stock solution (1.5 mM). For 

dorsal view imaging of spinal cord embryos were oriented so that the spinal cord touches the 

glass (Figure 60 B). For transversal imaging embryos were oriented upside down so that their 

head touches the glass and tail stay upside (Figure 60 C)  
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Figure 60: Mounting the embryos for confocal imaging 

A. Glass bottom dish  
B. Dorsal mounting of the embryo 
C. Transversal mounting embryo 

 

7.2 Imaging of fixed or live embryos  

- Embryos were imaged on spinning disk (Olympus/Andor), Zeiss 510 NLO, Zeiss 510 Meta, 

Zeiss 710 and Zeiss 780 confocal microscopes using 40x (water) and 60x oil objectives.  

- To image fixed embryos z-stacks of 10-30 sections covering a depth of around 50 µm (from 

EVL to Notochord) were taken using four channels.  

- For making the long term time lapse movies of the neural tube morphogenesis, embryos 

were mounted transversally and imaged at the level of first to third somites. In every one 

minute interval, a single plane image was taken for 12-14 hours.  

- For cell division orientation imaging in dorsal epiblast cells, shield stage transgenic 

Tg(H2A::GFP) embryos uninjected or injected with  1000 µM Mib morpholino were mounted. 

Z-stacks were collected at 2 min intervals. Embryos were imaged for approximately for 4 h 

(until bud stage). These time lapse movies were made on a Zeiss 780 inverted microscope 

with a 40x (NA 1.1) water immersion objectives.  

7.3 Image analysis 

All confocal microscopy images were analysed and quantified using the ImageJ 

(http://rbs.info.nih.gov/ij/) software. Images were enhanced for presentation by adjustments of 

levels, brightness and contrast and colour saturation. Projections of z-stack of images were 

maximum projections. Epiblast division orientation were quantified by rose plot analysis 

(Algorithem was provided by Irinka Castanon/Gonzalez-Gaitan lab) that were made in MATLAB 

software (Mathworks). Numerical analysis was carried out in Microsoft excel and figures were 

constructed in MS PowerPoint.   

A B C 
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