&. Puvin and . Gertz, Developments in the international downstream oil markets and their drivers: implications for the UK refining sector -Available at: https://www.gov.uk/government/publications/developments-in-the-international- downstream-oil-markets-and-their-drivers-implications-for-the-uk-refining-sector, p.13, 2016.

V. S. Aksenov, V. I. Titov, and V. F. Kam-'yanov, Nitrogen compounds of petroleum oils (review), Chemistry of Heterocyclic Compounds, vol.42, issue.No. 1, pp.119-135, 1979.
DOI : 10.1039/j39680002244

F. Adam, F. Bertoncini, C. Dartiguelongue, K. Marchand, D. Thiébaut et al., Comprehensive two-dimensional gas chromatography for basic and neutral nitrogen speciation in middle distillates, Fuel, vol.88, issue.5, pp.938-946, 2009.
DOI : 10.1016/j.fuel.2008.11.032

F. Adam, F. Bertoncini, N. Brodusch, E. Durand, D. Thiébaut et al., New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1148, issue.1, pp.55-64, 2007.
DOI : 10.1016/j.chroma.2007.01.142

F. C. Wang, W. K. Robbins, and M. A. Greaney, Speciation of nitrogen-containing compounds in diesel fuel by comprehensive two-dimensional gas chromatography, Journal of Separation Science, vol.972, issue.5-6, pp.468-472, 2004.
DOI : 10.1093/chromsci/35.3.97

L. R. Snyder, Petroleum nitrogen compounds and oxygen compounds, Accounts of Chemical Research, vol.3, issue.9, pp.290-299, 1970.
DOI : 10.1021/ar50033a002

T. C. Ho, Hydrodenitrogenation Catalysis, Catalysis Reviews, vol.27, issue.1, pp.117-160, 1988.
DOI : 10.1007/BF00251438

J. R. Katzer and R. Sivasubramanian, Process and Catalyst Needs for Hydrodenitrogenation, Catalysis Reviews, vol.46, issue.2, pp.155-208, 1979.
DOI : 10.1016/0021-9517(72)90115-7

L. Vopa, V. Satterfield, and C. N. , Poisoning of thiophene hydrodesulfurization by nitrogen compounds, J. Catal, vol.110, pp.375-387, 1988.

S. Kasztelan, T. Des-courières, and M. Breysse, Hydrodenitrogenation of petroleum distillates : industrial aspects, Catalysis Today, vol.10, issue.4, pp.433-445, 1991.
DOI : 10.1016/0920-5861(91)80032-5

S. Shin, K. Sakanishi, I. Mochida, D. A. Grudoski, and J. H. Shinn, Identification and Reactivity of Nitrogen Molecular Species in Gas Oils, Energy & Fuels, vol.14, issue.3, pp.539-544, 2000.
DOI : 10.1021/ef990136m

G. Hobson, Modern Petroleum Technology, Part I, 1984.

T. Dutriez, J. Borras, M. Courtiade, D. Thiébaut, H. Dulot et al., Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1218, issue.21, pp.3190-3199, 1218.
DOI : 10.1016/j.chroma.2010.10.056

A. G. Marshall and R. P. Rodgers, Petroleomics:?? The Next Grand Challenge for Chemical Analysis, Accounts of Chemical Research, vol.37, issue.1, pp.53-59, 2004.
DOI : 10.1021/ar020177t

Y. Cho, A. Ahmed, A. Islam, and S. Kim, Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics, Mass Spectrometry Reviews, vol.25, issue.2, pp.248-263, 2015.
DOI : 10.1021/ef101328n

L. Boursier, Caractérisation et réactivité en hydrotraitement des composés hétéroatomiques présents dans les distillats sous vide du pétrole, 2014.

T. M. Schaub, R. P. Rodgers, A. G. Marshall, K. Qian, L. A. Green et al., Speciation of Aromatic Compounds in Petroleum Refinery Streams by Continuous Flow Field Desorption Ionization FT-ICR Mass Spectrometry, Energy & Fuels, vol.19, issue.4, pp.1566-1573, 2005.
DOI : 10.1021/ef049734d

T. Dutriez, M. Courtiade, J. Ponthus, D. Thiébaut, H. Dulot et al., Complementarity of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and high temperature comprehensive two-dimensional gas chromatography for the characterization of resin fractions from vacuum gas oils, Fuel, vol.96, pp.108-119, 2012.
DOI : 10.1016/j.fuel.2011.11.070

H. Muller, F. M. Adam, S. K. Panda, H. H. Al-jawad, and A. A. Hajji, Evaluation of Quantitative Sulfur Speciation in Gas Oils by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Validation by Comprehensive Two-Dimensional Gas Chromatography, Journal of The American Society for Mass Spectrometry, vol.892, issue.1-2, pp.806-815, 2012.
DOI : 10.1016/S0021-9673(00)00744-5

X. Chen, B. Shen, J. Sun, C. Wang, H. Shan et al., Characterization and Comparison of Nitrogen Compounds in Hydrotreated and Untreated Shale Oil by Electrospray Ionization (ESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS), Energy & Fuels, vol.26, issue.3, pp.1707-1714, 2012.
DOI : 10.1021/ef201500r

T. Dutriez, M. Courtiade, D. Thiébaut, H. Dulot, J. Borras et al., Advances in Quantitative Analysis of Heavy Petroleum Fractions by Liquid Chromatography???High-Temperature Comprehensive Two-Dimensional Gas Chromatography: Breakthrough for Conversion Processes, Energy & Fuels, vol.24, issue.8, pp.4430-4438, 2010.
DOI : 10.1021/ef1002809

E. Furimsky and F. Massoth, Hydrodenitrogenation of Petroleum, Catalysis Reviews, vol.8, issue.3, pp.297-489, 2005.
DOI : 10.1016/S0167-2991(02)80077-5

E. Peeters, M. Cattenot, C. Geantet, M. Breysse, and J. L. Zotin, Hydrodenitrogenation on Pt/silica???alumina catalysts in the presence of H2S: Role of acidity, Catalysis Today, vol.133, issue.135, pp.299-304, 2008.
DOI : 10.1016/j.cattod.2007.12.127

URL : https://hal.archives-ouvertes.fr/hal-00277110

M. Sau, K. Basak, U. Manna, M. Santra, and R. P. Verma, Effects of organic nitrogen compounds on hydrotreating and hydrocracking reactions, Catalysis Today, vol.109, issue.1-4, pp.112-119, 2005.
DOI : 10.1016/j.cattod.2005.08.007

G. Caeiro, A. F. Costa, H. S. Cerqueira, P. Magnoux, J. M. Lopes et al., Nitrogen poisoning effect on the catalytic cracking of gasoil, Applied Catalysis A: General, vol.320, pp.8-15, 2007.
DOI : 10.1016/j.apcata.2006.11.031

URL : https://hal.archives-ouvertes.fr/hal-00312732

C. M. Fu and A. M. Schaffer, Effect of nitrogen compounds on cracking catalysts, Industrial & Engineering Chemistry Product Research and Development, vol.24, issue.1, pp.68-75, 1985.
DOI : 10.1021/i300017a013

R. B. Long and F. A. Caruso, Adsorption of basic asphaltenes on solid acid catalysts, 1983.

H. Heinemann, Conversion of coal into motor fuel, 1978.

M. Egorova and R. Prins, Mutual influence of the HDS of dibenzothiophene and HDN of 2-methylpyridine, Journal of Catalysis, vol.221, issue.1, pp.11-19, 2004.
DOI : 10.1016/S0021-9517(03)00264-1

A. R. Beltramone, S. Crossley, D. E. Resasco, W. E. Alvarez, and T. Choudhary, Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen Compounds over NiMo/Al2O3, Catalysis Letters, vol.222, issue.3-4, pp.181-185, 2008.
DOI : 10.1007/s10562-008-9468-7

V. Rabarihoela-rakotovao, F. Diehl, and S. Brunet, Deep HDS of Diesel Fuel: Inhibiting Effect of Nitrogen Compounds on the Transformation of the Refractory 4,6-Dimethyldibenzothiophene Over a NiMoP/Al2O3 Catalyst, Catalysis Letters, vol.219, issue.2, pp.50-60, 2008.
DOI : 10.1071/CH9672715

M. Vrinat, R. Bacaud, D. Laurenti, M. Cattenot, N. Escalona et al., New trends in the concept of catalytic sites over sulfide catalysts, Catalysis Today, vol.107, issue.108, pp.570-577, 2005.
DOI : 10.1016/j.cattod.2005.07.101

URL : https://hal.archives-ouvertes.fr/hal-00011615

T. Koltai, M. Macaud, A. Guevara, E. Schulz, M. Lemaire et al., Comparative inhibiting effect of polycondensed aromatics and nitrogen compounds on the hydrodesulfurization of alkyldibenzothiophenes, Applied Catalysis A: General, vol.231, issue.1-2, pp.253-261, 2002.
DOI : 10.1016/S0926-860X(02)00063-7

URL : https://hal.archives-ouvertes.fr/hal-00007225

S. Humbert, G. Izzet, and P. Raybaud, Competitive adsorption of nitrogen and sulphur compounds on a multisite model of NiMoS catalyst: A theoretical study, Journal of Catalysis, vol.333, pp.78-93, 2016.
DOI : 10.1016/j.jcat.2015.10.016

URL : https://hal.archives-ouvertes.fr/hal-01337650

M. Egorova and R. Prins, Competitive hydrodesulfurization of 4,6-dimethyldibenzothiophene, hydrodenitrogenation of 2-methylpyridine, and hydrogenation of??naphthalene over sulfided NiMo/??-Al2O3, Journal of Catalysis, vol.224, issue.2, pp.278-287, 2004.
DOI : 10.1016/j.jcat.2004.03.005

M. Nagai, T. Sato, and A. Aiba, Poisoning effect of nitrogen compounds on dibenzothiophene hydrodesulfurization on sulfided NiMo/Al2O3 catalysts and relation to gas-phase basicity, Journal of Catalysis, vol.97, issue.1, pp.52-58, 1986.
DOI : 10.1016/0021-9517(86)90036-9

S. Humbert and &. P. Raybaud, Revisiting inhibition effects of nitrogen compounds on HDS on NiMoS actives sites: a DFT study, 2013.

M. V. Bhinde, Quinoline hydrodenitrogenation kinetics and reaction inhibition, 1979.

F. Sánchez-minero, +. Ramírez-dmdbt-+-naphthalene, and . Carbazole, Using NiMo/Al 2 O 3 ?SiO 2 (x) Catalysts, J. Kinetic Study of the Reaction System Ind. Eng. Chem. Res, vol.4, issue.50, pp.2671-2677, 2011.

C. M. Lee and C. N. Satterfield, Effect of ammonia on the hydrogenation of naphthalene or butylbenzene during the hydrodenitrogenation of quinoline, Energy & Fuels, vol.6, issue.3, pp.315-317, 1992.
DOI : 10.1021/ef00033a012

S. Gueltekin, S. A. Ali, and C. N. Satterfield, Effects of hydrogen sulfide and ammonia on catalytic hydrogenation of propylbenzene, Industrial & Engineering Chemistry Process Design and Development, vol.23, issue.1, pp.179-181, 1984.
DOI : 10.1021/i200024a030

C. S. Raghuveer, J. W. Thybaut, R. De-bruycker, K. Metaxas, T. Bera et al., Pyridine hydrodenitrogenation over industrial NiMo/??-Al2O3 catalyst: Application of gas phase kinetic models to liquid phase reactions, Fuel, vol.125, pp.206-218, 2014.
DOI : 10.1016/j.fuel.2014.02.017

R. T. Hanlon, Effects of PH2S, PH2, and PH2S/PH2 on the hydrodenitrogenation of pyridine, Effects of P(H 2 S), P(H 2 ), and P(H 2 S)/P(H 2 ) on the hydrodenitrogenation of pyridine, pp.424-430, 1987.
DOI : 10.1021/ef00005a009

C. N. Satterfield and J. Cocchetto, Pyridine hydrodenitrogenation: An equilibrium limitation on the formation of piperidine intermediate, AIChE Journal, vol.21, issue.6, pp.1107-1111, 1975.
DOI : 10.1002/aic.690210609

J. Kopyscinski, J. Choi, and J. M. Hill, Comprehensive kinetic study for pyridine hydrodenitrogenation on (Ni)WP/SiO 2 catalysts, Appl. Catal. Gen, pp.445-446, 2012.

M. Jian, J. L. Cerda, and R. Prins, The function of phosphorus, nickel and H2S in the HDN of piperidine and pyridine over NiMoP/Al 2 O 3 Catalysts, Bull. Sociétés Chim. Belg, vol.104, pp.225-230, 1995.

M. Machida, Y. Sakao, and S. Ono, Influence of hydrogen partial pressure on hydrodenitrogenation of pyridine, aniline and quinoline, Applied Catalysis A: General, vol.187, issue.1, pp.73-78, 1999.
DOI : 10.1016/S0926-860X(99)00197-0

A. Calafat, J. Laine, and A. López-agudo, Hydrodenitrogenation of pyridine over activated carbon-supported sulfided Mo and NiMo catalysts. Effects of hydrogen sulfide and oxidation of the support, Catalysis Letters, vol.81, issue.3-4, pp.229-234, 1996.
DOI : 10.1007/BF00815287

C. Y. Yu, W. J. Hatcher, and W. Bertsch, Hydrodenitrogenation of quinoline with Y-type zeolite, Industrial & Engineering Chemistry Research, vol.28, issue.1, pp.13-20, 1989.
DOI : 10.1021/ie00085a004

C. N. Satterfield and J. Cocchetto, Reaction network and kinetics of the vapor-phase catalytic hydrodenitrogenation of quinoline, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.1, pp.53-62, 1981.
DOI : 10.1021/i200012a008

I. E. Maxwell and J. A. Van-de-griend, The Kinetics of Hydrodenitrogenation over a Zeolite Catalyst, Stud. Surf. Sci. Catal, vol.28, pp.795-801, 1986.
DOI : 10.1016/S0167-2991(09)60949-6

M. Jian and R. Prins, Reaction Kinetics of the hydrodenitrogenation of decahydroquinoline over NiMo(P)/Al2O3 catalysts, Stud. Surf. Sci. Catal, vol.101, pp.87-96, 1996.
DOI : 10.1016/S0167-2991(96)80218-7

W. V. Steele, D. G. Archer, R. D. Chirico, W. B. Collier, I. A. Hossenlopp et al., The thermodynamic properties of quinoline and isoquinoline, The Journal of Chemical Thermodynamics, vol.20, issue.11, pp.1233-1264, 1988.
DOI : 10.1016/0021-9614(88)90161-9

F. Gioia and V. Lee, Effect of hydrogen pressure on catalytic hydrodenitrogenation of quinoline, Industrial & Engineering Chemistry Process Design and Development, vol.25, issue.4, pp.918-925, 1986.
DOI : 10.1021/i200035a014

S. H. Yang and C. N. Satterfield, Some effects of sulfiding of a NiMo/Al2O3 catalyst on its activity for hydrodenitrogenation of quinoline, Journal of Catalysis, vol.81, issue.1, pp.168-178, 1983.
DOI : 10.1016/0021-9517(83)90155-0

C. Moreau, L. Bekakra, R. Durand, and P. Geneste, Hydrodenitrogenation of quinoline over mechanical mixtures of sulphided cobalt-molybdenum and nickel-molybdenum alumina supported catalysts, Catalysis Today, vol.10, issue.4, pp.681-687, 1991.
DOI : 10.1016/0920-5861(91)80046-C

G. Perot, S. Brunet, C. Canaff, and H. Toulhoat, Transformation of Quinolines and Anilines Over NiMo-Al2O3 Catalysts, Bulletin des Soci??t??s Chimiques Belges, vol.24, issue.11-12, pp.865-870, 1987.
DOI : 10.2516/ogst:1986030

S. Eijsbouts, V. H. De-beer, and R. Prins, Hydrodenitrogenation of quinoline over carbon-supported transition metal sulfides, Journal of Catalysis, vol.127, issue.2, pp.619-630, 1991.
DOI : 10.1016/0021-9517(91)90187-9

K. Malakani, P. Magnoux, and G. Perot, Hydrodenitrogenation of 7,8-benzoquinoline over nickel molybdenum alumina, Applied Catalysis, vol.30, issue.2, pp.371-375, 1987.
DOI : 10.1016/S0166-9834(00)84127-5

J. Shabtai, G. J. Yeh, C. Russell, and A. G. Oblad, Fundamental hydrodenitrogenation studies of polycyclic nitrogen-containing compounds found in heavy oils. 1. 5,6-Benzoquinoline, Industrial & Engineering Chemistry Research, vol.28, issue.2, pp.139-146, 1989.
DOI : 10.1021/ie00086a002

C. Moreau, R. Durand, N. Zmimita, and P. Geneste, Hydrodenitrogenation of benzo(f)quinoline and benzo(h)quinoline over a sulfided NiO$z.sbnd;MoO3/$gamma;-Al2O3 catalyst, Journal of Catalysis, vol.112, issue.2, pp.411-417, 1988.
DOI : 10.1016/0021-9517(88)90155-8

S. C. Kim and F. Massoth, Kinetics of the Hydrodenitrogenation of Indole, Industrial & Engineering Chemistry Research, vol.39, issue.6, pp.1705-1712, 2000.
DOI : 10.1021/ie9906518

F. E. Massoth, K. Balusami, and J. Shabtai, Catalytic functionalities of supported sulfides VI. The effect of H2S promotion on the kinetics of indole hydrogenolysis, Journal of Catalysis, vol.122, issue.2, pp.256-270, 1990.
DOI : 10.1016/0021-9517(90)90280-W

H. Schulz, M. Schon, and N. M. Rahman, Chapter 6 Hydrogenative Denitrogenation of Model Compounds as Related to the Refining of Liquid Fuels, Stud. Surf. Sci. Catal, vol.27, pp.201-255, 1986.
DOI : 10.1016/S0167-2991(08)65352-5

A. Szyma?ska, M. Lewandowski, C. Sayag, and G. Djéga-mariadassou, Kinetic study of the hydrodenitrogenation of carbazole over??bulk??molybdenum carbide, Journal of Catalysis, vol.218, issue.1, pp.24-31, 2003.
DOI : 10.1016/S0021-9517(03)00072-1

I. I. Abu and K. J. Smith, Hydrodenitrogenation of carbazole over a series of bulk NixMoP catalysts, Catalysis Today, vol.125, issue.3-4, pp.248-255, 2007.
DOI : 10.1016/j.cattod.2007.02.035

D. Ferdous, A. K. Dalai, and J. Adjaye, Catalyst, Energy & Fuels, vol.17, issue.1, pp.164-171, 2003.
DOI : 10.1021/ef020126c

M. Nagai, A. Miyata, T. Miyao, and S. Omi, Hydrodenitrogenation of Carbazole on Nitrided Molybdena-alumina Catalyst., Journal of The Japan Petroleum Institute, vol.40, issue.6, pp.500-509, 1997.
DOI : 10.1627/jpi1958.40.500

H. Tominaga and M. Nagai, Reaction mechanism for hydrodenitrogenation of carbazole on molybdenum nitride based on DFT study, Applied Catalysis A: General, vol.389, issue.1-2, pp.195-204, 2010.
DOI : 10.1016/j.apcata.2010.09.020

C. S. Raghuveer, J. W. Thybaut, R. De-bruycker, K. Metaxas, T. Bera et al., Pyridine hydrodenitrogenation over industrial NiMo/??-Al2O3 catalyst: Application of gas phase kinetic models to liquid phase reactions, Fuel, vol.125, pp.206-218, 2014.
DOI : 10.1016/j.fuel.2014.02.017

M. Jian and R. Prins, Reaction Kinetics of the hydrodenitrogenation of decahydroquinoline over NiMo(P)/Al2O3 catalysts, Stud. Surf. Sci. Catal, vol.101, pp.87-96, 1996.
DOI : 10.1016/S0167-2991(96)80218-7

S. Eijsbouts, V. H. De-beer, and R. Prins, Hydrodenitrogenation of quinoline over carbon-supported transition metal sulfides, Journal of Catalysis, vol.127, issue.2, pp.619-630, 1991.
DOI : 10.1016/0021-9517(91)90187-9

Y. Luan, Q. Zhang, D. He, J. Guan, and C. Liang, Hydrodenitrogenation of quinoline and its intermediates over sulfided NiW/?-Al 2 O 3 in the absence and presence of H 2 S

C. N. Satterfield and S. H. Yang, Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Comparison with vapor phase reaction, Industrial & Engineering Chemistry Process Design and Development, vol.23, issue.1, pp.11-19, 1984.
DOI : 10.1021/i200024a003

C. N. Satterfield, M. Modell, R. A. Hites, and C. J. Declerck, Intermediate Reactions in the Catalytic Hydrodenitrogenation of Quinoline, Industrial & Engineering Chemistry Process Design and Development, vol.17, issue.2, pp.141-148, 1978.
DOI : 10.1021/i260066a006

C. N. Satterfield and J. Cocchetto, Reaction network and kinetics of the vapor-phase catalytic hydrodenitrogenation of quinoline, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.1, pp.53-62, 1981.
DOI : 10.1021/i200012a008

J. F. Cocchetto and C. N. Satterfield, Chemical equilibriums among quinoline and its reaction products in hydrodenitrogenation, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.1, pp.49-53, 1981.
DOI : 10.1021/i200012a007

M. J. Girgis and B. C. Gates, Reactivities, reaction networks, and kinetics in high-pressure catalytic hydroprocessing, Industrial & Engineering Chemistry Research, vol.30, issue.9, pp.2021-2058, 1991.
DOI : 10.1021/ie00057a001

V. Rabarihoela-rakotovao, S. Brunet, G. Berhault, G. Perot, and F. Diehl, Effect of acridine and of octahydroacridine on the HDS of 4,6-dimethyldibenzothiophene catalyzed by sulfided NiMoP/Al2O3, Applied Catalysis A: General, vol.267, issue.1-2, pp.17-25, 2004.
DOI : 10.1016/j.apcata.2004.02.017

S. C. Kim and F. Massoth, Hydrodenitrogenation Activities of Methyl-Substituted Indoles, Journal of Catalysis, vol.189, issue.1, pp.70-78, 2000.
DOI : 10.1006/jcat.1999.2685

M. Nagai, T. Masunaga, and N. Hanaoka, Hydrodenitrogenation of carbazole on a molybdenum/alumina catalyst. Effects of sulfiding and sulfur compounds, Energy & Fuels, vol.2, issue.5, pp.645-651, 1988.
DOI : 10.1021/ef00011a007

E. W. Stern, Reaction networks in catalytic hydrodenitrogenation*1, Journal of Catalysis, vol.57, issue.3, pp.390-396, 1979.
DOI : 10.1016/0021-9517(79)90005-8

Z. Sarbak, Hydrodenitrogenation activity of sulfided catalysts, Reaction Kinetics and Catalysis Letters, vol.15, issue.2, pp.435-441, 1986.
DOI : 10.1007/BF02068348

V. Morávek, J. Duchet, and D. Cornet, Kinetic study of pyrrole and pyridine HDN on Ni-W and Ni-Mo catalysts, Applied Catalysis, vol.66, issue.1, pp.257-266, 1990.
DOI : 10.1016/S0166-9834(00)81643-7

V. Rabarihoela-rakotovao, F. Diehl, and S. Brunet, Deep HDS of Diesel Fuel: Inhibiting Effect of Nitrogen Compounds on the Transformation of the Refractory 4,6-Dimethyldibenzothiophene Over a NiMoP/Al2O3 Catalyst, Catalysis Letters, vol.219, issue.2, pp.50-60, 2008.
DOI : 10.1071/CH9672715

M. Nagai and T. Masunaga, Hydrodenitrogenation of a mixture of basic and non-basic polynuclear aromatic nitrogen compounds, Fuel, vol.67, issue.6, pp.771-774, 1988.
DOI : 10.1016/0016-2361(88)90148-2

S. K. Bej, A. K. Dalai, and J. Adjaye, Comparison of Hydrodenitrogenation of Basic and Nonbasic Nitrogen Compounds Present in Oil Sands Derived Heavy Gas Oil, Energy & Fuels, vol.15, issue.2, pp.377-383, 2001.
DOI : 10.1021/ef0001484

T. Kabe, W. Qian, and A. Ishihara, Hydrodesulfurization and Hydrodenitrogenation, Chemistry and Engineering, 1999.

M. ?erný, Hydrogenolysis of nitrogen-containing compounds on a cobalt-molybdenum catalyst, Collection of Czechoslovak Chemical Communications, vol.44, issue.1, pp.85-98, 1979.
DOI : 10.1135/cccc19790085

S. C. Kim, J. Simons, and F. Massoth, HDN Activities of Methyl-Substituted Quinolines, Journal of Catalysis, vol.212, issue.2, pp.201-206, 2002.
DOI : 10.1006/jcat.2002.3788

S. Shin, H. Yang, K. Sakanishi, I. Mochida, D. A. Grudoski et al., Inhibition and deactivation in staged hydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3 catalyst, Applied Catalysis A: General, vol.205, issue.1-2, pp.101-108, 2001.
DOI : 10.1016/S0926-860X(00)00541-X

P. Wiwel, K. Knudsen, P. Zeuthen, and D. Whitehurst, Assessing Compositional Changes of Nitrogen Compounds during Hydrotreating of Typical Diesel Range Gas Oils Using a Novel Preconcentration Technique Coupled with Gas Chromatography and Atomic Emission Detection, Industrial & Engineering Chemistry Research, vol.39, issue.2, pp.533-540, 2000.
DOI : 10.1021/ie990554e

C. Botchwey, A. K. Dalai, and J. Adjaye, Two-Stage Hydrotreating of Athabasca Heavy Gas Oil with Interstage Hydrogen Sulfide Removal:?? Effect of Process Conditions and Kinetic Analyses, Industrial & Engineering Chemistry Research, vol.43, issue.18, pp.5854-5861, 2004.
DOI : 10.1021/ie030857f

D. Ferdous, A. K. Dalai, and J. Adjaye, Catalyst Containing Boron:?? Experimental and Kinetic Studies, Industrial & Engineering Chemistry Research, vol.45, issue.2, pp.544-552, 2006.
DOI : 10.1021/ie050094r

P. J. Becker, B. Celse, D. Guillaume, H. Dulot, and V. Costa, Hydrotreatment modeling for a variety of VGO feedstocks: A continuous lumping approach, Fuel, vol.139, pp.133-143, 2015.
DOI : 10.1016/j.fuel.2014.08.032

URL : https://hal.archives-ouvertes.fr/hal-01138513

N. Charon-revellin, H. Dulot, C. López-garcía, and J. Jose, Kinetic Modeling of Vacuum Gas Oil Hydrotreatment using a Molecular Reconstruction Approach, Oil & Gas Science and Technology ??? Revue d???IFP Energies nouvelles, vol.66, issue.3, pp.479-490, 2011.
DOI : 10.2516/ogst/2010005

URL : https://hal.archives-ouvertes.fr/hal-00877849

C. Ferreira, J. Marques, M. Tayakout, I. Guibard, F. Lemos et al., Modeling residue hydrotreating, Chemical Engineering Science, vol.65, issue.1, pp.322-329, 2010.
DOI : 10.1016/j.ces.2009.06.062

R. A. Diaz-real, R. S. Mann, and I. S. Sambi, Hydrotreatment of Athabasca bitumen derived gas oil over nickel-molybdenum, nickel-tungsten, and cobalt-molybdenum catalysts, Industrial & Engineering Chemistry Research, vol.32, issue.7, pp.1354-1358, 1993.
DOI : 10.1021/ie00019a009

P. Raybaud and H. Toulhoat, Catalysis by Transition Metal Sulphides, From Molecular Theory to Industrial Application, Chapter 1.2: Atomic Scale Structures of Mixed Lamellar Sulphides, 2013.

R. Prins, M. Jian, and M. Flechsenhar, Mechanism and kinetics of hydrodenitrogenation, Polyhedron, vol.16, issue.18, pp.3235-3246, 1997.
DOI : 10.1016/S0277-5387(97)00111-3

P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, and H. Toulhoat, Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study, Journal of Catalysis, vol.190, issue.1, pp.128-143, 2000.
DOI : 10.1006/jcat.1999.2743

R. Prins, Catalytic hydrodenitrogenation 46, pp.399-464, 2001.

H. Topsøe, B. S. Clausen, N. Topsøe, J. K. Nørskov, C. V. Ovesen et al., The Bond Energy Model for Hydrotreating Reactions: Theoretical and Experimental Aspects, Bulletin des Soci??t??s Chimiques Belges, vol.25, issue.4-5, pp.283-291, 1995.
DOI : 10.1002/bscb.19951040415

S. Eijsbouts, C. Sudhakar, V. H. De-beer, and R. Prins, Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-Propylaniline over carbon-supported transition metal sulfide catalysts, Journal of Catalysis, vol.127, issue.2, pp.605-618, 1991.
DOI : 10.1016/0021-9517(91)90186-8

A. Drahorádová, Z. Vít, and M. Zdra?il, Carbon supported Ni-Mo catalyst: high hydrodenitrogenation activity and low inhibition of hydrodesulphurization by hydrodenitrogenation, Fuel, vol.71, issue.4, pp.455-458, 1992.
DOI : 10.1016/0016-2361(92)90037-O

J. C. Duchet, E. M. Van-oers, V. H. De-beer, and R. Prins, Carbon-supported sulfide catalysts, Journal of Catalysis, vol.80, issue.2, pp.386-402, 1983.
DOI : 10.1016/0021-9517(83)90263-4

E. J. Hensen, J. A. Veen, and D. G. Poduval, On the Role of Acidity in Amorphous Silica-Alumina Based Catalysts, 2006.

L. Qu, M. Flechsenhar, and R. Prins, Kinetics of the hydrodenitrogenation of o-toluidine over fluorinated NiMoS/Al2O3 and NiMoS/ASA catalysts, Journal of Catalysis, vol.217, issue.2, pp.284-291, 2003.
DOI : 10.1016/S0021-9517(02)00174-4

T. Fujikawa, K. Idei, T. Ebihara, H. Mizuguchi, and K. Usui, Aromatic hydrogenation of distillates over SiO2-Al2O3-supported noble metal catalysts, Applied Catalysis A: General, vol.192, issue.2, pp.253-261, 2000.
DOI : 10.1016/S0926-860X(99)00403-2

G. Deepa, T. M. Sankaranarayanan, K. Shanthi, and B. Viswanathan, Hydrodenitrogenation of model N-compounds over NiO-MoO3 supported on mesoporous materials, Catalysis Today, vol.198, issue.1, pp.252-262, 2012.
DOI : 10.1016/j.cattod.2012.05.035

L. Qu and R. Prins, Hydrogenation of Cyclohexene over in Situ Fluorinated NiMoS Catalysts Supported on Alumina and Silica???Alumina, Journal of Catalysis, vol.207, issue.2, pp.286-295, 2002.
DOI : 10.1006/jcat.2002.3513

J. L. Lemberton, N. Gnofam, and G. Pérot, Effect of the zeolite content on the hydrodenitrogenation of 1,2,3,4-tetrahydroquinoline over sulphided NiMo on alumina catalysts, Applied Catalysis A: General, vol.90, issue.2, pp.175-182, 1992.
DOI : 10.1016/0926-860X(92)85056-H

T. G. Harvey and T. W. Matheson, Hydroprocessing catalysis by supported ruthenium sulphide, Journal of Catalysis, vol.101, issue.2, pp.253-261, 1986.
DOI : 10.1016/0021-9517(86)90251-4

M. Breysse, P. Afanasiev, C. Geantet, and M. Vrinat, Overview of support effects in hydrotreating catalysts, Catalysis Today, vol.86, issue.1-4, pp.5-16, 2003.
DOI : 10.1016/S0920-5861(03)00400-0

URL : https://hal.archives-ouvertes.fr/hal-00007324

D. Laurenti, Catalysis by Transition Metal Sulphides, From Molecular Theory to Industrial Application, Support Effect ? Progress in the Preparation of New Catalysts, 2013.

S. Rajagopal, T. L. Grimm, D. J. Collins, and R. Miranda, Denitrogenation of piperidine on alumina, silica, and silica-aluminas: The effect of surface acidity, Journal of Catalysis, vol.137, issue.2, pp.453-461, 1992.
DOI : 10.1016/0021-9517(92)90172-E

L. Qu and R. Prins, The Effects of in Situ Fluorination and Support on the Hydrodenitrogenation of Methylcyclohexylamine, Journal of Catalysis, vol.210, issue.1, pp.183-191, 2002.
DOI : 10.1006/jcat.2002.3672

S. Kozai, H. Kabashima, and H. Hattori, Participation of acidic sites on catalyst in hydrodenitrogenation of quinoline, Fuel, vol.79, issue.3-4, pp.305-310, 2000.
DOI : 10.1016/S0016-2361(99)00164-7

C. Leyva, J. Ancheyta, A. Travert, F. Maugé, L. Mariey et al., Activity and surface properties of NiMo/SiO 2 ?Al 2 O 3 catalysts for hydroprocessing of heavy oils, Appl. Catal. Gen, pp.425-426, 2012.

J. Marques, D. Guillaume, I. Merdrignac, D. Espinat, and S. Brunet, Effect of catalysts acidity on residues hydrotreatment, Applied Catalysis B: Environmental, vol.101, issue.3-4, pp.727-737, 2011.
DOI : 10.1016/j.apcatb.2010.11.015

M. Breysse, M. Cattenot, V. Kougionas, J. C. Lavalley, F. Mauge et al., Hydrogenation Properties of Ruthenium Sulfide Clusters in Acidic Zeolites, Journal of Catalysis, vol.168, issue.2, pp.143-153, 1997.
DOI : 10.1006/jcat.1997.1639

C. Hédoire, C. Louis, A. Davidson, M. Breysse, F. Maugé et al., Support effect in hydrotreating catalysts: hydrogenation properties of molybdenum sulfide supported on ??-zeolites of various acidities, Journal of Catalysis, vol.220, issue.2, pp.433-441, 2003.
DOI : 10.1016/S0021-9517(03)00308-7

A. S. Rocha, A. C. Jr, L. Oliviero, M. A. Lélias, A. Travert et al., Effect of the electronic properties of Mo sulfide phase on the hydrotreating activity of catalysts supported on Al2O3, Nb2O5 and Nb2O5/Al2O3, Catalysis Letters, vol.96, issue.1-2, pp.27-34, 2006.
DOI : 10.1007/s10562-006-0126-7

W. Chen, F. Maugé, J. Van-gestel, H. Nie, D. Li et al., Effect of modification of the alumina acidity on the properties of supported Mo and CoMo sulfide catalysts, Journal of Catalysis, vol.304, pp.47-62, 2013.
DOI : 10.1016/j.jcat.2013.03.004

G. Crepeau, Hydrocracking catalyst characterizations Highlighting of a parallel between IRTF and catalytic activity, 2002.

G. A. Mills, H. Heinemann, T. H. Milliken, and A. G. Oblad, (Houdriforming Reactions) Catalytic Mechanism, Industrial & Engineering Chemistry, vol.45, issue.1, pp.134-137, 1953.
DOI : 10.1021/ie50517a043

J. Weitkamp and S. Ernst, Comparison Of The Reactions Of Ethylcyclohexane And 2-Methylheptane On Pd/Lay Zeolite, Stud. Surf. Sci. Catal, vol.20, pp.419-426, 1985.
DOI : 10.1016/S0167-2991(09)60192-0

J. Marques, D. Guillaume, I. Merdrignac, D. Espinat, and S. Brunet, Effect of catalysts acidity on residues hydrotreatment, Applied Catalysis B: Environmental, vol.101, issue.3-4, pp.727-737, 2011.
DOI : 10.1016/j.apcatb.2010.11.015

T. K. Ninh, L. Massin, D. Laurenti, and M. Vrinat, A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts, Applied Catalysis A: General, vol.407, issue.1-2, pp.29-39, 2011.
DOI : 10.1016/j.apcata.2011.08.019

URL : https://hal.archives-ouvertes.fr/hal-00699700

A. D. Gandubert, C. Legens, D. Guillaume, and E. Payen, X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts. Relation between activity and promoted sites. Part II: Influence of the sulfidation temperature, Surface and Interface Analysis, vol.5, issue.4, pp.206-209, 2006.
DOI : 10.1002/sia.2249

A. D. Gandubert, C. Legens, D. Guillaume, S. Rebours, and E. Payen, X-ray Photoelectron Spectroscopy Surface Quantification of Sulfided CoMoP Catalysts ??? Relation Between Activity and Promoted Sites ??? Part I: Influence of the Co/Mo Ratio, Oil & Gas Science and Technology - Revue de l'IFP, vol.62, issue.1, pp.79-89, 2007.
DOI : 10.2516/ogst:2007007

N. Bui, Thesis: Nouvel additif pour l'activation de catalyseurs d'hydrotraitement régénérés, 2011.

T. Ninh, Une Nouvelle Approche dans l'évaluation de l'effet de support des catalyseurs d'hydrodésulfuration, 2011.

T. Weber, R. Prins, and R. A. Santen, Transition Metal Sulphides, 1998.
DOI : 10.1007/978-94-017-3577-3

S. Houssenbay, S. Kasztelan, H. Toulhoat, J. P. Bonnelle, and J. Grimblot, Nature of the different nickel species in sulfided bulk and alumina-supported nickel-molybdenum hydrotreating catalysts, The Journal of Physical Chemistry, vol.93, issue.20, pp.7176-7180, 1989.
DOI : 10.1021/j100357a030

K. Marchand, C. Legens, D. Guillaume, and P. Raybaud, A Rational Comparison of the Optimal Promoter Edge Decoration of HDT NiMoS vs CoMoS Catalysts, Oil & Gas Science and Technology - Revue de l'IFP, vol.64, issue.6, pp.719-730, 2009.
DOI : 10.2516/ogst/2009037

B. Guichard, M. Roy-auberger, E. Devers, C. Legens, and P. Raybaud, Aging of Co(Ni)MoP/Al2O3 catalysts in working state, Catalysis Today, vol.130, issue.1, pp.97-108, 2008.
DOI : 10.1016/j.cattod.2007.09.007

J. M. Jones, R. A. Kydd, P. M. Boorman, P. H. Van-rhyn, and . Ni-mo, Ni???Mo/Al2O3 catalysts promoted with phosphorus and fluoride, Fuel, vol.74, issue.12, pp.1875-1880, 1995.
DOI : 10.1016/0016-2361(95)80022-A

P. M. Boorman, R. A. Kydd, T. S. Sorensen, K. Chong, J. M. Lewis et al., A comparison of alumina, carbon and carbon-covered alumina as supports for Ni???Mo???F additives: gas oil hydroprocessing studies, Fuel, vol.71, issue.1, pp.87-93, 1992.
DOI : 10.1016/0016-2361(92)90197-V

P. M. Boorman, K. Chong, R. A. Kydd, and J. M. Lewis, A comparison of alumina, carbon, and carbon-covered alumina as supports for Ni$z,sbnd;Mo$z,sbnd;F additives: Carbon deposition and model compound reaction studies, Journal of Catalysis, vol.128, issue.2, pp.537-550, 1991.
DOI : 10.1016/0021-9517(91)90311-Q

L. Cordero, R. Esquivel, N. La´zaro, J. Fierro, J. L. Lopez-agudo et al., Effect of Phosphorus on Molybdenum-Based Hydrotreating Catalysts, Applied Catalysis, vol.48, issue.2, pp.341-352, 1989.
DOI : 10.1016/S0166-9834(00)82803-1

M. Nguyen, M. Tayakout-fayolle, G. D. Pirngruber, F. Chainet, and C. Geantet, Catalyst in a Batch Reactor, Industrial & Engineering Chemistry Research, vol.54, issue.38, pp.9278-9288, 2015.
DOI : 10.1021/acs.iecr.5b02175

URL : https://hal.archives-ouvertes.fr/hal-00846443

J. F. Cocchetto and C. N. Satterfield, Chemical equilibriums among quinoline and its reaction products in hydrodenitrogenation, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.1, pp.49-53, 1981.
DOI : 10.1021/i200012a007

S. H. Yang and C. N. Satterfield, Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Effect of hydrogen sulfide, Industrial & Engineering Chemistry Process Design and Development, vol.23, issue.1, pp.20-25, 1984.
DOI : 10.1021/i200024a004

M. Jian and R. Prins, Mechanism of the Hydrodenitrogenation of Quinoline over NiMo(P)/Al2O3Catalysts, Journal of Catalysis, vol.179, issue.1, pp.18-27, 1998.
DOI : 10.1006/jcat.1998.2181

M. Jian and R. Prins, Reaction Kinetics of the hydrodenitrogenation of decahydroquinoline over NiMo(P)/Al2O3 catalysts, Stud. Surf. Sci. Catal, vol.101, pp.87-96, 1996.
DOI : 10.1016/S0167-2991(96)80218-7

M. Jian and R. Prins, Kinetic study of the HDN of quinoline over NiMo(P)/Al2O3 catalysts, Stud. Surf. Sci. Catal, vol.113, pp.111-123, 1998.
DOI : 10.1016/S0167-2991(98)80279-6

V. Meille, E. Schulz, M. Lemaire, and M. Vrinat, Hydrodesulfurization of Alkyldibenzothiophenes over a NiMo/Al2O3Catalyst: Kinetics and Mechanism, Journal of Catalysis, vol.170, issue.1, pp.29-36, 1997.
DOI : 10.1006/jcat.1997.1732

URL : https://hal.archives-ouvertes.fr/hal-00006505

V. Lamure-meille, E. Schulz, M. Lemaire, and M. Vrinat, Effect of experimental parameters on the relative reactivity of dibenzothiophene and 4-methyldibenzothiophene, Applied Catalysis A: General, vol.131, issue.1
DOI : 10.1016/0926-860X(95)00118-2

URL : https://hal.archives-ouvertes.fr/hal-00006152

L. M. Chávez, F. Alonso, and J. Ancheyta, Vapor???liquid equilibrium of hydrogen???hydrocarbon systems and its effects on hydroprocessing reactors, Fuel, vol.138, pp.156-175, 2014.
DOI : 10.1016/j.fuel.2014.03.062

C. N. Satterfield and S. H. Yang, Catalytic hydrodenitrogenation of quinoline in a trickle-bed reactor. Comparison with vapor phase reaction, Industrial & Engineering Chemistry Process Design and Development, vol.23, issue.1, pp.11-19, 1984.
DOI : 10.1021/i200024a003

J. V. Lauritsen, M. Nyberg, J. K. Nørskov, B. S. Clausen, H. Topsøe et al., Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, Journal of Catalysis, vol.224, issue.1, pp.94-106, 2004.
DOI : 10.1016/j.jcat.2004.02.009

M. Daage and R. R. Chianelli, Structure-Function Relations in Molybdenum Sulfide Catalysts: The "Rim-Edge" Model, Journal of Catalysis, vol.149, issue.2, pp.414-427, 1994.
DOI : 10.1006/jcat.1994.1308

I. A. Van-parijs and G. Froment, Kinetics of hydrodesulfurization on a cobalt-molybdenum/.gamma.-alumina catalyst. 1. Kinetics of the hydrogenolysis of thiophene, Industrial & Engineering Chemistry Product Research and Development, vol.25, issue.3, pp.431-436, 1986.
DOI : 10.1021/i300023a011

S. Humbert, G. Izzet, and P. Raybaud, Competitive adsorption of nitrogen and sulphur compounds on a multisite model of NiMoS catalyst: A theoretical study, Journal of Catalysis, vol.333, pp.78-93, 2016.
DOI : 10.1016/j.jcat.2015.10.016

URL : https://hal.archives-ouvertes.fr/hal-01337650

F. Couenne, C. Jallut, and M. Tayakout-fayolle, On minimal representation of heterogeneous mass transfer for simulation and parameter estimation: Application to breakthrough curves exploitation, Computers & Chemical Engineering, vol.30, issue.1, pp.42-53, 2005.
DOI : 10.1016/j.compchemeng.2005.07.013

M. Sun, A. E. Nelson, and J. Adjaye, Adsorption Thermodynamics of Sulfur- and Nitrogen-containing Molecules on NiMoS: A DFT Study, Catalysis Letters, vol.104, issue.3-4, pp.133-138, 2006.
DOI : 10.1007/s10562-006-0069-z

K. Lettat, E. Jolimaitre, M. Tayakout, and D. Tondeur, Liquid phase diffusion of branched alkanes in silicalite, AIChE Journal, vol.14, issue.7, pp.319-332, 2011.
DOI : 10.1007/s10450-008-9132-y

URL : https://hal.archives-ouvertes.fr/hal-00559941

T. Coleman and Y. Li, An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds, SIAM Journal on Optimization, vol.6, issue.2, pp.418-445, 1996.
DOI : 10.1137/0806023

T. F. Coleman and Y. Li, On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds, Mathematical Programming, vol.51, issue.1, pp.189-224, 1994.
DOI : 10.1007/BF01582221

P. Raybaud, S. P. Humbert, S. Raybaud, and . Humbert, Revisiting inhibition effects of nitrogen compounds on HDS on NiMoS actives sites: a DFT study

A. R. Beltramone, S. Crossley, D. E. Resasco, W. E. Alvarez, and T. Choudhary, Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen Compounds over NiMo/Al2O3, Catalysis Letters, vol.222, issue.3-4, pp.181-185, 2008.
DOI : 10.1007/s10562-008-9468-7

T. C. Ho, Competitive Hydrodenitrogenation and Aromatics Hydrogenation, 8th International Congress on Catalysis Proceedings, 1984.

T. Koltai, M. Macaud, A. Guevara, E. Schulz, M. Lemaire et al., Comparative inhibiting effect of polycondensed aromatics and nitrogen compounds on the hydrodesulfurization of alkyldibenzothiophenes, Applied Catalysis A: General, vol.231, issue.1-2, pp.253-261, 2002.
DOI : 10.1016/S0926-860X(02)00063-7

URL : https://hal.archives-ouvertes.fr/hal-00007225

L. Qu, M. Flechsenhar, and R. Prins, Kinetics of the hydrodenitrogenation of o-toluidine over fluorinated NiMoS/Al2O3 and NiMoS/ASA catalysts, Journal of Catalysis, vol.217, issue.2, pp.284-291, 2003.
DOI : 10.1016/S0021-9517(02)00174-4

R. A. Sánchez-delgado, Hydrodesulfurization and Hydrodenitrogenation, Organometallic Modeling of the Hydrodesulfurization and Hydrodenitrogenation Reactions, Catalysis by Metal Complexes, pp.1-34, 2002.

M. Sun, A. E. Nelson, and J. Adjaye, First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts, Catalysis Today, vol.109, issue.1-4, pp.49-53, 2005.
DOI : 10.1016/j.cattod.2005.08.024

L. Vopa, V. Satterfield, and C. N. , Poisoning of thiophene hydrodesulfurization by nitrogen compounds, J. Catal, vol.110, pp.375-387, 1988.

T. C. Ho, Hydrodenitrogenation Catalysis, Catalysis Reviews, vol.27, issue.1, pp.117-160, 1988.
DOI : 10.1007/BF00251438

J. T. Miller and M. F. Hineman, Non-first-order hydrodenitrogenation kinetics of quinoline, Journal of Catalysis, vol.85, issue.1, pp.117-126, 1984.
DOI : 10.1016/0021-9517(84)90115-5

B. Temel, A. K. Tuxen, J. Kibsgaard, N. Topsøe, B. Hinnemann et al., Atomic-scale insight into the origin of pyridine inhibition of MoS2-based hydrotreating catalysts, Journal of Catalysis, vol.271, issue.2, pp.280-289, 2010.
DOI : 10.1016/j.jcat.2010.02.007

M. Jian, F. Kapteijn, and R. Prins, Kinetics of the Hydrodenitrogenation ofortho-Propylaniline over NiMo(P)/Al2O3Catalysts, Journal of Catalysis, vol.168, issue.2, pp.491-500, 1997.
DOI : 10.1006/jcat.1997.1650

K. M. Sundaram, J. R. Katzer, and K. B. Bischoff, MODELING OF HYDROPROCESSING REACTIONS, Chemical Engineering Communications, vol.32, issue.1, pp.53-71, 1988.
DOI : 10.1016/0009-2509(77)80225-X

E. Peeters, C. Geantet, J. L. Zotin, M. Breysse, and M. Vrinat, Deep hydrodenitrogenation on Pt supported catalysts in the presence of H2S, comparison with NiMo sulfide catalyst., Stud. Surf. Sci. Catal, vol.130, pp.2837-2842, 2000.
DOI : 10.1016/S0167-2991(00)80901-5

URL : https://hal.archives-ouvertes.fr/hal-00009912

M. Brémaud, L. Vivier, G. Pérot, V. Harlé, and C. Bouchy, Hydrogenation of olefins over hydrotreating catalysts, Applied Catalysis A: General, vol.289, issue.1, pp.44-50, 2005.
DOI : 10.1016/j.apcata.2005.04.014

N. Y. Topsoe, H. Topsoe, . Studies, and . Mo, FTIR Studies of Mo/Al2O3-Based Catalysts II. Evidence for the Presence of SH Groups and Their Role in Acidity and Activity, Journal of Catalysis, vol.139, issue.2, pp.641-651, 1993.
DOI : 10.1006/jcat.1993.1056

N. Topsøe, H. Topsøe, and F. Massoth, Evidence of Br???nsted acidity on sulfided promoted and unpromoted Mo/Al2O3 catalysts, Journal of Catalysis, vol.119, issue.1, pp.252-255, 1989.
DOI : 10.1016/0021-9517(89)90151-6

L. Vivier, V. Dominguez, G. Perot, and S. Kasztelan, Mechanism of C???N bond scission. Hydrodenitrogenation of 1,2,3,4-tetrahydroquinoline and of 1,2,3,4-tetrahydroisoquinoline, Journal of Molecular Catalysis, vol.67, issue.2, pp.267-275, 1991.
DOI : 10.1016/0304-5102(91)85052-4

J. L. Portefaix, M. Cattenot, M. Guerriche, J. Thivolle-cazat, and M. Breysse, Conversion of saturated cyclic and noncyclic amines over a sulphided NiMo/Al2O3 catalyst : mechanisms of carbon - nitrogen bond cleavage, Catalysis Today, vol.10, issue.4, pp.473-487, 1991.
DOI : 10.1016/0920-5861(91)80034-7

N. Nelson and R. B. Levy, The organic chemistry of hydrodenitrogenation, Journal of Catalysis, vol.58, issue.3, pp.485-488, 1979.
DOI : 10.1016/0021-9517(79)90286-0

S. Kozai, H. Kabashima, and H. Hattori, Participation of acidic sites on catalyst in hydrodenitrogenation of quinoline, Fuel, vol.79, issue.3-4, pp.305-310, 2000.
DOI : 10.1016/S0016-2361(99)00164-7

A. Akgerman and B. S. Sanghvi, Quinoline denitrogenation on zeolite-based catalysts, Fuel Processing Technology, vol.9, issue.3, pp.279-291, 1984.
DOI : 10.1016/0378-3820(84)90047-X

O. Y. Gutiérrez, A. Hrabar, J. Hein, Y. Yu, J. Han et al., Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/??-Al2O3 and Ni???MoS2/??-Al2O3, Journal of Catalysis, vol.295, pp.155-168, 2012.
DOI : 10.1016/j.jcat.2012.08.003

T. S. Nguyen, M. Tayakout-fayolle, M. Ropars, and C. Geantet, Hydroconversion of an atmospheric residue with a dispersed catalyst in a batch reactor: Kinetic modeling including vapor???liquid equilibrium, Chemical Engineering Science, vol.94, pp.214-223, 2013.
DOI : 10.1016/j.ces.2013.02.036

URL : https://hal.archives-ouvertes.fr/hal-00846443

M. Mitrovic, Etudes des transferts de matière dans un réacteur triphasique gaz-liquidesolide , d'investigation cinétique (réacteur Mahoney-Robinson), 2001.

S. C. Kim and F. Massoth, Hydrodenitrogenation Activities of Methyl-Substituted Indoles, Journal of Catalysis, vol.189, issue.1, pp.70-78, 2000.
DOI : 10.1006/jcat.1999.2685

A. Bunch, L. Zhang, G. Karakas, and U. S. Ozkan, Reaction network of indole hydrodenitrogenation over NiMoS/??-Al2O3 catalysts, Applied Catalysis A: General, vol.190, issue.1-2, pp.51-60, 2000.
DOI : 10.1016/S0926-860X(99)00270-7

S. C. Kim and F. Massoth, Kinetics of the Hydrodenitrogenation of Indole, Industrial & Engineering Chemistry Research, vol.39, issue.6, pp.1705-1712, 2000.
DOI : 10.1021/ie9906518

F. E. Massoth, K. Balusami, and J. Shabtai, Catalytic functionalities of supported sulfides VI. The effect of H2S promotion on the kinetics of indole hydrogenolysis, Journal of Catalysis, vol.122, issue.2, pp.256-270, 1990.
DOI : 10.1016/0021-9517(90)90280-W

S. K. Bej, A. K. Dalai, and J. Adjaye, Comparison of Hydrodenitrogenation of Basic and Nonbasic Nitrogen Compounds Present in Oil Sands Derived Heavy Gas Oil, Energy & Fuels, vol.15, issue.2, pp.377-383, 2001.
DOI : 10.1021/ef0001484

S. C. Kim, J. Simons, and F. Massoth, HDN Activities of Methyl-Substituted Quinolines, Journal of Catalysis, vol.212, issue.2, pp.201-206, 2002.
DOI : 10.1006/jcat.2002.3788

M. ?erný, Hydrogenolysis of nitrogen-containing compounds on a cobalt-molybdenum catalyst, Collection of Czechoslovak Chemical Communications, vol.44, issue.1, pp.85-98, 1979.
DOI : 10.1135/cccc19790085

S. Shin, Inhibition and deactivation in staged hydrodenitrogenation and hydrodesulfurization of medium cycle oil over NiMoS/Al2O3 catalyst, Applied Catalysis A: General, vol.205, issue.1-2, pp.101-108, 2001.
DOI : 10.1016/S0926-860X(00)00541-X

E. W. Stern, Reaction networks in catalytic hydrodenitrogenation*1, Journal of Catalysis, vol.57, issue.3, pp.390-396, 1979.
DOI : 10.1016/0021-9517(79)90005-8

*. Morávek, V. Duchet, J. Cornet, and D. , Kinetic study of pyrrole and pyridine HDN on Ni-W and Ni-Mo catalysts, Applied Catalysis, vol.66, issue.1, pp.257-266, 1990.
DOI : 10.1016/S0166-9834(00)81643-7

V. Rabarihoela-rakotovao, F. Diehl, and S. Brunet, Deep HDS of Diesel Fuel: Inhibiting Effect of Nitrogen Compounds on the Transformation of the Refractory 4,6-Dimethyldibenzothiophene Over a NiMoP/Al2O3 Catalyst, Catalysis Letters, vol.219, issue.2, pp.50-60, 2008.
DOI : 10.1071/CH9672715

M. Nagai and T. Masunaga, Hydrodenitrogenation of a mixture of basic and non-basic polynuclear aromatic nitrogen compounds, Fuel, vol.67, issue.6, pp.771-774, 1988.
DOI : 10.1016/0016-2361(88)90148-2

M. Callant, P. Grange, K. A. Holder, and B. Delmon, Competitive Hydrodenitrogenation of Aniline and Indole. Interaction with the Hydrogenation Function of a NiMoP

A. R. Beltramone, S. Crossley, D. E. Resasco, W. E. Alvarez, and T. Choudhary, Inhibition of the Hydrogenation and Hydrodesulfurization Reactions by Nitrogen Compounds over NiMo/Al2O3, Catalysis Letters, vol.222, issue.3-4, pp.181-185, 2008.
DOI : 10.1007/s10562-008-9468-7

S. Humbert, G. Izzet, and P. Raybaud, Competitive adsorption of nitrogen and sulphur compounds on a multisite model of NiMoS catalyst: A theoretical study, Journal of Catalysis, vol.333, pp.78-93, 2016.
DOI : 10.1016/j.jcat.2015.10.016

URL : https://hal.archives-ouvertes.fr/hal-01337650

M. Sun, A. E. Nelson, and J. Adjaye, First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts, Catalysis Today, vol.109, issue.1-4, pp.49-53, 2005.
DOI : 10.1016/j.cattod.2005.08.024

L. M. Chávez, F. Alonso, and J. Ancheyta, Vapor???liquid equilibrium of hydrogen???hydrocarbon systems and its effects on hydroprocessing reactors, Fuel, vol.138, pp.156-175, 2014.
DOI : 10.1016/j.fuel.2014.03.062

F. E. Massoth and S. C. Kim, Polymer formation during the HDN of indole, Catalysis Letters, vol.57, issue.3, pp.129-134, 1999.
DOI : 10.1023/A:1019051700475

R. Aguilera, G. Gupta, V. G. Yang, S. Kuznicki, S. M. Mccaffrey et al., Pyrrolic Ring Opening and Nitrogen Removal from Solution without Hydrogenation: Natural Chabazite as a Cracking Catalyst, Energy & Fuels, vol.28, issue.10, pp.6570-6578, 2014.
DOI : 10.1021/ef501375c

L. Qu, M. Flechsenhar, and R. Prins, Kinetics of the hydrodenitrogenation of o-toluidine over fluorinated NiMoS/Al2O3 and NiMoS/ASA catalysts, Journal of Catalysis, vol.217, issue.2, pp.284-291, 2003.
DOI : 10.1016/S0021-9517(02)00174-4

J. T. Miller and M. F. Hineman, Non-first-order hydrodenitrogenation kinetics of quinoline, Journal of Catalysis, vol.85, issue.1, pp.117-126, 1984.
DOI : 10.1016/0021-9517(84)90115-5

M. C. Zonnevylle, R. Hoffmann, and S. Harris, Thiophene hydrodesulfurization on MoS2; Theoretical aspects, Surface Science, vol.199, issue.1-2, pp.320-360, 1988.
DOI : 10.1016/0039-6028(88)90415-3

J. Joffre, D. A. Lerner, and P. Geneste, Quantum Chemical Studies of the Adsorption of Thiophene on MOS2 Hydroprocessing Sites, Bulletin des Soci??t??s Chimiques Belges, vol.85, issue.Suppl. 2, pp.831-838, 1984.
DOI : 10.1135/cccc19773133

J. R. Katzer and R. Sivasubramanian, Process and Catalyst Needs for Hydrodenitrogenation, Catalysis Reviews, vol.46, issue.2, pp.155-208, 1979.
DOI : 10.1016/0021-9517(72)90115-7

F. Rota and R. Prins, Mechanism of the hydrodenitrogenation of o-toluidine and methylcyclohexylamine over NiMo/?-Al2O3, Top. Catal, pp.11-12, 2000.

M. Machida, Y. Sakao, and S. Ono, Kinetics of individual and simultaneous hydrodenitrogenations of aniline and pyridine, Applied Catalysis A: General, vol.201, issue.1, pp.115-120, 2000.
DOI : 10.1016/S0926-860X(00)00430-0

N. Gnofam, L. Vivier, S. Brunet, J. L. Lemberton, and G. Perot, On the inhibition of the HDN of anilines due to quinolines, Catalysis Letters, vol.96, issue.2, pp.81-84, 1989.
DOI : 10.2516/ogst:1986030

J. Olivé, S. Biyoko, C. Moulinas, and P. Geneste, Hydroprocessing of indole and o-ethyl aniline over sulfided CoMo, NiMo and NiW catalysts, Applied Catalysis, vol.19, issue.1, pp.165-174, 1985.
DOI : 10.1016/S0166-9834(00)82678-0

O. Y. Gutiérrez, Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/??-Al2O3 and Ni???MoS2/??-Al2O3, Journal of Catalysis, vol.295, pp.155-168, 2012.
DOI : 10.1016/j.jcat.2012.08.003

S. Kozai, H. Kabashima, and H. Hattori, Participation of acidic sites on catalyst in hydrodenitrogenation of quinoline, Fuel, vol.79, issue.3-4, pp.305-310, 2000.
DOI : 10.1016/S0016-2361(99)00164-7

A. Akgerman and B. S. Sanghvi, Quinoline denitrogenation on zeolite-based catalysts, Fuel Processing Technology, vol.9, issue.3, pp.279-291, 1984.
DOI : 10.1016/0378-3820(84)90047-X

M. S. Rana, R. Navarro, and J. Leglise, Competitive effects of nitrogen and sulfur content on activity of hydrotreating CoMo/Al2O3 catalysts: a batch reactor study, Catalysis Today, vol.98, issue.1-2, pp.67-74, 2004.
DOI : 10.1016/j.cattod.2004.07.020

O. Y. Gutiérrez, Catalysts for Simultaneous Hydrodenitrogenation and Hydrodesulfurization, ACS Catalysis, vol.4, issue.5, pp.1487-1499, 2014.
DOI : 10.1021/cs500034d

J. A. Marzari, S. Rajagopal, and R. Miranda, Bifunctional Mechanism of Pyridine Hydrodenitrogenation, Journal of Catalysis, vol.156, issue.2, pp.255-264, 1995.
DOI : 10.1006/jcat.1995.1252

D. J. Pérez-martínez, E. M. Gaigneaux, S. A. Giraldo, and A. Centeno, Interpretation of the catalytic functionalities of CoMo/ASA FCC-naphtha-HDT catalysts based on its acid properties, Journal of Molecular Catalysis A: Chemical, vol.335, issue.1-2, pp.112-120, 2011.
DOI : 10.1016/j.molcata.2010.11.022

A. K. Aboul-gheit, Comparison of the hydrodenitrogenation of the petroleum model nitrogen compounds quinoline and indole, Applied Catalysis, vol.16, issue.1, pp.39-47, 1985.
DOI : 10.1016/S0166-9834(00)84068-3

T. Dutriez, M. Courtiade, J. Ponthus, D. Thiébaut, H. Dulot et al., Complementarity of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry and high temperature comprehensive two-dimensional gas chromatography for the characterization of resin fractions from vacuum gas oils, Fuel, vol.96, pp.108-119, 2012.
DOI : 10.1016/j.fuel.2011.11.070

F. C. Wang, W. K. Robbins, and M. A. Greaney, Speciation of nitrogen-containing compounds in diesel fuel by comprehensive two-dimensional gas chromatography, Journal of Separation Science, vol.972, issue.5-6, pp.468-472, 2004.
DOI : 10.1093/chromsci/35.3.97

K. Lissitsyna, S. Huertas, L. C. Quintero, and L. M. Polo, Novel simple method for quantitation of nitrogen compounds in middle distillates using solid phase extraction and comprehensive two-dimensional gas chromatography, Fuel, vol.104, pp.752-757, 2013.
DOI : 10.1016/j.fuel.2012.08.054

L. L. Van-stee, J. Beens, R. J. Vreuls, and U. A. Brinkman, Comprehensive two-dimensional gas chromatography with atomic emission detection and correlation with mass spectrometric detection: principles and application in petrochemical analysis, Journal of Chromatography A, vol.1019, issue.1-2, pp.89-99, 2003.
DOI : 10.1016/S0021-9673(03)01301-3

V. Mühlen, C. De-oliveira, E. C. Morrison, P. D. Zini, C. A. Caramão et al., Qualitative and quantitative study of nitrogen-containing compounds in heavy gas oil using comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection, Journal of Separation Science, vol.23, issue.18, pp.3223-3232, 2007.
DOI : 10.1093/chromsci/16.7.275

H. J. Cortes, B. Winniford, J. Luong, and M. Pursch, Comprehensive two dimensional gas chromatography review, Journal of Separation Science, vol.1200, issue.5-6, pp.883-904, 2009.
DOI : 10.1016/j.chroma.2007.10.041

T. Dutriez, J. Borras, M. Courtiade, D. Thiébaut, H. Dulot et al., Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1218, issue.21, pp.3190-3199, 1218.
DOI : 10.1016/j.chroma.2010.10.056

V. Mühlen, C. De-oliveira, E. C. Zini, C. A. Caramão, E. B. Marriott et al., Characterization of Nitrogen-Containing Compounds in Heavy Gas Oil Petroleum Fractions Using Comprehensive Two-Dimensional Gas Chromatography Coupled to Time-of-Flight Mass Spectrometry, Energy & Fuels, vol.24, issue.6, pp.3572-3580, 2010.
DOI : 10.1021/ef1002364

L. Boursier, Caractérisation et réactivité en hydrotraitement des composés hétéroatomiques présents dans les distillats sous vide du pétrole, 2014.

H. Carlsson and C. Östman, Clean-up and analysis of carbazole and acridine type polycyclic aromatic nitrogen heterocyclics in complex sample matrices, Journal of Chromatography A, vol.790, issue.1-2, pp.73-82, 1997.
DOI : 10.1016/S0021-9673(97)00759-0

H. Carlsson and C. Östman, Retention mechanisms of polycylic aromatic nitrogen heterocyclics on bonded amino phases in normal-phase liquid chromatography, Journal of Chromatography A, vol.715, issue.1, pp.31-39, 1995.
DOI : 10.1016/0021-9673(95)00439-T

C. Flego and C. Zannoni, N-containing species in crude oil fractions: An identification and quantification method by comprehensive two-dimensional gas chromatography coupled with quadrupole mass spectrometry, Fuel, vol.90, issue.9, pp.2863-2869, 2011.
DOI : 10.1016/j.fuel.2011.04.040

X. Yan, Sulfur and nitrogen chemiluminescence detection in gas chromatographic analysis, Journal of Chromatography A, vol.976, issue.1-2, pp.3-10, 2002.
DOI : 10.1016/S0021-9673(02)01231-1

B. Chawla, Speciation of Nitrogen Compounds in Gasoline and Diesel Range Process Streams by Capillary Column Gas Chromatography with Chemiluminescence Detection, Journal of Chromatographic Science, vol.35, issue.3, pp.97-104, 1997.
DOI : 10.1093/chromsci/35.3.97

D. Ryan and P. Marriott, Studies on thermionic ionisation detection in comprehensive two-dimensional gas chromatography, Journal of Separation Science, vol.75, issue.15, pp.2375-2382, 2006.
DOI : 10.1002/jssc.200400033

Y. Briker, Z. Ring, A. Iacchelli, and N. Mclean, Miniaturized method for separation and quantification of nitrogen species in petroleum distillates???, Fuel, vol.82, issue.13, pp.1621-1631, 2003.
DOI : 10.1016/S0016-2361(03)00119-4

F. Adam, F. Bertoncini, N. Brodusch, E. Durand, D. Thiébaut et al., New benchmark for basic and neutral nitrogen compounds speciation in middle distillates using comprehensive two-dimensional gas chromatography, Journal of Chromatography A, vol.1148, issue.1, pp.55-64, 2007.
DOI : 10.1016/j.chroma.2007.01.142

Y. Cho, A. Ahmed, A. Islam, and S. Kim, Developments in FT-ICR MS instrumentation, ionization techniques, and data interpretation methods for petroleomics, Mass Spectrometry Reviews, vol.25, issue.2, pp.248-263, 2015.
DOI : 10.1021/ef101328n

Q. Shi, S. Zhao, Z. Xu, K. H. Chung, Y. Zhang et al., Distribution of Acids and Neutral Nitrogen Compounds in a Chinese Crude Oil and Its Fractions: Characterized by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Energy & Fuels, vol.24, issue.7, pp.4005-4011, 2010.
DOI : 10.1021/ef1004557

X. Zhu, Q. Shi, Y. Zhang, N. Pan, C. Xu et al., Characterization of Nitrogen Compounds in Coker Heavy Gas Oil and Its Subfractions by Liquid Chromatographic Separation Followed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Energy & Fuels, vol.25, issue.1, pp.281-287, 2011.
DOI : 10.1021/ef101328n

Q. Shi, C. Xu, S. Zhao, K. H. Chung, Y. Zhang et al., Characterization of Basic Nitrogen Species in Coker Gas Oils by Positive-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Energy & Fuels, vol.24, issue.1, pp.563-569, 2010.
DOI : 10.1021/ef9008983

D. Liu, Y. Fu, W. Deng, Q. Shi, K. Ma et al., FT-ICR MS Analysis of Nitrogen-Containing Compounds in the Products of Liaohe Atmospheric Residue Hydrocracking, Energy & Fuels, vol.26, issue.1, pp.624-628, 2012.
DOI : 10.1021/ef201482p

M. Liu, L. Zhang, S. Zhao, and D. Zhao, Transformation of Nitrogen Compounds through Hydrotreatment of Saudi Arabia Atmospheric Residue and Supercritical Fluid Extraction Subfractions, Energy & Fuels, vol.30, issue.1, pp.740-747, 2016.
DOI : 10.1021/acs.energyfuels.5b02158

G. C. Klein, R. P. Rodgers, and A. G. Marshall, Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry, Fuel, vol.85, issue.14-15, pp.2071-2080, 2006.
DOI : 10.1016/j.fuel.2006.04.004

J. Fu, G. C. Klein, D. F. Smith, S. Kim, R. P. Rodgers et al., Comprehensive Compositional Analysis of Hydrotreated and Untreated Nitrogen-Concentrated Fractions from Syncrude Oil by Electron Ionization, Field Desorption Ionization, and Electrospray Ionization Ultrahigh-Resolution FT-ICR Mass Spectrometry, Energy & Fuels, vol.20, issue.3, pp.1235-1241, 2006.
DOI : 10.1021/ef060012r

X. Chen, B. Shen, J. Sun, C. Wang, H. Shan et al., Characterization and Comparison of Nitrogen Compounds in Hydrotreated and Untreated Shale Oil by Electrospray Ionization (ESI) Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS), Energy & Fuels, vol.26, issue.3, pp.1707-1714, 2012.
DOI : 10.1021/ef201500r

L. R. Snyder, Petroleum nitrogen compounds and oxygen compounds, Accounts of Chemical Research, vol.3, issue.9, pp.290-299, 1970.
DOI : 10.1021/ar50033a002

C. A. Hughey, C. L. Hendrickson, R. P. Rodgers, and A. G. Marshall, Elemental Composition Analysis of Processed and Unprocessed Diesel Fuel by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Energy & Fuels, vol.15, issue.5, pp.1186-1193, 2001.
DOI : 10.1021/ef010028b

T. Zhang, L. Zhang, Y. Zhou, Q. Wei, K. H. Chung et al., Transformation of Nitrogen Compounds in Deasphalted Oil Hydrotreating: Characterized by Electrospray Ionization Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry, Energy & Fuels, vol.27, issue.6, pp.2952-2959, 2013.
DOI : 10.1021/ef400154u

N. E. Oro and C. A. Lucy, Analysis of the Nitrogen Content of Distillate Cut Gas Oils and Treated Heavy Gas Oils Using Normal Phase HPLC, Fraction Collection and Petroleomic FT-ICR MS Data, Energy & Fuels, vol.27, issue.1, pp.35-45, 2013.
DOI : 10.1021/ef301116j

Y. Cho, A. Islam, A. Ahmed, and S. Kim, Application of Comprehensive 2D GC-MS and APPI FT-ICR MS for More Complete Understanding of Chemicals in Diesel Fuel, Mass Spectrometry Letters, vol.3, issue.2, pp.43-46, 2012.
DOI : 10.5478/MSL.2012.3.2.43

D. Letourneur, R. Bacaud, M. Vrinat, D. Schweich, and I. Guibard, Hydrodesulfurization Catalyst Evaluation in an Upflow Three-Phase Microreactor, Industrial & Engineering Chemistry Research, vol.37, issue.7, pp.2662-2667, 1998.
DOI : 10.1021/ie970688x

H. Okabe, Fluorescence and predissociation of sulfur dioxide, Journal of the American Chemical Society, vol.93, issue.25, pp.7095-7096, 1971.
DOI : 10.1021/ja00754a072

H. Okabe, P. L. Splitstone, and J. J. Ball, Detector Based on a Fluorescence Method, Journal of the Air Pollution Control Association, vol.23, issue.6, pp.514-516, 1973.
DOI : 10.1080/00022470.1973.10469797

C. S. Hsu, Analytical Advances for Hydrocarbon Research, 2012.
DOI : 10.1007/978-1-4419-9212-3

S. Toby, Chemiluminescence in the reactions of ozone, Chemical Reviews, vol.84, issue.3, pp.277-285, 1984.
DOI : 10.1021/cr00061a003

G. What, SHIMADZU (Shimadzu Corporation) SHIMADZU (Shimadzu Corporation) Available at, p.11, 2016.

J. Dallüge, J. Beens, and U. A. Brinkman, Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool, Journal of Chromatography A, vol.1000, issue.1-2, pp.69-108, 2003.
DOI : 10.1016/S0021-9673(03)00242-5

A. G. Marshall, C. L. Hendrickson, and G. S. Jackson, Fourier transform ion cyclotron resonance mass spectrometry: A primer, Mass Spectrometry Reviews, vol.68, issue.166, pp.1-35, 1998.
DOI : 10.1021/ac9604651

A. G. Marshall, Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development, International Journal of Mass Spectrometry, vol.200, issue.1-3, pp.331-356, 2000.
DOI : 10.1016/S1387-3806(00)00324-9

A. G. Marshall, Fourier transform ion cyclotron resonance mass spectrometry, Accounts of Chemical Research, vol.18, issue.10, pp.316-322, 1985.
DOI : 10.1021/ar00118a006

A. G. Marshall and F. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook, 2016.

S. F. Wong, C. K. Meng, and J. Fenn, Multiple charging in electrospray ionization of poly(ethylene glycols), The Journal of Physical Chemistry, vol.92, issue.2, pp.546-550, 1988.
DOI : 10.1021/j100313a058

E. Kendrick, = 14.0000 for High Resolution Mass Spectrometry of Organic Compounds., Analytical Chemistry, vol.35, issue.13, pp.2146-2154, 1963.
DOI : 10.1021/ac60206a048

A. Albert, R. Goldacre, and J. Phillips, The strength of heterocyclic bases, J. Chem. Soc. Resumed, pp.2240-224910, 1948.

A. R. Katritzky, C. A. Ramsden, J. A. Joule, and V. Zhdankin, Handbook of Heterocyclic Chemistry, 2010.

J. M. Purcell, R. P. Rodgers, C. L. Hendrickson, and A. G. Marshall, Speciation of nitrogen containing aromatics by atmospheric pressure photoionization or electrospray ionization fourier transform ion cyclotron resonance mass spectrometry, Journal of the American Society for Mass Spectrometry, vol.63, issue.7, pp.1265-1273, 2007.
DOI : 10.1021/ac00021a018

G. Perot, P. Michaud, and J. L. Lemberton, Deep hydrodesulfurization of gasoils/mechanism of alkyldibenzothiophene transformation on bifunctional catalysts, Abstr. Pap. Am. Chem. Soc, vol.216, pp.881-881, 1998.

V. Rabarihoela-rakotovao, S. Brunet, G. Perot, and F. Diehl, Effect of H2S partial pressure on the HDS of dibenzothiophene and 4,6-dimethyldibenzothiophene over sulfided NiMoP/Al2O3 and CoMoP/Al2O3 catalysts, Applied Catalysis A: General, vol.306, pp.34-44, 2006.
DOI : 10.1016/j.apcata.2006.03.029

J. N. Díaz-de-león, M. Picquart, L. Massin, M. Vrinat, and J. A. De-los-reyes, Hydrodesulfurization of sulfur refractory compounds: Effect of gallium as an additive in NiWS/??-Al2O3 catalysts, Journal of Molecular Catalysis A: Chemical, vol.363, issue.364, pp.363-364, 2012.
DOI : 10.1016/j.molcata.2012.07.006

M. Breysse, G. Djega-mariadassou, S. Pessayre, C. Geantet, M. Vrinat et al., Deep desulfurization: reactions, catalysts and technological challenges, Catalysis Today, vol.84, issue.3-4, pp.129-138, 2003.
DOI : 10.1016/S0920-5861(03)00266-9

URL : https://hal.archives-ouvertes.fr/hal-00007325

V. Meille, E. Schulz, M. Lemaire, and M. Vrinat, Hydrodesulfurization of Alkyldibenzothiophenes over a NiMo/Al2O3Catalyst: Kinetics and Mechanism, Journal of Catalysis, vol.170, issue.1, pp.29-36, 1997.
DOI : 10.1006/jcat.1997.1732

URL : https://hal.archives-ouvertes.fr/hal-00006505

H. Schulz, W. Böhringer, F. Ousmanov, and P. Waller, Refractory sulfur compounds in gas oils, Fuel Processing Technology, vol.61, issue.1-2, pp.5-41, 1999.
DOI : 10.1016/S0378-3820(99)00028-4

F. Adam, F. Bertoncini, C. Dartiguelongue, K. Marchand, D. Thiébaut et al., Comprehensive two-dimensional gas chromatography for basic and neutral nitrogen speciation in middle distillates, Fuel, vol.88, issue.5, pp.938-946, 2009.
DOI : 10.1016/j.fuel.2008.11.032

H. Christensen and B. H. Cooper, The influence of catalyst and feedstock properties in FCC pretreatment, p.in, 1990.

M. Dorbon, I. Ignatiadis, J. Schmitter, P. Arpino, G. Guiochon et al., Identification of carbazoles and benzocarbazoles in a coker gas oil and influence of catalytic hydrotreatment on their distribution, Fuel, vol.63, issue.4, pp.565-570, 1984.
DOI : 10.1016/0016-2361(84)90298-9

F. Gioia and V. Lee, Effect of hydrogen pressure on catalytic hydrodenitrogenation of quinoline, Industrial & Engineering Chemistry Process Design and Development, vol.25, issue.4, pp.918-925, 1986.
DOI : 10.1021/i200035a014

M. Machida, Y. Sakao, and S. Ono, Influence of hydrogen partial pressure on hydrodenitrogenation of pyridine, aniline and quinoline, Applied Catalysis A: General, vol.187, issue.1, pp.73-78, 1999.
DOI : 10.1016/S0926-860X(99)00197-0

G. Perot, S. Brunet, C. Canaff, and H. Toulhoat, Transformation of Quinolines and Anilines Over NiMo-Al2O3 Catalysts, Bulletin des Soci??t??s Chimiques Belges, vol.24, issue.11-12, pp.865-870, 1987.
DOI : 10.2516/ogst:1986030

M. Jian and R. Prins, Reaction Kinetics of the hydrodenitrogenation of decahydroquinoline over NiMo(P)/Al2O3 catalysts, Stud. Surf. Sci. Catal, vol.101, pp.87-96, 1996.
DOI : 10.1016/S0167-2991(96)80218-7

M. Jian and R. Prins, Existence of different catalytic sites in HDN catalysts, Catalysis Today, vol.30, issue.1-3, pp.127-134, 1996.
DOI : 10.1016/0920-5861(95)00326-6

M. Jlan, J. L. Cerda, and R. Prins, THE FUNCTION OF PHOSPHORUS , NICKEL AND H2S IN THE HDN OF PIPERIDINE AND PYRIDINE OVER NiMoP/Al2O3 CATALYSTS, Bulletin des Soci??t??s Chimiques Belges, vol.2, issue.4-5, pp.225-230, 1995.
DOI : 10.1002/bscb.19951040408

R. Prins, Catalytic hydrodenitrogenation, pp.399-464, 2001.
DOI : 10.1016/S0360-0564(02)46025-7

C. N. Satterfield, M. Modell, R. A. Hites, and C. J. Declerck, Intermediate Reactions in the Catalytic Hydrodenitrogenation of Quinoline, Industrial & Engineering Chemistry Process Design and Development, vol.17, issue.2, pp.141-148, 1978.
DOI : 10.1021/i260066a006

A. Duan, S. Lin, and C. Xu, Effect of Operation Variables on Hydrodenitrogenation and Hydrodesulfurization over NiMo/Al2O3 Catalysts, Chin. J.Chem. Eng, vol.11, pp.743-746, 2003.

H. Schulz, M. Schon, and N. M. Rahman, Chapter 6 Hydrogenative Denitrogenation of Model Compounds as Related to the Refining of Liquid Fuels, Stud. Surf. Sci. Catal, vol.27, pp.201-255, 1986.
DOI : 10.1016/S0167-2991(08)65352-5

3. Appendix, G. Product, and G. , The products were analyzed by Gas Chromatograph (GC) (model HP) equipped by a capillary column Agilent 190955-023E HP5 (5% Phenyl Methyl Siloxane, 30 m x 530 ?m x 0.88 ?m film thickness) and flame ionization detector. Before GC analysis, liquid samples were diluted 5 times in m-xylene as solvent. Hexadecane was introduced into the dilution solvent as internal standard. The method of GC analysis was described as following: Temperature program, 15°C/min, hold in 8 min Total duration: 92 min Volume ratio of split, pp.40-70