B. Schottky, Modélisation Concernant la modélisation, deux branches rectifiantes sont efficaces à 195 ? C, 170 ? C et

?. C. , À 120 ? C et 95 ? C, une troisième branche s'avère nécessaire à la modélisation

?. Une-quatrième-branche-vient-compléter-le-modèle, Enfin, une cinquième branche est à adjoindre pour ajuster le modèle en dessous de-30 ? C. À titre d'illustration, la décomposition de la caractéristique IV à 20 ? C est donnée en échelles linéaire et semi-logarithmique en figure

B. Asllani, M. Berthou, D. Tournier, P. Brosselard, and P. Godignon, Modeling of Inhomogeneous 4H-SiC Schottky and JBS Diodes in a Wide Temperature Range, Materials Science Forum, vol.858, pp.741-744, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01646323

M. Berthou, B. Asllani, P. Brosselard, and P. Godignon, Cryogenic to High Temperature Exploration of 4H-SiC W-SBD, Materials Science Forum, vol.821, pp.583-587, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01646326

B. Berthou, M. Tournier, D. Brosselard, P. Godignon, and P. , Modeling of Inhomogeneous 4H-SiC Schottky and JBS Diodes in a Wide Temperature Range. International Conference on Silicon Carbide and Related Materials (ICSCRM2015), Sicili (Italy), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01646323

M. Berthou, B. Asllani, P. Brosselard, and P. Godignon, Cryogenic to High Temperature Exploration of 4H-SiC W-SBD. European Conference on Silicon Carbide and Related Materials (ECSCRM2014), 2014.
URL : https://hal.archives-ouvertes.fr/hal-01646326

B. Niu, S. Denis, P. Berthou, M. Tournier, D. Brosselard et al., Annexe En annexe de ce document nous pourrons trouver les cartographies réalisées dans le cadre du projet FilSiC des lots 4, 6 et 7. Elles concernent le coefficient d'idéalité, la hauteur de barrière et la tenue en tension, Conférences Nationales avec Actes et Comité de Lecture Asllani, 2014.

J. Berzelius, « Undersökning af några mineralier

E. G. Acheson, Production of Artifical Crystalline Carbonaceous Materials. 1895 (cf, p.3

. Hj-round, « A note on carborundum, Electr. world, p.3, 1907.

L. J. Anthony, « Sublimation process for manufacturing Silicon Carbide crystals, US Pat, vol.2, p.4, 1958.

L. J. Kroko and C. H. Chi, Fused junctions in silicon carbide. US Patent 2,937, vol.323, p.4, 1960.

L. J. Kroko, Silicon carbide rectifier. US Patent 2,937, vol.324, p.4, 1960.

R. N. Hall, Silicon carbide semiconductor devices and method of preparation thereof. US Patent 2,918, vol.396, p.4, 1959.

H. Albert, H. J. Van-daal, and K. W. Franciscus, Silicon carbide semiconductor device, US Patent, vol.3, p.4, 1964.

D. Tournier, Composants de puissance en SiC : Technologie ». In : Tech. l'ingénieur tome, vol.5, p.4, 2007.

W. Y. Ching, The electronic structure and spectroscopic properties of 3C, 2H, 4H, 6H, 15R and 21R polymorphs of SiC, Mater. Sci. Eng. A, vol.422, issue.2, p.4, 2006.

H. O. Pierson, « Handbook of Refractory Carbides and Nitrides

C. Refract and . Nitrides, , p.4, 1996.

S. S. Zumdahl, Basic Chemistry with Student Support Package 5th Edition with Zumdahl Intro to Chemistry Study Guide 5th Edition. Houghton Mifflin College Division, vol.isbn, p.618532285, 2003.

A. P. Mirgorodsky, Molecular approach to the modeling of elasticity and piezoelectricity of SiC polytypes, Phys. Rev. B, vol.52, issue.5, pp.3993-4000, 1995.

J. W. Palmour, « 6H-silicon carbide devices and applications, Phys. B Phys

, Condens. Matter, vol.185, issue.93, p.90278, 1993.

R. Singh, « Reliability and performance limitations in SiC power devices, Microelectron. Reliab, vol.46, issue.6, 2006.

. Michael-e-levinshtein, L. Sergey, . Rumyantsev, S. Michael, and . Shur, Properties of Advanced Semiconductor Materials, 2001.

K. Kamitani, The elastic constants of silicon carbide : A Brillouin-scattering study of 4H and 6H SiC single crystals, J. Appl. Phys, vol.82, issue.6, p.3152, 1997.

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, « What is the Young's modulus of silicon ?, In : J. Microelectromechanical Syst, vol.19, issue.6, pp.229-238, 2010.

. El-kern, Thermal properties of beta silicon carbide from 20 to 2000 C, Mater. Res. Bull, vol.4, issue.6, pp.25-32, 1969.

A. A. Giardini, « A Study of the Directional Hardness in Silicon, Am. Mineral, vol.43, issue.6, pp.957-969, 1958.

O. Madelung, . Rössler, and . Schulz, Semiconductors : Group IV Elements, IV-IV and III-IV compounds, Landolt-Börnstein, New series, Group III, vol.41

L. Gary and . Harris, Properties of Silicon Carbide, p.3540081275, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01784775

.. H. Gomes-de-mesquita, « Refinement of the crystal structure of SiC type 6H, Acta Crystallogr, vol.23, issue.6, pp.610-617, 1967.

P. De-bièvre, « The chemical preparation and characterization of specimens for "absolute" measurements of the molar mass of an element, exemplified by silicon, for redeterminations of the Avagadro constant, Metrologia 32, vol.2, 1995.

P. Käckell, B. Wenzien, and F. Bechstedt, « Electronic properties of cubic and hexagonal SiC polytypes from ab initio calculations, Phys. Rev. B, vol.50, issue.7, pp.163-1829, 1994.

R. Mousa, « Caractérisation, modélisation et intégration de JFET de puissance en carbure de silicium dans des convertisseurs haute température et haute tension, 2009.

J. Tartarin, La technologie GaN et ses applications pour l'électronique robuste, haute fréquence et de puissance, Rapp. tech, issue.8, pp.1-16, 2008.

M. N. Yoder, « Wide bandgap semiconductor materials and devices, IEEE Trans. Electron Devices, vol.43, issue.8, pp.1633-1636, 1996.

S. M. Sze, K. Kwok, and . Ng, Physics of Semiconductor Devices. T, vol.28, p.815, 2006.

E. Johnson, « Physical limitations on frequency and power parameters of transistors, IRE Int. Conv. Rec. T. 13. Institute of Electrical et Electronics Engineers, pp.27-34, 1965.

R. W. Keyes, « Figure of merit for semiconductors for high-speed switches, Proc. IEEE, vol.60, pp.225-225, 1972.

B. Baliga, « Semiconductors for high voltage, vertical channel field effect transistors, J. Appl. Phys, vol.53, 1982.

B. Baliga, « Power semiconductor-device figure of merit for high-frequency applications, IEEE Electron Device Lett, vol.10, pp.455-457, 1989.

C. Buttay, « State of the art of high temperature power electronics

, Sci. Eng. B, vol.176, p.10, 2011.

A. Brett and . Hull, Development of Large Area (up to 1.5 cm<sup>2</sup>) 4HSiC 10 kV Junction Barrier Schottky Rectifiers, Mater. Sci. Forum, vol.600, issue.603, p.12, 2009.

C. W. Tipton, Development of a 15 kV bridge rectifier module using 4H-SiC junction-barrier schottky diodes, IEEE Trans. Dielectr. Electr. Insul, vol.18, p.12, 2011.

T. Kaji, H. Niwa, and J. Suda, « Ultrahigh-Voltage (> 20 kV) SiC PiN Diodes with a Space-Modulated JTE and Lifetime Enhancement Process via Thermal Oxidation, Mater. Sci. Forum, vol.778, p.12, 2014.

P. Alexandrov, Demonstration of first 10 kV, 130mXcm2 normally-off 4HSiC trenched-and-implanted vertical junction field-effect transistor, vol.25, p.14, 2003.

S. Chen, « Fabrication and Testing of 3500V / 15A SiC JFET Based Power Module for High-Voltage , High-Frequency Applications, p.14, 2015.

B. Hull, Reliability and stability of SiC power mosfets and next-generation SiC MOSFETs, IEEE Work. Wide Bandgap Power Devices Appl. IEEE, p.15, 2014.

, 1200V / 180A Full SiC Power Module with Integrated SiC Trench MOSFET New full SiC power module with built-in SiC trench MOSFET reduces ON resistance and improves switching performance (cf, p.15

D. Heer, . Domes, and . Peters, « Switching performance of a 1200 V SiC-TrenchMOSFET in a low-power module, PCIM Eur, p.15, 2016.

V. Pala, « 10 kV and 15 kV silicon carbide power MOSFETs for nextgeneration energy conversion and transmission systems, IEEE Energy Convers. Congr. Expo. ECCE, vol.2014, p.15, 2014.

. Siddarth-g-sundaresan, « Rapidly Maturing SiC Junction Transistors Featuring Current Gain (?) 130, Blocking Voltages up to 2700 V and Stable Long-TermOperation, Mater. Sci. Forum, p.17, 2014.

H. Miyake, « 21-kV SiC BJTs with space-modulated junction termination extension, IEEE Electron Device Lett, vol.33, p.17, 2012.

G. Siddarth and . Sundaresan, Hybrid Si-IGBT/SiC Rectifier Co-Packs and SiC JBS Rectifiers Offering Superior Surge Current Capability and Reduced Power Losses, EN. In : Mater. Sci. Forum, vol.717, issue.720, p.17, 2012.

J. Qingchun and . Zhang, SiC Power Devices for Microgrids, vol.25, p.18, 2010.

E. V. Brunt, 4H-SiC n-IGBTs with improved conductivity modulation », Proc. Int. Symp. Power Semicond. Devices ICs, vol.22, p.18, 2014.

D. Tournier, Composants de puissance en SiC : Applications ». In : Tech. l'ingénieur tome, p.19, 2007.

. Xu-she, Review of Silicon Carbide Power Devices and Their Applications, IEEE Trans. Ind. Electron, p.19, 2017.

K. Mrinal and . Das, « 10 kV , 120 A SiC Half H-Bridge Power MOSFET Modules Suitable for High Frequency , Medium Voltage Applications, p.20, 2011.

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants electroniques : Cours et exercices corriges, Dunod, vol.30, p.830, 2009.

W. Schottky, « Zur halbleitertheorie der sperrschicht-und spitzengleichrichter, Zeitschrift für Phys, vol.113, p.23, 1939.

N. Mott, « The theory of crystal rectifiers, Proc. R. Soc. A Math. Phys. Sci, vol.171, p.23, 1939.

R. T. Tung, « Schottky barrier height-do we really understand what we measure ?, In : J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.11, p.95, 1993.

R. T. Tung, « Recent advances in Schottky barrier concepts

. Eng, R Reports, vol.35, p.95, 2001.

. Vl-rideout, « A review of the theory, technology and applications of metal-semiconductor rectifiers, Thin Solid Films, p.28, 1978.

T. Abi-tannous, Croissance de la phase MAX sur SiC contact ohmique stable et fiable à haute température, p.32, 2015.

. Lg-fursin, . Zhao, and . Weiner, « Nickel ohmic contacts to p and n-type 4H-SiC, Electronics Letters, vol.37, p.33, 2001.

T. Marinova, Nickel based ohmic contacts on SiC, Materials Science and Engineering : B, vol.46, p.33, 1997.

T. Nakamura and M. Satoh, « NiSi2 ohmic contact to n-type 4H-SiC, Materials Science Forum. T. 389. Trans Tech Publ, p.33, 2002.

S. J. Yang, Study of Co-and Ni-based ohmic contacts to n-type 4H-SiC, Diamond and related materials, vol.13, p.33, 2004.

E. D. Luckowski, Improved ohmic contact to n-type 4H and 6H-SiC using nichrome, Journal of electronic materials, vol.27, p.33, 1998.

Y. Gao, Improved ohmic contact on n-type 4H-SiC, Solid-State Electronics, vol.44, p.33, 2000.

N. Lundberg and . Östling, « CoSi2 ohmic contacts to n-type 6H-SiC, Solid-State Electronics, vol.38, p.33, 1995.

N. Cho, K. Jung, and Y. Choi, « Improved ohmic contact to the n-type 4H-SiC semiconductor using cobalt silicides, Semiconductor science and technology, vol.19, p.33, 2003.

W. Yongshun, Ohmic contact behaviour of Co/C/4H-SiC structures, Journal of Semiconductors, vol.32, p.33, 2011.

S. Lee, C. Zetterling, and M. Östling, « Titanium Tungsten (TiW) for Ohmic contacts to n-and p-type 4H-SiC, MRS Proceedings. T. 640, p.33, 2000.

S. Lee, Low resistivity ohmic titanium carbide contacts to n-and p-type 4Hsilicon carbide, Solid-State Electronics, vol.44, p.33, 2000.

H. Tamaso, Si Ohmic Contacts for Both n-Type and p-Type 4HSiC, Materials Science Forum. T. 778. Trans Tech Publ, vol.34, p.33, 2014.

S. Chang, « Investigation of Au/Ti/Al ohmic contact to N-type 4H-SiC, Solid-state electronics, vol.49, p.33, 2005.

N. I. Cho, . Choi, and . Noh, Cu/Si/Cu multilayer structures for Ohmic contact on ntype 4H-SiC substrates, vol.13, p.33, 2004.

K. Buchholt, Step-flow growth of nanolaminate Ti 3 SiC 2 epitaxial layers on 4H-SiC (0001), Scripta Materialia, vol.64, p.33, 2011.

B. Capano, The effect of titanium on Al-Ti contacts to p-type 4H-SiC, vol.47, p.34, 2003.

K. V. Vassilevski, Study of annealing conditions on the formation of ohmic contacts on p+ 4H-SiC layers grown by CVD and LPE, vol.61, p.34, 1999.

. Michael-r-jennings, On the Ti3SiC2 metallic phase formation for robust p-type 4H-SiC ohmic contacts, Materials Science Forum. T. 778. Trans Tech Publ, p.34, 2014.

J. Crofton, Titanium and aluminum-titanium ohmic contacts to p-type SiC, Solid-State Electronics, vol.41, p.34, 1997.

S. Tanimoto, Ohmic contact structure and fabrication process applicable to practical SiC devices, Materials Science Forum. T. 389. Trans Tech Publ, p.34, 2002.

H. Vang, Ni-Al ohmic contact to p-type 4H-SiC, Superlattices and microstructures, vol.40, issue.4, p.34, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00141426

R. Perez, Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment, Diamond and related materials, vol.14, p.34, 2005.

K. Vassilevski, Phase formation at rapid thermal annealing of Al/Ti/Ni ohmic contacts on 4H-SiC, Materials Science and Engineering : B, vol.80, p.34, 2001.

F. Laariedh, « Investigations on Ni-Ti-Al ohmic contacts obtained on p-type 4H-SiC, p.34, 2012.

M. Vivona, Ohmic contacts to p-type implanted 4H-SiC, Journal of Applied Physics, vol.118, p.34, 2015.

S. Lee, Low resistivity ohmic contacts on 4H-silicon carbide for high power and high temperature device applications, Microelectronic Engineering, vol.60, p.34, 2002.

L. Kassamakova, Study of the electrical, thermal and chemical properties of Pd ohmic contacts to p-type 4H-SiC : dependence on annealing conditions, Materials Science and Engineering : B, vol.61, p.34, 1999.

S. Tsukimoto, M. Sakai, and . Murakami, « Electrical properties and microstructure of ternary Ge/ Ti/ Al ohmic contacts to p-type 4H-SiC, Journal of applied physics, vol.96, p.34, 2004.

N. Lundberg and . Östling, « Thermally stable low ohmic contacts to p-type 6H SiC using cobalt silicides, Solid-State Electronics, vol.39, p.34, 1996.

N. A. Mahadik, Growth Reduction of Basal Plane Dislocations by High Temperature Annealing in 4H-SiC Epilayers, EN. In : Mater. Sci. Forum, vol.778, p.35, 2014.

M. Dudley, Stacking faults created by the combined deflection of threading dislocations of Burgers vector c and c+a during the physical vapor transport growth of 4H-SiC, Appl. Phys. Lett, vol.98, p.35, 2011.

Y. Chen, « Defects structures in silicon carbide bulk crystals, epilayers and devices, ProQuest Diss. Theses ; Thesis (Ph.D.)-State Univ, vol.38, p.35, 2008.

M. Abadier, Glide of threading edge dislocations after basal plane dislocation conversion during 4H-SiC epitaxial growth, J. Cryst. Growth, vol.418, pp.35-37, 2015.

N. Thierry-jebali, « Observation of the generation of stacking faults and active degradation measurements on off-axis and on-axis 4H-SiC PiN diodes, Appl. Phys

. Lett, , vol.101, p.35, 2012.

R. L. Myers-ward, , p.37

, « Planar edge termination and related manufacturing process technology for high power 4H-SiC diodes, p.39, 2008.

Q. Wahab, Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H-SiC Schottky diodes, Appl. Phys. Lett, vol.76, p.39, 2000.

T. Kimoto, High Voltage 4H-SiC Schottky Barrier Diodes Fabricated on (0338) with Closed Micropipes, Japanese journal of applied physics, vol.42, p.39, 2003.

G. Feng, J. Suda, and T. Kimoto, « Characterization of major in-grown stacking faults in 4H-SiC epilayers, Phys. B Condens. Matter, vol.404, p.40, 2009.

C. Cheng, R. Needs, and . Heine, Inter-layer interactions and the origin of SiC polytypes ». en, J. Phys. C Solid State Phys, vol.21, p.41, 1988.

H. J. and J. , Impact of Stacking Fault on the I-V Characteristics of 4H-SiC Schottky Barrier Diode, EN. In : Mater. Sci. Forum, vol.821, p.41, 2015.

B. Chen, Surface defects and accompanying imperfections in 4H-SiC : Optical, structural and electrical characterization, Acta Mater, vol.60, p.42, 2012.

H. Fujiwara, Characterization of in-grown stacking faults in 4H-SiC (0001) epitaxial layers and its impacts on high-voltage Schottky barrier diodes

, Phys. Lett, vol.87, p.42, 2005.

K. Kojima, Influence of stacking faults on the performance of 4H-SiC Schottky barrier diodes fabricated on (11-20) face, Appl. Phys. Lett, vol.81, p.42, 2002.

J. Hasegawa, « Investigation of Stacking Faults Affecting on Reverse Leakage Current of 4H-SiC Junction Barrier Schottky Diodes Using Device Simulation, Mater. Sci. Forum, vol.778, pp.42-44, 2014.

M. Posselt and . Gao, « A comparative study of the structure and energetics of elementary defects in 3C-and 4H-SiC, J. Phys, pp.44-46, 2004.

D. V. Lang, Deep-level transient spectroscopy : A new method to characterize traps in semiconductors, J. Appl. Phys, vol.45, p.44, 1974.

T. Kimoto, « Material science and device physics in SiC technology for highvoltage power devices ». en, Jpn. J. Appl. Phys, vol.54, p.44, 2015.

T. Kimoto, K. Danno, and J. Suda, « Lifetime-killing defects in 4HSiC epilayers and lifetime control by low-energy electron irradiation, Phys. Status Solidi Basic Res, vol.245, p.46, 2008.

V. Mulpuri and . Rao, Al and B ion-implantations in 6H-and 3C-SiC, J. Appl. Phys, vol.77, p.48, 1995.

T. Dalibor, Deep defect centers in silicon carbide monitored with deep level transient spectroscopy, physica status solidi (a), vol.162, p.48, 1997.

F. Roccaforte, Surface and interface issues in wide band gap semiconductor electronics, Appl. Surf. Sci, vol.256, p.48, 2010.

D. J. Morrison, Effect of post-implantation anneal on the electrical characteristics of Ni 4H-SiC Schottky barrier diodes terminated using self-aligned argon ion implantation, Solid. State. Electron, vol.44, p.48, 2000.

V. Khemka, T. P. Chow, and R. J. Gutmann, « Effect of reactive ion etch-induced damage on the performance of 4H-SiC schottky barrier diodes, J. Electron. Mater, vol.27, pp.361-5235, 1998.

K. Kawahara, Deep levels induced by reactive ion etching in n-and p-type 4H-SiC, J. Appl. Phys, vol.108, p.49, 2010.

P. Tanner, SIMS analysis of nitrided oxides grown on 4H-SiC

. Mater, , vol.28, p.50, 1999.

V. Ev, Band alignment and defect states at SiC/oxide interfaces ». en, J. Phys. Condens. Matter, vol.16, 2004.

P. Friedrichs, « Silicon carbide power semiconductors-new opportunities for high efficiency, 3rd IEEE Conf. Ind. Electron. Appl. IEEE, p.51, 2008.

M. Berthou, « Implementation of high voltage Silicon Carbide rectifiers and switches, vol.53, p.52, 2012.

E. Berkman, Defect Status in SiC Manufacturing ». EN. In : Mater. Sci. Forum, p.52, 2009.

T. Kaji, H. Niwa, and J. Suda, « Ultrahigh Voltage (> 20 kV) SiC PiN Diodes with a Space-Modulated JTE and Lifetime Enhancement Process via Thermal Oxidation, EN. In : Mater. Sci. Forum, vol.778, p.56, 2014.

M. Berthou, Comparison of 5kV SiC JBS and PiN Diodes, vol.778, p.56, 2014.

A. V. Bolotnikov, Junction Termination Extension Implementing Drive-in Diffusion of Boron for High-Voltage <emphasis emphasistype="roman">SiC</emphasis> Devices, IEEE Trans. Electron Devices, vol.57, p.57, 2010.

B. J. Baliga, « The Pinch Rectifier : A Low-Forward-Drop High-Speed Power Diode, IEEE Electron Device Lett. 5, vol.6, p.59, 1984.

M. Berthou, Study of 4H-SiC JBS diodes fabricated with tungsten Schottky barrier, J. Electron. Mater. 40, vol.12, pp.2355-2362, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01627572

F. A. Padovani and R. Stratton, « Field and thermionic-field emission in Schottky barriers, Solid. State. Electron, vol.9, p.65, 1966.

C. Crowell and S. M. Sze, « Current transport in metal-semiconductor barriers, Solid. State. Electron, vol.9, issue.66, p.65, 1966.

C. R. Crowell, « The Richardson constant for thermionic emission in Schottky barrier diodes, Solid. State. Electron, vol.8, p.65, 1965.

B. J. Skromme, Electrical characteristics of schottky barriers on 4H-SiC : The effects of barrier height nonuniformity, J. Electron. Mater, vol.29, p.80, 2000.

K. J. Schoen, A dual-metal-trench Schottky pinch-rectifier in 4H-SiC, IEEE Electron Device Lett, vol.19, p.80, 1998.

F. Roccaforte, L. Via, and . Baeri, Structural and electrical properties of Ni/Ti Schottky contacts on silicon carbide upon thermal annealing, J. Appl, vol.93, p.80, 2004.

F. Kling, In : () (cf, p.85

A. Milnes and . Feucht, Heterojunctions and Metal-Semiconductor Junctions, Acad, p.89, 1972.

G. Pensl and W. J. Choyke, « Electrical and optical characterization of SiC, Phys. B Phys. Condens. Matter, vol.185, pp.264-283, 1993.

M. Roschke and F. Schwierz, « Electron mobility models for 4H, 6H, and 3C SiC, IEEE Trans. Electron Devices, vol.48, p.93, 2001.

. Sang-youn-han, Ohmic contact formation mechanism of Ni on n-type 4H-SiC, Appl. Phys. Lett. 79, vol.12, p.93, 2001.

F. Roccaforte, Highly reproducible ideal SiC Schottky rectifiers : Effects of surface preparation and thermal annealing on the Ni/6H-SiC barrier height

, Phys. A Mater. Sci. Process, vol.77, pp.827-833, 2003.

V. Janardhanam, « Study of current-voltage-temperature (I-V-T) and capacitancevoltage-temperature (C-V-T) characteristics of molybdenum Schottky contacts on nInP (1 0 0), J. Alloys Compd, vol.485, p.95, 2009.

S. Tumakha, Defect-driven inhomogeneities in Ni4H-SiC Schottky barriers, vol.87, p.95, 2005.

K. Y. Lee and . Huang, « An investigation on barrier inhomogeneities of 4H-SiC Schottky barrier diodes induced by surface morphology and traps, Electron Devices, p.95, 2012.

J. Leon, Small signal thermal analysis of local multibarrier behaviour in SiC Schottky diodes ». en, J. Phys. D. Appl. Phys, vol.47, p.95, 2014.

V. Narayanamurti, « BEEM imaging and spectroscopy of buried structures in semiconductors, Phys. Rep. 349, vol.6, p.95, 2001.

D. J. Ewing, Inhomogeneities in Ni4H-SiC Schottky barriers : Localized Fermilevel pinning by defect states, vol.101, pp.98-100, 2007.

D. Ewing, Inhomogeneous electrical characteristics in 4H-SiC Schottky diodes, Semicond. Sci. Technol. 22, vol.12, p.98, 2007.

G. Zaremba, « The role of deep level traps in barrier height of 4H-SiC Schottky diode, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol, vol.177, p.98, 2012.

R. T. Tung, « Electron transport at metal-semiconductor interfaces : General theory, Phys. Rev. B, vol.45, p.112, 1992.

K. Sarpatwari and .. Contacts, THE EFFECTS OF BARRIER, vol.102, p.101, 2009.

A. Itoh, . Kimoto, and . Matsunami, « High performance of high-voltage 4H-SiC Schottky barrier diodes, Electron Device Lett. IEEE, p.103, 1995.

M. Berthou, Cryogenic to High Temperature Exploration of 4H-SiC WSBD, vol.821, pp.1662-9752, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01646326

. Fabrizio-roccaforte, Richardson's constant in inhomogeneous silicon carbide Schottky contacts, J. Appl. Phys, vol.93, pp.9137-9144, 2003.

J. Werner and . Güttler, Barrier inhomogeneities at Skottky contacts

, Appl. Phys, vol.69, p.104, 1991.

D. Donoval, Transport properties and barrier height evaluation in Ni/InAlN/GaN Schottky diodes, Journal of applied physics, vol.109, p.63711, 2011.

D. Lugo-muñoz, An explicit multi-exponential model for semiconductor junctions with series and shunt resistances, Microelectron. Reliab. 51, vol.12, pp.2044-2048, 2011.

N. Karaboga, S. Kockanat, and . Hulya-dogan, « The parameter extraction of the thermally annealed Schottky barrier diode using the modified artificial bee colony, Appl. Intell, vol.38, pp.279-288, 2012.

D. Defives, Electrical characterization of inhomogeneous Ti/4H-SiC Schottky contacts, Mater. Sci. Eng. B, vol.61, pp.395-401, 1999.

F. Chen, Temperature-dependent characteristics of 4H-SiC junction barrier Schottky diodes, Chinese Phys. B, vol.21, p.106, 2012.

T. R. Mcnutt, Silicon carbide PiN and merged PiN Schottky power diode models implemented in the Saber circuit simulator, IEEE Trans. Power Electron, vol.19, p.107, 2004.

P. Leturcq, Semi COnducteurs De Puissance Unipolaires Et Mixtes (Patie1)\. Ed. Techniques Ingénieur, p.107, 2001.

J. M. Shah, Experimental analysis and theoretical model for anomalously high ideality factors (n ? ? ?2.0) in AlGaN/GaN p-n junction diodes, J. Appl. Phys, vol.94, p.109, 2003.

V. Aubry and F. Meyer, « Schottky diodes with high series resistance : Limitations of forward I-V methods, J. Appl. Phys. 76, vol.12, p.109, 1994.

C. Feng and -. Yu-ming, « Study of 4H-SiC junction barrier Schottky diode using field guard ring termination, Chinese Phys. B, vol.19, p.109, 2010.

H. Card, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes, J. Phys. D. Appl. Phys, vol.4, p.111, 1971.

J. Werner, K. Ploog, and H. J. Queisser, « Interface-state measurements at schottky contacts : A new admittance technique, Phys. Rev. Lett, vol.57, p.111, 1986.

J. Werner, Origin of the Excess Capacitance at Intimate Schottky Contacts, Phys. Rev. Lett, vol.60, p.111, 1988.

E. H. Rhoderick and R. H. Williams, « Metal-Semiconductor Contacts, p.111, 1988.

V. L. Rideout and C. R. Crowell, « Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts, Solid State Electron. 13, vol.7, p.111, 1970.

C. Sah, R. N. Noyce, and W. Shockley, Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics, vol.45, p.111, 1957.

J. L. Freeouf, Size dependence of "effective" barrier heights of mixed-phase contacts, J. Vac. Sci. Technol, vol.21, p.112, 1982.

R. Pérez, Ti ohmic and Schottky contacts on 4H-SiC formed with a single thermal treatment, Diam. Relat. Mater, vol.14, p.137, 2005.

J. B. Fonder, Physical analysis of Schottky contact on power AlGaN/GaN HEMT after pulsed-RF life test, Microelectron. Reliab, vol.52, issue.10, p.137, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735910

R. Singh, « Reliability and performance limitations in SiC power devices, Microelectron. Reliab. T, vol.46, p.142, 2006.

F. Administratif,

T. Soutenance,

T. Prénoms-:-besar and . Nature, Doctorat Numéro, pp.2016-147

. Ecole-doctorale-:-Électronique, A. Électrotechnique, . De-lyon, and . Spécialité, Effectivement, la tenue en tension élevée, la faible résistivité, ainsi que l'indépendance de la température du courant de recouvrement rendent cette diode idéale pour les convertisseurs de puissance DC/DC. Cependant, face à l'abondance des composants Si sur le marché, la diode Schottky rencontre une certaine réticence. Malgré les nombreuses démonstrations de systèmes électroniques de puissance réalisés, la fiabilité de cette technologie n'arrive pas à convaincre. Cette étude porte sur la caractérisation en régime statique sur une large gamme de températures et l'évaluation de la fiabilité en surcharge des diodes Schottky et JBS SiC-4H. La caractérisation en température a permis de proposer des modèles de la caractéristique directe et inverse sur une gamme étendue de températures, Génie Électrique RESUME : La diode Schottky SiC est un composant qui peut potentiellement remplacer la diode PiN Si dans les applications de puissance

M. , Caractérisation électrique en Température, Modélisation, Modèle en direct Schottky, Modèle en inverse Schottky, Fiabilité, Tests en Surcharge

, Laboratoire (s) de recherche : AMPÈRE

I. Grenoble, M. Tournier, D. , M. De-conférences, M. Insa-de-lyon et al., Maître de Conférences, Université de Rouen M. Berthou M., Ingénieur, CALY-Technologies