J. N. Hirschhorn and M. J. Daly, Genome-wide association studies for common diseases and complex traits, Nature Reviews Genetics, vol.158, issue.2, pp.95-108, 2005.
DOI : 10.1086/339258

B. Ws and M. Jh, Genome-wide association studies, 2012.

P. M. Visscher, M. A. Brown, M. I. Mccarthy, and J. Yang, Five Years of GWAS Discovery, The American Journal of Human Genetics, vol.90, issue.1, pp.7-24, 2012.
DOI : 10.1016/j.ajhg.2011.11.029

URL : https://doi.org/10.1016/j.ajhg.2011.11.029

H. Cordell, Detecting gene???gene interactions that underlie human diseases, Nature Reviews Genetics, vol.8, issue.6, pp.392-404, 2009.
DOI : 10.1093/bioinformatics/btm396

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2872761/pdf

H. Schwender and K. Ickstadt, Identification of SNP interactions using logic regression, Biostatistics, vol.9, issue.1, p.187, 2008.
DOI : 10.1093/biostatistics/kxm024

URL : https://academic.oup.com/biostatistics/article-pdf/9/1/187/17736064/kxm024.pdf

B. L. Fridley, Bayesian variable and model selection methods for genetic association studies, Genetic Epidemiology, vol.67, issue.1, pp.27-37, 2009.
DOI : 10.1201/9781439821862

J. Listgarten, S. Damaraju, B. Poulin, L. Cook, J. Dufour et al., Predictive Models for Breast Cancer Susceptibility from Multiple Single Nucleotide Polymorphisms, Clinical Cancer Research, vol.10, issue.8, pp.2725-2737, 2004.
DOI : 10.1158/1078-0432.CCR-1115-03

URL : http://clincancerres.aacrjournals.org/content/clincanres/10/8/2725.full.pdf

A. Serretti and E. Smeraldi, Neural network analysis in pharmacogenetics of mood disorders, BMC Medical Genetics, vol.22, issue.1, pp.27-27, 2004.
DOI : 10.1016/S0165-6147(00)01603-5

Q. Xie, L. D. Ratnasinghe, H. Hong, R. Perkins, Z. Tang et al., Decision Forest Analysis of 61 Single Nucleotide Polymorphisms in a Case-Control Study of Esophageal Cancer; a novel method, BMC Bioinformatics, vol.6, issue.Suppl 2, p.4, 2005.
DOI : 10.1186/1471-2105-6-S2-S4

S. J. Winham, C. L. Colby, R. R. Freimuth, X. Wang, M. De-andrade et al., SNP interaction detection with Random Forests in high-dimensional genetic data, BMC Bioinformatics, vol.13, issue.1, p.164, 2012.
DOI : 10.1086/502802

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-13-164?site=bmcbioinformatics.biomedcentral.com

C. C. Chen, H. Schwender, J. Keith, R. Nunkesser, K. Mengersen et al., Methods for Identifying SNP Interactions: A Review on Variations of Logic Regression, Random Forest and Bayesian Logistic Regression, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.8, issue.6, pp.1580-1591, 2011.
DOI : 10.1109/TCBB.2011.46

R. Upstill-goddard, D. Eccles, J. Fliege, and A. Collins, Machine learning approaches for the discovery of genegene interactions in disease data, Briefings in Bioinformatics, 2012.

X. Liu, J. Wu, F. Gu, J. Wang, and Z. He, Discriminative pattern mining and its applications in bioinformatics, Briefings in Bioinformatics, vol.16, issue.5, 2014.
DOI : 10.1093/bib/bbu042

URL : https://academic.oup.com/bib/article-pdf/16/5/884/5025810/bbu042.pdf

S. Naulaerts, P. Meysman, W. Bittremieux, T. N. Vu, W. Vanden-berghe et al., A primer to frequent itemset mining for bioinformatics, Briefings in Bioinformatics, vol.16, issue.2, pp.216-231, 2013.
DOI : 10.1093/bib/bbt074

URL : https://academic.oup.com/bib/article-pdf/16/2/216/678938/bbt074.pdf

F. Gang, H. M. , W. W. , Y. H. , S. M. et al., High-order snp combinations associated with complex diseases: Efficient discovery, statistical power and functional interactions, PLoS ONE, 2012.

L. T. Yu, F. Chung, S. C. Chan, and S. M. Yuen, Using emerging pattern based projected clustering and gene expression data for cancer detection, Proceedings of the Second Conference on Asia-Pacific Bioinformatics, pp.75-84, 2004.

X. Liu, J. Wu, H. Gong, S. Deng, and Z. He, Mining conditional phosphorylation motifs, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.11, pp.915-927, 2014.

F. Herrera, C. J. Carmona, P. González, M. J. , J. et al., An overview on subgroup discovery: foundations and applications, Knowledge and Information Systems, vol.77, issue.1, pp.495-525, 2007.
DOI : 10.1007/s10994-009-5121-y

L. Chuang, H. Chang, M. Lin, and C. Yang, Improved branch and bound algorithm for detecting SNP-SNP interactions in breast cancer, Journal of Clinical Bioinformatics, vol.3, issue.1, pp.1-10, 2013.
DOI : 10.1186/2043-9113-3-4

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626712/pdf

X. Ding, J. Wang, A. Zelikovsky, X. Guo, M. Xie et al., Searching High-Order SNP Combinations for Complex Diseases Based on Energy Distribution Difference, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.12, issue.3, pp.695-704, 2015.
DOI : 10.1109/TCBB.2014.2363459

G. Fang, G. Pandey, W. Wang, M. Gupta, M. Steinbach et al., Mining Low-Support Discriminative Patterns from Dense and High-Dimensional Data, IEEE Transactions on Knowledge and Data Engineering, vol.24, issue.2, pp.279-294, 2012.
DOI : 10.1109/TKDE.2010.241

URL : http://www.cs.umn.edu/tech_reports_upload/tr2009/09-011.pdf

J. Li and L. Wong, Emerging patterns and gene expression data, Genome Informatics, vol.12, pp.3-13, 2001.

J. Li and L. Wong, Identifying good diagnostic gene groups from gene expression profiles using the concept of emerging patterns, Bioinformatics, vol.18, issue.5, pp.725-734, 2002.
DOI : 10.1093/bioinformatics/18.5.725

A. Boulesteix, G. Tutz, and K. Strimmer, A CART-based approach to discover emerging patterns in microarray data, Bioinformatics, vol.19, issue.18, pp.2465-2472, 2003.
DOI : 10.1093/bioinformatics/btg361

A. Ritz, G. Shakhnarovich, A. R. Salomon, and B. J. Raphael, Discovery of phosphorylation motif mixtures in phosphoproteomics data, Bioinformatics, vol.25, issue.1, p.14, 2009.
DOI : 10.1093/bioinformatics/btn569

Z. He, C. Yang, G. Guo, N. Li, and W. Yu, Motif-All: discovering all phosphorylation motifs, BMC Bioinformatics, vol.12, issue.Suppl 1, pp.1-8, 2011.
DOI : 10.1186/1471-2105-12-S1-S22

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-12-S1-S22?site=bmcbioinformatics.biomedcentral.com

T. Wang, A. N. Kettenbach, S. A. Gerber, and C. Bailey-kellogg, MMFPh: a maximal motif finder for phosphoproteomics datasets, Bioinformatics, vol.28, issue.12, p.1562, 2012.
DOI : 10.1093/bioinformatics/bts195

URL : https://academic.oup.com/bioinformatics/article-pdf/28/12/1562/16905211/bts195.pdf

A. Terada, K. Tsuda, and J. Sese, Fast Westfall-Young permutation procedure for combinatorial regulation discovery, 2013 IEEE International Conference on Bioinformatics and Biomedicine, pp.153-158, 2013.
DOI : 10.1109/BIBM.2013.6732479

A. Terada, M. Okada-hatakeyama, K. Tsuda, and J. Sese, Statistical significance of combinatorial regulations, Proceedings of the National Academy of Sciences, pp.12996-13001, 2013.
DOI : 10.1016/S0378-3758(99)00034-8

F. Llinares-lópez, M. Sugiyama, L. Papaxanthos, and K. Borgwardt, Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '15, pp.725-734, 2015.
DOI : 10.1007/978-3-319-07821-2_17

P. Kralj, N. Lavra, D. Gamberger, and A. Krstai, Contrast Set Mining Through Subgroup Discovery Applied to Brain Ischaemina Data, Advances in Knowledge Discovery and Data Mining, pp.579-586, 2007.
DOI : 10.1007/978-3-540-71701-0_61

URL : http://kt.ijs.si/PetraKralj/publications/PAKDD-2007-KraljEtAl-CSMthroughSD.pdf

M. Mueller, R. Rosales, H. Steck, S. Krishnan, B. Rao et al., Subgroup Discovery for Test Selection: A Novel Approach and Its Application to Breast Cancer Diagnosis, Advances in Intelligent Data Analysis VIII: 8th International Symposium on Intelligent Data Analysis, pp.119-130, 2009.
DOI : 10.1007/978-3-642-02976-9_58

R. Sherhod, P. N. Judson, T. Hanser, J. D. Vessey, S. J. Webb et al., Emerging Pattern Mining To Aid Toxicological Knowledge Discovery, Journal of Chemical Information and Modeling, vol.54, issue.7, pp.1864-1879, 2014.
DOI : 10.1021/ci5001828

URL : https://doi.org/10.1021/ci5001828

M. Fabrgue, A. Braud, S. Bringay, C. Grac, F. Le-ber et al., Discriminant temporal patterns for linking physico-chemistry and biology in hydro-ecosystem assessment, Ecological Informatics, vol.24, pp.210-221, 2014.
DOI : 10.1016/j.ecoinf.2014.09.003

M. Garca-borroto, J. Martnez-trinidad, and J. Carrasco-ochoa, A survey of emerging patterns for supervised classification, Artificial Intelligence Review, vol.17, issue.4, pp.705-721, 2014.
DOI : 10.1109/TKDE.2005.60

]. R. Agrawal, T. Imieli´nskiimieli´nski, and A. Swami, Mining association rules between sets of items in large databases, ACM SIGMOD Record, vol.22, issue.2, pp.207-216, 1993.
DOI : 10.1145/170036.170072

J. Han, J. Pei, and Y. Yin, Mining frequent patterns without candidate generation, ACM SIGMOD Record, vol.29, issue.2, pp.1-12, 2000.
DOI : 10.1145/335191.335372

M. J. Zaki and C. Hsiao, CHARM: An Efficient Algorithm for Closed Itemset Mining, Proceedings of the 2002 SIAM International Conference on Data Mining, pp.457-473, 2002.
DOI : 10.1137/1.9781611972726.27

C. Borgelt, Frequent item set mining, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.IV, issue.6, pp.437-456, 2012.
DOI : 10.1007/978-0-387-69935-6_15

M. J. Del-jesus, P. Gonzalez, F. Herrera, and M. Mesonero, Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A Case Study in Marketing, IEEE Transactions on Fuzzy Systems, vol.15, issue.4, pp.578-592, 2007.
DOI : 10.1109/TFUZZ.2006.890662

H. Cheng, X. Yan, J. Han, and P. S. Yu, Direct Discriminative Pattern Mining for Effective Classification, 2008 IEEE 24th International Conference on Data Engineering, pp.169-178, 2008.
DOI : 10.1109/ICDE.2008.4497425

URL : http://www.cs.uiuc.edu/~hanj/pdf/icde08_hongcheng.pdf

G. Dong and J. Li, Efficient mining of emerging patterns, Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '99, pp.43-52, 1999.
DOI : 10.1145/312129.312191

X. Zhang, J. Li, and G. Dong, Discovering jumping emerging patterns and experiments on real datasets, Proceedings of 9th International Database Conference on Heterogeneous and Internet Databases (IDC99), Hong Kong, 1999.

S. Bay and M. Pazzani, Detecting group differences: Mining contrast sets, pp.213-246, 2001.

T. Abudawood and P. Flach, Evaluation Measures for Multi-class Subgroup Discovery, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2009 Proceedings, Part I, pp.35-50, 2009.
DOI : 10.1023/A:1008894516817

T. Guns, S. Nijssen, and L. D. Raedt, k-Pattern Set Mining under Constraints, IEEE Transactions on Knowledge and Data Engineering, vol.25, issue.2, pp.402-418, 2013.
DOI : 10.1109/TKDE.2011.204

URL : http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW596.pdf

G. A. Barnard, Introduction to Pearson (1900) On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling, Breakthroughs in Statistics: Methodology and Distribution, pp.1-10, 1992.
DOI : 10.1007/978-1-4612-4380-9_1

R. A. Fisher, On the Interpretation of ?? 2 from Contingency Tables, and the Calculation of P, Journal of the Royal Statistical Society, vol.85, issue.1, pp.87-94, 1922.
DOI : 10.2307/2340521

C. E. Bonferroni, Teoria statistica delle classi e calcolo delle probabilit'a, pp.3-62, 1936.

R. E. Tarone, A Modified Bonferroni Method for Discrete Data, Biometrics, vol.46, issue.2, pp.515-522, 1990.
DOI : 10.2307/2531456

P. H. Westfall and S. S. Young, Resampling-based multiple testing: Examples and methods for p-value adjustment, 1993.

G. Fang, W. Wang, B. Oatley, B. Van-ness, M. Steinbach et al., Characterizing discriminative patterns ArXiv e-prints, 2011.

L. Geng and H. J. Hamilton, Interestingness measures for data mining, ACM Computing Surveys, vol.38, issue.3, 2006.
DOI : 10.1145/1132960.1132963

N. Lavra?, B. Kav?ek, P. Flach, and L. Todorovski, Subgroup discovery with cn2-sd, J. Mach. Learn. Res, vol.5, pp.153-188, 2004.

D. Gamberger and N. Lavrac, Expert-guided subgroup discovery: Methodology and application, J. Artif. Int. Res, vol.17, pp.501-527, 2002.
DOI : 10.1007/3-540-45681-3_14

URL : http://sci2s.ugr.es/keel/pdf/specific/congreso/Gamberger2002-Generating.pdf

J. Li and Q. Yang, Strong Compound-Risk Factors: Efficient Discovery Through Emerging Patterns and Contrast Sets, IEEE Transactions on Information Technology in Biomedicine, vol.11, issue.5, pp.544-552, 2007.
DOI : 10.1109/TITB.2007.891163

T. Guns, S. Nijssen, and L. De-raedt, Itemset mining: A constraint programming perspective, Artificial Intelligence, vol.175, issue.12-13, pp.1951-1983, 2011.
DOI : 10.1016/j.artint.2011.05.002

URL : https://doi.org/10.1016/j.artint.2011.05.002

S. Morishita, J. Sese, and F. Puppe, Transversing itemset lattices with statistical metric pruning Sd-map a fast algorithm for exhaustive subgroup discovery, Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS '00, pp.226-236, 2000.

B. Kavek and N. Lavra, APRIORI-SD: ADAPTING ASSOCIATION RULE LEARNING TO SUBGROUP DISCOVERY, Applied Artificial Intelligence, vol.2, issue.7, pp.543-583, 2006.
DOI : 10.1023/A:1007601015854

T. D. Cook, Advanced Statistics: Up with Odds Ratios! A Case for Odds Ratios When Outcomes Are Common, Academic Emergency Medicine, vol.1, issue.12, pp.1430-1434, 2002.
DOI : 10.1097/00005373-198704000-00005

H. Cheng, X. Yan, J. Han, and C. W. Hsu, Discriminative Frequent Pattern Analysis for Effective Classification, 2007 IEEE 23rd International Conference on Data Engineering, pp.716-725, 2007.
DOI : 10.1109/ICDE.2007.367917

URL : http://www.cs.uiuc.edu/~hanj/pdf/icde07_hcheng.pdf

Y. Morimoto, T. Fukuda, H. Matsuzawa, T. Tokuyama, and K. Yoda, Algorithms for mining association rules for binary segmentations of huge categorical databases, Proceedings of 24rd International Conference on Very Large Data Bases, pp.380-391, 1998.

Q. Liu and G. Dong, A contrast pattern based clustering quality index for categorical data, Ninth IEEE International Conference on Data Mining, pp.860-865, 2009.
DOI : 10.1109/icdm.2009.105

URL : http://knoesis.wright.edu/library/download/09CPCQ_ICDMLiuDong.pdf

F. Geerts, B. Goethals, and T. Mielikinen, Tiling Databases, Discovery Science: 7th International Conference. Proceedings, pp.278-289, 2004.
DOI : 10.1007/978-3-540-30214-8_22

T. Guns, S. Nijssen, and L. De-raedt, Evaluating pattern set mining strategies in a constraint programming framework, " in Advances in Knowledge Discovery and Data Mining: 15th Pacific-Asia Conference, Proceedings, Part II, pp.382-394, 2011.

M. Sugiyama, F. L. Lpez, N. Kasenburg, and K. M. Borgwardt, Significant Subgraph Mining with Multiple Testing Correction, Proceedings of the 2015 SIAM International Conference on Data Mining, pp.37-45, 2015.
DOI : 10.1137/1.9781611974010.5

URL : http://arxiv.org/abs/1407.0316

G. I. Webb, Discovering significant patterns, Machine Learning, pp.1-33, 2007.
DOI : 10.1007/s10994-008-5045-y

URL : http://www.csse.monash.edu/~webb/Files/Webb07.pdf

L. Papaxanthos, F. Llinares-lopez, D. Bodenham, and K. Borgwardt, Finding significant combinations of features in the presence of categorical covariates, Advances in Neural Information Processing Systems 29, pp.2279-2287, 2016.

R. E. Tarone, A Modified Bonferroni Method for Discrete Data, Biometrics, vol.46, issue.2, pp.515-522, 1990.
DOI : 10.2307/2531456

S. Minato, T. Uno, K. Tsuda, A. Terada, and J. Sese, Fast statistical assessment for combinatorial hypotheses based on frequent itemset mining, 2014.
DOI : 10.1007/978-3-662-44851-9_27

S. Dudoit, J. P. Shaffer, and J. C. Boldrick, Multiple Hypothesis Testing in Microarray Experiments, Statistical Science, vol.18, issue.1, pp.71-103, 2003.
DOI : 10.1214/ss/1056397487

URL : http://doi.org/10.1214/ss/1056397487

N. Meinshausen, M. H. Maathuis, and P. Bhlmann, Asymptotic optimality of the Westfall???Young permutation procedure for multiple testing under dependence, The Annals of Statistics, vol.39, issue.6, pp.3369-3391, 2011.
DOI : 10.1214/11-AOS946

S. Nijssen, T. Guns, and L. De-raedt, Correlated itemset mining in ROC space, Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '09, pp.647-656, 2009.
DOI : 10.1145/1557019.1557092

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:186616&datastream=PDF_01&disclaimer=2050da3ce5c978bedd3bc33e796e14e21b72c785bd254bb5acc3845d272f6623

M. Van-leeuwen and A. Knobbe, Diverse subgroup set discovery, Data Mining and Knowledge Discovery, vol.3, issue.1, pp.208-242, 2012.
DOI : 10.1007/s10618-010-0202-x

T. Guns, S. Nijssen, A. Zimmermann, and L. D. Raedt, Declarative Heuristic Search for Pattern Set Mining, 2011 IEEE 11th International Conference on Data Mining Workshops, pp.1104-1111, 2011.
DOI : 10.1109/ICDMW.2011.60

URL : http://dial.uclouvain.be/downloader/downloader.php?pid=boreal:186634&datastream=PDF_01&disclaimer=ce6119e202e0283702a3bff73cedbf9e52ba864f589c476f89ab1d923b768652

Z. He, F. Gu, C. Zhao, X. Liu, J. Wu et al., Conditional discriminative pattern mining: Concepts and algorithms, Information Sciences, vol.375, pp.1-15, 2017.
DOI : 10.1016/j.ins.2016.09.047

T. Lucas, T. C. Silva, R. Vimieiro, and T. B. Ludermir, A new evolutionary algorithm for mining top- k discriminative patterns in high dimensional data, Applied Soft Computing, vol.59, pp.487-499, 2017.
DOI : 10.1016/j.asoc.2017.05.048

T. Pontes, R. Vimieiro, and T. B. Ludermir, SSDP: A Simple Evolutionary Approach for Top-K Discriminative Patterns in High Dimensional Databases, 2016 5th Brazilian Conference on Intelligent Systems (BRACIS), p.125
DOI : 10.1109/BRACIS.2016.072

P. Terlecki and K. Walczak, Efficient Discovery of Top-K Minimal Jumping Emerging Patterns, Rough Sets and Current Trends in Computing: 6th International Conference, pp.438-447, 2008.
DOI : 10.1007/s10115-004-0175-4

C. J. Carmona, P. Gonzalez, M. J. Jesus, and F. Herrera, NMEEF-SD: Non-dominated Multiobjective Evolutionary Algorithm for Extracting Fuzzy Rules in Subgroup Discovery, IEEE Transactions on Fuzzy Systems, vol.18, issue.5, pp.958-970, 2010.
DOI : 10.1109/TFUZZ.2010.2060200

V. Pachón, J. Mata, J. L. Domínguez, and M. J. Maña, Multi-objective Evolutionary Approach for Subgroup Discovery, Hybrid Artificial Intelligent Systems: 6th International Conference Proceedings, Part II (E. Corchado, M. Kurzy´nskiKurzy´nski, and M. Wo´zniakWo´zniak, pp.271-278, 2011.
DOI : 10.1109/TFUZZ.2010.2060200

T. Uno, M. Kiyomi, and H. Arimura, Lcm ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets, Workshop Frequent Item Set Mining Implementations, 2004.
DOI : 10.1145/1133905.1133916

W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan et al., Direct mining of discriminative and essential frequent patterns via model-based search tree, Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD 08, pp.8-230, 2008.
DOI : 10.1145/1401890.1401922

W. Li, J. Han, and J. Pei, Cmar: accurate and efficient classification based on multiple class-association rules, Proceedings 2001 IEEE International Conference on Data Mining, pp.369-376, 2001.

X. Yin and J. Han, CPAR: Classification based on Predictive Association Rules, Proceedings, pp.331-335, 2003.
DOI : 10.1137/1.9781611972733.40

URL : http://www-faculty.cs.uiuc.edu/~hanj/pdf/sdm03_cpar.pdf

C. J. Carmona, P. González, M. J. Jesus, and F. Herrera, Overview on evolutionary subgroup discovery: analysis of the suitability and potential of the search performed by evolutionary algorithms, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.3, issue.9, pp.87-103, 2014.
DOI : 10.1016/j.eswa.2007.08.083

H. Fan and K. Ramamohanarao, An Efficient Single-Scan Algorithm for Mining Essential Jumping Emerging Patterns for Classification, p.456462, 2002.
DOI : 10.1007/3-540-47887-6_45

M. Van-leeuwen and A. Knobbe, Non-redundant Subgroup Discovery in Large and Complex Data, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011 Proceedings, Part III, pp.459-474, 2011.
DOI : 10.1007/3-540-63223-9_108

H. Grobkreutz, D. Paurat, and S. Rüping, An enhanced relevance criterion for more concise supervised pattern discovery, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.1442-1450, 2012.

Y. Kameya and T. Sato, Mining of Relevant Patterns with Minimum Support Raising, Proceedings, pp.816-827, 2012.
DOI : 10.1137/1.9781611972825.70

G. C. Garriga, P. Kralj, and N. Lavra?, Closed Sets for Labeled Data, Journal of Machine Learning Research, issue.9, pp.559-580, 2008.
DOI : 10.1007/11871637_19

URL : http://www.cis.hut.fi/garriga/publications/pkdd06.pdf

M. Boley and H. Grosskreutz, Non-redundant Subgroup Discovery Using a Closure System, Machine Learning and Knowledge Discovery in Databases: European Conference Proceedings, Part I (W. Buntine, pp.179-194, 2009.
DOI : 10.1007/3-540-63223-9_108

B. Negrevergne, A. Termier, M. Rousset, and J. Mhaut, Para Miner: a generic pattern mining algorithm for multi-core architectures, Data Mining and Knowledge Discovery, vol.1, issue.1, pp.593-633, 2014.
DOI : 10.5626/JCSE.2007.1.1.074

J. Li, G. Liu, and L. Wong, Mining statistically important equivalence classes and delta-discriminative emerging patterns, Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '07, pp.430-439, 2007.
DOI : 10.1145/1281192.1281240

URL : http://www.ntu.edu.sg/home/jyli/publications/frp348-li.pdf

N. Tatti101-]-m, N. Mampaey, J. Tatti, and . Vreeken, Maximum entropy based significance of itemsets, Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.57-77, 2008.
DOI : 10.1007/s10115-008-0128-4

N. Mantel and W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease, Journal of the National Cancer Institute, 1959.

L. Ma, T. L. Assimes, N. B. Asadi, C. Iribarren, T. Quertermous et al., An ???almost exhaustive??? search-based sequential permutation method for detecting epistasis in disease association studies, Genetic Epidemiology, vol.39, issue.5, pp.434-443, 2010.
DOI : 10.1002/gepi.20496

M. D. Ritchie, L. W. Hahn, N. Roodi, L. R. Bailey, W. D. Dupont et al., Multifactor-Dimensionality Reduction Reveals High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer, The American Journal of Human Genetics, vol.69, issue.1, pp.138-147, 2001.
DOI : 10.1086/321276

URL : https://doi.org/10.1086/321276

C. Yang, Y. Lin, C. Yang, and L. Chuang, An efficiency analysis of high-order combinations of gene???gene interactions using multifactor-dimensionality reduction, BMC Genomics, vol.33, issue.5, p.489, 2015.
DOI : 10.1007/s10107-008-0213-1

S. Leem, H. Hwan-jeong, J. Lee, K. Wee, and K. Sohn, Fast detection of high-order epistatic interactions in genome-wide association studies using information theoretic measure, Advances in Bioinformatics: Twelfth Asia Pacific Bioinformatics Conference, pp.19-28, 2014.
DOI : 10.1016/j.compbiolchem.2014.01.005

J. Shang, J. Zhang, Y. Sun, and Y. Zhang, EpiMiner: A three-stage co-information based method for detecting and visualizing epistatic interactions, Digital Signal Processing, vol.24, pp.1-13, 2014.
DOI : 10.1016/j.dsp.2013.08.007

M. Xie, J. Li, and T. Jiang, Detecting genome-wide epistases based on the clustering of relatively frequent items, Bioinformatics, vol.28, issue.1, p.5, 2011.
DOI : 10.1093/bioinformatics/btr603

P. Salle, S. Bringay, M. Teisseire, F. Chakkour, M. Roche et al., GeneMining: Identification, Visualization, and Interpretation of Brain Ageing Signatures, Medical Informatics in a United and Healthy Europe, p.5, 0128.
URL : https://hal.archives-ouvertes.fr/lirmm-00395142

A. Sallaberry, N. Pecheur, S. Bringay, M. Roche, and M. Teisseire, Sequential patterns mining and gene sequence visualization to discover novelty from microarray data, Journal of Biomedical Informatics, vol.44, issue.5, pp.760-774, 2011.
DOI : 10.1016/j.jbi.2011.04.002

URL : https://hal.archives-ouvertes.fr/hal-00625539

Y. Lai, B. Wu, L. Chen, and H. Zhao, A statistical method for identifying differential gene-gene co-expression patterns, Bioinformatics, vol.20, issue.17, pp.3146-3155, 2004.
DOI : 10.1093/bioinformatics/bth379

URL : https://academic.oup.com/bioinformatics/article-pdf/20/17/3146/457804/bth379.pdf

D. Schwartz and S. P. Gygi, An iterative statistical approach to the identification of protein phosphorylation motifs from large-scale data sets, Nature Biotechnology, vol.67, issue.11, pp.1391-1398, 2005.
DOI : 10.1021/ac00114a016

Y. Chen, K. Aguan, C. Yang, Y. Wang, N. R. Pal et al., Discovery of Protein Phosphorylation Motifs through Exploratory Data Analysis, PLoS ONE, vol.104, issue.5, p.20025, 2011.
DOI : 10.1371/journal.pone.0020025.s012

A. Soulet, C. Raissi, M. Plantevit, and B. Cremilleux, Mining Dominant Patterns in the Sky, 2011 IEEE 11th International Conference on Data Mining, pp.655-664, 2011.
DOI : 10.1109/ICDM.2011.100

URL : https://hal.archives-ouvertes.fr/inria-00623566

W. Ugarte, P. Boizumault, S. Loudni, and B. Cremilleux, Computing Skypattern Cubes Using Relaxation, 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, pp.859-866, 2014.
DOI : 10.1109/ICTAI.2014.132

URL : https://hal.archives-ouvertes.fr/hal-01145902

T. W. Consortium, Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls, Nature, vol.447, pp.661-678, 2007.

G. M. Clarke, C. A. Anderson, F. H. Pettersson, L. R. Cardon, A. P. Morris et al., Basic statistical analysis in genetic case-control studies, Nature Protocols, vol.43, issue.2, pp.121-133, 2011.
DOI : 10.1186/1471-2105-9-138

J. A. Morris and M. J. Gardner, Statistics in Medicine: Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates, BMJ, vol.296, issue.6632, pp.1313-1316, 1988.
DOI : 10.1136/bmj.296.6632.1313

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2545775/pdf

J. Du-prel, G. Hommel, B. Rhrig, and M. Blettner, Confidence interval or p-value?: Part 4 of a series on evaluation of scientific publications, Deutsches rzteblatt International, vol.106, pp.335-339, 2008.

N. Pasquier, Y. Bastide, R. Taouil, L. Lakhal, and S. Amer-yahia, Discovering frequent closed itemsets for association rules Toppi: An efficient algorithm for item-centric mining, Proceedings of the 7th International Conference on Database Theory, ICDT '99, pp.398-416, 1999.
DOI : 10.1007/3-540-49257-7_25

URL : http://libd2.univ-bpclermont.fr/~pasquier/ICDT99.ps

F. Pan, G. Cong, A. K. Tung, J. Yang, and M. J. Zaki, Carpenter, Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '03, pp.637-642, 2003.
DOI : 10.1145/956750.956832

R. J. Klein, C. Zeiss, E. Y. Chew, J. Tsai, R. S. Sackler et al., Complement Factor H Polymorphism in Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.385-389, 2005.
DOI : 10.1126/science.1109557

T. Wtccc, Association scan of 14,500 nssnps in four common diseases identifies variants involved in autoimmunity, Nature genetics, vol.39, pp.1329-1337, 2007.

S. Purcell, B. Neale, K. Todd-brown, L. Thomas, M. Ferreira et al., PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses, The American Journal of Human Genetics, vol.81, issue.3, pp.559-575, 2007.
DOI : 10.1086/519795

URL : https://doi.org/10.1086/519795

T. Curk, G. Rot, and B. Zupan, SNPsyn: detection and exploration of SNP???SNP interactions, Nucleic Acids Research, vol.39, issue.suppl_2, pp.444-449, 2011.
DOI : 10.1093/nar/gkr321

URL : https://academic.oup.com/nar/article-pdf/39/suppl_2/W444/18783100/gkr321.pdf

A. K. Jain, Data clustering: 50 years beyond K-means, Award winning papers from the 19th International Conference on Pattern Recognition (ICPR)19th International Conference in Pattern Recognition (ICPR), pp.651-666, 2010.
DOI : 10.1016/j.patrec.2009.09.011

S. C. Johnson, Hierarchical clustering schemes, Psychometrika, vol.58, issue.4, 1967.
DOI : 10.1099/00221287-17-1-201

B. Shneiderman, The eyes have it: a task by data type taxonomy for information visualizations, Proceedings 1996 IEEE Symposium on Visual Languages, pp.336-343, 1996.

. Global-discriminative-pattern-mining-algorithms......., 33 1.8 Statistically significant discriminative pattern mining algorithms, p.35

D. Example-of-transaction, 47 2.2 Skypatterns with respect to the set of measures M = {f req, size}, p.47

M. Popular-distance, 99 List of Figures 1.1 An example of a two-class labeled dataset, p.20