Skip to Main content Skip to Navigation
Theses

Phenotyping wheat by combining ADEL-Wheat 4D structure model with proximal remote sensing measurements along the growth cycle

Abstract : Crop production has to increase faster to meet the global food demand in the near future. Phenotyping, i.e. the monitoring crop state variables and canopy functioning quantitatively, was recognized as the bottleneck to accelerate genetic progress to increase the yield. Field phenotyping is mandatory since it allows evaluating the genotypes under natural field conditions. The technological advances of sensors, communication and computing foster the development of high-throughput phenotyping systems during the last decade. However, only limited attentions was paid in the interpretation of phenotyping measurements, leading to an under-exploitation of the potentials of current systems. This thesis focuses on advancing the interpretation of field phenotyping measurements over wheat crops. It includes three complementary aspects that illustrate the potentials of advanced image processing, model inversion and data assimilation for the interpretation of phenotyping measurements to access new traits or improve the accuracy with which already accessible traits have been retrieved. Several platforms (phenotypette, phenomobile, UAV) and sensors (RGB high resolution cameras, LiDAR) were used along this study.Characterization of the sowing pattern and density. The precise plant positions along and across the row was described from high resolution RGB images. Statistical models for the spacing of plants along the row and distance to the row center were then proposed and calibrated. The influence of the sowing pattern on the green fraction that can be easily measured with phenotyping techniques was then evaluated. The statistical model used to describe the distribution of plant spacing along the row was exploited to investigate the optimal sampling siz and method for plant density estimation. Finally, a method was developed to automatically estimate the plant density from the high resolution RGB images. Results show a relatively high accuracy when the spatial resolution is high enough and when observations are made before plants have reached 3 leaves stages.ADEL-Wheat model assisted Estimation of GAI from LiDAR measurements. It is relatively easy to achieve accurate GAI estimate using passive observations at early stages. However, the performances degrade for high GAI conditions due to the saturation problem. The use of LiDAR with its capacity to bring information on the third dimension was investigated as a possible way to alleviate the saturation effect based on the regularities between top and deeper canopy layers as described by the ADEL_Wheat model. The LiDAR used is equipping the phenomobile phenotyping platform. Focus was put on the stage of maximum GAI development when saturation effects are the largest. Results show a significant improvement of performances when using LiDAR observations as compared to classical green fraction based estimation.Assimilation of green fractions temporal evolution into ADEL-Wheat model. Monitoring the dynamics of canopy architecture to get early vigor traits of the crop is highly desired by breeders. The feasibility and interest of a phenotyping data assimilation approach was evaluated based on in silico experiments using the ADEL_Wheat model simulations. The green fraction observed from several view directions and dates is the variable that is assimilated. A sensitivity analysis was conducted to evaluate the effect of the number and spacing of the observation dates as well as the number of view directions used. Results show that few parameters of the ADEL-Wheat model are actually accessible from this assimilation technique. Further, it allows also estimating with a good accuracy emerging canopy properties such as the GAI and the number of stems with more than 3 leaves. Based on these innovative results, conclusions are finally drawn on the limits of this study and on the future work to undertake for efficient field high-throughput phenotyping
Document type :
Theses
Complete list of metadatas

Cited literature [123 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01668577
Contributor : Abes Star :  Contact
Submitted on : Wednesday, December 20, 2017 - 10:27:09 AM
Last modification on : Wednesday, October 14, 2020 - 9:06:03 AM

File

pdf2star-1497876490-Shouyang_P...
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01668577, version 1

Collections

Citation

Liu Shouyang. Phenotyping wheat by combining ADEL-Wheat 4D structure model with proximal remote sensing measurements along the growth cycle. Agricultural sciences. Université d'Avignon, 2016. English. ⟨NNT : 2016AVIG0685⟩. ⟨tel-01668577⟩

Share

Metrics

Record views

503

Files downloads

314